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ABSTRACT 

 

         In this thesis, several theoretical specifications and estimation techniques are 

employed towards the dynamic modelling and forecasting of the term structure of interest 

rates, both independently and in conjunction with equity markets. 

         The first empirical investigation is motivated by the recent call for richer 

specifications following the global financial crisis of 2007-2009. In that regard, several 

existing multi-factor continuous-time models are extended to four and five factors to assess 

the benefit of richer models. The Gaussian estimation methods for dynamic Continuous-

Time models yield insightful comparative results concerning the two different segments 

of the yield curve. The dynamics of the more volatile short-end of the yield curve are best 

explained by the most flexible models which consistently outperform all the other less 

complex models in terms of both in-sample and out-of-sample performance. For the long-

end flatter segment, the benchmark discrete-time parsimonious models seem hard to beat, 

while the addition of extra factors has a minimal benefit in terms of forecasting 

performance.  

         In a second empirical study, the term structures of three Scandinavian countries are 

modelled using multi-latent-factor models. The empirical results produced by Kalman 

filter estimation method indicate that the three-factor specification captures most of the 

changes over time in the shape of the yield curve for Denmark and Norway, while for 

Sweden the statistical tests do not reject the two-factor model against the three-factor 

formulation. 

        Finally, the third investigation brings new empirical evidence of the impact of the 

2007-2009 financial crisis on the return and volatility linkages between the U.S. - the 

country where the shock originated and other major economies using a multivariate 

methodology for the simultaneous modelling of interest rates and equity markets.  During 

the global financial crisis of 2007-2009 the financial markets around the world have 

communicated through a more complex network of information transmission routes. The 

channels with most intensity of information transmission were the indirect international 

ones, bringing new evidence of the importance of this type of routes that has previously 

been investigated very little in the spillovers literature 
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Chapter 1 

Introduction   

 

       Over the last three decades, interest rate modelling has become both theoretically and 

empirically, one of the most important and challenging areas of modern finance. Factors 

such as the expansion of international financial markets, the increased trading of new 

derivative products and the progress attained in the computational field, have all 

contributed substantially to this evolutionary process, whose starting point can be traced 

back in time to Vasicek’s (1977) dynamic interest rate model.  

 

1.1 The Importance of Interest Rate Modelling 

     Interest rates are one of the most important economic and financial variables at both, 

macroeconomic and microeconomic levels. At the macroeconomic level, the level of 

economic activity can be influenced through conventional monetary policy tools. One of 

the most common tool is the decision taken by central banks and the Monetary Policy 

Committee (MPC) to change the official (base) interest rates with the aim to deliver price 

stability (low inflation targeting) which is crucial to the ultimate objective of economic 

stability (Hamilton and Wu, 2012). For example, a decrease in the official interest rates 

will be reflected in other borrowing and lending rates, encouraging borrowers (spending) 

and discouraging lenders (savers) which feeds further into increasing output and 

employment levels. Therefore, the decision of altering interest rates is made conditionally 

upon current and predicted levels of other economic variables such as money supply, 

inflation and gross domestic product (GDP). Recently, academics and economists consider 

complex interest rate models in macro-finance in the attempt to better understand and 

explain interest rate movements and their relation to these economic variables (e.g., Ang et 

al., 2006; Rudebusch and Wu, 2008). At the microeconomic level, understanding the 
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behaviour of interest rates is crucial to areas such as derivatives pricing, portfolio 

allocation, risk management and forecasting (Diebold and Rudebush, 2013). The financial 

trading of derivative products in general and of fixed-income products in particular (e.g. 

bond options, interest rate swaps, swaptions, caps, floors and mortgage-backed securities), 

constitute a valuable component of the world economy as most of the financial 

institutions, investment banks and government treasuries rely on this kind of activity, with 

billions of dollars traded on a daily basis (Dempster et al., 2014).  As the largest user 

group of interest rate models, investment banks focus on current valuation of various 

financial products and hedging strategies. Risk managers also rely on interest rate models 

in order to simulate market behaviour, so that they can dynamically assess the return on 

their holding portfolios and calculate their risk exposure to fluctuations in the level of 

interest rates. Thus, a model that successfully explains the dynamics of the yield curve is 

an absolute requirement for any successful financial strategy followed by banks, insurance 

companies and other financial institutions.  

 

1.2 The Gaps in the Literature and Motivation 

       Compared to other financial concepts or variables, the term structure of interest rates 

has two dimensions, the static cross-dimension given by the maturity (tenor) of the interest 

rates and a dynamic time-dimension that refers to the change in the shape of the yield 

curve over time. That is, at one point in time there is information about multiple points on 

the yield curve.    

      Given the importance and the duality of the yield curve concept, the literature on the 

term structure of interest rates models is vast and complex. According to Diebold and 

Rudebusch (2013, pp 1) it is looking more like “a tangled web” with numerous 

overlapping categories and lacking a unified platform that would allow the selection of a 

reference model such as the Black and Scholes (1973) model for the pricing and hedging 

of stock derivatives. Thus, the choice for the theoretical model it is a difficult one and it 

has to fit the purpose at hand.  

       Nevertheless, it is widely recognised by academics and practitioners that continuous-

time models are more appropriate than discrete-time models (Bergstrom and Nowman, 

2007), and that multi-factor models are superior to single-factor models (Dai and 

Singleton, 2000). However, there is no definite answer to how many factors should a 

model include. Until recently, most of the term structure of interest rates (TSIR) studies 

relied on the early findings of Litterman and Scheinkman (1991) who concluded that three 
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unobservable factors (described as level, slope and curvature) can explain over 95% of the 

fluctuations in yield curves. Consequently, only few empirical studies1 have considered 

beyond three sources of uncertainty despite the early existence of several generalized n -

factor models2. The severity of the last global financial crisis of 2007-2009 (GFC) has 

been partially blamed on the reduced number of risk sources in of the financial models 

used by financial market participants (Shiller, 2012).  This point of view has prompted the 

recommendation by financial regulators (Basel II Committee on Banking Supervision, 2010) 

that banks should increase the number of risk factors when modelling the yield curve. One 

category of dynamic term structure models that intuitively accommodate for such 

extensions is the multi-factor yields-only models. Following Nowman (2001, 2003), the 

general framework developed by Chan et al. (1992) (hereafter CKLS) will be extended to 

four and five factors in the first comparative empirical investigation of this thesis.   

       Turning to the empirical literature, the picture is again unclear. Even from early stages 

the empirical evidence did not converge, as the estimation results seem to be very 

sensitive to aspects such as the frequency and source of the data, the data period and the 

estimation method employed (see Treepongkaruna and Gray, 2003; Lo, 2005). A well-

known problem in the estimation of a continuous-time model is the choice of a discrete-

time model based on a particular discretisation method, since the data available is only 

discrete.  Recently Duffee and Stanton (2012, pp 2) have suggested that “due to our 

limited understanding of the properties of the estimation techniques available when 

applied to sophisticated term structure models” the empirical testing of such models is 

rather immature compared to the corresponding theoretical literature.  Looking for an 

optimal estimation technique they concluded that the Kalman filter technique combined 

with the maximum likelihood (ML) estimator is superior to other alternative such as 

moment-based and simulation methods. In the second empirical investigation, the Kalman 

filter technique will be employed in this thesis to estimate the Babbs and Nowman (1999) 

multi-factor model for three Scandinavian countries.  

       A large part of the interest rate modelling literature analyses TSIR models based on 

their implications for pricing interest rate sensitive securities like bonds and bond options, 

with less focus on the dynamic aspect of forecasting that is equally important as 

recognised by Dempster et al. (2014, pp. 251) who assert that the key to the accuracy of 

                                                           
1 Egorov et al. (2011) and Steeley (2014a) used four factors, while Christensen et al. (2009) considered a 

six-factor model. 
2 A list of such generalised models includes Langetieg (1980), Jamshidian (1996) and Babbs and Nowman 

(1999). 
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any global macroeconomic model “are the yield curve models that forecast interest rates 

and upon which the determination of all other variables depends”. The application of the 

yield curve modelling to predict future movement in the level of interest rates has recently 

become an important focus in the relevant literature. However, these studies employ 

frequently the semi-parametric affine Nelson-Siegel model augmented with 

macroeconomic factors (see Steeley, 2014b and Ullah, 2016). Therefore, would be of great 

interest to analyse also the forecasting performance of newly extended the four- and five-

factor CKLS models. 

       The three aspects discussed above (richer models, better estimation method and 

forecasting performance) have been depicted from the term structure of interest rates 

literature to constitute the main motivation behind the empirical research presented in the 

first two empirical studies of this thesis.        

       The latest phase of the crisis, more precisely the European sovereign debt crisis in 

2009 had increased the interest on examining the inter-linkages among international bond 

markets. In a third investigation, the multivariate BEKK (1,1) model that is widely used in 

measuring the return and volatility spillovers between different types of markets is 

employed to analyse the flow of this type of information between the shock-source 

country (the U.S.) and one of the following major economies: the U.K., Eurozone, Japan 

and Canada. Most of the spillovers studies keep the domestic and the international 

transmission channels in isolation with only few studies (Christiansen, 2010; Ehrmann et 

al., 2011) combining simultaneously equity and bond returns in a discrete-time 

econometric framework. The new data provided by the last financial crisis will be subject 

to pre- and post-crisis analysis in order to measure the impact of the crisis on the 

information transmission process within a more complex network of channels 

(domestic/international and equity/interest rates markets).  

 

1.3 The Structure of the Thesis  

      The chapters in this thesis proceed as follows. Following this introduction chapter, the 

second chapter presents an extensive literature review of continuous-time term structure of 

interest rate (TSIR) models. Given their practical implications for econometric and 

forecasting analysis, factor models are critically discussed in larger detail emphasising 

their main contributions and limitations in terms of their mathematical specifications and 

of their statistical properties. The main research of the thesis comprises three empirical 

investigations. The first two empirical studies (Chapter 3 and 4) consider different 
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approaches of dynamic modelling and forecasting of various bond markets, while the third 

study (Chapter 5) investigates the simultaneous modelling of bond and equity markets 

during the 2007-2009 financial crisis. The final conclusions and lines of future research 

are presented in Chapter 6. 

 

1.4 The Aims and the Contributions to Knowledge  

      The main purpose of the first empirical study is to assess if there is any benefit in 

enriching the models by adding extra factors as required by the financial regulators in the 

aftermaths of the GFC of 2007-2009.  This aim is achieved by extending the CKLS 

multivariate framework for the first time to four and then to five factors and by comparing 

the performances of the two extensions in terms of goodness of fit and prediction power. 

In addition, a range other classic multi-factor interest rates models nested in the CKLS 

model will be estimated using the Gaussian estimation methods of continuous-time 

dynamic systems developed by Rex Bergstrom (1983, 1985, 1986, 1989, 1990). In 

contrast with the classic multi-factor models such as Chen (1996) and Balduzzi et al. 

(1996), the CKLS framework can be interpreted as an intrinsic yield curve model, as all 

the factors are interest rates of different maturities bringing in as much information as 

possible.  Hence, it accounts for both (time and cross-sectional) dimensions of the yield 

curve and also for the theoretical element that interest rates move together in a very 

complex fashion by modelling their correlation matrix over time.  

      The short end of the yield curve is estimated in an international comparative context 

involving five currencies of countries chosen as most important and diverse within the 

G10 group: the U.K., the U.S., the Eurozone, Japan and Canada. In addition, the long end 

of the yield curve is estimated using U.K. Government nominal interest rates.  The 

empirical results from the dynamic estimation of a total of forty-eight models provide the 

in-the-sample estimates that are used to comparatively conduct an extensive forecasting 

analysis.   

      The empirical results of the dynamic estimation favour the five-factor models over the 

four-factor models in terms of goodness-of-fit. The addition of the fifth factor increased 

substantially the goodness of fit of the more complex models to the data, with some nested 

models being very close to equal the performance of the general CKLS model. The 

forecasting analysis suggests that for shorter maturity (up to six months) interest rates, the 

continuous-time models nested in the CKLS framework outperform consistently the 

discrete-time models. This provides empirical evidence to advocate the use of more 

complex and richer models to better explain the more volatile segment of the yield curve. 
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Hence, using more sources of risk than previously used in the literature improves the 

predictive performance of the models on the shorter maturity spectrum of the yield curve. 

For longer maturities, it is concluded that the addition of the fifth factor brings minimal 

improvement to the forecast-reliability of the models.  

       The second empirical study (Chapter 4) explores another TSIR modelling framework, 

namely the general multi-factor linear Gaussian model of Babbs and Nowman (1999) (BN 

hereafter). On the strong grounds of its multiple advantages (generality, tractability, and 

correct treatment of the state variables) this type of model is a real candidate in the race 

for “the best” TSIR model. One of the aims of this study is to compare the performance of 

one-, two- and three-factor versions of the BN model in terms of both goodness of fit and 

predictive power. For the first time in the literature this model will be applied to a panel 

data of government nominal interest rates from three Scandinavian countries: Denmark, 

Norway and Sweden. The models are estimated by using the Kalman filter technique 

combined with the ML estimator based on daily zero-coupon yields with a cross-section of 

eight maturities over the January 2000 - September 2014 period. The Kalman filter 

technique allows explicitly for measurement errors in the data, avoiding therefore the 

common approach (e.g. Chan et al., 1992; Nowman, 1997) of using short-term rates as a 

proxy for the instantaneous interest rate. Once the models are estimated the time series of 

the measurement errors implied by the Kalman filter are analysed to test for 

misspecification bias. Moreover, the Kalman filter facilitates the extraction of the latent 

factor time series and the identification of the factor loadings as function of term to 

maturity. This is of great importance to risk management where consistent revaluation is 

possible because the factor simulations play the role of the parameters used in the 

valuation process (Geyer and Pichler, 1999). A factor loading analysis will determine the 

impact that each factor has on the yield change and therefore the nature of the factors in 

terms of level, slope and curvature. The model comparison continues with the forecasting 

analysis as the best in-sample performing model is not necessarily best in predicting future 

interest rate values. It is of interest to see if the models perform in a similar way across the 

analysed Scandinavian countries and if there are any differences between the number of 

factors that explain best their TSIR. 

       Based on formal statistical tests and residual analysis, the empirical results indicate 

that the three-factor specification explains best the changes over time in the shape of the 

yield curve at least for Denmark and Norway, while for Sweden the two- and three-factor 

specification perform in a similar way. There is evidence of a structural break as a result 

of the last global financial crisis, as the estimation results for the pre-crisis data-sample 
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differ considerably from those from the post-crisis period. In terms of factor analysis, the 

latent factors can be interpreted as the level, slope and curvature only for Denmark and 

Norway. The empirical results are in general different for Sweden, suggesting that the 

term structure of Swedish interest rates has simpler dynamics for which two factors are 

sufficient. 

          The third empirical investigation (Chapter 5) will bring new evidence to the existing 

spillovers literature by investigating the impact of the GFC on the return and volatility 

spillovers between the U.S. and four major markets, namely U.K., Germany, Japan and 

Canada. Despite the high degree of integration among these major economies, their 

relationship with the U.S. can still be country-specific due to the differences in the 

structure of their financial systems, in the state of their economies and in the monetary 

policies implemented during the GFC.  

        The most recent global financial crisis of 2007-2009 has prompted a new wave of 

research on information spillovers, with numerous studies exploring new transmission 

channels and developing new methods to model the dynamics of a crisis (Longstaff, 

2010). The modelling framework employed is the discrete-time multivariate generalised 

autoregressive conditional heteroscedasticity (MGARCH) framework. More precisely, the 

four-dimensional full BEKK(1, 1) is used to model simultaneously the linkages between 

bond and  equity markets as in Christiansen (2010) and Ehrmann et al. (2011). The four-

factor model allows for a more complex network of channels (internal and external) is 

examined simultaneously. The short- and long-term segments of government bond 

markets are considered separately, in conjunction with the respective equity markets. By 

considering the short- and long-term bond markets separately one could determine if the 

information is transmitted in a different and specific way between the stock markets and 

each maturity segment of the fixed income markets.  

       In addition, the models employed are estimated over two periods - before the crisis 

and during the crisis – to observe any significant changes in the structural parameters and 

to assess the impact of the last financial crisis on the return and volatility spillover effects 

between the markets considered.  

      The comparative analysis of the summary results concludes that out of the three types 

of routes of information transmission, the most active routes are the indirect external route 

followed by the domestic one. These results are valid for both return and volatility 

channels and it emphasises the importance of considering this type of routes, ignored 

previously in the spillovers literature. Along these routes, the information flows 

unidirectionally from the interest rate markets to the equity markets and not vice-versa, 



8 
 

implying that the interest rate markets dominate the equity markets in transmission of 

information. When comparing the results of the two segments of the yield curve it is found 

that the return and volatility spillover effects are much stronger when the equity markets 

are modelled in combination with the long-term markets than with the money markets. 

Among the countries considered, the results for Canada are rather different as the 

Canadian markets seem to influence indirectly the U.S. markets, reflecting the relative 

stability that Canadian markets sustained during the crisis.  
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Chapter 2 

Interest Rate Modelling - Literature Review  

 

2.1 Introduction         

        The material presented in this chapter intends to provide a comprehensive literature 

review of continuous-time models of the term structure of interest rates, with a focus on 

factor models, since this kind of specifications will be used in the subsequent chapters 

towards several empirical applications. The current modern financial literature offers a 

profusion of theoretical interest rate models and as a result numerous models have been 

selected for discussion. Highlighting the similarities and differences among the models 

and critically presenting their main contributions and limitations will help other 

researchers with the selection of the appropriate interest rate model for their 

investigations. This will contribute towards a clear common platform on which the 

models will be relatively compared in terms of their mathematical specifications, their 

statistical properties and of their implications in pricing interest rate sensitive securities 

like bonds and bond options.   

          This chapter is structured in two main sections, dedicated to the theoretical and 

empirical streams of interest rate modelling, respectively. The first section tries to 

illustrate the theoretical development of the modelling of interest rates by presenting first 

certain fundamental concepts related to the construction of the term structure and the 

challenges posed by the process of selecting the “best” model. The description of term 

structure models starts with single-factor interest models, followed by multi-factor 

interest rate models. The theoretical literature review continues with the brief description 

of other types of important interest models such as Heath, Jarrow and Morton (1992), 

market and macro-finance models.  The second main section provides a comprehensive 

literature review of the empirical evidence on interest rate models, emphasizing the 
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difficulties encountered in the estimation of complex continuous-time interest rate 

models. 

 

2.2 Literature Review of the Theoretical Interest Rate Models 

2.2.1 The Term Structure of Interest Rates (TSIR) 

      All financial assets can be valued by applying the appropriate discount rate function to 

their expected future cash flows.  Different valuation techniques involve distinct types of 

interest rates such as spot rates, short rates, forward rates and yields-to-maturity. The 

pattern observed in a type of interest rate from instruments with different terms to 

maturity but similar credit risk at a fixed point t  in time, is called the yield curve or the 

term structure of that particular type of interest rate. With the taxonomy of interest rates 

there is a range of different term structures/yield curves such as spot curve, forward 

curve, yield-to-maturity curve and swap-rate curve, all considered to be smooth functions 

of time to maturity T , T t .  

       A close relationship exists between the discount curve (the curve of zero-coupon 

bond prices) ( , )T P t T , the implied spot curve ( , )T R t T  and the forward curve 

( ; , )T f t T S  where ( ; , )f t T S is the forward rate over the future period ( , )T S  

calculated at time t  ( t T S  ). Given one of the curves the other two can be uniquely 

determined through the following pricing equalities in a continuous compounding setting 

(Cairns, 2004): 

 
1

( , ) ln ( , )R t T P t T
T t

 


   (2.1) 

                                       
1 ( , )

( ; , ) ln
( , )

P t S
f t T S

S T P t T
 


                                               (2.2) 

where the forward rate prevails over the time interval [ , ]T S and there is a boundary 

constraint ( , ) 1P T T  . 

However, the yield curve fitting exercise is facilitated in the context of spot yields 

because in this case the curve is reasonably flatter than the exponentially decaying curve 

of the bond prices.  Importantly, the spot rates ( , )R t T being derived from market prices 

of government zero coupon bonds, can be regarded as the risk-free interest rates over 

fixed periods of time. For these reasons, in most of the financial literature the term 

structure of (risk-free) interest rates is represented by the zero-coupon yield curve 

(ZCYC).  
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        In essence, the role of interest rate models is to describe and explain the dynamics of 

the price-curve of zero coupon bonds under the assumption of a known initial position.  

Although financial markets are unable to provide sufficient observations on prices of 

discount bonds, there are certain liquid securities that offer a straightforward derivation of 

these prices. Even then, the continuity of the curve is not accomplished as only a finite 

number of observations are available.  Hence, the term structure of interest rates is not 

directly observable and it needs to be statistically inferred from market prices. Yield curve 

construction forms the basis of interest rate modelling and involves various techniques 

from simple interpolation methods to more advanced continuous-time models.  

Among the first attempts, McCulloch (1971) estimated a discount yield curve using cubic 

splines, while studies such as Merton (1973) and Vasicek (1977) were among the first 

continuous-time approaches to yield curve construction.  

        The concept of the short rate ( )r t   plays a fundamental role in modelling the term 

structure of interest rates. In a continuous-time setting the short rate is the instantaneous 

spot rate, defined as the yield of a bond with an infinitesimal maturity, that is

( ) lim ( , )
T t

r t R t T


 , which is also equal to ( ; , )f t T T , the instantaneous forward rate (see 

James and Webber, 2000). 

        The practical issue of the best proxy for the short rate is still debatable, with 

considerable implications on the empirical results and their interpretation. While the 

stability of the Fed Funds rate provides a reason for considering the overnight rate as a 

fair proxy for the short rate, this choice has been avoided because of its minimal 

correlation with other spot rates and the different nature of the forces driving the 

overnight market from those existent in the longer-term money market. Any good model 

for the short rate should have the ability to replicate most of the stylized facts withdrawn 

from historical data regarding the dynamics of the yield curves. For example, a main 

feature of the interest rates time series is the mean reversion property, which means that 

the interest rates are pulled systematically towards a long-run average level. The average 

shape of the yield curve is concave and increasing, evolving in time and passing through 

various shapes - from upward sloping to downward sloping, humped, or inverted humped 

shape. The short-term segment of the yield curve is characterised by higher volatility than 

the long-term segment; the dynamics of the yield curve are in general persistent with a 

higher degree of persistence being observed at the long end of the yield curve. (see 

Diebold and Li, 2006).  
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          Over the years, various empirical studies have presented substantial evidence of the 

diversity in the interest rate dynamics from periods of stability to high volatility, from 

persistence to surprising jumps, and from movements between the levels to even the 

possibility of cyclical patterns1. Models that accommodate most of these features of the 

yield curve are practically important, especially for the dynamic forecasting of future 

interest rates and for correct/fair pricing of interest rate sensitive financial instruments. 

Hence, the dynamics of the term structure of interest rates have been the subject of 

intensive and sophisticated mathematical modelling. The randomness of interest rates has 

been examined following different approaches. While the discrete-time approach has 

represented a major step towards understanding and explaining interest rate dynamics as 

in Cox, Ross and Rubinstein (1979) and Ho and Lee (1986), the continuous-time 

modelling framework is currently unanimously adopted in recognition of the continuous 

evolution of the modern financial markets.   

        Despite all the effort put into developing “better” interest models it is still difficult to 

produce a model that would entirely capture the randomness observed in the behaviour of 

the interest rates.  According to James and Webber (2000), the main features for a model 

to be “good” include the ability to accurately value simple and novel financial products, 

easy calibration and robustness. However, the literature often expands on the list of 

criteria acknowledging at the same time the difficulty for a model to simultaneously 

satisfy all of them. For example, Rogers (1995) considers also theoretical and 

computational arguments and advocates the following list of criteria that an interest rate 

model should satisfy: 

• to be flexible and be capable of generating a variety of yield curves 

• to be based on inputs that are either directly observable or easy to estimate 

• to be consistent with market prices 

• to be computationally fast 

• to exclude negative interest rates and other impossible situations 

• to be free of arbitrage 

However, following the GFC of 2007-2009 the financial markets around the world have 

been subject to prolonged periods of near-zero and even slightly negative interest rates for 

some countries (Denmark and Switzerland). As a result, the requirement for a model to 

exclude negative interest rates has to be reconsidered.  

 

                                                           
1 Most of these patterns could be observed for example, in the behaviour of the interest rate in the daily time 

series of three-month LIBOR rate from 1988 to 1995 (James and Webber, 2000). 
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2.2.2 The Taxonomy of Continuous-time Interest Rate Models 

       Depending on specific criteria term structure models could be classified in many 

different ways. For example, there are discrete-time models competing against 

continuous-time models, single factor models versus multi-factor models, linear drift 

models against nonlinear drift interest rate models. In terms of calibration we can 

differentiate between no-arbitrage models and equilibrium models. The no-arbitrage 

models fit exactly the observed market data, providing a snapshot in time of the yield 

curve but losing the time homogeneity of the parameters, while the equilibrium models 

consider the current market prices as an output that only approximates the current term 

structure.   

         The multitude of theoretical TSIR models can also be categorised depending on the 

specific form taken by the short rate: as a state variable, as an affine combination of state 

variables, as a sum of the squares of the state variables, as an exponential of state 

variables or just as a point on the forward curve. An intuitive classification of interest rate 

models, depending on the state variable used and on its specific dynamics is presented in 

James and Webber (2000, p.60). Accordingly, there are six main categories of interest 

rate models: affine yield models such as Duffie and Khan (1994, 1996); whole yield curve 

models such as Heath, Jarrow and Morton (1992) (hereafter HJM); market models as 

Jamshidian (1997); price kernel models like Constantinides (1992) and Rogers (1997); 

positive models (log- r models) like Black and Karasinski (1991) and consol models such 

as Brennan and Schwartz (1979). More types of models can still be added to this 

impressive list of interest rate models. For example, most diffusion models can be jump-

augmented where the resulting models recognise jump existence in the dynamics of 

interest rates. A list of jump-diffusion models includes those developed by Ahn and 

Thompson (1988), Das and Foresi (1996), Das (1997, 2002), Attari (1999), Duffie, Pan 

and Singleton (1998), Heston (2007) and Sorwar (2011).  Another class of interest rate 

models are the regime-switching (RS) models that attempt to capture the non-linearity 

empirically observed in both, conditional drift and volatility of the short rate and the near 

unit-root persistence in interest rate data.  Building on the work of Hamilton (1989, 1994) 

a large number of RS models have been constructed and empirically tested with important 

implications for the macro-economic context as shown in Gray (1996), Ang and Bekaert 

(2002), Bekaert, Hodrick and Marshall (2001) and Naik and Lee (1993).  

       A specific and popular class of short rate models is the class of affine models that 

possess a high degree of analytical tractability and flexibility. First introduced by Brown 
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and Schaefer (1994) and later extended by Duffie and Kan (1994)2, affine models are very 

useful for derivatives pricing and in particular for econometric analysis.  A short rate 

model is affine if both, the drift and also the square of its diffusion component3 are affine 

(linear) functions in the level of the interest rate (Andersen and Piterbarg, 2010). An 

important result demonstrated by Duffie and Kan (1996), is that the bond prices and zero-

bond yields are affine functions of the short interest rate if and only if the short rate 

follows an affine process, hence affine specifications fully describe the term structure of 

interest rates with a “cross-section” of interest rates computed at any time (Lemke, 2006). 

Affine type models can be classified further in three categories: Gaussian affine models 

for which all the state variables follow the Vasicek model, CIR affine models where all 

state variables have a square-root-volatility and finally, affine models that allow for a 

combination of both types: Gaussian and CIR-type state variables.  A more technical 

classification based on two dimensions was elaborated by Dai and Singleton (2000), who 

defined nine classes of equivalence organised in three categories depending on the 

number of factors. Another distinct group of affine models is represented by the quadratic 

affine type (see Andersen & Piterbarg, 2010) where the short rate is a quadratic function 

of a Gaussian stochastic process.  

         With so many, sometimes overlapping classes of interest rate models, it is simpler 

and more relevant for the empirical research carried out in this thesis to broadly 

distinguish (see Gibson et al., 2010) between two main types of interest rate models: 

factor-models and whole yield curve models based on the forward rate such as HJM and 

market models. It is important to recognize that the two groups have different practical 

implications. On one side, being dynamic, factor interest rate models bring essential 

information based on historical data about the pattern of future rates, hence they are more 

suitable for econometric and forecasting analysis. The market models on the other side 

are static, in the sense that they describe the position of the yield curve at one particular 

point in time and they involve frequent recalibration that ultimately will change the 

model. Nevertheless, due to their facile calibration to observed market prices they are 

preferred by trading desks and other practitioners, making them extremely popular in the 

last decade in comparison with multi-factor models. However, due to a higher tractability 

the classical short-rate models are still used in conjunction with more advanced models 

for risk-management purposes where valuation of derivative products is frequently 

                                                           
2 Cox, Ingersoll and Ross (1985b) have only mentioned a similar class of models; however, Brown and 

Schaefer (1994) considered the affine property for the first time only for a single factor; later Duffie and 

Kan (1994) studied a detailed extension to a finite multidimensional space of state variables.  
3 Affine models are also called exponentially affine models. 
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required. As the empirical investigations carried out in the following chapters of this 

thesis consider estimation and forecasting analysis of several multi-factor models, the 

literature review of interest rate models presented in this chapter focuses more on factor 

models while briefly describing the market models.  

 

2.2.3 Factor Models 

2.2.3.1 Single-Factor Interest Rate Models   

        Although multi-factor models perform better and are more realistic, single factor 

models are not obsolete, providing the necessary foundation for the development of more 

complex term structure models. Given their historical importance and the necessity to 

understand the basic principles behind interest rate modelling, certain factor models will 

be presented in more detail than others, including their mechanics and the implied closed 

formulae for the term structure of interest rates and zero-coupon bond prices. 

        The continuous-time “classical” approach assumes that interest rates follow a 

stochastic process (Ito process4), expressed mathematically as a stochastic differential 

equation (SDE), for which the main state variable is the short rate5, ( ).r t  During the 

1970’s and 1980’s the models proposed for capturing the dynamics of interest rates 

involved only one factor – the short rate, whose randomness is driven by a standard 

Brownian motion6. A generic specification for a diffusion model of interest rates is given 

by the following SDE:  

 ( ) ( ( ), ) ( ( ), ) ( )dr t a r t t dt b r t t dW t   (2.3) 

where ( )W t  is a standard Brownian motion (BM) under the real-world measure ,P

( ( ), )a r t t   and  ( ( ), )b r t t  are deterministic processes potentially dependent on both  the 

time t  and  the level of the short rate ( )r t . The equation above assumes that the 

infinitesimal change in the level of the interest rates is the sum of a drift ( ( ), )a r t t dt  and a 

normally distributed fluctuation ( ( ), ) ( )b r t t dW t . The part ( ( ), )a r t t  is called the drift, 

while the diffusion part  ( ( ), )b r t t  represents the local instantaneous volatility7 of the 

short rate process.  

                                                           
4 The development of Ito calculus played a major role in modelling random processes, just like the 

underlying factors that drive the movements in the interest rates.  
5 Other approaches (for example HJM) use the instantaneous forward rate as the state variable. 
6 The Brownian motion is interchangeably represented by a Wiener process.  
7 The drift and the volatility are conditional on the history of the Brownian motion up to time t. 
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      Any arbitrarily chosen form for drift and volatility functions will create a specific 

short rate model as long as the SDE can be solved. There are particular characteristics 

about the drift that distinguish between mean reversion models and non-linear drift 

models (e.g. Ait-Sahalia, 1996), while specific forms of the diffusion classify models as 

Gaussian models (e.g., Vasicek, 1977), square-root models (e.g., Cox et.al.,1985a and b, 

hereafter CIR), power-type models (e.g., Chan et al., 1992).  

        An important feature of the dynamics of interest rates is the historically observed 

mean reversion property.  This means that while temporally persistent at a high level, the 

interest rates are most likely to fall towards an equilibrium level (and vice versa when 

interest rates are low). The most common way to model the mean reversion property is by 

considering the drift as a linear function of the short rate:      

 ( , ( )) ( ) ( ( )) ( ( ))a t r t r t r t k r t


   


         (2.4) 

where 0k     is the constant speed of reversion towards, and   is the constant long-

term equilibrium level of the interest rates. 

      Another important property observed in the behaviour of interest rates and empirically 

tested in the literature (see Chan et al., 1992; Tse, 1995; Episcopos, 2000) is the so called 

“level-effect” that describes the relationship between the volatility of the interest rates and 

their level.  This dependence is incorporated in the diffusion function as a nonlinear 

expression in the level of the instantaneous interest rate as follows: 

                                              ( , ( )) ( )b t r t r t                                         (2.5)           

where 0   is a volatility scale factor and 0   is the level-effect parameter.            

     Early on, the model specifications were relatively simple with the majority of them 

including a mean reversion drift and assuming particular restrictions for the level-effect 

parameter .  Some of the classical theoretical single-factor models include models such 

as Merton (1973), Cox (1975), Vasicek (1977), Dothan (1978), Brennan-Schwartz (1980), 

Rendleman and Bartter (1980), Cox et al. (1985a and b).   

 

The Merton Model (1973) 

       One of the first continuous-time formulations of interest rate behaviour was presented 

in Merton (1973), as a standard Brownian motion with a constant drift:               

 ( ) ( )dr t dt dW t     (2.6) 

where both coefficients/parameters  - the instantaneous drift and  - the conditional 

instantaneous volatility, are real constants and ( )W t is a standard Brownian motion. As a 
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Gaussian affine model, Merton’s model is tractable, providing relatively simple closed 

formulae for the term structure of interest rate, of pure discount bond prices and of bond 

option prices, as presented below. 

Given an initial value (0)r , the short-rate in Merton’s model satisfies the following 

stochastic integral equation (see James and Webber, 2000): 

 
0

( ) (0) ( )
t

r t r t dW s       (2.7) 

As a result, the short-rate is conditionally normally distributed with the conditional mean 

and variance of [ ( ) | (0)] (0)E r t r r t   and 
2[ ( ) | (0)]Var r t r t , respectively. 

 Under the expectations hypothesis of the term structure, Merton (1973) assumed that all 

the pure discount bonds for all the maturities will return on average over the next period a 

yield equal to the short-rate, i.e. 
dP

E rdt
P

 
 

 
. Cootner (1964) pointed out that since at 

maturity the bond price equals its face value the total returns on the bond must be 

correlated over the life of the bond. Furthermore, Merton (1973) concluded that the 

variance of the unanticipated returns should be a function of the time-to-maturity T t  

. Consequently, the analytical bond price proposed by Merton (1973) was particularly 

specified in order to satisfy these two properties:  

 
2 3

2 ( )
( , ) exp ( )( ) ( )

2 6

T t
P t T r t T t T t

  
      

 
  (2.8) 

Hence, the zero-coupon bond price at time t  with maturity date ,T  ( , )P t T  is a function 

of the short rate and the time-to-maturity. The term structure is determined using equation 

(2.1) that relates the bond prices to the spot rates: 

                         
2

2ln ( , )
( , ) (0) ( ) ( )

2 6

P t T
R t T r T t T t

T t

 
      


                             (2.9) 

Merton (1973) himself acknowledged that the model is unrealistic and unstable because 

the Gaussian distribution of the short rate implies the possibility of negative values of 

interest rates with a positive probability, which is in contradiction with economic theory8. 

Additionally, the model is not flexible enough as only two shapes of the yield curve are 

possible. From equation (2.9) one can derive the slope of the term structure and observe 

the two shapes are a humped and a decreasing shape when 0   and when 0  , 

respectively. While each spot rate is normally distributed, equation (2.9) also implies that 

                                                           
8 Allowing for negative interest rates invalidates the no-arbitrage condition when there is cash in the 

economy (Gibson et al. 2010). However, during 2012 and 2013 short-term interest rates such as one-week, 

one-month and two-month CHF-LIBOR rates were negative.  
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the volatility of the spot rate is constant, i.e. independent of the maturity which is 

incompatible with the observational fact that in general short-term rates are more volatile 

than other maturity interest rates (Gibson et al., 2010).  Another considerable criticism of 

Merton’s model is the simplicity of the drift function which ignores the historically 

observed mean reversion feature.  

 

The Constant Elasticity of Variance (CEV) Model (1975)  

       The CEV model was developed by Cox (1975) and by Cox and Ross (1976), in 

response to a possible inverse relationship observed in the equity market between stock 

price and the stock price volatility. The central feature of the model is the elasticity of 

variance parameter   that measures the so-called level effect or the degree of dependence 

of the local volatility on the level of the state variable. In the context of interest rates, the 

SDE of the CEV model is written as a non-linear process:  

 ( ) ( ) ( ) ( )dr t r t dt r t dW t     (2.10) 

 where the parameters   and   are real constants and 0 1  9.    

The simplicity of the power-type volatility specification in the CEV allows for non-flat 

volatility surfaces (smiles or skews) and at the same time facilitates the determination of 

an explicit transition density function, and therefore a closed-form formula for the price 

of options and other simple claims (caplets). Cox (1975) provided the option pricing 

formulae implied by the CEV model in (2.10) that are rather complex, involving a 

standard complementary Gamma distribution function. Both the conditional mean and 

conditional variance of the instantaneous changes in the interest rate depend on the level 

of the instantaneous rate: [ ( ) | ( )] ( )E dr t r t r t  and 
2 2[ ( ) | ( )] ( )Var dr t r t r t . It can 

also be shown that as the name of the model affirms the elasticity of the volatility is 

constant, that is 
2ln ( ( ), )

2( 1)
ln ( )

r t t

r t





 


 (Epps, 2002). Hence, if  1   the elasticity is 

zero which is consistent with the constant volatility in the GBM model; and if 0.5   the 

elasticity is -1 as in the model proposed by Cox and Ross (1976) which is a square-root 

process.   It is known that for 0 0.5   the CEV equation (2.10) admits multiple 

solutions, explaining why applications are mostly confined to the rest of the interval 

[0.5,1] . For 1   the CEV specification was studied by Emanuel and MacBeth (1982) 

                                                           
9 Having values under unity for the elasticity parameter, corresponds to equity markets where there is an 

indication of a possible inverse leverage effect, i.e. as the share price increases the volatility of the price 

changes decreases. Elasticities larger than unity are observed in commodity markets. 
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and Chen and Lee (1993). They found that the non-central chi-square distribution of the 

process will converge to a lognormal distribution as   approaches one.  Despite its 

tractability, the CEV model can permit negative interest rates and may display exit 

boundaries (Brigo and Mercurio, 2006); moreover, when strict positivity constraints are 

imposed on the CEV process, Delbaen and Shirakawa (2002) demonstrate that there 

always exist arbitrage opportunities. 

 

The Vasicek Model (1977) 

        A reference classical model of term structure is that of Vasicek (1977) for which the 

dynamics of risk-free rate of interest were assumed to follow an Ornstein-Uhlenbeck10 

process (sometimes called the elastic random walk), mathematically described by the 

following SDE:  

 d ( ) ( ( ))d d ( )r t k r t t W t      (2.11) 

All the parameters ,k   and   are strictly positive constants and ( )W t is a standard 

Brownian motion. The Vasicek model is the first model that incorporates the mean 

reversion feature of interest rate behaviour, which is modelled using a linear expression of 

the current level of the process.  The drift involves two parameters:  - the long-term 

risk-neutral mean, called the mean reversion level and k - the adjustment rate at which the 

risk-free rate is expected to revert to its long run mean, known as the mean reversion 

speed. The diffusion component/coefficient   is time and process invariant and 

represents the homoscedastic conditional volatility of the short rate process. 

In other words, the Vasicek model assumes that the short rate follows a deterministic 

mean reverting path subject to a continuous normally distributed random shock. In time 

the model becomes statistically stationary with a long run finite variance and it admits a 

Gaussian invariant probability distribution11.  By applying the Ito lemma to the function 

exp[( ) ( )]kt r t the SDE (1.6) can be solved and its solution is given by the following 

expression: 

 
0

( ) (0) (1 ) ( )
t

kt kt kt ksr t r e e e e dW s          (2.12) 

                                                           
10 In contrast with a Wiener process where the drift is constant, an Ornstein-Uhlenbeck process is a 

Gaussian process that has mean-reversion drift. In addition, an OU process can be regarded as the 

continuous-time analogue of the discrete-time AR(1) process. 
11 Through the joint parametrization of  and 

2 , the Vasicek model generates both marginal and 

transitional normal densities (Ait-Sahalia, 1996b); sometimes the model is referred to as the affine Gaussian 

short rate (GSR) model (Andersen and Piterbarg, 2010). 
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 It follows that for a fixed initial value (0)r  the implied marginal expected value and 

variance are:     [ ( ) | (0)] (0) (1 )kt ktE r t r r e e      and 
2

2Var[ ( ) | (0)] (1 )
2

ktr t r e
k

     

Asymptotically, the parameters of the implied Normal distribution under the risk-neutral 

measure are given by: lim [ ( )]
t

E r t 


  and 
2

lim var[ ( )]
2t

r t
k




   

Hence, the faster the rate of mean reversion the smaller are the deviations from that mean.  

Under the assumption of market efficiency Vasicek (1977) provides an explicit 

characterization of the term structure invoking the no-arbitrage principle used by Black 

and Scholes (1973).  In order to determine the term structure of interest rates implied by 

the OU process (2.11), Vasicek (1977) follows the PDE approach for the price of zero-

coupon bonds and derives the analytical solution for the term structure in the special case 

of a constant market price of risk  . However, a more modern approach, which has 

become a standard procedure in term-structure modelling, is the martingale approach 

where the probability measure is the risk-neutral measure .Q  It can be shown (Cairns, 

2004) that under this equivalent martingale measure (EMM) the term structure of interest 

rates implied by the Vasicek model has the following form:  

 
( ) 2

( ) 2

3

1
( , ) ( , ) ( ( ) ( , ) (1 )

( ) 4 ( )

T t k
T t ke

R t T R t r t R t e
k T t k T t

 
 

      
 

  (2.13) 

where 
2

2
( , ) lim ( , )

2T
R t R t T

k





    . This means that infinite maturity interest rate (the 

yield on a consol bond) is constant. 

From (2.13) one can reconstitute the prices of the discount bonds for all the maturities, 

which are found to have a special exponentially affine form as follows: 

 

 ( , ) exp[ ( , ) ( , ) ( )]P t T A t T B t T r t    (2.14) 

where       

( )1
( , )

k T te
B t T

k

 
  

2 2
2

2
( , ) ( )[ ( , ) ( )] ( , )

2 4
A t T B t T T t B t T

k k

 
       

        Despite some desirable properties like tractability, time homogeneity and the 

economic autoregressive feature of mean reversion, the Vasicek model also was 

considered to have several limitations. The most considerable one is its positivity problem 

as the model allows for negative values of spot and forward rates, however, with an 
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arguably very small probability as suggested by Rogers (1995). Additionally, it lacks 

great flexibility in the way that it generates only three (upward, downward and slightly 

humped) term structure shapes. The assumption of homoscedasticity seems to be 

unrealistic as historical records of interest rates clearly indicate at least a non-constant 

variance, as pointed out by James and Webber (2000).  

 

The Dothan Model (1978) 

      Another single factor model is the Dothan (1978) model that can be characterised 

under the objective historical measure P  as a geometric Brownian motion without drift, 

i.e.  

 ( ) ( ) ( )dr t r t dW t   (2.15) 

With the assumption of a constant market price of risk and an equivalent transformation 

of the probability measure P  into the risk-neutral measure Q , the new specification of the 

Dothan model includes a drift, more precisely it becomes a geometric Brownian motion 

(GBM), see Filipovic (2009): 

 d ( ) ( ) ( ) ( )Qr t r t dt r t dW t     (2.16) 

Integrating the SDE (2.16) one could find the expression of the short rate for a known 

(0)r , as: 

 
2

0
( ) (0)exp ( ) d ( )

2

t

Qr t r t W s


 
 

   
 

   (2.17) 

The model can be also represented as a lognormal model with the log ( )r t  following a 

standard Brownian motion. The short rate has a lognormal conditional distribution with 

the two parameters, the conditional mean and the conditional variance given by 

[ ( ) | (0)] (0) t

QE r t r r e  and 
22 2[ ( ) | (0)] (0) ( 1)t

QVar r t r r e e   , respectively. 

As with all lognormal short-rate models, the Dothan model yields positive interest rates, 

but it does not admit analytical formulae for bond and bond option prices. However, the 

Dothan model is an exception in the sense that a “semi-explicit” expression for bond 

prices could still be obtained (for more details see Brigo and Mercurio, 2006). 

 

The Rendleman and Bartter (GBM) Model (1980)  

      In the Rendleman and Bartter (1980) model the interest rate follows a Geometric 

Brownian Motion (GBM), the same process assumed for the share prices in the derivation 

of the Black and Scholes option pricing formula:  
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 ( ) ( ) ( ) ( )dr t r t dt r t dW t     (2.18) 

 For an arbitrary initial short rate (0)r  the analytical solution to SDE (2.18) is: 

 

2

( ) ( )
2( ) (0)

t W t

r t r e


  

   (2.19) 

It is well known that the process defined by (2.19) is log-normally distributed with the 

conditional mean and variance having the following expressions: [ ( ) | (0)] (0)e tE r t r r   

and 
22 2[ ( ) | (0)] (0)e ( 1)tVar r t r r e   , respectively. A main disadvantage of GBM is that 

it does not incorporate mean reversion – a specific feature of interest rates behaviour that 

share prices do not possess. 

 

The Brennan and Schwartz (BS) Model (1980)  

       This is a model that fully captures the mean reversion and nests the Merton, Dothan 

and GBM models. The short rate dynamics are described using the following SDE:  

                            d ( ) ( ( ))d ( )d ( )r t k r t t r t W t                                                       (2.20) 

 where the parameters ,k   and   are real positive constants, and ( )W t  is a standard 

Brownian motion under the risk-neutral measure. 

Originally, Brennan and Schwartz (1980) proposed a model for valuing convertible bonds 

where the prices of such securities depend on two random variables - the value of the 

issuer firm and the interest rate; the process assumed for the latter factor was specified as 

in equation (2.20) above. Unfortunately, the distribution of the short rate cannot be 

explicitly found and as a result the prices of interest rate contingent claims have to be 

derived using numerical methods as in Courtadon (1982) who employs the Brennan and 

Schwartz (1980) model to value pure discount bonds. 

 

The Cox, Ingersoll and Ross (CIR) Model (1985) 

      Another classic short rate model was proposed by Cox, Ingersoll and Ross (1985a) as 

an alternative to the Vasicek model in the attempt to rectify the problem of possible 

negative interest rates. Derived from an equilibrium asset pricing model, the CIR model 

assumes the following SDE with the same linear drift function as in the Vasicek model, 

but with a nonlinear (square root) still affine diffusion coefficient:  

 ( ) ( ( )) ( ) ( )dr t k r t dt r t dW t      (2.21) 

where the drift parameters are strictly positive and 
2 2k  . The conditional standard 

deviation of the changes in the interest rate is positively related to the level of interest 
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rate, more specifically it is proportional to ( )r t .  The structure in SDE (2.21) has 

important empirical implications for the behaviour of the interest rate, based on some 

important regularity aspects regarding the parameters involved. While negative interest 

rates are avoided, in the case of reaching the zero-lower-bound, when 
2 2k  , the 

interest rate will be subsequently elastically pulled upward to a positive level. However, if 

2 2k 
 the magnitude of the drift is sufficiently large to preclude the absolute zero 

level.  It is very important to note that the CIR model is not Gaussian because its joint 

parameterization leads to a non-central chi-square transitional (conditional) distribution 

with the following parameters  
2

2 2 2

4 4 4 (0)
; ,

(1 ) ( 1)kt kt

k k kr

e e




  

 
 

  
(Cairns, 2004).  

Given the initial value (0)r , the conditional expected value and variance of the 

instantaneous rate ( )r t  are calculated as:   

                         E[ ( ) | (0)] (0) (1 )kt ktr t r r e e                                           (2.22) 

 
2 2

2 2Var[ ( ) | (0)] (0) ( ) (1 )
2

kt kt ktr t r r e e e
k k

 
        (2.23) 

Asymptotically, as t  increases the distribution of the interest rate approaches a gamma 

distribution, with the steady-state mean and variance given by: 

 limE[ ( ) | (0)] lim (0) (1 )kt kt

t t
r t r r e e 
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 The model is still tractable with the implied bond prices having the same general form as 

in the Vasicek case, but mathematically rather more complex. Cox et al. (1985) determine 

the term structure of interest rate by specialising their equilibrium model for preference 

structures with constant relative risk aversion utility functions. As their original economic 

framework is rather complex and extensive (and beyond the scope of this work), the 

martingale approach is once again invoked for the presentation of the analytical formulae 

for the discount bond prices. It can be shown (Cairns, 2004) that under the risk-neutral 

measure Q  the term structure of interest rates implied by the CIR model has the 

following analytical form: 

 
 ( , , ) exp ( ) ( ) ( )

               = exp [ ( ) ( ) ( )]

P r t T A T t B T t r t

A B r t 

   


  (2.24) 

 where 
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Cox et al. (1985b) also derived explicit analytical formulae for prices of European call 

options on discount bonds, making the CIR model extremely popular for some time 

among practitioners.   

 

 The Longstaff Model (1989) 

        Motivated by the findings in Fama (1984) and McCulloch (1971) that the term 

premiums have a humped pattern, Longstaff (1989) presents another rational expectation 

equilibrium model within the CIR framework, by allowing technological change to affect 

production returns in a nonlinear way. The new “double square-root” model was more 

flexible relative to the original CIR model as it allows for those patterns in the term 

premiums unlike the CIR model:  

 ( ) ( ( )) ( ) ( )dr t r t dt r t dW t      (2.25) 

         Additionally, Longstaff (1989) derives the analytical formulae implied by the model 

(2.25) for both the yield to maturity and the price of discount bonds and finds an 

uncommon non-linear dependency of the term structure on the level of the short rate. 

However, Longstaff’s bond pricing equation fails some boundary condition leading to 

infinite expected rates of return on the bond as highlighted by Beaglehole and Tenney 

(1991).  

 

The Chan, Karolyi, Longstaff and Sanders (CKLS) Model (1992) 

        In a seminal paper Chan et al. (1992) measure the sensitivity of the volatility with 

respect to the level of instantaneous rate by considering a general flexible nonlinear 

function for the diffusion function. Their general model provided a common theoretical 

framework that nests eight classical models12 and therefore it allowed for a consistent 

performance comparison between those models as part of an important empirical 

exercise. The power-type CKLS model is represented by the following SDE:  

                                                           
12 The CKLS representation nests the following models: Merton, Vasicek, CIR-SR, Dothan, GBM, Brennan 

and Schwartz, CIR-VR and CEV models. 
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                    ( ) ( ( )) ( ) ( )dr t r t dt r t dW t                                                (2.26) 

where , 0   , 0   and   is a real constant. 

This general univariate framework can be extended to the multivariate case as in Nowman 

(2003, 2006) where the state variables are correlated yields of different maturities. 

The Ait-Sahalia Model (1996)  

        In an influential study, Ait-Sahalia (1996b) developed a test statistic to detect any 

misspecification in various classical models. By comparing the density functions implied 

by the parameterised single factor short rate models with that of a non-parametric 

estimator (Ait-Sahalia, (1996a)) the test resulted in the rejection of all the eight CKLS 

nested models. According to Ait-Sahalia (1996b) the main source of misspecification 

arises from the assumption of a linear drift and to challenge that assumption he suggested 

a more general model that accommodates   a non-linear drift and a more flexible diffusion 

function: 

 2d ( ) ( ) ( ) d ( )d ( )
( )

d
r t a br t cr t t r t W t

r t


 
     
 

  (2.27) 

where the drift and diffusion parameters are subject to certain conditional constraints. 

 

The Ahn and Gao Model (1999)  

       Ahn and Gao (1999) proposed another important single-factor short rate model with a 

quadratic drift and a constant elasticity of volatility equal to 1.5, that is tractable and 

appears to empirically outperform all the standard models nested in the CKLS 

framework: 

 
1.5( ) ( ( )) ( ) ( ) ( )dr t k r t r t dt r t dW t      (2.28) 

          

Arbitrage -Free Interest Rate Models 

 

      All the single factor short rate models discussed so far are time-homogeneous as all 

model parameters are time-invariant and hence with a small number of free parameters 

they provide only an approximation to the currently observed term structure. This has a 

considerable impact on the valuation of interest rate derivatives as a 1% error in pricing 

the bond could eventually lead to a much higher error in the value of a bond option (Hull, 

2003). However, it is possible for some of these models to be converted into no-arbitrage 
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models, i.e. to eliminate the discrepancies between the actual and the modelled yield 

curve. More specifically, they can be extended by allowing the parameters to vary 

deterministically over time. Consequently “calibrated” models like the extended Vasicek 

model and the extended CIR model were proposed by Hull and White (1990). Their work 

follows the approach introduced by Ho and Lee (1986) where interest rate models are 

innovatively designed to be automatically consistent with a given initial yield curve. The 

same idea has been embraced and extended in other studies including Black, Derman and 

Toy (1990) and Black and Karasinsky (1991).  

 

 The Ho and Lee Model (1986) 

       The Ho and Lee (1986) model is the first no-arbitrage model originally presented in a 

discrete-time setting in the form of a binomial tree model for bond valuation. Later 

studies including Dybvig (1988) and Jamshidian (1988) have derived its continuous-time 

equivalent as:  

 ( ) ( ) ( )dr t t dt dW t     (2.29) 

        This is an extension to the Merton random-walk model, with the same constant 

volatility but a more general, deterministic function of the time drift component.  Solving 

the SDE (2.29) for the instantaneous short rate one obtains the following expression:  

 
0

( ) (0) ( ) ( )
t

r t r s ds W t      (2.30) 

The new element brought by Ho and Lee’s framework is the use of the forward curve in 

the derivation of the discount bond and bond options prices. Being an affine term 

structure (ATS) model, the bond prices will be exponentially affine and from (2.2) the 

forward curve is obtained as follows (see Filipovic, 2009): 

 2

0 0( , )  ( ) ( ) ( ) ( )f t T f T f t t T t r t       (2.31) 

where 0 ( )f T  and 0 ( )f t  represent instantaneous forward rates observed at time zero for 

maturities t  and T , with the initial forward rate curve 0

ln (0, )
( )

P T
f T

T


 


 . 

Integrating the second expression in (2.31) and reverting equation (2.2) the bond prices 

are: 

 
2

2

0 0( , ) exp ( ) ( )( ) ( ) ( ) ( )
2

T

t
P t T f s ds f t T t t T t T t r t

 
        

 
   (2.32) 

For this model it is shown that the short rate “fluctuates along the modified initial forward 

curve” (Filipovic, 2009; pp.89): 
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2 2

0( ) ( ) ( )
2

t
r t f t W t


     (2.33) 

The model is tractable with the possibility of reconstructing prices for discount bonds and 

bond options as illustrated in James and Webber (2000, p. 184). 

 

The Hull and White Models (1990) 

        According to Hull and White (1990, p. 576) the time-dependence of the parameters 

“can arise from the cyclical nature of the economy, expectations concerning the future 

impact of the monetary policies and expected trends in other macroeconomic variables”.  

Hull and White (1990) investigate extensions to the Vasicek (1977) and Cox et.al. (1985) 

models that fit exactly the initial term structure. The general extensions that they explore 

admit all the parameters as functions of time: 

 ( ) ( )( ( ) ( )) ( ) ( )dr t k t t r t dt t dW t      (2.34) 

                                           ( ) ( )( ( ) ( )) ( ) ( ) ( )dr t k t t r t dt t r t dW t                        (2.35) 

Of the two extended single-factor model the extended Vasicek model is particularly 

attractive, because of its analytical tractability. The price of a zero coupon bond at a 

future time t  as implied by the Hull and White model, depends on the short rate ( )r t  and 

the bond prices of two bonds of different maturities observed today, (0, )P t  and (0, )P T , 

respectively:  

 ( , ) exp( ( , ) ( , ) ( ))P t T A t T B t T r t    (2.36) 

where  

( )1
( , )

k T te
B t T

k

 
   

2 2 2

0 3

(0, ) 1
( , ) ln ( , ) ( ) (e ) ( 1)

(0, ) 4

kT kt ktP T
A t T B t T f t t e e

P t k
         

Other single-factor short rate models proposed in the literature consider the short rate to 

be lognormally distributed, a natural approach to ensure interest rate positivity.  

 

The Black-Derman-Toy Model (BDT) (1990)  

       The Black-Derman-Toy (1990) arbitrage-free model (hereafter BDT) was initially 

presented in discrete-time as a one-factor binomial model, and later several authors 

including Rebonato (1998), Wilmott (1998) and Bali (1999) derived its continuous-time 

limit as a familiar SDE in terms of log ( )r t  : 
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 log ( ) [ ( ) log ( )] ( ) ( )d r t t r t dt t dW t       (2.37) 

where   is a real constant and ( )t  , ( )t   are deterministic functions of time. 

Another formulation of the BDT model is: 

 

                         
( )

d log ( ) [ ( ) log ]d ( )d ( )
( )

t

t
r t t r t t W t

t


 




     (2.38) 

     Unfortunately, the BDT model inherits some shortcomings that consequently make it 

impractical. Intractability is one undesirable feature, but more significantly the model 

suffers from “mean-fleeing”, which means that there is some possibility for the mean 

reversion level to become negative13. Also, the dynamics of the BDT model are path 

independent, i.e. the short rate is an outright function of the Brownian motion ( )W t . 

Initially the BDT model considered only the mean reversion parameters as time variants, 

and later in Black et al. (1990) the model was extended to allow also for a time-dependent 

volatility. 

 

Black and Karasinski Model (1991) 

        Trying to improve the dynamics and to rectify some of the drawbacks of the BDT 

model, Black and Karasinski (1991) (BK hereafter) assumed that log( ( ))r t  follows an 

exogeneous standard Gaussian process (Andersen and Piterbarg, 2010).  Black and 

Karasinski (1991) proposed a lognormal short rate model with all three parameters - the 

target rate, the mean reversion speed and the local volatility - as deterministic functions of 

time:  

                           (log ( )) ( )[ ( ) log ( )] ( ) ( )d r t k t t r t dt t dW t     (2.39) 

To price more complex interest rate contingent claims like swaptions, Peterson et al. 

(2003) developed a multifactor extension of the log-normal model of Black and 

Karansinski (1991) using a chain of stochastic means from one factor to another.  

 

The Sandmann and Sondermann Model (1993) 

         Another short rate model in the lognormal framework was proposed by Sandmann 

and Sondermann (1993), who differentiate between the instantaneous and compounding 

periods in order to avoid the explosion of interest rates present in the other lognormal 

models.  Instead of the short rate their setting models a simple lognormal rate 
*( )r t  that is 

                                                           
13 As it can be observed from the SDE (2.38) of the BDT model the speed of the mean reversion cannot be 

controlled as it depends on the local volatility. When the local volatility is an increasing function of time, 

the BDT model implies a negative target level. 
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compounded over a fixed finite period while the short rate is a nonlinear function of 

*( ) :r t   

 

*

* * *

( ) log(1 ( ))

( ) ( ) ( ) ( ) ( ) ( )

r t r t

dr t t r t t r t dW t 

 

 

  (2.40) 

  The dynamics of the short rate implied by this model are neither normal nor lognormal 

(Gibson et al., 2010) as they satisfy the following related SDE: 

 
2 2( ) ( ( ))

( ) ( ) ( ) ( ( )) ( )
2

t b r t
dr t t dt t b r t dW t


 
 

   
 

  (2.41) 

where ( )t  and ( )t are some deterministic functions of time and 
( )( ( )) 1 r tb r t e  .   

 

The Duffie and Kan Model (1994)    

       Almost all of the single-factor diffusion interest rate models presented so far in the 

academic literature could be entered under the umbrella of a very general parametric 

specification of a short rate model presented in Duffie and Kan (1994), a model that 

allows for both linear and non-linear drift and is given by the following SDE:   

 1 2 3 1 2( ) [ ( ) ( ) ( ) ( ) ( ) log( ( ))] [ ( ) ( ) ( )] ( )dr t t t r t t r t r t dt t t r t dW t                      (2.42) 

 

The Goard Model (2000) 
 

       Goard (2000) generalised the Ahn and Gao time-homogeneous model by considering 

a time-dependent moving target for the drift, and derived an explicit solution for the price 

of a zero-coupon bond. His model is given by the following SDE: 

 
2 3/2( ) [ ( )( ( ) ( ))] ( ) ( )dr t c r t a t qr t dt cr t dW t     (2.43) 

where c  and q  are time invariant independent parameters and ( )a t  is an arbitrary 

function of time. 

 

The Das Model (2002) 

        More realistic specifications of interest rate dynamics that explain some of the 

discontinuities historically observed in the evolution of interest rates would include jump 

processes. In this regard, Das (2002) developed an analytical framework represented by a 

class of Poisson-Gaussian models in the attempt to capture the effect of surprise 

information (e.g. supply and demand shocks, economic news or exogeneous interventions 

from central banks) on the level of interest rates. The short rate dynamics are described by 
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a mean reverting drift in conjunction with two independent processes, a diffusion and a 

Poisson process, respectively: 

                               ( ) ( ) ( )dr t k r dt dW Jd h                                                    (2.44) 

 where the Poisson process   with the arrival frequency parameter h  is scaled by the 

random jump J . An extension to the above Gaussian-Poisson process may incorporate 

regime switches as in Naik and Lee (1993), Gray (1996) and Piazzesi (1998) with the 

choice of the jump process being conditioned by the type of the regime as for higher 

interest rate regimes the jumps are more pronounced. 

 

 The Mahdavi Model (2008) 

         Under the minimum restriction of no arbitrage, Mahdavi (2008) derived a very 

general one-factor model for short-term interest rates, claiming that the expected change 

in short-term rate can be partially observable. It was shown that the expected change in 

the short-term rate it is equal to the slope of the forward curve, which is observable, plus a 

term involving the market price of interest rate risk. The model parameterization is very 

general: 

 ( ) [ ( , ) ( ) ( )] ( ) ( )Tdr t f t t t t dt t dW t       (2.45) 

 

where ( , )Tf t t  represents the slope of the forward curve at the origin. In this form the 

model allows an accurate estimation of market price of risk parameter. In his paper, 

Mahdavi (2008) also presented a more detailed parameterization of the model that nests 

most classic single factor models: 

 

2 2 3

1 2 3 4 5 6 7( ) ( ( , ) ( ) ( ) ) | ( ) ( ) ( ) | ( )Tdr t f t t r t r t dt r t r t r t dW t               (2.46) 

 

       While the single-factor specifications represent the initial phase of the theoretical 

development of interest rates modelling, it is widely recognised that only one factor is 

quite restrictive and richer dynamics are needed to give rise to various yield curve shapes 

is needed. Also, they unrealistically assume that the bond returns are perfectly correlated, 

making single factor models of the term structure unsuitable for pricing more complex 

interest derivatives like caps and swaptions. 
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2.2.3.2 Two-Factor Models  

         A natural step in the theoretical development of interest rate models was to consider 

a more realistic approach by increasing the number of sources of randomness. The 

volatility of the interest rates observed over long periods of times indicated a possible 

stochastic nature that could be modelled by a process involving a separate Brownian 

motion.  Also, the single-factor short rate models could be generalised to a stochastic 

mean or/and volatility, evolving this way into two- or three-factor models. These 

developments have coincided with the important Principal Component Analysis (PCA) of 

Litterman and Scheinkman (1991) who claimed that over 95% of the variability in the 

interest rates changes could be explained by three common factors - the level, the slope 

and the curvature, with 88% attributed solely to the first factor.  As a result, many 

researchers have explored this idea and have considered various candidates for the second 

factor: Brennan and Schwartz (1979) chose the long-term rate, Schaefer and Schwartz 

(1984) preferred the spread between the short- and long-term rates; Heston (1986), 

Pearson and Sun (1994), Sun (1992), Cox et al. (1985) and Pennacchi (1991) considered 

the inflation, Balduzzi et al. (1997), Naik and Lee (1993) selected the mean level of the 

short-term interest rate, Schaefer and Schwartz (1987), Fong and Vasicek (1991) and 

Longstaff and Schwartz (1992) considered the volatility of the interest rate changes.  

 

 The Brennan and Schwartz Two-Factor Model (1979, 1982) 

       Derived in a partial equilibrium framework, the two-factor model proposed by 

Brennan and Schwartz (1979, 1982) is defined by two sources of uncertainty: the short 

rate ( )r t  and a long-term consol rate ( )L t 14. Initially, the logarithms of these variables 

constitute the two factors that follow an Ito joint diffusion process, with a linear and a 

quadratic transformation of an OU process, respectively.   

 

1 1

2 2

ln ( ) [ln ( ) ln ( )] ( )

ln ( ) [ ln ( )] ( )

d r t k L t r t dt dW t

d L t L t dt dW t



  

  

  

  (2.47) 

 The model can be rewritten in terms of more complex processes for the short rate and the 

consol rate themselves, providing a useful financial interpretation with the two factors 

interpreted as the level and the steepness of the yield curve, respectively. Under no-

arbitrage conditions Brennan and Shwartz (1979) derived the pricing equation for default-

free pure-discount bonds which is also satisfied by any contingent claims that depend on 

                                                           
14 Roughly speaking the consol rate is the return on a claim that pays perpetually a constant dividend, 

providing a “synthesis of the whole term structure up to infinity” (Brigo and Mercurio, 2001). 
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r  and L , such as bond and bond futures options. Thus, in their framework the yield 

curve is entirely specified by the joint stochastic evolution of its short and long-term 

extremities. However, this joint specification of the state variables has been questioned by 

Hogan (1993) and Duffie et al. (1995) who proved that there is no real-valued solution to 

their diffusion equations. 

 

The Richard Model (1978)  

       A rather different affine two-factor model of the term structure of interest rates was 

developed by Richard (1978) who employed two independent stochastic factors: the 

expected real short-term rate ( )q t   and the expected instantaneous inflation rate ( )t , 

respectively: 

 

1 1 1 1

2 2 2 2

( ) ( ( )) ( ) ( )

( ) ( ( )) ( ) ( )

dq t k q t dt q t dW t

d t k t dt t dW t

 

    

  

  

  (2.48) 

 The model is additive, in the sense that the short rate is modelled as a linear combination 

of the two factors, hence allowing for the decomposition of both bond prices and yields, 

into their real and inflationary components.  

 

The Schaefer and Schwartz (1984)  

      Motivated by empirical evidence of orthogonality between the long-term rate and the 

spread, Schaefer and Schwartz (1984) proposed another affine two-factor model where the 

two uncorrelated state variables are the long-term rate ( )l t  and the spread ( ) ( ) ( )z t r t l t  . 

While the spread follows a standard OU process, the long rate process is more complex 

with a non-arbitrary drift and CIR type diffusion function:  

 

 

1 1 1 1

2

2 2 2

( ) ( ( )) ( )

( ) ( ( ) ( )) ( ) ( )

dz t k z t dt dW t

dl t l t z t dt l t dW t

 

 

  

  

  (2.49) 

 

 

 

The Fong and Vasicek Model (1991, 1992) 

         Fong and Vasicek (1991, 1992) considered two sources of uncertainty for explaining 

the term structure of the interest rate: the short rate and the instantaneous variance of the 
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changes in the short rate. The behaviour of these stochastic variables is described by the 

following diffusion processes:  

 

1 1 1

2 2 2

2 2 2

( ) ( ( )) ( ) ( )

( ) ( ( )) ( ) ( )

dr t k r t dt t dW t

d t k t dt t dW t

 

    

  

  

  (2.50) 

 Both processes incorporate mean reversion, the instantaneous volatility of the short rate 

has itself a volatility proportional to the current level of the short rate volatility   and the 

two driving Brownian motions are assumed correlated. Under the condition of no-

arbitrage Fong and Vasicek derived the closed formula for computing the price of pure 

discount bonds that involves complex algebra calculations. 

 

The Longstaff and Schwartz Two-Factor (LS) Model (1992)  

       From the category of two-factor models, the Longstaff and Schwartz (1992) (LS) 

model evolves from a general equilibrium model of the economy and leads to a term 

structure model with a stochastic volatility. The model is both tractable and flexible, with 

closed formulae for the prices of pure discount bonds. Starting with two underlying state 

variables tx  and ty  that follow individual CIR standard processes the short rate and the 

volatility are additive functions of the two underlying economic state variables: 

      
2 2

( ) ( ) ( )

( ) ( ) ( )

r t x t y t

v t x t y t

 

 

 

 
     where        

( ) ( ( )) ( ) ( )

( ) ( ( )) ( ) ( )

x

y

dx t a bx t dt c x t dW t

dy t d ey t dt f y t dW t

  

  
          (2.51) 

In the LS model the two factors are the short-term interest rate and interest rate volatility. 

An alternative interpretation is one in which the two factors are the short-term rate and a 

long-term rate, which is similar in spirit to the work of Brennan and Schwartz (1979). 

 

The Hull and White Two-Factor Model (HW) (1994)   

        Following Brennan and Schwartz (1979), Hull and White (1994) propose a two-

factor model where the additional state variable is a random long-term equilibrium rate. 

The model is made arbitrage-free by including a time variant shift in the drift, allowing 

therefore for consistency with the currently observed term structure. 

                                         

1 1

2 2

( ) [ ( ) ( ) ( )) ( )

( ) ( ) ( )

dr t t t ar t dt dW t

d t b t dt dW t

  

  

   

  

                           (2.52) 
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where the parameters ,a b  are real constants and 1 2, 0    are real constants and the two 

separated Brownian motions 1W  and 2W  are correlated.   

 

The Andersen and Lund Model (1997) 

       In line with the Dybvig (1988) and Longstaff and Schwartz (1992) theoretical 

specifications, Andersen and Lund (1997) developed a two-factor model that incorporates 

the main behavioural features observed in the evolution of interest rates: mean reversion 

and volatility heteroscedasticity. Their model can be seen as an extension of the CKLS 

model with the addition of a stochastic log-volatility factor: 

 

 

1 1 1

2 2

2 2 2

( ) ( ( )) ( ) ( ) ( ) ( )

log ( ) ( log ( )) ( )

dr t k r t r t dt t r t dW t

d t k t dt dW t

 

   

  

  

  (2.53) 

 where 1( )W t  and 2( )W t  are independent standard Brownian motions. 

 

The Bali Model (2003)   

        The lognormal BDT single factor model has been extended by Bali (2003) to a two-

factor formulation, with the second factor represented by a stochastic variance or standard 

deviation that is modelled within a diffusion-GARCH framework. In the original paper 

two alternatives are considered for the discrete-time GARCH effect - a linear symmetric 

GARCH model (Bollerslev (1986)) and a TS-GARCH model (Taylor (1986) and Schwert 

(1989)). The continuous-time model implies mean reversion for both the log-interest rate 

level and the instantaneous standard deviation of the log-interest rate changes:  

 

1 1 1

2 2 2 2

ln ( ) ( ln ( )) ( ) ( )

( ) ( ( )) ( ) ( )

d r t r t dt t dW t

d t t dt t dW t

  

     

  

  

  (2.54) 

where 1( )W t  and  2( )W t are independent Brownian motions and the diffusion process is 

parameterised as a function of the interest rate level ( )r t  and the stochastic volatility 

factor ( )h t , i.e. 
2 2( ) ( ) ( )t h t r t  . By applying the Ito lemma to the first equation an 

equivalent model is obtained with the level of the short rate as the first state variable:   
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2

1 1 1

2 2 2 2

1
( ) ( )[ ( ln ( )) ( )] ( ) ( ) ( )

2

( ) ( ( )) ( ) ( )

dr t r t r t t dt t r t dW t

d t t dt t dW t

   

     

   

  

  (2.55) 

2.2.3.3 Three-Factor Interest Rate Models   

          The results of the PCA analysis conducted by Litterman and Scheinkman (1991) led 

to the acceptance of the three-factor formulations as sufficient to capture most of the 

dynamics of the interest rates. The inclusion of extra factors brings more complexity to 

the mathematical formulae of reconstruction of bond and derivative prices, with the effect 

of reducing the tractability of the model. However, some three-factor models such as 

Fong and Vasicek (1991), Sorensen (1994) and Chen (1996) still possess explicit 

solutions. The most common choice for the three state variables is a natural one with the 

short rate, the long-term mean and the volatility of the changes in the interest rates being 

driven by separate Brownian motions that are assumed to be either independent or 

correlated. 

 

The Chen Model (1996) 

         In the three-factor model proposed by Chen (1996) the short rate dynamics evolve 

as follows: 

 

( ) ( ( ) ( )) ( ) ( ) ( )

( ) ( ( )) ( ) ( )

( ) ( ( )) ( ) ( )

rdr t k t r t dt v t r t dW t

d t t dt t dW t

dv t a b v t dt v t dW t







     



  

  

  

  (2.56) 

 

 All the state variables are modelled as CIR processes, with the third factor as the 

instantaneous conditional variance of the first factor - the short rate. In terms of 

tractability, only in specific cases there exist analytical solutions for discount bonds and 

certain interest rate derivatives (see Chen, 1996).  

 

The Balduzi, Das, Forezi and Sundaram Model (BDFS) (1996) 

           A popular model in the group of three-factor models was proposed by Balduzzi et 

al. (1996) (thereafter BDFS). In the BDFS model the mean t   and the volatility t   of 
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the short rate are also stochastic, following a Vasicek and a CIR process, respectively. 

Therefore, the model is defined by three processes:  

 

               

( ) ( ( ) ( )) ( ) ( )

( ) ( ( )) ( )

( ) ( ( )) ( ) ( )

rdr t k t r t dt t dW t

d t t dt dW t

d t a b t dt t dW t





 

    

   

  

  

  

  (2.57) 

 

where only two factors are correlated: the short rate and the volatility. Despite the fact 

that the model is intractable with solutions for the term structure obtained by numerical 

methods, it offers greater flexibility than two-factor models, giving rise to less common 

shapes of the yield curve like humped and spoon-curved (James and Webber, 2000).  

 

The Andersen and Lund Three-Factor Model (1997) 

        Another important three-factor model with the same three factors as in the BDFS 

model but following different stochastic processes was proposed by Andersen and Lund 

(1997). For both three-factor models, the factors – the short rate, the mean and the 

volatility, are identified as exactly the three components from the PCA approach, i.e. the 

level, slope and curvature, respectively.  
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( ) ( ( ) ( )) ( ) ( ) ( )

( ) ( ( )) ( ) ( )

ln ( ) ( ln ( )) ( )t

dr t k t r t dt t r t dW t

d t t dt t dW t

d t a b t dt v dW t

 

     

  

  

  

  

                (2.58) 

  

The Diebold and Li Model (2006) 

     Swapping the role of the three parameters as initially set-up by Nelson and Siegel into 

time-dependent variables, Diebold and Li (2006) achieved a three-factor dynamic version 

of the deterministic Nelson and Siegel (1987) model.  

𝑦𝑡(𝜏) = 𝛽1𝑡 + 𝛽2𝑡 (
1 − 𝑒−𝛾𝜏

𝛾𝜏
) + 𝛽3𝑡 (

1 − 𝑒−𝛾𝜏

𝛾𝜏
− 𝑒−𝛾𝜏) 
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More recently, Diebold and Rudebusch (2013) revealed an insightful interpretation of this 

model, suggesting a combination of three dynamics: 1) the latent factors 1 2 3, ,t t t   , 2) 

the dynamic of ty  for a fixed time to maturity τ and 3) the coefficients as factor loadings 

(1,(1 ) / ,((1 ) / )e e e          that are responsible for movements of the cross 

section of yields for any t. 

 

2.2.3.4 General Multi-Factor Models  

       Other researchers have proposed more general theoretical specifications with n -

factors, arguing that the term structure of interest rates is “embedded in a large 

macroeconomic system” (Langetieg, 1980, p. 71). Some of the most known general 

representations include Langetieg (1980), Beaglehole and Tenney (1991), Babbs (1993), 

Nunes (1998) and Babbs and Nowman (1999).  In general, n -factor models follow an 

additive structure with the short rate as a linear combination of an arbitrary number of 

stochastic factors. Given the limited space, only two most important models will be 

presented in the rest of this chapter. 

 

The Langetieg Model (1980)  

      The general multi-factor model suggested by Langetieg assumes that the short rate is 

represented by a linear combination of n  independent stochastic factors that follow a joint 

elastic random walk process: 
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where the coefficients ,ik  i  and iw  can be time variant. The model is tractable only in 

the case of three alternative distributions corresponding to Vasicek, CIR and Dothan 

diffusion processes, with the price of the zero-coupon bond keeping the same form as in 

the univariate setting as an exponentially affine expression of the underlying factors. For 

example, in the case of an extended Vasicek model where the short rate is the sum of the 

factors involved, the price of a discount bond with maturity ( )T t  is given by: 
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The Babbs and Nowman Model (1999)  

       The general model of n  factors proposed by Babbs and Nowman (1999) assumes that 

the short rate is a particular linear combination of unobservable factors that are interpreted 

as n   streams of economic and financial news concerning interest rate decisions taken by 

central banks through monetary policies or concerning regular economic statistics news. 

Mathematically, the model is given by the following specifications: 
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where   represents the long-run average level of the short interest rate,  1,{ }i i nX   are the 

news-factors  as diffusion processes with im  and ip  as the mean reversion and diffusion 

coefficients; and the 1,{W}i i n are  correlated Brownian motions that model news arrivals. 

  

2.2.4 The Heath, Jarrow and Morton (HJM) Framework (1992) 

         Despite the tractability of the affine-type short rate models and of the richer 

dynamics provided by the multifactor interest models, the empirical results obtained 

within the short rate framework were somehow disappointing, one reason being the 

inability of the short rate models to provide sufficient information about the covariance 

structure of the forward rates. Historically, the first attempt to develop an alternative to 

short-rate models was made by Ho and Lee (1986) who considered modelling the 

evolution of the whole yield curve in a discrete-time setting of a binomial tree. This 

intuitive idea was continued and adapted in continuous-time by Heath, Jarrow and Morton 

(1992) (HJM hereafter) who developed a rather different general theoretical framework of 

interest rate modelling. Unlike the one-factor short rate models where the diffusion 

coefficient partially characterises the dynamics of the state variable, the arbitrage-free 

HJM framework explains the evolution of the instantaneous forward rates only through 

their volatility structures, as the drift of the instantaneous forward rate is a transformation 

of its own diffusion. However, this represents a restriction on the choice of the drift form 

in comparison with short rate models. The generality of the HJM framework is 
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theoretically extremely important, but this generality level cannot be maintained in 

practice as only a limited range of volatility structures will lead to a Markovian short-rate 

process (see James and Webber, 2000). 

       For example, Carverhill (1994) decomposed the volatility structure into the product 

of strictly positive and deterministic functions of time and proved that this formulation 

represents the HJM specification that is equivalent to the Hull and White one-factor short 

rate model with time variant coefficients.  If the volatility structures of the instantaneous 

forward rate are not subject to constraints, the pricing of derivatives becomes more 

difficult as the discretization of the general short rate model (that is not markovian 

anymore) will encounter computational difficulties.  In order to address this shortcoming, 

Ritchken and Sankarasubrramanian (1995) increased the flexibility of the markovian 

condition by requiring a multidimensional two-state Markov process (with one 

component being the short rate process) which allowed a complete computation of the 

interest rate derivatives. Another model within the HJM framework was proposed by 

Mercurio and Moradela (2000), which is a one-factor Gaussian model that accommodates 

a specific humped volatility structure that implies normally distributed instantaneous 

forward rates. Among other advantages, this model allows closed form formulae for 

prices of discount bond options and outperforms empirically the Hull and White (1994) 

extended Vasicek model. 

 

2.2.5 Market Models  

         Market models constitute another building block in the literature of interest rate 

modelling. With a desirable practical feature of easy calibration, they have become 

increasingly popular among market practitioners. Market models are rather 

straightforward as they employ quoted market rates instead of the instantaneous interest 

rates by following two main approaches – direct and indirect. In the direct approach a 

numeraire and a measure are identified such that the market interest rates become 

martingales. This allows for a log-normal imposition which naturally leads to the 

derivation of Black-like formulae for option pricing. The indirect approach uses an 

underlying model that when subject to specific restrictions provides log-normal market 

rates which are ultimately fed into the market model.  

       A reference model in this category is the Brace, Gatarek and Musiela (1997) 

(hereafter BGM) model that follows an indirect approach, deriving the market forward 

rates processes from the HJM framework.  A landmark result within the BGM model is 

the straightforward valuation of caps and swaptions by using Black-like formulae and by 
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calibrating the volatility of the forward rate process to Black’s implied volatilities. For the 

valuation of swaptions the BGM model uses an approximation formula; however, the 

authors also proposed a modified swaption price formula that takes into account the 

different market tenors for caps and swaptions (see James and Webber, 2000). 

      Building on the work of Miltersen, Sandmann and Sonderman (1997), market models 

following the direct approach have been developed by other researchers such as 

Jamshidian (1997) and Musiela and Rutkowski (1997).  

The general framework of the above market models is mainly defined by an a priori fixed 

tenor structure, a set of assumptions about how markets operate15 and a reference pricing 

measure usually chosen as the terminal forward measure. Within this framework, market 

models are able to price two dominant instruments in the interest-rate-option markets - 

caps and swaptions - that have as underlyings forward LIBOR rates and forward-swap 

rates, respectively. Accordingly, the lognormal forward-LIBOR model (LFM) values caps 

using the standard Black’s cap formula, while the lognormal forward-swap model (LSM) 

prices swaptions with Black’s formula for swaptions (Brigo and Mercurio, 2001).  

Despite their compatibility with the market practiced models, the two types of market 

models, LFM and LSM are not compatible with each other. Hence, this lack of generality 

requires a different market model to be employed for each specific derivative instrument.  

 

2.2.6 Pricing Kernel Models  

         A totally distinct approach to interest rate modelling involves the pricing operator 

also called the pricing kernel.  Early studies employing this line of research include 

Constantinides (1992), Flesaker and Hughston (1996) and Rogers (1997). Trying to 

address some of the limitations of the CIR model, Constantinides (1992) developed a 

general model of the nominal term structure of interest rates using a positive price kernel 

based on independent OU diffusion processes. His model is still tractable and more 

flexible than the CIR model as it allows inverted-humped yield curves as well. An 

important feature of the model is the possibility of a sign-changing term premium as a 

function of the state variables and the term to maturity, unlike most classical univariate 

models where it is considered constant. In the Flesaker and Hughston (1996) (FH) 

framework an important model is the rational lognormal model that retrieves bond prices 

as a rational function of a lognormal variable, and provides closed Black-like analytical 

formulas for the prices of caps and swaptions. Another price kernel approach stemming 

                                                           
15 Some of these assumptions are: caps and swaptions payoffs take place and cashflows in the markets occur 

only on specified reset dates that determine the tenor structure. 
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more from the theory of Markov processes has been developed by Rogers (1997) who 

also identified that the FH general framework does not always lead to an interest rate 

model. Important to note is that these approaches are naturally suitable for modelling 

interest curves of different currencies. 

        The dynamics of most of the multi-factor interest rate models evolve within the 

exponential-affine framework developed by Duffie and Kan (1996) and Dai and Singleton 

(2000). This type of model could not simultaneously accommodate the positiveness and 

the unspanned stochastic volatility (USV) observed in the behaviour of interest rates. 

Filipovic et al. (2014) bring together the multi-factor interest rate models and the kernel 

approach into a new general framework called the linear-rational framework. In this, 

additional to the factor processes (that constitute the term structure component), a state 

price density is considered following Constantinides (1992) as a second component of the 

model. Two linearity assumptions are imposed on the two components, namely: the 

dynamics of the multivariate term structure component have a linear drift, while the state 

price density is a linear function of the first state component. Using the kernel of the term 

structure the uncertainty in the dynamics of the term structure component can be 

separated into two sources, corresponding to m  intrinsic term structure factors and n  

unspanned factors, respectively. In this linear-rational framework the model specifications 

respect the zero lower bound (ZLB), are highly tractable and also allow for analytical 

solution to the pricing of more advanced derivative products like swaptions. 

 

2.3 Literature Review of the Empirical Evaluation of Interest 

Rate Models 

 

2.3.1 Empirical Evidence on Single-Factor Interest Rate Models 

       The vast empirical literature on the estimation of interest rate continuous-time models 

portrays an inconclusive and rather complex picture in which various aspects are identified 

as affecting the empirical findings. Once the theoretical models have been considered to be 

conceptually suitable, there are multiple estimation routes to translate them into practice. 

        Early empirical studies tested the single-factor theoretical models, with a focus on 

certain aspects such as the selection of the best model in capturing the dynamics of 

interest rates, the evidence for reversion to the mean and the determination of the 

sensitivity level of the volatility to the interest rate level. Initially, lacking a common 

framework for comparison, empirical testing was conducted on individual models only. 
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For example, the CIR model was empirically tested by Brown and Dybvig (1986) using 

monthly quoted prices of US Treasury bills, bonds and notes between 1952 and 1983, 

while Edsparr (1992) estimated the same model based on Swedish data. In a seminal 

paper Chan et al. (1992) presented a general framework, facilitating a multidirectional 

comparison among different classical models. Eight16 short-term rate single-factor models 

could be nested in the unrestricted CKLS model, so their relative performance in terms of 

explanatory power could be consistently evaluated. 

      Following the proposal of the more general CKLS framework, numerous subsequent 

empirical studies provided early evidence of discrepancies. In an extensive international 

study Episcopos (2000) emphasized this sensitivity of the empirical results, concluding 

that the choice of the estimation techniques, sample period, data frequency, and country 

should be taken into account. Several comparative empirical studies (Treepongkaruna and 

Gray, 2003; Ioannides (2003); Lo 2005) have confirmed and demonstrated that different 

estimation routes lead to different results in terms of parameter estimates and implications 

for pricing interest rate contingent claims. Therefore, assessing the relative empirical 

performance of such an impressive number of theoretical models becomes extremely 

complex, and the following survey of key empirical evidence on testing interest rate 

models tries to illustrate just that.  

        For the estimation of the parameters Chan et al. (1992) employed the Generalized 

Method of Moments (GMM) of Hansen (1982). Based on one-month monthly US 

Treasury bills rates between June 1964 and November 1989, in the case of the 

unrestricted model the estimates of the drift parameters did not support the mean 

reversion feature. The level effect parameter was estimated at around 1.5 implying a high 

degree of dependence of the local volatility on the level of interest rates. The relative 

performance of the nine models was examined using two statistical tests and a metric that 

measured the ability of the models to capture the volatility of the changes in the risk-free 

rate.  Based on the goodness-of-fit measure provided by the GMM objective function 

which is
2  distributed, the models with  1   (Brennan and Schwartz (1980) and CEV 

(1975)) performed best, whereas Merton (1973), Vasicek (1977), Cox et.al. (1985a) and 

Cox et.al. (1985b) models were rejected against the unrestricted model. Employing the 

Newey and West (1987) hypothesis-testing method, the restrictions imposed by the nested 

models on the unrestricted CKLS model were evaluated and pair-wise comparison was 

conducted with no rejection being observed between models with similar diffusion 

                                                           
16 Another general framework was proposed previously by Marsh and Rosenfeld (1983), but it nested only 

three restricted models (Chan et al. 1992). 
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coefficient. Additionally, the hypothesis of a structural break at the point October 1979 

marking the Federal Reserve experiment (1979-1982) was rejected.  Following an 

experiment to value  a 2-year call bond option Chan et al. (1992) found that the option 

values varied substantially from one model to another, a result with great implications for 

valuing interest contingent claims and hedging interest rate risk. 

        Adopting the CKLS framework, Tse (1995) conducted an extensive international 

comparative empirical exercise based on data from eleven countries. The estimation 

results by the GMM method are rather mixed with countries grouped in three categories 

according to the magnitude (high, medium and low) of the estimated level-effect 

parameter. The most sensitive volatility of interest rate changes occurred in the U.S (

( ) 1.73Tse US  ), France ( ( ) 1.63)Tse France   and Holland ( ( ) 1.60Tse Holland  ), while 

the lowest elasticity of volatility estimate was observed in the UK ( ( ) 0.11Tse UK  ) and 

Canada ( ( ) 0.36Tse Canada   ). In contrast with another Chan et al. (1992b) study on the 

Japanese market where ( ) 2.44CKLS Japan  , Tse (1995) found ( ) 0.62Tse Japan  . 

       In another important empirical study, Dalhquist (1996) looked at six alternative 

interest rate processes (CKLS, Vasicek, CIR SR, GBM, Brennan-Schwartz and CEV) for 

Denmark, Germany, Sweden and the UK over similar time periods. Employing GMM 

methodology and monthly one-month maturity data sets (Euro-currency and US Treasury 

bills rates), Dalhquist (1996) found evidence of a positive relationship between interest 

rate level and volatility as indicated by Chan et.al. (1992). Moreover, the estimates of the 

level-effect parameter vary with higher values for Sweden (1.154) and Denmark (0.970) 

and are less pronounced for Germany (0.387) and especially for the UK (0.156).  

However, in contrast with the CKLS results for the U.S. significant mean reversion was 

found for Denmark and Sweden. In terms of relative explanatory power, the best models 

that could not be rejected at the 5% level of significance against the unrestricted CKLS 

model, were the CIR and Brennan and Schwartz models for Denmark and Sweden, and 

the Vasicek (1977) and the CIR SR (1985) for the U.K. and Germany, respectively. 

Moreover, in the case of Denmark, Dalhquist (1996) discovered parameter instability 

during August 1985 when arguably the Danish central bank had adjusted its monetary 

policy. 

        Applying for the first time in finance the Gaussian estimation method developed by 

Bergstrom (1983, 1985, 1986, 1990), Nowman (1997) estimated the eight single-factor 

continuous-time short rate models within the CKLS setting. Based on the U.S. Treasury 

(1964-1989) and the U.K. interbank rates (1975-1995), the final quasi-maximum 
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likelihood estimates for the true parameters of the initial model were rather different 

between the two markets. Regarding the mean reversion parameters, the empirical results 

for the US contradicted those in CKLS indicating a weak presence of mean reversion, 

while the level effect parameter was found to be insignificant, with an estimate of 

( ) 1.3610Nowman US  . For the U.K., the evidence for mean reversion was still weak, but 

the estimate for the level effect was inferred as highly significant at ( ) 0.2898.Nowman UK   

A larger but similar study was conducted by Nowman (1998) for US, Japan, France and 

Italy, covering the period 1981-1995. The mean-reversion effect was in general weak 

with some significant evidence only in the case of US. For France and Italy, the level- 

effect parameter was in excess of two, whereas for Japan and the US was close to one.  

       In another comparative empirical study, Shoji and Ozaki (1998) developed a 

statistical method of model selection that was applied to data on Japan, US and Germany. 

An advantage of their method was that it could involve models that are not nested in a 

best unrestricted model as in the CKLS framework. Several continuous-time models for 

the term structure were estimated, including models with a nonlinear drift. According to 

their method, for Germany, the model with nonlinear drift outperformed the best models 

with linear drift.   

       In Episcopos (2000) various classical one-factor short rate models across a sample of 

ten countries17 based on one month interbank rates. Some of the results are surprising 

with the CEV model outperforming the other competing models when other studies such 

as Tse (1995) and CKLS reject it, while the level-effect parameter varies across the ten 

countries from 0.20 to 1.56. For seven out of ten countries the level effect is under unity 

suggesting a less sensitive volatility than that in the CKLS findings. Also, the data sets 

used provided significant evidence for structural breaks in the case of six countries.  

        Yu and Phillips (2001, 2011) proposed a new estimation approach to a non-linear 

CKLS type diffusion model of interest rates, which is related to that of Nowman (1997). 

Their time changing technique has great empirical appeal as it allows for non-equidistant 

observations and it converts the continuous-time model into a Gaussian one. In an 

extensive study, Treepongkaruna and Gray (2003) tested the robustness of various one-

factor short-term interest rate models (Vasicek, CIR and CKLS) over different estimation 

techniques (GMM and QMLE) and data sets (eight countries) covering different sub-

periods, with different frequencies (daily and weekly). The stability of the parameters 

                                                           
17 The group of ten countries is: Australia, Belgium, Germany, Japan, Netherlands, New Zeeland, 

Singapore, Switzerland, the UK and the US. 
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across sub-periods is uniformly rejected, suggesting that more complex models permitting 

for parameters to change over time could be more appropriate. The mean reversion 

parameters are insignificantly different from zero for all the countries, models, 

frequencies and estimation methods other than for the Italian Lira where there is some 

evidence of mean reversion in the Vasicek model estimated by QMLE. However, this 

evidence can be eliminated if four observations during the European currency crisis 

(September 1992) were excluded. The dependence of the volatility on the level of the 

interest rate differs from country to country as many previous studies have shown. The 

results were sensitive when the estimation technique and sampling frequency changed, 

requiring therefore some robustness checks. 

        To shed some light in this direction, Lo (2005) investigated the estimation of the Cox 

et al. (1985) and Chan et al. (1992) models in a comparative analysis of three Gaussian 

exact and approximate estimation methods implemented by Nowman (1997), Shoji and 

Ozaki (1998), and Yu and Phillips (2001). The conclusions from both a simulation study 

and empirical analysis of short-term interest rates for Canada and the UK, indicate that 

the Nowman (1997) and Shoji and Ozaki (1998) methods perform in a similar fashion, 

while the performance of the Yu and Phillips (2001) method was crucially impacted by 

the window width parameter used in the approximation. In terms of the best fit the Shoji 

and Ozaki method gave the best performance for both data sets, one-month Canadian 

Treasury bills (January 1980 to June 2002) and the one-month sterling interbank middle 

rate (March 1975 to March 1995), respectively. With regard to Yu and Phillips (2001) 

method it was observed that a large window width leads to a disappointing model fit and 

the estimation bias of the drift parameters could be significant as it depends on the choice 

of the window width.  Lo (2005) concluded that all these aspects are important as they 

significantly affect the empirical results and emphasise the relative nature of any 

empirical work involving estimation of short-term interest rates models. 

        In a more recent comparative analysis of alternative single-factor continuous-time 

short rate models, Sanford and Martin (2006) employ a Bayesian inferential approach to 

estimate four models nested in the CKLS framework and to determine the magnitude of 

the level effect parameter that supports empirically the Australian interest rates over the 

1990-2000 period. Their findings suggest that for this particular data set the CIR model is 

the most appropriate as indicated by the highest posterior probabilities provided by the 

Bayes factors, relative to the other models considered; therefore, the pricing equations 

implied by the CIR model are reasonable enough in the Australian context. 
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Modelling the Drift Component 

     The issue regarding the existence or non-existence of mean reversion in the dynamics 

of interest rates remains controversial. Looking at the overall evidence in terms of mean 

reversion most of the relevant empirical studies do not support statistically such a 

phenomenon. Following Ball and Torous (1996) who indicated a considerable estimation 

bias of the mean reversion estimates for the CIR model under popular estimation methods 

such as GMM and MLE, Faff and Gray (2006) investigated this problem further and 

demonstrate that the GMM estimates for the drift parameters in the single-factor models 

were severely overestimated, and therefore unreliable.  At the same time, they asserted 

that the diffusion parameters are estimated with high precision under both GMM and 

MLE estimation methods, respectively. 

             Recently, Barros et al., (2012) investigated the mean reversion property of short-

term rates for ten new EU countries.  Using long memory fractionally integrated models 

and daily data covering the period January 2000 to December 2008, they concluded that 

interest rates are non-stationary (or stationary of order one, I(1)) and non-mean-reverting, 

except for Hungary. Testing for structural breaks, Lithuania is the only country for which 

in 2007 a structural break was statistically detected, while for all the other countries there 

is evidence of a structural break around 2001/2003. Once the structural breaks were 

considered, the mean reversion appeared more evident in some countries in the first sub-

period, while after the break point the interest rates were clearly non-stationary with a 

higher degree of integration in all instances.  

         The parameterization of the short rate processes by restrictively assuming specific 

forms for the drift and diffusion functions could be another reason for such diversity of 

results.  The natural alternative was to consider the most general SDE where the drift 

or/and the diffusion were not subject to parameterization.  

            In a famous article Ait-Sahalia (1996a) tested the validity of various classic 

parametric specifications in comparison with a non-parametric estimation technique. 

Based on 7-day Eurodollar deposit rates from 1 June 1973 to 25 February 1995 the 

empirical results indicated a certain degree of non-linearity in the drift component with 

values of the drift close to zero in the region of 4% - 17% and substantially higher outside 

this region. As a result, Ait-Sahalia (1996b) proposed a richer parametric model that 

involves a non-linear drift and nests four well-known short-rate models (Vasicek, CIR, 

BS, CKLS). The specification test instrumented by Ait-Sahalia (1996b) failed to reject 

only the model with a non-linear drift, suggesting that the main source of rejection of the 

classical parameterizations is the linearity of the drift. These important findings were 
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explored further by various authors including Stanton (1997), Duffee (1999) and 

Chapman and Pearson (2000). However, their research led to mixed results about what is 

the appropriate drift specification.  

       Stanton (1997), for example, presented a general non-parametric procedure that 

allowed the estimation of both components (drift and the diffusion) by deriving a family 

of approximations to the true parameters. The procedure also permitted the market price 

of risk to be estimated by examining the daily excess returns between three month and 

six-month Treasury Bills rates from January 1965 to July 1995. The findings suggested 

that the drift exhibits a similar nonlinear pattern as in Ait-Sahalia (1996a) with a rapid 

increase in mean reversion when the interest rates level is high. Using Monte Carlo 

simulation Stanton (1997) examined the economic significance of the price of risk and 

finds that the assumption of a specific functional form for the price of risk has important 

implications for the evaluation of interest rate contingent claims especially as the maturity 

increases.  

      The linearity of the drift is also examined by Chapman and Pearson (2000) who 

applied the techniques developed by Ait-Sahalia (1996b) and Stanton (1997) to data 

generated through a linear drift by Monte Carlo simulation. The unexpected non-linear 

pattern measured in the drift was explained as the possibility of a source of bias stemming 

from the estimation approach. However, opposite results were obtained by Connolly et al. 

(1997) and Durham (2003), who pointed out that the stationarity of the short rate may be 

induced by the dynamics of the volatility while the drift is fairly stable.  

More recently, Goard and Hansen (2004) employed the GMM method to conduct an 

empirical comparison within a general non-linear drift framework that nested three 

important models: the CKLS (1992) model, the Ahn and Gao (1999) model and Goard 

and Hansen (2004) model.  Empirically Goard and Hansen’s model seemed to outperform 

the other models even for smaller sampling periods, which indicates that the particular 

form of the drift as second order Fourier was able to capture very well the time 

dependence of the long-term equilibrium mean and also to explain the periodicity of the 

yield curve. Using an arbitrage-free framework Mahdavi (2008) estimates using the 

GMM approach the short-term interest rates of seven industrialised countries and the 

Euro zone. With no single model performing consistently across all countries, the 

empirical results strongly reflect once again the particularities of each market. While for 

the US, UK, Sweden and Canada there is evidence of mean reversion and non-linear 

volatility, the drift for Australia is non-linear, whereas for Japan it is constant indicating a 

log-normal process. For Denmark the volatility structure is close to that reported by Chan 
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et al. (1992) for the U.S., in the case of the Euro-zone the volatility is an increasing 

function of the level of the interest rate.  

 

Modelling the Volatility Component 

       Using several jump models Das (2002) examined seven different empirical features 

in the Fed Funds data and finds that the models captured well the effects of new 

information with evidence that the volatility of interest rate changes is substantially 

higher following the arrival of news. The inclusion of the jump process as an intrinsic 

feature of financial markets seems to render a linear drift. Otherwise the drift is nonlinear 

due to information effects. In summary, the nature of the drift is not exactly known, as the 

two scenarios are arguably equally supported by empirical evidence.  

          As emphasised by Chan et al. (1992), volatility is a crucial component in the 

dynamics of interest rates and its modelling has important implications for the pricing of 

interest rate sensitive products and for the hedging of interest rate risk- the better the 

model captures the volatility, the more efficient the hedge implied by the model. Most of 

the theoretical models assume a simple parameterization of the volatility as a function of 

the interest rate level. Simultaneously, while the literature lacked consensus on the degree 

of this relationship, there was clear evidence of another feature of the volatility that 

emerged from serial correlation based (GARCH) modelling in discrete-time.  

       Volatility clustering and high level of volatility persistence should be also taken in 

consideration when modelling the volatility of the interest rates. The two features, the 

level effect and the conditional heteroskedastic (GARCH) effect, were combined in a new 

class of models by Brenner et al. (1996), who extended the CKLS allowing for the 

volatility to be affected by information shocks. They concluded that the sensitivity of the 

volatility on the levels has been overestimated in the literature implying that modelling 

the volatility solely on the levels it is an important source of model misspecification. A 

similar study by Koedijk et al. (1997) reconfirmed that the inclusion of the GARCH effect 

renders a weaker level effect. The new models developed by Koedijk et al. (1997) 

(KNSW hereafter) in a discrete-time setting, were estimated using the QML method and 

the consistent estimators based on weekly and monthly one-month Treasury Bills rates 

(January 1968-July 1996) provided a superior fit relative to both, pure GARCH and pure 

CKLS type models. Additionally, the more flexible KNSW specifications were found to 

have important implications for bond option prices that differ from the prices implied by 

CKLS models. 
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      In another comparative study, Vetzal (1997) examined two classes of continuous-time 

interest rate models, the standard univariate short rate models and their variants of 

stochastic volatility models with an E-GARCH effect. The iterative GMM estimation 

method provided lower estimates of the volatility from stochastic volatility models 

relative to those implied by the classical one-factor models nested in the CKLS model. 

Consequently, this led to lower prices for bond options under the stochastic volatility 

process for the short rate. Vetzal also emphasised the advantage of the tractability 

possessed by Longstaff and Schwartz (1992) model when it comes to pricing interest rate 

contingent claims, and that this advantage should be taken into account against the easier 

estimation of E-GARCH models.  

       Moreover, the effect combining models suffer from some limitations as pointed out 

by Andersen and Lund (1997); they lack practical appeal due to the presence of 

discretisation bias and the erratic behaviour of the internal dynamics of the discrete-time 

models.  An earlier continuous-time alternative was suggested by Longstaff and Schwartz 

(1992) who developed a multivariate CIR general equilibrium model with the volatility as 

the second stochastic factor that in the discrete form follows a standard GARCH (1,1) 

model enhanced with the effect of the one period lagged interest rate. The econometric 

specification of the model served to testing of the equilibrium restrictions implied by the 

model, and less to the investigation of the form of both, drift and volatility. Collectively 

these findings suggest that a possible reason for the rejection of the standard models by 

the nonparametric procedures is the choice for the volatility function and not that much 

the non-linearity of the drift. Modelling volatility as an additional factor was also 

supported by an important shortcoming of single-factor models – the implied perfect 

correlation among the bond returns across all maturities, which contrasts the empirical 

evidence. Andersen and Lund (1997) proposed the first direct consistent estimator for a 

two-factor short rate model involving both the level effect and a stochastic –log-volatility 

factor. Employing the EMM approach of Gallant and Tauchen (1996), the consistent 

estimates based on weekly three-month Treasury Bills rates between January 1954 and 

April 1995, indicate evidence of mean reversion and a level effect close to 0.5.  The 

EMM facilitates a comparative analysis of various discrete and continuous-time models 

that led to the following results:  inside the CKLS framework the CIR model extended 

with a stochastic log-volatility performs best in terms of explanatory power, while the 

Level-GARCH models are rejected based on serious instability. Alternatively, Andersen 

and Lund (1997) incorporate an asymmetric volatility effect using Level-EGARCH 

discrete specifications that seem to perform reasonably well.  
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Collectively, these findings suggest that a possible reason for the rejection of the standard 

models by the nonparametric procedures is the choice of the volatility function rather than 

the non-linearity of the drift. Modelling volatility as an additional factor was also 

supported by an important shortcoming of single-factor models – the implied perfect 

correlation among the bond returns across all maturities, which contrasts with the 

empirical evidence.     

      

2.3.2 Empirical Evidence of Multi-Factor Interest Rate Models 

       The affine framework illustrated in Duffie and Kan (1994) provided an important 

platform for numerous empirical investigations of multifactor models along two 

approaches. The first approach considers an additive structure of latent factors for the 

short rate (e.g., Chen and Scott (1993), Pearson and Sun (1994), Duffie and Kan (1996) 

and Babbs and Nowman (1999)), while the second approach presents the model in terms 

of the lagged short rate and other state variables, see Chen (1996), Balduzzi et al. (1996), 

Backus et al. (2001).  

         Bergstrom and Nowman (1999) considered a particular case (two factors) of the 

Babbs and Nowman (1999) general model, assuming the instantaneous interest rate as a 

specific18 linear combination of two unobservable state variables that can be interpreted 

as short-term and long-term streams of economic news modelled as possibly correlated 

Gaussian processes. The two-factor model was estimated using Gaussian estimation 

methods for seven currencies based on one-month euro-currency rates, and despite the 

fact that some additional restrictions were necessary for identifying the diffusion and 

correlation parameters19, the model provided good empirical results. 

        Pearson and Sun (1994) proposed a more flexible version of a two-factor CIR model 

by allowing the two state variables - the real interest rate and the expected inflation rate to 

become negative unlike the original two-factor CIR model. A comparative analysis 

between the two models was conducted based on three data sets that combined monthly 

Treasury bills, notes and bonds. In all instances the original CIR model was rejected 

based on the likelihood ratio test.  When only bills were used the estimation results for the 

extended model were misleading, with problems of parameter identification and 

substantial pricing errors for securities of longer maturity.  

                                                           
18 The coefficients of the two factors are minus unity. 
19 The correlation parameters had to be constrained to zero which means that the two news factors are 

uncorrelated and the feedback matrix is zero in off-diagonal positions. 
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        The empirical testing of the three-factor model developed by Balduzzi et al. (1996) 

proved to be quite challenging as the mean reversion level and the volatility were 

unobservable. While for the short rate the proxy was one-month US Treasury bills rates, 

the mean was extracted using data on bond prices and the volatility was modelled by a 

GARCH process. The system to be estimated was a quasi-GARCH-M formulation that 

proved to fit data very well. The results also confirmed some theoretical features of 

interest rate behaviour: volatility is a main factor for short-term and medium-term interest 

rates while the mean has a larger influence on the long-term yields. Dai and Singleton 

(2000) examine several three-factor affine models from their framework and based on a 

simulated method of moments they found that for the U.S. money market data the best 

results are achieved by a specific class that BDFS belongs to as a particular case. 

         Focusing on the BDT term structure model, a comparative analysis of one-factor 

diffusion and two-factor stochastic volatility models was conducted by Bali (2003). Based 

on a Monte-Carlo simulation exercise the two-factor BDT model outperformed the 

original one-factor BDT model, with a better performance in forecasting the volatility of 

interest rate changes sampled from daily, one-, three- and six-month Eurodollar deposit 

(LIBOR) rates between 1971 and 1999. The results concerning the sensitivity parameter 

gama (the level effect) and the significance of the stochastic volatility factor (the GARCH 

effect) were assessed for robustness in a context of various functional forms of the drift, 

that can be nested in a third-order polynomial drift. While there is evidence of a nonlinear 

drift, across different periods, different maturities and different drift specifications the 

empirical results converge, confirming previous findings that the level and GARCH 

effects play a complementary role in the description of the dynamics of the volatility of 

interest rate changes.   

        A more recent two-factor interest rate model has been developed by Koutmos and 

Philippatos (2007) to test for asymmetric mean reversion in European interest rates. By 

combining two previous theoretical models, the Longstaff and Schwartz (1992) two-

factor CIR model and the Bali (2000) model, respectively, the authors found evidence of 

asymmetric mean reversion and also asymmetric volatility. The MLE estimates based on 

weekly three-month interest rates for France, Germany and the U.K. indicated that the 

mean reversion parameter is significantly negative and stronger following a decrease in 

interest rates while a non-stationary feature is present after an increase in interest rates. 

However, the mean reversion appeared to dominate the non-stationarity pattern, hence 

implying that the mean reversion phenomenon exists and its misspecification is rather an 

empirical than a conceptual issue.   
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         Over a series of articles Nowman (2001, 2003, 2006) estimated several multi-factor 

(two- and three-factor) models such as the CKLS, Vasicek and CIR models, for the UK 

and Japan. Initially no feedbacks were considered, and the two factors were the short-term 

and the long-term interest rates for the two factor models; in Nowman (2003) feedback 

effects in the conditional mean component were introduced in the model for Japan. The 

results selected Vasicek as a better model compared to CIR based on the likelihood ratio 

test against the unrestricted CKLS model.  

        Ait-Sahalia and Kimmel (2010) estimated all nine of Dai and Singleton’s (2000) 

canonical affine multi-factor interest rate models with US treasury data using a new 

estimation technique for a closed form approximation of the ML function. Based on 

simulated and real data they demonstrated that the new techniques produce highly 

accurate estimates with an insignificant approximation bias, also with less computation 

due to the analytical closed forms obtained.   

        After the recent financial crisis, the interest rates have decreased and kept stable at 

near zero level. This observation can be translated into the collapse of the two first factors 

- level and slope - in a single factor, with the former factor disappearing. Kim and 

Priebsch (2013) investigated if in this environment the affine Gaussian multi-factor 

models of interest rates are any longer suitable as these models do not respect the zero 

lower bound.  They empirically tested the performance of a three-factor affine Gaussian 

model against its equivalent shadow-rate model where the short rate was constrained to 

respect the zero lower bound.  Using the Kalman filter method Kim and Priebsch (2013) 

estimated the two models and found that the three-factor shadow-rate model 

outperformed the three-factor affine Gaussian model, which produced larger estimated 

fitting errors and unrealistic long-horizon forecasts of the short rate.  

       Most recently, Filipovic et al. (2014) empirically analysed a particular specification – 

the LRSQ (linear rational square root) model, inside their new general framework. Their 

findings, based on a combined estimation approach of the QMLE and Kalman filter (KF) 

methods, indicated that a minimum of five factors, more specifically, three term structure 

factors and two unspanned factors seem to capture very well the dynamics of both term 

structure and the volatility of interest rate changes over the period that followed the 2007-

2009 last financial crisis. A valuable but controversial finding based on the one-year spot 

rates, was that the level-effect was more pronounced as the interest rates get closer to the 

near zero bound. 

        Given the lower accessibility of data on prices of derivative products relatively fewer 

studies employ such data. In practice the calibration is also extended to the volatility term 
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structure implied by prices observed in the market of option-related derivatives like caps 

and floors. According to Longstaff et al. (2000) it is necessary to use both, data on interest 

rates and data on prices of contingent claims, in order to explain the economic argument 

behind the rejection of theoretical models. Following these suggestions, Jagannathan et al. 

(2003) examine the classical one-, two- and three-factor CIR model using data on LIBOR 

and swap rates, where the short rate is the sum of a constant and the factors. The MLE 

estimates are then used for pricing derivative products like caps and swaptions.  

Increasing the number of factors seems to create larger pricing errors especially around 

the LTCM (Long-Term Capital Management) collapse and in the regions where the slope 

of the yield curve is negative, while the one-factor specification achieves a better fit to the 

prices of short-term derivatives.   

      Another popular strand in TSIR literature has focused on various dynamic versions of 

the parametric Nelson-Siegel (NS) (1987) model. First, Diebold and Li (2006) developed 

a dynamic three latent factor model by making the parameters of the NS model time-

variant and modelling them as vector autoregressive processes. Following this 

reformulation of the NS model, numerous recent studies have employed various 

extensions of the dynamic Nelson-Siegel (DNS) term structure model. For example, a 

block dynamic Nelson-Siegel model (BDNS) was developed by Philip (2010) who used a 

hierarchical clustering algorithm to disentangle the term structure into two maturity 

clusters that are found to have a time-varying dependence and also separate dynamics. 

Based on US zero coupon yields and Libor-swap rates, the forecasting results produced 

by the block dynamic BDNS model are superior when compared to DNS model that does 

not account for the clustering feature. Further extensions of the DNS model with 

promising forecasting performance have been suggested by Koopman et al. (2010) who 

considered the single loading parameter as a fourth factor. The authors employed an 

extended Kalman filter to estimate their model and found evidence of considerable 

improvement especially in the in-sample performance of the new model. This new 

dynamic Nelson-Siegel (DNS) framework takes into account the dual feature of the yield 

curve just like the multi-factor CKLS model empirically examined by Nowman (2001, 

2003, 2006). However, given the latent nature of its factors, increasing the number of the 

factors inside DNS framework is limited by the lack of their interpretation in terms of 

level, slope and curvature. 
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2.3.3 Macro-Finance Interest Rate Modelling 

        Over the last decade the class of multivariate Gaussian models has been extensively 

used in macroeconomics and finance. The standard way of modelling the term-structure 

of interest rates has been using unobservable state variables within a no-arbitrage 

framework. However, the recent literature especially in the aftermath of the last global 

financial crisis tries to find a proper economic explanation of the yield curve dynamic 

movements. Various studies, combining both interest rates and macroeconomic variables, 

document a new direction for term structure modelling by employing a macro-finance 

structure. The relationship between interest rates, monetary policy and macroeconomic 

fundamentals has been empirically examined by Ang and Piazzesi (2003) and Piazzesi 

(2005) who incorporated macroeconomic variables into the Duffie and Kan (1996) affine 

models and assumed that bond yields span macroeconomic risks. Similar approaches 

include Rudebusch and Wu (2003) and Hordal et al. (2006). Continuing on this earlier 

research, Rudebush and Wu (2008) developed a macro-finance framework which jointly 

estimated an arbitrage-free term structure model with a New Keynesian rational 

expectations macroeconomic model. This combination enabled the interpretation of the 

latent factors - the level and the slope - of the yield curve as the perceived inflation target 

and the cyclical monetary policy response, respectively.         

        Despite the inclusion of several macroeconomic factors there is evidence that while 

the short end of the yield curve is clearly affected there is still a substantial misfit of the 

longer maturity interest rates, suggesting a missing but necessary additional factor.  

Extending the work of Kozicki and Tinsley (2001), Dewatcher and Lyrio (2006) proposed 

a macro model combining the TSIR with the inflation rate and the output gap. Their 

empirical results on the US economy reconfirm that macro variables such as the real 

interest rate and the inflation rate play a crucial role in the evolution of short-term 

maturity rates. Based on evidence of a reasonable fit to long-term maturity rates, they also 

conclude that long-run inflation expectations should be included in the model.  

        Other strands of macro-finance research explore different financial and economic 

environments where policy makers had to intervene and investigate the effectiveness of 

their monetary policy instruments. Christensen et al. (2009) employed a six-factor 

arbitrage-free Nelson-Siegel (NS) model to demonstrate that the provision of bank 

liquidity by central banks in December 2007 has substantially lowered the LIBOR rates 

during the crisis. Most recently, Ullah (2016) extended the arbitrage-free NS model by 

including five macroeconomic variables and demonstrated that there is a relationship 
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between the yields and these variables that should be accounted for in order to improve 

the forecasts of the yield curve movements.  

         During late 2012 and 2013, interest rates reached record low levels with the short-

term rate at the zero lower bound for many consecutive days, culminating with negative 

values in some markets20. In a recent study Steeley (2014) examined the dynamics of the 

yield curve in the current context of near zero interest rates and the impact of the 

quantitative easing (QE) policy on the shape of the yield curve. Following a PCA 

analysis, he concludes that four factor are necessary to explain the data; a fourth factor - 

the change in volatility - is found responsible for undulations observed in the shape of the 

yield curves (especially the forward curve) on the day QE policy was announced. 

        The zero lower bound of interest rates presents researchers with some challenging 

grounds, as an arbitrage-free model that keeps nominal rates positive is still to be 

developed.  Diebold and Rudebusch (2013) suggested some future potential routes 

involving non-affine structures as in Kim and Singleton (2012) where a Quadratic-

Gaussian model is considered. Their key result is that the non-diagonal feedback matrix 

of the model ensures a better fit to the zero bound than affine structures, and hence 

correlation among state variables is significantly important. According to Diebold and 

Rudebush (2013), a different possibility is to use still affine but non-Gaussian models that 

accommodate nonnegative interest rates such as the CIR model.  

Another emerging and controversial aspect in the macro-finance literature of yield curve 

modelling is the relationship between the bond supply and the risk premium. The 

empirical facts of the recent financial crisis seem to contradict the conventional theory of 

“no supply effects” in the sense that changes in the long-term bond supply do not affect 

bond prices.  

        In that regard, some studies find that the unconventional policies implemented by the 

BoE and the Fed of buying long-term bonds have been effective in lowering long-term 

yields and therefore encouraging economic growth. However, the real mechanism that 

underlies the dynamics of the long end of the yield curve as a result of these actions still 

remains unclear. 

 

 

 

 
                                                           
20 The one-week and one-month CHF-LIBOR rates were negative in November 2012 and early 2013. 
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2.4 Conclusions 

        The aim of this extensive literature review of continuous-time interest rate models is 

to offer to any new researcher a true picture of the complexity of the task of modelling 

interest rates, given the highly-technical mathematical apparatus behind the theoretical 

models and the challenging transition process from theory to practice via sophisticated 

econometric techniques and advanced computational software. Over the last four decades 

a taxonomy of theoretical interest rate models has been developed trying to capture most 

of the features observed in the dynamics of interest rates. However, when it comes to 

empirical evidence, no clear direction is drawn, due to the multifaceted (different data 

sets, different discretization methods and/or different econometric estimation methods) 

aspects of translating continuous-time processes into numbers using discrete-time data.  

While there is sufficient evidence to support multi-factor specifications over single-factor 

models, there are several questions within the short rate approach that are still 

unanswered, such as which estimation technique is most appropriate, how many factors 

should a model consider and how these models can forecast future interest rates over 

turbulent periods such as the last financial crisis of 2007-2009. The following three 

empirical investigations try to bring new evidence that will contribute to a better answer 

to these questions.  
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Chapter 3 

Gaussian Estimation and Forecasting of    

Extended Multi-Factor Term Structure Models 

 

 3.1 Introduction 

      Over the last thirty years, interest rate modelling has been developing at a remarkable 

speed helped by the computational and technological progress during the same period. 

Most financial market variables, among them the short-term interest rates, are considered 

to evolve randomly in a continuous dynamic fashion. However, their continuous 

recording is not available yet1. While the continuous-time specification for short-term 

interest rate models is well established in the literature (as reviewed in Chapter 1), results 

from new empirical studies employing continuous-time models could always bring 

valuable insights towards a robust comparative framework in terms of both model 

specification and method of econometric estimation.    

      Given the implications of the findings by Litterman and Scheinkman (1991) that three 

factors (described as level, slope and curvature) can explain over 95% of the fluctuations 

in yield curves, the empirical literature on TSIR is mostly limited to three factors such as 

in the Chen (1996) and the Balduzzi et al. (1996) models. However, in the aftermath of 

the last global financial crisis of 2007-2009, recent studies2  and financial regulators3 have 

suggested that the models used by market participants should account for more 

information by increasing the number of factors included in the model. The purpose of 

this chapter is to assess if the recommendations by the financial regulators of using richer 

                                                 
1 In recent years the technological advances (bandwidth, computing power and storage) have considerably 

increased the availability of high-frequency data such as tick-by-tick data or trade and quote data especially 

in finance. These data are intraday transactions and quotes of stocks, bonds, options, currencies and other 

financial products. 
2 Following a PCA analysis Steeley (2014a) identified the change in the volatility as an important fourth 

factor, responsible for some changes in the shape of the yield curve, while Christensen et al. (2009) 

considered a six-factor model.  
3Basel II Committee on Banking Supervision (2010) recommended that banks should model the yield curve 

using more risk factors.  
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yield curve model is of any benefit. Most central banks are still widely using one- or two- 

factor models and this has been showed to be inappropriate. The Federal Reserve 

employed a three-factor interest rate model in their Comprehensive Capital Analysis and 

Review program only in 2014 (van Deventer, 2014). For central banks to implement 

models beyond three factors, there is a great need for more empirical evidence on the 

benefits of adding extra factors. The next natural extensions are dimensions such as four-, 

five-factors. To determine if there is any advantage in doing so, in this chapter we 

compare the performance of four- and five-factor models within various types of markets 

(money market and bond market). 

        One could continue to add extra factors as long as this brings improvement in the 

model accuracy, in terms of both, goodness of fit and prediction power. While this could 

be very time-consuming given the increased computational complexity of the estimation 

techniques, the number of estimated parameters will increase considerably and as a result, 

the model could suffer of the econometric overparameterization problem. How many 

factors should be included in a model could be determined by employing formal tests 

such as principal components analysis (PCA), however the answer to this question is 

relative to the degree of accuracy which is required for the model to reach: if 95% (as in 

Litterman and Scheinkman, 1991) is considered good enough three factors are sufficient, 

if 98% accuracy is required then more factors will be necessary. It was shown (see van 

Deventer, 2014) that for a 99% accuracy target up to 10 factors are necessary and 

sufficient.  However, for our specific purpose mentioned above the transition from four- 

to five-factors will provide valuable insights about the implementation of such more 

complex models. 

The extensive theoretical literature offers several modelling frameworks that can be 

extended beyond three factors such as the general models of CKLS (1992), Babbs and 

Nowman (1999) and HJM (1992). The modelling framework adopted in this study is 

rather different and is motivated by several aspects.  From an intuitive and practical point 

of view, the factors - interest rates of different maturities - are important points across the 

yield curve, whose historical values can be observed in the most liquid markets. In 

addition, the framework allows for the theoretical element that interest rates of different 

maturities move together in a very complex fashion by allowing feedbacks in the drift 

component and by modelling their correlation matrix over time. Moreover, the multi-

factor CKLS model has a similar structure to that of the parsimonious vector 

autoregressive VAR(1) model and hence, a consistent comparison between the two 

models can be conducted.  

http://www.federalreserve.gov/bankinforeg/ccar.htm
http://www.federalreserve.gov/bankinforeg/ccar.htm
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 Following Nowman’s (2003, 2006) approach, the CKLS multivariate framework will 

be extended to four and then to five factors, by employing the Gaussian estimation 

methods of continuous-time dynamic systems developed by Rex Bergstrom (1983, 1985, 

1986, 1989, 1990, 1997). In the context of interest rates, this method yields quasi 

maximum likelihood (QML) estimates and its empirical application is justified by the 

considerable gain in the predictive power of continuous-time models compared with less 

efficient methods (for example standard methods like 2SLS and 3SLS) or less 

sophisticated models such as discrete simultaneous equation systems and VAR models 

(see Nowman, 1997). In addition, a range of short-term interest rates models nested in the 

multi-factor versions of the CKLS model will be estimated over the period 2000-2013 

that includes the recent global financial crisis of 2007-2009. The short end of the yield 

curve is estimated in an international comparative context involving the some of the most 

important and diverse countries within the G10 group: the UK, the US, the Eurozone, 

Japan and Canada. Using the UK Government nominal interest rates, the remaining part 

of the yield curve is also estimated, hence by connecting the two estimated segments at 

the point of one-year maturity, the whole UK TSIR is obtained. The empirical results 

from the dynamic estimation of a total of forty-eight models will provide the in-the-

sample estimates that will be used for the out-of-sample model performance. 

       Another important aim is to conduct an extensive comparative forecasting analysis 

using the dynamic optimal forecasts to construct a range of statistical and economic loss 

functions as measures of forecasting accuracy. Three elements of forecasting analysis are 

brought together to construct a robust forecasting comparison framework: across six 

different forecasting methods (the four continuous-time models are compared with two 

discrete time econometric methodologies such as AR (autoregressive) and VAR (vector 

autoregressive)), across three different horizon-lengths of the holdout samples and 

between the two model-extensions (four- and five-factors). Moreover, the out-of-sample 

performance of the competing models is formally tested using the Clark-West (2007) and 

Diebold-Mariano (1995) for nested and non-nested specifications, respectively. 

       The structure of this chapter is as follows: In Section 2 a literature review on the 

development of continuous-time econometric methods is presented with a focus on the 

Gaussian estimation method developed by Bergstrom. Section 3 outlines the methodology 

based on a gradual extension of the CKLS model with feedback effects to four and five 

factors.  Section 4 presents the data sets from the interbank and bond markets. Section 5 

presents the empirical results from the estimation of the continuous-time models and their 
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interpretation. Section 6 presents the forecasting analysis and comparisons with other 

methodologies.  Finally, the concluding remarks are drawn in Section 7. 

 

3.2 Literature Review 

3.2.1 Early Developments in Continuous-time Econometrics  

       In the late 1940s, econometricians were increasingly aware of the problem caused by 

measuring the variables at discrete times, whereas their observed values represented the 

outcome of multiple interactions inside a complex economic system. Most of the 

macroeconomic variables at that time (national income (GDP), unemployment and 

inflation rates) were observed annually, although over such a long period, they were 

obviously influenced by other variables like national debt, money supply and exchange 

rates. The natural form of such causal system was provided by a system of stochastic 

differential equations.   

        During the first half of the 20th century, the mathematical theory of continuous-time 

stochastic models had been well developed mainly around the concept of Brownian 

motion. Most important contributions were made by leading mathematicians like Einstein 

(1906), Wiener (1923) and Kolmogorov (1931). But the area of the estimation of the 

structural parameters of continuous-time models from discrete data was still short of 

producing convincing results. The first significant contribution to this area was made by 

Bartlett (1946) who recognised that the assumption of innovations in the form of 

Brownian motion was not quite appropriate for modelling economic phenomena. In his 

article, Bartlett obtained estimates for the parameters of single first and second order 

differential equations from discrete observations. However, they were considerably 

biased, emphasizing the technical difficulties of obtaining asymptotically 

efficient/consistent estimates from a discrete sampling scheme. Koopmans (1950) 

distinguished for the first time between stock and flow data and recognized a series of 

advantages from using econometric continuous-time specifications over the recently 

introduced discrete time simultaneous equations models. Stock variables such as the 

money supply, stock of capital and interest rates are measured at discrete points in time, 

whereas flow variables such as output and consumption are discretely averaged as 

integrals over the observation period.   

       A general advantage of considering continuous specifications is that they allow for 

the variables to interact. As a result, the continuous-time models can be interpreted as 

causal systems unlike the simultaneous equation models. Wold (1952) developed a 
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recursive simultaneous equation system that could be interpreted as a casual chain, but he 

also (see Wold (1956)) recognised that formulating the causal chains as systems of 

differential equations could have an even greater importance. Adding to the list of 

advantages, the continuous-time models naturally allow for the different treatment of 

stock and flow variables. Also, the continuous-time specifications are independent of the 

unit observation period, unlike discrete time models. Moreover, governments and policy 

makers can benefit from the use of continuous-time models as they can produce forecasts 

of variables of interest (for example GDP) in continuous-time, even though the data are 

observed discretely. 

        A rigorous analysis of the arguments put forward by Bartlett (1946) was conducted 

by Edwards and Moyal (1955) under more relaxed and appropriate assumptions for 

economic phenomena. The disturbances could be generated by more general processes 

(for example a mixture of Brownian motion and Poisson process). Some other early 

studies (Quenouille 1957, Phillips 1959, Durbin 1961) have explored the econometric 

specification in terms of stochastic differential equations with unsatisfactory but useful 

outcomes. Phillips (1959) developed the first rigorous algorithm for the estimation of a 

complete system of differential equations using Fourier transforms; his methodology, 

however, produced asymptotically biased estimators. These issues seem to have been 

ignored at least temporarily, one possible reason being the fact that the dominant 

estimation procedure in the literature of that time was Haavelmo’s (1943) discrete 

simultaneous equations methodology.  

 

3.2.2 Bergstrom’s Early Work on Continuous-Time Modelling 

      The arguments for continuous-time modelling discussed in the literature of the late 

1950s and the previous work done by Phillips (1959) convinced Rex Bergstrom of the 

benefits brought by the continuous-time specifications of econometric models. Phillips’ 

model failed to take certain a priori restrictions into account that Bergstrom considered to 

be critical, given the limitations econometricians face in terms of sample sizes and 

availability. Some a priori restrictions implied by economic theory were necessary for 

obtaining reliable estimates for the structural parameters of more complex continuous-

time models. The implementation of such models was difficult due to high computational 

costs at the time.  

     Following two research directions at the same time, Bergstrom (1966a) proposed an 

estimation algorithm for closed systems of first order differential equations, while in 
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Bergstrom (1967) he developed a prototype disequilibrium growth model for the UK 

macro-economy. The continuous specification used by Bergstrom (1966a) was given by 

the following equation:  

                                                ( ) ( ) ( ) ( )dx t A x t dt dt                                             (3.1)                       

 where   ttx ),(  is an n -dimensional continuous random process, A is a matrix 

whose elements are specific functions of the unknown vector of p structural parameters 

)( 2np   and )(t is an n -dimensional vector of white noise innovations. The equally 

spaced discrete observations (0), (1), (2),....x x x  extracted from the continuous-time model 

(3.1) satisfy an exact discrete model given by  

                  ( ) ( ) ( 1)               tx t F x t      (3.2) 

where F  is an exponential matrix valued function defined as  
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and ( ) 0s tE        when s t . 

    Simple a priori conditions (some elements of matrix A  are zero or linear functions of 

the parameter ) translate into complicated transcendental functions in the structural 

parameter .  To avoid this difficulty Bergstrom (1966a) suggested a non-recursive model 

as a discrete approximation4 to the continuous model (3.1) given by the following 

equation:  

                         ( ) ( 1) {0.5[ ( ) ( 1)]} tx t x t A x t x t u                                          (3.3) 

together with the assumption that { ( ) ( )} 0E u t u t h    for 0h   .  

       Bergstrom (1966a) analysed the importance of the specification bias introduced by 

the approximate discrete model (3.3). To find out which discrete model should be used, 

the exact or the approximate one, Bergstrom suggested that one should determine how 

important are the differences in the precision of the estimates from the two discrete 

models. The main advantage of Bergstrom’s approach was that the underlying parameters 

of the differential equations system could be deduced from the estimates of the 

approximate non-recursive model using standard simultaneous equation methods, for 

example Three Stage Least Squares (3SLS) and Full Information Maximum Likelihood 

(FIML) methods. In an important Monte Carlo study Phillips (1972) applied the 

Minimum-Distance Estimation (MDE) method to the equivalent exact discrete model of a 

simple three equation trade cycle differential closed system. By comparison with the 

                                                 
4 In later studies, Wymer (1973) and Sargan (1976) used this type of discrete trapezoidal approximation for more 

general continuous specifications that included exogeneous variables as well as stock and flow variables. 
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standard 3SLS estimator from the approximate discrete model the minimum-distance 

estimator had improved asymptotic properties (consistent and asymptotically efficient), 

with a reduction of more than 50% in the standard errors of the estimates of the 

parameters of the exact discrete model over the approximate discrete model. However, 

when exogeneous variables are included and higher order stochastic differential equations 

are considered, Wymer (1973) points out the difficulty of estimating the new derived 

exact discrete model given the complexity5 implied by the a priori restrictions. If an 

unrestricted exact model would be estimated, the variances of these consistent estimates 

are larger than of those estimates obtained by using the approximate discrete model, 

especially when dealing with small samples. 

      Phillips (1974, 1976) considered first order open continuous-time models by including 

smooth non-random exogeneous variables as polynomials in time of degree no more than 

two. With a more complicated exact discrete model the estimation procedure involved 

some approximations concerning the exogeneous component, hence the presence of some 

approximation bias that is shown to disappear as the observation period converges to 

zero. Using the new “exact” discrete model Phillips (1974) derived the exact Gaussian 

(quasi-maximum likelihood) estimator with a biased mean and covariance matrix. 

      An alternative approach to estimating continuous-time models was suggested by 

Robinson (1976a, 1976b) who proposed a range of estimation methods applied to more 

general linear differential equations systems that accommodate certain particularities. 

When constraints on the parameters are non-linear or when the models are formulated as 

differential-difference equations, Robinson (1976a) applied numerical methods such as 

nonlinear least squares and maximum likelihood that produced consistent and 

asymptotically efficient estimators. As a complementary method to these two estimation 

procedures, the Instrumental Variables (IV) method presented in Robinson (1976b) 

involves two steps in order to obtain first consistency and then efficiency of the estimates. 

Using a discrete approximate Fourier transformed system, the IV method led to closed 

expressions for the estimates, avoiding numerical optimization therefore surpassing the 

other methods of estimation on computational grounds especially when the parameter 

space is very large.  

 

 

 

                                                 
5 It is shown in Bergstrom (1983) that the vector of the disturbances of the EDM equivalent to a continuous time higher 

–order stochastic differential equation system is generated by an MA process. 
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 3.2.3 Early Empirical Studies  

        Despite involving a single-equation model, the first empirical application of a 

continuous-time model was Houthakker and Taylor (1970). They modelled the demand 

for consumer durable goods in the US using a continuous formulation and derived the 

approximate discrete model, in the same way as Bergstrom (1966a). Some early multiple 

equation continuous models include the disequilibrium adjustment model of the United 

Kingdom financial markets, developed by Wymer (1973) and the US business cycle 

model by Hillinger et al.  (1973). 

      A major reference for the subsequent empirical studies related to continuous 

modelling in econometrics was the completion by Bergstrom and Wymer (1976) of the 

first continuous-time macroeconometric model a Neoclassical-Keynesian cyclical growth 

model of the United Kingdom. Their model was extended to a larger financial sector by 

Knight and Wymer (1978) for the UK at the International Monetary Fund. The Bergstrom 

and Wymer model (hereafter BW model) model was employed as a prototype for the 

development of macroeconometric models for various countries such as Australia (Jonson 

et al., 1977) and Italy (Gandolfo and Padoan 1982, 1984, 1987, 1990).  Meanwhile, other 

economy-wide continuous-time models were proposed for the United Kingdom (Jonson 

(1976)), Canada (Knight and Mathieson, 1979), Germany (Kirkpatrick, 1987), Italy 

(Tullio, 1981; Gandolfo and Padoan, 1990), and the United States (Armington and 

Wolford 1983; Donaghy, 1993). 

        During the 1980s, continuous-time macromodels were increasingly used for policy 

analysis (Jonson and Trevor, 1981; Bergstrom, 1984b; Gandolfo and Padoan, 1982, 

1984). Econometricians were trying to measure the impact of various types of policy 

feedbacks on the continuous-time model’s asymptotic stability. Stefansson (1981) applied 

a controlling procedure to a small continuous-time econometric model for the Icelandic 

economy and was unable to obtain exact optimal feedbacks. Other econometric studies 

considered continuous-time models at the microeconomic level. For example, Richard 

(1978) investigated a commodity continuous-time model for the world copper industry, 

Brennan and Schwartz (1979) studied an asset pricing model and Levich (1983) used the 

Armington and Wolford (1984) model with impressive results in forecasting exchange 

rates. 

   

 



65 

  

3.2.4 The Gaussian Estimation Method of Continuous-Time Models with 

Discrete Data 

       Most of the continuous-time models developed during the 1960s and 1970s were 

either of first order or their estimation involved the use of an approximate discrete model. 

More realistic and flexible continuous-time models were largely acknowledged as most 

appropriate in order to capture the dynamics observed in many economic phenomena. 

However, using more sophisticated models has led to increasingly complex estimation 

procedures; hence, the importance of developing a rigorous theoretical framework of 

statistical inference that could be applied for open and closed linear higher order 

continuous-time systems with both stock and flow data.  

     Continuous-time formulations that intensively use economic theory in the attempt to 

model the relationship between economic variables were at the centre of Rex Bergstrom’s 

research agenda. In a seminal paper, Bergstrom (1983) presented the first theoretical 

elements of the Gaussian econometric methodology applied to linear stochastic 

differential equations systems with discrete data. This article represented the foundational 

study that led, through a systematic approach, to major subsequent developments in all 

areas of research related to the Gaussian estimation methodology.  

      Following Bergstrom (1983), the general formulation of a closed linear continuous 

model of order ,k  is: 

1 1

1 1    ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( )k k

k kd D x t A D x t A Dx t A x t b dt dt     


                  (3.4) 

where )(tx is a real continuous n  - dimensional random process,   is a p - dimensional 

vector of structural parameters, kAAA ,..., 21 are n n  coefficient matrices whose elements 

are known functions of  , b is an 1n vector whose elements are also known functions of 

 , and D  represents the mean square differential operator. It is assumed that the vector 

of disturbances )(dt  satisfies the following Assumption 1 in Bergstrom (1983): 

ASSUMPTION 1:   n ,...,1  is a vector of random measures with a finite Lebesgue 

measure on all subsets of the real line, such that ,0)]([ dtE     )()]()([ dtdtdtE   

where ( )    is a positive definite matrix whose elements are known functions of   

another vector of parameters and 0)]()([( 21  jiE  for all nji ,...,1,   and any 

disjoint sets 1 and .2  (See Bergstrom (1984a) for a discussion of random measures). 
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In order to avoid the restriction of stationarity, Bergstrom (1983) considered some 

boundary conditions that )(tx  should satisfy:  

                1

1 2            (0) ,  (0) ,  ... , (0)k

kx y Dx y D x y    ,                               (3.5) 

where 1,..., ky y  are n  - dimensional random vectors verifying the following assumption: 

ASSUMPTION 2: 0)]([ iyE , ),...,1( ki  for any set   in the half line  t0  

with finite Lebesgue measure. 

       Therefore, the continuous-time model comprises the differential equation system 

(3.4), the boundary conditions (3.5) and the Assumptions 1-2 and it will be hereafter 

referred to as the basic continuous model. The complete vector parameter to be estimated 

will comprise ,   and y , where y includes the unobservable elements of the initial state 

vector corresponding to the flow data and 2 ,..., ky y defined above. The generality of the 

model has expectedly increased the level of complexity in the estimation procedure. The 

higher order feature brought an element of complication as the quantities 

1( ),..., ( )kDx t D x t are unobservable quantities, while new sources of autocorrelation were 

created in the residual vector by considering mixed data. As a consequence, the estimates 

of the parameters would be affected by a temporal aggregation bias.  

     The central theoretical development in Bergstrom (1983) was a fundamental 

theoretical theorem that proved the existence and uniqueness of a discrete solution for the 

basic continuous model. Despite the additional complexities, the exact discrete model that 

is satisfied by the discrete data generated from the continuous model with mixed data was 

shown to be a vector autoregressive moving average model. In the case when only stock 

variables are considered the solution is given by a  , 1VARMA k k  . For continuous 

models involving only flow data, where the variables are measured as integrals over the 

observation period ( 
t

t
drrxtx

1
)()( ), the solution becomes a  ,VARMA k k model. When 

the data is mixed the exact discrete model implied by the basic continuous-time model
 

still maintains the  ,VARMA k k  form. The exact solution of the basic continuous model 

on the domain ],0[ T  could be expressed mathematically as:  

1 1 1( ) ( ) ( 1) .... ( ) ( ) ( ) ( , ) ... ( , )  k t t k t kx t F x t F x t k g G G                     (3.6) 

where the coefficient matrices kFF ,...,1  are highly nonlinear transcendental (matrix 

exponential) functions involving the parameter vectors   and  . The innovations { }t t    

have the following properties: ,0)( tE   ),,()(  KE tt    ,0)( 
tsE   for ts  . 
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The form of the exact discrete model given by (3.6) is used for analysing the asymptotic 

sampling properties of the maximum likelihood estimator, however for the purpose of 

computing the Gaussian estimate and likelihood function an intermediary version (with 

only the autoregressive coefficients) was considered. The moving average side was 

embedded in the wide sense stationary process of the disturbances t . According to 

Bergstrom (1983, Theorem 2), the form of the exact discrete solution implied by a closed 

continuous-time model of order k  is: 

         
1  ( ) ( ) ( 1) .... ( ) ( ) ( ) ,    1,...,k tx t F x t F x t k g t k T                                (3.7) 

where { }t t is a wide sense stationary first-order vector moving average disturbance with 

the following properties:  

                          ,0)( tE       

                         ),()(  rrttE 
    for 1,...,0  kr  

                         0)( 
rttE        for  1 kr  

The complexity of the explicit form of the matrix functions coefficients of the 

autoregressive part ),(1 F …, )(kF  and ),(g  ),,(0  …, ),(1  k  
increases as the 

order of the system gets higher ( Bergstrom, 1983 and 1984a,b).  

       For the estimation of the vector parameter ),,(  Bergstrom suggested two 

alternatives that implied additional assumptions. For computational reasons, the 

procedure followed assumed the wide sense stationarity property for the n - dimensional 

process   ttx ),( . The exact Gaussian estimates were obtained by minimizing L̂  

with respect to ),(  , where L̂  equals minus twice the maximum likelihood function and 

is computed as: 

                                                  
( 1)

2

1

ˆ 2log
n T

i ii

i

L z m




                                            (3.8) 

This simplified expression for L̂  was derived using a common procedure in Bergstrom’s 

algorithms for computing the maximum likelihood function: the Cholesky factorization of 

the correlation matrix valued function ).,( V   Mathematically, there is a lower 

triangular real matrix M  with positive elements iim  on the first diagonal, such that 

.MMV   The vector 
1[ ,...z ]nTz z  can be recursively determined from the Mz  . The 

algorithm for computing L̂   was rigorously outlaid in Bergstrom (1983, 1985, 1986) and 
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it will be reapplied in the current study and presented at a later stage in the estimation 

section. Once L̂  has been computed, the Gaussian estimates could be obtained by various 

optimization procedures which involve repetitive evaluation of L̂  for a set of parameter 

values. Bergstrom (1983) suggested two such numerical procedures: the maximum 

gradient method and approximation method for larger continuous models using the 

spectral density function. While the former method is simpler it does not necessarily lead 

to the minimum of L̂  in case there are multiple local minima. Therefore, the procedure 

should be repeated using different inputs for the initial values of the vector parameter 

( , )   . The latter method concerned finding an approximation to L̂  in order to avoid the 

computation of high dimension ( nT nT ) matrices. Bergstrom (1983) computed these 

approximations using the spectral density function of the stationary process 

{ ( ), t },x t     that after a specific decomposition can be represented as an 

autoregressive process.  

 

3.2.5 The Development of Computational Algorithms, Hypothesis 

Testing, Forecasting and Control 

       Bergstrom (1985) derived a new efficient algorithm for computing the exact 

Gaussian likelihood for the parameters of a higher order closed continuous-time dynamic 

model with flow data. A new set of parameters was added for estimation, as the initial 

state vector y  is unobservable6. An approximate estimate (extrapolation) for y  is 

accepted instead of an exact one. With y  fixed in this way then the estimation procedure 

will provide asymptotically efficient estimates for ( , )  . Bergstrom (1985) conjectured 

that the new efficient estimation based on the VARMA type discrete models, should 

considerably increase the precision of estimates and reduce the prediction errors of future 

observations.   

Applying Phillips’ (1974, 1976) exogenous variable methods, Bergstrom (1986) extended 

the efficient algorithm for the closed model to an open model of a higher order 

continuous-time system with both stock and flow types of data. The exogenous variables 

introduced into the model are assumed to be generated by polynomials in time of degree 

not exceeding two. The model can be extended even more: for higher order systems, 

                                                 
6Only the first vectorial component of y , made of the initial states 1 1,...,{ (0)}i i ny x  is considered known 

or observable; the rest of the components 
1

1,...,
(0) { x (0)}

j

j i i n
y D




    for 2,... 1j k   are unobservable, 

hence they will be endogeneously estimated.  
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instead of using quadratic interpolation, polynomial interpolation can be used, of a degree 

dependent on the order of the system. The exact discrete model specification was shown 

to be a generalized VARMAX model, a convenient form in terms of estimation, testing 

and forecasting.  

       According to Phillips (1974, 1976) the biases introduced by these assumptions are 

smaller (of third order) than those (of second order) obtained by employing Fourier 

methods developed by Robinson (1976a, b, c). For a model with Gaussian innovations 

and exogenous variables with such continuous paths it was shown that the method yields 

exact quasi-maximum likelihood estimates of the structural parameters. Bergstrom 

provided the exact formulas for the implementation of the Gaussian methodology for the 

most general second order continuous-time model in which both the endogenous and 

exogenous variables are a mixture of stock and flow variables.  As in Bergstrom (1986), 

the most general continuous-time linear model allowing for greater dynamics (higher 

order, considering both types of data, including exogenous variables) would have the 

following equation: 

 

1 1 2

1 2 1( ) ( ) ( ) ( ) ( ) .... ( ) ( ) ( ) ( ) ( )

               

k k k

k kd D x t A D x t A D x t A Dx t A x t Bz t dt     


             

                                                                                ( ),t   0t                                     (3.9) 

      After the development of a complete theoretical framework of the Gaussian 

estimation of continuous dynamic systems and robust computational algorithms for its 

implementation, Bergstrom further looked into various other problems using this type of 

model, concerning optimal control methods for policy makers in Bergstrom (1987), a 

forecasting algorithm in Bergstrom (1989), and statistical hypothesis testing in Bergstrom 

(1990, Chapter 7). 

        Bergstrom (1987) considered the approximate discrete continuous-time model as the 

true model and provided a rigorous mathematical solution to the problem of controlling a 

continuous-time linear stochastic model with the control variables as exogeneous. His 

approach was extended for control and non-control exogeneous variables. The feedbacks 

are shown to be optimal in the class of linear feedbacks. The optimal level of control was 

estimated by minimizing the infinite horizon quadratic cost function for a second order 

dynamic model. If the estimated optimal feedback is applied from time zero onward, then 

the costs are minimised. The main advantage of Bergstrom’s method was that it could be 

applied to higher order systems with more realistic specifications of cost functions and the 
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estimates were still consistent.  Bergstrom (1989) presented an optimal forecasting 

algorithm of discrete mixed data together with a theorem that demonstrates the optimality 

of the forecasts.  They are exact Gaussian estimates of the post-sample observations 

conditioned by the information contained in the sample.  

       A final econometric aspect that Bergstrom was determined to address was the 

statistical testing and model evaluation of the higher order continuous-time models. 

Bergstrom (1990) developed some practical procedures for testing hypotheses concerning 

a specific continuous-time model with a mixed data sample.  A more detailed analysis of 

the VARMA type models satisfied by the exact discrete time models was conducted. The 

findings, with important practical implications, were proved in a theorem about the 

behaviour of the moving average coefficient matrices. Bergstrom observed that they are 

time variant, and he demonstrated that they converge rapidly to a limit set of three 

matrices that is asymptotically stable stationary. Nowman (1991) suggested for practical 

applications that after twelve steps the limit matrix is found to seven decimal places. 

Following this result, a three-stage testing strategy was presented and its extension to an 

open and higher order system case was discussed. The strategy was tested for both 

general and restrictive hypotheses in a VARMA framework. The exact discrete models 

represented by the VARMA specification provided the basis for exact asymptotic tests of 

the specification of a continuous-time model and tests of hypothesis of a set of restrictions 

on the parameters. 

 

3.2.6 Related Other Work on Gaussian Estimation and Continuous-

Time Models 

      Over the last two decades a series of studies have expanded the range of alternative 

differential models, providing closed forms for such models, ready for estimation and 

forecasting analysis. This was driven by exploring more flexible and complex continuous-

time models that would better fit time series data with particular dynamic features. The 

exact discrete model approach presented in Bergstrom (1983) represents one of the major 

methods applied in the estimation of linear stochastic differential equation systems 

besides approaches based on Kalman filtering of state space forms developed by Harvey 

and Stock (1985, 1988) and spectral representations considered by Robinson (1976a, b).              

       Inspired by a model developed by Bailey et al. (1987), Chambers (1991) extended 

Bergstrom’s econometric framework and derived the exact discrete model (EDM) 

equivalent to a more general continuous-time system, more specifically a second order 
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differential equations system that included the first and second derivatives of the 

exogeneous variables in addition to their levels. Another alternative that would 

accommodate for the new dynamics while still using the framework in Bergstrom (1986), 

was the adjustment algorithm applied to the exogeneous variables prior to the estimation 

suggested by Nowman (1991). In a theoretical paper Chambers (1998) presented a 

detailed estimation technique that involved the derivation of a frequency domain 

Gaussian estimator of the parameters of a joint differential-difference equation system7. It 

was shown that this estimator is strongly consistent and asymptotically normally 

distributed without requiring the Gaussianity of the data. A more flexible specification of 

continuous-time models incorporated unobservable stochastic trends instead of 

deterministic trends. Studies exploring this feature include Phillips (1991), Simos (1996) 

and Harvey and Stock (1988, 1989, 1993). Extending the estimation algorithm of 

Bergstrom (1986), a new exact Gaussian estimation procedure was developed in 

Bergstrom (1997) with unobservable stochastic trends in a continuous-time model 

combining first and second order differential equations with white noise innovations and 

mixed data. Chambers (1999) derived the formulae for an EDM corresponding to a 

continuous system of higher order stochastic differential equations that can be applied to 

stationary, non-stationary and even explosive systems. The differential-difference type 

equations were employed by Chambers and McGarry (2002) in modelling cyclical 

behaviour in an unobserved components framework8. Using the discrete form of the 

Whittle likelihood the authors have proposed a flexible estimation technique for the 

derivation of a frequency domain Gaussian estimator of the parameters of a more 

dynamic model than those models previously considered in the literature. On the same 

line of research, Ercolani and Chambers (2006) and Ercolani (2009, 2011) conducted 

rigorous econometric analyses of various continuous-time specifications with unknown 

lag-parameters or driven by fractional noise. 

       Overcoming the complications brought by the inclusion of exogeneous variables 

constituted the central objective of many studies. Following suggestions made by 

Robinson (1992) regarding a pragmatic approach to estimating the exogeneous 

component in the EDM, McCrorie (2001) provided an order-selection criterion for 

                                                 
7 Among relatively few previous attempts there are Robinson (1976a) and Robinson (1977b). 
8 The authors considered a univariate first-order three-component (trend, seasonal and cyclical) continuous 

time model and provided conditions for the parameters of the differential-difference equation concerning 

the cyclical component (containing lags), so that the initial process becomes stationary and allows for a 

business cycle. 
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choosing the optimal interpolant9  that would close the model. He also showed in a Monte 

Carlo experiment that the choice of a wrong degree polynomial could lead to seriously 

biased estimates of the variables of interest. Some early studies, including Telser (1967), 

had mentioned the aliasing problem in a continuous-time differential equation system.  

However, it was Phillips (1973) who looked first at possible ways of minimizing the 

identification problem of the structural coefficient matrix in a first order linear differential 

equation system. Assuming that a priori restrictions on the system are simple linear 

functions of the elements of the coefficient matrix, Phillips (1973) showed that structural 

parameters are in some cases identifiable. In McCrorie (2003) a sharper characterization 

of the identification problem is presented, allowing for the joint treatment of the 

coefficient and the covariance matrices.  

        McGarry (2003) derived the EDM equivalent to a novel continuous-time formulation 

that included seasonal dummies, avoiding in this way the widely practiced seasonal data 

adjustments. The SDE system was of forth order allowing for a mixture of stock and flow 

inside all the vector processes. When open systems were considered exogeneous variables 

assumed a higher degree of smoothness which, according to Phillips (1974), should 

reduce the asymptotic bias induced in the estimation procedure. Another EDM was 

obtained by Simos and Taylor (2009) from a third order differential underlying equation 

system with fixed initial condition driven by I(1) observable stochastic and white noise 

disturbances.  

       Cointegrated continuous-time models form another class of models studied in the 

continuous-time modelling literature. An early approach to estimating the parameters of 

cointegrated systems was proposed by Phillips (1991) with two different procedures:  a 

frequency domain regression method for the cointegrating parameters and a non-

parametric treatment for the dynamic parameters. Chambers (2009) derived the EDM 

analogue to a first order cointegrated continuous-time system in a triangular error 

correction format with mixed stock and flow variables and observable stochastic trends. 

Following the recursive computation algorithms presented in Bergstrom (1985, 1990), he 

also provided a time domain full Gaussian estimation procedure applied to both sets of 

parameters. The statistical properties of the Gaussian estimators are revealed by 

Chambers and McCrorie (2007) where frequency domain Gaussian estimators had been 

derived in a more general continuous-time context.  

                                                 
9  In most of the empirical work a quadratic interpolation is used; Bergstrom et al. (1992) and Bergstrom 

and Nowman (1999) have used this type of interpolation with successful results. 
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       More recently econometricians explored different ways of estimating continuous-

time models driven by moving average innovations, a complex feature that is retained in 

the discrete time representation. Following the exact discrete time approach in Bergstrom 

(1983), Chambers and Thornton (2012) derived the exact discrete models for a general 

( , )ARMA p q  specification of the continuous-time model with stock or flow variables. In 

another recent study, Park and Jeong (2010) developed an asymptotic theory for 

maximum likelihood estimators of the parameters of continuous dynamic processes that 

possess a zero root.  

 

3.2.7 Empirical Applications of Gaussian Estimation Methods 

        The next phase that would make Bergstrom’s research programme of continuous 

modelling complete was empirical applications of econometric Gaussian methods in 

continuous-time. During the 1980s, the estimation of demand models based on consumer 

behaviour theory failed to produce good results despite the increasing complexity in the 

model specifications. Bergstrom’s econometric general framework was employed for the 

first time in Bergstrom and Chambers (1990) to model the dynamic responses of 

consumer demand for goods to variations in disposable income. The dynamic formulation 

of the continuous models from Bergstrom’s econometric methodology accommodated 

previous shortcomings like ignoring the influence of the lagged dependent variables and 

the fact that the consumers’ stocks were unobservable. Exact maximum likelihood 

estimates were obtained by maximizing a pseudo-Gaussian likelihood function and the 

dynamic quarterly forecasts of two-year post-sample period were superior to those 

resulting from simpler models. Later Chambers (1992) estimated the first multivariate 

continuous-time model represented by a complete demand system, for durable and non-

durable goods. His results re-confirmed previous findings in the demand theory literature, 

with interest rates and the price of the durable goods as main determinants. Another 

empirical application of the Gaussian estimation in the area of consumer behaviour was 

Chambers and Nowman (1997), where an alternative dynamic specification for the almost 

ideal demand system (AIDS) of Deaton and Muellbauer (1980) was considered for 

estimation and dynamic multi-step ahead forecasting. 

       Following the earlier Bergstrom-Wymer (1976) model of the UK economy, the first 

major empirical exercise is represented by the development of a 14-equation second order 

continuous-time macro-model of the UK economy (see Bergstrom, Nowman and Wymer 

(1992)). The study produced promising results with small forecasting errors for all the 
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main variables. The performance of the model was later improved by replacing the 

deterministic trends with segmented trends in Nowman (1998). 

     The Bergstrom’s (1997) method that incorporated unobservable stochastic trends and 

comprised differential equations of first and second order was first applied in a major 

empirical study of the UK economy in Bergstrom and Nowman (2007). It was shown that 

the model performed satisfactorily over an eight-quarter forecast period. Continuous 

ARMA dynamics seem to provide encouraging empirical results. An empirical exercise in 

Chambers and Thornton (2010) highlights the impact of considering a more dynamic 

continuous specification by allowing for the disturbances to be a moving average process. 

They demonstrate the superiority of ARMA (2,1) continuous specifications for stationary 

processes with stock variables (sunspot data and short-term interest rates) and non-

stationary processes with flow variables (US non-durable consumer expenditure) over 

purely autoregressive formulations. In a comparative study, Gough et al. (2014) modelled 

the interest rate spread for Germany, Japan, UK and the USA during the recent global 

financial market crisis of 2007–2009. Based on monthly and weekly data they found that 

the Merton continuous-time model produced the best predictions when compared to 

discrete time benchmark model such as ARMA and ARFIMA models. 

  

3.2.8 Gaussian Estimation of Multi-Factor Interest Rate Models 

        For the first time in the finance literature, Nowman (1997) estimated a range of 

single factor continuous-time models of the short-term interest rate nested in the famous 

CKLS framework applying the Gaussian methods developed by Bergstrom (1983, 1985, 

1986, 1990). This application opened a new field of research in modelling the term 

structure of interest rates. Various studies (Brennan and Schwartz, 1979; Longstaff and 

Schwartz, 1992; Chen and Scott, 1995; Babbs and Nowman, 1999) have indicated that 

considering the multi-factor specification of term structure models will increase the 

ability of the model to better capture the dynamics of the interest rates. A particular 

subclass10 of Langetieg’s (1980) linear Gaussian models was considered and estimated by 

Babbs and Nowman (1999) on U.S. zero coupon yields using Kalman filtering methods. 

Their no-arbitrage specification is in fact the multi-factor Generalized Vasicek model 

studied by Babbs (1993). Bergstrom and Nowman (1999) successfully applied the 

Gaussian estimation method to the Generalized Vasicek multi-factor model of Babbs and 

                                                 
10 The multi-factor models in this subclass assume that the short rate can be written as a specific linear 

combination of state variables whose dynamics are simplified by not including any feedback from the other 

state variable in the drift component. 
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Nowman (1999) with unobserved state variables of seven currencies.  Two-factor 

versions of the general CKLS, Vasicek and CIR models were estimated by Nowman 

(2003) with empirical results suggesting evidence of feedback from the long-term to the 

short-term interest rate. Similar models were employed in Nowman and Saltoglu (2003) 

and Saltoglu (2003) in an extensive forecasting comparison between the parametric 

Gaussian estimation method and a series of non-parametric estimation methods, namely, 

Artificial Neural Networks (ANN), k -Nearest Neighbour (k-NN) and Local Linear 

regression (LL). Following Bergstrom’s (1966a) approach, Nowman (2003) introduced 

feedbacks in the conditional mean of the CKLS and the CIR model was compared to the  

non-feedback case in Nowman (2001). Evidence of feedback effects was provided for 

Japan. In Nowman (2006) the CKLS model was extended even further to a three-factor 

version and the Gaussian estimation method was applied to Japanese interest rates. This 

way of increasing model flexibility will be followed in the methodology of this chapter, 

with two extensions of four- and five-factors being empirically tested in an international 

context.  

 

3.3 Methodology  

3.3.1 The Theoretical Modelling Framework  

      In line with Nowman (2001, 2003, 2006) the modelling of the yield curve will be 

extended to four and five factors. If for the two-factor extended models nested in the 

CKLS formulation the factors were the short-term and long-term interest rate 

respectively, when more than three factors are included they represent interest rates of a 

range of maturities along the yield curve. The term-structure models that will be 

empirically tested are the multi-factor general Chan et al. (1992), Vasicek (1977), Cox et 

al. (1985) and Brennan and Schwartz (1980) models.  The last three traditional models are 

nested in the CKLS model, corresponding to certain restrictions on the parameter of 

elasticity of volatility, namely 0,  0.5   and 1  .  Each specification will be 

extended, for all the five data sets, to four and five factors leading to a total of twelve 

continuous-time models of the term-structure to be estimated. These models will be 

applied to five distinct interbank markets (UK, US, Eurozone, Japan and Canada) using 

shot-term data and to the UK Gilts market using both, short and long-term interest rates. 

       The theoretical modelling framework is presented in terms of the CKLS specification 

as it nests all the other analysed models as the level effect parameter takes particular 

numerical values.  It is important to emphasize that the analysis involves three distinct 
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theoretical models: the true underlying continuous-time model (also called the basic 

model), the approximate/modified continuous-time model introduced by Nowman (1997, 

2003) and the exact discrete model (see Phillips, 1972; and Bergstrom, 1983) that will be 

estimated.     

 

The True Continuous-Time Multi-Factor Model 

The general single factor CKLS short-rate model is given by the following stochastic 

differential equation: 

 ( ) [ ( )] ( ) ( ),dr t r t dt r t dZ t      for any 0t   (3.10) 

The multi-factor version of the general CKLS continuous-time model can be written as a 

system of stochastic differential equations: 
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n n

n n

n n n n n n n n

dr t r t r t r t dt dt

dr t r t r t r t dt dt

dr t r t r t r t dt dt

    

    

    

     

     

    

  (3.11) 

or in vector-form as:  

 ( ) [ ( )] ( ),      for any  0t r t dt dt tdr         (3.12) 

where  

• 1 2( ) [ ( ), ( ),..., ( )]nr t r t r t r t  is the vector of the observable interest rate variables,  

• 1 2[ , ,..., ]n     is the vector of the drift parameters,  

• 1 ,{ }ij i j n    is the feedback matrix whose elements are assumed to be non-zero, 

as implied by the close relationship between interest rates of different maturities, 

and 

• 1 2,[ , ..., ]n     is a vector of random measures under certain conditions defined 

by the following assumption: 

Assumption 1 Nowman (2001) (generalised): 1,...,{ }i i n   are correlated  random measures 

defined on all subsets of the half line 0 t    with finite Lebesgue measure, such that

[ ( )] 0iE dt   for all 1,...,i n  and [ ( ) ( )] ( ) ( , ),E dt dt dt r t      where 

1 ,( , ) { }ij i j nr t      is a positive definite matrix, with 
22 ( )i

ii i ir t
   and 
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( ) ( )ji

ij ij i j i jr t r t
     for any  i j  , , 1,...,i j n . The parameter i  measures the 

dependence of the volatility of the interest rate ( )ir t  on its level, ij  represents the 

correlation coefficient between any two distinct factors ( )ir t and ( )jr t , and i  is the 

proportional volatility factor for the conditional volatility of the interest rate ( )ir t . 

 

The Approximate Continuous-Time Multi-Factor Model 

          Bergstrom’s (1983, 1984a) estimation methodology assumed constant volatility of 

the state variables which is considerably restrictive in the case of interest rates. Nowman 

(1997) relaxed this assumption by allowing a special type of heteroskedasticity. The 

volatility was considered to be a step function, changing value at the beginning of each 

unit observation period and then remaining constant over that unit time interval. 

Mathematically, for any 1t   the unit period is denoted by the interval [ 1, ]t t   where 

1t   is the largest integer less than t . For the single factor case Nowman (1997) adjusted 

only the conditional volatility component, leaving the drift component unchanged. 

Therefore, the new continuous-time model was a better approximation to the original 

continuous-time model with the potential benefit of reducing the temporal aggregation 

bias. With a temporarily constant volatility the new model can be estimated over each 

observation interval by implementing the Gaussian methods developed by Bergstrom for 

higher order linear Gaussian continuous-time models discussed in Section 3.2.5.  

         An important advantage of generalizing the CKLS framework to yields-only multi-

factor formulations (see Nowman, 2001, 2003 and 2006) is that the assumption of 

constant volatility during the unit period allows to explicitly compute the variance-

covariance matrix of the innovations as follows: 

 

* *

1 ,( , ) { }ij i j nr t     , where
2* 2 ( 1)i

ii i ir t
   

 
and   

* ( 1) ( 1).ji

ij ij i j i jr t r t
          

 

Possessing this feature, the multi-factor CKLS framework takes into account the close 

relationship that exists among yields of different maturities. These dynamics are intrinsic 

to the term structure of interest rates and this interaction across the yield curve is 

measured by the multi-factor CKLS framework via two components: the feedback matrix 

and the covariance matric.  
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3.3.2 The Continuous-time Multi-Factor Interest Rate Models with 

Feedbacks  

The Four-Factors Continuous-Time Term Structure Models 

The continuous-time systems of the stochastic differential equations for the four-factor 

CKLS, Vasicek, CIR and BS models (hereafter CKLS4F, Vasicek4F, CIR4F and BS4F 

respectively) have the same mathematical form: 

 

          

1 1 11 1 12 2 13 3 14 4 1

2 2 21 1 22 2 23 3 24 4 2

3 3 31 1 32 2 33 3 34 4 3

4 4 41 1 42 2 43

( ) [ ( ) ( ) ( ) ( )] ( )

( ) [ ( ) ( ) ( ) ( )] ( )

( ) [ ( ) ( ) ( ) ( )] ( )

( ) [ ( ) ( )

dr t r t r t r t r t dt dt

dr t r t r t r t r t dt dt

dr t r t r t r t r t dt dt

dr t r t r t

     

     

     

   

     

     

     

    3 44 4 4( ) ( )] ( )r t r t dt dt  

  (3.13) 

 

The four multivariate specifications are different only in the way their random measures 

are correlated, as their specific covariance matrix depends on the level effect parameter.  

By imposing specific restrictions on   ( 0,   0.5   and 1   for the Vasicek, CIR 

and BS model, respectively) each model will assume a specific adjusted matrix 

* *

1 , 4( , ) { }ij i jr t     for measuring the autocorrelation in the innovations series 

1 2 3 4{ , , , }    
 

Consequently, the maximum likelihood function ( )L  will have 

another different expression for each of the four models. According to Nowman (2001, 

2003 and 2006) the adjusted covariance matrix 
*( , )r t  can be computed as follows:  
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The four-factor general CKLS model (hereafter CKLS4F) for  1 2 3 4, , ,       unrestricted has the following adjusted covariance matrix:    

 

31 1 2 1 1  4

2 1 2

22

1 1 12 1 2 1 2 13 1 3 1 3 14 1 4 1 4

22

21 2 1 2 1 2 2

4

      ( 1)                  ( 1) ( 1)        ( 1) ( 1)    ( 1) ( 1) 

( 1) ( 1)           ( 1) 
( , )CKLS F

r t r t r t r t r t r t r t

r t r t r t
r t

     

  

         

   


            

    
 

32 2 4

3 3 3 31 2

23 2 3 2 3 24 2 4 2 4

22

31 3 1 3 1 32 3 2 3 2 3 3 34 3 4 3 4

                   ( 1) ( 1)    ( 1) ( 1) 

( 1) ( 1)    ( 1) ( 1)                 ( 1)              ( 1)

r t r t r t r t

r t r t r t r t r t r t r

  

    

     

         

      

           4

34 1 4 2 4 422

41 4 1 4 1 42 4 2 4 2 43 4 3 4 3 4 4

( 1) 

( 1) ( 1)    ( 1) ( 1)      ( 1) ( 1)              ( 1)

t

r t r t r t r t r t r t r t



              

 
 
 
 

  
              

   (3.14) 

 

  

The four-factor Vasicek model (hereafter Vasicek4F) for which  0,0,0,0 
 
has the following adjusted time invariant covariance matrix: 

                                                               

2

1 12 1 2 13 1 3 14 1 4

2

21 2 1 2 23 2 3 24 2 4

4 2

31 3 1 32 3 2 3 34 3 4

2

41 4 1 42 4 2 43 4 3 4

                     

                     
( )

                    

                 

Vasicek F r

         

         

         

         



 
 


  


 






                                                                     (3.15) 
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The four-factor CIR model (hereafter CIR4F) for which 1 1 1 1
, , ,

2 2 2 2


 
  
 

 has the following adjusted covariance matrix:  

                   

 

       

2

1 1 12 1 2 1 2 13 1 3 1 3 14 1 4 1 4

2

21 2 1 2 1 2 2

4

           ( -1)                  ( -1) ( -1)     ( -1) ( -1)    ( -1) ( -1)  

( -1) ( -1)                ( -1)                  
( , )CIR F

r t r t r t r t r t r t r t

r t r t r t
r t

         

   


      

  
 

23 2 3 2 3 24 2 4 2 4

2

31 3 1 3 1 32 3 2 3 2 3 3 34 3 4 3 4

41 4 1 4 1 42

 ( -1) ( -1)     ( -1) ( -1)  

( -1) ( -1)     ( -1) ( -1)                 ( -1)                  ( -1) ( -1)

( -1) ( -1)    

r t r t r t r t

r t r t r t r t r t r t r t

r t r t

     

         

    

   

      

  2

4 2 4 2 43 4 3 4 3 4 4( -1) ( -1)      ( -1) ( -1)                 ( -1)r t r t r t r t r t    

 
 
 
 
 
 
      

                      (3.16) 

                   

 

The four-factor Brennan and Schwartz model (hereafter BS4F) for which  1,1,1,1    has the following adjusted covariance matrix: 

 

                         

2 2

1 1 12 1 2 1 2 13 1 3 1 3 14 1 4 1 4

2 2

21 2 1 2 1 2 2 23 2 3 2

4

  ( 1)                    ( 1) ( 1)    ( 1) ( 1)     ( 1) ( 1)

( 1) ( 1)             ( 1)             ( 1)
( , )BS F

r t r t r t r t r t r t r t

r t r t r t r t
r t

         

      


            

      
 

3 24 2 4 2 4

2 2

31 3 1 3 1 32 3 2 3 2 3 3 34 3 4 3 4

41 4 1 4 1 42 4 2 4 2

( 1)    ( 1) ( 1)

( 1) ( 1)    ( 1) ( 1)             ( 1)              ( 1) ( 1)

( 1) ( 1)    ( 1) ( 1)   

r t r t r t

r t r t r t r t r t r t r t

r t r t r t r t

  

         

     

    

            

       2 2

43 4 3 4 3 4 4( 1) ( 1)              ( 1)r t r t r t   

 
 
 
 
 
      

                       (3.17) 
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The continuous-time model 3.14 together with each of the adjusted covariance matrices 

that follow the Assumption 1 above, constitute the four-factor CKLS4F, Vasicek4F, 

CIR4F and BS4F approximate continuous-time models that will be estimated using 

discrete data.  

 

The Five-Factors Continuous-time Term Structure Models 

The CKLS, Vasicek, CIR and BS five-factor continuous-time models of the term 

structure (hereafter CKLS5F, Vasicek5F, CIR5F and BS5F respectively) will have the 

same mathematical representation given by the generalised system of stochastic 

differential equations 3.12 for which 5n   : 

 

  

1 1 11 1 12 2 13 3 14 4 15 5 1

2 2 21 1 22 2 23 3 24 4 25 5 2

3 3 31 1 32 2 33 3 34 4 35 5 3

4

( ) [ ( ) ( ) ( ) ( ) ( )] ( )

( ) [ ( ) ( ) ( ) ( ) ( )] ( )

( ) [ ( ) ( ) ( ) ( ) ( )] ( )

(

dr t r t r t r t r t r t dt dt

dr t r t r t r t r t r t dt dt

dr t r t r t r t r t r t dt dt

dr t

      

      

      

      

      

      

4 41 1 42 2 43 3 44 4 45 5 4

5 5 51 1 52 2 53 3 54 4 55 5 5

) [ ( ) ( ) ( ) ( ) ( )] ( )

( ) [ ( ) ( ) ( ) ( ) ( )] ( )

r t r t r t r t r t dt dt

dr t r t r t r t r t r t dt dt

      

      

      

      

     (3.18) 

    We differentiate among the classic extended term structure models considered through 

their specific adjusted matrix extended to 
* *

1 , 5( , ) { }ij i jr t     . The new vector of the 

innovations is 1 2 3 4 5{ , , , , }      . Consequently, the maximum likelihood function 

( )L  will have another different expression for each of the four models as its 

computation depends on the specific covariance matrix  
*( , )r t  which will be described 

next. 
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The five-factor general CKLS model (hereafter CKLS5F) for  1 2 3 4 5, , , ,        unrestricted has the following adjusted covariance matrix:    

 

                   

3  51 1 2 1 1  4 1

2

22

1 1 12 1 2 1 2 13 1 3 1 3 14 1 4 1 4 15 1 5 1 5

21 2 1 2

5

      ( 1)                  ( 1) ( 1)       ( 1) ( 1)     ( 1) ( 1)      ( 1) ( 1)  

( 1)

( , )CKLS F

r t r t r t r t r t r t r t r t r t

r t r

r t

       



            

  



                



 

3  51 2 2 2 4 2

3 31

22

1 2 2 23 2 3 2 3 24 2 4 2 4 25 2 5 2 5

31 3 1 3 1 32 3 2 3

( 1)           ( 1)                    ( 1) ( 1)     ( 1) ( 1)      ( 1) ( 1)       

( 1) ( 1)    (

t r t r t r t r t r t r t r t

r t r t r t

      

 

         

     

              

     3 3 3 52 4

4 1 4 2 4

22

2 3 3 34 3 4 3 4 35 3 5 3 5

41 4 1 4 1 42 4 2 4 2 43 4 3 4

1) ( 1)                 ( 1)               ( 1) ( 1)      ( 1) ( 1)  

( 1) ( 1)    ( 1) ( 1)      ( 1

r t r t r t r t r t r t

r t r t r t r t r t

    

    

      

        

          

         3 54 4

5 5 5 3 51  2

22

3 4 4 45 4 5 4 5

51 5 1 5 1 52 5 2 5 2 53 5 3 5 3 54 5 4 5

) ( 1)              ( 1)                 ( 1) ( 1) 

( 1) ( 1)     ( 1) ( 1)     ( 1) ( 1)      ( 1)

r t r t r t r t

r t r t r t r t r t r t r t r

  

     

   

           

      

             54 22

4 5 5( 1)                  ( 1)      t r t
 

 
 
 
 
 
 
 
   
 

      (3.19) 

 

  

The five-factor Vasicek model (hereafter Vasicek5F) for which  0,0,0,0,0 
 
has the following adjusted time invariant covariance matrix: 

                                                         

2

1 12 1 2 13 1 3 14 1 4 15 1 5

2

21 2 1 2 23 2 3 24 2 4 25 2 5

2

5 31 3 1 32 3 2 3 34 3 4 35 3 5

41 4 1 42

                           

                        

( )                           

    

Vasicek F r

            

            

            

    

 

2

4 2 43 4 3 4 45 4 5

2

51 5 1 52 5 2 53 5 3 54 5 4 5

                    

                          

       

            

 
 
 
 
 
 
 
 
 

                                                         (3.20) 

  

The five-factor CIR model (hereafter CIR5F) for which 1 1 1 1 1
, , , ,

2 2 2 2 2


 
  
 

 has the following adjusted covariance matrix:  
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2

1 1 12 1 2 1 2 13 1 3 1 3 14 1 4 1 4 15 1 5 1 5

21 1 1 2 1

5

           ( -1)                ( -1) ( -1)      ( -1)  ( -1)    ( -1)  ( -1)    ( -1)  ( -1)   

( -1) ( -1)                

( , )CIR F

r t r t r t r t r t r t r t r t r t

r t r t

r t

            

   



        

 

 

2

2 2 23 2 3 2 3 24 2 4 2 4 25 2 5 2 5

2

31 3 1 3 1 32 3 2 3 2 3 3

( -1)                  ( -1) ( -1)     ( -1) ( -1)     ( -1)  ( -1)    

( -1) ( -1)     ( -1) ( -1)                  ( -1)             

r t r t r t r t r t r t r t

r t r t r t r t r t

        

      

      

    
34 3 4 3 4 35 3 5 3 5

2

41 4 1 4 1 42 4 2 4 2 43 4 3 4 3 4 4 45 4 5 4 5

  ( -1) ( -1)      ( -1)  ( -1)     

( -1) ( -1)    ( -1) ( -1)      ( -1) ( -1)                 ( -1)                ( -1)  ( -

r t r t r t r t

r t r t r t r t r t r t r t r t r t

     

            

   

        

2

51 5 1 5 1 52 5 2 5 2 53 5 3 5 3 54 5 4 5 4 5 5

1)

( -1) ( -1)     ( -1)  ( -1)     ( -1)  ( -1)     ( -1)  ( -1)               ( -1) 

  

r t r t r t r t r t r t r t r t r t            

 
 
 
 
 
 
 
 

         
 
 

       (3.21) 

       

 

The five-factor Brennan and Schwartz model (hereafter BS5F) for which  1,1,1,1,1     has the following adjusted covariance matrix: 

                           

2 2

1 1 12 1 2 1 2 13 1 3 1 3 14 1 4 1 4 15 1 5 1 5

2 2

21 2 1 2 1 2 2

5

  ( 1)                     ( 1) ( 1)     ( 1) ( 1)     ( 1) ( 1)    ( 1) ( 1)  

( 1) ( 1)             (

( , )BS F

r t r t r t r t r t r t r t r t r t

r t r t r t

r t

            

   



                

   

 

23 2 3 2 3 24 2 4 2 4 25 2 5 2 5

2 2

31 3 1 3 1 32 3 2 3 2 3 3 34 3 4 3

1)               ( 1) ( 1)    ( 1) ( 1)    ( 1) ( 1)  

( 1) ( 1)    ( 1) ( 1)             ( 1)               (

r t r t r t r t r t r t

r t r t r t r t r t r t

        

         

           

           4 35 3 5 3 5

2 2

41 4 1 4 1 42 4 2 4 2 43 4 3 4 3 4 4 45 4 5 4 5

51 5 1 5 1

1) ( 1)    ( 1) ( 1)  

( 1) ( 1)    ( 1) ( 1)    ( 1) ( 1)              ( 1)              ( 1) ( 1)

( 1) (

r t r t r t

r t r t r t r t r t r t r t r t r t

r t r t

  

            

  

    

                

   2 2

52 5 2 5 2 53 5 3 5 3 54 5 4 5 4 5 51)     ( 1) ( 1)    ( 1) ( 1)     ( 1) ( 1)                ( 1)            r t r t r t r t r t r t r t         

 
 
 
 
 
 
 
              

    (3.22) 
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3.3.3 The Discrete -Time Multi-Factor Model  

      Phillips (1972) and Bergstrom (1984a, Theorem 3) demonstrated that the basic 

continuous-time model has a unique solution that satisfies the following discrete 

stochastic difference equation:  

 
1( ) ( 1) ( ) ( )r t e r t e I t                1,2,...,t T   (3.23) 

where   1( ) [ ( )]i i nr t r t  
  , 1( ) [ ( )]i i nt t   

  , 1( )i i n   


 

              1

1

!

k

k

e I
k

 




     and  

1

*

0

[ ( ) ( )] ( , ) ( , )r rE t t e r t e dr r t  
       

The complete vector of structural parameters is 1 ,( , , , , )i ij i i ij i j n         comprising a 

total of  
2(3 5 ) / 2n n  single-value parameters. Following Nowman (2001, 2003, 2006), 

the elements of   will be estimated by maximizing the Gaussian likelihood function or 

minimizing the expression ( )L   which is equal to minus twice the logarithm of the 

Gaussian likelihood function: 

                                   
1

1 1

( ) 2log( ( )) log(| ( , ) |) ( , )
T T

t t

t t

L LF r t r t   

 

         (3.24) 

 

3.3.4 The Discrete-Time Multi-Factor Interest Rate Models with 

Feedbacks  

          The twelve formulations of the EDMs equivalent to the corresponding modified 

continuous-time models extended to four and five factors will constitute the object of the 

estimation in this study.  

         Every time a new factor is added the feedback matrix   will symmetrically expand 

by the vector of the new feedback coefficients. The elements of the feedback   matrix   are 

realistically assumed to be all non-zero, as implied by the theory of close interrelationship 

between interest rates of different maturities. For each of the twelve distinct cases there 

will be twelve distinct feedback matrices  , twelve different residual series and 

implicitly twelve different likelihood functions to be maximised. The general discrete 

time equation/system (3.24) will be individualised for each case by using the appropriate 

defining matrices as follows: 
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EDMs for the four-factor extensions  

4 4 1

4 4 44 :           ( ) ( 1) ( ) ( )CKLS F CKLS F

CKLS F CKLS F CKLS FCKLS F r t e r t e I t          (3.25) 

4 4 1

4 4 44 :        ( ) ( 1) ( ) ( )Vasicek F Vasicek F

Vasicek F Vasicek F Vasicek FVasicek F r t e r t e I t             (3.26) 

4 4 1

4 4 44 :              ( ) ( 1) ( ) ( )CIR F CIR F

CIR F CIR F CIR FCIR F r t e r t e I t                           (3.27) 

4 4 1

4 4 44 :               ( ) ( 1) ( ) ( )BS F BS F

BS F BS F BS FBS F r t e r t e I t          (3.28) 

where 
1 2 3 4[ , , , ]       is the drift vector and  4 4R   is the general feedback matrix 

for the four-factor models above with 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

   

   


   

   

 
 
 
 
 
 

 . 

EDMs for the five-factor extensions       

5 5 1

5 5 55 :          ( ) ( 1) ( ) ( )CKLS F CKLS F

CKLS F CKLS F CKLS FCKLS F r t e r t e I t          (3.29) 

5 5 1

5 5 55 :       ( ) ( 1) ( ) ( )Vasicek F Vasicek F

Vasicek F Vasicek F Vasicek FVasicek F r t e r t e I t          (3.30) 

 
5 5 1

5 5 55 :             ( ) ( 1) ( ) ( )CIR F CIR F

CIR F CIR F CIR FCIR F r t e r t e I t                      (3.31) 

5 5 1

5 5 55 :              ( ) ( 1) ( ) ( )BS F BS F

BS F BS F BS FBS F r t e r t e I t          (3.32) 

where 
1 2 3 4 5[ , , , , ]        is the drift vector and 

5 5R    is the general feedback 

matrix for the five-factor models above with

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

    

    

    

    

    

    

    

     

    

    

 
 
 
 
 
 
 
 

 . 

 

 

3.4 Data 

        The development of theoretical TSIR models involves financial instruments with 

homogeneous characteristics such as term to maturity and level of credit risk. Therefore, 

it is important to consider empirical variables that match the conceptual framework of the 

models proposed. In line with this argument, this study independently employs daily data 

from the London interbank (LIB) market and the UK government bond market over the 

period January 2000 – March 2013 inclusively.  From the multitude of markets 

functioning inside any modern financial system the interbank and bond markets play 

crucial roles. Interbank markets provide a platform for central banks for monitoring their 

interest rates policies and their liquidity is of paramount importance to financial 
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intermediation efficiency (Furfine, 2002).  Bond markets are indispensable to any 

economy, being a very important mechanism used by governments around the world to 

meet capital needs and to finance their public debt.  

 

3.4.1 The Interbank Market 

        The short-term segment of the yield curve could be estimated using various types of 

data extracted from shot-term instruments traded on the London money market such as 

general collateral (GC) repo agreements, conventional gilt yields, interbank loans, short 

futures contracts, forward-rate agreements and swap contracts settled on the sterling 

overnight interest rate average (SONIA). While the GC repo rates and treasury bills (T-

bills) could provide virtual risk-free short-term interest rates, both types of instruments 

are likely to be affected by factors like small outstanding stock and gilt collateral 

unavailability (Anderson and Sleath, 1999).   

       For this study, the interbank segment of the money market will be considered. The 

interbank market facilitates the transfer of created funds from one bank to another, in 

order to meet liquidity and reserve requirements. Banks with excess liquidity will offer 

unsecured short-term loans to banks in need of funds, charging for this service a certain 

interest rate.  Numerous interbank rates are published daily; the most renowned ones 

include the LIBOR- London Inter Bank Offer Rates (UK), EURIBOR (Eurozone) and 

FIBOR (Germany). 

       LIBOR rates are employed in the current empirical analysis. During the sampling 

period the LIBOR rates were still under the supervision of the British Bankers’ 

Association (BBA) with assistance from the Foreign Exchange and Money Markets 

Committee (FX & MMC). LIBOR rates were determined using a robust methodology: 

BBA would select and pool together the panel banks - the most representative financial 

institutions that actively trade in each currency interbank markets. The offer/lending rates 

submitted by these banks were used to produce the official LIBOR rates, also called BBA 

interest settlement rates. LIBOR rates were calculated as an average after the first and last 

quartiles have been eliminated. Starting with only three currencies (USD, GBP and JPY), 

the number of LIBOR currencies grew to sixteen prior to 2000, and then dropped to ten, 

following the creation of the Euro currency. For nearly three decades11 the BBA was 

responsible for the complex process of daily calculation of 150 LIBOR rates published by 

Thomson Reuters on behalf of the BBA. However, after the 2012 LIBOR fixing scandal, 

                                                 
11 The first LIBOR interest rates were published in 1986. 
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the BBA was suspended from its governing role over LIBOR. Starting from June 2013 

the collection, the calculation and the distribution of the LIBOR rates have been subject to 

major regulatory reforms. While LIBOR data distribution was unaffected by these 

statutory amendments, significant changes had to be implemented, including the ceasing 

of the publication of certain LIBOR currencies and maturities. The Australian and 

Canadian dollar were the last currencies to be removed from the LIBOR framework with 

effect from June 2013, with only five currencies being retained: GBP, USD, EUR, JPY 

and CHF. Also, the nine-month tenor has been excluded from all remaining currencies 

due to reduced volume of regular transactions. This implementation has considerably 

affected the market participants12 whose operations made use of this maturity LIBOR 

rate, and who have to find different appropriate alternatives such as various interpolation 

methods or other industry benchmark rates.  

      Despite these events, LIBOR interest rates are still generally accepted as the lowest 

interbank lending rates on the London money market. Moreover, they are considered the 

most important benchmark in the global financial markets for short-term interest rates.  

Banks use LIBOR as a base rate in calculating their interest rates for loans, mortgages and 

deposits, whereas financial markets use LIBOR as a base rate in pricing derivatives such 

as futures, swaps and options.  

        Given the importance of LIBOR as a benchmark for pricing many financial products, 

any dysfunctionality in the unsecured interbank lending market will have wide-reaching 

repercussions on the financial system and on the real economy. During the global 

financial turmoil of 2007-2009 this aspect was highly relevant, with a starting point in 

August 2007 when the interbank lending market had to be saved by liquidity injections 

from both the European Central Bank and the Federal Reserve (see Brunnermeier, 2009). 

While the crisis has been driven by the problems in the asset-backed securities market in 

the U.S., other markets such as the Repo and LIBOR markets became also unstable. The 

interbank market became impaired as banks were reluctant to lend to each other as a 

cautious measure and as a result of unknown counterparty exposure to asset-backed 

securities. Consequently, this created a complicated liquidity deadlock, in the sense that 

the availability of short-term funding was substantially reduced with an immediate 

decreasing effect on the level of interbank interest rates. This culminated with a credit 

crunch and a frozen liquidity flow in the interbank markets in the autumn of 2008 when 

                                                 
12 The nine-month tenor LIBOR rates were initially included in the data for this study; however, because it 

has been discontinued, the two-month maturity rates have been considered instead. 
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unsecured interbank lending at 3-month was almost replaced by secured overnight 

borrowing (Acharya et al. 2009).  

        Since trading international currencies has become a standard activity in the banking 

industry, extensive comparative empirical studies for different markets13 have always 

provided researchers in the field with valuable insightful information. For this study, the 

five currencies were carefully chosen based on the importance of the economies 

worldwide and on the particularities of their financial systems and financial regulatory 

bodies. In this respect, Japan, as the third power in the global economy, has known 

considerable uncertainty despite artificial maintenance of extremely low interest rates, 

while Canada, with very close economic connections to the U.S., but with a conservative 

banking system closer to the U.K. system, seems to have been least affected by the last 

global financial crisis.  The other three markets the U.K., the US and the Eurozone are the 

major players in ensuring worldwide financial stability, hence developing interest rate 

models with improved forecasting power for these markets is of great importance.  

          The maturity spectrum of the LIBOR rates has been reduced to only seven 

maturities in the aftermath of the LIBOR scandal in 2012. For estimating the LIBOR 

curves for the above markets five maturities are utilised, namely one-week, one-, three-, 

six- and twelve-months. The one, three and six-month LIBOR rates are the most used 

LIBOR rates, being used to index over $360 trillion of notional financial contracts, from 

interest rate swaps and other derivatives to floating-rate residential and commercial 

mortgages. One may argue that the 6-month LIBOR is the most important of the LIBOR 

rates, being the choice by default reference index rate in most interest rate swap contracts 

that operate with six-month tenors. Hence, this rate has a direct connection with the swap 

markets and payments linked to this rate are mainly driven by investors in longer term 

swap markets. The other important determinant of LIBOR rates is the mortgage and 

securitization markets. The investors in these latter markets require a quarterly payment 

structure and in order to avoid interest rate risk exposure, naturally they would like to 

receive their coupons linked to 3-month LIBOR. Furthermore, the mortgage markets are 

organised around monthly payments by mortgage borrowers. Hence, mortgage provides 

are interested in 1-month LIBOR in order to hedge their interest rate risk exposure. 

At the very end of the money market rate spectrum, the 12-month LIBOR is a deposit rate 

but it is also a rate that can be recovered from FRA/futures contracts and it may even be a 

                                                 
13 Previous extensive empirical studies include: Tse (1995) who considered money market rates for eleven 

countries; Dahlquist (1996) who analysed rates for the UK, Germany, Denmark and Sweden; Episcopos 

(2000) who investigated the dynamics of interbank rates for ten countries. 
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reference rate in occasional short-term swaps. Last but not least, the one-week LIBOR has 

more features associated with repo and overnight swap rates.  

        The LIBOR rates mentioned above correspond to different types of derivatives 

markets and will respond differently to a specific type of information/shock in the 

financial markets, albeit there is an obvious common ground. Acharya and Skeie (2011) 

emphasized that stress and freezes in term inter-bank lending markets may be the result of 

rollover risk of highly leveraged lenders and illiquidity of assets underlying term loans. 

They showed that the term inter-bank lending rates and volumes are jointly determined, 

lenders and aversion of borrowers to trade at high rates of interest playing a very 

important role. While the levels of the interest rates are highly correlated, the stationarity 

analysis shows that it is the first difference series that is stationary. Therefore, the relevant 

correlations are those of first differences. The sample correlations for the first difference 

series revealed in Table 3.13, that adjacent LIBORs are more correlated but correlations 

for more distant LIBORs are weaker, therefore it is the changes in the LIBOR rates of 

different maturities that bring new information into the dynamic continuous interest 

models.    

        The consequences of LIBOR manipulation could be very serious, as the LIBOR rates 

submissions don’t portray the true market forces and therefore may result in misallocation 

of resources and price distortions in the economy (see Abrantes-Metz et al. (2012).  

Lower LIBOR rates imply lower mortgage and hence the 1-month LIBOR rates could 

have been most affected in comparison with other maturity LIBOR rates.  While there are 

no comparative studies to assess which of the seven maturity LIBOR rates have been 

mostly affected, Monticini and Thornton (2013) found that the average of one- and three-

month LIBOR – CD spreads declined by nearly 5.5 basis points by mid-2007. In addition, 

McConnell (2013) provides evidence from the regulators’ investigations that followed the 

LIBOR scandal in 2012, that the one- and three-month LIBOR have been subject to 

systematic manipulation within and across participating banks. Further, he describes the 

LIBOR fixing as an example of systemic operational risk, more specifically - people risk, 

and suggests to banks and regulators some recommendations about how to address the 

management of systemic people risk.  

 

3.4.2 The U.K. Bond Market 

      From the UK bond market, the data considered are the nominal UK Government zero 

coupon (spot) rates of various maturities longer than one year. The instruments used in 

the construction of the yield curve should have the same risk of default, the same 
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transaction costs, the same coupon rate and the same tax treatment. Hence, government 

zero coupon bonds (conventional gilts) are the most commonly used type of financial 

instruments in empirical studies of the term structure of interest rates. 

       The nominal zero coupon yield (spot) curve is the graphical illustration of the 

relationship between the maturity of a zero-coupon bond and its yield. The yield curve 

plays a fundamental role as a discount curve applied to future cash flows in pricing a 

large number of financial products. The nominal government zero coupon (spot) interest 

rate for n -years represents the interest rate charged today on a risk free nominal loan with 

a residual maturity of n -years. It is defined as the yield to maturity of a nominal zero 

coupon bond (conventional gilt) and it is also the discount rate applicable to future 

nominal cash flows in order to calculate their present value. The spot rates provided by 

the Bank of England (BoE) have been estimated using the VRP (Variable Roughness 

Penalty) model, a spine-based technique specifically designed to obtain a smooth curve 

for monetary policy analysis (Anderson and Sleath, 2001). The market data used by the 

BoE in the derivation of the nominal zero coupon yields are the GC (General Collateral) 

repo rates for maturities under three months and UK conventional gilts for longer 

maturities. 

  

3.4.3 The Data Sets - A Preliminary Analysis 

        The complete data for the interbank market will comprise five main LIBOR rates for 

various currencies across a range of five maturities.  They are daily one-week, one-, three-

, six- and twelve-month LIBOR rates for the following currencies: The Pound Sterling 

(GBP), the United States Dollar (USD), the Euro (EUR), the Japanese Yen (JPY) and the 

Canadian Dollar (CAD). The period covered starts from 3rd of January 2000 to 29th of 

March 2013 leading to a total of 3,455 daily observations for each currency.  

        For the bond market data, the study will use the nominal spot rates produced by the  

BoE. They are the nominal spot rates of tenor one-, seven-, ten-, fifteen- and twenty-years 

respectively.  Starting from 4th of January 2000 to 28th of March 2013 the sample is made 

of a total of 3,346 daily observations14. The empirical literature has found evidence that 

different frequencies yield different estimation results. This study employs daily 

observations in order to obtain consistent ML estimates for parameters of diffusion 

                                                 
14 The difference in the number of observations is the result of how the two data sources Datastream and the 

BoE have treated the entries of interest rates corresponding to bank holidays. Datastream has equalled the 

interest rates on bank holidays to the level of the previous day, while the BoE has kept them as unavailable. 

The difference of 109 observations out of the total of 3,455 is considered insignificant as far as the 

empirical analysis is concerned.   
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models as Bergstrom (1984) demonstrated that ML estimators converge to the true values 

as the sampling interval converges to zero. Also, Wang, Phillips and Yu (2011) have 

shown that for multivariate diffusion models the consistency of the estimators is achieved 

by using daily or higher frequency data.  

For each segment of the yield curve the choice of the initial factors had been subject to 

different considerations. Having a limited choice of maturities, compared to the U.K. 

nominal curve where the maturity spectrum is much larger, for the LIBOR curve the first 

four factors have been chosen in terms of importance and data accessibility.  The two other 

LIBOR maturities left out of the analysis are the overnight and two-months LIBOR rates. 

The overnight market can be seen as a particular component within the money-market, with 

a different scope of maintaining the daily liquidity levels of the banks. Hence, the first 

maturity directly linked to the lending market is one-week. After that the most important 

maturities are the one-, six- and twelve- month rates.  The fifth factor (three-month rate) 

was chosen from the two remaining maturities: the two- and three-month rates, because its 

greater importance. Regarding the U.K. nominal curve, the maturity range can cover from 

one- to 25- years with data available for each year. Hence, given this availability the initial 

four factors have been chosen to be evenly spread across the entire spectrum in order to 

represent a balanced partition of the maturities which was not possible in the LIBOR curve 

case.   

      The sample period proves to be quite rich in terms of unanticipated and policy-

induced shocks and their complex consequences. For example, the introduction of the 

common currency - the Euro in January 1999 had a long-term impact on all types of 

financial markets, with a fundamental change in the structure of European money 

markets15, bond markets, equity and foreign exchange markets. Also, the dot.com bubble 

event of 2000-2001 could be considered a factor with some impact on the financial 

markets. However, the main shock that the data interval includes is the financial crisis of 

2007-2009; one aim of this study is to test if the richness of the proposed term-structure 

models can satisfactorily explain the dynamics observed during the crisis. 

       The comparison will be empirically conducted at different levels: across the five 

different markets and across the multi-factor specifications of four classic models of the 

term structure of interest rates: Vasicek (1977), CIR (1985), BS (1980) and CKLS (1992). 

                                                 
15 According to Galati and Tsatsaronis (2003), after 1999 the share of intra-euro area trading in the world’s 

total cross-border interbank market rose from 35% to 50%. Despite a smooth integration, under the new 

central bank - the Eurosystem, a two-tiered segmentation of the interbank markets occurred with direct 

cross-borders activity for large banks and restriction of trading at national level for smaller banks.  
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Prior to the presentation of the summary statistics, a useful preliminary investigation of 

the data is considered by plotting the time series and their differences. The statistical 

analysis and all the graphs are reported using the econometric software Eviews. The time 

characteristics of the data are illustrated below in the multi-panel Figures 3.1 to 3.5 for the 

five interbank LIBOR data sets and in Figure 3.6 for the U.K. bond market data.  

      For the data on interbank interest rates, the visual representations illustrate three main 

features.  Firstly, there are two distinctive periods of higher volatility of daily changes as 

suggested by the volatility clustering pattern in the first difference series. The first period, 

2000-2002 corresponds to the impact of a multitude of factors like the introduction of the 

Euro, the creation and burst of the dot.com bubble, and the 9/11 terrorist attack.  The 

second period, 2007-2009, refers to the recent global financial crisis triggered by the 

housing bubble and the collapse of the sub-prime mortgage market in the U.S. The sharp 

decrease in the level of interbank rates appears in October 2008 after the collapse of 

Lehman Brothers. Secondly, after 2010, markets seem to react to the financial crisis in a 

convergent way due to implementing similar monetary policies (quantitative easing and 

currency depreciation) to control their target rate. Thirdly, from an econometric point of 

view the graphs for the level time-series display the nonstationarity property, while after 

the first difference transformation they become stationary around the zero-axis. The plots 

of the LIBOR-GBP rates display similar patterns for all the maturities, indicating a high 

degree of correlation between interest rates across the yield curve, most pronounced for 

the shorter maturities. This feature comes to support the choice of a feedback model in 

which the feedback matrix between interest rates of various maturities constitutes a 

matrix structural parameter to be estimated. The two periods of higher volatility, also 

indicated by the volatility clustering pattern in the first difference series are 2000-2003 

and 2007-2009 respectively. The first period may correspond to the impact of a multitude 

of factors such as the introduction of the Euro currency in January 1999, the creation and 

burst of the dot.com bubble, and the 9/11/2001 terrorist attack in the U.S. Over this period 

LIBOR-GBP rates decreased by approximately 3% from just above 6% to 3%. A more 

dramatic decrease can be observed during the last global financial crisis of 2007-2009 

when the LIBOR – GBP interest rates had sharply fallen from just above 6% at the end of 

2007 to their lowest value of approximately 0.5% in September 2009.  The two largest 

daily negative changes are recorded in December 2007 and November 2008 respectively.  

However, after 2009 the UK interbank rates seem rather stable, their level oscillating 

between 0.48% and 1% for shorter term interbank rates, while for longer maturities they 

are slightly more spread between 0.6% and 1.90% with a single peak in January 2012. 
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From an econometric point of view, the plots indicate nonstationarity across all different 

maturities. However, the first difference series appear stationary around a zero mean. 

Other formal assessments will follow in the form of various hypothesis (normality, auto-

correlation, unit root) testing.   

 

 
Figure 3.1a) 

LIBOR-GBP 2000-2013: Level and First Differences 

 

 
Figure 3.1b) 

        Multiple graphs for LIBOR-GBP 2000 – 2013: Levels 
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     On inspection of the graphs (Figure 3.2) of the LIBOR-USD rates we can easily 

identify specific characteristics which are more or less similar to the LIBOR-GBP 

interbank market. The same two periods of higher volatility are present in the LIBOR-

USD interbank market as well, especially because most of the factors/causes originated in 

the U.S. Compared with other markets where these factors still have a considerable 

impact, however with some delay and less power, the LIBOR-USD offers the true 

magnitude of their immediate effect. As can be seen in the panels of Figure 3.2, the 

impact of the 9/11 terrorist attack is clearly visible, causing a deeper plunge than in the 

U.K. of the interest rates during the 2000-2003 deflation period of the technology bubble.  

As for the second major downfall which is related to the 2007-2009 financial crisis, the 

first signs of distress appear in the summer of 200716. Another substantial decrease 

observed in Figure 3.2 is realised in November 2008 following the liquidation of the 

fourth largest American investment bank – Lehman Brothers in September 2008. After 

2009 a more stable financial environment is portrayed, however less stable than in the 

LIBOR-GBP interbank market. Regarding stationarity, one could assume some degree of 

mean reversion towards the sample mean, but given the daily frequency of the data, 

deviations from the mean are highly persistent. Therefore, intuitively it can be claimed 

that the LIBOR–USD rates are nonstationary. In addition, as Figure 3.2 suggests the 

LIBOR- USD time series are first differenced to stationarity.   

 

 

                                                 
16 A series of major adverse events commenced in June 2007 with the collapse of two hedge funds under 

Bear Stearns’s management as a result of high investment in the subprime ABS (asset-backed securities); 

followed by the run on the assets of three SIVs (structured investment vehicles) of BNP Paribas in August 

2007 (Acharya et al. 2009). 

0

1

2

3

4

5

6

7

00 01 02 03 04 05 06 07 08 09 10 11 12

LIBOR-USD 1W

0

1

2

3

4

5

6

7

00 01 02 03 04 05 06 07 08 09 10 11 12

LIBOR-USD 1M

0

1

2

3

4

5

6

7

00 01 02 03 04 05 06 07 08 09 10 11 12

LIBOR-USD 3M

-1.0

-0.5

0.0

0.5

1.0

1.5

00 01 02 03 04 05 06 07 08 09 10 11 12

D(LIBOR-USD 1W)

-.6

-.4

-.2

.0

.2

.4

.6

00 01 02 03 04 05 06 07 08 09 10 11 12

D(LIBOR-USD 1M)

-.6

-.4

-.2

.0

.2

.4

00 01 02 03 04 05 06 07 08 09 10 11 12

D(LIBOR-USD 3M)



94 

 

 
Figure 3.2a) 

LIBOR-USD 2000-2013: Level and First Differences 

 

 

Figure 3.2b) 

Multiple graphs for LIBOR-USD 2000 – 2013: Levels 

 

     The Eurozone LIBOR-EUR rates (see Figure 3.3) have some particularities as well as 

certain similarities with other interbank rates. Similarly, the graphs are following each 
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2000-2003 presents an interesting feature. The strong upwards trend visible at the 

beginning of the sample period can reflect the substantial and long-term impact of the 

introduction of the Euro in January 1999 on LIBOR-EUR rates compared to the other 

currency LIBOR rates. The benefits of this historical monetary decision may have 

allowed for a moderate downturn over the 2001-2003 period, only 3% and counteracted a 

sharper decline as in the LIBOR-USD.  In contrast with the other markets studied, the 

LIBOR-EUR rates seem more volatile after 2009. This can be explained by the Euro 

crisis, a combination of sovereign debt and banking crises that have developed in 8 

countries of the E.U. More generally, the series seem more volatile across the entire 

sample period, with less evident clustering pattern in the first differenced time series.  
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Figure 3.3a) 

LIBOR-EUR 2000 -2013: Level and First Differences 

 

       

Figure 3.3b) 

Multiple graphs for LIBOR-EUR 2000-2013: Levels 
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recovery as early as 2001. This is followed by a prolonged period of almost five years of 

stable, close to zero interest rates. Regarding the global financial crisis of 2007-2009 the 

property bubble had double amplitude compared to the dot.com bubble, but of 

considerably lower dimension when compared with other markets. Another aspect is that 

following 2009 interest rates of different maturities appear to be moving away from each 

other indicating less correlation, with interest rates of longer maturity still decreasing 

gradually, not as abruptly as short-term interest rates of one week and one month 

maturities. 

 

 
Figure 3.4a) 

LIBOR-JPY 2000-2013: Level and First Differences.     
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Figure 3.4b) 

         Multiple graphs for LIBOR-JPY 2000-2013: Levels 
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17 Despite that, in February 2013 Moody and in April 2013 Fitch, downgraded UK credit to Aa1 and AA+ 

respectively. 
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UK gilts yields were at their lowest. Another factor contributing to the current low level 

of gilts yields is the UK’s monetary sovereignty. The monetary policy instruments used 

after the crisis by the UK government, such as quantitative easing, keeping low interest 

rates level and targeting low inflation can have a significant impact on the term structure 

of interest rates18. All series look nonstationary in levels, while their first differences 

become stationary. The first difference series show a considerable level of volatility along 

the entire sample period.  

 

 

 
 

Figure 3.5a) 

LIBOR-CAD 2000 -2013: Level and First Differences 

 

 

                                                 
18 Numerous recent studies examine the interaction between macroeconomic variables (inflation, real 

activity and monetary rules) and bond yields, with some evidence of bidirectional feedback (see Smith and 

Taylor (2009), Kim and Park (2013)).  
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 Figure 3.5b) 

    Multiple graphs for LIBOR-CAD 2000 – 2013: Levels 

 

 

 
Figure 3.6a) 

UK Government Zero Coupon Rates 2000-2013: Level and First Differences 
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Figure 3.6b) 

Multiple graphs for UK Government Zero Coupon Rates 2000-2013: Levels 
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very slowly in a linear manner, a characteristic of nonstationary time series.  For the 

differenced series, the autocorrelation coefficients seem to cut off straight from the first 

lag without any discernable pattern (although they are mostly positive), suggesting that 

the series do not need a higher order differencing. Regarding the Liung-Box tests, all the 

sample values of the Q-statistic were in excess of the critical value of the corresponding 

99% quantile from the 
2(10)

 and 
2 (20) distributions, respectively. Therefore, the null 

hypothesis of no autocorrelation has been rejected in all cases for all series, both levels 

and first-differences. 
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Table 3.1 Standard Statistics for LIBOR–GBP Interest Rates: 2000-2013. 

                      
LIBOR- 

GBP 
LEVEL FIRST DIFFERENCES 

Interest Rate        1W       1M     3M     6M    12M      1W      1M     3M     6M     12M 

 

Observations 
3,455 3,455 3,455 3,455 3,455 3,454 3,454 3,454 3,454 3,454 

 Mean 3.438 3.5237 3.6636 3.7855 3.9983 -0.0009 -0.0014 -0.0016 -0.0016 -0.0017 

 Median 4.1369 4.0992 4.1891 4.39 4.5663 0 0 0 0 0 

 Maximum 6.9409 6.75 6.9038 6.7988 6.8877 1.25 0.6238 0.2125 0.1981 0.2056 

 Minimum 0.48 0.4913 0.5069 0.6013 0.9081 -1.0313 -1.1975 -1.065 -1.0763 -1.0875 

 Std. Dev. 2.0715 2.0955 2.0537 1.9732 1.8462 0.1132 0.0342 0.0259 0.0272 0.0335 

 Skewness -0.4511 -0.4429 -0.4214 -0.3926 -0.3388 0.1083 -11.2208 -21.1702 -18.3976 -9.8028 

 Kurtosis 1.5768 1.5958 1.6462 1.6562 1.6776 22.6081 483.2458 843.1311 713.5563 327.4826 

 Jarque-Bera 408.76 396.8128 366.0793 348.702 317.8565 5.53E+04 3.33E+07 1.02E+08 7.29E+07 1.52E+07 

 Probability 0 0 0 0 0 0 0 0 0 0 

Notes: This table reports the standard statistics for both level and first difference of the LIBOR–GBP rates. The statistics comprise 

measures of central tendency – the mean and the median, measures of variability – maximum, minimum, standard deviation, and 

measures of normality – skewness, kurtosis and the JB normality test. 

The sample estimates of these statistics indicate that the LIBOR-GBP level rates are increasing in the mean as the maturity 

increases. The opposite is true regarding the volatility, for longer maturity the rates are less volatile. The distributions implied by the 

data are all asymmetrical and platykurtic ( 3)k  , therefore they are not normal distributions. This is also confirmed by the JB test - 

the null of normality is rejected for all the time-series. For the first difference series, the distributions are closely centred around a 

mean of almost zero, skewed to the left except for the one-week series, leptokurtic ( 3)k    and  not normal according to the JB test. 
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Table 3.2 Standard Statistics for LIBOR–USD Interest Rates: 2000-2013. 

                    

LIBOR-USD LEVEL FIRST DIFFERENCES 

Interest Rate 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

Observations 3,455 3,455 3,455 3,455 3,455 3,454 3,454 3,454 3,454 3,454 

 Mean 2.3997 2.4367 2.5498 2.6849 2.9042 -0.0017 -0.0016 -0.0017 -0.0016 -0.0017 

 Median 1.8213 1.8388 1.8794 1.9888 2.385 0 0 0 0 0 

 Maximum 6.9275 6.8213 6.8688 7.1088 7.5013 1.3813 0.4688 0.2925 0.2738 0.3544 

 Minimum 0.1585 0.1851 0.245 0.3825 0.7203 -0.6413 -0.5288 -0.42 -0.415 -0.4175 

 Std. Dev. 2.1309 2.1243 2.0943 2.0328 1.9291 0.0528 0.0326 0.0281 0.0317 0.0425 

 Skewness 0.5617 0.5591 0.5621 0.5792 0.6362 3.356 -3.4891 -4.7984 -2.415 -0.4388 

 Kurtosis 1.8875 1.8931 1.9185 1.9766 2.151 186.5144 94.0157 79.4077 38.4838 15.3207 

 Jarque-Bera 359.8349 356.4129 350.3285 343.9954 336.798 4.85E+06 1.20E+06 8.53E+05 1.85E+05 2.20E+04 

 Probability 0 0 0 0 0 0 0 0 0 0 

Notes: This table reports the standard statistics for both level and first difference of the LIBOR –USD rates. The statistics comprise 

certain measures of central tendency – the mean and the median, measures of variability – maximum, minimum, standard deviation, and 

measures of relative normality – skewness, kurtosis and the JB normality test. 

The sample estimates of these statistics indicate that the LIBOR-GBP level rates are increasing in the mean as the maturity increases. 

The opposite is true regarding the volatility, for longer maturity the rates are less volatile. The distributions implied by the data are all 

asymmetrical and platykurtic ( 3)k   , therefore they are not normal distributions. This is also confirmed by the JB test - the null of 

normality is rejected for all the time-series. For the first difference series, the distributions are closely spread around a mean of almost 

zero; they are skewed to the left and leptokurtic ( 3)k   and not normal according to the JB test. 
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Table 3.3 Standard Statistics for LIBOR–EUR Interest Rates: 2000-2013. 

                      

LIBOR-EUR LEVEL FIRST DIFFERENCES 

Interest Rate 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

Observations 3,455 3,455 3,455 3,455 3,455 3,454 3,454 3,454 3,454 3,454 

 Mean 2.3864 2.4561 2.5974 2.7121 2.8761 -0.0009 -0.0009 -0.0009 -0.001 -0.001 

 Median 2.1559 2.173 2.2754 2.2925 2.4129 0 0 0 0 -0.0007 

 Maximum 5.1719 5.1863 5.3913 5.4375 5.5138 0.5288 0.6431 0.1569 0.1731 0.4263 

 Minimum 0.0233 0.0514 0.1207 0.2143 0.4264 -0.445 -0.4166 -0.3539 -0.2568 -0.4194 

 Std. Dev. 1.5059 1.4964 1.475 1.4088 1.3514 0.0371 0.0228 0.0167 0.0183 0.0269 

 Skewness -0.0533 -0.0252 0.0728 0.1459 0.201 0.2174 4.0166 -3.1464 -0.7601 0.6049 

 Kurtosis 1.756 1.779 1.8369 1.8809 1.9175 47.1072 243.0815 79.9075 28.4649 47.6 

 Jarque-Bera 224.4304 214.9826 197.8105 192.5621 191.9396 2.80E+05 8.30E+06 8.57E+05 9.37E+04 2.86E+05 

 Probability 0 0 0 0 0 0 0 0 0 0 

Notes: This table reports the standard statistics for both level and first difference of the LIBOR–EUR rates. The statistics comprise 

certain measures of central tendency – the mean and the median, measures of variability – maximum, minimum, standard deviation and 

measures of relative normality – skewness, kurtosis and the JB normality test. 

The sample estimates of these statistics indicate that the LIBOR-EUR level rates are increasing in the mean as the maturity increases, 

suggesting an upward shape of the yield curve. The opposite is true regarding the volatility, for longer maturity the rates are less 

volatile. The distributions implied by the data are slightly asymmetrical and platykurtic ( 3),k  therefore they are not normal 

distributions. This is also confirmed by the JB test - the null of normality is rejected for all the time-series. For the first difference series, 

the distributions are closely centred around a mean of almost zero, skewed to the left except for the one-week series, leptokurtic ( 3)k   

and not normal according to the JB normality test. 
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Table 3.4 Standard Statistics for LIBOR–JPY Interest Rates: 2000-2013. 

                      

LIBOR-JPY LEVEL FIRST DIFFERENCES 

Interest Rate 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

 Observations 3,455 3,455 3,455 3,455 3,455 3,454 3,454 3,454 3,454 3,454 

 Mean 0.1921 0.2241 0.2887 0.3643 0.4714 -7.19E-06 -8.17E-06 -9.36E-06 7.86E-06 5.16E-05 

 Median 0.1121 0.138 0.1935 0.3344 0.535 0 0 0 0 0 

 Maximum 2.0725 1.06 1.0938 1.185 1.3325 0.8488 0.3688 0.16 0.0688 0.1 

 Minimum 0.0313 0.0363 0.0455 0.0573 0.0831 -1.335 -0.455 -0.1338 -0.0513 -0.0625 

 Std. Dev. 0.2188 0.2415 0.2851 0.3097 0.3526 0.0389 0.0164 0.0071 0.0054 0.0053 

 Skewness 1.8253 1.5222 1.2735 0.8986 0.4411 -5.7647 0.8541 2.1448 1.9071 1.5414 

 Kurtosis 6.5736 4.1784 3.3632 2.7178 2.0335 533.5677 328.6445 143.1974 39.781 65.9803 

 Jarque-Bera 3757.035 1534.209 952.9288 476.4578 246.5006 4.05E+07 1.53E+07 2.83E+06 1.97E+05 5.72E+05 

 Probability 0 0 0 0 0 0 0 0 0 0 

Notes: This table reports the standard statistics for both level and first difference of the LIBOR–JPY rates. The statistics comprise 

certain measures of central tendency – the mean and the median, measures of variability – maximum, minimum, standard deviation and 

measures of relative normality – skewness, kurtosis and the JB normality test. Both mean and standard deviation are increasing with the 

maturity, reflecting the uncertainty within the Japanese financial system as the result of many policies failing to have any impact on 

Japanese financial markets. For all the different maturity time series considered, the skewness and the kurtosis estimates indicate non-

normality as confirmed by the JB test statistics and its p-values. For the first difference series, the distributions are closely centred 

around a mean of almost zero, skewed to the left except for the one-week series, leptokurtic ( 3)k   and not normal according to the JB 

normality test. 
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Table 3.5 Standard Statistics for LIBOR–CAD Interest Rates: 2000-2013. 

                      

LIBOR-CAD LEVEL FIRST DIFFERENCES 

Interest Rates 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

 Observations 3,455 3,455 3,455 3,455 3,455 3,454 3,454 3,454 3,454 3,454 

 Mean 2.6829 2.7196 2.8085 2.9349 3.193 -0.0011 -0.0011 -0.0011 -0.0011 -0.0011 

 Median 2.625 2.6867 2.7517 2.8225 3 0 0 0 0 0 

 Maximum 5.8567 5.8767 6.025 6.1892 6.4933 0.695 0.6866 0.1917 0.28 0.325 

 Minimum 0.22 0.2917 0.3983 0.6933 1.2333 -0.4733 -0.6987 -0.33 -0.3433 -0.365 

 Std. Dev. 1.5949 1.5763 1.5272 1.4469 1.3111 0.0352 0.0307 0.0246 0.0293 0.0366 

 Skewness 0.217 0.2254 0.2777 0.3797 0.5671 1.387 -1.2261 -3.2007 -1.6188 -0.4882 

 Kurtosis 2.0326 2.0455 2.0907 2.1828 2.4719 98.142 186.6345 41.5035 27.0744 18.4641 

 Jarque-Bera 161.8163 160.4362 163.4585 179.1474 225.3419 1.30E+06 4.85E+06 2.19E+05 8.49E+04 3.46E+04 

 Probability 0 0 0 0 0 0 0 0 0 0 

Notes: This table reports the standard statistics for both level and first difference of the LIBOR–CAD rates. The statistics comprise 

certain measures of central tendency – the mean and the median, measures of variability – maximum, minimum, standard deviation and 

measures of relative normality – skewness, kurtosis and the JB normality test. The mean of the series increases with its maturity 

suggesting higher on average, interbank rates for longer maturities, therefore an upward interbank yield curve. For all the different 

maturity time series considered, the skewness and the kurtosis estimates indicate non-normality as confirmed by the JB test statistics and 

its p-values. For the first difference series, the distributions are closely centred around a mean of almost zero, skewed to the left except 

for the one-week series, leptokurtic ( 3)k   and not normal according to the JB normality test. 
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Table 3.6 Standard Statistics for UK Spot Rates: 2000-2013. 

                      

UK Spot LEVEL FIRST DIFFERENCES 

Interest Rates 1Y 7Y 10Y 15Y 25Y 1Y 7Y 10Y 15Y 25Y 

 Observations 3,346 3,346 3,346 3,346 3,346 3,345 3,345 3,345 3,345 3,345 

 Mean 3.3274 4.0256 4.208 4.3472 4.3156 -0.0018 -0.0014 -0.0011 -0.0007 -0.0003 

 Median 4.2342 4.4636 4.5004 4.5239 4.3997 -0.0011 -0.0016 -0.0012 -0.0007 -0.0005 

 Maximum 6.3652 6.1509 5.7299 5.2352 5.0466 0.4633 0.2278 0.2476 0.2373 0.2347 

 Minimum 0.1346 0.9909 1.5889 2.2856 3.0762 -0.328 -0.2869 -0.3654 -0.4462 -0.4257 

 Std. Dev. 2.0136 1.2198 0.9389 0.6596 0.4055 0.037 0.049 0.0492 0.0463 0.0439 

 Skewness -0.4447 -0.9565 -1.2547 -1.6127 -1.1542 0.0517 0.0297 -0.0704 -0.2742 -0.2481 

 Kurtosis 1.5894 2.9242 3.7589 4.8883 3.9158 17.728 4.6897 5.4403 7.7347 7.8254 

 Jarque-Bera 387.6715 510.9648 958.1979 1947.49 859.8786 30233.9 398.4083 832.7736 3166.269 3279.579 

 Probability 0 0 0 0 0 0 0 0 0 0 

Notes: This table reports the standard statistics for both, level and first difference of the UK nominal interest rates. The statistics comprise 

certain measures of central tendency the – mean and the median, certain measures of variability – maximum, minimum, standard 

deviation and measures of relative normality – skewness, kurtosis and the JB normality test. The mean of the series increases with its 

maturity suggesting higher on average, interbank rates for longer maturities, therefore an upward interbank yield curve. The skewness 

and the kurtosis estimates indicate non-normality as confirmed by the JB test statistics and its p-values. For the first difference series, the 

distributions are closely centred around a mean of almost zero, skewed to the left except for the one- and seven-year series, leptokurtic

( 3)k   and not normal according to the JB normality test. 
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   Table 3.7 Coefficients of Autocorrelation LIBOR-GBP Interest Rates, 2000-2013. 

 
                    

LIBOR-GBP    

 

LEVEL 

 

  FIRST DIFFERENCE 

 
RATES 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

1  0.9980 0.9990 0.9990 0.9990 0.9990 -0.0930 0.2120 0.2850 0.2370 0.1800 

      2    0.9970 0.9990 0.9990 0.9990 0.9980 -0.1090 0.1180 0.1850 0.1610 0.1000 

3  0.9950 0.9980 0.9980 0.9980 0.9970 -0.0310 0.1050 0.1770 0.1460 0.0880 

4  
0.9940 0.9970 0.9970 0.9970 0.9960 -0.0630 0.1010 0.2190 0.1700 0.1110 

5  0.9930 0.9970 0.9960 0.9960 0.9950 -0.0090 0.0960 0.1390 0.1040 0.0530 

6  0.9930 0.9960 0.9960 0.9950 0.9940 0.0030 0.0820 0.1130 0.1020 0.0810 

LB1 Q -stat. 34,161.00* 34,362.00* 34,348.00* 34,314.00* 34,236.00* 140.77* 395.63* 925.43* 631.49* 280.12* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LB2 Q-stat. 67,827.00* 68,233.00* 68,195.00* 68,061.00* 67,751.00* 180.26* 581.14* 1,336.40* 939.08* 410.45* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1. In the upper section of this table section we report the values of the first six autocorrelation coefficients for the level and first difference of all 

LIBOR-GBP time series.  

2. In the lower section, the modified Q statistic suggested by Liung-Box (1979) for ten lags (LB1) and twenty lags (LB2) is presented together 

with its p-values; * indicates 1% level of statistical significance.  
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Table 3.8 Coefficients of Autocorrelation for LIBOR-USD Interest Rates, 2000-2013. 

                    

LIBOR-USD 

  

LEVEL 

    

FIRST DIFFERENCES 

  
RATES 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

1  0.999 0.999 0.999 0.999 0.999 0.356 0.456 0.262 0.156 0.106 

      2    0.998 0.999 0.998 0.998 0.998 0.102 0.304 0.107 0.042 0.01 

3  0.997 0.998 0.998 0.997 0.997 -0.045 0.228 0.066 0.031 0.02 

4  0.996 0.997 0.997 0.996 0.996 -0.016 0.198 0.115 0.06 0.038 

5  0.995 0.996 0.996 0.996 0.995 -0.07 0.202 0.095 0.053 0.016 

6  0.994 0.995 0.995 0.995 0.994 0.069 0.204 0.157 0.112 0.082 

LB1 Q -stat. 34,243.00* 34,303.00* 34,309.00* 34,278.00* 34,237.00* 527.20* 1,788.80* 553.47* 203.68* 93.12* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LB2 Q-stat. 67,833.00* 67,957.00* 64,689.00* 67,926.00* 67,781.00* 579.20* 1,897.90* 652.83* 244.01* 116.38* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.   In the upper section of this table section we report the values of the first six autocorrelation coefficients for the level and first difference of all     

LIBOR-USD time series.  

2. In the lower section, the modified Q statistic suggested by Liung-Box (1979) for ten lags (LB1) and twenty lags (LB2) is presented together 

with its p-values.  * indicates 1% level of statistical significance.  
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Table 3.9 Coefficients of Autocorrelation for LIBOR-EUR Interest Rates, 2000-2013. 

                      

LIBOR-EUR 
 

 

LEVEL 

 
 

  

FIRST DIFFERENCE 

  RATES 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

1  0.999 0.999 0.999 0.999 0.999 0.189 0.267 0.404 0.305 0.065 

2  0.999 0.999 0.999 0.999 0.998 0.065 0.167 0.325 0.25 0.094 

3  0.998 0.998 0.998 0.998 0.998 0.029 0.178 0.273 0.213 0.092 

4  0.997 0.998 0.998 0.997 0.997 0.02 0.115 0.253 0.188 0.083 

5  0.996 0.997 0.997 0.997 0.996 -0.154 0.113 0.181 0.126 0.026 

6  0.995 0.996 0.996 0.996 0.995 0.005 0.126 0.224 0.176 0.099 

LB1 Q -stat. 34,323.00* 34,381.00* 34,389.00* 34,358.00* 34,301.00* 227.78* 817.75* 2,258.50* 1,370.70* 223.07* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LB2 Q-stat. 68,201.00* 68,285.00* 68,316.00* 68,190.00* 67,966.00* 288.88* 991.33* 3,188.00* 2,080.20* 393.22* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1. In the upper section of this table section we report the values of the first six autocorrelation coefficients for the level and first difference 

       of all LIBOR-EUR time series.  

2. In the lower section, the modified Q statistic suggested by Liung-Box (1979) for ten lags (LB1) and twenty lags (LB2) is presented together with its p-

values; *indicates 1% level of statistical significance.  

.  
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Table 3.10 Coefficients of Autocorrelation LIBOR-JPY Interest Rates, 2000-2013. 

    
 

              
 

  

LIBOR-JPY LEVEL 

  

FIRST DIFFERENCE 

  RATES 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

1  0.984 0.998 1 0.179 1 -0.138 0.033 0.179 0.353 0.34 

2  0.973 0.995 0.999 0.127 1 -0.016 -0.021 0.127 0.244 0.214 

3  0.962 0.993 0.999 0.081 0.999 -0.011 0.049 0.081 0.169 0.139 

4  0.951 0.99 0.998 0.076 0.999 -0.002 -0.057 0.076 0.161 0.144 

5  0.941 0.988 0.997 0.099 0.999 -0.358 0.037 0.099 0.144 0.114 

6  0.941 0.985 0.997 0.103 0.998 0.147 0.115 0.103 0.153 0.116 

LB1 Q -stat. 31,135.00* 33,622.00* 34,404.00* 34,469.00* 34,510.00* 636.24* 222.39* 336.64* 1,107.10* 843.94* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LB2 Q-stat. 59,618.00* 64,876.00* 68,299.00* 65,189.00* 68,808.00* 672.43* 348.82* 382.83* 1,148.60* 872.91* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1. In the upper section of this table section we report the values of the first six autocorrelation coefficients for the level and first difference of all 

LIBOR-JPY time series.  

2. In the lower section, the modified Q statistic suggested by Liung-Box (1979) for ten lags (LB1) and twenty lags (LB2) are presented together with 

their p-values; *indicates 1% level of statistical significance.  
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Table 3.11 Coefficients of Autocorrelation for LIBOR-CAD Interest Rates, 2000-2013. 

                        

LIBOR-CAD                            LEVEL 
 

  

FIRST 

DIFFERENCE 

  RATES 1W 1M 3M 6M 12M 1W 1M 3M 6M 12M 

1  0.999 0.999 0.999 0.999 0.999 0.194 -0.008 0.219 0.222 0.218 

      2    0.999 0.999 0.999 0.998 0.998 0.059 0.101 0.156 0.076 0.065 

3  0.998 0.998 0.998 0.997 0.996 0.014 0.074 0.082 0.052 0.041 

4  0.997 0.997 0.997 0.996 0.995 -0.021 0.077 0.129 0.093 0.038 

5  0.996 0.997 0.996 0.996 0.993 0.023 0.074 0.11 0.071 0.039 

6  0.995 0.996 0.996 0.994 0.992 0.034 0.059 0.064 0.043 0.037 

LB1 Q -stat. 34,334.00* 34,358.00* 34,339.00* 34,272.00* 34,110.00* 166.84* 157.57* 520.30* 295.26* 219.19* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LB2 Q-stat. 68,190.00* 68,219.00* 68,130.00* 67,878.00* 67,231.00* 187.23* 209.12* 653.00* 339.04* 236.26* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1. In the upper section of this table section we report the values of the first six autocorrelation coefficients for the level and first difference of all 

LIBOR-CAD time series.  

2. In the lower section, the modified Q statistic suggested by Liung-Box (1979) for ten lags (LB1) and twenty lags (LB2) is presented together 

with its p-values; * indicates 1% level of statistical significance. 
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Table 3.12 Coefficients of Autocorrelation for UK Spot Interest Rates, 2000-2013. 

                      

  UK SPOT LEVEL FIRST DIFFERENCE 

 
RATES 1Y 7Y 10Y 15Y 25Y 1Y 7Y 10Y 15Y 25Y 

     1  0.999 0.998 0.997 0.996 0.993 0.119 0.038 0.039 0.051 0.071 

     2    0.998 0.996 0.995 0.993 0.986 0.028 -0.025 -0.04 -0.055 -0.074 

     3   0.997 0.994 0.992 0.989 0.979 -0.003 -0.039 -0.052 -0.065 -0.085 

     4   0.996 0.992 0.99 0.986 0.973 0.007 0.038 0.043 0.04 0.028 

     5   0.995 0.99 0.987 0.983 0.968 -0.006 -0.022 -0.013 -0.004 -0.007 

     6   0.995 0.988 0.985 0.979 0.962 0.029 -0.031 -0.033 -0.035 -0.041 

LB1 Q -stat. 33,198.00* 32,820.00* 32,616.00* 32,304.00* 31,301.00* 82.44* 26.25* 38.33* 54.43* 83.88* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LB2 Q-stat.  65,832.00* 64,520.00* 63,830.00* 59,858.00* 59,773.00* 180.56* 50.35* 61.38* 71.60* 93.85* 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1. In the upper section of this table we report the values of the first six autocorrelation coefficients for the level and first difference of 

all U.K. spot rates.  

2. In the lower section, the modified Q statistic suggested by Liung-Box (1979) for ten lags (LB1) and twenty lags (LB2) is presented 

together    with its p-values. 
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Table 3.13 The Correlations between the first-difference time-series 

GBP-

LIBOR 1W 1M 3M 6M 12M 

USD-

LIBOR 1W 1M 3M 6M 12M 

1W 1 

    
1W 1 

    
1M 0.51 1 

   

1M 0.60 1 

   
3M 0.28 0.85 1 

  
3M 0.49 0.85 1 

  
6M 0.21 0.75 0.93 1 

 

6M 0.35 0.70 0.88 1 

 
12M 0.16 0.61 0.79 0.93 1 12M 0.21 0.49 0.67 0.91 1 

EUR-

LIBOR 1W 1M 3M 6M 12M 

JPY-

LIBOR 1W 1M 3M 6M 12M 

1W 1 

    
1W 1 

    
1M 0.50 1 

   
1M 0.47 1 

   
3M 0.43 0.72 1 

  

3M 0.32 0.59 1 

  
6M 0.33 0.59 0.88 1 

 

6M 0.19 0.45 0.76 1 

 
12M 0.19 0.39 0.64 0.85 1 12M 0.10 0.33 0.61 0.84 1 

CAD-

LIBOR 1W 1M 3M 6M 12M UK-SPOT 1Y 7Y 10Y 15Y 25Y 

1W 1 

    
1Y 1 

    
1M 0.50 1 

   
7Y 0.64 1 

   
3M 0.46 0.63 1 

  
10Y 0.54 0.98 1 

  
6M 0.30 0.49 0.84 1 

 

15Y 0.47 0.93 0.97 1 

 
12M 0.21 0.38 0.70 0.89 1 25Y 0.38 0.81 0.86 0.94 1 

 

 

Unit Root Testing 

 

     As nonstationarity is a dominant characteristic of all the time series under study, a 

more formal assessment is required. It is assumed that the possibility of the 

nonstationarity feature is implied by the presence of a single unit root with the time series 

being I(1). This particular kind of nonstationarity will be tested for consistency with the 

data. The widely used Augmented Dickey-Fuller (1979) (ADF) test for a single unit root 

is known to have a low statistical power especially if a structural break is potentially 

present, see Patterson (2000). In the light of the credit and liquidity crisis within the 

interbank market during September 2008 this is highly plausible, as indicated by the sharp 

fall of the level of interest rates at that point in time. Additionally, the ADF can be 

unreliable if the time series contains a moving average disturbance term. To overcome 

these problems, the decision regarding the existence or non-existence of a unit root has to 

be assessed in conjunction with other unit root test statistics. Consequently, another two 
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unit-root tests19  are considered. They are the Phillips-Perron (PP) (1988) test and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (1992) test. While the first two tests, ADF 

and PP, are unit root tests with the null hypothesis 0H : the series has a unit root, the KPSS 

test is a stationarity test with an opposite null in contrast with former tests.  

      The ADF test is an extension of the Dickey-Fuller test for higher-order serial 

correlation in the series. The ADF test tests for the existence of a single unit root in an 

autoregressive ( )AR p , 1p  specification.  The testing procedure is adjusted by adding 

more lagged difference terms in the test regression - a parametric correction. While there 

are three version of the test, we consider the most general augmented specification 

including two exogeneous variables in the regression model, a constant   and a linear 

trend t : 

 1 1 1( ) :          ...t t t p t p tAR p r t r r r                   (3.33) 

Where the disturbance terms are white noise, 
2(0, )t iid  independent and identically 

distributed. The null hypothesis 0 : 0H    is tested against the one-sided alternative 

hypothesis 1 : 0H   . 

The test statistic under the null hypothesis follows a nonstandard distribution and the 

critical values are extracted automatically by EViews from the MacKinnon (1996) table 

which is a larger set of simulations than the original Dickey and Fuller table of critical 

values. The ADF statistic is always negative. The more negative the sample critical value 

is, the higher the probability of rejecting the null will be. The number of lagged first 

difference terms, p , is determined using the Schwarz (1978) Information Criterion 

(SIC). 

       An alternative to the ADF test for unit root is the PP test that like the ADF test 

controls for the higher-order correlation but in a non-parametric way. To account for any 

serial correlation and heteroskedasticity in the residuals of the regression, therefore 

allowing for processes ,t  that are not iid
2(0, )  distributed, the PP test constructs a 

modified ADF t - statistic using a correction factor. The asymptotic distribution of the PP 

unit root t -statistic is the same as the ADF t - statistic and the same MacKinnon critical 

or p-values are used for decision criteria.  

                                                 
19 Despite the fact that some of the series may indicate structural breaks, in this study we don’t consider 

more general unit root tests that account for parameter instability such as Bai-Perron (2003) and Zivot-

Andrews (1992).   
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      The classic ADF and PP unit root tests treat asymmetrically the null hypothesis of 

“the series is I(1)” against the alternative “the series is I(0)” giving a dominant role to the 

null. To overcome this shortcoming another class of stationarity tests have been 

developed such as Leybourne and McCabe (LMc) (1994) and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) (1992). These tests invert the hypotheses, with the null of 

stationarity or ARIMA(p,0,0) process against the alternative hypothesis of nonstationarity 

or an ARIMA(p,1,1) process. In addition, they are more powerful than ADF and PP unit 

root test when the ARMA processes have a large moving average component20. For this 

study, the KPSS test is employed including both deterministic regressors, the constant and 

the time trend. The critical values have been simulated and tabulated in Kwiatkowski et 

al. (1992) and they are identical to the Leybourne and Macabe (1994) test statistics. 

The results for the unit root testing obtained using these three tests are very consistent as 

can be inferred from Tables 3.14 to 3.19.  

 

 

 

 

Table 3.14 LIBOR-GBP Rates: The Unit Root ADF, PP and KPPS Tests.  

                    

Unit Root Tests                   ADF                     PP                     KPSS 

 LIBOR-GBP     t-Stat. Prob.* Adj. t-stat Prob.* LM - Stat. Crit. Val.** 

1-week Level 

 

-1.41538 0.8567 -2.54069 0.3082 0.954851 0.216 

LIBOR - GBP First Diff. 

 

-28.2672 0.0000 -68.8717 0.0000 0.074986 0.216 

1-month Level   -1.1874 0.912 -1.37301 0.8687 0.945881 0.216 

LIBOR - GBP First Diff.   -20.5227 0.0000 -54.6061 0.0000 0.128029 0.216 

2-month Level 

 

-1.83251 0.6888 -1.23469 0.9024 0.961849 0.216 

LIBOR - GBP First Diff. 

 

-7.98846 0.0000 -55.9544 0.0000 0.146846 0.216 

3-month Level   -1.02112 0.9395 -1.1936 0.9108 0.954575 0.216 

LIBOR - GBP First Diff.   -19.7532 0.0000 -56.0292 0.0000 0.152881 0.216 

6-month Level 

 

-0.9729 0.9459 -1.18539 0.9124 0.930066 0.216 

LIBOR - GBP First Diff. 

 

-21.1581 0.0000 -57.1767 0.0000 0.152708 0.216 

12-Month Level   -1.1219 0.9239 -1.32233 0.8821 0.854629 0.216 

LIBOR - GBP First Diff.   -23.4627 0.0000 -55.6623 0.0000 0.135482 0.216 

This table presents the sample test statistics and the probabilities for ADF and PP unit root tests; the 

sample test statistic and the critical values of the KPSS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

 

 

                                                 
20  Schwert (1989) showed that the ADF and the PP tests could suffer from severe size distortion, results 

being biased towards rejecting the null when it is true (type I error).  
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Table 3.15 LIBOR-USD Rates: The Unit Root ADF, PP and KPPS Tests. 

This table presents the sample test statistics and the probabilities for ADF and PP unit root tests; the sample 

test statistic and the critical values of the KPSS test, computed using EViews.  

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

 

 

 

 

 

Table 3.16 LIBOR-EUR Rates: The Unit Root ADF, PP and KPPS Tests. 

 
              

Unit Root    Tests                    ADF                                     PP                                       KPSS 

 LIBOR - EUR     t-  stat Prob.* Adj. t-stat               Prob.* LM - Stat. Crit.val** 

1-week Level 
 

-1.4634 0.8419 -1.4471 0.8470 0.5756  0.216 

LIBOR - EUR First Diff.   -24.2384 0.0000 -48.2664 0.0000 0.1705 0.216 

1-month Level 
 

-1.5206 0.8227 -1.4682 0.8403 0.5868 0.216 

LIBOR -EUR First Diff.   -12.5899 0.0000 -55.5019 0.0000 0.1411 0.216 

2-month Level 
 -1.3981 0.8617 -1.3659 0.8707 0.6103 0.216 

LIBOR -EUR First Diff.   -12.7543 0.0000 -58.0599 0.0000 0.1492 0.216 

3-month Level 
 

-1.7327 0.7366 -1.2872 0.8906 0.6215 0.216 

LIBOR - EUR First Diff.   -8.0070 0.0000 -56.0441 0.0000 0.1534 0.216 

6-month Level 
 

-1.1539 0.9182 -1.1922 0.9111 0.6326 0.216 

LIBOR - EUR First Diff.   -13.0708 0.0000 -60.9614 0.0000 0.1538 0.216 

12-Month Level 
 

-0.9613 0.9474 -1.1491 0.9191 0.6140 0.216 

LIBOR - EUR First Diff.   -16.8580 0.0000 -64.5011 0.0000 0.1497 0.216 

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; the sample 

test statistic and the critical values of the KPSS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

 

 

 

 

 

 

 

                  

Unit Root    Tests                   ADF        PP  KPSS            

LIBOR-USD       t-Stat. Prob.* Adj. t-stat Prob.* LM - Stat Crit. Val.** 

1-week Level     -1.3479 0.8755    -1.3396 0.8776 0.6667 0.216 

LIBOR - USD First Diff. -21.3138 0.0000 -40.0117 0.0000 0.1896 0.216 

1-month Level -1.4538 0.8449 -1.296183 0.8885 0.6784 0.216 

LIBOR -USD First Diff. -15.6319 0.0000 -41.72224 0.0000 0.1956 0.216 

2-month Level -1.4613 0.8426 -1.2412 0.901 0.6984 0.216 

LIBOR - USD First Diff. -12.1556 0.0000 -42.2856 0.0000 0.2249 0.216 

3-month Level -1.4748 0.8382 -1.2460 0.8999 0.7055 0.216 

LIBOR - USD First Diff. -12.1453 0.0000 -42.9282 0.0000 0.2336 0.216 

6-month Level -1.3243 0.8816 -1.1986 0.9098 0.7152 0.216 

LIBOR - USD First Diff. -13.3258 0.0000 -51.3386 0.0000 0.2810 0.216 

12-Month Level -1.2388 0.9015 -1.3050 0.8864 0.6954 0.216 

LIBOR - USD First Diff. -52.8442 0.0000 -54.5147 0.0000 0.2831 0.216 
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Table 3.17 LIBOR –JPY Rates: The Unit Root ADF, PP and KPPS Tests. 

                

Unit Root Tests                   ADF                     PP            KPSS 

LIBOR - JPY   t-Stat. Prob.* Adj. t-stat Prob.*       LM - Stat.     C Crit.Val.** 

1-week  Level -3.1112 0.1036 -3.8276 0.0152 0.7309 0.216 

LIBOR - JPY First Diff. -24.9361 0.0000 -91.0419 0.0000 0.0447 0.216 

1-month  Level -1.9296 0.6386 -2.2471 0.4625 0.7404 0.216 

LIBOR - JPY First Diff. -15.7659 0.0000 -57.1410 0.0000 0.0477 0.216 

2-month   Level -1.6243 0.7835 -1.3951 0.8626 0.8018 0.216 

LIBOR - JPY First Diff. -13.5408 0.0000 -52.5393 0.0000 0.1081 0.216 

3-month  Level -1.1410 0.9206 -1.0501 0.9354 0.8286 0.216 

LIBOR - JPY First Diff. -16.7229 0.0000 -54.0182 0.0000 0.1685 0.216 

6-month  Level -0.8975 0.9548 -0.8429 0.9604 0.8589 0.216 

LIBOR - JPY First Diff. -16.8506 0.0000 -47.6673 0.0000 0.2177 0.216 

12-Month  Level -0.5921 0.9790 -0.6885 0.973 0.8598 0.216 

LIBOR - JPY First Diff. -21.8245 0.0000 -46.7694            0.0000 0.2899 0.216 

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; the sample 

test statistic and the critical values of the KPSS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

 

 

 

 

 

Table 3.18 LIBOR – CAD Rates: The Unit Root ADF, PP and KPPS Tests. 

          

Unit Root Tests                      ADF                     PP                 KPSS 

  LIBOR - CAD     t-Stat. Prob.* Adj. t-stat Prob.* LM - Stat. 
Crit. 

Val.** 

1-week Level 

 

-1.1041 0.9269 -1.1886 0.9117 0.5094 0.216 

LIBOR - CAD First Diff. 

 

-48.3407 0.0000 -48.9854 0.0000 0.1809 0.216 

1-month Level   -1.0835 0.9302 -1.2755 0.8933 0.5148 0.216 

LIBOR - CAD First Diff.   -21.2242 0.0000 -65.6230 0.0000 0.1626 0.216 

2-month Level 

 

-1.3380 0.8781 -1.2708 0.8944 0.5214 0.216 

LIBOR - CAD First Diff.   -13.6088 0.0000 -71.4236 0.0001 0.1679 0.216 

3-month Level 
 

-1.3426 0.8769 -1.2999 0.8876 0.5263 0.216 

LIBOR - CAD First Diff.   -14.0961 0.0000 -55.6726 0.0000 0.1643 0.216 

6-month Level 

 

-1.2805 0.8922 -1.3831 0.8659 0.5397 0.216 

LIBOR - CAD First Diff. 

 

-24.4136 0.0000 -50.8584 0.0000 0.1593 0.216 

12-Month Level   -1.6112 0.7888 -1.7290 0.7384 0.5268 0.216 

LIBOR - CAD First Diff.   -47.0961 0.0000 -48.7181 0.0000 0.1187 0.216 

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; the sample 

test statistic and the critical values of the KPSS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

 

 

 

 



119 

  

Table 3.19 UK Spot Rates: The Unit Root ADF, PP and KPPS Tests. 

 

 
This table presents the sample test-statistics and the probabilities for the ADF and the PP unit root tests;  

also the sample test statistic and the critical values of the KPSS test, computed using EViews, for the UK 

spot rates time series with 1, 5, 7, 10, 15 and 25 year maturities.  

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

 

All the time series in levels have a unit root, failing to reject the null hypothesis in ADF, 

PP tests at all common significance levels, while the null of stationarity is rejected in the 

case of KPPS test.  Similarly, the tests confirm that the time series can be differenced to 

stationarity at the same level of significance. The entire statistical analysis had been 

conducted in Eviews, and the intermediary regressions for all the unit root/stationarity 

tests included an intercept and a linear trend. For most of the series, forty-two in total, the 

intercept and the trend were both statistically insignificant. Even when they were 

excluded one by one, the final conclusion remained unchanged:  all time-series under 

study are I(1).   

 

 

3.5 The Estimation Results 

      The econometric estimation of the proposed continuous-time models is conducted in 

two stages corresponding to the two extensions, four- and five-factor specifications. Four 

multi-factor continuous-time models, namely CKLS, Vasicek, CIR and BS are estimated 

for each of the multivariate time-series.  All the models incorporate a linear mean-

UK Spot t-Stat. Prob.* Adj. t-stat Prob.* LM Crit. Val.**

1Y Nominal Level -0.91893 0.9524 -1.167207 0.9158 0.982913 0.216

Spot Rate First Diff. -36.3994 0 -51.22148 0 0.194957 0.216

5Y Nominal Level -1.54899 0.8125 -1.62033 0.7851 1.226648 0.216

Spot Rate First Diff. -54.1928 0 -54.1545 0 0.067427 0.216

7Y Nominal Level -1.84338 0.6833 -1.802913 0.7034 1.176754 0.216

Spot Rate First Diff. -54.5107 0 -54.51919 0 0.053061 0.216

10Y Nominal Level -2.51627 0.3201 -2.009306 0.5955 1.058845 0.216

Spot Rate First Diff. -53.7537 0 -54.60421 0 0.040864 0.216

15Y Nominal Level -2.51627 0.3201 -2.206746 0.4851 0.891395 0.216

Spot Rate First Diff. -53.7537 0 -53.90468 0 0.030382 0.216

20Y Nominal Level -3.13102 0.0992 -2.584089 0.2877 0.719565 0.216

Spot Rate First Diff. -40.6086 0 -52.76153 0 0.026933 0.216

25Y Nominal Level -3.37868 0.0544 -2.971168 0.1405 0.556694 0.216

Spot Rate First Diff. -40.735 0 -52.94229 0 0.026808 0.216

Unit Root    Tests                  ADF                     PP                KPSS
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reversion drift by recognising feedback effects in all directions among the factors, which 

are interest rates of various maturities. Another way to explain the connection between 

different maturity rates along the yield curve is by assuming that the stochastic 

components, more specifically the individual Brownian motions are correlated as defined 

by the covariance matrices presented in section 3.5. Therefore, the parameters of most 

interest are the level effect vector-parameter  , the feedback matrix   and the correlation 

coefficients 1 , 4(5)( ) .ij i j     

 

3.5.1 Estimation Results for the Four-Factor Continuous-Time Models  

      For the first stage twenty-four four-factor models are estimated, four models for each 

of the five LIBOR curves and another four models for the UK spot curve. The QMLE 

estimates of the parameters are grouped in the vector solution   to the respective 

optimization problem of maximizing the objective function given in equation (3.25) and 

are presented together with their standard errors entered in the next column in Tables 

3.20-3.25. The vector parameter to be estimated has thirty-four components under the 

general model CKLS and thirty under any of the restricted models. Given the high 

dimension of the vector of parameters, each table consists of two parts: part a) for the drift 

parameters and part b) for the diffusion parameters, respectively.  

       The estimation results are interpreted separately based on the money-market and 

bond market data sets, respectively. The parameters of interest are the vector of the level 

effects, the feedback matrix and the covariance matrix. For three out the five LIBOR 

time-series, namely GBP-LIBOR, USD-LIBOR and JPY-LIBOR, the level effect 

estimates are close to unity. This suggests a strong dependence of the volatility of the 

interest rate changes on the level of the interest rate itself.   For the EUR-LIBOR and 

CAD-LIBOR multivariate time series the estimates regarding the elasticity of the 

volatility parameter are situated in the vicinity of 0.5. The restricted models are tested for 

their explanatory power against the general CKLS model using the likelihood ratio test 

(LR).  Based on the corresponding 
2 (4df )  tests, under the null hypothesis of the 

validity of the nested model, the results indicate rejection at the 1% level of significance 

of all of the restricted models. According to the values of log-maximum likelihood 

functions, the best performing restricted specifications are: the BS model for GBP-

LIBOR, USD-LIBOR and JPY-LIBOR rates, while the CIR model for EUR-LIBOR and 

CAD-LIBOR rates. The drift function of the models proposed is defined by the four-

dimensional intercept vector   and the feedback matrix   of sixteen components. The 
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estimates of all intercept elements are almost zero, most of them being however 

statistically significant.  

          The majority of the feedback estimates are significant indicating evidence of 

feedback in most directions.  For the GBP-LIBOR time series, the matrix  can be re-

specified by assuming 13 31 0    while all the other elements of the feedback matrix 

are significantly different from zero; in the case of the USD-LIBOR time series there is 

no feedback evidence from the six-month USD-LIBOR rate to the twelve-month USD-

LIBOR rate in either direction as 34 43 0   , both being statistically insignificant.  For 

the EUR-LIBOR time series some elements can be considered zero:  

11 12 43 44 0       ; for the JPY-LIBOR rates the inference suggests that 

23 24 41 42 0       ; for the CAD-LIBOR rates only one feedback coefficient is 

insignificant 32 0   implying that there is no feedback from the one-month rate to the 

six- month rate. Finally, for the U.K. spot rates the estimation results for the feedback 

matrix imply 12 24 34 41 44 0         . When analysed in comparison with the 

corresponding best restricted models, there is always a higher degree of significant 

elements in the feedback matrix in the more general CKLS model. Hence, we can argue 

that the increased flexibility provided by the CKLS specification by not restricting the 

elasticity of the variance parameter  , may render higher degree of significance in the 

feedback matrix reflecting a stronger correlation among the factors explicitly modelled 

via a more complex deterministic drift.  

        The estimates for the correlation coefficients are all positive under the CKLS model 

for all LIBOR currencies. A ranking in terms of the degree of correlation among the 

factors can be observed across all the LIBOR data sets. The estimation results for the 

correlation coefficients indicate that the six-month and twelve-month rates are most 

highly correlated with the value of the correlation coefficient 34  between 0.75 (JPY-

LIBOR) and 0.98 (USD-LIBOR). The other pairs of highly correlated short-term interest 

rates are for the maturities of one-month with six-month and one-week with one-month.  

       In the case of the bond market data, the estimation results are rather different, with a 

much lower level effect estimates and another correlation structure. As can be seen in the 

Table 3.25, the components of vector   are estimated within the range (0.000004, 0.22), 

suggesting a much weaker sensitivity of the conditional variance with respect to the level 
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of interest rate; and only  1 0.22   is statistically different from zero.  The Vasicek model 

supports the data best with the highest value of the restricted log-likelihood functions 

LogLF   105,776.12. All the restricted models are rejected against the unrestricted 

CKLS model.  Regarding the drift components, under the CKLS, the intercept estimates 

are very close to zero, whereas the feedback matrix has only five elements statistically 

insignificant and they degenerate to zero 12 24 34 41 44( 0)         . As expected, 

the correlation coefficients are higher between the spot rates corresponding to the flatter 

end of the term structure with 34 230.95,  0.94     and  24 0.82   . 

 

Table 3.20a) LIBOR-GBP, The Drift Coefficients Estimates, Four-Factor Models  

Param. CKLS  SE  Vasicek SE TR CIR SE  BR&SC SE  

Alpha1 0 0 -0.00066 0.00011 -0.00007 0 0.00004 0 

Alpha2 0.00003 0 -0.00011 0.00002 -0.0001 0 0 0 

Alpha3 0.00003 0 -0.00003 0 -0.00011 0 -0.00002 0 

Alpha4 0.00005 0 0.00003 0 -0.00008 0 -0.00004 0 

B11 0.01438 0.00496 -0.0175 0.00948 -0.19935 0 0.05997 0.0067 

B12 -0.01732 0.00644 -0.00322 0.0162 0.26642 0 -0.04241 0.00873 

B13 -0.00395 0.00312 -0.08595 0.03195 -0.14338 0 -0.04315 0.00531 

B14 0.00439 0.00148 0.11546 0.02602 0.07316 0 0.02383 0.00266 

B21 0.02164 0.00352 0.03063 0.00207 0.01596 0.00229 0.03622 0.00212 

B22 -0.01966 0.00457 -0.05358 0.00193 -0.00678 0.00308 -0.03477 0.00268 

B23 0.00147 0.00215 0.03197 0.00445 -0.03782 0.00261 -0.00769 0.00149 

B24 -0.00399 0.00095 -0.00712 0.00377 0.0301 0.00131 0.00594 0.00072 

B31 -0.00293 0.0007 0.00492 0.00165 0.01713 0.0017 0.00726 0.0017 

B32 0.01334 0.00061 -0.00347 0.00132 -0.00426 0.00224 -0.00761 0.00221 

B33 -0.0094 0.00135 0.00027 0.00187 -0.04474 0.00215 -0.00342 0.00155 

B34 -0.00157 0.00074 -0.00125 0.00151 0.03364 0.00107 0.00356 0.00075 

B41 -0.01358 0.00133 0.0022 0.00213 0.01106 0.00209 -0.0168 0.0022 

B42 0.0235 0.00134 -0.00726 0.00202 0.00295 0.0027 0.01639 0.00294 

B43 -0.00556 0.0014 0.02532 0.00195 -0.04132 0.00216 -0.0051 0.00202 

B44 -0.00528 0.00078 -0.02085 0.00133 0.02843 0.00083 0.00528 0.00087 

 

 

 

Table 3.20b) LIBOR-GBP, The Diffusion Coefficients Estimates, Four-Factor Models 

Param. CKLS  SE  Vasicek SE  CIR SE  BR&SC SE TR 

Gamma1 1.59404 0.00696 0 N/A 0.5 N/A 1 N/A 

Gamma2 1.22368 0.01377 0 N/A 0.5 N/A 1 N/A 

Gamma3 1.03083 0.00288 0 N/A 0.5 N/A 1 N/A 

Gamma4 1.39513 0.00476 0 N/A 0.5 N/A 1 N/A 
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Sigma1   0.20586 0.0062 0.00114 0.00002 0.00557 0.00003 0.02878 0.00023 

Sigma2   0.01809 0.00099 0.00034 0 0.0016 0.00799 0.00785 0.00006 

Sigma3   0.0074 0.0001 0.00027 0 0.00126 0.00842 0.00568 0.00004 

Sigma4   0.02825 0.00056 0.00034 0 0.00155 0.00826 0.00724 0.00006 

Corr12 0.54379 0.0091 0.49558 0.01111 0.53476 0.00795 0.59934 0.00754 

Corr13 0.25767 0.01148 0.182 0.01305 0.2214 0.01132 0.04943 0.01248 

Corr14 0.21541 0.0118 0.13789 0.01333 0.17669 0.0117 -0.09881 0.01349 

Corr23 0.77737 0.0065 0.73874 0.00525 0.75729 0.0048 0.53113 0.00948 

Corr24 0.66319 0.00845 0.60368 0.00741 0.61929 0.00695 0.26443 0.01247 

Corr34 0.93308 0.00145 0.92748 0.00139 0.92822 0.00135 0.87946 0.00238 

LogLF 112,577.66 N/A 105,903.42 13,348.48+ 109,627.13 5,901.06+ 110,947.21 3,260.91+ 

 Note The cells marked with * contain values smaller than 610 ; the cells marked with + contain the 

corresponding values of the LR test statistics (
2 (4 ,1%) 13.28crit df  ). 

 

Table 3.21a) LIBOR-USD, The Drift Coefficients Estimates, Four-Factor Models 

Param. CKLS SE VASICEK SE CIR SE BS SE 

Alpha1 0.00002 0* -0.00011 0.00003 -0.00003 0* 0.00001 0* 

Alpha2 0.00005 0* -0.00005 0.00001 -0.00003 0* 0.00001 0* 

Alpha3 0.00004 0* -0.00003 0 -0.00002 0* 0.00001 0* 

Alpha4 0.00006 0* 0.00001 0 0 0* 0.00001 0* 

Beta11 0.03357 0.00277 0.03177 0.00464 0.0575 0.00348 0.04982 0.00227 

Beta12 -0.03421 0.00304 -0.0439 0.00594 -0.06642 0.00403 -0.05548 0.0025 

Beta13 -0.00621 0.00196 -0.00292 0.01063 0.00318 0.0019 0.00594 0.00082 

Beta14 0.00443 0.00153 0.01642 0.00879 0.00546 0.00046 -0.00209 0.00043 

Beta21 0.0228 0.00291 0.07734 0.00215 0.09286 0.00259 0.08553 0.00255 

Beta22 -0.01928 0.00316 -0.09453 0.00251 -0.0997 0.00297 -0.08928 0.00277 

Beta23 0.0017 0.0018 0.01827 0.00465 -0.00238 0.00137 0.00057 0.00067 

Beta24 -0.00696 0.00135 -0.00038 0.00347 0.00949 0.0007 0.00249 0.00036 

Beta31 -0.00896 0.00252 0.02701 0.00215 0.0324 0.002 -0.00123 0.00345 

Beta32 0.02317 0.00186 -0.03339 0.00173 -0.03079 0.0028 0.00369 0.00387 

Beta33 -0.01592 0.00359 0.00812 0.00246 -0.01049 0.00205 0.00103 0.00132 

Beta34 0.00134 0.00291 -0.00162 0.0019 0.00875 0.00101 -0.00379 0.00058 

Beta41 -0.01595 0.00314 0.00829 0.00307 0.01634 0.00274 -0.01586 0.00514 

Beta42 0.03148 0.00237 -0.01322 0.00267 -0.01401 0.00407 0.0183 0.00593 

Beta43 -0.0006 0.00434 0.01727 0.00252 -0.00435 0.00338 0.00749 0.0026 

Beta44 -0.01558 0.00348 -0.01304 0.00174 0.0012 0.00186 -0.01004 0.00112 

 

 

Table 3.21b) LIBOR-USD, The Diffusion Coefficients Estimates, Four-Factor Models 

Param. CKLS SE 
VASICE

K 
SE CIR SE BS SE 

Gamma1 0.97513 0.00419 0 N/A 0.5 N/A 1 N/A 

Gamma2 0.80915 0.0054 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.99445 0.00117 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.9881 0.00267 0 N/A 0.5 N/A 1 N/A 
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Sigma1 0.01945 0.00047 0.00052 0.01421 0.00289 0.00403 0.02139 0.00605 

Sigma2 0.007 0.00019 0.00031 0.00897 0.00187 0.00765 0.01461 0.00667 

Sigma3 0.01557 0.00016 0.00031 0.00856 0.00183 0.00834 0.01223 0.00819 

Sigma4 0.01704 0.00026 0.00043 0.00832 0.00252 0.00819 0.01718 0.00843 

Corr12 0.55108 0.00999 0.57393 0.00974 0.55132 0.00746 0.48312 0.00855 

Corr13 0.24234 0.01213 0.32574 0.01286 0.3246 0.01043 0.13464 0.01244 

Corr14 0.19591 0.01238 0.20007 0.01293 0.19688 0.01143 -0.03379 0.01301 

Corr23 0.5616 0.0087 0.68931 0.0061 0.66626 0.00629 0.4416 0.00999 

Corr24 0.49847 0.00953 0.47818 0.00912 0.46016 0.0092 0.21256 0.01208 

Corr34 0.98207 0.00037 0.91024 0.00183 0.90904 0.00173 0.89437 0.00211 

Log LF 112,669.38 N/A 107,366.63 10,605.51+ 111,026.43 3,285.90+ 111,329.85 2,679.06+ 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the 

corresponding values of the LR test statistics (
2 (4 ,1%) 13.28crit df  ). 

 

Table 3.22a) LIBOR-EUR, The Drift Coefficients Estimates, Four-Factor Models 

Param. CKLS S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 0 0* -0.00001 0.00002 0.00006 0* 0 0* 

Alpha2 -0.00003 0* -0.00003 0.00001 0.00004 0.000001 0.00004 0* 

Alpha3 -0.00003 0* 0 0 0.00002 0.000002 0 0* 

Alpha4 -0.00002 0* 0.00007 0 0.00006 0.000004 0.00001 0 

Beta11 0.00559 0.00406 -0.0032 0.00792 -0.00405 0.00364 0.01012 0.00293 

Beta12 -0.00415 0.00459 0.00322 0.00819 -0.00369 0.0046 -0.00432 0.00314 

Beta13 -0.0045 0.00194 0.00316 0.008 0.03634 0.00267 -0.01373 0.00099 

Beta14 0.00236 0.00103 -0.00313 0.00548 -0.03042 0.0012 0.00767 0.00049 

Beta21 0.02631 0.00316 0.04727 0.00267 0.02565 0.00229 0.04537 0.00218 

Beta22 -0.0228 0.0035 -0.06318 0.00286 -0.03559 0.00283 -0.0525 0.00243 

Beta23 -0.02009 0.00146 0.02516 0.0032 0.03275 0.00167 0.02346 0.00085 

Beta24 0.01709 0.00082 -0.00825 0.00268 -0.02374 0.00089 -0.01696 0.00043 

Beta31 0.01791 0.00115 0.00533 0.00137 0.00417 0.00206 0.00036 0.002 

Beta32 -0.01345 0.00199 -0.00083 0.00233 -0.00016 0.00264 0.00176 0.00248 

Beta33 -0.01827 0.00177 -0.00377 0.00285 0.00006 0.00179 -0.00016 0.00142 

Beta34 0.01454 0.00092 -0.00057 0.00176 -0.00441 0.001 -0.00199 0.00075 

Beta41 0.01306 0.0021 -0.00281 0.00235 0.00156 0.00309 -0.01864 0.00311 

Beta42 -0.01182 0.00312 0.00315 0.00408 -0.00176 0.00398 0.01808 0.00404 

Beta43 -0.00301 0.00249 0.02722 0.00433 0.02561 0.00272 0.01339 0.00277 

Beta44 0.0021 0.00133 -0.02871 0.0023 -0.02672 0.00153 -0.01327 0.00146 

 

 

Table 3.22b) LIBOR-EUR, The Diffusion Coefficients Estimates, Four-Factor Models 

Param. CKLS S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 0.69498 0.007182 0 N/A 0.5 N/A 1 N/A 

Gamma2 0.66565 0.015356 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.75755 0.001991 0 N/A 0.5 N/A 1 N/A 

Gamma4 1.04215 0.015731 0 N/A 0.5 N/A 1 N/A 
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Sigma1 0.00526 0.01721 0.00037 0.02025 0.00236 0.00593 0.02429 0.00906 

Sigma2 0.00249 0.02845 0.00023 0.00738 0.00132 0.00754 0.01214 0.00735 

Sigma3 0.00257 0.00992 0.00018 0.00846 0.00103 0.00843 0.00675 0.00882 

Sigma4 0.0098 0.02541 0.00028 0.00767 0.00148 0.00821 0.00934 0.01032 

Corr12 0.6222 0.00803 0.4761 0.0149 0.58779 0.01107 0.67471 0.01204 

Corr13 0.38564 0.01021 0.2897 0.012 0.37323 0.01032 -0.05124 0.01421 

Corr14 0.24264 0.01133 0.1513 0.01233 0.23817 0.01144 -0.24354 0.01366 

Corr23 0.61826 0.00776 0.5441 0.00877 0.61991 0.00712 0.26422 0.01395 

Corr24 0.40621 0.01007 0.3471 0.01127 0.42326 0.00981 -0.00937 0.01477 

Corr34 0.86406 0.00273 0.8584 0.00273 0.86823 0.00257 0.84559 0.00333 

Log LF 115,424.04 N/A 111,188.22 8,471.63+ 114,586.98 1,674.13+ 112,955.44 4,937.20+ 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the 

corresponding values of the LR test statistics (
2 (4 ,1%) 13.28crit df  ). 

 

Table 3.23a) LIBOR-JPY, The Diffusion Coefficients Estimates, Four-Factor Models 

Param. CKLS S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 -0.00001 0* 0* 0* 0* 0* 0 0* 

Alpha2 -0.00001 0* 0* 0* 0 0* 0* 0* 

Alpha3 0* 0* 0* 0* 0 0* -0.00001 0* 

Alpha4 0 0* 0* 0* 0* 0* 0 0* 

Beta11 0.04638 0.00519 -0.0493 0.0082 -0.10204 0.00568 0.00606 0.00579 

Beta12 -0.03782 0.00502 -0.0018 0.0104 0.04321 0.00706 -0.00905 0.00569 

Beta13 0.01662 0.00346 0.0746 0.0135 0.04654 0.00605 -0.02784 0.00397 

Beta14 -0.00954 0.00183 -0.0414 0.0082 -0.02002 0.003 0.01993 0.00215 

Beta21 0.05453 0.00473 0.0004 0.0036 0.02624 0.0038 0.08036 0.00446 

Beta22 -0.03377 0.0048 -0.0299 0.0043 -0.05356 0.00447 -0.09728 0.00477 

Beta23 -0.00067 0.00269 0.0448 0.0049 0.02751 0.00381 0.01564 0.00286 

Beta24 -0.00209 0.00141 -0.0237 0.0025 -0.00847 0.00205 -0.0012 0.0015 

Beta31 -0.00821 0.00189 0.0117 0.0012 0.00484 0.00145 0.00114 0.00213 

Beta32 0.00977 0.00216 -0.0099 0.0015 -0.0051 0.00176 0.00714 0.00254 

Beta33 0.00772 0.00237 0.0008 0.0018 0.0005 0.0019 0.00001 0.00245 

Beta34 -0.0076 0.00129 -0.0022 0.001 -0.0002 0.00105 -0.00055 0.00128 

Beta41 0.00169 0.00146 0.0032 0.0011 0.00046 0.00132 -0.01146 0.00176 

Beta42 0.00154 0.00177 -0.0069 0.0014 -0.00314 0.00163 0.01221 0.00215 

Beta43 -0.00669 0.00229 0.011 0.0017 0.00797 0.00189 0.0041 0.00245 

Beta44 0.00321 0.0013 -0.0087 0.001 -0.00522 0.00107 -0.00282 0.00136 

 

 

Table 3.23b) LIBOR-JPY, The Diffusion Coefficients Estimates, Four-Factor Models 

Param. CKLS S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 1.30589 0.00614 0 N/A 0.5 N/A 1 N/A 

Gamma2 1.20374 0.00643 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.87365 0.00817 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.80425 0.00698 0 N/A 0.5 N/A 1 N/A 



126 

  

Sigma1 0.54749 0.02519 0.0004 0 0.0047 0.00614 0.07925 0.00064 

Sigma2 0.1552 0.00726 0.0002 0 0.00232 0.00643 0.04243 0.0003 

Sigma3 0.00807 0.00044 0.0001 0 0.00085 0.00817 0.0181 0.00014 

Sigma4 0.00413 0.00018 0.0001 0 0.00075 0.00698 0.01383 0.00012 

Corr12 0.57337 0.00796 0.4966 0.00859 0.55043 0 0.60882 0.00773 

Corr13 0.21099 0.01198 0.2129 0.01174 0.29174 0.00002 -0.04755 0.01362 

Corr14 0.12127 0.01215 0.1209 0.01212 0.19937 0.00001 -0.16739 0.0134 

Corr23 0.42502 0.01021 0.4625 0.00943 0.52402 0.00001 0.13845 0.01422 

Corr24 0.34108 0.01088 0.3368 0.01082 0.42389 0.0062 -0.01224 0.01425 

Corr34 0.75093 0.00511 0.8379 0.00292 0.81611 0.01093 0.72776 0.00532 

LogLF 131,915.25 N/A 121,197.90 21,434.71+ 128,664.45 6,501.60+ 130,785.48 2,259.54+ 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the 

corresponding values of the LR test statistics (
2 (4 ,1%) 13.28crit df  ). 

 

Table 3.24a) LIBOR-CAD, The Drift Coefficients Estimates, Four-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 -0.00012 0 -0.00011 0.00001 0.00005 0* -0.00003 0* 

Alpha2 -0.00012 0 -0.00011 0.00001 0 0 -0.00005 0* 

Alpha3 -0.00013 0* 0.00003 0.00001 -0.00008 0 -0.00001 0* 

Alpha4 -0.00007 0* 0.00007 0.00001 -0.00003 0* 0.00005 0 

Beta11 -0.03696 0.01663 -0.01253 0.00405 -0.01063 0.00493 0.02391 0.00491 

Beta12 0.04398 0.01811 0.00589 0.00431 0.00581 0.00554 -0.0225 0.00521 

Beta13 -0.02876 0.00295 -0.00535 0.00359 0.01239 0.00304 -0.01054 0.00156 

Beta14 0.02321 0.00141 0.01364 0.00173 -0.00945 0.00135 0.00878 0.00078 

Beta21 0.0265 0.01615 0.0671 0.00378 0.05256 0.00428 0.07785 0.0046 

Beta22 -0.02453 0.01676 -0.07678 0.00541 -0.06578 0.00479 -0.07882 0.00484 

Beta23 -0.02337 0.00264 -0.00961 0.00458 0.01758 0.00237 -0.01193 0.00151 

Beta24 0.02328 0.00131 0.02094 0.00201 -0.00493 0.00115 0.01378 0.00075 

Beta31 0.01834 0.00179 0.01831 0.00403 -0.00009 0.00482 -0.00002 0.00481 

Beta32 -0.00615 0.00349 -0.02359 0.00463 -0.00706 0.00548 -0.00034 0.00546 

Beta33 -0.04321 0.00336 0.00603 0.00336 -0.00106 0.00238 -0.00198 0.00245 

Beta34 0.03307 0.00151 -0.00185 0.0017 0.00906 0.00091 0.00181 0.00108 

Beta41 0.02556 0.00367 0.00374 0.00527 -0.00008 0.00621 -0.00443 0.00636 

Beta42 -0.01484 0.00547 -0.01401 0.00599 -0.00703 0.00725 -0.0031 0.00744 

Beta43 -0.03409 0.0046 0.02427 0.00389 0.00307 0.00459 0.01927 0.00352 

Beta44 0.02402 0.0021 -0.01607 0.00194 0.00364 0.00258 -0.01362 0.00138 

 

 

Table 3.24b) LIBOR-CAD, The Diffusion Coefficients Estimates, Four-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 0.65518 0.01285 0 N/A 0.5 N/A 1 N/A 

Gamma2 0.59215 0.02102 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.67015 0.00389 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.77973 0.01837 0 N/A 0.5 N/A 1 N/A 
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Sigma1   0.0038 0.00025 0.00035 0 0.00209 0.00001 0.01625 0.00011 

Sigma2   0.00247 0.00023 0.00031 0 0.00174 0.00001 0.01366 0.00008 

Sigma3   0.00306 0.00006 0.00029 0 0.00165 0.00001 0.0103 0.00009 

Sigma4   0.00534 0.00036 0.00037 0 0.00201 0.00002 0.01189 0.0001 

Corr12 0.59118 0.00832 0.48123 0.00836 0.56093 0.00747 0.59482 0.00714 

Corr13 0.33732 0.01092 0.29445 0.01084 0.29695 0.01086 0.02271 0.01258 

Corr14 0.23498 0.0118 0.21001 0.01151 0.19524 0.01157 -0.03793 0.01268 

Corr23 0.51084 0.01025 0.4683 0.00893 0.49047 0.00866 0.30095 0.01161 

Corr24 0.40887 0.01039 0.36166 0.01013 0.38595 0.01002 0.22973 0.01203 

Corr34 0.87807 0.00227 0.88707 0.00202 0.88185 0.00203 0.87228 0.00226 

Log LF 109,831.29 N/A  107,760.40 4,141.78+  109,639.74 383.1+ 108,492.75 2,677.08 + 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the 

corresponding values of the LR test statistics (
2 (4 ,1%) 13.28crit df  ). 

   

Table 3.25a) U.K. Spot Rates, The Drift Coefficients Estimates, Four-Factor Models 

Param CKLS  S.E.  VASICEK S.E.  CIR S.E.  BS S.E.  

Alpha1 -0.00026 0.00001 -0.00018 0.00001 0.00038 0* 0 0* 

Alpha2 -0.00007 0.00001 -0.00009 0.00001 0 0* 0.00014 0* 

Alpha3 0 0.00002 0.00012 0.00002 0.00013 0* -0.00004 0* 

Alpha4 0.00006 0.00001 0.00029 0.00002 0.00013 0* 0.00001 0* 

Beta11 0.00337 0.00096 0.00723 0.00091 0.00363 0.0008 0.00692 0.0009 

Beta12 -0.00505 0.00333 -0.01849 0.00305 -0.02133 0.0027 -0.00737 0.0025 

Beta13 -0.01483 0.00514 0.01199 0.00509 0.04502 0.0041 -0.00383 0.0038 

Beta14 0.02255 0.00262 0.00339 0.00282 -0.03791 0.0019 0.0057 0.0019 

Beta21 0.0087 0.00124 0.01143 0.00092 0.00814 0.0012 0.02493 0.0017 

Beta22 -0.03025 0.00373 -0.0286 0.00238 -0.01911 0.0042 -0.07331 0.005 

Beta23 0.02288 0.00586 0.02075 0.00442 0.00623 0.0071 0.09573 0.007 

Beta24 0.00005 0.00383 -0.00135 0.00328 0.00419 0.0044 -0.05147 0.0032 

Beta31 0.00531 0.00106 0.0073 0.00096 0.00282 0.0012 -0.00062 0.0009 

Beta32 -0.02127 0.0026 -0.01658 0.00255 -0.00659 0.0038 0.00199 0.0031 

Beta33 0.0158 0.00343 0.01081 0.00397 -0.00153 0.0064 -0.00061 0.0051 

Beta34 0 0.00262 -0.00387 0.0024 0.00178 0.0042 -0.00053 0.0029 

Beta41 0.00204 0.00102 0.00568 0.00101 -0.00009 0.0011 -0.01389 0.001 

Beta42 -0.01332 0.00238 -0.01665 0.00298 -0.00159 0.0037 0.02947 0.0032 

Beta43 0.01183 0.00261 0.02224 0.00469 -0.00164 0.0059 -0.01138 0.006 

Beta44 -0.00223 0.00169 -0.01789 0.00258 -0.00025 0.0035 -0.0059 0.004 

 

 

Table 3.25b)  U.K. Spot Rates, The Diffusion Coefficients Estimates, Four-Factor Models 

Param  CKLS  S.E.  VASICEK S.E.  CIR S.E.  BS S.E.  

Gamma1 0.21811 0.04274 0 N/A 0.5 N/A 1 N/A 

Gamma2 0.02441 0.34311 0 N/A 0.5 N/A 1 N/A 

Gamma3 0* 28.65801 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.09501 0.26365 0 N/A 0.5 N/A 1 N/A 
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Sigma1   0.00083 0.03155 0.00037 0.00739 0.0026 0.0077 0.02843 0.01235 

Sigma2   0.00055 0.0295 0.00049 0.00864 0.0029 0.0092 0.01762 0.01221 

Sigma3   0.00048 0.00907 0.00046 0.00867 0.00241 0.0092 0.00914 0.00666 

Sigma4   0.00061 0.07252 0.00044 0.00858 0.00221 0.009 0.01013 0.01081 

Corr12 0.66703 0.00649 0.63917 0.0067 0.65498 0.0119 0.61379 0.01016 

Corr13 0.51899 0.00891 0.47226 0.00927 0.54301 0.0123 0.29423 0.0106 

Corr14 0.42898 0.0101 0.37866 0.0104 0.4678 0.0123 -0.09382 0.01903 

Corr23 0.93557 0.00151 0.92943 0.00158 0.94274 0.0117 0.67929 0.00932 

Corr24 0.82032 0.00385 0.80745 0.00396 0.83423 0.0116 0.07866 0.02137 

Corr34 0.94505 0.00113 0.94214 0.00114 0.94757 0.0106 0.74792 0.00749 

Log LF 105,776.12 N/A 105,661.29 229.66+ 104,941.82 1,668.60+ 100,376.30 10,799.62+ 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the 

corresponding values of the LR test statistics (
2 (4 ,1%) 13.28crit df  ). 

 

       The estimates for the level effect parameters in the unrestricted CKLS model across 

all the data sets are also presented in Table 3.26 below. Within the money-market context 

there are similarities between the U.K and Japan on one side, and between the U.S., the 

Eurozone and Canada on the other side. For the U.K and Japan, the shortest maturity rates 

(one-week and one-month) exhibit the highest dependence of the volatility on the level of 

interest rates, while for the U.S, Japan and Canada this happens for the six- and twelve-

month LIBOR rates.  In the case of the U.K. spot rates, only the first component of the 

level effect parameter significant, indicating that from the restricted models then Vasicek 

specification may explain the dynamics of the data as close as the general CKLS model. 

The level effect parameter for the 15-year U.K spot rates is 0.000004   suggesting a 

constant conditional volatility for the process of these time-series.  

 

Table 3.26 The Estimates for the Level - Effect Parameter for Four-Factor CKLS models. 

CKLS GBP-LIBOR  USD-LIBOR  EURLIBOR JPY-LIBOR CAD-LIBOR UK Spot  

Gamma1 1.5940388 0.9751338 0.6949800 1.3058910 0.6551755 0.218114 

Gamma2 1.2236800 0.8091528 0.6656462 1.2037392 0.5921455 0.024406 

Gamma3 1.0308315 0.9944530 0.7575482 0.8736540 0.6701456 0.000004 

Gamma4 1.3951253 0.9880993 1.0421511 0.8042529 0.7797263 0.095013 

 

 

3.5.2 Estimation Results for the Five-Factor Continuous-Time Models  

          The second stage in the estimation corresponds to the extension to five-factor 

continuous-time models presented in Section 3.5.  The fifth factor added to the previous 

four-factor specifications is chosen as the three-month LIBOR and the 10-year UK 
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nominal rate time series for the short end and the long end of the yield curve, 

respectively. As a result, the number of parameters increases to fifty for the CKLS model 

and to forty-five for the restricted models. The QMLE estimates of the parameters for all 

the continuous-time models and the benchmark models are presented in Tables 3.27-3.32. 

Relative to the four-factor specifications, the five-factor models gain naturally more 

explanatory power and the estimation results confirmed that with considerably higher 

maxima of the log-likelihood functions compared to the four-factor models. The ranking 

among the continuous-time models has remained unchanged for each dataset, with the 

same nested models being designated as the best match to the data.  

         The new estimates for the level effect in all the unrestricted CKLS models are 

presented in Table 3.33. In comparison with the four-factor models these values seem to 

suggest a slightly lower degree of dependence of the variance on the level of the interest 

rate. The highest estimates for the level effect parameters are recorded for the GBP-

LIBOR, USD-LIBOR and JPY-LIBOR time series, followed by the EUR-LIBOR and 

CAD-LIBOR rates., whereas for the U.K. spot rates the models do not support such a 

dependence. Based on the likelihood ratio tests (with a 
2 (5df ) distribution) all the 

restricted models are rejected against the general model CKLS.  Under the CKLS model 

the drift parameters are the five-dimensional intercept vector   with most of its 

components being significant and the feedback matrix   of twenty-five components 

whose estimates produce evidence of feedback in most directions.  With regard to the 

correlation between the five factors, the new factor appears to be of significant influence 

as the degree of its positive correlation with the six-month and twelve-month rates 

respectively is very high relative to the correlation coefficient between the two factors at 

the very short-term of the yield curve, namely the one-week and the one-month. In 

conclusion the last three factors, the three-, six- and twelve-month LIBOR rates move 

closely together implying that if any twists were to exist in the term structure of interest 

rates over the period 2000-2013, they should have occurred outside this three to twelve- 

month maturity zone. 

        For the U.K. spot rates in Table 3.32, the estimation results for the five-factor 

models consolidate the findings from the four-factor framework. The estimates of the 

level effect parameters are very close to zero implying a homoscedastic conditional 

variance for all the factors. Out of the five level effect parameters only 1 0.20   is 

statistically significant. Therefore, the Vasicek model is the most appropriate restricted 

model, a fact indicated by its second highest log-likelihood function value and a close to 
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acceptance LR statistic value. The drift coefficients ( 1,...,5)i i  are all insignificant, 

while among the elements of the feedback matrix there is evidence of highly significant 

feedbacks in both directions between three pairs of factors. They are the (7-year, 10-year) 

pair with a negative feedback coefficient from the 10-year to 7-year spot rates of 

23 0.11326   ; the (7-year, 15-year) pair with bidirectional effects 24 0.05517   > 

42 0.01013  ; the third pair is the (10-year, 25-year) pair with a stronger positive 

feedback coefficient from the 10-year interest rate to the 25-year interest rate than the one 

from the 25-year to the 10-year interest rates  53 350.04617 0.01884   . The 

correlation coefficients estimates are all highly significant and positive with the highest 

values ( 23 0.98312    and 34 0.97802  ) being realised consistently across the models 

for two pairs of maturities: (7-year, 10-year) and (10-year, 15-year), respectively. This 

observation is consistent with the feedback results and highlights the importance of the 

new factor introduced in the models - the 10-year maturity spot rates, which corresponds 

to a crucial position on the term structure of interest rates given the fact that the 10-year 

U.K. discount bond market is one of the most liquid ones.  

 

Table 3.27a) GBP-LIBOR, The Diffusion Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 -0.00002 0.00000 -0.00010 0.00006 -0.00010 0.00003 0.00014 0.00001 

Alpha2 -0.00001 0.00000 -0.00004 0.00001 0.00001 0.00001 0.00003 0.00000 

Alpha3 -0.00003 0.00000 -0.00006 0.00001 0.00001 0.00000 0.00000 0.00000 

Alpha4 -0.00001 0.00000 0.00001 0.00001 0.00012 0.00000 0.00009 0.00000 

Alpha5 -0.00001 0.00000 0.00009 0.00001 0.00029 0.00001 0.00017 0.00000 

Beta11 -0.02037 0.00301 -0.19926 0.00959 -0.36694 0.00623 -0.18496 0.00768 

Beta12 0.03718 0.00431 0.32199 0.01385 0.61832 0.00335 0.25828 0.01088 

Beta13 -0.06067 0.00532 -0.36988 0.00000 -0.44243 0.03253 -0.08394 0.01404 

Beta14 0.04843 0.00635 0.32819 0.00000 0.18706 0.05246 0.01521 0.01646 

Beta15 -0.00838 0.00239 -0.08213 0.00834 0.00030 0.02286 -0.01118 0.00494 

Beta21 0.01926 0.00119 -0.00370 0.00302 -0.01687 0.00222 -0.00215 0.00282 

Beta22 -0.01013 0.00167 0.01747 0.00487 0.06387 0.00304 0.01744 0.00377 

Beta23 -0.02973 0.00086 -0.04805 0.00267 -0.05254 0.00724 -0.01527 0.00334 

Beta24 0.02498 0.00000 0.04754 0.00497 -0.00678 0.01036 0.00096 0.00390 

Beta25 -0.00483 0.00000 -0.01260 0.00291 0.01210 0.00444 -0.00175 0.00123 

Beta31 0.02411 0.00084 0.01384 0.00223 0.00512 0.00198 -0.00060 0.00194 

Beta32 -0.01673 0.00101 -0.00832 0.00369 0.02117 0.00284 0.01064 0.00272 

Beta33 0.00151 0.00047 -0.00905 0.00361 0.00929 0.00171 0.02111 0.00233 

Beta34 -0.02309 0.00079 -0.00018 0.00440 -0.06084 0.00270 -0.05020 0.00288 

Beta35 0.01462 0.00034 0.00481 0.00174 0.02522 0.00166 0.01883 0.00120 
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Beta35 0.01462 0.00034 0.00481 0.00174 0.02522 0.00166 0.01883 0.00120 

Beta41 0.01781 0.00109 0.01056 0.00237 0.00243 0.00239 -0.00274 0.00203 

Beta42 -0.00388 0.00142 -0.00756 0.00378 0.02066 0.00316 0.01327 0.00268 

Beta43 -0.02408 0.00145 0.00923 0.00216 -0.00187 0.00216 -0.01403 0.00161 

Beta44 0.00958 0.00134 -0.01287 0.00373 -0.01579 0.00427 0.02190 0.00204 

Beta45 0.00073 0.00038 0.00071 0.00203 -0.00710 0.00200 -0.01992 0.00079 

Beta51 0.01170 0.00177 0.00273 0.00289 0.00492 0.00346 0.01474 0.00323 

Beta52 0.00130 0.00232 -0.00021 0.00433 -0.00182 0.00423 -0.02395 0.00411 

Beta53 -0.01405 0.00355 0.03247 0.00428 0.03635 0.00486 0.03401 0.00491 

Beta54 -0.00432 0.00339 -0.03419 0.00815 -0.00305 0.00970 -0.00078 0.00723 

Beta55 0.00540 0.00091 -0.00222 0.00401 -0.04090 0.00441 -0.02682 0.00291 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 

 

 

 

Table 3.27b) GBP-LIBOR, The Diffusion Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 1.58807 0.00299 0 N/A 0.5 N/A 1 N/A 

Gamma2 1.22215 0.00000 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.86831 0.00000 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.92924 0.00000 0 N/A 0.5 N/A 1 N/A 

Gamma5 1.27792 0.00000 0 N/A 0.5 N/A 1 N/A 

Sigma1   0.20505 0.02381 0.00118 0.00001 0.00668 0.00005 0.02832 0.00032 

Sigma2   0.01763 0.00267 0.00035 0.00000 0.00158 0.00001 0.00865 0.00009 

Sigma3   0.00397 0.00824 0.00026 0.00000 0.00105 0.00001 0.00540 0.00004 

Sigma4   0.00506 0.00838 0.00027 0.00000 0.00120 0.00001 0.00563 0.00004 

Sigma5 0.01849 0.00000 0.00034 0.00000 0.00171 0.00002 0.00794 0.00009 

Corr12 0.55962 0.01203 0.54664 0.00834 0.62411 0.00826 0.58063 0.01513 

Corr13 0.30440 0.01230 0.32261 0.01112 0.17589 0.01331 0.35995 0.01051 

Corr14 0.24132 0.01230 0.24304 0.01183 -0.06537 0.01537 0.21677 0.01302 

Corr15 0.18952 0.01239 0.19756 0.01213 -0.22488 0.01598 0.04715 0.02028 

Corr23 0.83978 0.01102 0.84476 0.00316 0.69596 0.00819 0.73144 0.00642 

Corr24 0.75200 0.01173 0.74675 0.00522 0.40506 0.01396 0.39348 0.01295 

Corr25 0.62118 0.01207 0.60850 0.00768 0.12289 0.01625 -0.00006 0.01639 

Corr34 0.92663 0.01126 0.93030 0.00156 0.86624 0.00390 0.80420 0.00607 

Corr35 0.79402 0.01120 0.78430 0.00448 0.63241 0.00895 0.45625 0.01324 

Corr45 0.92734 0.00906 0.92838 0.00144 0.90443 0.00224 0.84470 0.00377 

LogLF 145,178.45 N/A 137,767.67 14,821.57+ 141,026.26 8,304.39+ 142,591.04 5,174.82+ 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.28a) USD-LIBOR, The Drift Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 0.00002 0.00000 0.00009 0.00001 0.00000 0.00000 -0.00001 0.00000 

Alpha2 0.00003 0.00000 0.00002 0.00001 -0.00005 0.00000 0.00000 0.00000 

Alpha3 0.00002 0.00000 0.00000 0.00000 -0.00004 0.00000 0.00001 0.00000 

Alpha4 0.00003 0.00000 -0.00004 0.00001 -0.00002 0.00000 0.00005 0.00000 

Alpha5 0.00006 0.00000 -0.00008 0.00001 0.00002 0.00000 0.00012 0.00000 

Beta11 0.04633 0.00291 -0.01089 0.00404 0.05643 0.00369 0.05212 0.00243 

Beta12 -0.05349 0.00322 0.01760 0.00382 -0.05905 0.00536 -0.06412 0.00312 

Beta13 0.00121 0.00300 -0.03192 0.00424 -0.02191 0.00618 0.02118 0.00268 

Beta14 0.00890 0.00308 0.04608 0.00330 0.03423 0.00507 -0.01901 0.00241 

Beta15 -0.00520 0.00101 -0.02327 0.00212 -0.01044 0.00099 0.00881 0.00076 

Beta21 0.07786 0.00423 0.05280 0.00239 0.07930 0.00292 0.07869 0.00277 

Beta22 -0.07926 0.00385 -0.04865 0.00482 -0.07199 0.00397 -0.08283 0.00339 

Beta23 -0.01049 0.00362 -0.01631 0.00563 -0.03574 0.00420 0.00875 0.00219 

Beta24 0.01841 0.00425 0.01333 0.00372 0.02592 0.00400 -0.01151 0.00200 

Beta25 -0.00768 0.00137 -0.00181 0.00113 0.00316 0.00146 0.00662 0.00072 

Beta31 0.02815 0.00188 0.03741 0.00201 0.03272 0.00234 0.00696 0.00283 

Beta32 -0.02676 0.00086 -0.03386 0.00360 -0.03449 0.00322 0.00442 0.00377 

Beta33 0.00238 0.00247 -0.00339 0.00460 -0.00027 0.00322 -0.00048 0.00275 

Beta34 -0.00402 0.00327 -0.01458 0.00385 -0.00671 0.00282 -0.01735 0.00215 

Beta35 -0.00092 0.00116 0.01395 0.00132 0.00895 0.00089 0.00604 0.00068 

Beta41 0.01011 0.00106 0.02187 0.00257 -0.00087 0.00295 0.03290 0.00383 

Beta42 -0.01486 0.00144 -0.02491 0.00338 -0.00321 0.00369 -0.01795 0.00535 

Beta43 0.01874 0.00154 0.01596 0.00192 0.00331 0.00262 -0.01728 0.00477 

Beta44 -0.01372 0.00335 -0.04384 0.00283 -0.00091 0.00270 0.01040 0.00367 

Beta45 -0.00186 0.00142 0.03071 0.00161 0.00143 0.00089 -0.00912 0.00101 

Beta51 -0.00162 0.00000 0.00062 0.00392 -0.01149 0.00471 0.06487 0.00565 

Beta52 0.00334 0.00000 0.02873 0.00489 -0.00527 0.00621 -0.03701 0.00835 

Beta53 0.00045 0.00384 -0.06087 0.00281 0.01171 0.00660 -0.06965 0.00902 

Beta54 0.01035 0.00508 0.00311 0.00530 0.02403 0.00659 0.08471 0.00699 

Beta55 -0.01461 0.00191 0.02871 0.00295 -0.02024 0.00213 -0.04526 0.00181 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.28b) USD-USD, The Diffusion Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 0.97443 0.00450 0 N/A 0.5 N/A 1 N/A 

Gamma2 0.74230 0.01073 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.77727 0.00000 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.72288 0.00000 0 N/A 0.5 N/A 1 N/A 

Gamma5 0.62682 0.00001 0 N/A 0.5 N/A 1 N/A 

Sigma1   0.01907 0.00048 0.00053 0.00000 0.00291 0.00002 0.02110 0.00012 

Sigma2   0.00493 0.00025 0.00031 0.00000 0.00186 0.00002 0.01496 0.00012 

Sigma3   0.00441 0.00002 0.00027 0.00000 0.00137 0.00001 0.01096 0.00010 

Sigma4   0.00426 0.00003 0.00031 0.00000 0.00164 0.00001 0.01297 0.00011 

Sigma5 0.00408 0.00000 0.00042 0.00000 0.00255 0.00002 0.01758 0.00015 

Corr12 0.54332 0.01004 0.59918 0.00712 0.56286 0.00787 0.48783 0.00861 

Corr13 0.45298 0.00948 0.47752 0.00894 0.42129 0.00892 0.40063 0.01002 

Corr14 0.33784 0.01072 0.33543 0.01069 0.17508 0.01168 0.27185 0.01156 

Corr15 0.20874 0.01157 0.19556 0.01190 -0.02912 0.01337 0.14946 0.01235 

Corr23 0.79032 0.00559 0.83575 0.00312 0.72634 0.00549 0.73763 0.00488 

Corr24 0.64449 0.00876 0.67366 0.00642 0.36762 0.01134 0.58553 0.00797 

Corr25 0.44871 0.01066 0.44350 0.00978 0.02147 0.01353 0.40191 0.01036 

Corr34 0.86513 0.00285 0.87022 0.00284 0.76658 0.00541 0.84247 0.00353 

Corr35 0.67174 0.00634 0.65536 0.00680 0.44530 0.01063 0.64478 0.00708 

Corr45 0.91200 0.00175 0.90093 0.00202 0.86997 0.00284 0.91023 0.00179 

LogLF 143,684.87 N/A 137,729.50 11,910.75 142,015.79 3,338.16 142,784.54 1,800.68 

  

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.29a) EUR-LIBOR, The Drift Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 0.00001 0.00000 -0.00007 0.00001 0.00001 0.00000 -0.00001 0.00000 

Alpha2 -0.00001 0.00000 -0.00007 0.00001 0.00000 0.00000 0.00000 0.00000 

Alpha3 -0.00002 0.00000 -0.00007 0.00000 -0.00003 0.00000 -0.00004 0.00000 

Alpha4 -0.00002 0.00000 -0.00006 0.00000 -0.00007 0.00000 0.00000 0.00000 

Alpha5 0.00001 0.00000 -0.00001 0.00001 -0.00006 0.00000 0.00002 0.00000 

Beta11 -0.00784 0.00423 -0.04455 0.00329 0.01707 0.00395 -0.04740 0.00385 

Beta12 0.01909 0.00647 0.07386 0.00588 -0.01992 0.00663 0.07865 0.00523 

Beta13 -0.02390 0.00492 -0.03834 0.01331 0.00163 0.00644 -0.04632 0.00246 

Beta14 0.01990 0.00312 -0.00675 0.01495 0.00064 0.00528 0.01004 0.00143 

Beta15 -0.00800 0.00116 0.01706 0.00525 -0.00011 0.00178 0.00310 0.00058 

Beta21 0.02220 0.00195 0.01219 0.00231 0.03511 0.00234 -0.01554 0.00291 

Beta22 -0.01604 0.00185 -0.01142 0.00343 -0.02049 0.00389 0.03999 0.00409 

Beta23 -0.01694 0.00249 0.00343 0.00325 -0.03650 0.00397 -0.03872 0.00233 

Beta24 0.01038 0.00165 -0.02478 0.00405 0.02368 0.00420 0.01462 0.00158 

Beta25 0.00066 0.00086 0.02197 0.00194 -0.00141 0.00201 -0.00089 0.00060 

Beta31 0.01074 0.00000 0.01037 0.00150 0.02863 0.00180 0.02082 0.00195 

Beta32 0.00604 0.00000 -0.00185 0.00271 -0.00710 0.00285 -0.02375 0.00290 

Beta33 -0.03212 0.00000 -0.00893 0.00381 -0.03440 0.00260 0.01979 0.00208 

Beta34 0.01346 0.00201 -0.02017 0.00417 -0.00200 0.00249 -0.04219 0.00150 

Beta35 0.00267 0.00136 0.02224 0.00160 0.01580 0.00101 0.02578 0.00053 

Beta41 0.01738 0.00141 0.00372 0.00177 0.03441 0.00197 0.00018 0.00195 

Beta42 -0.01523 0.00178 0.00340 0.00305 -0.02616 0.00292 0.01415 0.00310 

Beta43 -0.01413 0.00177 0.00815 0.00279 0.00743 0.00212 -0.02487 0.00286 

Beta44 0.01802 0.00243 -0.04247 0.00209 -0.05789 0.00247 0.01663 0.00212 

Beta45 -0.00544 0.00165 0.02832 0.00103 0.04350 0.00121 -0.00610 0.00070 

Beta51 0.02408 0.00379 -0.00407 0.00283 0.03623 0.00299 0.04432 0.00316 

Beta52 -0.03643 0.00448 0.01088 0.00439 -0.02665 0.00489 -0.06520 0.00531 

Beta53 -0.00229 0.00666 -0.00677 0.00283 -0.00789 0.00567 0.02773 0.00610 

Beta54 0.03945 0.00473 0.00056 0.00359 -0.03255 0.00624 0.00173 0.00558 

Beta55 -0.02486 0.00113 -0.00027 0.00256 0.03220 0.00244 -0.00888 0.00205 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.29b) EUR-LIBOR, The Diffusion Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 0.67597 0.00339 0 N/A 0.5 N/A 1 N/A 

Gamma2 0.65892 0.00400 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.62624 0.00000 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.72557 0.00201 0 N/A 0.5 N/A 1 N/A 

Gamma5 1.02395 0.01769 0 N/A 0.5 N/A 1 N/A 

Sigma1   0.00487 0.00012 0.00038 0.00000 0.00232 0.00001 0.02578 0.00026 

Sigma2   0.00244 0.00005 0.00022 0.00000 0.00129 0.00001 0.01367 0.00013 

Sigma3   0.00152 0.00001 0.00016 0.00000 0.00093 0.00001 0.00721 0.00006 

Sigma4   0.00231 0.00004 0.00018 0.00000 0.00100 0.00001 0.00628 0.00005 

Sigma5 0.00932 0.00066 0.00027 0.00000 0.00143 0.00001 0.00857 0.00007 

Corr12 0.62617 0.00739 0.49311 0.00850 0.55880 0.00753 0.78655 0.00469 

Corr13 0.50961 0.00888 0.43169 0.00957 0.44953 0.00934 0.57559 0.00847 

Corr14 0.39580 0.01019 0.32943 0.01083 0.32874 0.01069 0.35471 0.01145 

Corr15 0.25590 0.01153 0.20143 0.01177 0.19033 0.01161 -0.04313 0.01380 

Corr23 0.76720 0.00593 0.70774 0.00539 0.75117 0.00471 0.72627 0.00615 

Corr24 0.62560 0.00704 0.57580 0.00778 0.59530 0.00758 0.45690 0.01075 

Corr25 0.42005 0.01057 0.37850 0.01027 0.38705 0.01017 -0.00830 0.01375 

Corr34 0.86467 0.00287 0.87440 0.00259 0.85894 0.00297 0.76083 0.00525 

Corr35 0.64241 0.00858 0.64260 0.00675 0.63044 0.00693 0.36155 0.01166 

Corr45 0.86715 0.00412 0.85490 0.00284 0.85916 0.00267 0.74360 0.00554 

LogLF 147,889.62 N/A 142,985.74 9,807.75+ 147,122.62 1,534.00+ 144,380.65 7,017.94+ 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.30a) JPY-IBOR: The Drift Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 0.00002 0.00000 0.00002 0.00001 0.00002 0.00000 0.00001 0.00000 

Alpha2 0.00000 0.00000 -0.00001 0.00000 0.00002 0.00000 0.00001 0.00000 

Alpha3 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 

Alpha4 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 

Alpha5 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 

Beta11 -0.14052 0.00491 -0.15649 0.00888 -0.17006 0.00664 -0.11679 0.00530 

Beta12 0.04135 0.00548 0.16344 0.01259 0.17347 0.00860 0.05253 0.00629 

Beta13 0.00758 0.00648 -0.26951 0.02642 -0.09971 0.01221 -0.00198 0.00716 

Beta14 0.01397 0.00631 0.40466 0.03730 0.05110 0.01216 0.01393 0.00695 

Beta15 0.00222 0.00240 -0.16592 0.01672 -0.00014 0.00461 -0.00060 0.00281 

Beta21 -0.00293 0.00445 -0.02522 0.00358 -0.03223 0.00404 0.00748 0.00402 

Beta22 -0.04205 0.00514 0.00407 0.00496 0.08508 0.00534 -0.04409 0.00501 

Beta23 0.01959 0.00661 -0.00426 0.00990 -0.07300 0.00686 0.00845 0.00458 

Beta24 0.00073 0.00731 0.01576 0.01334 -0.00452 0.00771 0.00776 0.00444 

Beta25 0.00236 0.00270 0.00022 0.00557 0.01619 0.00317 -0.00012 0.00181 

Beta31 0.00331 0.00251 0.00320 0.00145 0.01884 0.00225 0.00893 0.00246 

Beta32 -0.00720 0.00285 -0.00205 0.00198 0.00392 0.00306 0.00199 0.00330 

Beta33 -0.01670 0.00829 0.00363 0.00360 -0.00550 0.00443 -0.02167 0.00369 

Beta34 0.02059 0.00978 -0.01577 0.00460 -0.01440 0.00501 -0.00182 0.00369 

Beta35 -0.00549 0.00354 0.01044 0.00189 0.00177 0.00205 0.00625 0.00148 

Beta41 0.00290 0.00187 0.00565 0.00114 0.01470 0.00190 0.00854 0.00198 

Beta42 -0.00393 0.00201 0.00134 0.00157 0.01071 0.00262 -0.01794 0.00277 

Beta43 -0.00505 0.00829 -0.00385 0.00287 -0.00443 0.00419 0.00733 0.00372 

Beta44 0.00271 0.01023 -0.00679 0.00370 -0.00802 0.00490 -0.00272 0.00404 

Beta45 0.00104 0.00373 0.00497 0.00154 -0.00547 0.00200 0.00076 0.00160 

Beta51 0.00389 0.00176 0.00163 0.00118 0.01379 0.00168 0.00105 0.00163 

Beta52 -0.00588 0.00193 -0.00027 0.00162 -0.00308 0.00234 -0.01977 0.00228 

Beta53 -0.00421 0.00846 0.00356 0.00304 0.00247 0.00413 0.01271 0.00367 

Beta54 0.00303 0.01063 -0.00834 0.00408 0.00226 0.00502 0.01149 0.00439 

Beta55 0.00090 0.00391 0.00361 0.00177 -0.01071 0.00208 -0.00899 0.00177 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.30b) JPY-LIBOR, The Diffusion Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 1.37158 0.00645 0 N/A 0.5 N/A 1 N/A 

Gamma2 1.11087 0.00578 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.77445 0.01178 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.56626 0.01499 0 N/A 0.5 N/A 1 N/A 

Gamma5 0.63635 0.01416 0 N/A 0.5 N/A 1 N/A 

Sigma1   0.82750 0.03968 0.00040 0.00000 0.00490 0.00000 0.07714 0.00050 

Sigma2   0.08341 0.00344 0.00016 0.00000 0.00235 0.00002 0.03997 0.00027 

Sigma3   0.00576 0.00046 0.00007 0.00000 0.00129 0.00001 0.02334 0.00017 

Sigma4   0.00123 0.00012 0.00005 0.00000 0.00107 0.00001 0.01790 0.00014 

Sigma5 0.00159 0.00014 0.00005 0.00000 0.00092 0.00001 0.01351 0.00011 

Corr12 0.56133 0.00826 0.45298 0.01089 0.50598 0.01082 0.53260 0.00860 

Corr13 0.33453 0.01107 0.19795 0.01202 0.11057 0.01774 0.22528 0.01205 

Corr14 0.23346 0.01176 0.02378 0.01298 -0.06732 0.01838 -0.00661 0.01265 

Corr15 0.15754 0.01220 -0.03859 0.01371 -0.08078 0.01790 -0.07636 0.01280 

Corr23 0.61076 0.00756 0.42977 0.00988 0.56975 0.01154 0.54858 0.00798 

Corr24 0.48595 0.00953 0.19456 0.01232 0.40697 0.01549 0.36286 0.01095 

Corr25 0.41054 0.01049 -0.00022 0.01268 0.37029 0.01521 0.30088 0.01172 

Corr34 0.75046 0.00527 0.73137 0.00506 0.82975 0.00458 0.65563 0.00665 

Corr35 0.62742 0.00716 0.55077 0.00828 0.76917 0.00577 0.51283 0.00891 

Corr45 0.80587 0.00536 0.81863 0.00347 0.89141 0.00281 0.72757 0.00490 

LogLF 167,763.45 N/A 154,236.80 27,053.31+ 162,272.20 10,982.50+ 165,906.16 3,714.59+ 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.31a) CAD-LIBOR, The Drift Coefficients Estimates, Five-Factor Models 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 -0.00022 0.00000 -0.00019 0.00002 -0.00003 0.00001 0.00004 0.00000 

Alpha2 -0.00015 0.00000 -0.00007 0.00001 -0.00003 0.00001 0.00003 0.00000 

Alpha3 -0.00015 0.00000 0.00005 0.00001 -0.00005 0.00001 -0.00006 0.00000 

Alpha4 -0.00008 0.00000 0.00009 0.00001 0.00016 0.00000 0.00003 0.00000 

Alpha5 0.00000 0.00000 0.00019 0.00001 0.00026 0.00001 0.00013 0.00001 

Beta11 -0.01226 0.01037 -0.11595 0.00497 -0.13022 0.00577 -0.07274 0.00546 

Beta12 0.01062 0.01128 0.19845 0.00532 0.21271 0.00835 0.09864 0.00730 

Beta13 0.00440 0.00796 -0.14192 0.00829 -0.11261 0.00782 -0.03231 0.00539 

Beta14 -0.03467 0.00589 0.05277 0.00957 0.02787 0.00567 0.00882 0.00301 

Beta15 0.03549 0.00138 0.01028 0.00430 0.00215 0.00236 -0.00524 0.00084 

Beta21 0.12865 0.00402 0.02030 0.00419 -0.06513 0.00460 -0.01636 0.00531 

Beta22 -0.23533 0.00172 -0.02470 0.00859 0.10165 0.00675 0.02748 0.00706 

Beta23 0.16053 0.00144 -0.03050 0.00911 -0.02311 0.00661 -0.01342 0.00524 

Beta24 -0.08475 0.00300 0.04259 0.00642 -0.03222 0.00444 0.00207 0.00297 

Beta25 0.03318 0.00145 -0.00659 0.00331 0.01860 0.00149 -0.00148 0.00083 

Beta31 0.07693 0.00341 -0.00406 0.00371 0.01287 0.00324 0.00002 0.00376 

Beta32 -0.08896 0.00368 -0.00323 0.00540 -0.00726 0.00467 0.01470 0.00560 

Beta33 -0.00196 0.00493 0.00388 0.00602 0.02702 0.00438 -0.01530 0.00474 

Beta34 -0.00466 0.00373 0.00853 0.00449 -0.05917 0.00270 -0.01256 0.00284 

Beta35 0.02132 0.00134 -0.00681 0.00124 0.02696 0.00116 0.01384 0.00083 

Beta41 0.05756 0.00153 0.00554 0.00459 -0.00347 0.00419 -0.01973 0.00405 

Beta42 -0.09612 0.00256 -0.01681 0.00572 0.02793 0.00776 0.01850 0.00669 

Beta43 0.05719 0.00370 0.03596 0.00503 0.00016 0.00718 0.01818 0.00699 

Beta44 -0.03568 0.00217 -0.03058 0.00468 -0.02360 0.00431 -0.02117 0.00454 

Beta45 0.01777 0.00145 0.00320 0.00214 -0.00488 0.00172 0.00259 0.00154 

Beta51 0.03118 0.00221 0.02224 0.00592 0.03278 0.00561 0.00021 0.00540 

Beta52 -0.03247 0.00627 -0.03672 0.00713 -0.00079 0.01102 -0.00520 0.00919 

Beta53 -0.00718 0.00548 0.04023 0.00805 -0.01908 0.01066 0.01487 0.01094 

Beta54 0.00442 0.00230 -0.02217 0.00833 0.00155 0.00579 0.00120 0.00742 

Beta55 0.00320 0.00155 -0.00821 0.00347 -0.02035 0.00203 -0.01475 0.00231 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.31b) CAD-LIBOR, The Diffusion Coefficients Estimates, Five-Factor Models 

Param CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 0.656942 0.014533 0 N/A 0.5 N/A 1 N/A 

Gamma2 0.515675 0.000000 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.424173 0.000000 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.423111 0.000000 0 N/A 0.5 N/A 1 N/A 

Gamma5 0.479316 0.000000 0 N/A 0.5 N/A 1 N/A 

Sigma1   0.003856 0.000260 0.000366 0.000002 0.002175 0.000015 0.016834 0.000130 

Sigma2   0.001920 0.000000 0.000304 0.000002 0.001753 0.000013 0.014500 0.000114 

Sigma3   0.001085 0.000008 0.000225 0.000002 0.001413 0.000012 0.009024 0.000064 

Sigma4   0.001253 0.000005 0.000281 0.000002 0.001725 0.000015 0.009830 0.000078 

Sigma5 0.001863 0.000000 0.000371 0.000003 0.002116 0.000018 0.011689 0.000097 

Corr12 0.552287 0.009283 0.482036 0.000002 0.564749 0.008167 0.665071 0.006305 

Corr13 0.492859 0.011125 0.379991 0.000002 0.406618 0.010188 0.452773 0.009345 

Corr14 0.334355 0.010991 0.123280 0.000002 0.195941 0.012250 0.212895 0.011976 

Corr15 0.241445 0.011421 -0.004915 0.000002 0.085582 0.012700 0.039235 0.013081 

Corr23 0.651413 0.006311 0.438119 0.000003 0.649942 0.006486 0.513225 0.009010 

Corr24 0.504028 0.008624 0.162689 0.009325 0.470072 0.009633 0.213147 0.012161 

Corr25 0.391218 0.010052 -0.001304 0.010321 0.357145 0.010916 0.030215 0.012801 

Corr34 0.808215 0.003627 0.780547 0.012736 0.796744 0.004201 0.695670 0.005964 

Corr35 0.681028 0.005894 0.608534 0.013483 0.674240 0.006432 0.526868 0.008950 

Corr45 0.881205 0.002084 0.877181 0.009636 0.891189 0.002062 0.847125 0.002916 

LogLF 139,554.87 N/A 137,049.16 0.012210 139,055.08 1,426.10 137,668.73 4,198.79 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.32a) U.K. Spot Rates, The Drift Coefficients Estimates, Five-Factor Models 

Param CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 -0.00001 0.00000 -0.00003 0.00003 0.00002 0.00003 0.00014 0.00001 

Alpha2 0.00000 0.00001 0.00000 0.00001 0.00000 0.00002 -0.00003 0.00001 

Alpha3 -0.00001 0.00001 0.00000 0.00001 0.00000 0.00001 -0.00011 0.00000 

Alpha4 0.00023 0.00000 0.00017 0.00002 0.00030 0.00003 -0.00004 0.00000 

Alpha5 0.00039 0.00002 0.00034 0.00004 0.00065 0.00006 0.00003 0.00001 

Beta11 0.00043 0.00084 -0.00281 0.00104 -0.00231 0.00065 0.00026 0.00077 

Beta12 -0.00180 0.00105 0.00139 0.00684 0.00091 0.00549 -0.01884 0.00461 

Beta13 0.00600 0.00000 0.00398 0.01127 0.00256 0.01131 0.01847 0.00913 

Beta14 -0.00615 0.00290 -0.00364 0.00785 -0.00330 0.01040 0.00816 0.00723 

Beta15 0.00136 0.00253 0.00092 0.00269 0.00033 0.00472 -0.01398 0.00210 

Beta21 0.00133 0.00105 -0.00065 0.00111 -0.00199 0.00094 0.00175 0.00094 

Beta22 0.05825 0.00241 0.05796 0.00392 0.06238 0.00277 0.02277 0.00000 

Beta23 -0.11326 0.00244 -0.10905 0.00305 -0.12070 0.00473 -0.06412 0.00000 

Beta24 0.05517 0.00325 0.05248 0.00534 0.05999 0.00399 0.04116 0.00369 

Beta25 -0.00153 0.00186 -0.00046 0.00327 -0.00027 0.00168 -0.00288 0.00197 

Beta31 0.00121 0.00107 -0.00116 0.00105 -0.00121 0.00093 0.00084 0.00084 

Beta32 0.02568 0.00289 0.03812 0.00278 0.02618 0.00432 0.01251 0.00000 

Beta33 -0.03146 0.00354 -0.05404 0.00264 -0.03184 0.00799 -0.02681 0.00000 

Beta34 -0.01381 0.00260 0.00358 0.00670 -0.01531 0.00543 -0.00042 0.00415 

Beta35 0.01884 0.00150 0.01416 0.00390 0.02229 0.00179 0.01518 0.00174 

Beta41 0.00009 0.00100 -0.00189 0.00092 -0.00109 0.00091 0.00001 0.00077 

Beta42 0.01013 0.00247 0.01238 0.00164 0.00938 0.00612 0.00069 0.00000 

Beta43 0.00029 0.00176 -0.00002 0.00530 0.00005 0.01176 -0.00065 0.00415 

Beta44 -0.02287 0.00000 -0.02237 0.00893 -0.02389 0.00859 -0.01298 0.00692 

Beta45 0.00706 0.00132 0.00827 0.00481 0.00865 0.00349 0.01284 0.00258 

Beta51 0.00119 0.00101 -0.00008 0.00091 -0.00039 0.00103 0.00001 0.00088 

Beta52 -0.01976 0.00328 -0.01747 0.00385 -0.02410 0.00820 -0.01001 0.00454 

Beta53 0.04617 0.00400 0.04049 0.00967 0.05648 0.01586 0.00765 0.01092 

Beta54 -0.03178 0.00409 -0.02323 0.01180 -0.03571 0.01264 0.00276 0.01009 

Beta55 -0.00515 0.00253 -0.00772 0.00599 -0.01178 0.00562 -0.00238 0.00350 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 
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Table 3.32b) U.K. Spot Rates, The Diffusion Coefficients Estimates, Five-Factor Models 

Param CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 0.19900 0.00000 0 N/A 0.5 N/A 1 N/A 

Gamma2 0.00000 0.00000 0 N/A 0.5 N/A 1 N/A 

Gamma3 0.00016 4.14475 0 N/A 0.5 N/A 1 N/A 

Gamma4 0.00952 0.20682 0 N/A 0.5 N/A 1 N/A 

Gamma5 0.04091 0.30036 0 N/A 0.5 N/A 1 N/A 

Sigma1   0.00074 0.00000 0.00037 0.00000 0.00249 0.00002 0.02633 0.00018 

Sigma2   0.00051 0.00856 0.00046 0.00000 0.00275 0.00002 0.01735 0.00015 

Sigma3   0.00052 0.00902 0.00046 0.00000 0.00260 0.00002 0.01443 0.00012 

Sigma4   0.00051 0.01085 0.00044 0.00000 0.00234 0.00002 0.01180 0.00010 

Sigma5 0.00053 0.03971 0.00042 0.00000 0.00219 0.00002 0.01056 0.00841 

Corr12 0.56647 0.01311 0.57325 0.00782 0.58149 0.00787 0.54885 0.00803 

Corr13 0.46949 0.01353 0.45310 0.00966 0.49937 0.00934 0.48992 0.00900 

Corr14 0.40554 0.01355 0.34479 0.01118 0.43797 0.01034 0.44471 0.00969 

Corr15 0.33187 0.01334 0.21527 0.01311 0.35463 0.01141 0.36821 0.01072 

Corr23 0.98311 0.01173 0.97620 0.00059 0.98211 0.00042 0.98018 0.00044 

Corr24 0.93958 0.01297 0.90329 0.00284 0.93015 0.00183 0.91998 0.00207 

Corr25 0.83443 0.01348 0.73928 0.00733 0.80731 0.00487 0.77940 0.00554 

Corr34 0.97802 0.01351 0.96401 0.00113 0.97382 0.00072 0.97061 0.00082 

Corr35 0.88136 0.01334 0.81766 0.00510 0.86356 0.00345 0.84591 0.00391 

Corr45 0.94914 0.01201 0.92690 0.00179 0.94364 0.00130 0.93683 0.00155 

LogLF 138,495.64 N/A 138,482.50 30.47+ 137,511.71 1,972.05+ 134,136.69 8,722.10+ 

 

Note: The cells marked with * contain values smaller than 610 ; the cells marked with + contain the values 

of the LR test statistics, corresponding to the three restricted models (
2 (5 ,1%) 15.09crit df  ). 

 

The table 3.33 bellow presents all the estimates of the level-effect parameters implied by 

the general five-factor CKLS model. The patterns observed previously for the four-factor 

framework are not as clear, quite reversing with regards to the one-year GBP- and USD -

LIBOR rates. Therefore, it seems that the volatility structure across short-term maturities 

differs from the four- to the five-factor CKLS models. 

 

Table 3.33 The Estimates for the Level -Effect Parameter Five-Factor CKLS Models 

CKLS GBP-LIBOR  USD-LIBOR  EURLIBOR JPY-LIBOR CAD-LIBOR UK Spot  

Gamma1 1.58807 0.97443 0.67597 1.37158 0.65694 0.19900 

Gamma2 1.22215 0.74230 0.65892 1.11087 0.51568 0.00000 

Gamma3 0.86831 0.77727 0.62624 0.77445 0.42417 0.00016 

Gamma4  0.92924 0.72288 0.72557 0.56626 0.42311 0.00952 

Gamma5 1.27792 0.62682 1.02395 0.63635 0.47932 0.04091 
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The results reported in the Table 3.34 show that for both extended specifications the 

ranking among the four continuous-time models in terms of goodness of fit remains 

unchanged. However, a consistent pattern can be observed for the money-market 

segment: the heterosckedasticity is strongly present and there is evidence of a 

substantially higher dependence of the conditional volatility on the actual level of the 

interest rates. For the longer maturity segment, represented by the U.K government 

nominal rates, the Vasicek is the first nested model against the other two nested models, 

CIR and BS respectively. As a conclusion, we can say that regardless the number of 

factors in the model, the money-market segment of interest rates is more elastic than the 

long-term segment.  

 

Table 3.34 The Model Ranking in Terms of the Highest Value of the Likelihood 

Function. 

FOUR-FACTOR CONTINUOUS-TIME MODELS 

Best Model   GBP-LIBOR  USD-LIBOR  EURLIBOR JPY-LIBOR CAD-LIBOR UK Spot  

Model1 CKLS CKLS CKLS CKLS CKLS CKLS 

Model2 BS BS CIR BS CIR VASICEK 

Model3 CIR CIR BS CIR BS CIR 

Model4  VASICEK VASICEK VASICEK VASICEK VASICEK BS 

FIVE-FOUR CONTINUOUS-TIME MODELS 

Best Model   GBP-LIBOR  USD-LIBOR  EURLIBOR JPY-LIBOR CAD-LIBOR UK Spot  

Model1 CKLS CKLS CKLS CKLS CKLS CKLS 

Model2 BS BS CIR BS CIR VASICEK 

Model3 CIR CIR BS CIR BS CIR 

Model4  VASICEK VASICEK VASICEK VASICEK VASICEK BS 

 

 

 

3.5.3 The Impact of the Financial Crisis on the U.K. Nominal Yield 

Curve 

         The impact of the last financial crisis on the level of the U.K. nominal interest rates 

is assessed by dividing the whole sample period into the pre-crisis and post-crisis period 

samples. Based on previous studies (see Cheung et al. (2010) and Dontis-Charitos et al. 

(2013)) the cut-off point is the beginning of the third quarter, in July 2007 when the first 

substantial signs of financial distress were observed in the US subprime market. The four 

continuous-time models have been estimated for four- and five-factors over the pre-crisis 

period (4 January 2000 to 29 June 2007) and post-crisis period (2 July 2007 to 28 March 
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2013), respectively. The estimation results are organised in the Table 3.35 and 3.36 for 

the four-factor extension and in Table 3.37 and 3.38 for the five-factor extension.  

      The estimation results provided by the four-factor continuous-time show that some of 

the parameter estimates have substantially changed as a result of the crisis. The most 

affected parameters are the level-effect parameters, while the remaining parameters have 

relatively unchanged values between the two sub-periods. More specifically, in the pre-

crisis period the estimates of the level-effect parameters are very low (between 0 and 

0.21), whereas after the crisis the volatility is highly dependent on the level of the interest 

rates (with values between 0.43 and 0.55). These results may suggest that different 

specifications should fit the data best for each sub-period, with the Vasicek model as a 

most appropriate modelling choice for the pre-crisis period and the CIR formulation for 

the post-crisis period. Moreover, the other diffusion component, the volatility scale-factor 

parameter, has been estimated at values ten times larger in the post-crisis period than in 

the pre-crisis period. A similar impact can be observed in the case of the five-factor 

models, where the change in the parameter values as a result of the crisis is realised only 

in the level-effect parameter component of the volatility. The rest of the parameters seem 

to remain unaffected. These findings confirm the conclusion from the CKLS paper that 

the level-effect parameter is of a much greater importance than the drift parameters.   

     A very important result is that for the pre-crisis period for the U.K. spot rates the 

Vasicek model cannot be rejected against the more general CKLS model for both the 

four- and five-factor models. More specifically the LR test values (12.56 in Table 3.35b 

and 11.06 in Table 3.37b, respectively) are smaller than the critical value of 15.09. We 

conclude that for both extensions, the particular feature of the Vasicek model of 

homoscedasticity is most appropriate for explaining the data during calm periods.  For the 

post-crisis period the best nested model is the CIR model, which is reflected in higher 

value of the level-effect parameter, i.e. after the crisis the interest rates become more 

elastic.  Overall, these findings emphasise two important aspects when modelling interest 

rates. One is the intrinsic feature of less volatility for longer maturity interest rates and 

second the higher level of volatility that exists during turbulent periods of time. 
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Table 3.35a) U.K. Spot Rates Pre-Crisis Period; The Drift Coefficients Estimates for the 

Four-Factor Models 

 

Param. CKLS  S.E.  VASICEK S.E.  CIR S.E.  BS S.E.  

Alpha1 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 

Alpha2 0.0004 0.0000 0.0001 0.0000 0.0001 0.0001 0.0002 0.0001 

Alpha3 0.0005 0.0000 0.0002 0.0000 0.0002 0.0001 0.0004 0.0001 

Alpha4 0.0005 0.0000 0.0002 0.0000 0.0003 0.0001 0.0004 0.0001 

Beta11 -0.0062 0.0018 0.0016 0.0016 0.0014 0.0018 -0.0016 0.0018 

Beta12 0.0077 0.0072 -0.0171 0.0053 -0.0175 0.0047 -0.0161 0.0047 

Beta13 0.0002 0.0151 0.0334 0.0128 0.0373 0.0103 0.0489 0.0103 

Beta14 -0.0087 0.0091 -0.0204 0.0094 -0.0219 0.0083 -0.0354 0.0083 

Beta21 -0.0036 0.0018 0.0077 0.0019 0.0060 0.0031 0.0011 0.0031 

Beta22 0.0010 0.0067 -0.0250 0.0034 -0.0208 0.0137 -0.0178 0.0137 

Beta23 0.0063 0.0118 0.0225 0.0077 0.0190 0.0292 0.0361 0.0292 

Beta24 -0.0131 0.0066 -0.0072 0.0065 -0.0060 0.0162 -0.0252 0.0162 

Beta31 -0.0049 0.0015 0.0054 0.0018 0.0033 0.0032 -0.0026 0.0032 

Beta32 0.0056 0.0051 -0.0142 0.0041 -0.0083 0.0148 0.0010 0.0148 

Beta33 0.0054 0.0084 0.0074 0.0085 0.0009 0.0320 0.0043 0.0320 

Beta34 -0.0175 0.0046 -0.0032 0.0060 -0.0008 0.0177 -0.0120 0.0177 

Beta41 -0.0043 0.0016 0.0044 0.0019 0.0026 0.0031 -0.0032 0.0031 

Beta42 -0.0018 0.0047 -0.0156 0.0052 -0.0105 0.0143 0.0012 0.0143 

Beta43 0.0271 0.0080 0.0196 0.0110 0.0137 0.0311 0.0096 0.0311 

Beta44 -0.0326 0.0044 -0.0138 0.0070 -0.0116 0.0173 -0.0175 0.0173 

 

Table 3.35b) U.K. Spot Rates Pre-Crisis Period, The Diffusion Coefficients Estimates for 

the Four-Factor Models 

 

Param.  CKLS  S.E.  VASICEK S.E.  CIR S.E.  BS S.E.  

Gamma1 0.0000 0.0001 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma2 0.2166 0.0319 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma3 0.1899 0.0477 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma4 0.1193 0.0113 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Sigma1   0.0004 0.0000 0.0004 0.0074 0.0017 0.0000 0.0085 0.0001 

Sigma2   0.0008 0.0001 0.0004 0.0086 0.0019 0.0000 0.0086 0.0001 

Sigma3   0.0007 0.0000 0.0004 0.0087 0.0018 0.0000 0.0082 0.0001 

Sigma4   0.0005 0.0000 0.0004 0.0086 0.0017 0.0000 0.0083 0.0001 

Corr12 0.6726 0.0005 0.6724 0.0067 0.6625 0.0002 0.6529 0.0005 

Corr13 0.5135 0.0004 0.5152 0.0093 0.5051 0.0002 0.4949 0.0004 

Corr14 0.4144 0.0133 0.4172 0.0104 0.4071 0.0161 0.3973 0.0136 

Corr23 0.9287 0.0021 0.9291 0.0016 0.9289 0.0153 0.9273 0.0022 

Corr24 0.8172 0.0050 0.8186 0.0040 0.8173 0.0152 0.8141 0.0051 

Corr34 0.9546 0.0012 0.9551 0.0011 0.9546 0.0136 0.9540 0.0012 

Log LF 61,371.96 N/A 61,365.68 12.56+ 61,256.61 230.70+ 61,078.48 586.96+ 
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Table 3.36a) U.K. Spot Rates Post-Crisis Period; The Drift Coefficients Estimates for the 

Four-Factor Models 

Param. CKLS  S.E.  VASICEK S.E.  CIR S.E.  BS S.E.  

Alpha1 -0.0002 0.0000 -0.0002 0.0000 -0.0002 0.0000 0.0000 0.0000 

Alpha2 -0.0003 0.0000 -0.0001 0.0001 -0.0002 0.0000 0.0001 0.0000 

Alpha3 0.0001 0.0000 0.0004 0.0000 0.0001 0.0000 0.0005 0.0000 

Alpha4 0.0004 0.0000 0.0007 0.0000 0.0004 0.0000 0.0007 0.0000 

Beta11 0.0015 0.0010 0.0044 0.0011 0.0010 0.0010 -0.0038 0.0017 

Beta12 -0.0207 0.0042 -0.0255 0.0055 -0.0175 0.0036 -0.0122 0.0032 

Beta13 0.0268 0.0079 0.0293 0.0112 0.0202 0.0067 0.0199 0.0058 

Beta14 -0.0085 0.0052 -0.0064 0.0080 -0.0036 0.0045 -0.0101 0.0037 

Beta21 0.0048 0.0015 0.0036 0.0016 0.0045 0.0017 0.0030 0.0024 

Beta22 -0.0167 0.0044 -0.0164 0.0074 -0.0148 0.0060 -0.0116 0.0085 

Beta23 0.0104 0.0073 0.0180 0.0148 0.0082 0.0100 0.0171 0.0126 

Beta24 0.0056 0.0046 -0.0052 0.0107 0.0060 0.0060 -0.0136 0.0060 

Beta31 -0.0007 0.0010 -0.0027 0.0016 -0.0003 0.0014 -0.0023 0.0019 

Beta32 0.0076 0.0031 0.0091 0.0069 0.0066 0.0046 0.0091 0.0080 

Beta33 -0.0124 0.0055 -0.0026 0.0125 -0.0114 0.0079 0.0018 0.0126 

Beta34 0.0029 0.0012 -0.0132 0.0080 0.0030 0.0055 -0.0198 0.0065 

Beta41 -0.0018 0.0010 -0.0034 0.0016 -0.0013 0.0014 -0.0034 0.0018 

Beta42 0.0057 0.0029 0.0043 0.0068 0.0037 0.0048 0.0062 0.0076 

Beta43 0.0054 0.0052 0.0210 0.0110 0.0087 0.0070 0.0206 0.0123 

Beta44 -0.0192 0.0032 -0.0394 0.0057 -0.0210 0.0036 -0.0412 0.0063 

 

Table 3.36b) U.K. Spot Rates Post-Crisis Period, The Diffusion Coefficients Estimates 

for the Four-Factor Models 

 

Param. CKLS  S.E.  VASICEK S.E.  CIR S.E.  BS S.E.  

Gamma1 
0.4840 0.0135 0.0000 

N/A 
0.5000 

N/A 
1.0000 

N/A 

Gamma2 
0.4307 0.0179 0.0000 

N/A 
0.5000 

N/A 
1.0000 

N/A 

Gamma3 
0.5276 35.7919 0.0000 

N/A 
0.5000 

N/A 
1.0000 

N/A 

Gamma4 
0.5522 0.0441 0.0000 

N/A 
0.5000 

N/A 
1.0000 

N/A 

Sigma1   
0.0031 0.0002 0.0004 0.0000 0.0033 0.0000 0.0386 0.0004 

Sigma2   
0.0028 0.0002 0.0006 0.0000 0.0036 0.0000 0.0242 0.0003 

Sigma3   
0.0031 0.0001 0.0006 0.0000 0.0029 0.0000 0.0150 0.0002 

Sigma4   
0.0031 0.0004 0.0005 0.0000 0.0026 0.0000 0.0129 0.0002 

Corr12 
0.6116 0.0007 0.6416 0.0006 0.6032 0.0006 0.5362 0.0005 

Corr13 
0.4447 0.0005 0.3835 0.0005 0.4465 0.0005 0.4403 0.0005 

Corr14 
0.3510 0.0161 0.2726 0.0171 0.3521 0.0161 0.3609 0.0158 

Corr23 
0.9052 0.0032 0.8761 0.0041 0.9066 0.0031 0.9160 0.0027 

Corr24 
0.7586 0.0074 0.7284 0.0083 0.7591 0.0073 0.7594 0.0073 

Corr34 
0.9316 0.0021 0.9331 0.0020 0.9316 0.0021 0.9276 0.0022 

Log LF 44,871.65 N/A 44,467.96 807.38+ 44,861.84 19.62+ 44,404.27 934.76+ 
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Table 3.37a) U.K. Spot Rates Pre-Crisis Period; The Drift Coefficients Estimates for the 

Five-Factor Models  

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 

Alpha2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Alpha3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Alpha4 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 0.0003 0.0000 

Alpha5 
0.0000 0.0000 0.0006 0.0000 0.0001 0.0001 0.0005 0.0000 

Beta11 0.0026 0.0022 -0.0022 0.0020 -0.0015 0.0006 -0.0025 0.0021 

Beta12 0.0133 0.0169 0.0006 0.0156 0.0009 0.0055 0.0003 0.0167 

Beta13 -0.0066 0.0253 0.0018 0.0214 -0.0044 0.0113 0.0019 0.0220 

Beta14 -0.0042 0.0201 -0.0011 0.0117 0.0168 0.0104 -0.0030 0.0122 

Beta15 -0.0056 0.0108 0.0005 0.0087 -0.0134 0.0047 0.0005 0.0093 

Beta21 0.0127 0.0008 -0.0019 0.0019 -0.0015 0.0009 -0.0027 0.0020 

Beta22 -0.0202 0.0061 0.0643 0.0034 0.0746 0.0028 0.0643 0.0035 

Beta23 -0.0003 0.0065 -0.1161 0.0050 -0.1383 0.0047 -0.1217 0.0037 

Beta24 0.0039 0.0073 0.0544 0.0048 0.0640 0.0040 0.0587 0.0079 

Beta25 0.0054 0.0074 -0.0004 0.0039 0.0008 0.0017 -0.0003 0.0057 

Beta31 0.0121 0.0007 -0.0003 0.0018 -0.0005 0.0009 -0.0022 0.0017 

Beta32 -0.0084 0.0040 0.0259 0.0006 0.0269 0.0043 0.0286 0.0034 

Beta33 -0.0221 0.0016 -0.0334 0.0000 -0.0321 0.0080 -0.0312 0.0000 

Beta34 0.0163 0.0069 -0.0117 0.0000 -0.0176 0.0054 -0.0139 0.0019 

Beta35 0.0027 0.0069 0.0203 0.0000 0.0233 0.0018 0.0175 0.0050 

Beta41 0.0134 0.0009 -0.0002 0.0014 0.0003 0.0009 -0.0010 0.0025 

Beta42 -0.0094 0.0066 0.0069 0.0000 0.0072 0.0061 0.0130 0.0000 

Beta43 -0.0262 0.0066 0.0001 0.0000 -0.0034 0.0118 0.0001 0.0000 

Beta44 0.0229 0.0073 -0.0250 0.0000 -0.0185 0.0086 -0.0289 0.0000 

Beta45 0.0004 0.0064 0.0136 0.0000 0.0125 0.0035 0.0092 0.0046 

Beta51 0.0161 0.0014 -0.0002 0.0008 -0.0001 0.0010 -0.0004 0.0026 

Beta52 -0.0030 0.0064 -0.0293 0.0000 -0.0201 0.0082 -0.0137 0.0000 

Beta53 -0.0518 0.0104 0.0475 0.0000 0.0507 0.0159 0.0394 0.0000 

Beta54 0.0428 0.0078 -0.0179 0.0000 -0.0464 0.0126 -0.0356 0.0000 

Beta55 
-0.0033 0.0062 -0.0129 0.0000 0.0126 0.0056 -0.0022 0.0052 
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Table 3.37b) U.K. Spot Rates Pre-Crisis Period, The Diffusion Coefficients Estimates for 

the Five-Factor Models 

 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 0.4593 0.0715 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma2 0.4642 0.0220 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma3 0.5473 0.0076 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma4 0.5481 0.0074 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma5 0.3344 0.0279 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Sigma1   0.0035 0.1607 0.0003 0.0108 0.0018 0.0074 0.0083 0.0092 

Sigma2   0.0016 0.0321 0.0004 0.0099 0.0023 0.0084 0.0081 0.0106 

Sigma3   0.0034 0.0192 0.0004 0.0101 0.0023 0.0085 0.0082 0.0105 

Sigma4   0.0044 0.0179 0.0004 0.0103 0.0021 0.0085 0.0079 0.0105 

Sigma5 0.0097 0.0915 0.0004 0.0108 0.0020 0.0085 0.0080 0.0106 

Corr12 0.6743 0.0148 0.5717 0.0162 0.4762 0.0119 0.5601 0.0152 

Corr13 0.5946 0.0159 0.4568 0.0175 0.3698 0.0124 0.4753 0.0162 

Corr14 0.5064 0.0176 0.3391 0.0192 0.2551 0.0128 0.4032 0.0167 

Corr15 0.4031 0.0193 0.2186 0.0209 0.1210 0.0131 0.3258 0.0168 

Corr23 0.9817 0.0179 0.9773 0.0200 0.9839 0.0119 0.9791 0.0155 

Corr24 0.9185 0.0218 0.9057 0.0242 0.9209 0.0136 0.9195 0.0171 

Corr25 0.7989 0.0221 0.7780 0.0241 0.7412 0.0140 0.7969 0.0171 

Corr34 0.9699 0.0221 0.9672 0.0241 0.9697 0.0140 0.9725 0.0165 

Corr35 0.8680 0.0207 0.8605 0.0222 0.8188 0.0136 0.8667 0.0158 

Corr45 0.9532 0.0164 0.9519 0.0171 0.9256 0.0118 0.9483 0.0138 

LogLF 80,402.56 N/A 80,397.01 11.10+ 79,749.79 1,305.54+ 79,415.56 1,974.00+ 

 

 

Table 3.38a) U.K. Spot Rates Post-Crisis Period; The Drift Coefficients Estimates for the 

Five-Factor Models  

 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Alpha1 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 

Alpha2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Alpha3 -0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 

Alpha4 0.0000 0.0000 0.0001 0.0000 0.0006 0.0000 0.0003 0.0000 

Alpha5 
0.0000 0.0000 0.0003 0.0000 0.0012 0.0000 0.0005 0.0001 

Beta11 -0.0030 0.0013 -0.0027 0.0013 -0.0070 0.0011 -0.0118 0.0018 

Beta12 0.0209 0.0163 -0.0005 0.0099 0.0101 0.0082 0.0027 0.0065 

Beta13 -0.0326 0.0408 0.0028 0.0184 -0.0069 0.0167 -0.0363 0.0124 

Beta14 0.0063 0.0382 -0.0042 0.0193 0.0004 0.0153 0.0628 0.0099 

Beta15 0.0070 0.0145 0.0014 0.0103 0.0002 0.0061 -0.0351 0.0028 

Beta21 0.0004 0.0016 -0.0018 0.0017 -0.0002 0.0017 -0.0021 0.0022 

Beta22 0.0138 0.0083 0.0573 0.0059 -0.0020 0.0122 0.0125 0.0183 
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Beta23 -0.0261 0.0056 -0.1290 0.0051 -0.0194 0.0179 -0.0159 0.0330 

Beta24 0.0098 0.0108 0.0703 0.0107 0.0182 0.0077 0.0029 0.0230 

Beta25 0.0023 0.0075 0.0006 0.0059 0.0000 0.0033 0.0006 0.0076 

Beta31 0.0005 0.0016 -0.0019 0.0016 0.0003 0.0016 -0.0002 0.0017 

Beta32 -0.0029 0.0078 0.0362 0.0072 -0.0018 0.0134 0.0014 0.0142 

Beta33 0.0168 0.0038 -0.0675 0.0100 -0.0025 0.0208 0.0013 0.0237 

Beta34 -0.0270 0.0092 0.0120 0.0106 -0.0078 0.0098 -0.0045 0.0152 

Beta35 0.0165 0.0061 0.0198 0.0055 0.0063 0.0031 0.0006 0.0057 

Beta41 -0.0004 0.0014 -0.0017 0.0015 0.0011 0.0017 0.0013 0.0014 

Beta42 0.0013 0.0050 0.0026 0.0094 -0.0018 0.0150 -0.0014 0.0092 

Beta43 0.0006 0.0103 0.0001 0.0157 0.0000 0.0250 -0.0033 0.0105 

Beta44 0.0007 0.0141 -0.0210 0.0113 0.0021 0.0145 0.0132 0.0045 

Beta45 -0.0022 0.0057 0.0156 0.0053 -0.0164 0.0036 -0.0167 0.0032 

Beta51 0.0002 0.0013 0.0002 0.0015 -0.0011 0.0017 0.0024 0.0018 

Beta52 -0.0194 0.0092 -0.0317 0.0112 -0.0158 0.0157 -0.0110 0.0132 

Beta53 0.0280 0.0223 0.0341 0.0197 0.0340 0.0277 0.0171 0.0215 

Beta54 0.0012 0.0210 0.0035 0.0126 0.0001 0.0191 -0.0002 0.0202 

Beta55 
-0.0108 0.0069 -0.0170 0.0036 -0.0443 0.0056 -0.0193 0.0093 

 

 

 

 

Table 3.38b) U.K. Spot Rates Post-Crisis Period, The Diffusion Coefficients Estimates 

for the Five-Factor Models 

 

Param. CKLS  S.E. VASICEK S.E. CIR S.E. BS S.E. 

Gamma1 0.7155 0.0610 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma2 0.4544 0.0168 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma3 0.7071 0.0045 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma4 0.8001 0.0168 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Gamma5 
1.0483 0.1385 0.0000 N/A 0.5000 N/A 1.0000 N/A 

Sigma1   0.0027 0.1385 0.0004 0.0126 0.0033 0.0117 0.0390 0.0150 

Sigma2   0.0031 0.0295 0.0006 0.0135 0.0034 0.0117 0.0240 0.0025 

Sigma3   0.0038 0.0083 0.0006 0.0136 0.0031 0.0118 0.0169 0.0095 

Sigma4   0.0032 0.0373 0.0006 0.0137 0.0027 0.0118 0.0114 0.0082 

Sigma5 
0.0015 0.0971 0.0006 0.0137 0.0025 0.0122 0.0129 0.0000 

Corr12 0.5504 0.0215 0.6784 0.0192 0.5666 0.0170 0.5405 0.0271 

Corr13 0.4498 0.0110 0.5694 0.0201 0.4534 0.0181 0.4817 0.0211 

Corr14 0.3749 0.0176 0.4590 0.0209 0.3263 0.0201 0.3205 0.0163 

Corr15 0.2855 0.0189 0.3666 0.0213 0.2067 0.0219 -0.0034 0.0250 

Corr23 0.9778 0.0134 0.9777 0.0203 0.9717 0.0212 0.9660 0.0222 

Corr24 0.8958 0.0187 0.9010 0.0224 0.8586 0.0257 0.6545 0.0000 
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Corr25 0.7285 0.0209 0.7831 0.0227 0.6778 0.0256 0.0000 0.0000 

Corr34 0.9564 0.0209 0.9628 0.0226 0.9430 0.0259 0.8070 0.0000 

Corr35 0.8019 0.0202 0.8549 0.0217 0.7809 0.0236 0.1959 0.0000 

Corr45 0.9223 0.0170 0.9462 0.0181 0.9237 0.0175 0.7167 0.0167 

LogLF 58,673.30 N/A 58,333.06 680.48+ 58,559.25 228.10+ 57,407.42 2,531.76+ 

 

 

 

3.6 The Forecasting Analysis 

The forecasting analysis is conducted along three dimensions, across six different 

forecasting methods, three horizon lengths and using various measures of forecasting 

accuracy and formal statistical tests.  Four continuous-time models (CKLS, Vasicek, CIR 

and BS) and two benchmark discrete time models (VAR(1) and AR(1)) are estimated 

based on the six time series described in section 3.4. The choice of these discrete-time 

models as benchmarks is consistent with the specification of the discrete analogue model 

implied by Bergstrom’s methodology, where for a -k th order linear stochastic 

differential system the discrete analogue model is a  , 1VARMA k k  model.  The 

continuous-time models considered for estimation in this study correspond to the 

particular case of 1k  , hence their discrete analogues are VAR (1), with the following 

vector-specification: 

 1( 1) ( ) ( ) ( 1)r t e r t e I t            (3.34) 

It is important to note that, while in the basic continuous model the coefficients are linear 

in the elements of the feedback matrix  , the coefficients of the discrete time model are 

exponential functions of the feedback matrix  , carrying some potential causal 

predictive value from the other factors, which is consistent with the financial theory of 

correlation among interest rates of different maturities. The corresponding VAR(1) 

models have been  estimated in Eviews by the OLS method together the univariate AR(1) 

models  for each individual time series. Once all six types of models have been estimated 

for each extension, the corresponding optimal ex-post point forecasts21 are also evaluated. 

A robust forecasting comparison is conducted using dynamic forecasting, where the daily 

optimal forecasts are computed for out-of-sample periods based only on information from 

the fitting period. The forecast horizon (H) is a vital component in the forecasting 

analysis, as the conclusions regarding the forecasting accuracy may vary across different 

horizons and/or different loss functions (Diebold and Lopez, 1996).  In this regard, the 

                                                 
21 Other types of forecasts include the probability forecast, direction-of-change forecasts and volatility 

forecasts (Diebold and Lopez (1996)). 
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out-of-sample performance is evaluated over different horizons of 22, 44 and 66 steps 

ahead. For all the LIBOR time series, the out-of-sample periods are: from 01 April 2013 

to 30 April 2013 for the first horizon 
1 22H   days; from 01 May 2013 to 30 May 2013 

for the second horizon 2 44H   days and from 01 June 2013 to 01 July 2013 for the third 

horizon 3 66H   days, respectively. For the U.K. nominal rates, the out-of-sample  

periods are: from 02 April 2013 to 01 May 2013 for the first horizon 1H  days; from 02 

May 2013 to 04 June 2013 for the second horizon 2H  days and from 05 June 2013 to 04 

July 2013 for the third horizon 3H  days, respectively. 

     The evaluation of the out-of-sample forecasts is based on several forecasting accuracy 

metrics and on two formal statistical tests, the Diebold and Mariano (1995) (hereafter D-

M) test for non-nested models and the Clark and West (2007) (hereafter C-W) for nested 

models.  

 

3.6.1 The Dynamic Forecasting Algorithm 

Assuming parameter stability and given the property of infinite memory of the general 

autoregressive models, the dynamic optimal forecasts are generated by “the chain rule”. 

Accordingly, for an AR(1) model the h -step-ahead optimal forecast is given by the 

intercept plus the coefficient of the one-period lagged variable multiplied by the previous  

( 1h  )-step-ahead optimal forecast (Brooks, 2008). The origin observation used in the 

forecasting analysis is the last observation Tr  ( 3,455)T   from the in-the-sample data 

set. The one-step-ahead optimal forecast is defined as ,1 1|( )T T Tf E r  , i.e. the conditional 

expectation of r  at time 1T   given all the information available up to and including 

time T . The discrete-time analogues at time  1T   have the general equation:                             

 
1( 1) ( ) ( ) ( 1)r T e r T e I T            (3.35) 

Therefore, by applying the conditional expectation operator, the one-, two- and the h-step-

ahead optimal forecasts are derived as follows:  
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  (3.36) 

In order to determine the forecasting accuracy of the models, the forecast errors are 

aggregated using various statistical and economic forecasting metrics. Over the last two 
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decades the literature on measures of forecast error still portrays a controversial picture 

documenting their various limitations22 (Hyndman and Koehler (2005)). Acknowledging 

the controversy around the choice of a suitable forecasting accuracy measure, this 

forecasting analysis employs a range of stylized statistical and economic metrics: the ME 

(Mean Error) and the VARE (Variance Error) have been chosen  to test for bias in the 

forecasts, while  the MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage 

Error), RMSE (Root Mean Squared Error) and the CDIR (Correct Direction Change 

Percentage Prediction) have been  employed to evaluate the accuracy of the forecasts 

cross the models considered. These metrics have been computed using the following 

formulae: 
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           (3.41) 

 

and where ( )ar t   and  ( )fr t  are the actual and the forecasted value at time t , 

respectively. 

           Despite their sensitivity to the presence of outliers (Armstrong, 2001), the loss 

functions MAE and RMSE are still the most commonly used scale-dependent measures 

and have been used in this forecasting analysis mainly due to their relevance in statistical 

modelling. The MAPE metric has the advantage of scale-independence, and is widely 

used for forecasting comparison across data sets. A general disadvantage of percentage 

based measures is their asymmetry as they penalise positive errors more than negative 

errors and this motivated the introduction of “symmetric” measures by Makridakis 

                                                 
22 

The forecasting measures can often become infinite or undefined given the nature of real data.
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(1993). Also, if the data contains frequent zero or negative values the MAPE figure tends 

to explode or to have a strongly skewed distribution if out-of-sample data is consistently 

close to zero (Coleman and Swanson, 2004).   

 

3.6.2 The Forecasting Results for the Four- and Five-Factor Models 

        The forecasting results produced by the four- and five-factor models are organised 

across the forecasting methods and horizons for each maturity. In order to compare the 

predictive performance of the two extensions, the forecasting accuracy measures are 

combinedly presented in the Tables 3.39 to 3.44.  

         The results from the forecasting analysis for the four-factor specifications are rather 

mixed and complex with considerable differences from one data set to another. For GBP-

LIBOR rates (see Table 3.39) the forecasting results indicate that the CKLS model 

performs best (dominating also the benchmark models) for one-week and one-month 

GBP-LIBOR rates based on the standard criteria of producing the smallest statistical 

accuracy measures and a higher percentage in predicting the sign changes. However, for 

the longer maturity rates of 6-month and 12-month GBP-LIBOR rates, the CIR model 

have the best prediction relative to the other models used in this forecasting comparison.  

         In the case of the USD-LIBOR rates (see Table 3.40) the forecasting results are 

rather different from those in the case of GBP-LIBOR, with the discrete models VAR(1) 

and AR(1) outperforming all the continuous models for all  maturities interest rates. 

While the BRSC model was best in terms of explanatory power, the Vasicek model 

provides the best forecasts across the continuous-time models.  

       The forecasting results for the EUR-LIBOR rates (see Table 3.41) indicate a 

particularly different situation that keeps the models with the best goodness of fit from the 

estimation stage also as the best in forecasting performance; two of the continuous-time 

models, CKLS and CIR outperform the benchmark models VAR(1) and AR(1) especially 

in the case of 1-week, 1month- and 6-month EUR-LIBOR time series.  

For the JPY-LIBOR interest rates (see Table 3.41) the forecasting analysis provide similar 

conclusions as in the case of the USD-LIBOR rates, with VAR(1), AR(1) and Vasicek 

models  as the best three models in terms of forecasting power. 

        The CAD-LIBOR rates data set (Table 3.43) offers in terms of forecasting 

comparison among models some mixed results with the AR(1) and VAR(1) discrete time 

models performing better than the continuous-time models. From the continuous-time 

models the CIR model produces the best forecasts for one-week and one-month time-
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series, while the Vasicek model forecasts best the future six-month and twelve-month 

CAD-LIBOR rates. 

       Finally, in the case of the U.K. nominal spot rates (see Table 3.44) the overall 

forecasting performance is dominated by the discrete time benchmark model the VAR1 

model, while among the continuous-time models the best forecasts are obtained under the 

Vasicek model for one-year and fifteen-year maturity spot rates and the CIR model for 

the remaining interest rates of seven and twenty-five years. Regarding the accuracy of the 

forecasts across different horizons, the findings suggest that the predictability power of all 

models diminishes for all the forecasting statistics as the horizon increases.  As 

anticipated, in the shorter run (one-month) the predictive power of the models considered 

is at its highest; however, one could consider that the error forecasts over longer horizons 

(two and three months) are only marginally higher, hence the forecasting performance of 

the models may be considered satisfactory also in the long run. 

 

Table 3.39 Forecasting accuracy measures for the individual LIBOR-GBP time-series for 

the four- and five-factor models. There are 4 panels A, B, C and D for each maturity 1-

week, 1-, 6- and 12-months, respectively. 

 

Panel A  

GBP-LIBOR 1W CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 -0.00010 -0.00230 0.00080 0.00140 0.00020 0.00030 

4F-ME2 -0.00020 -0.00400 0.00110 0.00380 -0.00010 0.00060 

4E-ME3 -0.00030 -0.00510 0.00140 0.00770 -0.00030 0.00090 

4F-MAE1 0.00010 0.00230 0.00080 0.00140 0.00020 0.00030 

4F-MAE2 0.00020 0.00400 0.00110 0.00380 0.00020 0.00060 

4F-MAE3 0.00030 0.00510 0.00140 0.00770 0.00040 0.00090 

4F-MAPE1 1.65% 47.54% 16.50% 27.57% 3.31% 5.85% 

4F-MAPE2 3.27% 81.24% 23.47% 76.99% 4.36% 12.04% 

4F-MAPE3 5.60% 105.54% 28.96% 158.91% 7.78% 17.87% 

4F-RMSE1 0.00010 0.00260 0.00090 0.00160 0.00020 0.00030 

4F-RMSE2 0.00020 0.00440 0.00120 0.00470 0.00020 0.00070 

4F-RMSE3 0.00030 0.00560 0.00150 0.01010 0.00050 0.00100 

4F-CDCP1 27.27% 27.27% 4.55% 4.55% 27.27% 27.27% 

4F-CDCP2 15.91% 15.91% 4.55% 4.55% 15.91% 15.91% 

4F-CDCP3 10.61% 10.61% 3.03% 3.03% 10.61% 10.61% 

5F-ME1 -0.00013 -0.00074 0.00051 0.00037 0.00028 0.00031 

5F-ME2 -0.00022 -0.00116 0.00083 0.00032 0.00023 0.00061 

5F-ME3 -0.00032 -0.00161 0.00085 -0.00044 0.00013 0.00089 

5F-MAE1 0.00013 0.00074 0.00051 0.00037 0.00028 0.00031 

5F-MAE2 0.00022 0.00116 0.00083 0.00034 0.00023 0.00061 

5F-MAE3 0.00032 0.00161 0.00085 0.00087 0.00018 0.00089 
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5F-MAPE1 2.74% 15.11% 10.36% 7.51% 0.0570521 6.37% 

5F-MAPE2 4.57% 23.76% 17.07% 6.93% 0.0475214 12.55% 

5F-MAPE3 6.49% 33.06% 17.53% 17.96% 0.0376137 18.37% 

5F-RMSE1 0.00015 0.00080 0.00057 0.00039 0.00029 0.00036 

5F-RMSE2 0.00025 0.00126 0.00092 0.00037 0.00025 0.00070 

5F-RMSE3 0.00035 0.00179 0.00092 0.00137 0.00021 0.00102 

5F-CDIR1 22.73% 22.73% 4.55% 4.55% 4.55% 4.55% 

5F-CDIR2 13.64% 13.64% 4.55% 4.55% 4.55% 4.55% 

5F-CDIR3 9.09% 9.09% 3.03% 3.03% 3.03% 3.03% 

Panel B 

GBP LIBOR 1M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 -0.00009 -0.00045 0.00057 0.00023 -0.00011 -0.00015 

4F-ME2 -0.00020 -0.00088 0.00104 0.00033 -0.00024 -0.00032 

4E-ME3 -0.00032 -0.00132 0.00137 0.00012 -0.00037 -0.00049 

4F-MAE1 0.00009 0.00045 0.00057 0.00023 0.00011 0.00015 

4F-MAE2 0.00020 0.00088 0.00104 0.00033 0.00024 0.00032 

4F-MAE3 0.00032 0.00132 0.00137 0.00037 0.00037 0.00049 

4F-MAPE1 1.85% 9.10% 11.47% 4.73% 2.29% 3.09% 

4F-MAPE2 4.05% 17.83% 21.15% 6.80% 4.80% 6.43% 

4F-MAPE3 6.43% 26.85% 27.88% 7.47% 7.48% 10.00% 

4F-RMSE1 0.00011 0.00051 0.00064 0.00026 0.00013 0.00017 

4F-RMSE2 0.00024 0.00101 0.00117 0.00036 0.00028 0.00037 

4F-RMSE3 0.00037 0.00153 0.00152 0.00044 0.00043 0.00058 

4F-CDCP1 18.18% 18.18% 4.55% 4.55% 18.18% 18.18% 

4F-CDCP2 11.36% 11.36% 9.09% 9.09% 11.36% 11.36% 

4F-CDCP3 7.58% 7.58% 7.58% 6.06% 7.58% 7.58% 

5F-ME1 -0.00009 -0.00045 0.00057 0.00023 -0.00011 -0.00015 

5F-ME2 -0.00020 -0.00088 0.00104 0.00033 -0.00024 -0.00032 

5F-ME3 -0.00032 -0.00132 0.00137 0.00012 -0.00037 -0.00049 

5F-MAE1 0.00009 0.00045 0.00057 0.00023 0.00011 0.00015 

5F-MAE2 0.00020 0.00088 0.00104 0.00033 0.00024 0.00032 

5F-MAE3 0.00032 0.00132 0.00137 0.00037 0.00037 0.00049 

5F-MAPE1 1.85% 9.10% 11.47% 4.73% 2.29% 3.09% 

5F-MAPE2 4.05% 17.83% 21.15% 6.80% 4.80% 6.43% 

5F-MAPE3 6.43% 26.85% 27.88% 7.47% 7.48% 10.00% 

5F-RMSE1 0.00011 0.00051 0.00064 0.00026 0.00013 0.00017 

5F-RMSE2 0.00024 0.00101 0.00117 0.00036 0.00028 0.00037 

5F-RMSE3 0.00037 0.00153 0.00152 0.00044 0.00043 0.00058 

5F-CDIR1 18.18% 18.18% 4.55% 4.55% 18.18% 18.18% 

5F-CDIR2 11.36% 11.36% 9.09% 9.09% 11.36% 11.36% 

5F-CDIR3 7.58% 7.58% 7.58% 6.06% 7.58% 7.58% 

Panel C  

GBP-LIBOR 6M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00020 -0.00030 -0.00010 0.00000 -0.00010 -0.00010 
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4F-ME2 0.00040 -0.00080 -0.00010 0.00000 -0.00010 -0.00030 

4E-ME3 0.00050 -0.00130 -0.00010 0.00020 -0.00020 -0.00050 

4F-MAE1 0.00020 0.00030 0.00010 0.00000 0.00010 0.00010 

4F-MAE2 0.00040 0.00080 0.00010 0.00010 0.00010 0.00030 

4F-MAE3 0.00050 0.00130 0.00010 0.00020 0.00020 0.00050 

4F-MAPE1 3.85% 5.88% 0.91% 0.41% 1.18% 2.18% 

4F-MAPE2 6.94% 13.13% 1.39% 0.87% 1.97% 5.11% 

4F-MAPE3 9.09% 21.33% 2.24% 3.09% 2.93% 8.57% 

4F-RMSE1 0.00030 0.00040 0.00010 0.00000 0.00010 0.00020 

4F-RMSE2 0.00050 0.00090 0.00010 0.00010 0.00010 0.00040 

4F-RMSE3 0.00060 0.00150 0.00020 0.00030 0.00020 0.00060 

4F-CDCP1 4.55% 40.91% 40.91% 40.91% 40.91% 40.91% 

4F-CDCP2 11.36% 34.09% 34.09% 34.09% 34.09% 34.09% 

4F-CDCP3 18.18% 34.85% 34.85% 33.33% 34.85% 34.85% 

5F-ME1 -0.00017 -0.00003 0.00075 0.00024 0.00002 -0.00013 

5F-ME2 -0.00037 -0.00015 0.00133 0.00019 0.00004 -0.0003 

5F-ME3 -0.00061 -0.00034 0.0018 -0.00048 0.00004 -0.00051 

5F-MAE1 0.00017 0.00004 0.00075 0.00024 0.00002 0.00013 

5F-MAE2 0.00037 0.00016 0.00133 0.00023 0.00004 0.0003 

5F-MAE3 0.00061 0.00034 0.0018 0.00076 0.00005 0.00051 

5F-MAPE1 2.84% 0.69% 12.61% 4.10% 0.41% 2.18% 

5F-MAPE2 6.35% 2.69% 22.59% 3.84% 0.71% 5.11% 

5F-MAPE3 10.30% 5.79% 30.32% 12.72% 0.78% 8.57% 

5F-RMSE1 0.0002 0.00005 0.00084 0.00026 0.000028 0.000155 

5F-RMSE2 0.00044 0.00021 0.0015 0.00025 0.000049 0.00036 

5F-RMSE3 0.00073 0.00046 0.00199 0.00125 0.000053 0.000615 

5F-CDIR1 40.91% 36.36% 4.55% 4.55% 13.64% 40.91% 

5F-CDIR2 34.09% 31.82% 11.36% 6.82% 15.91% 34.09% 

5F-CDIR3 34.85% 33.33% 18.18% 16.67% 22.73% 34.85% 

Panel D  

GBP-LIBOR 12M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00030 -0.00020 0.00010 -0.00030 0.00010 -0.00010 

4F-ME2 0.00050 -0.00050 0.00010 -0.00090 0.00020 -0.00010 

4E-ME3 0.00070 -0.00080 0.00000 -0.00230 0.00030 -0.00030 

4F-MAE1 0.00030 0.00020 0.00010 0.00030 0.00010 0.00010 

4F-MAE2 0.00050 0.00050 0.00010 0.00090 0.00020 0.00010 

4F-MAE3 0.00070 0.00080 0.00010 0.00230 0.00030 0.00030 

4F-MAPE1 3.31% 2.38% 0.67% 3.14% 1.35% 0.61% 

4F-MAPE2 6.15% 5.09% 0.87% 10.69% 2.75% 1.64% 

4F-MAPE3 7.94% 8.72% 1.03% 25.30% 3.28% 3.60% 

4F-RMSE1 0.00030 0.00020 0.00010 0.00030 0.00010 0.00010 

4F-RMSE2 0.00060 0.00050 0.00010 0.00120 0.00030 0.00020 

4F-RMSE3 0.00080 0.00090 0.00010 0.00310 0.00030 0.00040 
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4F-CDCP1 0.00% 59.09% 4.55% 59.09% 54.55% 54.55% 

4F-CDCP2 6.82% 43.18% 9.09% 43.18% 40.91% 40.91% 

4F-CDCP3 19.70% 43.94% 21.21% 43.94% 42.42% 42.42% 

5F-ME1 -0.00016 0.00047 0.00110 0.00065 0.00020 -0.00006 

5F-ME2 -0.00035 0.00075 0.00195 0.00126 0.00038 -0.00015 

5F-ME3 -0.00063 0.00085 0.00264 0.00206 0.00049 -0.00032 

5F-MAE1 0.00016 0.00047 0.00110 0.00065 0.00020 0.00006 

5F-MAE2 0.00035 0.00075 0.00195 0.00126 0.00038 0.00015 

5F-MAE3 0.00063 0.00085 0.00264 0.00206 0.00049 0.00032 

5F-MAPE1 1.82% 5.23% 12.33% 7.26% 2.25% 0.61% 

5F-MAPE2 3.99% 8.44% 21.99% 14.26% 4.32% 1.64% 

5F-MAPE3 7.01% 9.60% 29.56% 23.04% 5.45% 3.60% 

5F-RMSE1 0.00018 0.00053 0.00125 0.00074 0.000238 0.000061 

5F-RMSE2 0.00042 0.00082 0.00219 0.00145 0.000437 0.000184 

5F-RMSE3 0.00077 0.00091 0.00293 0.00245 0.000536 0.000427 

5F-CDIR1 54.55% 0.00% 0.00% 0.00% 0.00% 54.55% 

5F-CDIR2 40.91% 6.82% 6.82% 6.82% 6.82% 40.91% 

5F-CDIR3 42.42% 19.70% 19.70% 19.70% 19.70% 42.42% 

 

 

Table 3.40 Forecasting accuracy measures for the individual LIBOR-USD time-series for 

the four- and five-factor models. There are 4 panels A, B, C and D for each 

maturity 1-week, 1-, 6- and 12-months, respectively. 

 

Panel A 

USD-LIBOR 1W CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00300 0.00260 0.00300 0.00310 -0.00030 0.00000 

4F-ME2 0.00290 0.00220 0.00280 0.00300 -0.00050 0.00000 

4E-ME3 0.00280 0.00170 0.00260 0.00300 -0.00070 -0.00010 

4F-MAE1 0.00300 0.00260 0.00300 0.00310 0.00030 0.00000 

4F-MAE2 0.00290 0.00220 0.00280 0.00300 0.00050 0.00000 

4F-MAE3 0.00280 0.00170 0.00260 0.00300 0.00070 0.00010 

4F-MAPE1 176.82% 153.32% 173.14% 179.97% 18.00% 1.68% 

4F-MAPE2 174.65% 128.64% 166.50% 180.64% 32.46% 2.00% 

4F-MAPE3 169.83% 102.05% 156.97% 178.63% 45.25% 3.24% 

4F-RMSE1 0.00300 0.00270 0.00300 0.00310 0.00040 0.00000 

4F-RMSE2 0.00290 0.00220 0.00280 0.00300 0.00060 0.00000 

4F-RMSE3 0.00280 0.00190 0.00260 0.00300 0.00080 0.00010 

4F-CDCP1 22.73% 27.27% 27.27% 22.73% 40.91% 40.91% 

4F-CDCP2 22.73% 25.00% 25.00% 22.73% 40.91% 40.91% 

4F-CDCP3 24.24% 25.76% 25.76% 24.24% 36.36% 36.36% 

5F-ME1 0.00003 0.00058 0.00001 -0.00005 -0.00023 -0.00002 

5F-ME2 0.00008 0.00109 0.00009 -0.00008 -0.00041 -0.00003 

5F-ME3 0.00011 0.00157 0.00018 -0.00012 -0.00057 -0.00005 

5F-MAE1 0.00003 0.00058 0.00003 0.00006 0.00023 0.00003 
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5F-MAE2 0.00008 0.00109 0.0001 0.00008 0.00041 0.00003 

5F-MAE3 0.00011 0.00157 0.00019 0.00012 0.00057 0.00005 

5F-MAPE1 1.88% 33.73% 1.47% 3.26% 13.68% 1.68% 

5F-MAPE2 4.78% 66.13% 6.07% 5.00% 24.81% 2.00% 

5F-MAPE3 7.01% 96.96% 11.72% 7.12% 35.18% 3.24% 

5F-RMSE1 0.00004 0.00065 0.00003 0.00006 0.00027 0.00003 

5F-RMSE2 0.00010 0.00125 0.00013 0.00009 0.00046 0.00004 

5F-RMSE3 0.00013 0.00179 0.00024 0.00013 0.00064 0.00006 

5F-CDIR1 22.73% 22.73% 27.27% 36.36% 40.91% 50.00% 

5F-CDIR2 22.73% 22.73% 25.00% 38.64% 40.91% 45.45% 

5F-CDIR3 ` 24.24% 25.76% 34.85% 36.36% 39.39% 

Panel B 

USD-LIBOR 1M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00300 0.00250 0.00290 0.00300 -0.00030 -0.00010 

4F-ME2 0.00290 0.00210 0.00270 0.00290 -0.00060 -0.00010 

4E-ME3 0.00280 0.00160 0.00250 0.00290 -0.00080 -0.00020 

4F-MAE1 0.00300 0.00250 0.00290 0.00300 0.00030 0.00010 

4F-MAE2 0.00290 0.00210 0.00270 0.00290 0.00060 0.00010 

4F-MAE3 0.00280 0.00160 0.00250 0.00290 0.00080 0.00020 

4F-MAPE1 150.52% 126.63% 144.70% 149.80% 15.53% 3.18% 

4F-MAPE2 148.52% 104.42% 137.68% 148.07% 28.96% 7.44% 

4F-MAPE3 144.75% 82.03% 129.33% 145.20% 40.23% 11.69% 

4F-RMSE1 0.00300 0.00250 0.00290 0.00300 0.00040 0.00010 

4F-RMSE2 0.00290 0.00210 0.00270 0.00290 0.00060 0.00020 

4F-RMSE3 0.00290 0.00180 0.00260 0.00290 0.00090 0.00030 

4F-CDCP1 13.64% 18.18% 18.18% 13.64% 36.36% 36.36% 

4F-CDCP2 13.64% 15.91% 15.91% 13.64% 31.82% 31.82% 

4F-CDCP3 18.18% 19.70% 19.70% 18.18% 33.33% 33.33% 

5F-ME1 0.00003 0.00034 -0.00009 -0.00004 -0.00027 -0.00006 

5F-ME2 0.00004 0.00073 -0.00011 -0.00009 -0.00048 -0.00015 

5F-ME3 0.00006 0.00116 -0.00009 -0.00014 -0.00066 -0.00023 

5F-MAE1 0.00003 0.00034 0.00009 0.00004 0.00027 0.00006 

5F-MAE2 0.00004 0.00073 0.00011 0.00009 0.00048 0.00015 

5F-MAE3 0.00006 0.00116 0.00009 0.00014 0.00066 0.00023 

5F-MAPE1 1.58% 16.87% 4.51% 1.97% 13.41% 3.18% 

5F-MAPE2 2.26% 37.27% 5.74% 4.74% 24.41% 7.44% 

5F-MAPE3 3.19% 59.52% 4.80% 7.18% 33.66% 11.69% 

5F-RMSE1 0.00003 0.00039 0.0001 0.00005 0.0003 0.00008 

5F-RMSE2 0.00005 0.00087 0.00012 0.00011 0.00054 0.00017 

5F-RMSE3 0.00007 0.00137 0.00011 0.00016 0.00073 0.00027 

5F-CDIR1 18.18% 13.64% 31.82% 31.82% 36.36% 36.36% 

5F-CDIR2 15.91% 13.64% 29.55% 29.55% 31.82% 31.82% 

5F-CDIR3 19.70% 18.18% 31.82% 31.82% 33.33% 33.33% 

Panel C 

USD-LIBOR 6M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00180 0.00130 0.00160 0.00150 -0.00010 0.00000 

4F-ME2 0.00200 0.00110 0.00160 0.00150 -0.00030 0.00000 

4E-ME3 0.00210 0.00080 0.00160 0.00150 -0.00040 -0.00010 
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4F-MAE1 0.00180 0.00130 0.00160 0.00150 0.00010 0.00000 

4F-MAE2 0.00200 0.00110 0.00160 0.00150 0.00030 0.00000 

4F-MAE3 0.00210 0.00080 0.00160 0.00150 0.00040 0.00010 

4F-MAPE1 41.29% 29.83% 36.55% 35.27% 3.43% 0.31% 

4F-MAPE2 46.60% 24.43% 37.36% 35.65% 6.08% 0.71% 

4F-MAPE3 50.31% 18.40% 37.10% 35.41% 8.52% 1.68% 

4F-RMSE1 0.00180 0.00130 0.00160 0.00150 0.00020 0.00000 

4F-RMSE2 0.00200 0.00110 0.00160 0.00150 0.00030 0.00000 

4F-RMSE3 0.00210 0.00090 0.00160 0.00150 0.00040 0.00010 

4F-CDCP1 4.55% 9.09% 9.09% 4.55% 63.64% 63.64% 

4F-CDCP2 6.82% 9.09% 9.09% 6.82% 52.27% 52.27% 

4F-CDCP3 18.18% 24.24% 19.70% 18.18% 50.00% 50.00% 

5F-ME1 0.00007 0.00045 -0.00011 0.00007 -0.00012 -0.00001 

5F-ME2 0.00013 0.00093 -0.00022 0.00012 -0.0002 -0.00003 

5F-ME3 0.00016 0.00139 -0.00037 0.00013 -0.00028 -0.00007 

5F-MAE1 0.00007 0.00045 0.00011 0.00007 0.00012 0.00001 

5F-MAE2 0.00013 0.00093 0.00022 0.00012 0.0002 0.00003 

5F-MAE3 0.00016 0.00139 0.00037 0.00013 0.00028 0.00007 

5F-MAPE1 1.56% 10.33% 2.48% 1.67% 2.83% 0.31% 

5F-MAPE2 2.95% 21.84% 5.27% 2.80% 4.76% 0.71% 

5F-MAPE3 3.83% 33.18% 8.86% 3.19% 6.60% 1.68% 

5F-RMSE1 0.00008 0.00052 0.00012 0.00008 0.00013 0.00002 

5F-RMSE2 0.00014 0.00108 0.00026 0.00013 0.00022 0.00004 

5F-RMSE3 0.00018 0.0016 0.00045 0.00015 0.00031 0.0001 

5F-CDIR1 9.09% 4.55% 59.09% 9.09% 59.09% 59.09% 

5F-CDIR2 9.09% 6.82% 50.00% 9.09% 50.00% 50.00% 

5F-CDIR3 19.70% 18.18% 48.48% 19.70% 48.48% 48.48% 

Panel D 

USD- LIBOR 12M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00220 0.00160 0.00190 0.00170 0.00000 0.00010 

4F-ME2 0.00260 0.00140 0.00200 0.00160 0.00010 0.00020 

4E-ME3 0.00290 0.00120 0.00200 0.00150 0.00010 0.00020 

4F-MAE1 0.00220 0.00160 0.00190 0.00170 0.00000 0.00010 

4F-MAE2 0.00260 0.00140 0.00200 0.00160 0.00010 0.00020 

4F-MAE3 0.00290 0.00120 0.00200 0.00150 0.00010 0.00020 

4F-MAPE1 31.35% 22.43% 26.51% 23.65% 0.32% 1.25% 

4F-MAPE2 37.25% 20.23% 28.10% 23.03% 0.81% 2.27% 

4F-MAPE3 41.43% 17.23% 28.70% 21.81% 1.09% 2.62% 

4F-RMSE1 0.00230 0.00160 0.00190 0.00170 0.00000 0.00010 

4F-RMSE2 0.00270 0.00140 0.00200 0.00160 0.00010 0.00020 

4F-RMSE3 0.00290 0.00130 0.00200 0.00150 0.00010 0.00020 

4F-CDCP1 9.09% 13.64% 13.64% 9.09% 63.64% 63.64% 

4F-CDCP2 9.09% 11.36% 11.36% 9.09% 59.09% 59.09% 

4F-CDCP3 16.67% 18.18% 18.18% 16.67% 57.58% 57.58% 

5F-ME1 0.00015 0.00057 -0.00006 0.00023 0.00005 0.00009 

5F-ME2 0.00028 0.0011 -0.00016 0.00039 0.00012 0.00016 

5F-ME3 0.00035 0.00156 -0.00033 0.00048 0.00015 0.00018 

5F-MAE1 0.00015 0.00057 0.00007 0.00023 0.00006 0.00009 
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5F-MAE2 0.00028 0.0011 0.00016 0.00039 0.00012 0.00016 

5F-MAE3 0.00035 0.00156 0.00033 0.00048 0.00016 0.00018 

5F-MAPE1 2.13% 8.03% 0.93% 3.23% 0.78% 1.25% 

5F-MAPE2 3.98% 15.80% 2.34% 5.59% 1.73% 2.27% 

5F-MAPE3 5.09% 22.64% 4.86% 6.87% 2.25% 2.62% 

5F-RMSE1 0.00017 0.00065 0.00008 0.00025 0.00006 0.0001 

5F-RMSE2 0.00031 0.00126 0.0002 0.00043 0.00014 0.00018 

5F-RMSE3 0.00039 0.00177 0.00044 0.00052 0.00018 0.0002 

5F-CDIR1 9.09% 9.09% 54.55% 9.09% 13.64% 13.64% 

5F-CDIR2 9.09% 9.09% 54.55% 9.09% 11.36% 11.36% 

5F-CDIR3 16.67% 16.67% 54.55% 16.67% 18.18% 18.18% 

 

Table 3.41 Forecasting accuracy measures for the individual EUR-LIBOR time-series for 

the four- and five-factor models. There are 4 panels A, B, C and D for each maturity 1-

week, 1-, 6- and 12-months, respectively. 

 

Panel A 

EUR-LIBOR 1W CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00000 0.00020 -0.00010 0.00000 -0.00020 -0.00010 

4F-ME2 0.00000 0.00030 -0.00010 0.00000 -0.00040 -0.00020 

4E-ME3 0.00000 0.00050 -0.00010 0.00000 -0.00060 -0.00030 

4F-MAE1 0.00000 0.00020 0.00010 0.00000 0.00020 0.00010 

4F-MAE2 0.00000 0.00030 0.00010 0.00000 0.00040 0.00020 

4F-MAE3 0.00000 0.00050 0.00010 0.00000 0.00060 0.00030 

4F-MAPE1 1.36% 44.01% 14.57% 4.78% 61.15% 33.12% 

4F-MAPE2 3.80% 86.09% 23.45% 5.67% 114.07% 62.33% 

4F-MAPE3 5.28% 124.05% 22.40% 8.75% 154.98% 89.03% 

4F-RMSE1 0.00000 0.00020 0.00010 0.00000 0.00020 0.00010 

4F-RMSE2 0.00000 0.00030 0.00010 0.00000 0.00050 0.00030 

4F-RMSE3 0.00000 0.00060 0.00010 0.00000 0.00070 0.00040 

4F-CDCP1 9.09% 4.55% 4.55% 4.55% 4.55% 4.55% 

4F-CDCP2 11.36% 9.09% 9.09% 9.09% 9.09% 9.09% 

4F-CDCP3 21.21% 10.61% 25.76% 10.61% 10.61% 10.61% 

5F-ME1 -0.00006 -0.00038 0.00006 -0.00008 -0.00050 -0.00012 

5F-ME2 -0.00010 -0.00070 0.00013 -0.00016 -0.00089 -0.00022 

5F-ME3 -0.00016 -0.00102 0.00020 -0.00036 -0.00125 -0.00034 

5F-MAE1 0.00006 0.00038 0.00006 0.00008 0.00050 0.00012 

5F-MAE2 0.00010 0.00070 0.00013 0.00016 0.00089 0.00022 

5F-MAE3 0.00016 0.00102 0.00020 0.00036 0.00125 0.00034 

5F-MAPE1 16.60% 107.89% 15.75% 21.54% 141.98% 33.12% 

5F-MAPE2 29.00% 199.33% 37.12% 44.38% 253.41% 62.33% 

5F-MAPE3 41.63% 270.74% 52.30% 92.31% 330.87% 89.03% 

5F-RMSE1 0.00007 0.00043 0.00007 0.00009 0.00057 0.00013 

5F-RMSE2 0.00011 0.00080 0.00016 0.00018 0.00100 0.00025 

5F-RMSE3 0.00019 0.00117 0.00023 0.00051 0.00140 0.00040 
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5F-CDIR1 4.55% 4.55% 4.55% 4.55% 4.55% 4.55% 

5F-CDIR2 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 

5F-CDIR3 10.61% 10.61% 24.24% 10.61% 10.61% 10.61% 

Panel B 

EUR-LIBOR 1M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00000 0.00030 0.00000 0.00000 -0.00030 -0.00020 

4F-ME2 0.00010 0.00050 -0.00010 -0.00010 -0.00060 -0.00030 

4E-ME3 0.00010 0.00070 0.00000 0.00000 -0.00080 -0.00050 

4F-MAE1 0.00000 0.00030 0.00000 0.00000 0.00030 0.00020 

4F-MAE2 0.00010 0.00050 0.00010 0.00010 0.00060 0.00030 

4F-MAE3 0.00010 0.00070 0.00000 0.00000 0.00080 0.00050 

4F-MAPE1 8.03% 46.44% 4.59% 5.00% 57.62% 26.18% 

4F-MAPE2 11.71% 79.71% 8.80% 9.11% 99.51% 51.72% 

4F-MAPE3 17.30% 106.35% 8.21% 8.21% 129.21% 77.02% 

4F-RMSE1 0.00010 0.00030 0.00000 0.00000 0.00040 0.00020 

4F-RMSE2 0.00010 0.00050 0.00010 0.00010 0.00060 0.00030 

4F-RMSE3 0.00010 0.00070 0.00010 0.00010 0.00090 0.00060 

4F-CDCP1 27.27% 27.27% 27.27% 27.27% 27.27% 27.27% 

4F-CDCP2 20.45% 20.45% 20.45% 20.45% 20.45% 20.45% 

4F-CDCP3 16.67% 16.67% 24.24% 25.76% 16.67% 16.67% 

5F-ME1 -0.00009 -0.00034 0.00000 -0.00005 -0.00046 -0.00016 

5F-ME2 -0.00016 -0.00065 0.00004 -0.00011 -0.00085 -0.00030 

5F-ME3 -0.00026 -0.00099 0.00007 -0.00031 -0.00123 -0.00048 

5F-MAE1 0.00009 0.00034 0.00001 0.00005 0.00046 0.00016 

5F-MAE2 0.00016 0.00065 0.00004 0.00011 0.00085 0.00030 

5F-MAE3 0.00026 0.00099 0.00007 0.00031 0.00123 0.00048 

5F-MAPE1 15.34% 55.68% 1.11% 8.10% 76.08% 26.18% 

5F-MAPE2 27.91% 111.12% 7.52% 18.87% 145.51% 51.72% 

5F-MAPE3 41.64% 158.95% 11.03% 48.09% 198.19% 77.02% 

5F-RMSE1 0.00011 0.00039 0.00001 0.00006 0.00052 0.00018 

5F-RMSE2 0.00018 0.00075 0.00006 0.00013 0.00097 0.00035 

5F-RMSE3 0.00031 0.00115 0.00008 0.00046 0.00140 0.00057 

5F-CDIR1 27.27% 27.27% 27.27% 27.27% 27.27% 27.27% 

5F-CDIR2 20.45% 20.45% 20.45% 20.45% 20.45% 20.45% 

5F-CDIR3 16.67% 16.67% 28.79% 16.67% 16.67% 16.67% 

Panel C 

EUR-LIBOR 6M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00010 0.00000 0.00000 0.00010 -0.00020 -0.00010 

4F-ME2 0.00010 0.00000 -0.00010 0.00010 -0.00030 -0.00020 

4E-ME3 0.00030 0.00020 -0.00010 0.00020 -0.00050 -0.00050 

4F-MAE1 0.00010 0.00000 0.00010 0.00010 0.00020 0.00010 

4F-MAE2 0.00010 0.00000 0.00010 0.00010 0.00030 0.00020 

4F-MAE3 0.00030 0.00020 0.00020 0.00020 0.00050 0.00050 

4F-MAPE1 4.62% 1.51% 2.44% 2.92% 9.15% 6.84% 
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4F-MAPE2 6.52% 1.59% 6.96% 3.42% 12.80% 11.87% 

4F-MAPE3 14.47% 8.12% 7.82% 10.61% 20.39% 22.68% 

4F-RMSE1 0.00010 0.00000 0.00010 0.00010 0.00020 0.00020 

4F-RMSE2 0.00010 0.00000 0.00020 0.00010 0.00030 0.00030 

4F-RMSE3 0.00050 0.00030 0.00020 0.00040 0.00060 0.00070 

4F-CDCP1 36.36% 36.36% 18.18% 36.36% 36.36% 36.36% 

4F-CDCP2 36.36% 40.91% 27.27% 36.36% 36.36% 36.36% 

4F-CDCP3 30.30% 33.33% 28.79% 30.30% 30.30% 30.30% 

5F-ME1 -0.00021 -0.00017 0.00000 -0.00006 -0.00027 -0.00015 

5F-ME2 -0.00036 -0.00029 0.00004 -0.00009 -0.00045 -0.00024 

5F-ME3 -0.00068 -0.00059 -0.00010 -0.00038 -0.00078 -0.00051 

5F-MAE1 0.00021 0.00017 0.00003 0.00006 0.00027 0.00015 

5F-MAE2 0.00036 0.00029 0.00005 0.00009 0.00045 0.00024 

5F-MAE3 0.00068 0.00059 0.00017 0.00038 0.00078 0.00051 

5F-MAPE1 9.60% 7.58% 1.28% 2.73% 12.38% 6.84% 

5F-MAPE2 17.47% 14.02% 2.62% 4.33% 22.19% 11.87% 

5F-MAPE3 30.34% 26.05% 7.03% 15.95% 35.03% 22.68% 

5F-RMSE1 0.00023 0.00018 0.00003 0.00006 0.00030 0.00016 

5F-RMSE2 0.00040 0.00033 0.00006 0.00011 0.00051 0.00027 

5F-RMSE3 0.00086 0.00077 0.00028 0.00061 0.00095 0.00068 

5F-CDIR1 36.36% 36.36% 27.27% 36.36% 36.36% 36.36% 

5F-CDIR2 36.36% 36.36% 31.82% 36.36% 36.36% 36.36% 

5F-CDIR3 30.30% 30.30% 28.79% 30.30% 30.30% 30.30% 

Panel D 

EUR-LIBOR 12M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00000 -0.00020 -0.00020 0.00000 0.00000 0.00000 

4F-ME2 0.00010 -0.00030 -0.00040 0.00000 0.00000 -0.00010 

4E-ME3 0.00030 -0.00020 -0.00030 0.00030 -0.00010 -0.00030 

4F-MAE1 0.00000 0.00020 0.00020 0.00000 0.00000 0.00000 

4F-MAE2 0.00010 0.00030 0.00040 0.00010 0.00010 0.00010 

4F-MAE3 0.00030 0.00030 0.00030 0.00030 0.00020 0.00040 

4F-MAPE1 1.13% 4.40% 4.73% 0.85% 0.90% 1.02% 

4F-MAPE2 1.66% 8.17% 9.50% 1.28% 1.74% 1.67% 

4F-MAPE3 7.69% 7.61% 8.27% 6.93% 4.74% 8.02% 

4F-RMSE1 0.00010 0.00020 0.00020 0.00000 0.00000 0.00000 

4F-RMSE2 0.00010 0.00040 0.00040 0.00010 0.00010 0.00010 

4F-RMSE3 0.00060 0.00040 0.00040 0.00050 0.00030 0.00060 

4F-CDCP1 59.09% 27.27% 27.27% 63.64% 54.55% 54.55% 

4F-CDCP2 47.73% 31.82% 31.82% 54.55% 43.18% 43.18% 

4F-CDCP3 43.94% 36.36% 37.88% 48.48% 40.91% 40.91% 

5F-ME1 -0.00016 -0.00005 0.00000 0.00007 -0.00013 -0.00004 

5F-ME2 -0.00030 -0.00008 0.00000 0.00015 -0.00021 -0.00006 

5F-ME3 -0.00071 -0.00038 -0.00026 0.00001 -0.00052 -0.00035 

5F-MAE1 0.00016 0.00005 0.00003 0.00007 0.00013 0.00004 
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5F-MAE2 0.00030 0.00008 0.00005 0.00015 0.00021 0.00007 

5F-MAE3 0.00071 0.00038 0.00029 0.00019 0.00052 0.00035 

5F-MAPE1 3.78% 1.28% 0.68% 1.64% 3.18% 1.02% 

5F-MAPE2 7.54% 2.11% 1.25% 3.76% 5.36% 1.67% 

5F-MAPE3 16.54% 8.74% 6.63% 4.65% 12.15% 8.02% 

5F-RMSE1 0.00018 0.00006 0.00003 0.00009 0.00015 0.00005 

5F-RMSE2 0.00035 0.00012 0.00007 0.00018 0.00024 0.00010 

5F-RMSE3 0.00097 0.00062 0.00050 0.00025 0.00072 0.00058 

5F-CDIR1 54.55% 59.09% 54.55% 31.82% 54.55% 63.64% 

5F-CDIR2 43.18% 45.45% 47.73% 34.09% 43.18% 50.00% 

5F-CDIR3 40.91% 42.42% 43.94% 34.85% 40.91% 45.45% 

 

 

  

Table 3.42 Forecasting accuracy measures for the individual JPY-LIBOR time-series for 

the four- and five-factor models. There are 4 panels A, B, C and D for each maturity 1-

week, 1-, 6- and 12-months, respectively. 
 

Panel A 

JPY-LIBOR  CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00420 0.00240 0.00260 0.00380 0.00000 0.00010 

4F-ME2 0.00440 0.00170 0.00210 0.00350 -0.00010 0.00020 

4E-ME3 0.00410 0.00140 0.00180 0.00320 -0.00010 0.00030 

4F-MAE1 0.00420 0.00240 0.00260 0.00380 0.00010 0.00010 

4F-MAE2 0.00440 0.00170 0.00210 0.00350 0.00010 0.00020 

4F-MAE3 0.00410 0.00140 0.00180 0.00320 0.00010 0.00030 

4F-MAPE1 407.72% 234.17% 251.07% 361.65% 5.32% 11.51% 

4F-MAPE2 424.51% 168.21% 205.72% 345.34% 8.84% 23.95% 

4F-MAPE3 404.54% 28.99% 179.46% 315.44% 11.87% 33.40% 

4F-RMSE1 0.00420 0.00250 0.00270 0.00380 0.00010 0.00010 

4F-RMSE2 0.00440 0.00190 0.00220 0.00360 0.00010 0.00030 

4F-RMSE3 0.00420 0.00160 0.00190 0.00330 0.00010 0.00040 

4F-CDCP1 27.27% 27.27% 27.27% 27.27% 36.36% 36.36% 

4F-CDCP2 22.73% 22.73% 22.73% 22.73% 29.55% 29.55% 

4F-CDCP3 18.18% 3.03% 18.18% 18.18% 25.76% 25.76% 

5F-ME1 -0.00011 -0.00036 0.00043 -0.0001 0.00016 0.00012 

5F-ME2 -0.00013 -0.00032 0.00134 -0.00012 0.0002 0.00024 

5F-ME3 -0.00013 -0.00024 0.00318 -0.00014 0.00021 0.00034 

5F-MAE1 0.00011 0.00036 0.00043 0.0001 0.00016 0.00012 

5F-MAE2 0.00013 0.00032 0.00134 0.00012 0.0002 0.00024 

5F-MAE3 0.00013 0.00024 0.00318 0.00014 0.00021 0.00034 

5F-MAPE1 10.61% 33.86% 41.29% 9.51% 15.30% 11.51% 

5F-MAPE2 12.14% 30.64% 131.44% 11.90% 20.01% 23.95% 
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5F-MAPE3 13.00% 23.58% 313.90% 13.61% 20.76% 33.40% 

5F-RMSE1 0.00013 0.00037 0.00051 0.00012 0.00017 0.00013 

5F-RMSE2 0.00014 0.00033 0.00173 0.00013 0.00021 0.00028 

5F-RMSE3 0.00014 0.00028 0.00436 0.00015 0.00022 0.00038 

5F-CDIR1 31.82% 31.82% 27.27% 31.82% 27.27% 27.27% 

5F-CDIR2 27.27% 27.27% 22.73% 27.27% 22.73% 22.73% 

5F-CDIR3 24.24% 24.24% 18.18% 24.24% 18.18% 18.18% 

Panel B 

JPY-LIBOR 1M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00450 0.00290 0.00310 0.00370 -0.00010 0.00360 

4F-ME2 0.00510 0.00240 0.00270 0.00360 -0.00010 0.00340 

4E-ME3 0.00540 0.00070 0.00240 0.00350 -0.00010 0.00320 

4F-MAE1 0.00450 0.00290 0.00310 0.00370 0.00010 0.00360 

4F-MAE2 0.00510 0.00240 0.00270 0.00360 0.00010 0.00340 

4F-MAE3 0.00540 0.00070 0.00240 0.00350 0.00010 0.00320 

4F-MAPE1 371.80% 237.99% 257.54% 303.32% 5.03% 291.30% 

4F-MAPE2 424.30% 194.73% 222.78% 299.26% 8.70% 280.67% 

4F-MAPE3 450.93% 14.24% 198.67% 287.31% 11.03% 268.53% 

4F-RMSE1 0.00460 0.00290 0.00320 0.00370 0.00010 0.00360 

4F-RMSE2 0.00520 0.00240 0.00280 0.00360 0.00010 0.00340 

4F-RMSE3 0.00550 0.00090 0.00250 0.00350 0.00010 0.00320 

4F-CDCP1 9.09% 9.09% 9.09% 9.09% 22.73% 27.27% 

4F-CDCP2 9.09% 9.09% 9.09% 9.09% 15.91% 18.18% 

4F-CDCP3 6.06% 9.09% 6.06% 6.06% 13.64% 15.15% 

5F-ME1 -0.00004 0.0002 0.00061 -0.00005 0.00014 0.00005 

5F-ME2 -0.00007 0.00041 0.0018 -0.00008 0.00018 0.00008 

5F-ME3 -0.00008 0.0006 0.00419 -0.0001 0.0002 0.00011 

5F-MAE1 0.00004 0.0002 0.00061 0.00005 0.00014 0.00005 

5F-MAE2 0.00007 0.00041 0.0018 0.00008 0.00018 0.00008 

5F-MAE3 0.00008 0.0006 0.00419 0.0001 0.0002 0.00011 

5F-MAPE1 3.32% 16.07% 49.92% 3.96% 11.17% 3.80% 

5F-MAPE2 5.44% 33.87% 150.18% 6.41% 15.05% 6.76% 

5F-MAPE3 6.85% 50.35% 352.49% 8.09% 16.53% 9.35% 

5F-RMSE1 0.00005 0.00023 0.00073 0.00006 0.00015 0.00005 

5F-RMSE2 0.00007 0.00047 0.00231 0.00009 0.00019 0.00009 

5F-RMSE3 0.00009 0.00069 0.00570 0.00011 0.00021 0.00012 

5F-CDIR1 22.73% 9.09% 9.09% 22.73% 9.09% 9.09% 

5F-CDIR2 15.91% 9.09% 9.09% 15.91% 9.09% 9.09% 

5F-CDIR3 13.64% 6.06% 6.06% 13.64% 6.06% 6.06% 

Panel C 

JPY-LIBOR 6M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00330 0.00330 0.00340 0.00380 0.00010 0.00010 

4F-ME2 0.00330 0.00320 0.00340 0.00420 0.00020 0.00010 

4E-ME3 0.00330 0.00110 0.00340 0.00450 0.00020 0.00010 
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4F-MAE1 0.00330 0.00330 0.00340 0.00380 0.00010 0.00010 

4F-MAE2 0.00330 0.00320 0.00340 0.00420 0.00020 0.00010 

4F-MAE3 0.00330 0.00110 0.00340 0.00450 0.00020 0.00010 

4F-MAPE1 133.48% 133.21% 137.38% 152.50% 3.97% 2.64% 

4F-MAPE2 133.19% 128.62% 138.77% 168.86% 6.95% 4.31% 

4F-MAPE3 134.90% 17.92% 140.43% 185.04% 9.83% 6.06% 

4F-RMSE1 0.00330 0.00330 0.00340 0.00380 0.00010 0.00010 

4F-RMSE2 0.00330 0.00320 0.00340 0.00420 0.00020 0.00010 

4F-RMSE3 0.00330 0.00120 0.00340 0.00450 0.00030 0.00020 

4F-CDCP1 0.00% 0.00% 0.00% 0.00% 31.82% 36.36% 

4F-CDCP2 0.00% 0.00% 0.00% 0.00% 22.73% 25.00% 

4F-CDCP3 6.06% 18.18% 6.06% 6.06% 25.76% 25.76% 

5F-ME1 0.00007 0.00011 0 0.00003 0.00016 0.00007 

5F-ME2 0.00012 0.00018 0.00026 0.00004 0.00027 0.00011 

5F-ME3 0.00017 0.00025 0.00105 0.00006 0.00037 0.00015 

5F-MAE1 0.00007 0.00011 0.00002 0.00003 0.00016 0.00007 

5F-MAE2 0.00012 0.00018 0.00027 0.00004 0.00027 0.00011 

5F-MAE3 0.00017 0.00025 0.00105 0.00006 0.00037 0.00015 

5F-MAPE1 2.83% 4.23% 0.93% 1.24% 6.48% 2.64% 

5F-MAPE2 4.85% 7.23% 11.28% 1.76% 11.19% 4.31% 

5F-MAPE3 7.09% 10.52% 44.67% 2.50% 15.55% 6.06% 

5F-RMSE1 0.00008 0.00012 0.00003 0.00003 0.00018 0.00007 

5F-RMSE2 0.00013 0.00020 0.00043 0.00005 0.00030 0.00012 

5F-RMSE3 0.00019 0.00028 0.00165 0.00007 0.00041 0.00016 

5F-CDIR1 0.00% 0.00% 27.27% 4.55% 0.00% 0.00% 

5F-CDIR2 0.00% 0.00% 13.64% 2.27% 0.00% 0.00% 

5F-CDIR3 6.06% 6.06% 15.15% 7.58% 6.06% 6.06% 

Panel D 

JPY-LIBOR 12M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00470 0.00430 0.00450 0.00470 0.00010 0.00010 

4F-ME2 0.00490 0.00400 0.00440 0.00480 0.00010 0.00010 

4E-ME3 0.00510 0.00190 0.00440 0.00490 0.00020 0.00020 

4F-MAE1 0.00470 0.00430 0.00450 0.00470 0.00010 0.00010 

4F-MAE2 0.00490 0.00400 0.00440 0.00480 0.00010 0.00010 

4F-MAE3 0.00510 0.00190 0.00440 0.00490 0.00020 0.00020 

4F-MAPE1 106.41% 96.60% 101.34% 104.81% 1.85% 1.38% 

4F-MAPE2 110.88% 91.42% 100.55% 107.65% 3.30% 2.36% 

4F-MAPE3 117.02% 20.90% 101.10% 112.56% 5.24% 3.89% 

4F-RMSE1 0.00470 0.00430 0.00450 0.00470 0.00010 0.00010 

4F-RMSE2 0.00490 0.00410 0.00440 0.00480 0.00020 0.00010 

4F-RMSE3 0.00510 0.00200 0.00440 0.00490 0.00030 0.00020 

4F-CDCP1 0.00% 0.00% 0.00% 0.00% 36.36% 36.36% 

4F-CDCP2 0.00% 0.00% 0.00% 0.00% 25.00% 27.27% 

4F-CDCP3 4.55% 19.70% 4.55% 4.55% 30.30% 30.30% 
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5F-ME1 0.00007 0.00009 -0.00011 -0.00007 0.00013 0.00006 

5F-ME2 0.00013 0.00016 -0.00011 -0.00012 0.00023 0.0001 

5F-ME3 0.00021 0.00026 0.00015 -0.00014 0.00033 0.00017 

5F-MAE1 0.00007 0.00009 0.00011 0.00007 0.00013 0.00006 

5F-MAE2 0.00013 0.00016 0.00011 0.00012 0.00023 0.0001 

5F-MAE3 0.00021 0.00026 0.00029 0.00014 0.00033 0.00017 

5F-MAPE1 1.63% 2.06% 2.47% 1.47% 2.97% 1.38% 

5F-MAPE2 2.94% 3.70% 2.51% 2.73% 5.16% 2.36% 

5F-MAPE3 4.91% 6.02% 6.90% 3.21% 7.74% 3.89% 

5F-RMSE1 0.00008 0.00010 0.00012 0.00008 0.00015 0.00007 

5F-RMSE2 0.00014 0.00018 0.00012 0.00014 0.00025 0.00011 

5F-RMSE3 0.00025 0.00030 0.00046 0.00015 0.00038 0.00020 

5F-CDIR1 0.00% 0.00% 31.82% 31.82% 0.00% 0.00% 

5F-CDIR2 0.00% 0.00% 22.73% 25.00% 0.00% 0.00% 

5F-CDIR3 4.55% 4.55% 19.70% 28.79% 4.55% 4.55% 

 

 

Table 3.43 Forecasting accuracy measures for the individual CAD-LIBOR time-series for 

the four- and five-factor models. There are 4 panels A, B, C and D for each maturity 1-

week, 1-, 6- and 12-months, respectively. 

 

Panel A 

CAD-LIBOR 1W CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00560 -0.00570 -0.00510 -0.00520 -0.00020 -0.00010 

4F-ME2 0.00610 -0.00620 -0.00510 -0.00530 -0.00030 -0.00020 

4F-MAE1 0.00560 0.00570 0.00510 0.00520 0.00020 0.00010 

4F-MAE2 0.00610 0.00620 0.00510 0.00530 0.00030 0.00020 

4F-MAPE1 56.02% 56.60% 50.28% 51.64% 1.51% 0.54% 

4F-MAPE2 59.90% 60.87% 50.25% 51.99% 3.09% 1.53% 

4F-RMSE1 0.00560 0.00570 0.00510 0.00520 0.00020 0.00010 

4F-RMSE2 0.00610 0.00620 0.00510 0.00530 0.00040 0.00020 

4F-CDIR1 9.09% 13.64% 13.64% 13.64% 9.09% 9.09% 

4F-CDIR2 11.36% 13.64% 13.64% 13.64% 11.36% 11.36% 

5F-ME1 -0.00019 -0.0004 -0.00006 -0.00007 -0.00015 -0.00005 

5F-ME2 -0.00041 -0.0008 -0.00002 -0.00017 -0.00031 -0.00016 

5F-MAE1 0.00019 0.0004 0.00006 0.00007 0.00015 0.00005 

5F-MAE2 0.00041 0.0008 0.00008 0.00017 0.00031 0.00016 

5F-MAPE1 1.91% 3.93% 0.60% 0.71% 1.48% 0.54% 

5F-MAPE2 4.02% 7.83% 0.77% 1.64% 3.06% 1.53% 

5F-RMSE1 0.00022 0.00044 0.00007 0.00008 0.00017 0.00006 

5F-RMSE2 0.0005 0.00094 0.00009 0.00023 0.00038 0.00023 

5F-CDIR1 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 
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5F-CDIR2 11.36% 11.36% 15.91% 11.36% 11.36% 11.36% 

Panel B 

CAD-LIBOR 1M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00590 -0.00580 -0.00550 -0.00560 -0.00010 -0.00010 

4F-ME2 0.00630 -0.00620 -0.00560 -0.00560 -0.00020 -0.00010 

4F-MAE1 0.00590 0.00580 0.00550 0.00560 0.00010 0.00010 

4F-MAE2 0.00630 0.00620 0.00560 0.00560 0.00020 0.00010 

4F-MAPE1 56.48% 55.81% 52.90% 53.10% 0.95% 0.65% 

4F-MAPE2 59.89% 59.09% 53.59% 53.46% 1.98% 1.37% 

4F-RMSE1 0.00590 0.00590 0.00550 0.00560 0.00010 0.00010 

4F-RMSE2 0.00630 0.00620 0.00560 0.00560 0.00020 0.00020 

4F-CDIR1 0.00% 4.55% 4.55% 4.55% 0.00% 0.00% 

4F-CDIR2 0.00% 2.27% 2.27% 2.27% 0.00% 0.00% 

5F-ME1 -0.00017 -0.00012 -0.00002 -0.00008 -0.00009 -0.00007 

5F-ME2 -0.00036 -0.00026 -0.00003 -0.00016 -0.0002 -0.00014 

5F-MAE1 0.00017 0.00012 0.00002 0.00008 0.00009 0.00007 

5F-MAE2 0.00036 0.00026 0.00003 0.00016 0.0002 0.00014 

5F-MAPE1 1.63% 1.19% 0.19% 0.76% 0.81% 0.65% 

5F-MAPE2 3.42% 2.49% 0.25% 1.48% 1.91% 1.37% 

5F-RMSE1 0.0002 0.00014 0.00002 0.00009 0.0001 0.00008 

5F-RMSE2 0.00042 0.00031 0.00003 0.00018 0.00024 0.00017 

5F-CDIR1 4.55% 0.00% 0.00% 0.00% 0.00% 0.00% 

5F-CDIR2 2.27% 0.00% 0.00% 0.00% 0.00% 0.00% 

Panel C 

CAD-LIBOR 6M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00810 -0.00760 -0.00820 -0.00790 0.00000 0.00000 

4F-ME2 0.00830 -0.00740 -0.00870 -0.00800 0.00000 0.00000 

4F-MAE1 0.00810 0.00760 0.00820 0.00790 0.00000 0.00000 

4F-MAE2 0.00830 0.00740 0.00870 0.00800 0.00000 0.00010 

4F-MAPE1 58.77% 55.12% 59.82% 57.11% 0.28% 0.22% 

4F-MAPE2 60.33% 53.76% 63.06% 57.67% 0.35% 0.48% 

4F-RMSE1 0.00810 0.00760 0.00830 0.00790 0.00010 0.00000 

4F-RMSE2 0.00830 0.00740 0.00870 0.00800 0.00010 0.00010 

4F-CDIR1 31.82% 31.82% 31.82% 31.82% 31.82% 31.82% 

4F-CDIR2 20.45% 20.45% 20.45% 20.45% 20.45% 20.45% 

5F-ME1 -0.0001 0.00041 0.00012 -0.00002 0.00003 0.00001 

5F-ME2 -0.00026 0.00075 0.00015 -0.00012 0 -0.00004 

5F-MAE1 0.0001 0.00041 0.00012 0.00003 0.00004 0.00003 

5F-MAE2 0.00026 0.00075 0.00015 0.00012 0.00005 0.00007 

5F-MAPE1 0.73% 2.99% 0.87% 0.19% 0.27% 0.22% 

5F-MAPE2 1.91% 5.44% 1.06% 0.88% 0.36% 0.48% 

5F-RMSE1 0.00011 0.00048 0.00015 0.00003 0.00005 0.00004 

5F-RMSE2 0.00032 0.00085 0.00016 0.00017 0.00006 0.00009 

5F-CDIR1 31.82% 9.09% 9.09% 31.82% 22.73% 22.73% 
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5F-CDIR2 20.45% 20.45% 20.45% 20.45% 20.45% 18.18% 

Panel D 

CAD-LIBOR 12M CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00870 -0.00840 -0.00880 -0.00870 0.00020 0.00010 

4F-ME2 0.00870 -0.00810 -0.00900 -0.00860 0.00020 0.00020 

4F-MAE1 0.00870 0.00840 0.00880 0.00870 0.00020 0.00010 

4F-MAE2 0.00870 0.00810 0.00900 0.00860 0.00020 0.00020 

4F-MAPE1 49.01% 47.32% 49.75% 48.67% 1.10% 0.84% 

4F-MAPE2 48.82% 45.57% 50.71% 48.59% 1.38% 0.91% 

4F-RMSE1 0.00870 0.00840 0.00880 0.00870 0.00020 0.00020 

4F-RMSE2 0.00870 0.00810 0.00900 0.00860 0.00030 0.00020 

4F-CDIR1 45.45% 45.45% 45.45% 45.45% 50.00% 45.45% 

4F-CDIR2 31.82% 31.82% 31.82% 31.82% 34.09% 31.82% 

5F-ME1 0.00005 0.00063 0.0003 0.00015 0.00019 0.00015 

5F-ME2 -0.00004 0.00104 0.00048 0.00014 0.00024 0.00016 

5F-MAE1 0.00006 0.00063 0.0003 0.00015 0.00019 0.00015 

5F-MAE2 0.00011 0.00104 0.00048 0.00014 0.00024 0.00016 

5F-MAPE1 0.31% 3.55% 1.72% 0.85% 1.08% 0.84% 

5F-MAPE2 0.62% 5.88% 2.72% 0.81% 1.34% 0.91% 

5F-RMSE1 0.00007 0.00072 0.00036 0.00018 0.00023 0.00018 

5F-RMSE2 0.00015 0.00115 0.00053 0.00018 0.00026 0.00019 

5F-CDIR1 18.18% 4.55% 4.55% 4.55% 4.55% 9.09% 

5F-CDIR2 15.91% 22.73% 22.73% 25.00% 22.73% 25.00% 

 

Table 3.44 Forecasting accuracy measures for the U.K. spot rates time-series for the four- 

and five-factor models. There are 4 panels A, B, C and D for each maturity 1-,7-, 15- and 

25-years, respectively. 

 

Panel A 

UK SPOT 1Y CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00130 0.00150 0.00550 0.00330 -0.00020 -0.00040 

4F-ME2 -0.00050 0.00010 0.00790 0.00330 -0.00050 -0.00100 

4E-ME3 -0.00220 -0.00100 0.01050 0.00340 -0.00070 -0.00140 

4F-MAE1 0.00130 0.00150 0.00550 0.00330 0.00020 0.00040 

4F-MAE2 0.00190 0.00150 0.00790 0.00330 0.00050 0.00100 

4F-MAE3 0.00300 0.00210 0.01050 0.00340 0.00070 0.00140 

4F-MAPE1 72.78% 82.99% 280.59% 169.32% 10.04% 21.70% 

4F-MAPE2 78.06% 65.75% 326.13% 144.76% 19.44% 38.37% 

4F-MAPE3 108.43% 78.31% 383.03% 134.57% 24.19% 49.63% 

4F-RMSE1 0.00170 0.00180 0.00570 0.00330 0.00020 0.00050 

4F-RMSE2 0.00220 0.00170 0.00830 0.00330 0.00060 0.00120 

4F-RMSE3 0.00360 0.00240 0.01140 0.00340 0.00080 0.00170 

4F-CDCP1 63.64% 54.55% 54.55% 54.55% 45.45% 40.91% 

4F-CDCP2 50.00% 45.45% 59.09% 59.09% 40.91% 38.64% 
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4F-CDCP3 50.00% 46.97% 56.06% 56.06% 43.94% 42.42% 

5F-ME1 -0.00071 -0.00030 -0.00029 -0.00054 -0.00030 -0.00044 

5F-ME2 -0.00148 -0.00071 -0.00070 -0.00106 -0.00068 -0.00099 

5F-ME3 -0.00210 -0.00103 -0.00104 -0.00139 -0.00094 -0.00144 

5F-MAE1 0.00071 0.00031 0.00029 0.00054 0.00031 0.00044 

5F-MAE2 0.00148 0.00072 0.00070 0.00106 0.00069 0.00099 

5F-MAE3 0.00210 0.00104 0.00104 0.00139 0.00094 0.00144 

5F-MAPE1 34.78% 14.92% 14.33% 26.37% 14.92% 21.70% 

5F-MAPE2 57.90% 27.48% 26.90% 41.79% 26.43% 38.37% 

5F-MAPE3 73.40% 35.56% 35.58% 48.88% 32.33% 49.64% 

5F-RMSE1 0.00081 0.00036 0.00035 0.00061 0.00036 0.00051 

5F-RMSE2 0.00173 0.00087 0.00086 0.00123 0.00082 0.00118 

5F-RMSE3 0.00240 0.00121 0.00122 0.00156 0.00109 0.00166 

5F-CDIR1 40.91% 45.45% 45.45% 40.91% 59.09% 40.91% 

5F-CDIR2 38.64% 40.91% 40.91% 38.64% 61.36% 38.64% 

5F-CDIR3 42.42% 43.94% 43.94% 42.42% 57.58% 42.42% 

Panel B 

UKSPOT 7Y CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 -0.00750 -0.00760 -0.00660 -0.00710 0.00060 0.00030 

4F-ME2 -0.00890 -0.00880 -0.00690 -0.00820 -0.00020 -0.00070 

4E-ME3 -0.01080 -0.01060 -0.00760 -0.01000 -0.00160 -0.00240 

4F-MAE1 0.00750 0.00760 0.00660 0.00710 0.00060 0.00040 

4F-MAE2 0.00890 0.00880 0.00690 0.00820 0.00090 0.00110 

4F-MAE3 0.01080 0.01060 0.00760 0.01000 0.00210 0.00270 

4F-MAPE1 62.16% 0.629876 54.97% 58.90% 5.20% 3.12% 

4F-MAPE2 67.34% 0.67347 52.88% 62.46% 6.50% 7.97% 

4F-MAPE3 72.10% 0.707222 51.59% 66.53% 12.42% 15.89% 

4F-RMSE1 0.00750 0.00760 0.00670 0.00710 0.00070 0.00040 

4F-RMSE2 0.00900 0.00900 0.00690 0.00830 0.00100 0.00150 

4F-RMSE3 0.01130 0.01100 0.00770 0.01040 0.00290 0.00370 

4F-CDCP1 59.09% 0.590909 59.09% 59.09% 63.64% 59.09% 

4F-CDCP2 47.73% 0.477273 47.73% 47.73% 50.00% 47.73% 

4F-CDCP3 48.48% 0.484848 48.48% 48.48% 50.00% 48.48% 

5F-ME1 -0.00023 0.00043 0.00068 0.00062 0.00069 0.00030 

5F-ME2 -0.00263 -0.00081 -0.00097 -0.00025 0.00000 -0.00073 

5F-ME3 -0.00708 -0.00307 -0.00494 -0.00190 -0.00142 -0.00244 

5F-MAE1 0.00039 0.00047 0.00068 0.00064 0.00071 0.00037 

5F-MAE2 0.00271 0.00131 0.00171 0.00096 0.00083 0.00111 

5F-MAE3 0.00713 0.00340 0.00544 0.00238 0.00197 0.00269 

5F-MAPE1 3.24% 3.99% 5.72% 5.39% 5.97% 3.12% 

5F-MAPE2 19.08% 9.45% 12.31% 7.18% 6.34% 7.97% 

5F-MAPE3 41.68% 20.00% 31.44% 14.14% 11.83% 15.89% 

5F-RMSE1 0.00050 0.00055 0.00077 0.00074 0.00082 0.00045 

5F-RMSE2 0.00389 0.00174 0.00232 0.00116 0.00096 0.00146 
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5F-RMSE3 0.01008 0.00479 0.00810 0.00332 0.00275 0.00374 

5F-CDIR1 59.09% 54.55% 40.91% 54.55% 36.36% 54.55% 

5F-CDIR2 47.73% 45.45% 38.64% 50.00% 50.00% 45.45% 

5F-CDIR3 48.48% 46.97% 42.42% 50.00% 50.00% 46.97% 

 

Panel C 

UKSPOT 15Y CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 -0.01930 -0.01840 -0.01810 -0.02000 0.00120 0.00120 

4F-ME2 -0.02000 -0.01810 -0.01770 -0.02130 0.00040 0.00050 

4E-ME3 -0.02110 -0.01840 -0.01770 -0.02310 -0.00080 -0.00070 

4F-MAE1 0.01930 0.01840 0.01810 0.02000 0.00120 0.00120 

4F-MAE2 0.02000 0.01810 0.01770 0.02130 0.00100 0.00100 

4F-MAE3 0.02110 0.01840 0.01770 0.02310 0.00180 0.00170 

4F-MAPE1 75.76% 0.719196 71.01% 78.18% 4.58% 4.63% 

4F-MAPE2 75.71% 0.687364 66.98% 80.38% 3.86% 3.81% 

4F-MAPE3 75.88% 0.66446 63.92% 82.64% 6.12% 5.93% 

4F-RMSE1 0.01930 0.01840 0.01820 0.02000 0.00130 0.00130 

4F-RMSE2 0.02000 0.01820 0.01770 0.02130 0.00120 0.00120 

4F-RMSE3 0.02120 0.01840 0.01770 0.02330 0.00230 0.00220 

4F-CDCP1 59.09% 0.590909 59.09% 59.09% 63.64% 63.64% 

4F-CDCP2 45.45% 0.454545 45.45% 45.45% 47.73% 47.73% 

4F-CDCP3 45.45% 0.454545 45.45% 45.45% 46.97% 46.97% 

5F-ME1 0.00079 0.00104 0.00173 0.00138 0.00098 0.00071 

5F-ME2 -0.00039 0.00020 0.00137 0.00097 0.00027 -0.00023 

5F-ME3 -0.00267 -0.00153 -0.00018 -0.00018 -0.00114 -0.00182 

5F-MAE1 0.00080 0.00105 0.00173 0.00138 0.00099 0.00073 

5F-MAE2 0.00130 0.00108 0.00140 0.00105 0.00095 0.00106 

5F-MAE3 0.00328 0.00238 0.00203 0.00152 0.00195 0.00237 

5F-MAPE1 4.43% 5.79% 9.53% 7.64% 5.47% 4.04% 

5F-MAPE2 6.53% 5.62% 7.53% 5.66% 5.00% 5.38% 

5F-MAPE3 14.10% 10.43% 9.35% 7.03% 8.62% 10.31% 

5F-RMSE1 0.00092 0.00119 0.00193 0.00156 0.00113 0.00084 

5F-RMSE2 0.00159 0.00123 0.00167 0.00131 0.00109 0.00126 

5F-RMSE3 0.00460 0.00324 0.00264 0.00200 0.00263 0.00322 

5F-CDIR1 40.91% 36.36% 36.36% 36.36% 31.82% 50.00% 

5F-CDIR2 43.18% 40.91% 50.00% 52.27% 47.73% 47.73% 

5F-CDIR3 43.94% 42.42% 48.48% 50.00% 50.00% 46.97% 

Panel D 

UKSPOT 25Y CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 -0.02290 -0.02130 -0.02230 -0.02390 0.00120 0.00150 

4F-ME2 -0.02300 -0.02020 -0.02200 -0.02510 0.00060 0.00110 

4E-ME3 -0.02330 -0.01930 -0.02190 -0.02650 -0.00010 0.00060 

4F-MAE1 0.02290 0.02130 0.02230 0.02390 0.00120 0.00150 

4F-MAE2 0.02300 0.02020 0.02200 0.02510 0.00090 0.00110 
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4F-MAE3 0.02330 0.01930 0.02190 0.02650 0.00120 0.00090 

4F-MAPE1 70.16% 0.653085 68.41% 73.35% 3.72% 4.53% 

4F-MAPE2 68.95% 0.604682 65.96% 75.12% 2.74% 3.45% 

4F-MAPE3 67.81% 0.565316 63.99% 76.94% 3.35% 2.83% 

4F-RMSE1 0.02290 0.02140 0.02230 0.02390 0.00130 0.00160 

4F-RMSE2 0.02300 0.02020 0.02200 0.02520 0.00110 0.00140 

4F-RMSE3 0.02330 0.01940 0.02190 0.02660 0.00140 0.00120 

4F-CDCP1 54.55% 54.55% 54.55% 54.55% 59.09% 59.09% 

4F-CDCP2 45.45% 45.45% 45.45% 45.45% 47.73% 47.73% 

4F-CDCP3 45.45% 45.45% 45.45% 45.45% 46.97% 46.97% 

5F-ME1 0.00098 0.00121 0.00190 0.00172 0.00125 0.00117 

5F-ME2 -0.00002 0.00048 0.00170 0.00151 0.00058 0.00048 

5F-ME3 -0.00173 -0.00086 0.00070 0.00075 -0.00064 -0.00074 

5F-MAE1 0.00098 0.00121 0.00190 0.00172 0.00125 0.00117 

5F-MAE2 0.00118 0.00103 0.00170 0.00151 0.00099 0.00099 

5F-MAE3 0.00251 0.00187 0.00161 0.00135 0.00169 0.00172 

5F-MAPE1 3.88% 4.79% 7.50% 6.79% 4.93% 4.63% 

5F-MAPE2 4.44% 3.97% 6.55% 5.82% 3.84% 3.81% 

5F-MAPE3 8.49% 6.44% 5.86% 4.97% 5.85% 5.93% 

5F-RMSE1 0.00109 0.00134 0.00209 0.00190 0.00138 0.00130 

5F-RMSE2 0.00135 0.00120 0.00190 0.00171 0.00119 0.00116 

5F-RMSE3 0.00332 0.00241 0.00189 0.00159 0.00216 0.00219 

5F-CDIR1 45.45% 40.91% 40.91% 40.91% 36.36% 40.91% 

5F-CDIR2 43.18% 40.91% 54.55% 54.55% 52.27% 40.91% 

5F-CDIR3 43.94% 42.42% 57.58% 56.06% 53.03% 42.42% 

 

 

        The evaluation of the forecasting metrics for the first five-factor extension is 

presented for each maturity interest rate time series of each data set in the panel-Tables 

3.39 - 3.44. In terms of forecasting performance, the results are very mixed with 

considerable differences from one data set to another.  

       For GBP-LIBOR rates (see Table 3.39) two continuous-time models (CKLS and 

Vasicek) seem to produce consistently very good forecasts particularly for the shorter 

maturities (one-week and one-month); for the six-month GBP-LIBOR rates however, the 

VAR(1) benchmark model performs marginally better across all forecasting measures, 

while the AR(1) appears to perform best out of all the models for the last factor - the 

twelve-month GBP-LIBOR time series. In term of the economic measure CDCP the 

continuous models are superior to their rival models VAR(1) and AR(1). 

        The forecasting results for the USD-LIBOR rates (see Table 3.40) indicate a 

balanced conclusion regarding continuous-time versus discrete time modelling issue. The 
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CKLS and BS continuous-time models are the best predictive models for interest rates of 

shorter maturities (one- and three-month), while the benchmark models AR(1) and 

VAR(1) surpass the continuous-time models for maturities such as six-month  and 

twelve-month, respectively. The evidence regarding the prediction of the change in 

direction of movements in the interest rates is quite mixed with a slight advantage 

towards the continuous-time models. 

        Based on the analysis of the financial forecasting metrics, in the case of the EUR-

LIBOR data, the CIR model is consistently the best model in terms of forecasting 

performance. This finding is not surprising given the homogeneity of the estimates for the 

level effect vector parameter with all values close to 0.5. 

       Moving to the JPY-LIBOR rates, the forecasting results suggest that again the 

continuous-time models are clearly superior to the discrete time benchmarks. However, as 

the estimation results indicate, it is no clear cut which of the continuous models should be 

considered as a winner over all the factors. For example, the CKLS model produces the 

best forecasts in the case of one-and three- month JPY-LIBOR rates, while the BS model 

predicts best for one-week and six-month rates sometimes interchangeably with the CIR 

model. It is only for the last factor of twelve-month maturity rates where arguably the 

AR(1) outperforms the BS and CIR models. Additionally, the results illustrate the 

superiority of the continuous models with regards to the economic predictive power 

measured by CDCP (see Table 3.42).   

         Despite the more compact level effect estimates, as in the case of the EUR-LIBOR 

rates, the forecasting results regarding the CAD-LIBOR rates are not that clear-cut, with 

the best predictions alternating between the CIR, BS, CKLS and AR(1) models across 

both different maturities and  horizons (see Table 3.43).  

       Finally, turning to the time series of interest rates on U.K. zero-coupon bonds, the six 

methods of forecasting produce rather more complex results, that are more difficult to 

draw conclusions from.  However, following a closer examination of Table 2.44, one 

could observe that, over the short horizon of one month, the CKLS model forecasts best 

the future spot rates of seven-, ten- and fifteen-year maturity. Focussing on the same one-

month horizon, it is the CIR and the VAR (1) models that predict best the one- and 

twenty-five-year future spot rates, respectively. Once the forecasting is projected further 

into the future, other models become superior, more specifically the discrete time 

benchmark model VAR(1) and the continuous-time  BS. When examined across the three 

length horizons (one, two and three months) the quality of the forecasts deteriorates as the 
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forecasting horizon is more distant in time with the best prediction of future interest rates 

being realized in the first horizon of one month.  

 

3.6.3 Formal Tests for the Statistical Significance of the Model Forecasts 

 

The statistical significance of the out-of-sample forecasts can be tested formally 

using the Diebold and Mariano test (1995) for any two sets of forecasts and the Clark and 

West (2007) test for nested models.  The Diebold-Mariano tests is carried out under the 

quadratic error loss, following the approach outlined in Diebold (2015) where the 

forecasts produced by the various models are compared and not the models themselves23. 

Hence, we are interested in comparing the forecasts and test for significance between 

different series of 66 forecasts (3 months horizon).  

Diebold (2015) discussed why the D-M test works well when we compare the 

forecasts and not the models as data generating processes. If one takes into consideration 

models as well some corrections may provide a better insight. For nested models, one 

technical problem with the D-M test is that under the null hypothesis that the 

parsimonious model is assumed to generate the data and therefore the larger model, in 

finite samples, is contaminated in terms of estimation because of additional unnecessary 

parameters. Clark and West (2007) provided an adjustment for the D-M tests such that 

their test statistic had approximately zero mean under the null hypothesis. It is necessary 

to observe that the C-W test is a one-side test while the Diebold-Mariano is a two-side 

test. We are going to employ the C-W test for the nested models in the CKLS family as 

well as for the four-factor versus five-factor models of the same specification (e.g. four-

factor Vasicek versus five-factor Vasicek) and the D-M test for the remaining pairs of 

non-nested models. 

The results of these two tests are reported in Table 3.34 - 3.38 for both model 

extensions, the four- and five -factor models, respectively. The results from the Clark-

West test have a straightforward standard interpretation: any test-statistic larger than the 

appropriate critical values will reject the null hypothesis of equal predictive performance 

and conclude that the general CKLS model yields better forecasts. For the Diebold-

Mariano test statistic, a negative number outside the critical area indicates that the first 

                                                 
23 Another line of inquiry would be to compare the models themselves on the basis of pseudo-out-of-sample 

forecasts. Clark and McCracken (2001) and Clark and McCracken (2013) highlight that the distribution of 

the test statistic can be very different when the null hypothesis makes use of the model specification and 

parameter estimation uncertainty is taken into consideration. The testing based on model specification needs 

then to distinguish between nested versus non-nested models. 
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series forecasts (produced by the model on the vertical column of the table) yield a 

significantly lower loss error than the second forecast series. The opposite interpretation 

is true for the positive values and significance is evidently subject to a threshold 

comparison with a two-sided normal test constructed appropriately. 

 

Table 3.45 The GBP-LIBOR Rates: Diebold-Mariano and Clark-West tests, for the four- 

and five-factor continuous-time models and VAR(1) and AR(1) models. The Clark-West 

results for the nested continuous-time models are underlined.  

 

GBP-LIBOR 4F GBP-LIBOR 5F 

1W Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 12.22 13.03 6.04 -57.18 -9.70 76.88 51.64 36.23 -45.18 -11.89 

Vasicek 

 

11.99 -4.85 -19.16 12.12 

 

61.92 50.79 48.27 77.00 

CIR 

  

-6.12 -57.12 -8.21 

  

-41.94 -47.74 18.32 

BS 

   

1.29 6.10 

   

-7.97 68.79 

VAR 

    

57.56 

    

55.49 

1M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 9.85 7.98 5.63 -30.37 -7.33 66.76 66.06 27.54 -21.85 -8.89 

Vasicek 

 

9.64 -1.81 1.76 9.66 

 

-1.08 20.60 43.02 38.36 

CIR 

  

-5.64 -30.35 -8.77 

  

44.53 15.69 30.10 

BS 

   

1.92 5.61 

   

-5.05 10.44 

VAR 

    

29.93 

    

20.33 

3M 

     

Vasicek CIR BS VAR AR1 

CKLS 

     

50.97 60.47 24.85 -15.61 -0.84 

Vasicek 

      

-7.28 12.05 43.45 21.04 

CIR 

       

42.60 12.39 34.07 

BS 

        

-6.31 14.92 

VAR 

         

14.89 

6M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 8.38 7.82 3.48 -5.32 -0.86 7.98 108.66 157.62 20.10 21.94 

Vasicek 

 

7.91 8.07 -4.05 8.01 

 

-50.40 -86.59 2.13 3.62 

CIR 

  

-3.00 -5.51 -7.36 

  

-133.11 55.54 57.02 

BS 

   

-5.50 -8.34 

   

91.50 92.57 

VAR 

    

5.31 

    

4.12 

12M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 8.09 9.50 5.79 -2.77 12.21 9.26 -51.48 -58.74 6.95 6.97 

Vasicek 

 

5.68 -5.43 -2.70 7.72 

 

-58.80 -28.06 -0.69 2.81 

CIR 

  

-5.46 -2.84 8.46 

  

88.78 61.00 62.86 

BS 

   

-0.19 5.57 

   

30.24 32.37 

VAR 

    

2.88 

    

3.87 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test 

at the 90%, 95% confidence level, respectively. 
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Table 3.46 The USD-LIBOR Rates Diebold-Mariano and Clark-West tests for the 

forecasts generated by four- and five-factor continuous-time models and VAR(1) and 

AR(1) models. The Clark-West results for the nested continuous-time models are underlined.  

 

USD-LIBOR 4F USD-LIBOR 5F 

1W Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 23.69 17.37 -8.53 1.27 1.30 9.25 -7.90 7.70 -10.39 -5.80 

Vasicek 

 

7.50 9.58 1.01 1.16 

 

9.61 9.43 9.32 9.42 

CIR 

  

8.70 -1.18 1.12 

  

6.31 -14.14 6.85 

BS 

   

-1.17 1.10 

   

-10.31 9.03 

VAR 

    

1.16 

    

10.17 

1M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 23.40 11.10 -6.42 23.12 34.63 8.29 -2.81 6.96 -10.82 -9.26 

Vasicek 

 

8.35 9.85 6.32 9.64 

 

8.24 8.25 7.43 8.26 

CIR 

  

7.29 -13.37 6.74 

  

-7.66 -10.58 -7.51 

BS 

   

-10.82 -10.99 

   

-10.92 -6.15 

VAR 

    

10.78 

    

11.04 

3M 

     

Vasicek CIR BS VAR AR1 

CKLS 

     

8.12 9.81 -7.64 -10.09 -8.24 

Vasicek 

      

9.07 9.13 8.95 9.15 

CIR 

       

9.95 -10.31 11.66 

BS 

        

-10.16 -8.41 

VAR 

         

10.70 

6M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 15.88 7.71 12.75 19.88 19.61 9.74 7.82 11.71 -8.92 -2.43 

Vasicek 

 

8.50 8.09 6.43 9.07 

 

10.17 9.89 9.96 10.02 

CIR 

  

-10.13 -11.81 4.94 

  

3.18 -1.00 6.43 

BS 

   

-12.13 6.82 

   

-5.40 7.70 

VAR 

    

10.20 

    

10.56 

12M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 21.89 -5.49 8.41 21.54 21.57 13.18 7.73 10. 32 11.96 11.37 

Vasicek 

 

14.73 9.38 14.79 14.27 

 

11.94 13.25 13.04 12.97 

CIR 

  

-6.41 2.85 

   

-0.87 4.93 4.65 

BS 

        

11.80 11.32 

VAR 

         

-8.38 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test 

at the 90%, 95% confidence level, respectively. 
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Table 3.47 The EUR-LIBOR Rates: Diebold-Mariano and Clark-West tests results for the 

forecasts generated by four- and five-factor continuous-time models and VAR(1) and 

AR(1) models. The Clark-West results for the nested continuous-time models are underlined. 

 

 

EUR-LIBOR 4F EUR-LIBOR 5F 

1W Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 1.15 4.95 8.05 -9.17 -8.07 9.23 9.12 4.86 -10.19 -8.90 

Vasicek 

 

7.93 8.19 -11.84 8.22 

 

9.06 0.56 -12.36 9.26 

CIR 

  

5.60 -9.02 -7.64 

  

-3.70 -10.10 -6.12 

BS 

   

-9.21 -8.15 

   

-3.98 3.59 

VAR 

    

9.82 

    

10.28 

1M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 0.75 -2.73 5.37 -10.50 -8.00 9.94 8.47 4.70 -9.71 -8.41 

Vasicek 

 

9.61 9.60 -12.25 13.13 

 

8.75 1.02 -11.02 9.07 

CIR 

  

0.44 -10.38 -7.88 

  

-3.85 -9.55 -7.83 

BS 

   

-10.38 -7.87 

   

-5.60 3.11 

VAR 

    

12.67 

    

9.90 

 

Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 

     

9.77 -1.29 4.36 -9.69 -8.74 

Vasicek 

      

7.99 3.41 -10.60 8.78 

CIR 

       

-4.13 -9.06 -6.89 

BS 

        

-10.67 2.74 

VAR 

         

9.76 

6M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 5.55 4.36 5.41 -12.16 -6.08 6.51 -2.18 4.36 3.25 6.80 

Vasicek 

 

2.98 -5.46 -7.95 -6.02 

 

5.83 -3.56 -8.99 7.38 

CIR 

  

-3.51 -5.56 -5.13 

  

-4.21 -6.81 -5.52 

BS 

   

-8.81 -6.09 

   

2.57 3.79 

VAR 

    

-4.45 

    

8.54 

12M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 3.73 8.11 5.10 4.58 -4.53 -4.89 -2.38 4.98 5.57 5.92 

Vasicek 

 

-1.72 -2.39 0.57 -2.90 

 

4.06 2.94 -6.76 -5.35 

CIR 

  

-1.75 0.96 -2.30 

  

-1.56 -5.13 -4.22 

BS 

   

4.43 -4.92 

   

-4.29 -3.19 

VAR 

    

-4.58 

    

7.12 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test 

at the 90%, 95% confidence level, respectively. 
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Table 3.48 The JPY-LIBOR Rates: Diebold-Mariano and Clark-West tests results for the 

forecasts generated by four- and five-factor continuous-time models and VAR(1) and 

AR(1) models. The Clark-West results for the nested continuous-time models are entered in bold 

and italic font.  

 

 

JPY-LIBOR 4F JPY-LIBOR 5F 

1W Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 18.01 19.98 25.80 1.28 1.28 20.40 5.37 8.44 -11.57 -9.06 

Vasicek 

 

-22.17 -28.63 1.10 1.05 

 

-5.33 18.49 14.80 0.89 

CIR 

  

-26.85 1.26 1.24 

  

5.37 5.36 5.36 

BS 

   

1.28 1.28 

   

-8.17 -8.97 

VAR 

    

-1.14 

    

-7.49 

1M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 29.60 35.78 22.89 34.18 34.17 9.38 5.44 7.25 -17.56 9.18 

Vasicek 

 

-42.57 -27.26 10.34 10.36 

 

-5.42 8.63 8.00 8.60 

CIR 

  

-24.27 15.46 15.48 

  

5.44 5.44 5.44 

BS 

   

54.37 54.37 

   

-21.49 -9.27 

VAR 

    

5.95 

    

20.01 

3M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 

     

10.18 4.52 4.12 -13.96 -20.12 

Vasicek 

      

-4.68 10.18 9.63 10.05 

CIR 

       

4.97 4.91 4.96 

BS 

        

-13.87 -8.72 

VAR 

         

13.17 

6M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -8.61 12.18 12.84 192.15 199.45 19.23 4.42 6.24 -11.34 8.26 

Vasicek 

 

-12.89 -13.42 40.96 41.96 

 

-4.51 9.76 -10.60 10.32 

CIR 

  

-13.59 380.19 424.30 

  

4.56 4.42 4.55 

BS 

   

32.82 32.66 

   

-10.30 -8.52 

VAR 

    

9.73 

    

10.52 

12M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -16.28 14.36 12.95 63.64 63.17 -7.51 3.72 5.95 -11.07 7.46 

Vasicek 

 

-15.76 -14.10 37.78 38.17 

 

-3.42 -3.79 -10.06 7.35 

CIR 

  

-12.67 190.44 195.64 

  

2.97 2.39 3.58 

BS 

   

84.40 83.46 

   

-5.53 7.34 

VAR 

    

7.98 

    

9.50 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test 

at the 90%, 95% confidence level, respectively. 
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Table 3.49 The CAD-LIBOR Rates: Diebold-Mariano and Clark-West tests results for the 

forecasts generated by four- and five-factor continuous-time models and VAR(1) and 

AR(1) models. The Clark-West results for the nested continuous-time models are entered in bold 

and italic font.  

 

 

 

CAD-LIBOR 4F CAD-LIBOR 5F 

1W Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 12.35 -13.76 19.68 3.59 3.06 5.95 -3.48 4.73 -13.10 7.94 

Vasicek 

 

12.72 11.76 37.00 36.56 

 

5.89 6.09 6.25 6.22 

CIR 

  

-19.87 145.19 136.73 

  

-1.77 -4.23 -2.33 

BS 

   

155.51 143.60 

   

-5.15 -3.06 

VAR 

    

6.02 

    

5.94 

1M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -21.28 -11.37 -1.88 49.49 49.28 4.81 -5.40 -4.10 10.16 8.72 

Vasicek 

 

11.56 10.62 51.11 50.88 

 

7.15 6.97 7.22 7.08 

CIR 

  

1.90 205.05 199.94 

  

3.88 -7.00 -7.40 

BS 

   

370.13 354.85 

   

-6.63 -6.54 

VAR 

    

7.37 

    

6.70 

3M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 

     

7.01 6.84 -6.46 8.72 8.67 

Vasicek 

      

7.66 7.27 7.33 7.35 

CIR 

       

6.55 6.72 6.78 

BS 

        

10.95 9.44 

VAR 

         

8.01 

6M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -13.63 10.74 -11.35 110.43 110.61 7.32 -10.95 4.82 5.57 6.02 

Vasicek 

 

-11.14 -11.53 105.71 105.55 

 

7.97 8.25 8.17 8.22 

CIR 

  

10.90 55.09 55.13 

  

1.44 5.86 3.03 

BS 

   

258.24 259.56 

   

3.71 4.35 

VAR 

    

-3.13 

    

-3.20 

12M Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -12.09 10.08 -11.65 275.39 278.85 8.80 -9.66 -9.02 9.15 10.02 

Vasicek 

 

-10.76 -10.38 68.72 68.98 

 

9.35 9.10 9.15 9.21 

CIR 

  

11.31 132.96 132.81 

  

7.76 8.02 8.50 

BS 

   

235.50 237.71 

   

0.33 10.27 

VAR 

    

10.60 

    

10.71 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test 

at the 90%, 95% confidence level, respectively. 

 



178 

  

Table 3.50 The U.K. Spot Rates Full Sample Results: Diebold-Mariano and Clark-West 

tests results for the forecasts generated by four- and five-factor continuous-time models 

and VAR(1) and AR(1) models. The Clark-West results for the nested continuous-time models 

are underlined.  

 

 

UK SPOT 4F UK SPOT 5F 

1Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -3.96 5.32 8.50 -1.33 -1.34 -0.34 -1.59 -0.14 13.10 7.94 

Vasicek 

 

-0.31 -7.54 -1.33 -1.34 

 

5.89 6.09 6.25 6.22 

CIR 

  

-8.20 -1.33 -1.34 

  

-1.77 -4.23 -2.33 

BS 

   

-1.33 -1.34 

   

-5.15 -3.06 

VAR 

    

-0.17 

    

5.94 

7Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 1.71 4.32 4.82 -3.96 -5.92 -1.53 -1.21 -2.73 10.16 8.72 

Vasicek 

 

-4.33 -4.14 -3.97 -5.92 

 

7.15 6.97 7.22 7.08 

CIR 

  

-4.12 -3.97 -5.92 

  

3.88 -7.00 -7.40 

BS 

   

-3.97 -5.92 

   

-6.63 -6.54 

VAR 

    

-5.87 

    

6.70 

10Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 

     

-1.52 -0.89 1.96 8.72 8.67 

Vasicek 

      

7.66 7.27 7.33 7.35 

CIR 

       

6.55 6.72 6.78 

BS 

        

10.95 9.44 

VAR 

         

8.01 

15Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -3.15 -0.68 6.84 -5.17 -9.97 -1.32 -0.95 2.04 5.57 6.02 

Vasicek 

 

1.76 -4.83 -5.20 -9.98 

 

7.97 8.25 8.17 8.22 

CIR 

  

-5.08 -5.20 -9.98 

  

1.44 5.86 3.03 

BS 

   

-5.17 -9.95 

   

3.71 4.35 

VAR 

    

-7.68 

    

-3.20 

25Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -14.97 -10.89 8.78 -4.24 -19.87 -0.60 0.59 0.47 9.15 10.02 

Vasicek 

 

13.02 -6.49 -4.27 -19.87 

 

9.35 9.10 9.15 9.21 

CIR 

  

-6.85 -4.28 -19.87 

  

7.76 8.02 8.50 

BS 

   

-4.21 -19.86 

   

0.33 10.27 

VAR 

    

-19.95 

    

10.71 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test 

at the 90%, 95% confidence level, respectively. 

          The results provided by the D-M test suggest that for the money-market segment 

the CKLS model is superior to VAR(1) and AR(1) models only for one-week, one- and 

three-month maturities, as the negative values of the test-statistics are negative enough to 
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reject the null hypothesis and conclude that forecasting errors produced by CKLS are 

smaller than those yielded by VAR(1) and AR(1). For the U.K. nominal rates the 

Diebold-Mariano test-statistics are positive enough to again reject the null, however with 

a opposite conclusion. These results are consistent with the evidence from the analysis of 

the forecasting accuracy measures that for longer maturities it is the parsimonious 

specifications that produce better forecasts in general.  Regarding the Clark-West (2007) 

test, any negative value is interpreted as a failure to reject the null hypothesis of equal 

forecasting performance, while positive values higher than the critical values will result in 

the rejection of the null and the conclusion that the more general (here CKLS) model is 

superior in terms of predictive power relative to the nested model. In the money-market 

segment, for LIBOR-GBP series the CKLS is categorically superior to the nested models 

for all the maturities apart from the 12-month maturity where none of the nested models 

can be considered inferior to five-factor CKLS model.  

         In the case of the LIBOR-USD rates, the five-factor specification seems to 

outperform the four-factor models, relative to the benchmark models for all the maturities 

up to six-months inclusively, as all the D-M test statistics are negative.  In terms of the 

nested models according to the C-W statistics the null is always rejected, implying the 

predictive superiority of the CKLS five-factor model (see Table 3.46). With regard to the 

LIBOR-EUR rates, according to the D-M test the CKLS model is superior to the 

benchmark models for the first three maturities. the C-W test results emphasise the high 

performance of the CIR model that is at least as good as the CKLS (five-factor) for the 3-, 

6- and 12-month maturities.  Similar results are obtained for the LIBOR-JPY rates in 

general, however the AR(1) discrete-time model appears to outperform few times the 

CKLS model. Slightly different results are observed for the LIBOR-CAD interest rates 

where the five-factor CIR model is superior over all models, both continuous- and 

discrete-time models. Finally, for the U.K nominal interest rates the Vasicek models 

equals at least the forecasting performance of the more general CKLS model for all the 

five long maturities, but underperforms relative to both the discrete-time models. 

These general results are consistent with most of the evaluations of the model forecasting 

performance based on the accuracy measures analysis. 

        In addition, the C-W test has been used to assess the forecasting performance of all 

the four-factor models against their extensions to five-factor specifications. The results 

are reported for each maturity in Table 3.51 below. 
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Table 3.51 Four-Factor versus Five-Factor Models: The Clark and West Test Results  

     
GBP-LIBOR 1Y 7Y 15Y 25Y 

CKLS 7.16 14.80 -15.87 9.97 

VASICEK -25.58 0.28 0.51 0.13 

CIR -21.68 -10.20 -10.79 -16.02 

BS 4.09 4.90 -5.97 7.79 

USD 1Y 7Y 15Y 25Y 

CKLS 15.34 9.42 -2.80 -13.79 

VASICEK -22.42 -19.10 -14.27 -21.02 

CIR 7.48 3.61 -5.18 -0.63 

BS -8.41 -6.03 9.74 9.17 

EUR 1Y 7Y 15Y 25Y 

CKLS -2.31 6.98 5.28 4.75 

VASICEK -8.68 -9.23 -4.35 -2.59 

CIR 10.49 3.51 4.41 6.36 

BS 3.87 -0.12 4.26 -4.46 

JPY 1Y 7Y 15Y 25Y 

CKLS -16.87 -14.11 17.08 13.47 

VASICEK -12.94 25.23 23.82 18.43 

CIR 10.23 10.33 6.89 4.03 

BS -18.42 -5.50 0.72 -12.69 

CAD-LIBOR 1Y 7Y 15Y 25Y 

CKLS 11.06 13.00 12.83 -10.26 

VASICEK 9.90 11.94 -11.37 -13.33 

CIR 0.49 13.75 -2.85 -10.66 

BS 9.37 40.44 11.12 -8.09 

UK SPOT 1Y 7Y 15Y 25Y 

CKLS 3.83 9.31 11.32 12.31 

VASICEK 2.04 3.77 5.44 6.27 

CIR 3.44 3.68 5.27 4.85 

BS 5.38 3.17 4.01 5.27 

 

          A general and important finding is that for the U.K. spot interest rates for all 

maturities and all the continuous-time models the five-factor models do not provide more 

reliable forecasts than their respective less complex four-factor counterparts. Therefore, 

according to this forecasting analysis the benefit from adding new factors is realised only 

for the LIBOR curve where the more complex models are necessary to capture the higher 

volatility of the short-term interest rates.  
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3.6.4 The Forecasting Analysis for the Post-Crisis Period 

It is important to conduct the same comparative analysis for the forecasting results 

provided by the same models based on the post-crisis sample for the nominal U.K. 

interest rates. In addition, the forecasting performance of the full-sample versus the post-

crisis results are formally tested using the Diebold-Mariano test. If the post-crisis 

forecasts are found to be superior then this could be interpreted as supportive evidence for 

a structural break in the data.  

As in the full-sample case, the new estimates for the post-crisis period are used to 

compute the forecasts for all six types of models based on this latest data. The models 

predictive performance is assessed in two ways: first, using the same five forecasting 

accuracy measures and second by implementing the formal statistical tests of Diebold-

Mariano (1995) and Clark-West (2007) for non-nested and nested models, respectively.  

 

Table 3.52 The Forecasting accuracy measures for the U.K. spot rates time-series for the 

four- and five-factor models.  

 

UK SPOT 1Y  CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 -0.00063 0.00032 -0.00037 0.00014 -0.01456 -0.00153 

4F-ME2 -0.00137 0.00051 -0.00098 0.00022 -0.04375 -0.00474 

4F-ME3 -0.00199 0.00081 -0.00157 0.00046 -0.06365 -0.00367 

4F-MAE1 0.00063 0.00033 0.00038 0.00017 0.01600 0.01464 

4F-MAE2 0.00137 0.00051 0.00099 0.00024 0.04447 0.01537 

4F-MAE3 0.00199 0.00082 0.00157 0.00047 0.06413 0.01867 

4F-MAPE1 30.76% 16.64% 18.22% 8.76% 7.73% 8.45% 

4F-MAPE2 53.18% 21.30% 37.58% 10.19% 16.71% 7.36% 

4F-MAPE3 69.16% 29.53% 53.62% 17.17% 21.62% 7.22% 

4F-RMSE1 0.00072 0.00039 0.00045 0.00021 0.02018 0.01763 

4F-RMSE2 0.00162 0.00057 0.00122 0.00028 0.05701 0.01852 

4F-RMSE3 0.00230 0.00100 0.00188 0.00067 0.07821 0.02347 

4F-CDCP1 45.45% 59.09% 50.00% 50.00% 45.45% 54.55% 

4F-CDCP2 40.91% 61.36% 43.18% 56.82% 40.91% 43.18% 

4F-CDCP3 43.94% 57.58% 45.45% 54.55% 43.94% 45.45% 

5F-ME1 0.00032 -0.00021 -0.00004 -0.00109 0.00228 -0.00153 

5F-ME2 -0.00058 -0.00086 -0.00061 -0.00244 0.00279 -0.00474 

5F-ME3 -0.00270 -0.00153 -0.00134 -0.00365 0.00427 -0.00367 

5F-MAE1 0.00032 0.00028 0.00018 0.00111 0.10697 0.01464 

5F-MAE2 0.00091 0.00090 0.00069 0.00244 0.14594 0.01537 

5F-MAE3 0.00292 0.00155 0.00139 0.00365 0.17189 0.01867 
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5F-MAPE1 19.59% 15.34% 10.62% 61.12% 61.74% 8.45% 

5F-MAPE2 36.37% 35.57% 26.73% 101.21% 66.70% 7.36% 

5F-MAPE3 90.00% 50.37% 43.80% 124.50% 66.17% 7.22% 

5F-RMSE1 0.00036 0.00035 0.00022 0.00131 0.11670 0.01763 

5F-RMSE2 0.00129 0.00116 0.00092 0.00289 0.15500 0.01852 

5F-RMSE3 0.00432 0.00192 0.00180 0.00423 0.18370 0.02347 

5F-CDIR1 45.45% 59.09% 50.00% 59.09% 45.45% 54.55% 

5F-CDIR2 38.64% 45.45% 40.91% 45.45% 56.82% 43.18% 

5F-CDIR3 42.42% 46.97% 43.94% 46.97% 54.55% 45.45% 

UK SPOT 7Y  CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00002 0.00049 0.00085 0.00004 0.05632 -0.00243 

4F-ME2 -0.00139 -0.00043 0.00013 -0.00118 -0.03160 -0.01016 

4F-ME3 -0.00349 -0.00203 -0.00138 -0.00297 -0.18794 -0.01272 

4F-MAE1 0.00025 0.00052 0.00085 0.00024 0.05854 0.03575 

4F-MAE2 0.00154 0.00100 0.00089 0.00134 0.09662 0.03740 

4F-MAE3 0.00359 0.00241 0.00205 0.00308 0.23129 0.04214 

4F-MAPE1 2.10% 4.42% 7.17% 1.98% 4.93% 2.71% 

4F-MAPE2 10.90% 7.38% 6.86% 9.50% 7.16% 2.66% 

4F-MAPE3 21.23% 14.31% 12.42% 18.21% 13.78% 2.65% 

4F-RMSE1 0.00034 0.00060 0.00096 0.00033 0.06709 0.04233 

4F-RMSE2 0.00217 0.00124 0.00101 0.00187 0.11644 0.04529 

4F-RMSE3 0.00492 0.00333 0.00285 0.00421 0.32019 0.05522 

4F-CDCP1 68.18% 50.00% 40.91% 68.18% 50.00% 63.64% 

4F-CDCP2 54.55% 45.45% 43.18% 54.55% 45.45% 50.00% 

4F-CDCP3 53.03% 46.97% 45.45% 53.03% 46.97% 50.00% 

5F-ME1 -0.00071 0.00013 0.00009 -0.00127 0.00198 -0.00243 

5F-ME2 -0.00238 -0.00097 -0.00064 -0.00281 0.02584 -0.01016 

5F-ME3 -0.00576 -0.00329 -0.00252 -0.00498 0.10366 -0.01272 

5F-MAE1 0.00072 0.00042 0.00047 0.00127 0.11554 0.03575 

5F-MAE2 0.00238 0.00130 0.00099 0.00281 0.24972 0.03740 

5F-MAE3 0.00576 0.00351 0.00275 0.00498 0.44168 0.04214 

5F-MAPE1 5.44% 3.23% 3.55% 9.57% 8.70% 2.71% 

5F-MAPE2 15.69% 8.59% 6.62% 18.88% 16.77% 2.66% 

5F-MAPE3 31.73% 19.14% 15.00% 28.52% 25.27% 2.65% 

5F-RMSE1 0.00080 0.00050 0.00055 0.00135 0.12347 0.04233 

5F-RMSE2 0.00314 0.00176 0.00126 0.00335 0.29599 0.04529 

5F-RMSE3 0.00795 0.00499 0.00398 0.00615 0.54513 0.05522 

5F-CDIR1 63.64% 68.18% 63.64% 54.55% 54.55% 63.64% 

5F-CDIR2 50.00% 52.27% 52.27% 45.45% 45.45% 50.00% 

5F-CDIR3 50.00% 51.52% 51.52% 46.97% 46.97% 50.00% 

UK SPOT 15Y CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00056 0.00094 0.00079 0.00093 0.10469 0.00561 

4F-ME2 -0.00074 0.00001 -0.00026 0.00006 0.01965 -0.00610 
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4F-ME3 -0.00253 -0.00142 -0.00178 -0.00129 -0.11759 -0.00819 

4F-MAE1 0.00056 0.00094 0.00079 0.00093 0.10472 0.03287 

4F-MAE2 0.00136 0.00110 0.00116 0.00105 0.10742 0.03579 

4F-MAE3 0.00295 0.00216 0.00238 0.00203 0.20231 0.03570 

4F-MAPE1 2.23% 3.71% 3.12% 3.67% 4.14% 1.27% 

4F-MAPE2 4.98% 4.14% 4.31% 3.98% 4.08% 1.34% 

4F-MAPE3 9.91% 7.35% 8.07% 6.92% 6.92% 1.27% 

4F-RMSE1 0.00068 0.00104 0.00089 0.00104 0.11591 0.04063 

4F-RMSE2 0.00176 0.00125 0.00137 0.00119 0.12013 0.04386 

4F-RMSE3 0.00392 0.00279 0.00312 0.00261 0.25861 0.04524 

4F-CDCP1 45.45% 40.91% 40.91% 40.91% 40.91% 40.91% 

4F-CDCP2 40.91% 40.91% 40.91% 40.91% 40.91% 54.55% 

4F-CDCP3 42.42% 42.42% 42.42% 42.42% 42.42% 56.06% 

5F-ME1 0.00010 0.00200 0.00082 0.00002 0.00175 0.00561 

5F-ME2 -0.00117 0.00234 0.00005 -0.00134 0.02709 -0.00610 

5F-ME3 -0.00297 0.00209 -0.00145 -0.00320 0.08263 -0.00819 

5F-MAE1 0.00031 0.00200 0.00084 0.00029 0.03849 0.03287 

5F-MAE2 0.00141 0.00234 0.00099 0.00153 0.16717 0.03579 

5F-MAE3 0.00313 0.00210 0.00215 0.00332 0.33353 0.03570 

5F-MAPE1 1.18% 7.74% 3.24% 1.12% 1.47% 1.27% 

5F-MAPE2 5.04% 8.72% 3.67% 5.44% 5.97% 1.34% 

5F-MAPE3 10.32% 7.58% 7.15% 10.98% 11.06% 1.27% 

5F-RMSE1 0.00040 0.00228 0.00098 0.00038 0.04779 0.04063 

5F-RMSE2 0.00197 0.00252 0.00115 0.00214 0.22750 0.04386 

5F-RMSE3 0.00421 0.00230 0.00288 0.00445 0.43476 0.04524 

5F-CDIR1 59.09% 45.45% 50.00% 63.64% 63.64% 40.91% 

5F-CDIR2 45.45% 56.82% 45.45% 47.73% 50.00% 54.55% 

5F-CDIR3 45.45% 57.58% 45.45% 46.97% 48.48% 56.06% 

UK SPOT 25Y CKLS VASICEK CIR BRSC VAR1 AR1 

4F-ME1 0.00070 0.00086 0.00076 0.00044 0.12436 0.01050 

4F-ME2 -0.00041 -0.00007 -0.00026 -0.00072 0.05599 -0.00097 

4F-ME3 -0.00164 -0.00110 -0.00136 -0.00189 -0.02972 -0.00251 

4F-MAE1 0.00070 0.00086 0.00076 0.00046 0.12436 0.03333 

4F-MAE2 0.00119 0.00106 0.00111 0.00122 0.09637 0.03413 

4F-MAE3 0.00216 0.00176 0.00193 0.00222 0.13129 0.03087 

4F-MAPE1 2.16% 2.67% 2.34% 1.42% 3.84% 1.03% 

4F-MAPE2 3.53% 3.15% 3.29% 3.58% 2.93% 1.03% 

4F-MAPE3 6.11% 5.01% 5.46% 6.27% 3.79% 0.91% 

4F-RMSE1 0.00084 0.00098 0.00089 0.00066 0.13484 0.04380 

4F-RMSE2 0.00144 0.00119 0.00130 0.00159 0.11326 0.04304 

4F-RMSE3 0.00269 0.00213 0.00237 0.00280 0.15478 0.03930 

4F-CDCP1 50.00% 50.00% 50.00% 54.55% 45.45% 40.91% 

4F-CDCP2 45.45% 45.45% 45.45% 45.45% 45.45% 52.27% 
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4F-CDCP3 45.45% 45.45% 45.45% 45.45% 45.45% 53.03% 

5F-ME1 0.00346 0.00457 0.00456 0.00378 0.00664 0.01050 

5F-ME2 0.00279 0.00474 0.00458 0.00276 0.04110 -0.00097 

5F-ME3 0.00301 0.00511 0.00465 0.00158 0.07682 -0.00251 

5F-MAE1 0.00346 0.00457 0.00456 0.00378 0.23515 0.03333 

5F-MAE2 0.00279 0.00474 0.00458 0.00276 0.19124 0.03413 

5F-MAE3 0.00301 0.00511 0.00465 0.00216 0.25830 0.03087 

5F-MAPE1 10.62% 14.03% 14.00% 11.60% 7.22% 1.03% 

5F-MAPE2 8.45% 14.23% 13.74% 8.40% 5.75% 1.03% 

5F-MAPE3 8.80% 14.87% 13.60% 6.48% 7.43% 0.91% 

5F-RMSE1 0.00349 0.00462 0.00461 0.00381 0.24825 0.04380 

5F-RMSE2 0.00293 0.00479 0.00462 0.00305 0.21007 0.04304 

5F-RMSE3 0.00317 0.00517 0.00469 0.00259 0.28904 0.03930 

5F-CDIR1 40.91% 36.36% 36.36% 40.91% 40.91% 40.91% 

5F-CDIR2 52.27% 50.00% 50.00% 52.27% 40.91% 52.27% 

5F-CDIR3 53.03% 51.52% 51.52% 50.00% 42.42% 53.03% 

 

 
Table 3.53 The U.K. Spot rates Post-Crisis: Diebold-Mariano and Clark-West tests 

results.  

 

 

Four-Factor Models Five-Factor Models 

1Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS -1.58 -6.32 2.35 1.12 1.11 2.65 -9.41 -3.85 -1.12 0.96 

Vasicek 

 

-7.25 8.06 1.03 1.14 

 

4.64 2.96 -0.93 1.4 

CIR 

  

8.15 1.09 1.08 

  

-5.58 -1.01 0.73 

BS 

   

-0.59 1.05 

   

-1.01 1.07 

VAR 

    

1.05 

    

1.07 

7Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 6.51 -6.97 2.01 6.5 5.84 -1.98 -5.96 5.54 4.65 4.61 

Vasicek 

 

5.95 -7.02 6.28 5.09 

 

-27.08 -3.7 -6.22 -6.56 

CIR 

  

-6.65 -5.83 4.72 

  

14.58 -1.43 -0.76 

BS 

   

6.93 5.75 

   

-6.84 -7.41 

VAR 

    

4.99 

    

4.17 

10Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 

 

    -4.56 -2.34 2.25 -5.24 -5.37 

Vasicek 

 

    

 

5.07 0.61 3.07 1.24 

CIR 

 

    

  

-23.32 -6.1 -6.11 

BS 

 

    

   

0.67 -0.4 

VAR 

 

    

    

-5.75 

15Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 6.46 -1.38 5.83 5.84 6.53 4.79 -3.01 0.13 3.24 -5.41 
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Vasicek 

 

-6.53 -7.16 5.19 6.47 

 

-3.8 -6.92 -3.1 -5.28 

CIR 

  

-7.46 5.57 6.55 

  

-1.07 2.53 -3.78 

BS 

   

6.25 6.93 

   

4.29 -0.76 

VAR 

    

6.88 

    

-3.6 

25Y Vasicek CIR BS VAR AR1 Vasicek CIR BS VAR AR1 

CKLS 0.88 1.22 1.26 -4.24 -6.3 0.78 0.11 0.26 -4.24 -6.3 

Vasicek 

 

1.67 0.78 -4.24 -6.3 

 

-0.02 -0.23 -4.24 -6.3 

CIR   0.26 -4.84 -9.27   1.72 -4.84 -9.27 

BS    -4.84 -9.27   0.78 -4.84 -9.27 

VAR 

  

 -4.84 -9.27 

  

0.26 -4.84 -9.27 

The critical values are 1.645, 1.96 for Diebold-Mariano test and 1.282, 1.645 for Clark-West test 

at the 90%, 95% confidence level, respectively. 

 

Table 3.54 Diebold-Mariano test for the forecasts series based on the two sample periods: 

the post-crisis and the full-sample data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

The critical values for Diebold-Mariano test are 1.645 and 1.96  

at the 90%, 95% confidence level, respectively. 

 

The results reported in Table 3.54 are mostly negative and higher in absolute value than 

the critical values for both 90% and 95% confidence levels, hence the null hypothesis id 

rejected on the left side, so the forecast errors from the full-sample period are smaller than 

those generated by the post-crisis period data. This could be interpreted as evidence for 

the importance of a longer in-sample estimation period as it may include information that 

is reflected in more reliable forecasts.  

4F Full-sample versus post-crisis-sample forecasts 

CKLS VAS CIR BS VAR AR1 

-9.51 -5.67 -8.49 -4.06 -7.04 -0.49 

-5.88 -5.16 -4.82 -5.80 -4.99 5.87 

-5.94 -5.56 -5.69 -5.55 -5.39 7.55 

-6.70 -5.07 -6.77 -7.10 -6.88 19.95 

5F Full-sample versus post-crisis-sample forecasts 

CKLS VAS CIR BS VAR AR1 

-5.08 -7.62 -6.73 -9.31 -11.63 -0.49 

-5.51 -5.30 -4.95 -6.85 -6.73 5.87 

-6.77 -8.23 -12.42 -6.43 -6.20 -4.63 

-6.12 -10.95 -5.24 -6.28 -6.59 7.55 

-11.93 -26.71 -33.47 -8.01 -8.68 19.95 
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3.7 Conclusions  

      The empirical study conducted in this chapter tries to shed more light over two 

questions which are still unanswered in the TSIR literature. Firstly, it asks how many 

factors should be included in a good model. To answer this question, the performance of 

two model-extensions (four- and five-factors) is compared and analysed across different 

segments of yield curve. The empirical results of the dynamic estimation favour the five-

factor models over the four-factor models with the former models consolidating the 

findings in the case of the latter. The addition of the fifth factor increased substantially the 

goodness of fit of the more complex models to the data, with some of the restricted 

models being very close to failing rejection against the general CKLS model. After a 

closer examination, the transition between the extensions from four to five-factor 

specification suggests that the level effect parameters are overestimated when only four 

factors are used. 

        Another benefit of increasing the model flexibility is that one could observe the 

change in the structure of the variance-covariance matrix between the two extensions. 

This allows for a clearer identification of where the strongest connections among the 

factors are situated along the term structure. This feature of the analysis has important 

implications for the investment decision making process; investors who focus on certain 

segments of the term structure of interest rates could determine, given the structure of the 

estimated covariance matrix, the regions where a twist/inversion in the shape of the yield 

curve may occur or be absent. 

      Second, empirical studies have always emphasized the importance of the trade-off 

between the level of realism and parsimony of the models employed.  To elucidate further 

the “continuous-time versus discrete time modelling” debate both modelling approaches 

are brought together and compared within a complex setting in terms of their forecasting 

performance.                 

         While the forecasting performance of the four-factor continuous models was 

inconclusive relative to the discrete time benchmark models VAR(1) and AR(1) that 

perform better overall,  the evidence found  in the forecasting analysis of the five-factor 

term structure models reveals a pattern in their  predictive power. For shorter maturity (up 

to six months) interest rates, the continuous-time models nested in the CKLS framework 

outperform consistently the discrete time models. However, once the model involves 

interest rates of longer maturities, the situation reverses. Hence in order to optimize the 

forecasts it is necessary to include the “easy to implement” discrete time alternatives 
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given their better forecasting performance for these longer term rates. These findings 

could have great implications for financial areas where the accuracy of interest rate 

forecasting is crucial. In conclusion, the forecasting results suggest that the availability of 

alternative forecasting methods should become an intrinsic feature of any forecasting 

analysis of the short end of the yield curve and the typical averaged forecasts from 

multiple methods could be improved even further by considering weighted average 

forecasts that reflect the empirical results.  

           Another aim of this chapter was to investigate the impact of the last GFC on the 

U.K. nominal interest rates by considering the pre- and post-crisis subperiods. The 

estimation results reveal that only the volatility parameters have been affected by the 

event of the crisis, especially the level-effect parameter that was significantly higher in 

the post-crisis period relative to the pre-crisis period. Moreover, it was found that from 

the nested models it is a different model that explains best the data for each subperiod: the 

Vasicek model could not be rejected against the more general CKLS model for both 

model-extensions in the pre-crisis period, while the CIR model could not be rejected 

against the CKLS model for the post-crisis period. Moreover, there is evidence for the 

importance of a longer in-sample estimation period as it may include information that is 

reflected in more reliable forecasts, as it was found that the forecast-errors from the full-

sample period are smaller than those generated by the post-crisis period data. 

        Regarding the general forecasting performance, an important result is that for the 

U.K. spot interest rates across all the maturities and all the continuous-time models the 

five-factor specifications do not provide more reliable forecasts than their less complex 

four-factor counterparts. Therefore, according to our forecasting analysis the benefit from 

adding new factors is realised only for the LIBOR curve where the more complex models 

are necessary to capture the higher volatility of the short-term interest rates.  

         Overall, these findings seem to suggest two important aspects when modelling 

interest rates. One is the intrinsic feature of less volatility for longer maturity interest rates 

and the second one is the higher level of volatility that exists during turbulent periods of 

time. 
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Chapter 4 

Dynamic Modelling and Forecasting of 

Scandinavian Interest Rates  

 

4.1 Introduction 

       The theoretical literature on the term structure of interest rates (TSIR) models is well 

established providing researchers and practitioners with a myriad of dynamic 

specifications1. There are two main categories of TSIR models: equilibrium and no-

arbitrage models. In the previous chapter an equilibrium based framework has been used to 

model the TSIR of several major economies. In this chapter, a no-arbitrage multi-factor 

model will be applied to a new set of interest rates. Given the current environment of 

persistent negative interest rates, the positivity restriction on a TSIR model such as the CIR 

model is not justified anymore. The general multi-factor linear Gaussian model of Babbs 

and Nowman (1999) (BN hereafter) that admits negative interest rates is employed to 

model the TSIR of three Scandinavian countries, namely Denmark, Norway and Sweden. 

Moreover, by contrast with the multi-factor CKLS framework used in the previous study 

the BN model treats the factors more realistically as they enter the model in latent form. As 

a result, by conducting a factor analysis one can conclude on the nature of these factors in 

terms of the attributes described by Litterman and Scheinkman (1991): the level, the slope 

and the curvature. This is not possible in the case of the CKLS framework where the 

factors are directly observable. Another important feature of the BN multi-factor model 

that the CKLS framework does not possess is tractability, providing closed formulae for 

the theoretical spot rates and the zero-coupon bond prices, therefore it is very useful for 

pricing interest rate contingent claims. Moreover, the BN model uses explicitly and 

therefore provides direct estimates for the market price of risk.  

                                                           
1 See the numerous TSIR models presented in Chapter1 
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       On empirical grounds, the choice of the estimation method is rather a complex 

consideration given the two dimensions of the yield curve. Despite a large volume of 

empirical studies, it is still not clear which is the optimal estimation method of such 

complex modelling frameworks. Initially, the estimation methodologies focused either on 

the time (dynamic) dimension using time-series (e.g. Chan et al.,1992; Dalquist, 1996; 

Nowman, 1997; Christiansen, 2008; Hong et al., 2010) or on the maturity dimension using 

cross-sectional data (e.g. Brown and Schaefer, 1994; De Munnik and Schotman, 1994).  

One econometric tool, that can take into account both, the dynamic and the cross-sectional 

aspect of the yield curve, is the Kalman filter a conditional moment estimator for linear 

Gaussian systems.  

       In general, the empirical literature on the estimation of TSIR models distinguishes 

between three main types of estimation methods, the maximum likelihood (ML), moment-

based and simulation methods. In a recent comparative study, Duffee and Stanton (2012) 

concluded that when the finite-sample properties of the estimators are analysed, using 

standard methods on their own can introduce severe bias in the parameter-estimates. 

However, their accuracy can be improved by implementing a Kalman filter through the 

state-space approach, by choosing a discrete time model analogue to the original 

continuous time model.   

          In this chapter, the Kalman filter method is combined with the ML estimator towards 

the estimation of one-, two- and three-factor versions of the BN TSIR model. The models 

are estimated using panel data formed of daily spot yields with a cross-section of eight 

maturities over the January 2000 - September 2014. This econometric method yields 

estimates with desirable econometric properties – efficient and consistent, and it has been 

successfully applied before to model the term structure of the nominal rates of the U.S., the 

U.K., Japan and the Eurozone.  

      This study employs new data sets, by comparing the TSIR of Denmark, Sweden and 

Norway - three Scandinavian countries that have historically important economic and 

financial connections. As part of the Scandinavian political movement in the 19-th century, 

Denmark, Sweden and Norway formed in 1875 the Scandinavian monetary union by 

pegging their currencies at the same level to gold. Despite being considered the most 

successful of all the European currency unions, the World War I was the main factor that 

caused the union to dissolve.  

        Currently, despite their close geographical position, they have rather different status 

in relation to the E.U. and EMU and these differentials may be reflected in the final 

empirical results. While only Denmark and Sweden are part of the EU, none of these 
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countries adhered yet to the EMU and hence they have their own currency. All three 

countries follow an inflation-targeting monetary policy but their mechanism of 

implementing it is not the same.  On one hand, Sweden and Norway have a floating 

exchange rate in relation to the euro and formulate their monetary policy by explicitly 

targeting a low level of inflation of approximately 2% and 2.5% respectively. For Sweden, 

the key policy rate is the repo rate, while for Norway the main monetary policy tool is the 

interest rate on banks' deposits (sight deposit rate). On the other hand, Denmark has its 

currency pegged to the euro and therefore its monetary measures have to support directly 

the stability of the exchange rate through the exchange rate mechanism (ERM2); a stable 

nominal DKK-exchange rate assumes that the inflation in Denmark has to follow closely 

the inflation rate in the Eurozone. The main monetary policy instruments used by the 

Danish central bank to control short term interest are the day-to-day current account 

interest rate and the 14-day deposit rate (see Christiansen et al., 2004). 

         The main aim of this investigation is to analyse and compare the in-sample and out-

of-sample performance of the three model specifications, between the pre-crisis and post-

crisis sub-periods and among the three Scandinavian countries. In addition, the theoretical 

latent factors implied by the model are extracted using the Kalman filter technique for the 

two- and three-factor models and then they are compared to the empirical factors as in 

Diebold and Rudebusch (2013). The factor-loadings are assessed in order to determine the 

nature of the factors in terms of the three classical attributes suggested by Litterman and 

Scheinkman (1991).  

       This chapter is organized as follows. Section 4.2 provides a succinct literature review 

on Kalman filtering applications to interest rate modelling. Section 4.3 presents the 

theoretical framework, including the state-space form for the BN model and the Kalman 

filtering algorithm. The data is described and analysed in section 4.4. The estimation 

results and the empirical residuals are analysed in Section 4.5. The factors implied by the 

Kalman filter are characterised in terms of level, slope and curvature in Section 4.6. The 

forecasting comparative analysis is conducted in Section 4.7, while the conclusions are 

drawn in Section 4.8. 

 

4.2 Empirical Applications of the Kalman Filter Technique 

        Originally, the Kalman filter (Kalman, 1960) was developed for engineers trying to 

estimate the state of a system from noisy measurements and only later it was applied in 

empirical economics and finance as a generalization of latent factor models.  Early 
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applications of the Kalman filter technique include Chow (1975) and Engle and Watson 

(1981) who analysed dynamic economic models. In finance, the Kalman filter technique 

was applied in several contexts: for calibrating and forecasting the term structure of 

interest rates (see Pennacchi, 1991; Duan and Simonato, 1999; Koopman et al., 2010), for 

pricing futures on commodities (see Schwartz, 1997; Manoliou and Tompaidis, 2002 and 

Lautier and Galli, 2004) or for the estimation of the volatility of stock prices based on 

intra-day data as in Barndorff-Nielsen and Shephard (2002).  More recently, Kalman 

filtering has been chosen in other financial areas such as credit risk models (e.g. Chen et 

al., 2008; Carr and Wu, 2010) and equity options (e.g. Carr and Wu, 2007; Forbes et al., 

2007 and Bakshi et al., 2008). Several reviews on the concept of the Kalman filter are 

contained in James and Webber (2000) (see chapter 18), Date and Ponomareva (2011) and 

Prokopczuk and Wu (2013). 

         An important feature and advantage of the state-space approach is the allowance for 

measurement errors, explicitly contained in the measurement equation that is one of the 

two equations defining the state-space form of the continuous-time model. The noise is the 

error in the measurement/calculation of the “observed” data. Possible sources for this type 

of error include the discount bond pricing methods from average between bid and ask 

prices or from coupon bonds, the rounding involved in bond pricing and the non-

synchronous trading (Chen and Scott, 1995).  

          Given their tractability, the affine-type interest rate models allow for a 

straightforward derivation of a filtering algorithm since the theoretical prices can be 

expressed in terms of the unobservable short rate. The measurement equation is a linear or 

non-linear multivariate regression equation where the explanatory variables are the latent 

factors and the observed/measured yields are the endogeneous variables. Consequently, 

numerous affine term-structure models have been estimated using different Kalman 

techniques (Pennacchi, 1991; Chen and Scott, 1995; Duan and Simonato, 1999; Lund 

1997).  

          Different variants of the Kalman filter can be applied depending on whether the 

model is linearly or non-linearly specified.  Linear filtering is mostly applied in financial 

modelling to linear Gaussian interest rates models and stochastic volatility models (SV). If 

the dynamics of the state variables are Gaussian and the noises have normal distribution 

then the Kalman filter is straightforwardly enhanced by the maximum likelihood (Duffee 

and Stanton, 2012) and the resulting exact linear KF estimator possesses the best statistical 

properties. For non-linear term structure models (e.g. CIR, 1985), the literature 

distinguishes between two types of non-linear filters. First is the exact non-linear filter 
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developed by Kitagawa (1987) which is unfortunately impractical given its high 

computational cost, and second is the approximate non-linear filtering for which numerous 

variants   have been developed such as the extended KF (EKF), particle filters and sigma 

point filters (see Date and Ponomareva, 2011).  

        Duan and Simonato (1999) extended the transformed-data maximum likelihood 

method of estimation presented in Duan (1994) to the whole class of exponential-affine 

model class. Using their own filtering method, the authors estimated the one-factor 

Vasicek and CIR models and the two-factor Chen and Scott (1992) model, based on 

monthly data of U.S. treasury securities with four maturities over the period 1964 - 1997. 

The data was analysed in two sub-samples by eliminating the period of 1979 - 1982 

containing a shift in the monetary policy of the Federal Reserve. For all three models, the 

estimation results support previous evidence (Hamilton, 1988) of a structural break as the 

variances of the two sub-samples are considerably smaller than the variance of the short 

rate from the whole period estimation. However, based on a Lagrange multiplier test, all 

three specifications are rejected, implying that these affine models are not explaining 

satisfactorily the dynamics of the term structure of interest rates. In the case of one-factor 

specifications, the estimate of the market price of risk parameter was positive for the 

Vasicek model and negative for the CIR model, implying a positive risk premium in bond 

prices for the unobservable factor. For the Chen and Scott (1992) model the results are 

consistent with the findings reported by Chen and Scot (1993b) in the sense that the second 

factor seems to be insignificant.  

        Multi-factor versions of the equilibrium asset pricing CIR (1985b) model were 

estimated by Chen and Scott (2003) using a non-linear Kalman filter to generate estimates 

for the unobservable state variables: the short-term rate, the long-term interest rate and the 

interest rate volatility. The instantaneous interest rate was modelled as a sum of these 

factors, with each factor following a univariate square root diffusion process. The authors 

found that while the three-factor formulation is superior to one- and two-factor versions, 

the resulting quasi maximum likelihood (QML) estimators are significantly conditionally 

biased.  

        Jegadeesh and Pennacchi (1996) estimated a two-factor dynamic model for the TSIR 

using panel data on Eurodollar futures prices. They derived the associate space-state form 

model and showed that the futures prices can be written as a linear combination of both 

factors, the short rate and the stochastic long-term mean, respectively.  The estimation 

results implied by the Kalman filter were highly significant and represent a substantial 
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improvement in fitting the yield curve over the single-factor version and other estimation 

techniques.   

        Lund (1997) and Babbs and Nowman (1999) estimated multi-factor versions of the 

generalized Vasicek model using different Kalman filter methods. Lund (1997) developed 

an iterative extended Kalman filtering (IEKF) algorithm that can be applied to the 

exponential-affine class models of the term structure based on directly observable market 

data. The analytical log-likelihood function was derived and the finite sample properties 

of the QML estimator were explored using Monte Carlo simulations. Most of the 

parameter estimates were found to be on average very close to their true values, except for 

the risk premia. A possible reason for the efficiency loss can be the approximations 

techniques involved in the non-linear filters. 

       Babbs and Nowman (1999) proposed a more general model of the term structure with 

multiple latent factors underlying the dynamics of the short rate. More specifically, their 

model represents a subclass of Langetieg’s (1980) models where the short rate is a 

particular combination of unobservable variables. These latent variables can be interpreted 

as a stream of news affecting different segments of the yield curve.  Moreover, it was 

shown that the no-arbitrage version of Babbs and Nowman (1999) general model is 

equivalent to the generalized Vasicek multi-factor models studied by Babbs (1993) and 

includes the “double decay” model of Beaglehole and Tenney (1991) as a particular case. 

Kalman filtering was applied to US weekly interest rates of eight different maturities 

covering the 1987-1996 period, in order to empirically investigate one-, two- and three-

factor models. The estimation results suggested that the three-factor model had 

statistically fitted the data better than the one- and two-factor models. While most of the 

parameter estimates were statistically significant the two- and three-factor models did not 

yield significant estimates for the market prices of risk associated with the unobservable 

factors. The same subclass of Gaussian models has been employed by Nowman (2010) in 

order to analyse the evolution of the UK and Euro yield curves over a period including the 

last GFC of 2007-2009.  

      Another related empirical study on US yield curves is Geyer and Pichler (1999), who 

employed the state-space form and the non-linear Kalman filter framework used by Chen 

and Scott (1995) and found substantial evidence to reject the CIR multi-factor 

specifications. Their diagnostic tests on the residuals resulted in biased and autocorrelated 

prediction errors, the main reason for rejection being the non-negativity constraint of the 

classic CIR model. De Rosi (2004) efficiently estimated a two-factor Gaussian model for 

the forward curve by Kalman filter using time series of eight UK weekly interest rates 
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spanning the LIBOR swap curve. The state space form allowed for time-varying intercepts 

and only the market price of risk associated with the first factor – the short rate, changed 

over time as a linear functional of the short rate. Another innovation in De Rossi (2004) is 

the presentation of the Kalman filter under both risk-neutral and physical probability 

measure, respectively. However, the residuals analysis rejects the model, suggesting that 

other functional forms should be investigated.  

 

4.2.1 Kalman Filter Estimation of Linkages between Macroeconomics 

and Yield Curves  

Numerous studies employed Kalman filtering to estimate the yield curve in a 

macroeconomic context. An early study by Pennacchi (1991) explored the relationship 

between the real interest rates and the expected rate of inflation by implementing the state-

space approach for a two-factor continuous-time equilibrium asset-pricing model. Based 

on prices of different maturity U.S. Treasury bills and on survey of inflation forecasts, 

Pennacchi (1991) identified the latent factors as the real interest rate and expected 

inflation.  In contrast with previous studies such as Fama (1975) and Fama and Gibbons 

(1982), Pennacchi (1991) relaxed the assumption of independence between the two state 

variables and found that they were negatively correlated during the 1968-1988 period. In 

addition, the two factors exhibited rather different dynamics, with the real interest rates 

being more volatile and exhibiting a weaker mean reversion feature than the expected rate 

of inflation. These findings support what economic theory suggests, that there are many 

exogenous variables (such as technological change and output change) that may affect 

simultaneously both real interest rates and the rate of inflation.          

      Fendel (2004) proposed a no-arbitrage Gaussian macroeconomic affine TSIR model 

that incorporates two observable factors that affect the dynamics of the interest rates, 

namely the inflation and output gap, and one latent factor without a clear economic 

interpretation. The estimation results implied by the Kalman filter indicated a very good 

characterization of the German yield curve between 1979 and 1998, as interest rates 

movements were explained very well by the expected variations in the macroeconomic 

factors. The interpretation of the factors was consistent with the monetary policy rules. The 

“inflation factor” acted as the level factor with nearly equal impact on all maturities; the 

impact of the “output factor” declined as the maturity increased and could be interpreted as 

the curvature, while the third latent factor can play the role of the slope factor as it 

influences only the short end of the yield curve. Diebold et al. (2006) explored the dynamic 

interactions between the yield curve and the economy by extracting three latent yield curve 



195 
 

factors (level, slope, and curvature) under the Nelson-Siegel (1987) parameterization and 

also by including three observable macroeconomic variables (real activity, inflation, and 

the monetary policy instrument). The analysis of different impulse response functions 

showed some impact of the yields on the three main fundamentals while in the other 

direction the slope factor seemed to be highly responsive to shocks in all three macro 

variables. 

        Joyce et al. (2012) examined the behaviour of the U.K. real interest rates during the 

conundrum of 2004-2005 when long horizon interest rates had fallen globally. Using 

index-linked bonds and survey data, they modelled the real forward rates within a flexible 

affine framework of Duffee (2002) and derived a three-factor state-space form by 

implementing Backus et al. (1998) discretization. While exploring several model 

specifications2, some in a macroeconomic context, the authors identified the main factor 

that explained the declining long-term real forward rates as the time-varying term premia, a 

conclusion that supports the “excess liquidity” explanation during turbulent financial 

times.   

 

4.2.2 Numerical Issues Related to Kalman Filtering  

         Numerous empirical studies using the Kalman filter technique (e.g. De Jong, 2000 

and Chen and Scott, 2003) are based on the strong assumption that the measurement errors 

are identically and independently distributed (i.i.d.). In a Monte Carlo study, Dempster and 

Tang (2011) explore different multifactor exponentially affine models (EAM) showing that 

these errors are serially and cross-sectionally correlated and therefore their specification 

affects the estimation results. While the cross-sectional correlation is less detrimental the 

serial correlation results in poor estimates for the mean-reversion parameters as the 

Kalman filter procedure fails to recognise the mean-reversion of the underlying process 

from the mean reversion of the measurement error. Dempster and Tang (2011) proposed an 

augmented state-space form that seems to improve the estimation results by reducing the 

biases introduced by a particular state-space form. 

          In a comparative study, Duffee and Stanton (2012) analysed the finite-sample 

properties of three estimation methods widely used in empirical finance, arguing that 

previous work had relied mostly on the asymptotic properties of such estimators and 

ignored the finite-sample properties of such estimators. They claimed that when finite-

                                                           
2 In Joyce et al. (2012) there are three specifications including a baseline model that incorporates only real 

yields and then a survey model (that includes also long-term GDP growth forecasts) and a policy rate model 

(that incorporates the 1-month policy rate. 
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sample properties are considered the results are surprizing rejecting standard methods such 

as maximum likelihood (ML) or efficient method of moments (EMM). Most importantly, 

in the context of complex TSIR models and relatively small sized samples, they concluded 

that the Kalman filter method and its variants are the most appropriate methods. When the 

standard Kalman filter cannot be implemented Duffee and Stanton (2012) proposed a 

modified filter that despite being inconsistent produced finite-sample biases like those 

obtained by ML methods. 

           Despite their complexity, latent factor models in general are more realistic than 

specified factor models, hence their revival in analysing the dynamics of economic and 

financial variables that are driven by unobservable factors. The state-space approach 

together with advanced filtering algorithms constitute a powerful econometric tool in the 

estimation of such complex models.  

 

4.3 Methodology 

       This section presents the complex modelling framework used in this investigation 

towards the estimation of the term structure of nominal interest rates based on panel data 

from three Scandinavian countries: Denmark, Norway and Sweden. 

For clarity, the methodology is presented in three sections. In the first section, the 

multi-factor generalised Vasicek model developed by Babbs and Nowman (1999) is 

presented, followed in the second section by the derivation of an appropriate state-space 

form (see Babbs and Nowman, 1999). The third section describes the linear Kalman filter 

algorithm implied by the multi-factor BN TSIR model and the respectively augmented ML 

estimator. Given the linearity and the Gaussianity of the BN model, the Kalman filter is 

linear and exact, ensuring desirable properties such as efficiency and consistency for the 

ML estimators.  

 

4.3.1 The Babbs and Nowman (1999) TSIR Model  

      In this model, the short rate ( )r t   is determined as a particular combination of one or 

more correlated unobservable factors 1 2( ) ( ( ), ( ),..., ( ))JX t X t X t X t  that can be interpreted 

as streams of positive or negative economic news with current impact on different 

segments of the yield curve. The BN model is a particular case of the general Gaussian 

model of Langetieg (1980) in the sense that state variables enter the short rate specification 
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with equal weights of minus unity, while the underlying latent factors ( )jX t  follow a zero 

mean Vasicek process3:    

 
1

( ) ( )
J

j

j

r t X t


     (4.1) 

                                 ( ) ( )j j j j jdX t X dt dW t                                            (4.2) 

The dynamic processes (eq. 4.2) are driven by the Brownian motions 
jW   which are 

correlated with correlation coefficients
ij . At this stage, the vector of constant parameters 

consists of ( , , , , )j j ij j      , where   is the long-run average rate, 
j   and  

j  are 

the mean reversion and the diffusion parameters, respectively. With each random state 

factor, there is an associated market price of risk parameter 
j  that is not yet explicitly 

identified in the model. The BN model is a general n -factor model that possesses closed 

formulae for the theoretical spot rates and the zero-coupon bond prices, therefore it is very 

useful for pricing interest rate contingent claims.  

 

4.3.2 The State-Space Form for the Babbs and Nowman TSIR Model  

      In order to apply the Kalman filter algorithm to a continuous-time dynamic model, we 

need an analogue discrete-time state-space form. In general, the state-space form consists 

of a system of two types of equations, the measurement and the transition equation, 

respectively. The measurement equation considers the measurement errors as the 

difference between the observed variables and their predicted (filtered) values. The 

transition equation involves the unobserved variables and it is usually derived as a 

discretization of a continuous dynamic model. In the case of Babbs and Nowman (1999) 

model an appropriate state-space form in derived in two steps. 

        First, the tractability of the model provides the theoretical spot rates used in the 

measurement equation and second, the continuous dynamic processes describing the 

underlying state factors are discretized following Bergstrom (1984) to obtain the transition 

equation. The measurement equation relates the theoretical spot rates of different 

maturities m ( 1,..., )m N  denoted by ( )mR t  with the corresponding continuously 

compounded interest rates ( )mY t  extracted from the observed yield curve at time  t  . In 

other words, the observed rates (the panel data sample) 

1 2( ) ( ( ), ( ),..., ( )) ( ( ))N m mY t Y t Y t Y t Y t   with ( 1,..., )t T are assumed imperfect, i.e. they are 

                                                           
3 These particularities are not that restrictive; they reduce the number of estimated parameters, otherwise 

redundant (see Babbs and Nowman, 1999).  
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sampled with error, and are modelled as a simple multivariate regression on the theoretical 

spot rates:  

 ( ) ( ) ( )Y t R t t    (4.3) 

where the disturbances ( )t  are the measurement errors assumed to be independently and 

identically distributed (i.i.d.) (0, ( ))N H  . For empirical reasons. the variance-

covariance matrix ( )H N N  is restricted to diagonal form4 with maturity-specific 

variances, i.e. 1( ) ( ,..., ).Ndiag H h h  

       It is known (Duffie and Khan, 1996) that in the case of affine interest rate models the 

continuously compounded spot rates are also affine combinations of the short 

(instantaneous) rate ( )r t :  
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where ( ) ( ) ( )m md R      and  (1 ) /j m

mj j mc e
 

 


   are calculated as in Babbs and 

Nowman (1999) (p.121). Therefore, for each maturity m  the equation (4.3) can be 

projected as: 
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        (4.5) 

In vector-format the measurement equation used in the state-space form can be written as:  

                                   ( ) ( ) ( ) ( ) ( ) ( ) ( )Y t R t t d C X t t                                          (4.6) 

 where d  is a 1N   vector, C  is a N J  matrix and   is a 1T   vector. 

           For the transition-equation we return to the continuous time stochastic process 

assumed for the state variables that need to be appropriately discretised. Following 

Bergstrom (1984) the exact discrete analogue model of the continuous time specification 

(4.2) is a VAR(1) model without feedbacks given by:  

                                          
1( ) ( ) ( )

kk k tX t B X t                                                         (4.7) 

where ( )B   is a diagonal J J matrix called the transition matrix and is given by 

1( )
( ) j k k j kt t t

jj e e
 

     
   and the disturbances (0, )

kt tN V . The elements of 
kt

V  are 

calculated as in Bergstrom (1984). Equation (4.7) above represents the transition equation 

needed for the state-space form.  

                                                           
4 By doing so we recognize the differences in trading at different maturities (see Babbs and Nowman 1999)  
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Together the equations (4.6) and (4.7) represent the state-space formulation of the 

Babbs and Nowman (1999) model which is a linear Gaussian system that will be estimated 

by combining the Kalman filter with the maximum likelihood (ML) estimator. 

 

 

4.3.3 The Kalman Filter Algorithm 

         The Kalman filter is an iterative method involving a sequence of steps that will be 

presented in the following. At the end of iteration k  the Kalman filter will provide an 

improved filtered estimate for the state vector ( )kX t   based on all the information up to time 

kt . Therefore, at the end of all the iterations the Kalman filter generates time series of 

estimates for both, observable and unobservable variables, 
kt

Y and
kt

X , respectively. In the 

following equations, the index 
kt  will be written as k  to reduce the complexity (see Babbs 

and Nowman, 1999) of the mathematical expressions. The two indices m  and k  are distinct. 

The index  m  is denotes the ranking of the maturity in the whole selection of N  maturities 

(in our case 8)N  .More precisely, the maturity m  is the m -th maturity, ( 1,..., )m N (see 

page 197). The index k  is a time-index, which represents the ranking of one observation out 

of the total of T  observation. Because k  is a discrete time index and our models are in 

continuous time, the theoretical model distinguishes between the t  (which covers an 

interval) and 
kt  (which is a value in the daily observation point k ). 

        A very important aspect is the initialization step at the beginning of all iterations. To 

start the Kalman filter technique the initial values for the state vector and its covariance 

matrix should be chosen. For practical reasons, it assumed that the VAR(1) model in the 

transition equation (4.7) is stationary5 and therefore, the starting values are set as the 

unconditional moments of kX , the unconditional mean and covariance matrix (see, Martin 

et al., 2013): 
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                                             (4.8) 

The implementation of the Kalman filter involves four main steps inside a particular k -th 

iteration (see Hamilton, 1994) 

 

                                                           
5 This implies that all eigenvalues of parameter matrix B are negative.  
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1) The prediction of the state variable kX  

We use as inputs from the previous iteration the updated estimates 1| 1
ˆ

k kX    and its 

covariance matrix 1| 1k k  , to predict kX and its mean square error (MSE) matrix
| 1k k  

conditional to all information up to 1kt   :  

  | 1 1 2 1 1 1 1 1 1| 1
ˆ ˆ(X | (Y ,Y ,...,Y )) ( ) ( )k k k k k k k k k k k kX E E BX BE X BX                           (4.9) 

     | 1 | 1 | 1 1| 1
ˆ ˆ[(X )(X ) '] 'k k k k k k k k k kE X X B B V                                                          (4.10) 

2) Forecasting kY   

The best forecast for  kY   is given by its conditional mean based on all the information up 

to time 1kt  : 

                    | 1 1 2 1 1 | 1
ˆ ˆ( | , ,...., ) ( )k k k k k k k k kY E Y Y Y Y E CX d CX d                         (4.11) 

The availability of a new observation kY  allows us to calculate the vector of prediction 

errors  k  and their covariance matrix kF :     

                 
| 1 | 1

| 1 | 1 | 1

ˆ ˆ(X )

ˆ ˆ[( )( ) '] '

k k k k k k k k

k k k k k k k k k

Y Y C X

F E Y Y Y Y C C H

  

  

    

     
                                      (4.12) 

3) Updating the inference about kX   

This is a very important step that combines optimally the past information with new 

measurements; more precisely, the new observation kY
 
is used to improve the forecast of 

kX  by considering the joint conditional normal distribution of kY  and kX . The new filtered 

estimate for the unobservable variables is obtained as follows:  

    
1

| 1 2 1 | 1 | 1 | 1
ˆ ˆ ˆ ˆ( |  and  ( , ,..., )) 'Fk k k k k k k k k k k k k k k kX E X Y Y Y Y X C X K 

                  (4.13) 

where the matrix
1

| 1 'k k k kK C F 

   is called the gain matrix (see Hamilton, 1994, p.380) 

1

| | 1 | 1 | 1k k k k k k k k kC F C

  
       

4) Producing a forecast of 1kX    

The one-step-ahead forecast for the unobservable variables is derived from the state 

equation based on the improved estimate |
ˆ

k kX  : 

                                1| | | 1
ˆ ˆ ˆ(X )k k k k k k k kX BX B K                                                       (4.14)        

Its MSE (mean square error) 
1|k kP 

 involves all matrices present in the current iteration: the 
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coefficient matrices of the state-space system B and C, the variance matrices of the two 

uncorrelated disturbances, V and H and finally the MSE of the kY   forecast error, k : 

                         
1

1| | | 1 | 1 | 1' ' 'k k k k k k k k k k kB B V B B V B C F C B

   
                          (4.15) 

      To calculate these values, the time step depends on the frequency of the data, for 

example 1/ 52kt  for weekly observations or 1/ 252kt    for daily observations.   

The Kalman filter is an algorithm that works under the hypothesis that the population 

parameters are given. Each step aims to produce state estimators for the state vector tX  

which enter the log-likelihood function ( , )tL X  .  In the case of linear Gaussian models, 

the log-likelihood function has a closed formula (see Babbs and Nowman, 1999) given by: 

                     1

1

1
( ; ) ln 2 (ln | | ' )

2 2

T

t t t t t

t

NT
L X F F   



                                       (4.16) 

        The optimisation problem is transformed from the maximization of the log-likelihood 

function to the minimization of the expression minus twice of the log-likelihood with 

respect to the vector of parameters  . The optimal solution  *  is used recursively 

(iteration by iteration) back in the Kalman filter algorithm to produce the state estimates 

for the observable and unobservable variables.  

       Despite the fact that the BN modelling framework is among the few theoretically 

generalized models for interest rates, when it comes to empirical studies no estimation of 

such models has been conducted for more than three factors. This can be justified in two 

ways based on empirical evidence and also on theoretical grounds. Empirically, previous 

studies (Scheinkman and Litterman, 1991; Babs and Nowman, 1999) have shown by using 

principal component analysis (PCA) that three factors are sufficient to explain up to 95% 

of the variations observed in the data. In another empirical investigation Geyer and Pichler 

(1999) have estimated and tested also four- and five-factor model of Cox, Ingersoll, and Ross 

(1985). Their estimation results showed that for four- and five-factor models the ML 

objective function had multiple local maxima making impossible to choose between 

different sets of parameter-estimates. Another short-coming of the higher number of 

factors was that the fourth and fifth factors behaved like pure random walks, therefore their 

simulation for future realisations is of no benefit to risk management measures.  

      On theoretical grounds, while the level, slope and curvature attributes are practical 

interpretations within the mathematical derivative calculus, there is no yet attribute for the 

third derivative in the way slope is for the first derivative and the curvature is for the 

second derivative.  These findings had important implications in making the decision to 

employ only one-, two- and three-factor BN models.  
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4.4 Data   

        The data used for this empirical analysis is a panel of daily spaced time series of zero 

coupon (spot) Government yields for three Scandinavian countries, respectively Denmark, 

Norway and Sweden. The cross-sectional dimension of the yield curve involves eight 

points of the following maturities:  three-month, one-, two-, five-, seven-, ten-, fifteen- and 

twenty-years. The data have been collected from Bloomberg and covers the period from 

January 2000 to September 2014, inclusive, with a total of 3,847 daily observations. The 

full data set is divided into two sub-periods: the pre-crisis period from 03 January 2000 to 

31 June 2007, and post-crisis period from 02 July 2007 to 30 September 20146. For the 

forecasting analysis over three horizons, the out-of-sample daily data are the last three 

months October, November and December 2014. 

The graphs of the eight time-series over the entire period are presented in Figures 4.1- 4.3 

with eight panels for each country, respectively.  

                       

 

                 

                          

                                                           
66 To be consistent with the other investigations in this thesis the same breaking point in time is recognized 

for the start of the crisis, namely the third quarter of 2007. 
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             Figure 4.1 DENMARK: The individual daily time-series of interest rates of eight  

                               maturities over the period 3/1/2000 – 30/9/2014. 
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              Figure 4.2 NORWAY: The individual daily time-series of interest rates of eight 

                                 maturities over the period 3/1/2000 – 30/9/2014. 

 

                           

                          

                          

                           

              Figure 4.3 SWEDEN: The individual daily time-series of interest rates of eight  

                                  maturities over the period 3/1/2000 – 30/9/2014. 
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       In order to observe the evolution of the term structure over the entire period, five out 

of eight series (three-month, one-, five-, ten- and twenty-year interest rates) are plotted in 

Fig. 4.4-4.6 for each country. The shape of the yield curve is defined by the relationship 

between the short term and long-term interest rates, and the former can be greatly 

influenced by the monetary policy of each country. Indeed, the paths of the 3-month and 1-

year interest rates differ mostly from one country to another.  

 

          

 Figure 4.4 Daily time-series of interest rates for Denmark from 2/1/2000 to 29/9 /2014.  

 

           

Figure 4.5 Daily time-series of interest rates for Norway from 2/1/2000 to 29/9 /2014.  
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Figure 4.6 Daily time-series of interest rates for Sweden from 2/1/2000 to 29/9 /2014. 
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corresponds to the global financial crisis GFC between 2007 and 2009, and again Sweden 
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currency. For the other two countries, the sovereign crisis period has a less impact, with a 
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yield curve at very low levels in the case of Denmark.  

                                                           
7 Several empirical studies have used the beginning of the third quarter of 2007 to mark the start of the GFC 

(see Cheung et al., 2010 and Dontis-Charitos et al., 2013) 
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In Tables 4.1 - 4.3 we report the standard summary statistics of the three data samples for 

each country.  

 

Table 4.1: Descriptive Statistics of daily yields at various maturities;  

                  DENMARK: Pre-Crisis, Post-Crisis and Full Sample Period 

Pre-crisis 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 

 Mean 3.3778 3.6204 3.8402 4.3330 4.5632 4.8185 4.9703 5.1549 

 Median 3.3230 3.4950 3.7550 4.0880 4.3260 4.6590 4.9290 5.2740 

 Maximum 6.9070 6.5600 6.3830 6.2520 6.5520 6.5190 6.4740 6.4520 

 Minimum 2.0850 2.0400 2.1610 2.6590 2.9120 3.2070 3.4650 3.7560 

 Std. Dev. 1.1337 1.1861 1.1089 0.9449 0.8877 0.8341 0.7443 0.6673 

 Skewness 0.5900 0.5086 0.4039 0.3079 0.2615 0.1864 0.0431 -0.2107 

 Kurtosis 2.2373 2.1899 2.0342 2.0089 2.0356 2.0465 2.1199 2.1188 

 Jarque-Bera 160.81 137.75 129.14 110.89 98.05 85.37 63.70 77.71 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Post-crisis 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 1,892 1,892 1,892 1,892 1,892 1,892 1,892 1,892 

 Mean 1.920 2.035 2.159 2.614 2.899 3.222 3.422 3.647 

 Median 1.253 1.555 1.859 2.488 2.867 3.240 3.462 3.699 

 Maximum 6.437 5.858 5.928 5.501 5.362 5.273 5.234 5.243 

 Minimum 0.233 0.352 0.457 0.741 1.035 1.429 1.737 1.863 

 Std. Dev. 1.813 1.663 1.525 1.320 1.202 1.078 1.013 0.950 

 Skewness 0.992 0.974 0.797 0.396 0.246 0.150 0.115 0.064 

 Kurtosis 2.490 2.564 2.439 1.971 1.823 1.717 1.648 1.583 

 Jarque-Bera 331.08 313.88 225.35 132.96 128.29 136.80 148.37 159.66 

 Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Full Sample 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 3,847 3,847 3,847 3,847 3,847 3,847 3,847 3,847 

 Mean 2.6606 2.8406 3.0136 3.4876 3.7449 4.0333 4.2087 4.4132 

 Median 2.2150 2.4870 2.8290 3.5210 3.8730 4.1450 4.3160 4.5060 

 Maximum 6.9070 6.5600 6.3830 6.2520 6.5520 6.5190 6.4740 6.4520 

 Minimum 0.2330 0.3520 0.4570 0.7410 1.0350 1.4290 1.7370 1.8630 

 Std. Dev. 1.6735 1.6443 1.5730 1.4312 1.3428 1.2497 1.1772 1.1130 

 Skewness 0.2440 0.2251 0.0693 -0.1825 -0.2214 -0.2189 -0.3040 -0.3890 

 Kurtosis 1.9583 1.9699 2.0070 2.1559 2.2286 2.2492 2.2088 2.1546 

 Jarque-Bera 212.11 202.58 161.13 135.56 126.78 121.07 159.59 211.60 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 4.2: Descriptive Statistics of daily yields at various maturities;  

                  NORWAY: Pre-Crisis, Post-Crisis and Full Sample Period 

 

Pre-crisis 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 

 Mean 4.4969 4.8193 5.0399 5.3663 5.4986 5.6242 5.6824 5.7037 

 Median 4.3200 4.8160 5.0120 5.1020 5.1940 5.3470 5.4160 5.4360 

 Maximum 7.5200 7.9810 7.9010 7.4590 7.3330 7.3120 7.3130 7.3130 

 Minimum 1.5800 1.7150 2.3130 3.3210 3.6510 3.9390 3.9230 3.9050 

 Std. Dev. 2.1322 2.0241 1.7826 1.3127 1.1845 1.0867 1.0335 1.0156 

 Skewness 0.0760 0.0579 0.0595 0.0736 0.0879 0.1069 0.1274 0.1303 

 Kurtosis 1.3200 1.3779 1.4249 1.4473 1.4444 1.4554 1.4639 1.4696 

 Jarque-Bera 231.79 215.43 203.25 198.14 199.65 198.06 197.50 196.31 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Post-crisis 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 1,892 1,892 1,892 1,892 1,892 1,892 1,892 1,892 

 Mean 3.0487 3.1412 3.2987 3.6920 3.9296 4.1850 4.3782 4.3664 

 Median 2.5100 2.6950 2.9450 3.5865 3.8830 4.2205 4.5285 4.5045 

 Maximum 7.9100 7.0090 6.9130 6.2810 6.0580 5.9480 5.8220 5.7550 

 Minimum 1.6110 1.7010 1.7050 2.0450 2.3030 2.6010 2.8800 2.9270 

 Std. Dev. 1.5935 1.4997 1.3793 1.0785 0.9619 0.8567 0.7884 0.7721 

 Skewness 1.2839 1.3633 1.1205 0.5573 0.3705 0.2004 -0.0076 -0.0319 

 Kurtosis 3.2012 3.4427 3.1340 2.3543 2.1273 1.9236 1.6662 1.6177 

 Jarque-Bera 523.01 601.53 397.32 130.81 103.32 104.00 140.25 150.96 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Full Sample 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 3,847 3,847 3,847 3,847 3,847 3,847 3,847 3,847 

 Mean 3.7847 3.9940 4.1836 4.5429 4.7270 4.9164 5.0410 5.0460 

 Median 2.7700 3.0160 3.4750 4.2070 4.4740 4.7040 4.9040 4.9160 

 Maximum 7.9100 7.9810 7.9010 7.4590 7.3330 7.3120 7.3130 7.3130 

 Minimum 1.5800 1.7010 1.7050 2.0450 2.3030 2.6010 2.8800 2.9270 

 Std. Dev. 2.0205 1.9726 1.8188 1.4657 1.3354 1.2160 1.1285 1.1244 

 Skewness 0.6176 0.6266 0.5419 0.3532 0.3287 0.3347 0.3459 0.3438 

 Kurtosis 1.7348 1.7984 1.8672 2.0362 2.1114 2.1896 2.2688 2.2848 

 Jarque-Bera 501.15 483.19 393.96 228.89 195.83 177.10 162.41 157.78 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 4.3 Descriptive Statistics of daily yields at various maturities;  

                 SWEDEN: Pre-Crisis, Post-Crisis and Full Sample Period 

Pre-crisis 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 

 Mean 3.2273 3.5200 3.9188 4.5645 4.7914 5.0005 4.9882 4.9693 

 Median 3.4300 3.6170 3.8910 4.4780 4.7610 5.0450 5.0050 4.9870 

 Maximum 4.5520 5.0620 5.8570 7.0720 6.6500 6.7830 6.7520 6.7360 

 Minimum 1.6350 1.6500 1.8760 2.6210 2.9510 3.2020 3.1850 3.1760 

 Std. Dev. 0.9094 0.9628 0.9870 0.9274 0.8955 0.8750 0.8573 0.8595 

 Skewness -0.2138 -0.1112 -0.0046 0.0290 -0.0320 -0.1097 -0.0918 -0.0741 

 Kurtosis 1.5714 1.6924 1.9721 2.1901 2.1255 2.0413 2.0916 2.0645 

 Jarque-Bera 181.14 143.30 86.07 53.69 62.62 78.78 69.97 73.08 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Post-crisis 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 1,892 1,892 1,892 1,892 1,892 1,892 1,892 1,892 

 Mean 2.0649 2.3838 2.2766 2.8087 3.0560 3.2714 3.4477 3.4806 

 Median 1.4850 1.8360 1.7455 2.5285 2.8540 3.1170 3.3350 3.4565 

 Maximum 5.6000 5.7830 5.7020 5.6280 5.4660 5.3180 5.1870 5.0420 

 Minimum 0.4670 0.5260 0.4970 0.9530 1.2990 1.6710 2.0300 1.9780 

 Std. Dev. 1.4663 1.4406 1.2913 1.0978 1.0091 0.9340 0.8733 0.8394 

 Skewness 0.9368 0.8867 1.1142 0.7747 0.6067 0.5038 0.3504 0.1946 

 Kurtosis 2.6408 2.6039 2.9830 2.6274 2.3902 2.1885 1.9585 1.8604 

 Jarque-Bera 286.88 260.30 391.52 200.20 145.39 131.95 124.24 114.31 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Full Sample 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 Observations 3,847 3,847 3,847 3,847 3,847 3,847 3,847 3,847 

 Mean 2.6556 2.9612 3.1112 3.7010 3.9379 4.1501 4.2306 4.2371 

 Median 2.4700 2.7920 3.1020 3.7980 3.9880 4.1430 4.1920 4.1740 

 Maximum 5.6000 5.7830 5.8570 7.0720 6.6500 6.7830 6.7520 6.7360 

 Minimum 0.4670 0.5260 0.4970 0.9530 1.2990 1.6710 2.0300 1.9780 

 Std. Dev. 1.3472 1.3469 1.4103 1.3417 1.2888 1.2512 1.1583 1.1295 

 Skewness 0.0862 0.1100 0.1089 0.0162 -0.0038 0.0025 0.0247 0.0397 

 Kurtosis 1.8457 1.8708 1.7447 1.9507 1.9852 1.9692 2.0573 2.1440 

 Jarque-Bera 218.32 212.14 260.20 176.64 165.08 170.33 142.82 118.45 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

     In general, the historical interest rates averages seem to increase with higher maturities 

while the opposite is true for the volatility in interest yield changes. While some of the 

time series are more symmetrical than others (for Sweden the skewness measure is close to 

zero) and some have fatter tails than others, overall none of the time-series analysed has a 

normal sample distribution. All full sample time-series involved are found to be 

autocorrelated (see Table 4.9), as autocorrelations coefficients at 1, 60 and 120-day lags 

decay rather slowly indicating a high level of persistence.   
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Table 4.4 Autocorelations for interest rates time-series of various maturities  

                  

  DENMARK 

Maturity 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

(1)  1 0.999 0.999 0.999 0.996 0.998 0.998 0.997 

(60)   0.947 0.94 0.928 0.914 0.907 0.907 0.907 0.905 

(200)   0.718 0.707 0.708 0.714 0.715 0.724 0.729 0.733 

  NORWAY 

Maturity 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

(1)  0.999 0.999 0.999 0.999 0.999 0.998 0.998 0.998 

(60)   0.944 0.936 0.926 0.919 0.917 0.916 0.909 0.905 

(200)   0.684 0.681 0.696 0.738 0.751 0.758 0.748 0.743 

  SWEDEN 

Maturity 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

(1)  0.999 0.999 0.999 0.998 0.998 0.998 0.998 0.998 

(60)   0.909 0.89 0.889 0.888 0.893 0.898 0.891 0.892 

(200)   0.566 0.543 0.61 0.667 0.691 0.716 0.7 0.696 

 

 4.5 The Empirical Results  

        This section reports and examines the estimation results for the three versions of the 

Babbs and Nowman (1999) model. By adding new factors, the number of parameters to be 

estimated by the linear Kalman filter increases as follows: there are 12 parameters to be 

estimated for the one-factor specification, 16 parameters and 21 parameters for the two- 

and three-factor models, respectively. The time-series of the fitted interest rates are plotted 

against the actual data to observe where exactly the models don’t fit the data and the 

standardised residuals are tested for desirable properties such as normality and other 

patterns required for the validation of model-specification.  

 

4.5.1 The Estimation Results  

        The results for the one-factor model are presented in Table 4.5 for all the three 

countries. In general, most of the parameter estimates are highly significant over all three 

data-samples. Particularly all the estimates for the market price of risk are measured with 

high statistical significance.  For Denmark, all twelve parameters are significant at 1% 

level, while for Norway only one parameter is statistically insignificant in the post-crisis 

period and for Sweden there are only two insignificant parameters, corresponding to the 

standard deviation of the measurement errors in the 2- and 7-year maturity interest rates. 

          The long-term mean parameter   is always significant and increases during the 

crisis only for Denmark, from 4.48% to 5.26%. For Norway and Sweden, the crisis has a 
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negative impact on the long-term mean of the short rate, lowering its value from 6.22% to 

5.54% for Norway, and from 6.73% to 4.13% for Sweden, respectively. The market price 

of risk 1  associated with the single latent factor of the model is significant in all cases 

with different evolution as a result of the crisis. It increases after the crisis for Sweden and 

Norway from 0.1271 to 0.1664. The parameters that characterise the dynamics of the latent 

factor are also significant. The mean reversion parameter 1  has the highest estimated 

value of 0.2021 before the crisis for Norway. This implies a mean half-life of the interest 

rate process of 3.43 ( 1ln(0.5) /   ) years, which is the time to return halfway to its long-

term average value. The estimates of the diffusion parameter 1  increase for Norway and 

Sweden following the crisis, while the opposite happens for Denmark. Finally, the standard 

deviations of the measurement errors are estimated at satisfactorily low values for all eight 

maturities, ranging from the lowest value of 5.2 basis points for one-year Norwegian spot 

rate before the crisis to the highest value of almost 100 basis points in the case of the three-

month Swedish government discount interest rate after the crisis. 

       The estimation results for the two-factor models are reported Table 4.6 for all the three 

countries. While most of the parameters are highly significant, there are cases (Denmark 

post crisis and Norway pre-crisis) when the long-term mean of the short interest rate and 

the market prices of risk parameters are difficult to estimate. Before the GFC the level of 

interest rates was higher and this is reflected in the values obtained for the long-term mean 

in the significant range of 4.29% - 4.68%. The crisis had a great impact on the estimates of 

this parameter with very low values such as 0.01% for Denmark and 0.06% for Norway.  

Regarding the two risk-premium parameters, the results are mixed and inconclusive, with 

values fluctuating between negative and positive values without any particular patterns. 

The two factors exhibit rather different processes with the mean reversion parameter for 

the first factor in the (0.42 – 1.88) range, and the second factor behaving like random walk 

as their mean reversion parameter are very low within the (0-0.05) range. The crisis also 

affects the correlation coefficient between the two factors which are strongly negatively 

correlated before the crisis ( 99%    for Denmark, 84%    for Norway and 88%    

for Sweden) but they become positively correlated after the crisis ( 13%    for Norway 

and 16%  for Sweden). The magnitude of the standard deviations of the measurement 

errors are considerably smaller than those in the one-factor models, indicating an 

improvement in the goodness-of-fit of the two-factor models over the less flexible models 

of one-factor models.   
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       Turning to the three-factor models (see Table 4.7), most of the parameter-estimates are 

highly significant at 1% level. The values of the log-likelihood functions increase from the 

two-factor model levels, although for Sweden is not as much as from one- to two-factor 

specifications. Similarly, to the two-factor models, the estimates for the long-term mean 

parameter are systematically insignificant, with only one significant value of  3.78%   

for Denmark based on the pre-crisis data subsample. More positive results are obtained for 

the three risk-premium parameters compared to the results from the two-factor models. 

Moreover, an important pattern emerges: the market price of risk associated with the 

second factor is the highest in periods of turbulence. The latent factors seem to evolve 

rather differently, the first factor seem to have very short memory while the third factor 

behaves like a random walk (see Geyer and Pichler, 1999).  More specifically, the mean 

reversion of the first factor is substantially higher compared to the other two factors, while 

for the third factor the processes possess very small speeds to revert to their zero mean and 

hence having much longer implied mean half-life. For example, for the first factor, the 

lowest and the highest mean reversion parameter are 0.75 (Sweden) and 2.57 (Denmark), 

implying a mean half-life of 0.92 and 0.26 years, respectively. Meanwhile, for the third 

factor the shortest mean half-life is 1.7 years, corresponding to a mean reversion speed of 

0.39 which occurs for Norway after the crisis.   

        As in Geyer and Pichler (1999) the scale parameters for the conditional volatility 

indicate large spikes for the factor with no memory and less volatility for the third factor. 

The correlations among the factors diminish as a result of the crisis, changing from 

negative dependence before crisis to a positive relationship after the crisis. In general, the 

measurement errors are very small implying a very good fitting by the models. The largest 

measurement error of 113 basis points occurs in the post-crisis period for Denmark’s three-

month zero rates. In comparison with the two-factor models these errors seem smaller, 

suggesting an overall better fit to the data for the three-factor models.  

          As expected, the log-likelihood functions increase when more factors are included. 

In order to assess if the increments are statistically significant, the BIC (Bayesian 

Information Criterion) is calculated and reported in Table 4.8. Most of the J -factor 

models are rejected in favour of the ( 1)J  -factor models. For Sweden, however, the BIC 

criterion cannot reject the two-factor model against the three-factor model as the difference 

between their BIC values is smaller than 6 and hence not strongly significant. Otherwise, 

for all the other transitions to richer models, for Denmark and Norway, the three-factor 

model represents the superior model. 
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Table 4.5 Estimation Results for the Babbs and Nowman one-factor model for DENMARK, NORWAY and SWEDEN 

  

DENMARK 

 

NORWAY 

 

SWEDEN 

parameters 

 

 Pre-Crisis 

 

Post-Crisis 

 

 Full Sample 

 

 Pre-Crisis 

 

Post-Crisis 

 

 Full Sample 

 

 Pre-Crisis 

 

Post-Crisis 

 

 Full Sample 

  

 

0.0448*** 

 

0.0526*** 

 

0.0611*** 

 

0.0622*** 

 

0.0554*** 

 

0.0588*** 

 

0.0673*** 

 

0.0413*** 

 

0.0313*** 

1
  

 

0.2546*** 

 

0.1089*** 

 

0.1394*** 

 

0.0226*** 

 

0.0870*** 

 

0.0609*** 

 

0.1271*** 

 

0.1643*** 

 

0.2463*** 

1
  

 

0.0591*** 

 

0.0738*** 

 

0.0558*** 

 

0.2021*** 

 

0.0926*** 

 

0.1202*** 

 

0.0659*** 

 

0.0624*** 

 

0.0338*** 

1
  

 

0.0200*** 

 

0.0107*** 

 

0.0104*** 

 

0.0073*** 

 

0.0108*** 

 

0.0099*** 

 

0.0112*** 

 

0.0137*** 

 

0.0111*** 

1
h   

 

0.0063*** 

 

0.0072*** 

 

0.0069*** 

 

0.0028*** 

 

0.0091*** 

 

0.0057*** 

 

0.0040*** 

 

0.0099*** 

 

0.0089*** 

2
h  

 

0.0060*** 

 

0.0051*** 

 

0.0053*** 

 

0.0005*** 

 

0.0073** 

 

0.0026*** 

 

0.0025*** 

 

0.0091*** 

 

0.0088*** 

3
h  

 

0.0046*** 

 

0.0029*** 

 

0.0033*** 

 

0.0016*** 

 

0.0049*** 

 

0.0000*** 

 

0.0000*** 

 

0.0060*** 

 

0.0062*** 

4
h  

 

0.0014*** 

 

0.0000*** 

 

0.0000*** 

 

0.0031*** 

 

0.0012*** 

 

0.0032*** 

 

0.0034*** 

 

0.0014*** 

 

0.0017*** 

5
h  

 

0.0000*** 

 

0.0014*** 

 

0.0014*** 

 

0.0034*** 

 

0.0000 

 

0.0038*** 

 

0.0041*** 

 

0.0000 

 

0.0000 

6
h  

 

0.0012*** 

 

0.0018*** 

 

0.0022*** 

 

0.0039*** 

 

0.0008*** 

 

0.0041*** 

 

0.0045*** 

 

0.0010*** 

 

0.0012*** 

7
h  

 

0.0020*** 

 

0.0018*** 

 

0.0026*** 

 

0.0048*** 

 

0.0017*** 

 

0.0043*** 

 

0.0040*** 

 

0.0021*** 

 

0.0016*** 

8
h  

 

0.0029*** 

 

0.0026*** 

 

0.0036*** 

 

0.0059*** 

 

0.0033*** 

 

0.0053*** 

 

0.0057*** 

 

0.0031*** 

 

0.0025*** 

LOGLF   86,830.40   83,758.33   168,039.21   83,808.74   84,030.51   161,747.46   83,565.83   80,865.50   167,398.24 

 

Note: 1) Most parameter estimates are highly significant with their level of significance marked as following: 10% level of significance (*), 5% level 

of significance (**) and 1% level of significance (***). Estimates lower than 510 have been entered as zero. 

           2) The same conventions apply to Tables 4.6 and 4.7. 
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 Table 4.6 Estimation Results for the Babbs and Nowman two-factor model for DENMARK, NORWAY and SWEDEN 

  

2 -FACTOR   DENMARK 

 

NORWAY 

 

SWEDEN 

parameters 

 

 Pre-Crisis 

 

Post-Crisis    Full Sample 

 

 Pre-Crisis 

 

Post-Crisis 

 

 Full Sample 

 

 Pre-Crisis 

 

Post-Crisis 

 

 Full Sample 

  

 

0.0429*** 
 0.0560  0.0001***  

0.04152 
 

0.0006*** 
 

0.0136 

 

0.04685*** 

 

0.00126 

 

0.0386 

1
  

 

1.1248*** 
 0.0001  0.0302***  

-0.0000 
 

0.4080*** 
 

0.2729*** 

 

-0.0016*** 

 

0.4158*** 

 

-0.0000 

2
  

 

-0.0211 
 0.1955***  0.5296***  

0.1185*** 
 

-0.0199*** 
 

0.1628*** 

 

-0.0272*** 

 

-0.0235*** 

 

0.1271*** 

1
  

 

0.4595*** 
 0.5975***  0.4172***  

1.0882*** 
 

1.2853*** 
 

0.9849*** 

 

1.8842*** 

 

1.28736*** 

 

1.2575*** 

2
  

 

0.0517*** 
 0.0354***  0.0350***  

0.0000*** 
 

0.0000*** 
 

0.0000*** 

 

0.0019*** 

 

0.0001*** 

 

0.0000*** 

1
  

 

0.0072*** 
 0.0156  0.0112***  

0.0101*** 
 

0.0088*** 
 

0.0123*** 

 

0.0101*** 

 

0.0083*** 

 

0.0124*** 

 2
  

 

0.0064*** 
 0.01233***  0.0096***  

0.0079*** 
 

0.0069*** 
 

0.0083*** 

 

0.0073*** 

 

0.0066*** 

 

0.0088*** 

12
  

 

-0.9999*** 
 -0.8926***  -0.8318***  

-0.8385*** 
 

0.1278*** 
 

-0.2726*** 

 

-0.8782*** 

 

0.1615*** 

 

-0.8540*** 

1
h   

 

0.0041*** 
 0.0027***  0.0031***  

0.0031*** 
 

0.0063*** 
 

0.0057*** 

 

0.0000*** 

 

0.0048*** 

 

0.0025*** 

2
h  

 

0.0013*** 
 0.0006***  0.0004***  

0.0004*** 
 

0.0024*** 
 

0.0021*** 

 

0.0023*** 

 

0.0037*** 

 

0.0001*** 

3
h  

 

0.0002*** 
 0.0012***  0.0012***  

0.0013*** 
 

0.0000*** 
 

0.0000*** 

 

0.0031*** 

 

0.0000*** 

 

0.0031*** 

4
h  

 

0.0026*** 
 0.0011***  0.0013***  

0.0024*** 
 

0.0015*** 
 

0.0019*** 

 

0.0021*** 

 

0.0016*** 

 

0.0029*** 

5
h  

 

0.0009*** 
 0.0013***  0.0012***  

0.0009*** 
 

0.0021*** 
 

0.0011*** 

 

0.0010*** 

 

0.0012*** 

 

0.0019*** 

6
h  

 

0.0002*** 
 0.0013***  0.0010***  

0.0007*** 
 

0.0009*** 
 

0.0001*** 

 

0.0009*** 

 

0.0003*** 

 

0.0013*** 

7
h  

 

0.0006*** 
 0.0000  0.0002***  

0.0002*** 
 

0.0008*** 
 

0.0010*** 

 

0.0002*** 

 

0.0014*** 

 

0.0000*** 

8
h  

 

0.0011*** 
 0.0006***  0.0010***  

0.0006*** 
 

0.0003*** 
 

0.0013*** 

 

0.0002*** 

 

0.0018*** 

 

0.0007*** 

LOGLF   99,746.64   96,282.82   194,616.12   98,423.04   92,420.23   189,071.08   101,927.88   92,366.84   189,852.40 
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Table 4.7 Estimation Results for the Babbs and Nowman three-factor model for DENMARK, NORWAY and SWEDEN 

                   

3-FACTOR 

 

DENMARK 

 

NORWAY 

 

SWEDEN 

parameters 

 

 Pre-Crisis 

 

Post-Crisis 

 

 Full Sample 

 

 Pre-Crisis 

 

Post-Crisis 

 

 Full Sample 

 

 Pre-Crisis 

 

Post-Crisis 

 

 Full Sample 

    

 

0.0378*** 

 

0.0018 

 

0.0182 

 

0.0199 

 

0.0020 

 

0.0519 

 

0.0437 

 

0.0135 

 

0.0476 

1
   

 

-0.4144 

 

0.1773*** 

 

-0.2431*** 

 

0.0029 

 

0.1805 

 

0.0029*** 

 

0.0598*** 

 
0.0407*** 

 

0.0609*** 

2
   

 

-0.5947 

 

0.3440*** 

 

0.1528*** 

 

-0.5100*** 

 

0.5778 

 

-0.5124*** 

 

0.1553*** 

 
0.0669*** 

 

0.1555*** 

3
   

 

-2.0132*** 

 

0.1303*** 

 

0.0077*** 

 

0.0366*** 

 

0.1004 

 

0.0369*** 

 

0.0297*** 

 
0.0258*** 

 

0.0276*** 

1
   

 

2.5709*** 

 

1.1676*** 

 

1.6137*** 

 

0.9422*** 

 

1.6783*** 

 

0.9439*** 

 

0.7739*** 

 
0.7675*** 

 

0.7467*** 

2
   

 

0.0010*** 

 

0.0000*** 

 

0.4216*** 

 

0.6348*** 

 

0.0000*** 

 

0.6007*** 

 

0.1213*** 

 

0.2627*** 

 

0.1308*** 

3
   

 

0.3175*** 

 

0.3359*** 

 

0.0000*** 

 

0.0000*** 

 

0.3900*** 

 

0.0000*** 

 

0.0000*** 

 
0.0000*** 

 

0.0000*** 

1
   

 

0.0214*** 

 

0.0180*** 

 

0.0190*** 

 

0.0488*** 

 

0.0254*** 

 

0.0484*** 

 

0.0098*** 

 
0.0289*** 

 

0.0179*** 

2
   

 

0.0079*** 

 

0.0057*** 

 

0.0121*** 

 

0.0405*** 

 

0.0121*** 

 

0.0401*** 

 

0.0037*** 

 
0.0172*** 

 

0.0090*** 

3
   

 

0.0090*** 

 

0.0241*** 

 

0.0059*** 

 

0.0070*** 

 

0.0115*** 

 

0.0072*** 

 

0.0047*** 

 
0.0062*** 

 

0.0075*** 

12
   

 

-0.8998*** 

 

0.0165*** 

 

-0.8844*** 

 

-0.9640*** 

 

-0.8731*** 

 

-0.9652*** 

 

-0.8436*** 

 

-0.9173*** 

 

-0.7918*** 

13
  

 

-0.8368*** 

 

0.0280*** 

 

-0.7060*** 

 

-0.6428*** 

 

-0.8186*** 

 

-0.6433*** 

 

-0.4896*** 

 
-0.6447*** 

 

-0.5664*** 

23
  

 

0.6617*** 

 

0.0137*** 

 

0.4209*** 

 

0.5399*** 

 

0.5834*** 

 

0.5484*** 

 

0.5413*** 

 
0.4632*** 

 

0.2480*** 

                  continued 
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Table 4.7   continued                 

1
h   

 

0.0000*** 

 

0.0113*** 

 

0.0000*** 

 

0.0038*** 

 

0.0033*** 

 

0.0046*** 

 

0.0028*** 

 
0.0045*** 

 

0.0041*** 

2
h  

 

0.0017*** 

 

0.0001*** 

 

0.0010*** 

 

0.0003*** 

 

0.0004*** 

 

0.0003*** 

 

0.0001*** 

 
0.0000*** 

 

0.0000*** 

3
h  

 

0.0013*** 

 

0.0006*** 

 

0.0002*** 

 

0.0010*** 

 

0.0009*** 

 

0.0011*** 

 

0.0014*** 

 
0.0029*** 

 

0.0028*** 

4
h  

 

0.0004*** 

 

0.0002*** 

 

0.0010*** 

 

0.0004*** 

 

0.0002*** 

 

0.0003*** 

 

0.0030*** 

 
0.0006*** 

 

0.0017*** 

5
h  

 

0.0007*** 

 

0.0005*** 

 

0.0011*** 

 

0.0005*** 

 

0.0005*** 

 

0.0005*** 

 

0.0006*** 

 
0.0002*** 

 

0.0009*** 

6
h  

 

0.0010*** 

 

0.0008*** 

 

0.0009*** 

 

0.0007*** 

 

0.0006*** 

 

0.0007*** 

 

0.0005*** 

 
0.0004*** 

 

0.0001*** 

7
h  

 

0.0000*** 

 

0.0003*** 

 

0.0003*** 

 

0.0002*** 

 

0.0000*** 

 

0.0002*** 

 

0.0003*** 

 
0.0000*** 

 

0.0006*** 

8
h  

 

0.0013*** 

 

0.0013*** 

 

0.0011*** 

 

0.0005*** 

 

0.0006*** 

 

0.0006*** 

 

0.0001*** 

 
0.0007*** 

 

0.0001*** 

LOGLF   105,657.76   106,801.70   206,787.00   104,057.63   99,920.24   203,857.51   102,515.71   101,171.04   201,966.78 

 

Note:   There are 21 parameter estimates for the three-factor BN models;   is the long-term mean, 
j  denotes the market price of risk parameter 

associated with factor 
jX , 

j  denote the reversion speed parameters, 
j  denote the diffusion (instantaneous volatility) parameters  and  

ij   denote 

the correlation   parameters  between the factors  iX   and  .jX  
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The BIC (Bayesian Information Criterion) is used instead of the LR (Likelihood Ratio) test 

because the models are not nested and also the BIC test penalizes for any additional 

parameters. According to BIC the model with the lowest BIC value is preferred and it can 

be observed from the Table 4.8 that the most flexible model, that is the three-factor model 

is considered best in terms of goodness of fit for all the countries and across all data 

samples.  

Table 4.8 The results for the Bayesian Information Criterion  

              

BIC 

 

DENMARK 

  

 

Pre-crisis 

 

Post-crisis 

 

Full Sample 

one-factor 

 
-173,569.86 

 

-167,426.12 

 

-335,979.36 

two-factor 

 
-199,372.03 

 

-192,444.91 

 

-389,100.16 

three-factor   -211,148.80   -213,437.40   -413,392.39 

BIC 

 

NORWAY 

  

 

Pre-crisis 

 

Post-crisis 

 

Full Sample 

one-factor 

 
-167,526.54 

 

-167,970.48 

 

-323,395.86 

two-factor 

 
-196,724.83 

 

-184,719.73 

 

-378,010.08 

three-factor   -207,948.54   -199,674.48   -407,533.41 

BIC 

 

SWEDEN 

  
 

Pre-crisis 

 

Post-crisis 

 

Full Sample 

one-factor 

 
-167,040.72 

 

-161,640.46 

 

-334,697.42 

two-factor 

 
-203,734.51 

 

-184,612.95 

 

-379,572.72 

three-factor   -204,864.70   -202,176.08   -403,751.95 

 

4.5.2 The Time Series of the Fitted Interest Rates  

        Comparatively, in terms of in-sample fit the BIC information Criterion confirms that 

the three-factor model produces the best explanation of the observed yield curve. The same 

conclusion is generally valid when the model simulated interest rates are plotted against 

the actual interest time series across the whole sample period for each country. Visually the 

graphs are consistent with the estimation results and with the BIC criterion.  

       For Denmark, the fitted values implied by the one-, two- and three factor models are 

compared for each maturity in Figures 4.7- 4.9. When moving from one-factor to two-

factor models, the fit improves across the eight maturities, while from the two- to three-

factor model it is the three-month and the 20-year rates that show a better fit to the data. 

For Norway, the fitted values implied by the one-, two- and three-factor models are 

compared for each maturity in Figures 4.10 - 4.12, and for Sweden in Figures 4.13- 4.15 

respectively.  
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Figure 4.7 In-sample fitted values and actual interest rate time series for Denmark over the 

whole period 2000-2014, based on the one-factor BN term-structure model. 

 
Figure 4.8 In-sample fitted values and actual interest rate time series for Denmark over the 

whole period 2000-2014, based on the two-factor BN term-structure model. 
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    Figure 4.9. In-sample fitted values and actual interest rate time series for Denmark over 

the whole period 2000-2014, based on the three-factor BN term structure model. 

 
Figure 4.10. In-sample fitted values and actual interest rate time series for Norway over 

the whole period 2000-2014, based on the one-factor BN term structure model. 
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Figure 4.11. In-sample fitted values and actual interest rate time series for Norway 

over the whole period 2000-2014, based on the two-factor BN term structure model. 

 

Figure 4.12.  In-sample fitted values and actual interest rate time series for Norway 

over the whole period 2000 -2014, based on the three-factor BN term structure model. 
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Figure 4.13. In-sample fitted values and actual interest rate time series for Sweden 

over the whole period 2000 - 2014, based on the one-factor BN term structure model. 

 
Figure 4.14.  In-sample fitted values and actual interest rate time series for Sweden over 

the whole period 2000-2014, based on the two-factor BN term structure model. 
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Figure 4.15. In-sample fitted values and actual interest rate time series for Sweden over the 

whole period 2000 - 2014, based on the three-factor BN term structure model. 

       After a comparative inspection of all the fitted time series of interest rates implied by 

the models, it is clear that by adding extra factors the fitting performance of the model 

improves, with the three-factor model supporting best the full period historical data, at 

least for Denmark and Norway. For Sweden, while it is clear that the two-factor model 

explains the data much better than the one-factor model especially for the shorter term 

interest rates, there is little difference in fitting the data when turning from the two- to 

three-factor model. 

 

4.5.3 The Residuals Analysis 

      Another way of comparing the models is to analyse the measurement errors or the 

residuals for the different maturity yields. According to Geyer and Pichler, (1999), the 

properties of the standardised errors provide important insights about the measurement 

errors and therefore about the economic evaluation of the model The prediction errors  

ˆ
k k kY Y    calculated before updating the conditional estimates for the state variables, are 

standardised using the diagonal elements of the covariance matrix  kF   (see Harvey 1989, 

p.256) as following:  
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                                          / ( )k k kdiag F   

 

For the model to be well-specified, it is required that each component of the error vector is 

a normally distributed white-noise time-series. This is a requirement rarely satisfied by 

empirical studies. In this investigation, there are only few maturities for which the residual 

time-series approach a normal distribution, however statistically the hypothesis for 

normality is rejected for all of them based on the JB test.  Additionally, the time average 

of these errors, calculated over 3,847 observations, should not exhibit any maturity related 

patterns, and this desirable property is satisfied. The statistical means of the in-the-sample 

standardised errors are reported in Table 4.9 for each country, for the one-, two- and three-

factor versions of Babbs and Nowman (1999) model.  

         For Denmark, the one-factor model produces a mixture of positively and negatively 

biased errors among different maturities. Some maturities like two-, five- and fifteen-

years, seem to underestimate (on average) the actual interest rates across all specifications. 

The estimates from the two- and three-factor models are positively biased and there are no 

clear patterns of maturity dependence of these biases across maturities. Increasing the 

number of factors is associated with a decrease in the residual average for most maturities, 

with five out of eight maturities selecting the three-factor model as the best one.  

       The results for Norway, when the residual means are analysed, indicate the three-

factor model as the best in fitting and explaining the data, while the one-factor model 

outperforms the richer models for only two maturities (three-months and two-years). 

However, there are no signs of the error averages dependency on maturity for any of the 

model versions.  

         In the case of Sweden, it is also the three-factor model that on average has the 

smallest biases for six out of eight maturities. For four out of eight maturities, all the 

models are negatively biased and no relationship between the magnitude of the residual-

means and maturity can be found.  

        A positive general result is that the three-factor model produces small residual-means 

for all the countries, across all the maturities with the extreme values being realised for the 

Swedish interest rates: the smallest residual-mean of -0.017 and the largest mean of -

0.5873 applying to the 20-year and 15-year interest rates, respectively. 
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Table 4.9 The means of the standardised estimation errors  

                    

  DENMARK   

Maturity 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y AVG 

1F model 0.1266 -0.2134 -0.3336 -0.0308 0.3806 0.4069 -0.2477 -0.33 -0.1017 

2F model 0.0546 -0.0007 -0.3542 -0.2637 0.109 0.6536 -0.2192 0.3217 0.1881 

3F model -0.0474 0.1405 -0.0528 -0.2609 0.0273 0.3826 -0.1837 0.3509 0.1518 

Best 

model 
3F 2F 3F 1F 3F 3F 3F 2F 1F 

  NORWAY   

Maturity 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y AVG 

1F model 0.0775 -0.1538 -0.0342 0.1506 0.1998 0.1939 -0.0458 -0.3161 -0.1193 

2F model 1.147 1.1733 -0.0662 -0.4794 -0.5377 0.0069 0.251 0.256 0.7015 

3F model -0.1885 -0.0593 0.3363 -0.1189 -0.1083 0.0614 0.0427 -0.2566 -0.2226 

Best 

model 
1F 3F 1F 3F 3F 3F 3F 3F 1F 

  SWEDEN   

Maturity 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y AVG 

1F model 0.2169 -0.3867 -0.6535 -0.6027 -0.006 0.4214 -0.1136 -0.38 -0.0815 

2F model 1.3893 -0.2533 -1.0541 -0.807 -0.6733 -0.1712 -0.0327 0.46 0.9246 

3F model -0.0821 -0.0831 -0.4337 -0.2829 -0.1848 -0.0245 -0.5873 -0.0169 -0.2119 

Best 

model 
3F 3F 3F 3F 1F 3F 2F 3F  1F 

 

 

           Following Geyer and Pichler (1999) the last column in Table 4.9 above reports the 

average of the means across maturities for each specification. However, this calculation 

seems to select the one-factor model as the best-fitting model, despite clear visual 

evidence of performance improvement when turning to multi-factor models. This is not of 

surprise as this criterion provides us with information about the estimation bias of the 

model and it is rather misleading as it cancels out the large positive and negative residuals, 

resulting in an erroneous small error measure and hence selecting the wrong model in 

terms of the error magnitude. For this reason, it is suggested here to consider a different 

comparison criterion based on a qualitative averaging instead of a numerical one. Based 

on this last criterion the three-factor model is selected as the best model for 6 out of 8 

maturities. It is natural to conclude as a whole yield curve result that the three-factor 

specification outperforms the other model-specifications, a conclusion that is consistent 

with the visual observation of the fitted time series and the BIC test. 
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4.6 Factor Loadings Analysis 

        By using the Kalman filter technique one is able to extract the latent factors time 

series and their loadings which are of great importance in risk management where 

consistent revaluation is possible because the factor simulations play the role of the 

parameters used in the valuation process (Geyer and Pichler, 1999).  

The factor loadings are defined as the reaction coefficients in a linear regression where the 

dependent variables are the bond yields and the explanatory variables are independent 

state variables.  In the BN model, the assumption of independence is relaxed as the 

dynamics of the latent factors are driven by correlated Brownian motions, 1 2 3, ,W W W  . 

Starting with the deterministic part of the measurement equation in the state-space form 

(eq. 4.4), and applying the continuous differential operator one obtains:  

                               
1 1

( )
J J

m j mj j j mj j

j j

dR c X dt c dW  
 

                                                (4.17) 

       Following Babbs and Nowman (1999) the innovations 
jdW   can be expressed as a 

particular linear combination of three independent (orthogonal) Brownian motions 

denoted by 
jdZ , so the equation 4.17 above can be transformed as follows:      

 1 1 2 2 3 3

1

( ) ( ) ( ) ( )
J

j j j

j

dR H X dt dZ dZ dZ       


      (4.18) 

where the coefficients ( 1,2,3)j j   are the factor loadings as functions of maturity and 

1
( )

j

j j

j

e
H H

 

 
 




   . The curve for each factor loading represents the change in the 

spot interest rates due to a one standard deviation shock from the corresponding factor.   

        For the two-factor model the equivalent Gaussian processes using the independent 

Brownian motions are (see Babbs and Nowman 1997): 

 

 
1 1 1 11 1

2 2 2 21 1 22 2

dX X dt k dZ

dX X dt k dZ k dZ





  

   
  (4.19) 

where 11 1k   , 21 2k   and 2

22 2 1k     . 

Similarly, the linear combinations for the three-factor model are given by:  
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1 1 1 11 1

2 2 2 21 1 22 2

3 3 3 31 1 32 2 33 3

dX X dt k dZ

dX X dt k dZ k dZ

dX X dt k dZ k dZ k dZ







  

   

    

  (4.20) 

where 31 13 3k   , 32 3k  , 2 2

33 3 131k       and 2

23 12 13 12( ) / 1       .  

Based on a classic unrestricted factor analysis, Litterman and Scheinkman (1991) 

identified three common (systematic risk) factors that explain most of the variation in 

bond returns and called them the level, slope and curvature factors. In their study 

Litterman and Scheinkman (1991) ordered the factors in terms of their power to explain 

the variance in the yields, with the first factor having the maximum impact. In the BN 

model, the unobservable factors are nominated in an arbitrary fashion and therefore there 

is no clear correspondence between the independent factors 1 2 3, ,Z Z Z  defined here and 

the level, slope and curvature factors.   The factor loadings extracted from eq. (4.18) are 

plotted in Figures 4.16 – 4.21 in order to determine the nature of the independent latent 

factors 1 2,Z Z  and 3Z . A change in the level factor should impact the yield curve in a 

similar way across all the maturities. The slope factor should have the greatest impact on 

the short-term segment of the yield curve, while the curvature-factor is related to the 

medium-term maturity segment.  The factor loadings for Denmark are plotted in figures 

4.16 and 4.17 for the two- and three-factor models respectively. 

 

 

                        Figure 4.16 Denmark, the factor loadings for the two-factor BN model 
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                         Figure 4.17 Denmark, the factor loadings for the three-factor BN model. 

 

The first factor in the two-factor model (Figure 4.16) has a negative impact on the yield 

changes up to 2-year maturity after which it becomes positive slightly increasing the 

interest rate levels. For the second (level) factor the loading implies a negative effect on 

yield changes of approximately 0.5%.  

      Turning to the three-factor model in Figure 4.17, the first factor has an increasing 

positive impact on the change in the zero coupon yields and can be interpreted as the 

curvature factor since its strongest effect (larger than 0.5%) is across the medium-term 

maturity segment (between 2 and 6 years); after that the impact lowers to a constant 

positive level of 0.5%. The second factor possesses a negative loading lowering the 

interest rates up to 5-year maturity where its impact disappears and then becomes positive. 

Its strongest effect is exercised on the short-term interest rates of maturities under one 

year, hence the second factor can be interpreted as the slope factor. The loading of the 

third factor is negative across the whole maturity spectrum, with an equal effect across all 

maturities and therefore, can be interpreted as the level factor. 

         For Norway, the factors are identified in the same order as for Denmark however 

their loadings have slightly different magnitude (see Figure 4.18). The first factor (slope) 

has a decreasing negative impact on shorter maturities up to six years, and a negligible 

constant positive effect on yield of maturities longer than 6 years. The second factor, 

interpreted as the level factor is stronger than in the case of Denmark, lowering all the 

yields by approximately 0.8%. Turning to the three-factor model (Figure 4.19), the first 

factor has an increasing positive effect on yields change up to four years with the largest 

impact on the medium-term interest rates (2 to 6 years); for yields of longer maturities the 
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curvature factor has a slowly decreasing positive influence. The second factor lowers the 

interest rates up to 10 years, after which its effect becomes small but positive. The third 

factor has the same negative impact of 0.5% across the whole yield curve, and therefore is 

interpreted as the level factor which is consistent with the results from the data-based 

factor analysis.  

 

 

 

                                Figure 4.18 Norway, the factor loadings for the two-factor BN model  

                                                 

 

                                  Figure 4.19 Norway, the factor loadings for the three-factor BN model  
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        The factor analysis for Sweden portrays a slightly inconclusive situation when the 

three-factor specification is considered, a possible reflection of the failure to reject the 

two-factor model against the three-factor model in terms of goodness-of-fit.  The factor 

loadings for the two- and three-factor models are plotted in the Figures 4.23 and 4.24, 

respectively. The first factor in the two-factor model has an increasing positive influence 

on the yield changes up to 8-year maturity. For yields of longer maturities, the impact 

remains at the same level of 0.7%. The second factor seems to act like a parallel shift by 

lowering all interest rates with 0.5%. While for the two-factor model the interpretation of 

the first factor as the slope and of the second factor as the level is highly supported by the 

data-based factor analysis, it is difficult to interpret the first and second factors in the 

three-factor model. The third factor can be easily interpreted as the level factor given its 

constant negative impact on the entire yield curve (see Figure 4.24). The first factor 

impacts negatively in a decreasing manner the short-term interest rates up to one-year 

maturity; after this point its influence becomes positive and increases substantially up to 5-

year maturity, followed by a more stable impact of approximately 0.6%. The loading of 

the second factor is mostly negative and approaching zero as the maturity increases. The 

third factor lowers all the interest rates by just over 0.5% implying a downward parallel 

shift in the yield curve due to a shock of one standard deviation in this factor.  

 

     Figure 4.20 Sweden, the factor loadings for the two-factor BN model  
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          Figure 4.21 Sweden, the factor loadings for the three-factor BN model  

 

Following Diebold and Li (2006), we compare the theoretical factors 1 2 3( , , )X X X  implied 

by the Kalman filter with the empirical (data-based) factors and interpret the unobservable 

variables in terms of level, slope and curvature as suggested by Litterman and Scheinkman 

(1991).   

It is important to see if this association is consistent with the factor loadings analysis. 

The data-based factors are defined as follows: the long-term (level) factor is defined as the 

20-year yield, the slope (short-term) factor as the difference between the 20-year and 3-

month yields, and the curvature as twice the 5-year yield minus the sum of the 3-month 

and 20-year yields. The time-series of the factors extracted from the Kalman filter method 

are plotted against the unrestricted factors based on the information available on the yield 

curve and if the correlation between these time-series is considerably high then the factors 

are associated correspondingly.  

        For Denmark the data-based factor analysis is presented for the two- and three-factor 

models in Figure 4.24 (a,b) and Figure 4.25 (a,b,c), respectively. 
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 Figure 4.22a) Denmark, two-factor model; First factor (KF) and SLOPE (data-

based) 

 

 

 

Figure 4.22b) Denmark, two-factor model; Second factor (KF) and LEVEL 

(data-based) 
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Figure 4.23a) Denmark, three-factor model;  First  factor (KF) and 

CURVATURE (data-based) 

 

 

Figure 4.23b) Denmark, three-factor model;  Second  factor (KF) and SLOPE 

(data-based) 
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Figure 4.23c) Denmark, three-factor model;  Third  factor (KF) and  LEVEL 

(data-based) 

As suggested by Figure 4.22, for Denmark the first KF factor X1 in the two-factor 

model is highly correlated with the slope data-implied time series and the second factor 

2X  with the level time series, while for the three-factor model (see Figure 4.23 above) the 

first factor is associated with the curvature, second factor with the slope and the third 

factor with the level data-implied factor. This correspondence is consistent with the 

conclusions from the factor analysis. While similar results apply to Norway, for Sweden 

the dynamics of the KF-implied factors ( )iX t do not resemble any of the data defined 

factors. This can be possible as the factors ( )iX t  are not independent and they are in fact 

linear combinations of the independent Brownian motions ( )iZ t , used in the factor 

loadings analysis. 

 

4.7 Forecasting Analysis 

        The Kalman filter technique can be applied to the estimation of various advanced 

TSIR models such as BN model to obtain multivariate times series of optimal estimate of 

the state vector. The forecasting procedure involves the recursive application of the space-

state form given by the equations 4.6 and 4.7 over different length horizons.  

        The out-of-sample performance of the models is measured using RMSE (root-mean 

squared-errors) forecasting accuracy measure over one-, two- and three-month horizons. 

The one-month horizon ( 1 23H   days) corresponds to the period 01 October 2014 – 31 

October 2014, while the two-month horizon ( 2 44H   days) covers the period 01 October 
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2014 – 28 November 2014 and the three-month horizon ( 3 66H   days) covers the period 

01 October 2014 - 31 December 2014. 

         The next section describes the forecasting algorithm using the state-space form 

suggested by Babbs and Nowman (1999). We retain the estimates for the matrix parameter 

,  B C  and the vector-parameter d , from the estimation part and the last filtered estimate of 

the latent vector, 
|T TX  and use all this information to calculate one step-ahead optimal 

forecast for the latent vector ( )X t  and one step-ahead prediction for ( )Y t conditional to 

the information up to time T : 

 1| |
ˆ ˆ

T T T TX BX    (4.21) 

 1| 1|
ˆ ˆ
T T T TY CX d     (4.22) 

For future observations at 2,  3T T   and so on, the transition equation is used 

repeatedly to calculate the two-, three-step and so on ahead predictions, respectively. 

Therefore, for any positive integer p , the optimal forecast for the future value of the 

interest rates at time T p  is given (see Harvey, 1989) by: 

 

 | | |
ˆ ˆ ˆ( ) p

T p T T p T T TFY T p Y CX d CB X d         (4.23) 

 

In order to assess the prediction power of these forecasts, the forecasting errors  

( ) ( ) ( )FE T p Y T p FY T p     are calculated and implemented accordingly in the 

RMSE accuracy measure for all three horizons ( 23,44,66)k   :  

 2

1

1
( )

k

T j

j

RMSE k FE
k





    (4.24) 

The RMSE measure provide us with a typical size of the forecasting errors over a certain 

period in the future.  The RMSE calculations across the three horizons and the selection of 

the best model in terms of forecasting performance are presented bellow in Tables 4.10 – 

4.12 for each country.  
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Table 4.10 DENMARK: The forecasting accuracy measure RMSE in percentages  

                    

horizon model 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 

1F 0.1652 0.1062 0.0619 0.0092 0.0245 0.0353 0.0948 0.1236 

H1 2F 0.0030 0.0070 0.0139 0.0404 0.0310 0.0091 0.0233 0.0157 

  3F 0.0106 0.0324 0.0071 0.0587 0.0593 0.0346 0.0250 0.0124 

  best model 2F 2F 3F 1F 1F 3F 2F 1F 

 

1F 0.1174 0.0728 0.0383 0.0192 0.0390 0.0523 0.0993 0.1252 

H2 2F 0.0010 0.0043 0.0132 0.0386 0.0407 0.0306 0.0451 0.0449 

  3F 0.0134 0.0234 0.0008 0.0535 0.0626 0.0501 0.0471 0.0252 

  best model 2F 2F 3F 2F 1F 3F 2F 3F 

 

1F 0.0899 0.0505 0.0211 0.0221 0.0399 0.0551 0.0991 0.1265 

H3 2F 0.0037 0.0023 0.0180 0.0351 0.0385 0.0348 0.0526 0.0589 

  3F 0.0111 0.0132 0.0080 0.0489 0.0578 0.0518 0.0550 0.0434 

  best model 2F 2F 3F 1F 2F 2F 2F 3F 

 

Table 4.11 NORWAY: The forecasting accuracy measure RMSE in percentages 

          
horizon model 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 

1F 0.0920 0.0028 0.0669 0.1527 0.1759 0.1941 0.2422 0.2973 

H1 2F 0.3754 0.4859 0.5703 0.5954 0.5671 0.5123 0.4571 0.4245 

  3F 0.0946 0.0276 0.0194 0.0658 0.0775 0.0663 0.0502 0.0426 

  best model 1F 2F 3F 3F 3F 3F 3F 3F 

 

1F 0.0679 0.0072 0.0602 0.1282 0.1484 0.1680 0.2028 0.2468 

H2 2F 0.2827 0.3672 0.4265 0.4471 0.4296 0.3961 0.3564 0.3373 

  3F 0.0429 0.0161 0.0198 0.0639 0.0758 0.0740 0.0624 0.0614 

  best model 3F 1F 3F 3F 3F 3F 3F 3F 

 

1F 0.0311 0.0435 0.0890 0.1448 0.1591 0.1727 0.2025 0.2374 

H3 2F 0.2654 0.3425 0.3897 0.4037 0.3868 0.3570 0.3262 0.3098 

  3F 0.0398 0.0405 0.0516 0.0912 0.0988 0.0947 0.0866 0.0848 

  best model 1F 3F 3F 3F 3F 3F 3F 3F 

 

Table 4.12 SWEDEN: The forecasting accuracy measure RMSE in percentages 

          
horizon model 3M 1Y 2Y 5Y 7Y 10Y 15Y 20Y 

 

1F 0.1214 0.0437 0.0955 0.0887 0.0574 0.0250 0.0096 0.0166 

H1 2F 0.0696 0.0806 0.1971 0.2282 0.1869 0.1269 0.0599 0.0148 

  3F 0.0525 0.0438 0.0643 0.0736 0.0454 0.0601 0.0621 0.0579 

  best model 3F 1F 3F 3F 3F 1F 1F 2F 

 

1F 0.0921 0.0276 0.0700 0.0657 0.0577 0.0391 0.0225 0.0206 

H2 2F 0.0219 0.0766 0.1584 0.1840 0.1570 0.1172 0.0623 0.0220 

  3F 0.0337 0.0296 0.0510 0.0699 0.0685 0.0693 0.0646 0.0541 

  best model 2F 1F 3F 1F, 3F 1F 1F 1F 1F 

 

1F 0.0763 0.0234 0.0604 0.0731 0.0523 0.0403 0.0314 0.0329 

H3 2F 0.0888 0.0824 0.1454 0.1579 0.1384 0.1080 0.0668 0.0366 

  3F 0.0271 0.0274 0.0485 0.0631 0.0661 0.0696 0.0698 0.0637 

  best model 3F 1F 3F 3F 1F 1F 1F 1F 
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        For Denmark, the forecasting results are not clear cut. Overall, one could conclude 

that the two-factor model is superior to the other models in terms of prediction power. 

However, the models seem to forecast very well over all three sets of future observations, 

as their forecasting accuracy remains almost unchanged when the horizon increases. The 

forecasting results for Norway strongly suggest the three-factor model as the best model, 

while the predictions slightly deteriorate as the horizon is further into the future. 

Nevertheless, even for three-month horizon, the accuracy remains extremely high with 

values across all the maturities under 0.1%. Turning to Sweden, there is a clear pattern 

indicating that the three-factor model is most powerful in predicted the evolution of the 

short end of the yield curve where most undulations in shape occur, while for forecasting 

longer term interest rates the simplest one-factor model is selected as the best model. The 

forecasting results portray different conclusions for each country, however the magnitude 

of the forecasting errors is very small across all models as the numbers reported represent 

percentages.  

       To test statistically the efficiency of the forecasts produced by all three specifications 

(one-, two- and three-factor models) we employ the approach developed by Clark and 

West (2007) for nested models. To compare a simpler (nested) model A to a more general 

model, the authors consider the null hypothesis the additional parameters of the larger 

model B do not increase its predictive power, which is equivalent with an efficiency loss. 

Under their null hypothesis the model B produces an inflated RMSE. To adjusts for this 

bias Clark and West (2007) calculate the following tf  series:  

                                       2 2 2( )t B A B Af FE FE FE FE      

where AFE  and BFE  denote the forecast-errors produced by model A and model B, 

respectively. The Clark and West (2007) test is a t -test; its test value is given by the t -

statistic of the regression of tf  on a constant. Being a one-sided test, the alternative 

hypothesis states that model B is superior as it produces smaller RMSE metrics. 
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Table 4.13 The Results of the Clark-West Forecasting Errors Test 

         

 

DENMARK 

Clark-West test M1 M2 M3 M4 M5 M6 M7 M8 

1F v. 2F 149.12 73.25 40.81 -16.22 -8.37 13.78 26.40 29.35 

1F v. 3F 84.24 58.97 42.02 -14.57 -20.11 7.21 27.50 30.55 

2F v. 3F 7.58 -8.49 41.62 -33.02 -21.98 -8.29 -8.65 8.87 

Best Model 3F 2F 3F 1F 1F 2F 2F 3F 

 

NORWAY 

Clark-West test M1 M2 M3 M4 M5 M6 M7 M8 

1F v. 2F -23.85 -1.30 -8.96 23.70 28.77 34.50 43.41 58.64 

1F v. 3F 22.27 5.53 10.97 25.23 29.83 34.77 43.35 58.47 

2F v. 3F 23.90 6.96 10.88 21.44 20.60 -12.51 -5.48 -2.99 

Best Model 3F 3F 3F 3F 3F 2F 2F 2F 

 

SWEDEN 

Clark-West test M1 M2 M3 M4 M5 M6 M7 M8 

1F v. 2F 14.34 -12.50 -26.50 -25.68 -17.55 -9.55 -4.51 -6.13 

1F v. 3F 75.96 -6.95 64.40 17.42 -10.69 -9.41 -4.59 -5.83 

2F v. 3F 7.52 -10.25 31.88 51.78 46.39 35.09 -11.01 -4.88 

Best Model 3F 1F 3F 3F 1F 1F 1F 1F 

 

For each country, the time series of the error forecasts for the three-month horizon are 

considered to compute the respective test statistics that are compared to the critical value 

of 1.645 at the 95% confidence level. The results of the Clark and West tests are reported 

in the Table 4.13 and they can be interpreted as following: any positive value larger than 

the critical value implies that the forecasts generated by the more general model are more 

reliable than those of the nested model. For negative values, the decision rule is that the 

the null cannot be rejected, therefore the predictive performance of the nested model is as 

good as the larger model. Using the transitivity law, the final conclusion on the best 

forecasting model is also reported. The verdict for the model with the best forecasts is 

compared to the results from the RMSE analysis. Despite few differences, the results are 

very similar for all countries under consideration. The consistency of the results may 

suggest that the inflation bias mentioned above is rather minimal and hence in our cases 

the sample dependent RMSE forecasting accuracy analysis still produces reliable 

outcomes.     
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4.8 Summary and Conclusions 

      In this empirical investigation, the term structure of interest rates is analysed for three 

Scandinavian countries (Denmark, Norway and Sweden) over the period 2000-2014 which 

includes the last global financial crisis of 2007-2009. One-, two- and three-factor versions 

of the general BN model are estimated using the linear exact Kalman filter technique in 

combination with a maximum likelihood estimator. This estimation method allows for the 

realistic feature of measurement errors in the zero nominal rates across eight maturities 

and also produces efficient ML parameter estimates. A high proportion of the parameter 

estimates are highly significant including some of the market price of risk parameters.           

 Based on formal statistical tests and residual analysis, the empirical results indicate that 

the three-factor specification explains best the changes over time in the shape of the yield 

curve for Denmark and Norway. For Sweden, the BIC test does not reject the two-factor 

model against the three-factor formulation, suggesting that the term structure of Swedish 

interest rates has simpler dynamics for which two factors are sufficient. 

There is evidence of a structural break during the third quarter of 2007 as the 

estimation results for the pre-crisis data-sample differ considerably from those from the 

post-crisis period. Additionally, the loadings (sensitivity) of the yield curve on each factor 

are extracted and analysed in order to determine the nature of their associated factor. 

Moreover, the time series of the unobservable factors are extracted using the Kalman filter 

and compared to the level, slope and curvature factors defined using the data. For 

Denmark and Norway, the interpretation of the factors is very similar and straightforward, 

whether for Sweden the paths of the extracted factors are not matching the dynamics of 

any of the data-implied factors.  

          The estimation results are used to compute optimal daily forecasts for the last three 

months in 2014 and compare all the models in terms of prediction power. In terms of 

forecasting performance there is a clear winning model only for Norway where the three-

factor model performs best, while for Denmark the best model is the two-factor 

specification. For Sweden, the one-factor and three-factor have comparable performance. 

Overall, the BN models achieve very good quality forecasts across all maturities and given 

their tractability these models can be very useful in hedging strategies and pricing interest 

rates derivatives in the current negative interest rates environment.  
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Chapter 5  

The Impact of the Global Financial Crisis  

on the Return and Volatility Spillovers  

Empirical Evidence from Interest Rate and Equity 

Markets 

 

5.1 Introduction 

         International financial markets have shown historically a significant level of 

interaction and interdependence with periods of intensified transmission of information 

through multiple channels, especially during/after periods of negative shocks. Despite the 

regularity of the financial crises1 and their similarities, it is still difficult to control the 

propagation of a crisis and to contain its consequences to the market where the shock has 

originated.  Post-examination of such events can always bring important insights about 

the dynamic evolution of a crisis with great implications for policy makers and regulators 

on one hand, and international investors and portfolio managers on the other hand.  

       In the aftermath of the most recent global financial crisis of 2007-2009 (GFC), the 

research on information spillovers has been revived with studies exploring new 

transmission channels such as liquidity and risk premium channels and developing new 

methods to model the dynamics of a crisis (Longstaff, 2010; Vayanos, 2004). Moreover, 

given one important facet of the GFC - the 2009 sovereign debt crisis in the Eurozone, 

there is an increasing interest on examining the inter-linkages involving international 

bond markets. Most of the spillovers empirical studies keep the domestic and the 

international transmission channels in isolation with only few studies (Christiansen, 2010; 

                                                           
1 Examples of such crises include the critical events in the U.S. (1987), Mexico (1994), Asia (1997), Russia 

(1998).  
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Ehrmann et al., 2011) combining simultaneously equity and bond returns in a discrete 

time econometric framework.  

       According to Ehrmann et al. (2011, p 948) to better understand “the complexity 

of the financial transmission process across various assets—domestically as well as 

within and across asset classes—requires the simultaneous modeling of the various 

transmission channels in a single, comprehensive empirical framework”. Following 

Ehrmann et al. (2011), this study employs a complex network of information transmission 

channels to comparatively investigate how the last financial crisis of 2007-2009 has 

spread from the U.S. (the country where the financial crisis started) to other major 

economies such as the U.K., Eurozone, Japan and Canada. This pair-wise analysis is 

conducted by implementing a discrete-time multivariate generalised autoregressive 

conditional heteroscedasticity (MGARCH) framework that is appropriate for 

investigating the return and volatility spillover channels between the U.S. and each other 

country across various asset classes.  This modelling framework considers four asset 

prices, two from each country. Hence, the information can flow via six bidirectional 

routes (two direct domestic routes – same country different asset classes, two 

international direct routes - same asset classes, different country; and two international 

indirect routes – different asset classes and different country). It is the last type of 

spillovers – international indirect – that has received very little attention in the spillovers 

literature and this study aims to bring new evidence of its significance among the 

financial markets during the last global financial crisis of 2007-2009.  

  The two main asset classes considered are the equity markets on one side and the 

interest rate markets on the other side. Following Ehrmann et al. (2011) we differentiate 

between the two segments of the interest rate markets, the money market segment and the 

long-term segment, respectively. Apart from being the most important asset classes in an 

individual financial system, these three types of markets interact with each other at 

macroeconomic level. Indeed, any shock on the price of one of these assets will result in 

movements across all the asset classes. Previous empirical evidence (see Rigobon and 

Sack, 2004) tells us that a rise in the long-term interest rates should lower the equity 

prices, while an increase on the short-term interest rates will also result in declining 

equity prices through the new discounting of the future dividends. Conversely, changes 

on the equity prices will affect the equilibrium between the aggregate demand and supply 

and ultimately the expected monetary policy reflected in the market interest rates. 

However, the work of Rigobon and Sack (2004) is conducted at the domestic only. 
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Therefore, is of great interest to see how these asset classes interact with each other in an 

international context during turbulent economic and financial times. 

   By comparing the results, we aim to identify which country out of the four major 

economies has been mostly interacting with the U.S. especially after the last financial 

crisis. Despite the high degree of integration between the U.S. and each of these 

economies, their relationship with the U.S. can still be country-specific due to multiple 

factors such as differences in the structure of their financial systems, in the state of their 

economies and in the monetary policies implemented during the GFC. Findings of 

significant difference in their financial communication with the U.S. may have great 

implications for the new course of action that each of the four economies should take in 

order to contain a future crisis originating in the U.S.   

        The implementation of a four-dimensional model will allow to investigate possible 

answers to several important questions in relation to the mechanism of information 

transmission between different types of markets of any two countries. With both internal 

(domestic) and external (international) channels, one could identify which are the busiest 

routes that the information flows through.  By considering the short- and long-term bond 

markets separately, one could determine if the information is transmitted in a specific way 

between the stock markets and between different maturity segments of the fixed income 

markets. The models employed are estimated over two periods - before the crisis and 

during the crisis – in order to observe any significant changes in the structural parameters 

and to assess the impact of the last financial crisis on the return and volatility spillover 

effects between the markets considered. 

       The severity of GFC and its snow-ball effect due to increased economic and financial 

integration prompted many central banks to act in a similar manner (by lowering the 

short-term rates) in order to ameliorate the impact of the crisis. By modelling 

simultaneously, the stock and the money markets we can investigate whether the 

monetary policy influences the stock markets via short-term rates2 and we can observe 

any degree of convergence of those monetary policies across major economies. 

        The rest of this chapter is organised as follows. Section 2 briefly reviews the 

empirical literature on return and volatility spillover effects. Section 3 describes the 

modelling framework underlying our analysis. Section 4 presents the data sets and the 

results of the preliminary statistical analysis of the data. Section 5 provides the empirical 

results and their interpretation. Finally, section 6 concludes. 

                                                           
2 Treasury interest rates are recognised as one possible monetary policy tool among others through which a 

central bank can intervene in order to achieve its objectives (see BoE website) 
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5.2 Literature Review 

5.2.1 The Information Transmission Mechanism between Financial 

Markets 

        The analysis of information spillovers among economic and financial markets is an 

important area of financial management, with the earliest empirical evidence being dated 

back only to the 1990s (Engle, Ito et al., 1990; Hamao et al., 1990).  There is an extensive 

empirical literature on this topic, that stems from the necessity to understand better how 

financial markets coexist and respond to each other on a global platform when one or a 

group of markets are subject to either a positive or a negative “surprise”.  

         The collapse of Bretton Woods system, the creation of European monetary union 

(EMU) and the merger of several stock markets along with important advances in 

computer technology and information processing have contributed to higher integration 

and liberalization of capital flows between national markets, creating a “terrain” that 

facilitates the propagation of a shock from a single financial market to many other 

markets around the world, therefore leaving markets more vulnerable during turbulent 

times (Kearney and Patton, 2000).  

        The way information spills from one market to another is a multifaceted process, 

with the cross-market linkage being facilitated through multiple channels. The relevant 

literature documents four main channels through which information is transmitted: 1) the 

price discovery or the return channel (King and Wadhwani, 1990; Kiyotaki and Moore, 

2002); 2) the volatility channel (Fleming et al., 1998; Campbell and Taksler, 2003; 

Connolly et al., 2005); 3) the liquidity channel (Longstaff, 2010; Ding and Pu, 2012); and 

4) the risk premium channel (Vayanos, 2004; Acharya and Pedersen, 2005). The most 

common modelling frameworks employed in the information spillover research are in 

discrete time and belong to the GARCH or VAR family. The first two channels are easily 

simultaneously accommodated by these typical spillover models, giving course to the 

development of a main strand in the literature – return and volatility spillovers, that can 

be tracked back to Engle, Ito et al. (1990) and Engle, Ng et al. (1990). 

        Advanced stock markets have been thoroughly analysed under the hypothesis of 

spillover effects. While the existence of return and volatility spillovers is widely 

acclaimed, a common feature of the findings points to the dominant role of the U.S. stock 

market as the source of the spillovers.  For example, Hamao et al. (1990), Koutmos and 

Booth (1995) and Bae et al. (2002) found significant evidence of linkages between 
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various developed stock markets with a clear global direction, i.e. the U.S. stock market 

being the main exporter of volatility.  Using univariate GARCH models Base and Karolyi 

(1994) and Karolyi and Stulz (1996) also confirmed the influence of the U.S. as a “world” 

market on individual markets. The dynamics of these causal relationships seem to 

intensify especially after negative shocks mostly associated with a financial crisis.  

        For example, the global stock market crash of 1987 produced higher levels of both, 

contemporaneous and dynamic linkages across international stock markets, with the US 

exercising a stronger influence on French, German and UK stock markets after the crisis 

(see Arshanapalli and Doukas, 1993). Japanese and the U.S. stock markets are found to 

affect each other at a significant level through the volatility channel between 1986-1993 

(Lin et al. 1994), while the volatility of the emerging stock markets is globally influenced 

by changes in the volatility of the U.S. stock market (Bekaert and Harvey (1997)).  

Similarly, Kim (2005) and Wang and Lee (2009) found that post - Asian crisis of 1997 

the return and volatility spillovers from the U.S. to countries from the Asia-Pacific region 

have significantly increased. 

        Distinguishing between different types of shocks, Ng (2000) analysed separately the 

world (global) shock from U.S. and the regional shock from Japan on a group of Asian 

markets based on weekly data from January 1975 to December 1996. While there is 

significant evidence of volatility spillovers from both external developed markets, the 

shock from U.S. dominates the regional influence from Japan3.  However, the strong 

bidirectional connection between Japan and Asian markets cannot be ignored, especially 

after the Asian crisis in 1997 when Japan’s monetary expansion within Asian basin has 

created a higher interdependence among the portfolio of assets from both regions (see 

Fornari and Levy, 2000). This relationship has been explored further by Miyakoshi 

(2003) within a different econometric setting of a bivariate EGARCH model for Japan 

and an Asian market with an exogeneous influence from U.S.  The daily data covering a 

shorter period (January 1998 - April 2000) had produced empirical results in contrast with 

those from Ng (2000)4 as the endogeneous regional volatility shock from Japan is 

estimated to be stronger than the exogeneous world U.S. shock.  

       The volatility spillover effects are found to respond asymmetrically to the quality of 

the news, in the sense that they intensify greater following a negative shock than a 

positive shock. Earlier signs of such possible effects were found by Black (1976) and 

                                                           
3 In the case of the GFC, Li and Giles (2015) found the opposite result with no influence from the US on to 

the Asian emerging markets. 
4Additional to the difference of the econometric models, the data sets used cover also different period with 

different frequency. 
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Christie (1982) who provided evidence of the so-called leverage effect5 in the stock 

market returns.  The asymmetries of the volatility transmission process between New 

York, London and Tokyo stock markets is explicitly modelled by Koutmos and Booth 

(1995) in a multivariate EGARCH framework over a period including the 1987 stock 

crash in the U.S. Their findings provided support for the different reaction of the stock 

markets to different types of news, with markets being more sensitive to negative shocks 

(sudden decrease in the market). Hamao et al. (1990) employed a range of GARCH-M 

specification and found evidence that the Japanese stock market ‘responded back’ 

towards the U.S. and the UK stock markets in the sense that after the 1987 crash the 

information is transmitted in a reciprocal manner, implying therefore stronger 

interdependencies among these three stock markets.  

        The way a shock is transmitted from one market to another is a complex process that 

is not fully understood, as it is difficult to measure separately the effects of a crisis due to 

high levels of cross-market interdependence or investors’s behaviour after a shock. There 

are various theories that try to explain how crises propagate based on different 

assumptions. Some theories assume that shocks spread via real linkages which exist and 

are stable before the shock, while other theories consider that investors change their 

trading strategies after the crisis (Forbes and Rigobon, 2002). In this investigation, we 

embrace the first type of theory as there is clear evidence of both domestic and 

international linkages across the markets.  

        According to Danielsson and Love (2006) the price of stocks can be affected with 

immediate effect by traders under speculative pressure (order flow) but not vice-versa. 

When aggregated over time the two will interact with impact on each other, a 

phenomenon called feedback trading. The price to price feedback theory is one of the 

oldest theories about financial markets (Shiller, 2003) but somehow is less known 

because it was mostly presented in non-academic papers. The main mechanism is that 

when speculative prices go up, the success of some investors leads to public attention that 

generates enthusiasm which in turn will increase expectations for further price increases. 

This process generally leads to an increase in investor demand and thus generates another 

round of price increases. If the feedback continues uninterrupted for many cycles, it may 

suddenly give rise to a speculative bubble. If the prices are high only because of 

expectations of further price increases, then they are not sustainable, and therefore the 

prices will start falling. The feedback mechanism could also generate a negative bubble, 

                                                           
5 A reduction in stock prices leads to an increased debt to equity ratio and hence to a higher volatility level.  
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with decreasing price movements propelling further lower prices, until the market reaches 

an unsustainably low level. 

       Cutler et al. (1990) have advocated that serial correlation across many assets could be 

explained by models with feedback traders. This is in contradiction with the conclusion in 

Shiller (2003) who argued that simple feedback models do not imply strong serial 

correlation and that serial correlation in returns may be caused by many other reasons that 

are unrelated to the feedback traders model. 

      There is a large theoretical literature on feedback effects such as Leland (1992), 

Khanna, Slezak, and Bradley (1994), Dow and Gorton (1997), Boot and Thakor (1997), 

and Subrahmanyam and Titman (1999). These studies provide an insight on how financial 

markets may impact firms’ investment and capital allocation decisions when there is 

feedback. Goldstein and Guembel (2008) argue that feedback effects may leave 

companies vulnerable to possible market manipulation and there is empirical evidence 

supporting this hypothesis in papers by Durnev, Morck and Yeung (2004), Luo (2005) 

and Chen, Goldstein and Jiang (2007). Hirshleifer, Subrahmanyam, and Titman (2006) 

describe a possible mechanism of how irrational traders can produce significant gains 

based on a feedback effect from asset prices to cash flows. Furthermore, Khanna and 

Sonti (2002) highlight that it is even possible to produce a “bubble-like” price evolution. 

There has been a great interest in studying the implications of the feedback effect from 

prices to real value. Khanna and Sonti (2004) reveal that it is possible to explain herding 

based on the feedback from prices to asset value, as advocated also in Avery and Zemsky 

(1998). In a seminal paper, Sentana and Wadhwani (1992) presented empirical evidence 

suggesting that when volatility is low, stock returns at short horizons exhibit positive 

serial correlation, while when volatility is high the returns display negative 

autocorrelation.  The authors show also that these stylised features are consistent with a 

model where some traders follow feedback strategies. The idea is that as volatility 

increases the positive feedback traders impose a greater influence on the asset price which 

then in turn causes greater negative serial correlation in returns. It also seems that there is 

greater feedback trading on a path of declining prices.  

       The spillovers literature refers to the controversial6 concept of contagion, which may 

occur during a financial crisis when markets seem to move together in a much closer 

manner when compared to an otherwise calm period. Under different forms of 

overreaction, noise trading and/or speculation, contagion may explain why changes in 

                                                           
6 The concept of contagion is theoretically controversial, while the empirical literature offers mixed 

evidence regarding its presence and magnitude (see Forbes and Rigobon, 2002) 
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stock prices in one market spread across world markets beyond the level of propagation 

implied by economic fundamentals (Lin et al., 1994). Forbes and Rigobon (2002) 

challenged the accuracy of the tests for the presence of contagion based on correlation 

coefficients that are influenced by market volatility arguing that the estimates were biased 

due to heteroschedasticity. Therefore, the previous association of a financial crisis with 

the phenomenon of contagion became questionable. When a correction for this bias was 

applied, the results changed and no longer evidenced the contagion effect. Financial 

contagion was investigated in an extensive study by Kenourgios et al. (2011) who 

examined the four emerging stock markets BRIC (Brazil, Russia, India and China) and 

two developed (U.S. and U.K.) over five financial crises inside the 1995-2006 period.  

        Contagion is recognised when there is evidence of a correlation break, i.e. only if the 

continuity of a high level of correlation is disturbed by a significant change, otherwise the 

shock is spread between the markets due to the ample interdependence present before the 

shock. Employing two different estimation techniques, Kenourgios et al. (2011) could 

identify what is the main reason for the contagion effects, either they are of behavioural 

or macroeconomic nature. While their findings support the presence of jumps in the 

correlation pattern with at least two regimes existent during each of the five crises, the 

industry-specific crises like the technology bubble (2000-2001) seem to propagate more 

powerfully than country-specific ones. They also conclude that policy makers have 

limited power to isolate the financial crises, because the evolution of the markets during a 

crisis has a strong behavioural component, hence the change in economic fundamentals is 

of secondary importance. Boyer et al. (2006) used two estimation methods, a regime-

switching model and extreme value theory, to investigate spillovers among various stock 

markets and concluded that the well diversified portfolios held by international investors 

could be responsible for the so called “domino effect” observed in the global markets 

during a financial crisis.  

      Given their rapid economic growth, the group of the BRIC countries (Brazil, Russia, 

India and China) was the subject of numerous empirical studies that aimed to detect and 

measure the magnitude of various types of spillovers. It is important that the empirical 

results concerning spillover effects are compared over similar periods that include major 

events in the markets considered. For example, using a MGARCH modelling framework 

Li (2007) found no direct spillovers between China and U.S. stock markets during the 

interval 2000-2005. Also, Lin et al. (2009) reported no substantial changes in the 

correlation patterns over the period 1993-2006. However, in 2005 the Chinese stock 

market has been subject to structural reform, becoming more transparent and less 
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regulated. Once the time horizon takes into account this event together with its potential 

lagged effects, the results are rather different.  Using symmetric and asymmetric GARCH 

models Moon and Yu (2010) explored the interaction between China and U.S. stock 

markets between 1999 and 2007 and found evidence of a structural break in December 

2005 in the Chinese stock market (SSE) Shangai Stock Exchange and of both, symmetric 

and asymmetric volatility spillovers after 2005. 

         Apart from shocks that impact negatively the financial markets, other major events 

such as the creation of European Monetary Union (EMU) had been analysed in terms of 

spillover effects.  Using 3, 4 and 5 variables multivariate GARCH models Kearney and 

Patton (2000) examined the volatility transmission process across key currencies within 

the European Monetary System (EMS) between 1979 and 1997, prior to the European 

monetary unification. Their study extended the Bollerslev’s (1990) approach using the 

BEKK parameterization and relaxing the assumption of constant conditional correlations. 

The empirical results generated by Kearney and Patton were inconclusive emphasizing 

the relativeness of the model specification, however some consistent features could be 

observed suggesting the dominance of the German mark. Additionally, the ECU currency 

worked as the “n-th” currency in the system by transmitting volatility rather indirectly 

(via its covariance) than through direct channels (its variance). Christiansen (2010) found 

that the introduction of the euro has caused a structural break in the volatility spillover 

effects, with a change in the regional and local influences. After the introduction of the 

euro the regional (aggregate European) spillovers gained intensity whereas local 

spillovers lost intensity diminishing the potential benefits of investment diversification.  

        Financial institutions are subject to frequent changes influenced by deregulation, 

technological change and financial innovation with the intra-industry relationships being 

more dynamic, therefore they require re-assessment more frequently (Allen and Gale, 

2000; Allen and Santomero, 1997). In this regard, Elyasiany et al. (2007) tested the 

degree of convergence and competition7 across the most prominent components of the 

financial industry in the U.S. namely, commercial banks, brokerage firms and life 

insurance companies (LIC).  Extending on the work of Brewer and Jackson (2002), 

Elyasiany et al. (2007) included the brokers as a third financial sector and estimated 

separately the return and volatility spillover effects for small and large FIs within a more 

complex multivariate GARCH framework. This separation has empirically identified that 

the size of the FI or the degree of consolidation it is an important factor that influences the 

spillover patterns which is consistent with previous findings by Demsetz and Strahan 

                                                           
7 Stronger spillover effects indicate both higher convergence and more intensive competition. 
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(1997) and Stiroh (2004). More specifically, large FI seem to exhibit stronger volatility 

spillover effects in contrast with small FI for which the volatility spillovers are limited 

and returns transmission is more pronounced. These conclusions have important 

implications for policy makers and regulators in the sense that they should expect 

dissimilarities in the impact of new regulation on financial services providers of different 

type and size.   

       In another intra-industry study Carson, Elyasiani and Mansur (2008) employed the 

System-GARCH modelling framework to investigate interdependences in returns and 

volatility across three segments from the U.S. insurance industry, namely accident and 

health (A&H), life (Life) and property and casualty (P&C) insurers. The multivariate 

model included macroeconomic factors as the market return and interest rate in the return 

equations. To test for the impact of the Financial Services Modernization Act (GLBA 

1999) the volatility equations were augmented by including spillover factors across the 

industry segments together with a binary variable. The empirical results suggested that the 

Life insurers were mostly sensitive to changes in the long-term interest rate, while the 

A&H and P&C insurers were mostly exposed to market risk. In contrast with the banking 

industry, the channels by which information is transmitted in the insurance industry play 

different roles, as the volatility transmission among the industry segments was found to 

be weak, while the return spillovers were much stronger. The regulators of the insurance 

industry are interested in the assessment of the degree of connection among its sectors, as 

a high level of correlation typically increases the contagion effects that ultimately may 

lead to the collapse of the entire industry. The similar structure of the portfolios 

(predominantly of highly correlated bonds) of insurance companies is one of the multiple 

facets of the indirect interdependence that exists among the insurers. Being exposed to 

similar risks and subject to generally the same capital-requirements, increases the chances 

of a direct (positive) comovement, as each sector will be impacted and will respond in a 

similar manner.  

 

5.2.2 Empirical Evidence for Spillover Effects in Bond Markets 

       The hypothesis of spillovers and contagion effects have been studied mostly in the 

context of equity and currency markets, with substantially less focus on bond markets. 

One possible reason might be the historical stability of bond markets during financial 

crises when compared to the more volatile equity and foreign exchange markets. Also, 

emerging bond markets data time series lack consistency or are not easily available. 

Nevertheless, several studies examined the mechanism of shock transmission across 
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national bond markets over different periods including important events such as the 

multiple crises in the 1990s, the introduction of the euro in 2000 and the technology 

bubble spanning from 2000 to 2002. Early studies of international bond market spillovers 

during volatile periods include Borio and McCauley (1996) and Domanski and Kremer 

(2000). 

        In contrast with the popular conditional correlation analysis, Hartman et al. (2004) 

apply a nonparametric measure to evaluate the extreme linkages between stock and 

government bond markets for the G-5 countries. Based on weekly data over the 1987-

1999 period they conclude that the extreme losses are generally much higher in the stock 

markets relative to government bond markets and find evidence for the flight-to-quality 

phenomenon.  Both, emerging and developed bond markets were analysed by Dungey et 

al. (2006) who applied a latent factor model to bond spread data for twelve countries in 

order to test for a contagion channel in the transmission of two historical surprises, the 

Russian default and the recapitalisation announcement of the American hedge fund 

LTCM, during the summer of 1998.  Their empirical findings suggest that the Russian 

crisis was spread through a contagion linkage whereas the LTCM shock the contagion 

effects were not particularly significant. Another important insight was that despite 

increased volatility was experienced more considerably by the emerging markets under 

study, the contagion effects were proportionately of similar magnitude for both, emerging 

and developed markets.  

      Ehrmann and Fratzscher (2005) found significant international bond market linkages 

between the USA and the euro area. Andersen et al. (2007) used high-frequency data over 

a relatively short period (1998-2002) to analyse the domestic contemporaneous 

relationship between equity and bond markets and the euro-dollar exchange rate. 

Connolly et al. (2007) investigated how the stock-bond returns relationship in the U.S., 

the UK and Germany varies with the changes in implied volatility (IV) from the U.S. 

stock index option market. On days with large changes (positive or negative) in the IV the 

stock-bond correlations were found to be negative. Bond and equity volatilities have been 

analysed simultaneously by Christiansen (2010) who decomposed individual European 

bond/equity variances into global, regional and local bond/equity effects in order to 

measure the impact of the introduction of the euro in 2000 on the spillover effects. 

However, this particular combination of variables has not been used before towards 

analysing the dynamics of information spillovers over a period that includes the 2007-

2009 financial crisis.  
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       The idea of including as many as possible transmission channels was followed and 

empirically investigated by Ehrmann et al. (2011) who applied the most comprehensive 

modelling framework to analyse simultaneously the linkages of three asset prices both 

domestically and internationally for USA and the euro area. Their structural multifactor 

model includes seven asset prices as the endogeneous variables: short-term interest rates, 

bond yields and equity markets returns in both economies and the exchange rate. 

Following the methodology presented in Rigobon (2003) of identification through 

heteroskedasticity (IH), their results show that the strongest shock transmission takes 

place within asset classes. Another key result suggests that the direct transmission of 

shocks in the bond markets is substantially increased by indirect transmission channels 

through other asset classes. For example, the equity markets in the U.S. also influence the 

other two markets in the euro area, the short-term interest rates and bond yields, 

respectively.         

        More recently, Claeys and Vasicek (2014) used factor-augmented VAR models 

(FAVAR) to measure the linkages between the government bond spreads of 16 EU 

countries, during the 2000 - 2012 period. They also tested for the contagion phenomenon 

and found evidence of its existence only during the period defined by the IMF and EU 

bailout-interventions for Greece and Ireland between 2010 and 2011. However, they 

conclude that contagion is a rather rare phenomenon and the strongest linkages are the 

result of a larger shocks rather than of contagion.  

 

5.2.3 The Impact of the 2007-2009 Global Financial Crisis on Return 

and Volatility Spillover Effects – Empirical Evidence  

       The literature on spillover effects is vast given the multitude of financial crises that 

occurred over the last four decades. However, the GFC is still an open area for 

exploration within the spillover literature. Several authors have examined its impact via 

the return and volatility spillover effects between various types of financial markets, 

trying as well to identify possible factors that may explain how volatility is transmitted.    

       Cheung et al. (2010) introduces the term of fear spillovers for which the best 

indicator is the TED spreads. The credit risk becomes another channel of transmission of 

information that seems to have changed the correlation among international markets 

during the recent global financial crisis. The authors use a trivariate VAR model and a 

Granger causality test to examine the return and volatility spillovers between the TED 

spread, the returns in the S&P500 stock price index and other global stock markets such 



251 
 

as the UK, Hong Kong, Japan, Australia, Russia and China. While the dominant role of 

the U.S. enhanced during the crisis, the TED spread also was found to Granger cause the 

S&P500 and provide spillover effects into the other global stock markets. 

      Ding and Pu (2012) examined closely connected financial sectors in the U.S. under 

different economic conditions.  Stock, corporate bond and credit derivatives markets are 

considered for exploring both the static and dynamic structure of information spillovers 

and identifying factors that may influence any linkage across these markets. Based on a 

VAR estimation model and daily data over the period 2004-2009, the empirical results 

indicate a more intensified and timely information-transmission among these markets 

during the 2007-2009 crisis.  While both volatility and liquidity factors influence 

separately the linkage between the markets, during the crisis when both factors are 

exogeneously included in the model, it is only the volatility channel that is significant in 

all the three sub-periods analysed and has a strong impact on all three financial markets. 

Furthermore, Ding and Pu (2012) found that the credit derivatives and the stock markets 

swap the leading role in sending shock signals once a systemic crisis exists.  Before the 

crisis the surprise information is absorbed first by the credit derivatives market that 

quickly affects the stock market. However, during the crisis the stock market becomes 

more independent and plays a dominant role with investors taking more into account the 

signals from the equity markets rather than from the bond and the credit derivative 

markets. Similar evidence was provided by Diebold and Yilmaz (2012) who developed a 

spillover index to measure the magnitude of the volatility spillovers (total and directional) 

across the U.S. stock, bond, foreign exchange and commodities markets within a 

generalized VAR framework over the period 1999-2010. While the bond markets react 

rather slowly, the U.S. equity market plays the most important role during all seven 

phases of the crisis with net positive volatility spillovers from the stock market to the 

other markets exceeding 6% immediately after the collapse of Lehman Brothers in 

September 2008.      

       Using a multivariate BEKK GARCH- in-the-mean approach, Gilenko and Federova 

(2014) examined return and volatility spillovers within the group (internal) and from 

various developed and emerging equity markets (external). Moreover, their model 

included an interaction term of the external factors that permitted for the analysis of the 

dynamics of the external influences before, during and after the financial crisis of 2007-

2009. The patterns of the internal volatility spillovers change over time from strong 

interconnections in the pre-crisis period to no sign of transmission during the crisis and 

recovery periods. In the case of internal mean-to-mean spillovers the Brasilian market 



252 
 

seems to keep its dominant influence within the group before and after the crisis, despite 

that during the crisis these channels of propagation disappear with only one direction 

being significant, from the Indian to the Brazilian stock market. Nikkinen et al. (2012b) 

also studied the BRIC (Brasil, Rusia, India and China) countries within a sectorial 

context.  The financial and industrial sectors of each market were tested using eight 

bivariate models for the presence of spillovers. 

          In a recent paper, Choudry and Jayasekera (2014) empirically investigate the effect 

of the GFC on the return and volatility spillovers across European banking industries. In a 

subperiod analysis they examined three aspects of the information transmission between 

major economies (ME) (Germany, U.K. and U.S.) and stressed economies (SE) (Italy, 

Ireland, Greece, Spain and Portugal). Employing a MGARCH-GJR framework their 

results indicate evidence of asymmetric spillover effects in the pre-crisis period 2002-

2007. Moreover, the spillover effects have intensified during the crisis period (2007-

2014) with significant transmission also from the SEs to the MEs. The transition between 

the two subperiods revealed presence of contagion between ME and the larger SE and 

signs of flight to perceived quality from smaller SEs such as Greece and Ireland, 

confirming that stronger linkages reduce domestic market insulation from global news. 

There is also evidence that smaller markets with weaker linkages have a delayed reaction 

when shocks occur in larger markets, an effect that is also present across other asset 

classes (Harris and Pisedtasalasai (2006) and McQueen, Pinegar and Thorely (1996)). 

      Jung and Maderitsch (2014) is another study based on intra-daily data on the main 

stock indices in Europe, U.S. and Asia covering the period 2000-2011. The five-minute 

frequency data used in their work allowed for the computation of the realised volatility 

series and hence making possible an investigation for a singular structural break in the 

linear patterns of observed volatility. Based on the HAR-DL (Heterogeneous 

Autoregressive Distributed Lag) model proposed by Corsi (2009), the null hypothesis of 

no structural break is rejected, indicating instability in the dynamics of volatility 

transmission. To investigate further for contagion effects, the authors created a series of 

spillover and found that they display a sudden and significant upward change in spillover 

patterns for all three markets around the inception of the financial crisis in 2007.  

Moreover, Jung and Maderitsch (2014) argued that the structural break present in the 

realized volatilities did not affect significantly the spillover dynamics, it is the conditional 

heteroskedasticity in the realised volatility that is accountable for the sudden upward shift 

in the spillovers patterns. Consequently, the presence of contagion effects was rejected for 

a high level of interdependence 
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       Following Diebold and Yilmaz’s (2009) generalized VAR approach (FAVAR - factor 

augmented VAR), Claeys and Vasicek (2014) measured the bilateral linkages between 16 

EU bond markets and also proposed a test for the presence of contagion and detection of 

sudden changes in the information transmission process and direction of contagion.   

Based on daily bond spreads their empirical results showed spillover effects as a common 

feature in the pre-crisis period, however with a substantial increase in the market 

interdependences once the financial crisis has started. Some evidence of contagion was 

found on three occasions when Greece, Ireland and Portugal requested a fiscal bailout 

creating a sense of uncertainty that to a certain extent led to an increase in market co-

movements.  

         In a recent study of volatility spillovers, Li and Giles (2015) employ an asymmetric 

MGARCH full BEKK (1,1) model to analyse shock and volatility transmissions across 

two developed stock markets (the U.S. and Japan) and a group8 of Asian emerging stock 

markets over a period of twenty years (1993-2012) covering two important financial 

crises - the 1997 Asian crisis and the 2007 U.S. subprime crisis. Based on daily data, they 

found that on the long run, there is some evidence of shock spillovers between the 

markets above and volatility spillovers only from the Japanese market to the Asian 

developing. However, on the short run, the results during both crises differ from the 

results provided by the full sample. Moreover, the two crises portray a rather 

contradictory situation in terms of volatility spillovers. During the 1997 Asian financial 

crisis, there is evidence of volatility spillovers between the U.S. and the rest of the 

markets, confirming the leading role of the U.S. as a global factor. Neverthelesss, during 

the 2007 financial crisis it is Japan, the geographical factor, that connects bidirectionally 

with the Asian emerging markets, whereas the U.S. stock market communicates only with 

the Japanese market.  

          

 

 

 

 

 
                                                           
8 The developing Asian stock markets considered are China, India, Indonesia, Malaysia, the Philippines and 

Thailand 
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5.3 Methodology 

 

        For the discrete-time modelling of return and spillovers the relevant literature 

suggests that the MGARCH framework is mostly appropriate. The multivariate GARCH 

approach has multiple advantages as it takes into account two channels of information 

transmission, one in the mean equation and one in the volatility equation.  Also, it allows 

for the investigation of the linear relationships between the parameters both, within and 

across the equations in the system. 

        The multivariate GARCH framework considers a multitude of specifications9 from a 

range of direct generalizations (VEC, BEKK and factor models) to nonlinear 

combinations (copula-GARCH) of the univariate GARCH model of Bollerslev (1986). In 

this investigation, the four variables BEKK10 representation of Engle and Kroner (1995) 

is used to estimate the return and the direct and indirect volatility spillovers effects. Inside 

the BEKK methodology both, the mean and the variance equations are estimated 

simultaneously as in Li and Giles (2015).  

         The return and the volatility spillovers between the U.S. and another country are 

modelled in a comparative setting using the full BEKK(1,1) four-dimensional 

specification, to allow for a more complex information transmission network. For a four-

variable BEKK model the information flows via six routes (two direct domestic routes 

between different asset classes, two international direct routes between the same asset 

classes and international indirect routes between different asset classes). Hence, for each 

country-pair we are interested in twelve parameters inside the mean system which 

represent the return spillover effects and another twelve parameters in the variance 

equations measuring the volatility spillover effects.  

      

5.3.1 The Discrete Time Method: The MGARCH Model  

The four-dimensional stochastic vector of returns { ( )}tR t  encompasses both stock returns 

and bond returns. The vector of returns is modelled using its conditional mean ( )t   that 

includes all possible feedbacks as follows: 

 (      )    t t tR       (5.1) 

                                                           
9 A comprehensive survey of MGARCH models is provided by Bauwens et al. (2006). 
10 The abbreviation comes from the Baba, Engle, Kraft and Kroner whose previous extensive studies on 

GARCH models resulted in the model presented by Engle and Kroner (1995). 
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where  
1t tR      for  1,...t T and T  is the sample size. The elements off the 

diagonal of the feedback matrix
4 4 

 are interpreted as the return spillover effects from 

one market to another. They are the reaction coefficients of the  

For example, for the first U.S. - U.K. pair 
1 2 3 4( , , , ) ( , , , )US UK US UK

t t t t t t t t tR R R R R s s r r  . The 

first two components are the log returns of two major international stock indices (
ts  ) and 

the last two components are the daily changes in the respective government 

bond/Treasury yields ( tr  ).  

The scalar mean equations are given by: 

 

1, 1 11 1, 1 12 2, 1 13 3, 1 14 4, 1

2, 2 21 1, 1 22 2, 1 23 3, 1 24 4, 1

1, 3 31 1, 1 32 2, 1 33 3, 1 34 4, 1

1, 1 41 1, 1 42 2, 1 43 3, 1 44 4, 1

t t t t t

t t t t t

t t t t t

t t t t t

R R R R R

R R R R R

R R R R R

R R R R R

    

    

    

    

   

   

   

   

    

    

    

    

  (5.2) 

 To recognize the fluctuation in the volatility of asset returns the innovations are modelled 

as ( )t t tH z    where the random vector tz  is assumed to have a zero mean and unity 

variance, i.e.  ( ) 0tE z   and 4( )tVar z I  . The matrix ( )tH   is the conditional variance 

matrix of tR  and hence it has to be positive definite. 

The advantage of the BEKK formulation is that it ensures the positive definiteness of 

( )tH  , avoiding heavy restrictions on the parameters. The simplest BEKK structure11 for 

the conditional variance matrix is given by:  

 

 1 1 1t t t tH C C A A G H G   
        (5.3) 

 

where C, A and G are 4x4 matrices, with C being a lower triangular matrix.  

        It is well known that the direct generalizations of the univariate GARCH models 

increase rapidly the number of parameters; for example, in the four dimensional setting 

the BEKK(1,1) model has 42 parameters. To lower the econometric burden, despite 

losing generality, the number of parameters can be reduced to 18 by imposing that the 

matrices A and G are diagonal. The constrained matrix coefficients are parameterised as 

following:  

 

                                                           
11For this simple structure Engle and Kroner (1995) showed that all the elements of the matrix coefficient 

have to be positive for the model to be identified.  
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14 24 34 44

   0        0        0

        0        0
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,

11

22

33

44

  0    0     0

 0     0     0

 0    0      0

 0    0     0    

A









 
 
 
 
  
 

 and 

11

22

33

44

  0    0     0

 0     0     0

 0    0      0

 0    0     0    

G









 
 
 
 
  
 

 (5.4) 

 

Therefore, the system of volatility equations for the diagonal BEKK model can be written 

in the scalar form as:  

 

2 2 2 2

11, 1 11 11 1, 11 11,

2 2 2 2

22, 1 22 22 2, 22 22,

2 2 2 2

33, 1 33 33 3, 33 33,

2 2 2 2

44, 1 44 44 4, 44 44,

t t t

t t t

t t t

t t t

h h

h h

h h

h h

   

   

   

   









  

  

  

  

  (5.5) 

Nevertheless, given the diagonal form of the matrix G, this specification of the 

conditional variances fails to measure the volatility transmission across the markets 

considered. In order to measure the volatility spillover effects it is necessary to use the 

full BEKK specification, instead of the diagonal BEKK model. 

       In the case of full BEKK representation the 4x4 matrices, 
1 , 4( )ij i jA     and 

1 , 4( )ij i jG     are unrestricted, hence the total number of variance-covariance parameters 

to be estimated increases to 42. So, when the conditional mean is simultaneously 

estimated, another independent vector of 20 parameters (4 intercepts i  and 16 feedback 

parameters
ij ) will be introduced. The more complex estimation of the full BEKK(1,1) 

model was conducted in RATS using the  BFGS (Broyden, 1970; Fletcher, 1970; 

Goldfarb, 1970; and Shanno, 1970) algorithm to obtain  the parameter estimates and their 

asymptotic standard errors. 

       The conditional variance equations in the full BEKK specification are more complex, 

containing also information about both, shock and volatility spillovers. The conditional 

variance comprises three parts: the intercept that depends on the elements of the matrix C, 

the ARCH-shock component involving elements of matrix A and the GARCH-volatility 

component involving elements of matrix G. For each of the four series in the model the 

conditional variance equation can be written as follows: 

                        , 1 , ,           for all 1,...,4ii t i i t i th Intercept ARCH GARCH i     , where 

                        

2

i ji

j i

Intercept 
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4 4
2 2

, 1 , , ,

1 , 1

2i t ji j t ji ki j t k t

j j k
j k

ARCH      

 


     

                      

4 4
2 2

, 1 , ,t

1 , 1

2i t ji jj t ji ki jk

j j k
j k

GARCH h h  

 


     

Therefore, the conditional variances can be computed using the following general 

formula:  

 
4 4 4 4

2 2 2 2 2

, 1 , , , , ,

1 1 , 1 , 1

     = 2 2ii t ji ji j t ji jj t ji ki j t k t ji ki jk t

j i j j j k j k
j k j k

h h h         

    
 

          (5.6) 

From the variance equation (5.6), the extent of the shock and volatility spillovers from 

market j  to market i  can be quantified.  

    The elements of matrix A  measure the impact of different sources of news on market i

:  there are  news from a single  market j , and their effect is measured by 
2

ji ,  and there 

are combined news from markets j  and k   with their effect measured by 
ji ki  . 

Similarly, the elements of matrix G can be interpreted as the single effect of the current 

conditional variances 
2( )ji  and the combined effect of the conditional covariances 

( )ji ki   on the future level of the conditional variance. Hence, a shock and a volatility 

spillovers matrix can be created just as for the return spillovers and they are calculated as 

the transpose of the matrix formed by the squared elements of matrix A and G, 

respectively.  

In both cases, diagonal and full BEKK volatility models, the parameter estimates are the 

solution of the maximization of a non-linear sample likelihood function conditional to 

some initial values 0( )t   and 0( )tH  : 

 

1

1 1

1

1 1

( ) ln(2 ) log | ( ) | ( )

           = ln(2 ) log | ( ) | ( ) ( )( )

T T

t t t t

t t

T T

t t t t t t

t t

LF T H H

T H R H R

     

    



 



 

   

    

 

 

  (5.7) 
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5.4 Data 

5.4.1 The Data Sets 

       Given that the major information shock (the financial crisis of 2007-2009) originated 

in the U.S. it is important to detect and measure any return and volatility transmission 

between the U.S. and a second major economy over a period including the recent 

financial crisis.  Four country-pairs namely U.S.-U.K., U.S.-Japan, U.S.-Germany and 

U.S.-Canada will be examined and two combinations of asset classes are considered for 

each country-pair. Hence, in one model two countries will be represented by two asset 

classes, allowing for a four-dimensional network in which information flows at both, 

domestic and international level.  First, the stock and bond markets are analysed 

simultaneously within each country pair, and second the stock and money markets are 

investigated.   

The equity markets are represented by the most diversified daily stock price indices of the 

five countries considered. The sampled indices are the Standard and Poor’s 500 (S&P500) 

Composite Index for the U.S., Financial Times-Stock Exchange 100 Share (FTSE100) for 

the U.K., Nikkei 500 for Japan, DAX30 for Germany and S&P/TSX for Canada, 

respectively. All daily closing prices for the five stock indices are extracted from 

Datastream and the daily close-to-close returns are the continuously compounded returns, 

computed as 1( ) ln( / ),t tR t p p   where tp  is the market total return index (dividend 

included) at time .t    

 The short-term interest rates are represented by one-month yields of the Government 

securities, provided by the Treasury bills for the U.S., UK and Canada, while for Japan 

and Germany12 the one-month interbank rates are used, the FIBOR and Gensaki one-

month rates, respectively.  The long-term interest rates are represented by the 10- year 

yields of Government benchmark bonds. Following Dontis-Charitos et al. (2013), the 

analysis is refined by distinguishing between the pre-crisis and post-crisis period, 

delimited by July 2007- the third quarter of 2007, which is recognized as the starting 

point13 of the recent global financial crisis. 

 

 

 

  

                                                           
12 The data on one-month Treasury bill of Germany and Japan were unavailable, so other one-month rates 

were used; the interbank rates for Germany and the Gensaki rates for Japan, respectively. 
13In July 2007, the first substantial signs of financial distress were observed in the U.S. subprime market. 
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5.4.2   Statistical Analysis of the Data 

       For a preliminary examination of the raw data, the levels of the equity indices, the 

one-month rates and the 10-year yield of Government bonds, respectively are plotted 

(Figures 5.1, 5.2 and 5.3) over the full sample period of 2nd July 2001 to 31st July 2014. 

The time-series of all countries are plotted in multiple graphs in Figure 5.4. It is observed 

that the S&P500 and the Nikkei500 have moved closely together, whereas the remaining 

indices follow a more particular path.  The daily stock returns and the first differences of 

the short and long rates are plotted for an indication of the daily volatility patterns in 

Figures 5.5, 5.6 and 5.7. The period after summer 2007 seems more volatile than the pre-

crisis period, also persisting over quite a long interval.  

          The stock markets considered in this empirical investigation (see Figure 5.1) 

exhibit the highest degree of co-movement in comparison with the other asset classes 

analysed, namely the 10-year Government bonds and one-month Government securities, 

especially before the GFC.  Despite the gravity of this crisis, the stock markets follow a 

global trend of steady recovery reaching historical record high levels at the end of the 

period. Only the Nikkei500 time series follow a more particular path towards its recovery 

still to overpass the pre-crisis levels. Three major negative shocks seem to have impacted 

the paths of all stock price indices. First, the cumulative effect of two events, the burst of 

the dot.com bubble and the terrorist attack in 2001 in the U.S., reached maximum effects 

in 2002. Second, the spread of the 2007 subprime mortgage crisis in the U.S. culminated 

with the announcement of the collapse of Lehman Brothers in September 2008. The third 

negative shock is represented by the European sovereign debt crisis in 2011 that 

transferred also into the stock markets, however with less impact relative to the 2008 

financial crisis in the U.S.  

        The graphs of five time-series for the 10-year Government bond yields show the 

particularities of each national bond market, with the Canadian and Japanese long-term 

bond markets evolving along more individual paths. Two common features can be 

observed across all time-series analysed. The stock market downturn in 2002 have 

impacted almost instantly all the other major bond markets around the world and the clear 

event of the GFC in September 2008 when again all the bond markets responded together 

with a sharp decline in long term interest rates.  Another common reaction of the world 

bond markets, with the exception of a delayed response in the case of Japan is observed in 

2011 as a result of the European sovereign bond crisis. After 2012 only the U.S., the U.K. 

and the Canadian bond markets show signs of recovering with the 10-year bond yields 

remaining stable above 2%.         
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       The one-month interest rates time series exhibit the most diversity in their evolution. 

Their differences and the similarities in their paths over the sample period August 2001- 

July 2014 are clearly illustrated in Figure 3.3. In the pre-crisis period, the short-time 

interest rates for the U.S. and Germany evolved along a similar path, however with the 

German one-month FIBOR rates slightly lagged behind with a prolonged downturn in 

2002 and a delayed start of the recovery in 2006 following the real-estate bubble in the 

U.S.  The rest of the one-month interest rates have a slightly more particular evolution, 

with the U.K. and Canadian rates showing recovering as early as 2003 and 2004, 

respectively, while the Japanese rates reacted in jumps with un unprecedented increase in 

2006. The ignition of the crisis in the summer of 2007 in the sub-prime mortgage market 

in the U.S. can be seen with immediate effect in the U.S. one-month Treasury Bills, 

followed by the Canadian one-month securities. The other short-term interest rates series 

respond initially with a period of high volatility until September 2008 when a major 

declined is observed. Beyond 2008, the money markets around the world evolved behave 

in a similar manner with the short-term rates just above the zero level, with only Canadian 

short-term rates close to 1%.        

        The time series of stock returns and the first-difference of the interest rates displayed 

are stationary around a zero mean and exhibit volatility clustering around the three 

turmoil periods that occurred in the sample period of 2001-2014. The most volatile 

markets are the stock markets followed by long-term bond markets, while the money 

markets appear very stable during clam periods with the most pronounced period of 

uncertainty being present in the U.S. one-month T-bills.  

Summary Statistics 

          The standard statistical properties of the data considered for this investigation are 

presented for the pre-crisis and post-crisis periods in the Tables 5.1 and 5.2, respectively. 

The sample means of the stock returns and the first differenced interest rate series are not 

significantly different from zero, predominantly positive before the crisis and mostly 

negative during the crisis. Regarding the stock return series, the skewness and kurtosis 

measures reject the normality with the date being negatively skewed and leptokurtic over 

both subsamples. The skewness for both the short- and long-term rates changes between 

positive and negative values, and while both types of rates are leptokurtic, the short-term 

rates exhibit considerably much fatter tails than the normal distribution. The normality of 

all the time series over the two sub-periods is also rejected by the Jacque-Berra test as 

indicated by the zero p-values in the tables below.   
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   Figure 5.1. Daily Stock Price Indices: Levels: 2001- 2014                                                

 

Figure 5.2 Daily Long -Term (10 years) Nominal Interest Rates: Levels: 2001-2014 

                                        

 

  Figure 5.3 Daily Short-Term (one month) Treasury Bills Rates: Levels: 2001 -2014
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Figure 5.4 The time-series of all countries during 2001-2014:  

Stock Price Indices, Long-Term Interest rates and Short-Term Interest Rates 
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  Figure 5.5 Stock Price Indices: Daily Returns: 2001-2014 

                                     

 

  Figure 5.6 Long -Term Rates: Daily Changes: 2001-2014                                      

 

   Figure 5.7 Short -Term Rates: Daily Changes: 2001-2014  
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Table 5.1 Descriptive Statistics for Stock Price Indices and their Returns: Pre-crisis period August 2001- June 2007 

 

                      

Stock Price Index LEVELS LOG RETURNS 

     pre-crisis S&P500 FTSE100 NIKKEI500 DAX30 SP/TSX S&P500 FTSE100 NIKKEI500 DAX30 SP/TSX 

 Observations 1485 1494 1451 1500 1441 1484 1493 1450 1499 1440 

 Mean 1,149.3814 4,998.7599 1,108.5260 4,648.3152 9,135.4577 0.0001 0.0001 0.0002 0.0002 0.0004 

 Median 1,144.9400 4,982.2500 1,046.1800 4,387.5700 8,527.1300 0.0006 0.0005 0.0003 0.0008 0.0010 

 Maximum 1,539.1200 6,732.4000 1,588.5300 8,066.1800 14,161.0000 0.0557 0.0590 0.0434 0.0727 0.0464 

 Minimum 776.7600 3,287.0000 698.4900 2,203.9700 5,689.4300 -0.0492 -0.0589 -0.0551 -0.0943 -0.0478 

 Std. Dev. 165.4116 787.2527 237.6475 1,222.0813 2,214.0206 0.0100 0.0110 0.0114 0.0158 0.0082 

 Skewness 0.0681 0.2295 0.4025 0.4989 0.5848 0.0681 -0.2359 -0.2513 -0.1531 -0.3866 

 Kurtosis 2.6435 2.0800 2.0299 2.7541 2.1325 6.3695 7.5290 3.9317 6.8553 6.9423 

 Jarque-Bera 9.0128 65.8098 96.0636 66.0017 127.3159 703.1672 1289.8229 67.7151 934.1716 968.3944 

 Probability 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

This table reports the summary statistics for the five Equity Indices over the pre-crisis period. Both, daily levels and returns, respectively are examined. The central 

tendency of the samples is assessed using the mean, median, maximum and minimum values, while the variability is measured by the standard deviation. The 

normality of the time series is statistically assessed based on the skewness and kurtosis measures and tested using the JB test. 

** denotes that the respective time series are insignificantly different from a normal distribution at 5% level.  
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       Table 5.2 Descriptive Statistics for Stock Price Indices and their Returns: Post-crisis period:  July 2007-July 2014 

 

 

                      

Stock Price Index LEVELS LOG RETURNS 

post-crisis S&P500 FTSE100 NIKKEI500 DAX30 SP/TSX S&P500 FTSE100 NIKKEI500 DAX30 SP/TSX 

 Observations 1784 1791 1736 1767 1729 1783 1790 1735 1766 1728 

 Mean 1,332.6019 5,707.2160 969.1330 6,897.5815 12,418.5882 0.0001 0.0000 -0.0001 0.0001 0.0001 

 Median 1,325.1350 5,783.6900 864.3400 6,842.3900 12,487.2500 0.0009 0.0003 0.0003 0.0009 0.0007 

 Maximum 1,988.0700 6,878.4900 1,530.4200 10,028.7100 15,524.8200 0.1161 0.0938 0.0933 0.1010 0.0790 

 Minimum 679.2800 3,512.0900 633.4800 3,677.0700 7,527.4400 -0.0946 -0.0926 -0.0904 -0.1038 -0.1279 

 Std. Dev. 281.6609 746.6390 219.3420 1,374.5365 1,511.8801 0.0141 0.0137 0.0139 0.0154 0.0131 

 Skewness 0.2422 -0.6520 0.6697 0.2535 -0.7844 -0.2844 -0.1054 -0.3248 -0.4691 -0.8819 

 Kurtosis 2.6711 2.9502 2.0910 2.7060 3.7213 12.4662 9.9845 9.0679 10.2257 13.5389 

 Jarque-Bera 25.4800 127.0652 189.5251 25.2841 214.7921 6,681.2000 3,641.7700 2,692.2414 3,906.5791 8,220.9394 

 Probability 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

This table reports the summary statistics for the five equity indices during the crisis period. Both, daily levels and returns, respectively are examined. The central 

tendency of the samples is assessed using the mean, median, maximum and minimum values, while the variability is measured by the standard deviation. The normality 

of the time series is statistically assessed based on the skewness and kurtosis measures and tested using the JB test. 
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Table 5.3 Descriptive Statistics: Long-term Interest Rates for U.S., U.K., Japan, Germany and Canada; 

                 Pre-crisis period: August 2001- June 2007. 

                      

10Y Gov. Bonds Yields LEVELS FIRST DIFFERENCES 

pre-crisis US10Y UK10Y JAP10Y GER10Y CAD10Y US10Y UK10Y JAP10Y GER10Y CAD10Y 

 Observations 1543 1543 1543 1543 1543 1542 1542 1542 1542 1542 

 Mean 4.4446 4.6701 4.0795 1.3937 4.6321 0.0000 0.0003 0.0003 -0.0002 -0.0007 

 Median 4.4376 4.6639 4.0629 1.3998 4.5671 -0.0002 -0.0002 0.0000 -0.0004 -0.0002 

 Maximum 5.4298 5.5189 5.2732 1.9907 5.8014 0.2424 0.1497 0.2106 0.1737 0.2430 

 Minimum 3.1036 3.8561 3.0230 0.4261 3.7302 -0.1987 -0.1278 -0.1598 -0.1202 -0.1635 

 Std. Dev. 0.4357 0.3249 0.5143 0.3104 0.5050 0.0558 0.0395 0.0284 0.0375 0.0457 

 Skewness -0.1093 0.0441 0.2425 -0.7235 0.3737 0.3242 0.2256 0.7153 0.4021 0.3031 

 Kurtosis 2.6379 2.3894 2.5683 3.5790 2.1066 4.5502 3.8124 8.8184 4.2079 4.3785 

 Jarque-Bera 11.5121 24.4848 27.1181 156.2726 87.2905 181.5206 55.5207 2,308.0709 135.3722 145.8040 

 Probability 0.0032 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

This table reports the summary statistics for the five 10- year Government bond yields, before the crisis. Both, daily levels and first differences, respectively are 

examined. The central tendency of the samples is assessed using the mean, median, maximum and minimum values, while the variability is measured by the 

standard deviation. The normality of the time series is statistically assessed based on the skewness and kurtosis measures and tested using the JB test. 

 

 



267 
 

Table 5.4 Descriptive Statistics: Long-term Interest Rates for U.S., U.K., Japan, Germany and Canada;  

                 During the crisis period: July 2007-July 2014. 

                       

10Y Gov Bonds Yields  LEVELS FIRST DIFFERENCES 

post-crisis US1M UK1M JAP1M GER1M CAD1M US1M UK1M JAP1M GER1M CAD1M 

 Observations 1849 1849 1849 1849 1849 1848 1848 1848 1848 1848 

 Mean 2.9318 3.2564 1.1076 2.6619 2.8940 -0.0013 -0.0014 -0.0007 -0.0018 -0.0013 

 Median 2.8920 3.2970 1.1300 2.7117 2.9160 -0.0010 -0.0014 0.0000 -0.0013 -0.0004 

 Maximum 5.1941 5.5437 1.9556 4.6709 4.7096 0.3519 0.2600 0.1039 0.1848 0.1870 

 Minimum 1.4040 1.3820 0.4393 1.1187 1.5780 -0.4702 -0.2979 -0.1089 -0.2560 -0.2236 

 Std. Dev. 0.8314 1.0120 0.3382 1.0160 0.7516 0.0645 0.0558 0.0220 0.0459 0.0480 

 Skewness 0.1600 0.1242 0.0609 0.2144 0.1290 -0.0880 0.0371 0.1957 -0.0687 0.0519 

 Kurtosis 2.2619 2.0731 2.0284 1.7594 2.1033 5.8551 5.1215 5.5934 4.4873 4.2807 

 Jarque-Bera 
49.8668 70.9358 73.8679 132.7424 67.0719 

630.074

4 346.9839 529.6790 171.7726 127.1265 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

This table reports the summary statistics for the five 10-year Government bond yields, during the crisis. Both, daily levels and first differences, respectively are 

examined. The central tendency of the sample data is assessed using the mean, median, maximum and minimum values, while the variability is measured by the 

standard deviation. The normality of the time series is statistically assessed based on the skewness and kurtosis measures and tested using the JB test. 
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Table 5.5 Descriptive Statistics: Short-term Interest Rates for U.S., U.K., Japan, Germany and Canada;  

                 Pre-crisis period of August 2001- June 2007 

                      

1M Short Rates LEVELS FIRST DIFFERENCES 

pre-crisis US1M UK1M JAP1M* GER1M* CAD1M US1M UK1M JAP1M* GER1M* CAD1M 

 Observations 1543 1543 1543 1543 1543 1542 1542 1542 1542 1542 

 Mean 2.5584 4.3243 0.0743 2.7591 2.8719 0.0004 0.0005 0.0003 -0.0003 0.0001 

 Median 1.8750 4.4480 0.0065 2.6010 2.6300 0.0000 0.0000 0.0000 0.0000 0.0000 

 Maximum 5.2700 5.8236 0.6160 4.5290 4.2400 0.3400 0.2409 0.1580 0.1430 1.2000 

 Minimum 0.7400 3.2500 0.0030 2.0160 0.9700 -0.6300 -0.3700 -0.0585 -0.4180 -1.1800 

 Std. Dev. 1.5132 0.5504 0.1556 0.6777 0.7500 0.0493 0.0262 0.0056 0.0174 0.0505 

 Skewness 0.5438 0.1804 2.2229 0.5304 0.5855 -1.2629 -3.8553 16.8588 -8.8450 0.1492 

 Kurtosis 1.7516 2.2117 6.6773 2.0389 2.0192 27.6687 69.2018 463.2814 226.6594 403.1936 

 Jarque-Bera 1.75E+02 4.83E+01 2.14E+03 1.32E+02 1.50E+02 3.95E+04 2.85E+05 1.37E+07 3.23E+06 1.03E+07 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

This table reports the summary statistics for the five one-month short term rates, during the pre-crisis period. Both, daily levels and first differences, respectively are 

examined. The central tendency of the sample data is assessed using the mean, median, maximum and minimum values, while the variability is measured by the 

standard deviation. The normality of the time series is statistically assessed based on the skewness and kurtosis measures and tested using the JB test. 

*For Japan and Germany, the one-month interbank interest rates have been used, as the data on the Government securities of one-month maturity were not available 
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Table 5.6 Descriptive Statistics: Short-term Interest Rates for U.S., U.K., Japan, Germany and Canada;  

          Post-crisis period: July 2007-July 2014 

                      

1M Short Rates LEVELS FIRST DIFFERENCES 

post-crisis US1M UK1M JAP1M* GER1M* CAD1M US1M UK1M JAP1M* GER1M* CAD1M 

 Observations 1849 1849 1849 1849 1849 1848 1848 1848 1848 1848 

 Mean 0.5117 1.3420 0.1935 1.3642 1.1504 -0.0024 -0.0030 -0.0003 -0.0022 -0.0018 

 Median 0.0700 0.4378 0.1030 0.6200 0.9000 0.0000 0.0000 0.0000 0.0000 0.0000 

 Maximum 5.1300 5.9101 0.6380 5.1970 4.3500 0.9500 0.2047 0.1800 0.6400 0.8000 

 Minimum -0.0000 0.1795 0.0260 0.0910 0.0800 -1.0500 -1.0795 -0.1800 -0.2960 -0.7300 

 Std. Dev. 1.0882 1.9192 0.1876 1.5855 1.0245 0.0887 0.0382 0.0091 0.0232 0.0571 

 Skewness 2.5461 1.5701 1.3967 1.2305 1.7401 -0.5618 -16.6944 -4.5792 10.2779 0.5608 

 Kurtosis 8.5934 3.5892 3.1291 2.8459 5.2285 43.6774 400.1652 235.0387 343.3530 70.2959 

 Jarque-Bera 4.40E+03 7.86E+02 6.02E+02 4.68E+02 1.32E+03 1.12E+05 1.22E+07 4.15E+06 8.95E+06 3.49E+05 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

This table reports the summary statistics for the five one-month short term rates, post-crisis. Both, daily levels and first differences are examined. The central tendency of 

the sample data is assessed using the mean, median, maximum and minimum values, while the variability is measured by the standard deviation. The normality of the 

time series is statistically assessed based on the skewness and kurtosis measures and tested using the JB test. 

*For Japan and Germany, the one-month interbank interest rates have been used, as the data on the Government securities of one-month maturity were not available.  
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            After a short examination of the summary statistics reported in the tables above 

several patterns seem to emerge. The dynamics of the sample means of the three time- 

series change between the two periods considered. While, on average, the interest rates 

have decreased significantly during the crisis, the stock indices seem to have recovered 

rather quickly, with an upward trend during the crisis. The DAX30 index recorded the 

highest percentage increase (48%) in the mean from 4,648.62 to 6,897.58. In contrast, the 

Japanese stock index, Nikkey500 average level decreased by 12% from 1,108.53 to 969.1. 

As a result, the correlation between the stock markets on one side and the short term and 

long-term bond markets on the other side are expected to change sign once the crisis has 

started.  In term of the unconditional standard deviations, the S&P500 and DAX30 

become more volatile during the crisis, while the rest of stock indices show lower 

uncertainty. Concerning the long-term interest rates all bond markets, except for Japan, 

present higher volatility during the crisis. For the short rates, surprisingly, the one-month 

U.S. T-bills yields become more stable, in contradiction with all the other one-month rates 

for which the volatility increases dramatically during the crisis (for example the sample 

standard deviation of the one-month UK treasury bills increased by 248%). 

      The normality of the distributions of all level time- series involved is rejected by all 

three standard measures, skewness and kurtosis and the Jarque-Berra test. In general, the 

raw data series are positively skewed, while the return series show negative skewness.  

The stocks and long rates present similar kurtosis patterns, with negative kurtosis in level 

series and moderate positive kurtosis for the returns and first difference series, 

respectively. However, the short-term rates series report a substantial excess kurtosis when 

first differenced, while generally platikurtic in levels. The Jarque-Bera test rejects the 

normality of all the time- series, apart from the S&P500 whose normality cannot be 

rejected at 1%.  

 

Unit Root Tests Results 

       Typically, most financial time series are known to be nonstationary. However, it is 

often possible to reduce them to stationary series by first differencing. The property of 

stationarity is formally investigated using two statistical unit-root tests, namely, the 

Augmented Dickey-Fuller (1979) (ADF) and Phillips and Peron (1988) (PP) tests, and the 

stationarity Kwiatkowski-Phillips-Schmidt-Shin (1992) (KPSS) test. The statistical results 

indicate nonstationarity for most of the raw data, while the returns and the first-difference 

series become stationary when first differenced. 
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Table 5.7 The unit root tests:  Stock Indices; Pre-crisis period of August 2001- June 2007 

                    

Unit Root Tests  

   

ADF PP KPSS 

pre-crisis 

   

t-Stat. Prob.* Adj. t-Stat. Prob.* LM-Stat. Crit.Val.** 

S&P500  Log Level     -0.6481 0.8572 -2.9526 0.1463 0.4941 0.216 

 

Returns 

  

-39.2780 0.0000 -39.3957 0.0000 0.0715 0.216 

FTSE100  Log Level     -2.5719 0.2935 -2.4730 0.3417 0.8506 0.216 

  Returns     -41.5803 0.0000 -42.2313 0.0000 0.0729 0.216 

NIKKEI500  Log Level 

  

-2.8354 0.1846 -2.7173 0.2296 0.6230 0.216 

 

Returns 

  

-34.0031 0.0000 -33.9191 0.0000 0.0818 0.216 

DAX30  Log Level     -2.4170 0.3704 -2.3962 0.3813 0.7928 0.216 

  Returns     -39.5067 0.0000 -39.5437 0.0000 0.0698 0.216 

SP/TSX  Log Level 

  

-2.6316 0.2661 -2.6433 0.2609 0.6848 0.216 

   Returns     -36.5066 0.0000 -36.4834 0.0000 0.0669 0.216 

 

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; and 

also the sample test statistic and the critical values of the KPS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

 

 

 

 

Table 5.8 The unit root tests:  Stock Indices; Post-crisis period: July 2007-July 2014 

 

                    

Unit Root Tests  

   

ADF PP KPSS 

post-crisis 

   

t-Stat. Prob.* Adj. t-Stat. Prob.* LM-Stat. Crit.Val.** 

S&P500  Log Level   -2.1120 0.5382 -2.0592 0.5677 0.7743 0.216 

 

Returns 

 

-33.592 0.0000 -46.2508 0.0000 0.0651 0.216 

FTSE100  Log Level   -2.8742 0.1712 -2.6766 0.2465 0.5232 0.216 

  Returns   -21.479 0.0000 -44.6861 0.0000 0.0561 0.216 

NIKKEI500  Log Level 

 

-1.9467 0.6293 -1.8260 0.6919 0.9566 0.216 

 

Returns 

 

-37.528 0.0000 -37.3270 0.0000 0.0417 0.216 

DAX30   Log Level   -2.4834 0.3364 -2.3987 0.3801 0.6394 0.216 

  Returns   -41.663 0.0000 -41.7860 0.0000 0.0518 0.216 

SP/TSX   Log Level 

 

    -2.1196 0.5339 -2.0248 0.5868 0.3389    0.216 

  Returns   -24.8243 0.0000 -45.6365 0.0000 0.0620    0.216 

 

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; and 

also the sample test statistic and the critical values of the KPS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 
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Table 5.9 The unit root tests: Long-term Interest Rates;  

                 Pre-crisis period: August 2001- June 2007 

                     

Unit Root Tests 

 

                ADF                        PP                            KPSS 

pre-crisis          t-Stat.   Prob.* Adj. t-Stat. Prob.* LM-Stat. Crit.Val.** 

US10Y Level 

 

-2.6949 0.2388 -2.7400 0.2204 0.6022 0.216 

  First Diff.   -38.1707 0.0000 -38.1548 0.0000 0.0254 0.216 

UK10Y Level 

 

-1.7361 0.7348 -1.7951 0.7069 0.2709 0.216 

  First Diff.   -38.2425 0.0000 -38.2312 0.0000 0.0603 0.216 

JAP10Y Level 

 

-2.3398 0.4115 -2.3991 0.3798 0.3222 0.216 

  First Diff.   -38.2451 0.0000 -38.2616 0.0000 0.0411 0.216 

GER10Y Level 

 

-0.9201 0.9521 -0.9369 0.9502 0.6092 0.216 

  First Diff.   -38.2451 0.0000 -38.8395 0.0000 0.0702 0.216 

CAD10Y Level 

 

-3.0641 0.1154 -3.1400 0.0974 0.4066 0.216 

  First Diff.   -38.2508 0.0000 -38.2383 0.0000 0.0235 0.216 

 

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; and 

also the sample test statistic and the critical values of the KPS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

 

 

 

Table 5.10 The unit root tests: Long-term Interest Rates;  

                   Post-crisis period: July 2007-July 2014 

                  

Unit Root Tests 

   

ADF PP KPSS 

post-crisis         t-Stat. Prob.* Adj. t-Stat.   Prob.*  LM-Stat.   Crit.Val.** 

US10Y Level -2.6578 0.2546 -2.4830 0.3366 0.4066 0.216 

  First Diff. -43.8958 0.0000 -44.0799 0.0000 0.0422 0.216 

UK10Y Level -2.0116 0.5940 -1.9239 0.6415 0.4929 0.216 

  First Diff. -41.6571 0.0000 -41.7000 0.0000 0.0479 0.216 

JAP10Y Level -4.7349 0.0006 -4.7332 0.0006 0.0757 0.216 

  First Diff. -44.9643 0.0000 -44.9834 0.0000 0.0215 0.216 

GER10Y Level -3.0058 0.1308 -2.7748 0.2069 0.2651 0.216 

  First Diff. -38.4544 0.0000 -38.2240 0.0000 0.0315 0.216 

CAD10Y Level -2.5667 0.2959 -2.3769 0.3916 0.3806 0.216 

  First Diff. -44.9977 0.0000 -45.2422 0.0000 0.0469 0.216 

 

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; and 

also the sample test statistic and the critical values of the KPS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 
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Table 5.11 The unit root tests: Short-term Interest Rates;  

                   Pre-crisis period: August 2001- June 2007 

                    

Unit Root Tests  

 

             ADF                    PP KPSS 

pre-crisis    t-Stat. Prob.* Adj. t-Stat. Prob.* LM-Stat. Crit.Val.** 

US1M Level 

 

-3.6348 0.0272 -3.5867 0.0312 1.0912 0.216 

  First Diff.   -15.0577 0.0000 -35.9307 0.0000 0.3241 0.216 

UK1M Level 

 

-3.3390 0.0604 -3.3401 0.0602 0.4594 0.216 

  First Diff.   -38.9851 0.0000 -38.9993 0.0000 0.2135 0.216 

JAP1M Level 

 

1.4920 0.9993 1.2344 0.9984 0.8186 0.216 

  First Diff.   -21.0035 0.0000 -39.4955 0.0000 0.0855 0.216 

GER1M Level 

 

-1.4251 0.5713 -1.6256 0.4692 1.1545 0.216 

  First Diff.   -7.7477 0.0000 -35.8555 0.0000 0.0470 0.216 

CAD1M Level   - 0.5927 0.8697 -0.7268 0.8380 0.7861 0.216 

  First Diff.   -35.5228 0.0000 -57.3968 0.0001   0.1990     0.216 

 

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; and 

also the sample test statistic and the critical values of the KPS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 

 

Table 5.12 The unit root tests: Short-term Interest Rates; 

                   Post-crisis period: July 2007-July 2014 

                    

Unit Root Tests 

  

             ADF   PP KPSS 

Short Rates post-crisis  t-Stat. Prob.* Adj. t-Stat. Prob.* LM-Stat. Crit.Val.** 

US1M Level -3.8243 0.0155 -3.2955 0.0673 0.8499 0.216 

  First Diff. -15.9247 0.0000 -40.1889 0.0000 0.1093 0.216 

UK1M Level -1.7682 0.7199 -1.1854 0.9123 1.0074 0.216 

  First Diff. -4.1491 0.0054 -44.4946 0.0000 0.1817 0.216 

JAP1M Level -1.4893 0.8333 -1.5179 0.8235 0.9855 0.216 

  First Diff. -34.6956 0.0000 -49.8181 0.0000 0.0478 0.216 

GER1M Level -1.0407 0.9366 -1.0480 0.9356 0.7982 0.216 

  First Diff. -10.1353 0.0000 -38.8175 0.0000 0.1269 0.216 

CAD1M Level -2.7044 0.2348 -2.3776 0.3912 0.9468 0.216 

  First Diff. -12.6441 0.0000 -44.6301 0.0000 0.1017 0.216 

  

This table presents the sample test-statistics and the probabilities for ADF and PP unit root tests; and 

also the sample test statistic and the critical values of the KPS test, computed using EViews. 

*MacKinnon (1996) one-sided p-values 

**Kwiatkowski-Phillips-Schmidt-Shin (1992, Table1) 
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5.5 Empirical Results: The Full BEKK Model 

 

        The estimation results for the discrete time MGARCH – full BEKK models are are 

organised pairwise, for example for the U.S.-U.K. pair we look first at the individual 

channels (return and volatility) for each combination of the equity markets with short-term 

interest rates markets one-month T-bills and then the equity markets with Government 

bond markets. The results for each segment of the yield curve are presented separately, 

with Tables 5.13 - 5.16 containing the empirical findings for the equity and the money 

market segment, and Tables 5.17 -5.20 reporting the estimation results for the equity and 

bond markets, respectively. Each table is organised in two panels: panel A contains the 

estimates for the twenty parameters of the mean equation (four intercepts, four 

autoregressive coefficients and twelve return spillover parameters), while panel B reports 

the estimates for the thirty-six parameters of the variance equation, including the shock 

and volatility spillovers matrices.  

 

5.5.1 The Estimation Results for the Full BEKK model: Stock and 

Money Markets 

 

Return Spillovers – The Mean Equation  

       U.S. – U.K.  

       In the case of U.S.-U.K. pair for stock and money markets, the results regarding the 

mean equation (see Table 3.13, panel A)show very little evidence of return spillovers prior 

to the crisis with only two significant estimates at 1% level of significance, 21 0.3849   

measuring the feedback from the S&P500 to FTSE100 (direct international) and 

34 0.1171   from the U.K. money market to U.S. money market. There is also a 

reciprocal negative weak feedback in the returns from the U.S. to the U.K. During the 

crisis, both U.S. markets have a leading role, with S&P500 and U.S. money market 

affecting the U.K. equity market (
21 0.466   and 

23 1.4234  ). The unidirectional 

return spillovers from S&P500 to FTSE100 intensify as a result of the crisis from 0.38 to 

0.44. Also, the U.S. money market transmits information to both U.S and U.K equity 

markets. In conclusion, for the U.S. – U.K. pair, there is evidence of international indirect 

spillovers which are not present before crisis. 

      U.S. – Japan  
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      Turning to U.S.-Japan stock and money market results (Table3.14, Panel A), there is 

evidence of increasing unidirectional direct international return spillover effects from 

S&P500 to NIKKEI500 from 
21 0.0683   before the crisis to 21 0.1097   post-crisis. 

The strongest linkages exist before the crisis from the U.S money market to both U.S. and 

Japanese equity markets (domestic and indirect international, respectively). However, the 

information transmission via these two routes slightly weakens during the crisis. 

Interestingly, domestic return spillovers in Japan are highly negative during the crisis 

suggesting that the two asset classes evolve in opposite directions in terms of returns. In 

addition, there is some evidence of decoupling effects as the U.S. money market transmits 

information to its Japanese counterparty with increased negative effect 
43 0.0063    

during the crisis. In general, during the crisis the transmission of shocks via return channel 

is stronger between the equity markets and weaker between the money markets of the U.S 

and Japan.  

      U.S. – Germany  

      The return effects for the U.S. and German stock and money markets are reported in 

Table 3.15, Panel A.  There is some unidirectional (from U.S. to Germany) interaction 

between the two money markets has increased from 0.006 to 0.010. Regarding the equity 

markets, the impact of the S&P500 on DAX30 is decreasing from 0.202 to 0.154 whereas 

the influence from DAX30 on S&P500 more than doubled from 0.08  to 0.174 . Similar to 

the U.S.-U.K. analysis, the position of the U.S. money market in relation with the equity 

markets changes dramatically, from no impact before the crisis to significant linkages to 

S&P500 ( 13 0.995  )  and to DAX30 ( 23 0.843    ). 

       U.S. – Canada 

 The parameter estimates of the mean equation for U.S.-Canada are presented in Table 

3.16 (Panel A) provides some evidence for the presence of return spillover effects over 

both periods.  There is only a unidirectional (from SPTSX to S&P500) flow of return 

information between the two equity markets that intensifies during the crisis from 0.187 to 

0.290. On the money markets side, there is no sign of interaction during the crisis, 

however some markets connect indirectly with substantial return spillovers from the 

Canadian money market on S&P500 (
14 2.812  ). Hence, the Canadian markets are 

exporting information shock via return channel to the U.S and not the other way as 

expected given the crisis originated in the U.S. 

     The transmission of information via return channel inside this complex route-network, 

between the stock and money markets can be summarised as follows. Regarding the 
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domestic route, the busiest information flows exist mostly in one direction from the U.S. 

money market to the equity market. The other economies do not provide evidence of 

interaction between their equity and money markets via the return channel (apart from 

Japan where the money market has a negative feedback effect on the equity market). For 

the direct international route, the U.S. equity markets have the leading role of exporting 

information, while the money markets seem to exchange very little information or with 

negative effects (U.S.- Japan).  The leading role of the U.S. exporting information is also 

observed via the indirect international transmission route with the busiest direction from 

the U.S. money markets to the equity markets of the other economies. 

 

Volatility Spillovers – The Volatility Equation  

 

        U.S. – U.K. 

        Analysing the estimates for the volatility equation parameters (see Table 3.13, Panel 

B), one could observe that while before the crisis the volatility information flows in most 

directions, during the crisis many routes disappear as several estimates are statistically 

insignificant.  However, the crisis has increased the volatility spillover effects in both 

directions between the S&P and FTSE100.  While the communication consolidates 

between the equity markets it weakens between U.S. and U.K. money markets, where the 

relationship becomes very weak and unidirectional (
2

34 0.0002  ). Domestically, only 

inside the U.K the money-market exports volatility to FTSE100. There is evidence of 

highly significant indirect volatility spillovers from the UK money market to the U.S. 

equity market (
2

41 56.00  ). Therefore, the direct volatility channel is active only between 

the equity markets.   

      U.S. – Japan 

      There are linkages in terms of volatility shocks between S&P5000 and NIKKEI500 

before the crisis which disappear in the crisis period. (see Table 3.14, Panel B). The direct 

relationships between money markets of the two countries on one side and the equity 

markets on the other side become almost inexistent. Also, the domestic routes inside each 

country are less busy during the crisis. The only indirect volatility transmission that 

persists over both periods is that between the U.S. money market and NIKKEI500 

2

32( 0.2966)  .  

       U.S. – Germany 
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       In terms of volatility impact, the transmission channels during the crisis change 

differently when compared to the return linkages.  The interaction between the U.S. 

money market and the equity markets dissipates (like in the U.S.-Japan case). The crisis 

seems not to affect the way in which the equity markets exchange volatility, while the 

domestic routes are very busy only for Germany ( 2

42 10.177  ). There is evidence of 

increased insirect international volatility spillovers from the German money market to 

S&P500 ( 2

41 45.407   ).   

       U.S. – Canada 

       The transmission of the volatility information between the U.S and Canada is subject 

to some changes during the crisis (see Table 3.16, Panel B), as the equity markets are 

slightly more interconnected in the sense that their relationship becomes bidirectional. The 

inverse change is observed for the money markets where there is no more influence from 

the Canadian money market during the crisis. Similarly, to the UK and Germany, the 

Canadian money market exports volatility to the U.S. markets indirectly through the 

equity market (
2

41 12.107  ) however with substantially greater intensity. 

       The information transmission via volatility channel with its six bidirectional routes 

can be summarised in general terms as follows. For all the analysed countries, there are 

clear similar patterns with very few differences. The domestic routes suggest that in all 

cases the U.S. markets interact less, while for the other economies the equity and the 

money market are communicating at a much higher intensity during the crisis. Regarding 

the direct (between the same asset classes) international routes there is a general pattern: 

the equity markets become closely interconnected (except for Japanese equity markets), 

while between the money markets there is barely any volatility spillover effects. There is 

evidence of substantial indirect international volatility transmission from the money 

markets of the countries analysed to S&P500 (except for Japan).  

 

5.5.2 The Estimation Results for the Full BEKK model: Stock and Bond 

Markets 

 

Return Spillovers – The Mean Equation  

       U.S. – U.K. 

       First, the analysis of the U.S.-U.K. pair (see Table 5.17, Panel A) finds that there is 

evidence of some return spillover effects during both sub-periods. At the domestic level, 

the information flows in one direction only, from the bond markets to the equity markets 
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in both countries. The U.S. long-term bond market seems to be most impactful, with its 

feedbacks increasing from 
13 1.057   before the crisis to 13 6.493   during the crisis.  

and Similar changes can be observed in the influence of the U.K. long-term bond market 

on the equity market ( 23 1.645  before the crisis and 
23 4.566  during the crisis). 

 The direct international route is dominated by the U.S. markets with information being 

transmitted unidirectionally from S&P500 towards FTSE100 that consolidates during the 

crisis and from U.S. bond market to U.K bond market. There is evidence of indirect 

international return spillovers from from the U.S. bond market to FTSE100 and from the 

UK bond market to S&P500, respectively. 

       U.S. – Japan 

       For the U.S.-Japan pair the estimation results are presented in Table 5.18 (Panel A). 

The feedback effects in the mean equations are barely present before the crisis. Internally 

there is only one direction flow of information from the bond markets to the equity 

markets. Internationally, the direct linkages between same asset classes are dominated by 

the U.S. markets. Concerning the equity markets there are strong unidirectional feedbacks 

from S&P500 to NIKKEI500. There is some evidence of indirect return transmission as a 

result of the crisis, from the U.S. bond market to the NIKKEI500 and from S&P500 to 

Japanese bond market. Hence, the U.S. markets become the main exporters of information 

via the return channel, both directly and indirectly. 

      U.S. - Germany 

      The estimation results for the U.S.-Germany (Table 5.19, Panel A) show important 

changes in the mechanism of price discovery transmission as the result of the crisis. As for 

the previous pairs, inside each economy the bond markets have a great impact on the 

respective equity markets (
13 6.2286   and 24 6.0799  ). The direct international 

linkages are more intense between the equity markets with the DAX30 index being 

dominant over S&P500 during the crisis. The bond markets are weakly linked with 

feedbacks from the U.S. bond market ( 43 0.1916   ) being stronger before the crisis. 

From one asset class to another, the event of the crisis makes the equity markets more 

sensitive to what happens within the bond markets. During the crisis, the indirect external 

routes are extremely busy with significant information transmission from each bond 

market to the other equity market ( 23 4.9189   and 
14 3.8735  ). 

       U.S. - Canada 

       The return spillovers results for the mean equation for U.S. - Canada show different 

results from the other three pairs (see Table 5.20, Panel A). During the crisis, the 
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feedbacks from U.S. bond market to both equity markets increased few times fold, while 

within each asset class there is influence only from the Canadian market, as in the money 

market context. An important change in the return transmission is the new indirect impact 

of the two stock indices, S&P500 and SPTSX on the bond markets. 

        In conclusion, while the other three economies seem to be dominated by the U.S. 

equity and bond markets, for Canada the situation reverses as there are strong bidirectional 

return spillovers especially from both equity and bond Canadian markets to their U.S. 

counterparty markets.  

Volatility Spillovers – The Volatility Equations Equation  

       U.S. – U. K. 

       In terms of volatility channel, there are more significant estimates compared to the 

return parameters, with less pre-crisis presence of volatility spillover effects than during 

the crisis. The equity markets communicate uni-directionally from the S&P 5000 to 

FTSE100 ( 2

12 0.0154  ), while the internal volatility flows are extremely high from each 

bond market to its respective equity sector ( 2

31 186.9651   and 2

42 17.1581  ).  Overall, 

the bond markets seem to play a rather dominant role especially during the crisis along 

both direct and indirect routes. 

       U.S. - Japan 

       Turning to the volatility channel for the U.S. – Japan analysis, before the crisis there 

is significant evidence of volatility spillovers between the equity and bond markets of the 

two the economies in all directions. However, during the crisis the flow of information 

through volatility channel intensifies only along some directions. The estimates for the 

domestic routes show that the bond markets are transferring volatility to the equity 

markets; are The U.S. equity market becomes the main source of volatility spillovers 

across all the other markets when compared with its Japanese counterparty, while the 

Japanese bond market seems to export more volatility than the U.S. bond market. The 

volatility of the U.S. bond market does not play the leading role anymore which is in 

contrast with the return spillovers results. The Japanese bond market affects to a great 

extent the two equity markets, S&P500 (
2

41 186.068  ) and NIKKEI500 (
2

32 32.974  ).  

        U.S. - Germany 

        Looking at the Table 5.19 (Panel B), there is clearly more evidence of the volatility 

spillover effects between the U.S and Germany, as all sixteen parameters in the matrix of 

volatility spillovers are highly significant in both sub-periods considered. However, the 

impact of the crisis is unclear as the value of several coefficients decrease during the 
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crisis. The dominance of the U.S. markets present before the crisis seems to diminish 

while the influence of the German bond and equity markets on their U.S. counterparties 

increases during the crisis. 

      U.S. - Canada 

       There is weak evidence of volatility spillover effects during both periods with most 

estimates slightly increasing during the crisis. The U.S. is the main volatility exporter in 

the equity markets (
2

12 0.055  compared to
2

21 0.041  ) and Canada in the bond markets, 

respectively (
2

43 0.013   compared to
2

34 0.003  ). The indirect connections are weak, 

with only the volatility of the Canadian bond market affecting significantly the volatility 

of the S&P500 (
2

41 1.340  ).  

     The volatility channel seems to facilitate mostly the transmission of information via 

indirect external routes and via the domestic route in one direction only, from the bond 

markets to the equity markets. The results from both return and volatility spillovers 

analyses suggest that Canada exchanges information with the U.S. in a different way. 

During the crisis, for many routes the direction of the information flows changes such that 

the Canadian markets are dominant over the U.S. markets.  

      One of the aims of this study is to investigate how the last global financial crisis has 

spread from the U.S. (the country where the crisis originated) to other major economies. To 

assess the role of the U.S markets as the most important source of information shocks we 

have estimated the full BEKK four-variable model for all the possible combinations of 

pairing any two countries.  A total of other 24 models have been estimated corresponding to 

six country-pairs over pre-crisis and post-crisis periods, keeping the same asset class 

combinations across the two segments of the yield curve. The estimation results for the 

additional combinations are presented in the Appendix at the end of the chapter. The 

findings from the analysis of the pairs that do not contain the U.S. markets reveal weaker 

spillover effects especially through the volatility channel as the parameter estimates 

measuring the intensity of the information flow are substantially lower. Moreover, where the 

U.S. markets are modelled there is significant evidence of volatility spillovers effects along 

the indirect international routes, whereas when the U.S. markets are excluded these linkages 

are substantially diminished.  
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  Table 5.13 U.S.-U.K., Stock and Money Markets; The estimation results for the Variance Equation in the FULL BEKK Model  
 

           Panel A   Pre-crisis Post-crisis 

   The Mean Equation  S&P500 FTSE100 US TB UK 1M  S&P500 FTSE100 US 1M UK 1M 

intercept 0.025296 0.035852 -0.001348 0.000897 0.090339*** 0.027369 -0.000461 -0.000060 

AR(1) -0.054885** -0.261938*** -0.037685 0.003815 -0.088172*** -0.301711*** 0.022004 -0.011939 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

from S&P500 from FTSE100 from US 1M from UK 1M from S&P500 from FTSE100 from US 1M from UK 1M 

to S&P500 

 

-0.025839 0.490693 -0.846969   -0.005459 0.864732*** -1.318798 

to FTSE100 0.388486*** 

 

-0.083479 -1.199790 0.445833*** 

 

1.423429*** -0.997557 

to US 1M -0.000133 -0.001537* 

 

0.117130*** 0.000012 -0.000419 

 

-0.010318 

to UK 1M -0.000876 0.000348 -0.022914*   0.000483*** -0.000212 0.009237   

                    Panel B  Pre-crisis Post-crisis 

The Variance 

Equation 
 S&P500 FTSE100 US 1M UK 1M  S&P500 FTSE100 US 1M UK 1M 

Intercept matrix -0.127376***       -0.067956       

C     0.014975 0.091260*** 

 

  -0.037689 0.110118*** 

 

  

 i=1,…,4 -0.010649 0.014608*** 0.000000   0.003475*** -0.000302 0.000000   

  -0.004701* -0.003225 0.000000 0.000000 0.000029 -0.000490*** 0.000000 0.000000 

 ARCH effect matrix   0.201644*** -0.112957*** -0.003029** 0.006358*** 0.015602 0.167818*** -0.000292 -0.000725*** 

A    0.061418** 0.266175*** 0.016550*** -0.002294*** 0.149183*** 0.103032*** -0.000769 0.000052 

 i=1,…,4 0.378500 -0.882946** 0.719879*** 0.069817*** -0.720056*** -0.224335 0.623558*** 0.019871*** 

  0.131130 1.821763*** -0.052835 -0.051453 -0.706872 -2.079203*** -0.057734** 0.191632*** 

 GARCH effect matrix  -1.018739*** -0.404689*** 0.012832*** 0.008284*** 0.136733 -0.847421*** 0.000229 -0.000286 

G    0.627083*** 1.079446*** -0.008693*** 0.000589 -1.097538*** -0.130892 0.000543 0.000196 

i=1,…,4  -3.313100*** 1.251530* 0.473664*** -0.361381*** 0.352114 -0.057005 0.849714*** -0.014450*** 

  16.243943*** 5.531147*** 0.755907*** 0.527481*** 7.483250*** 7.039526*** 0.007864 0.978931*** 
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Shock Spillovers from S&P500 from FTSE100 from US 1M from UK 1M from S&P500 from FTSE100 from US 1M from UK 1M 

to S&P500 0.040660*** 0.003772** 0.143262 0.017195 0.000243 0.022256*** 0.518481*** 0.499668 

to FTSE100 0.012759*** 0.070849*** 0.779593** 3.318820*** 0.028163*** 0.010616*** 0.050326 4.323086*** 

to US 1M 0.000009** 0.000274*** 0.518225*** 0.002792 0.000000 0.000001 0.388824*** 0.003333** 

to UK 1M 0.000040*** 0.000005*** 0.004874*** 0.002647 0.000001*** 0.000000 0.000395*** 0.036723*** 

Volatility Spillovers   from S&P500 from FTSE100 from US 1M from UK 1M from S&P500 from FTSE100 from US 1M from UK 1M 

to S&P500 1.037828*** 0.393233*** 10.976633*** 263.865684*** 0.018696 1.204591*** 0.123984 55.999024*** 

to FTSE100 0.163773*** 1.165204*** 1.566328* 30.593588*** 0.718123*** 0.017133 0.003250 49.554928*** 

to US 1M 0.000165*** 0.000076*** 0.224357*** 0.571395*** 0.000000 0.000000 0.722014*** 0.000062 

to UK 1M 0.000069*** 0.000000 0.130596*** 0.278236*** 0.000000 0.000000 0.000209*** 0.958306*** 

  Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively 

  

Table 5.14 U.S. – JAPAN Stock and Money Markets; The estimation results for the Variance Equation in the FULL BEKK Model 

                    Panel A   Pre-crisis Post-crisis 

   The Mean Equation S&P500 NIKKEI500 from US 1M JAP 1M S&P500 NIKKEI500  US 1M JAP 1M 

intercept 0.056131*** 0.069043*** -0.002086** -0.000001 0.065854*** 0.019098 0.000138 0.000012 

AR(1) -0.094721*** 0.099057*** 0.144364*** 0.137531*** -0.030599 -0.011690 -0.004563 0.202389*** 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

from S&P500 from NIKKEI500 from US 1M from JAP 1M from S&P500 from NIKKEI500 from US 1M from JAP 1M 

to S&P500   0.021382 0.993042*** -2.861105   -0.008863 0.766808*** -2.737455 

to NIKKEI500  0.068281** 

 

1.056396** -4.872645 0.109678*** 

 

0.982511*** -11.959657*** 

to US 1M 0.007026*** -0.002080** 

 

0.062720 -0.000749** 0.000297 

 

-0.009560 

to JAP 1M 0.000073*** -0.000073*** 0.000563**   0.000038 -0.000056 -0.006276***   

 



283 
 

                    Panel B  Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix 0.100043***       0.125558***       

  C   0.726525*** 0.000001 

 

  0.135768*** -0.182554*** 

 

  

i=1,…,4 0.024560*** 0.000000 0.000000   0.000591 0.000787 -0.004538***   

  0.000060*** 0.000000 0.000000 0.000000 0.000101*** -0.000109*** 0.000036 0.000000 

 ARCH effect matrix   0.123417*** -0.092027*** -0.022678*** 0.000131*** 0.221187*** -0.018190 -0.001910*** -0.000067*** 

 A   0.024638 0.206863*** -0.002186 -0.000136*** 0.006953 0.194363*** 0.001574*** 0.000144*** 

i=1,…,4 0.563099 2.285312** 0.888880*** 0.000878*** 0.404400 1.000598*** 0.646242*** -0.003971*** 

  1.203542 -1.502579 -0.070373 0.746446*** -0.267110 -3.712818 -0.050244 0.554472*** 

 GARCH effect matrix  -1.097223*** -0.665604*** 0.004416*** 0.000037 0.970334*** 0.006307 0.000325*** 0.000018*** 

G    0.305272*** 0.843902*** -0.018676*** -0.000022* -0.000701 0.959833*** -0.000322* -0.000057*** 

i=1,…,4 0.650073 0.516289 -0.190602*** 0.001637*** -0.180146*** -0.544623*** 0.840624*** 0.001048*** 

  -8.133501 -4.165638 0.984142*** 0.886889*** 0.284055 1.258251** 0.016694 0.923871*** 

Shock Spillovers from S&P500 from NIKKEI500 from US 1M from JAP 1M from S&P500 from NIKKEI500 from US 1M from JAP 1M 

to S&P500 0.015232*** 0.000607 0.317081 1.448514 0.048924*** 0.000048 0.163540 0.071348 

to NIKKEI500  0.008469*** 0.042792*** 5.222650** 2.257743 0.000331 0.037777*** 1.001196*** 13.785018 

to US 1M 0.000514*** 0.000005 0.790107*** 0.004952 0.000004*** 0.000002*** 0.417629*** 0.002524 

to JAP 1M 0.000000*** 0.000000*** 0.000001*** 0.557182*** 0.000000*** 0.000000*** 0.000016*** 0.307439*** 

Volatility Spillovers   from S&P500 from NIKKEI500 from US 1M from JAP 1M from S&P500 from NIKKEI500 from US 1M from JAP 1M 

to S&P500 1.203898*** 0.093191*** 0.422596 66.153835 0.941549*** 0.000000 0.032453*** 0.080687 

to NIKKEI500  0.443029*** 0.712170*** 0.266554 17.352538 0.000040 0.921279*** 0.296614*** 1.583195** 

to US 1M 0.000020*** 0.000349*** 0.036329*** 0.968536*** 0.000000*** 0.000000*** 0.706648*** 0.000279 

to JAP 1M 0.000000 0.000000* 0.000003*** 0.786572*** 0.000000*** 0.000000*** 0.000001*** 0.853538*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively 
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Table 5.15 U.S. – Germany, Stock and Money Markets; The estimation results for the Variance Equation in the FULL BEKK Model 

         
           Panel A   Pre-crisis Post-crisis 

   The Mean Equation S&P500 DAX30 US 1M GER 1M S&P500 DAX30 US 1M GER 1M 

intercept 0.054877*** 0.115261*** 0.002131** -0.000009 0.084436*** 0.070638*** -0.000561 -0.000107* 

AR(1) -0.129968*** -0.129122*** 0.032071 0.379127*** -0.153461*** -0.086617 0.041216*** 0.970145*** 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

from S&P500 from DAX30 from US 1M from GER 1M from S&P500 from DAX30 from US 1M from GER 1M 

to S&P500    0.080260*** -0.218816 1.282842   0.173600*** 0.955313*** 4.366920*** 

to DAX30  0.202328*** 

 

-0.465932 -4.319040** 0.154321*** 

 

0.843047*** 2.533530 

to US 1M  -0.000473 -0.001272* 

 

-0.045627 -0.000306 -0.000087 

 

-0.039709 

to GER 1M  -0.000272* 0.000431*** 0.005760***   -0.001066*** 0.000178*** 0.009716***   

                    Panel B  Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix 0.076832***       0.127876***       

C     0.116586*** 0.022818 

 

  0.210413*** 0.039138 

 

  

 i=1,…,4 -0.002470 0.014643*** -0.000001   -0.000064 -0.001005*** 0.000000   

  0.000001 -0.000182*** 0.000000 0.000000 -0.001257*** -0.000167 0.000000 0.000000 

ARCH effect matrix   0.193398*** 0.320415*** -0.002299* 0.000113 0.144674*** -0.060268** -0.000558* -0.004170*** 

A    -0.105175*** -0.000116 0.006538*** -0.000093 0.100708*** 0.161372*** 0.000012 0.001340*** 

 i=1,…,4 0.851034** 1.486965*** 0.641630*** 0.004254* 1.159865*** 0.377138 0.269349*** 0.165652*** 

  -2.090648* -4.909012*** -0.014902 0.589312*** 14.441266*** 8.105497*** -0.081592 1.974711*** 

 GARCH effect matrix  0.885180*** -0.198984*** 0.001319*** -0.000049 1.037518*** 0.131143*** 0.000142 0.000584*** 

G    0.095776*** 1.058327*** -0.000932*** 0.000035 -0.094879*** 0.891752*** 0.000029 -0.000127 

i=1,…,4  -0.414615*** -0.622621*** 0.787018*** 0.000776 -0.020744 0.053339 0.970299*** -0.010743*** 

  0.870251*** 0.429943 -0.015794 0.924036*** -6.738536*** -3.190080*** 0.039633 0.248095*** 
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Shock Spillovers from S&P500 from DAX30 from US 1M from GER 1M from S&P500 from DAX30 from US 1M from GER 1M 

to S&P500  0.037403*** 0.011062*** 0.724259** 4.370809* 0.020931*** 0.010142*** 1.345287*** 208.550156*** 

to DAX30  0.102666*** 0.000000 2.211064*** 24.098399*** 0.003632** 0.026041*** 0.142233 65.699081*** 

to US 1M  0.000005* 0.000043*** 0.411689*** 0.000222 0.000000* 0.000000 0.072549*** 0.006657 

to GER 1M  0.000000 0.000000 0.000018* 0.347288*** 0.000017*** 0.000002*** 0.027441*** 3.899483*** 

Volatility Spillovers   from S&P500 from DAX30 from US 1M from GER 1M from S&P500 from DAX30 from US 1M from GER 1M 

to S&P500  0.783543*** 0.009173*** 0.171906*** 0.757337*** 1.076443*** 0.009002*** 0.000430 45.407864*** 

to DAX30  0.039595*** 1.120056*** 0.387657*** 0.184851 0.017199*** 0.795221*** 0.002845 10.176609*** 

to US 1M  0.000002*** 0.000001*** 0.619398*** 0.000249 0.000000 0.000000 0.941481*** 0.001571 

to GER 1M  0.000000 0.000000 0.000001 0.853843*** 0.000000*** 0.000000 0.000115*** 0.061551*** 

  Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively 

  

Table RATS 5.16 U.S. – CANADA Stock and Money Markets; The estimation results for the Variance Equation in the FULL BEKK Model  

         
           Panel A   Pre-crisis Post-crisis 

   The Mean Equation S&P500 SPTSX US 1M CAD 1M S&P500 SPTSX US 1M CAD 1M 

intercept 0.043281** 0.076261*** -0.000199 0.000775* 0.059812*** 0.036209* -0.000061 -0.000412 

AR(1) -0.203001*** 0.002361 0.209623*** 0.202101*** -0.230687*** -0.054882** -0.006196 -0.122254*** 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

from S&P500 from SPTSX from US 1M from CAD 1M from S&P500 from SPTSX from US 1M from CAD 1M 

to S&P500   0.186882*** 0.090056 -0.371459   0.290353*** 0.892475*** 2.811756*** 

to SPTSX -0.009304 

 

-0.525441 -0.509030 0.035043 

 
0.107829 0.543477 

to US 1M 0.000506 0.004321*** 

 

0.188716*** -0.000807** 0.001285*** 

 
0.002800 

 to CAD 1M -0.001648* 0.000767 -0.000927   -0.000037 0.000462 -0.014918   
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           Panel B  Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

 intercept matrix -0.061269***       0.121509***       

C     -0.190261*** -0.150115*** 

 

  0.059913*** 0.045894*** 

 

  

 i=1,…,4  -0.005356 -0.001002 0.030075***   -0.002145 -0.003032* 0.000006   

  -0.009213*** -0.005316 -0.001713 0.000000 -0.000850** 0.000163 0.000001 0.000000 

 ARCH effect matrix   0.039465** -0.071785*** -0.020195*** -0.017670*** 0.201473*** 0.078428*** 0.000244 0.000001 

A    -0.086773*** -0.216288*** 0.003653 0.009891*** -0.108312*** 0.135453*** -0.001220*** -0.002676*** 

i=1,…,4   -0.115432 -0.095499 0.772505*** -0.050012* -0.325253 0.128580 0.600153*** 0.061269*** 

  -0.176640 -0.169373 0.105129*** 0.704024*** -0.927384*** -0.782737*** 0.012595 0.295599*** 

  GARCH effect matrix  1.000708*** 0.040352*** -0.000856 0.002762*** -0.955691*** -0.036555*** 0.832501 3.479543 

G    -0.013944 0.888097*** -0.000554 -0.006746*** 0.029895*** -0.996617*** 2.439321 4.742052 

i=1,…,4   -0.288196 -0.945182 0.352325*** 0.091326*** 0.000425 0.000711*** 0.856810*** -0.006144*** 

  0.573539*** 0.195392 -0.127834*** 0.726470*** 0.000818*** -0.002044*** -0.026183 0.956238*** 

Shock Spillovers from S&P500 from SPTSX from US 1M from CAD 1M from S&P500 from SPTSX from US 1M from CAD 1M 

to S&P500 0.001557** 0.007529*** 0.013325 0.031202 0.040592*** 0.011732*** 0.105790 0.860041*** 

to SPTSX 0.005153*** 0.046780*** 0.009120 0.028687 0.006151*** 0.018347*** 0.016533 0.612677*** 

to US 1M 0.000408*** 0.000013 0.596764*** 0.011052*** 0.000000 0.000001*** 0.360184*** 0.000159 

 to CAD 1M 0.000312*** 0.000098*** 0.002501* 0.495650*** 0.000000 0.000007*** 0.003754*** 0.087379*** 

Volatility Spillovers   from S&P500 from SPTSX from US 1M from CAD 1M from S&P500 from SPTSX from US 1M from CAD 1M 

to S&P500 1.001417*** 0.000194 0.083057 0.328948*** 0.913346*** 0.001336*** 0.693058 12.107222*** 

to SPTSX 0.001628*** 0.788716*** 0.893369 0.038178 0.000894*** 0.993246*** 5.950285*** 22.487053*** 

to US 1M 0.000001 0.000000 0.124133*** 0.016342*** 0.000000 0.000001 0.734123*** 0.000038 

 to CAD 1M 0.000008*** 0.000046*** 0.008341*** 0.527759*** 0.000001 0.000004 0.000686*** 0.914390*** 

  Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively 
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Table 5.17   U.S. - U.K. Stock and Bond Markets; The estimation results for the Variance Equation in the FULL BEKK Model 

         
           Panel A   Pre-crisis Post-crisis 

   The Mean Equation  S&P500 FTSE100 US 10Y UK 10Y  S&P500 FTSE100 US 10Y UK 10Y 

intercept 0.054295*** 0.054067*** 0.000394 0.001126 0.069432*** 0.026146 -0.000198 -0.00086 

AR(1) -0.089378*** -0.225684*** -0.030975 -0.117975*** -0.043080* -0.28250*** -0.048370* -0.109000*** 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

from S&P500 from FTSE100 from US 10Y from UK 10Y from S&P500 from FTSE100 from US 10Y from UK 10Y 

to S&P500   0.030640 1.056586*** 1.134996**   0.001744 6.492774*** 2.271236*** 

to FTSE100 0.339259*** 

 

1.644884*** 2.054306*** 0.431665*** 

 

4.566273*** 4.293195*** 

to US 10Y -0.000821* 0.000872 

 

0.090644*** -0.000772 -0.001141 

 

0.042179 

to UK 10Y 0.000438 0.000505 0.165452***   -0.000904 0.000179 0.218115***   

                    Panel B  Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

 intercept matrix -0.084895***       0.001171 

  

  

 C    0.039413 0.093000*** 

 

  -0.205557** 0.150410 

 

  

i=1,…,4 0.002334*** 0.001393* 0.000000   0.003969 -0.002914 0.000001   

  0.006243*** 0.004761*** 0.000000 0.000001 0.007487** -0.005496 0.000001 0.000000 

ARCH effect matrix   -0.221384*** 0.086551*** 0.002252*** 0.001809 0.193490*** -0.205298*** -0.006362*** 0.003515*** 

A    0.182835*** 0.269696*** 0.001325 -0.000916 -0.189846*** 0.150497*** -0.009331*** -0.007001*** 

i=1,…,4 0.237864 -0.796658** 0.038590* -0.092809*** -3.884820*** -1.104321*** -0.030253 0.060438*** 

  -0.941924 0.854587* -0.004277 0.144843*** 2.667708*** -0.657617 0.057376*** 0.040079* 

  GARCH effect matrix  0.966610*** 0.048721*** 0.001362*** 0.001183*** 0.691614*** -0.124196*** 0.038047*** 0.024243*** 

G    0.005582 0.916042*** -0.001663*** -0.000759* 0.081894 0.843316*** -0.001925 -0.023370*** 

i=1,…,4 -0.179762 0.279603*** 1.003224*** 0.018594*** -13.673521*** -10.375747*** 0.747183*** 0.102816 
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  0.532199** -0.911371*** -0.020582*** 0.951411*** 10.772947*** 4.142230*** -1.048534*** -0.990592*** 

Shock Spillovers from S&P500 from FTSE100 from US TB from UK TB from S&P500 from FTSE100 from US Bond from UK bond 

to S&P500 0.049011*** 0.033429*** 0.056579 0.887220 0.037438*** 0.036042*** 15.091827*** 7.116666*** 

to FTSE100 0.007491*** 0.072736*** 0.634664** 0.730318* 0.042147*** 0.022649*** 1.219524*** 0.432460 

to US 10Y 0.000005*** 0.000002 0.001489* 0.000018 0.000040*** 0.000087*** 0.000915 0.003292*** 

to UK 10Y 0.000003 0.000001 0.008613*** 0.020980*** 0.000012*** 0.000049*** 0.003653*** 0.001606* 

Volatility Spillovers   from S&P500 from FTSE100 from US TB from UK TB from S&P500 from FTSE100 from US Bond from UK bond 

to S&P500 0.934335*** 0.000031 0.032314 0.283235** 0.478330*** 0.006707 186.965166*** 116.056393*** 

to FTSE100 0.002374*** 0.839133*** 0.078178*** 0.830597*** 0.015425*** 0.711182*** 107.656116*** 17.158067*** 

to US 10Y 0.000002*** 0.000003*** 1.006458*** 0.000424*** 0.001448*** 0.000004 0.558282*** 1.099423*** 

to UK 10Y 0.000001*** 0.000001* 0.000346*** 0.905182*** 0.000588*** 0.000546*** 0.010571 0.981272*** 

     Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively.L 

 

Table 5.18 U.S. – Japan, Stock and Bond Markets; The estimation results for the Variance Equation in the FULL BEKK Model 

                    Panel A   Pre-crisis Post-crisis 

   The Mean Equation S&P500 NIKKEI500 US 10Y JAP 10Y S&P500 NIKKEI500 US 10Y JAP 10Y 

intercept 0.045200*** 0.044777* 0.000512 -0.000261 0.069013*** 0.046515*** 0.000057 -0.000928** 

AR(1) -0.086098*** 0.062718*** 0.034683 -0.036071 -0.050845** 0.019932 -0.062397*** -0.028946 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

from S&P500 from NIKKEI500 from US 10Y from JAP 10Y from S&P500 from NIKKEI500 from US 10Y from JAP 10Y 

to S&P500   0.034843* -0.496176 0.743916 

 

0.024465 6.704387*** 0.098445 

to NIKKEI500  0.042043 

 

0.116648 7.187995*** 0.042188* 

 

5.996694*** 6.762224*** 

to US 10Y 0.002839* -0.000978 

 

-0.082546 -0.000970 0.000501 

 

0.095242 

to JAP 10Y 0.000778 0.000377 0.060773***   -0.001197*** 0.001115*** 0.114669***   
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                    Panel B  Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

 intercept matrix 0.058902** 

   

0.114558***       

 C    0.302745** 0.305349*** 

  

0.164581** -0.268067*** 

 

  

i=1,…,4 -0.001145 -0.000560 -0.000002 

 

-0.003634* -0.005610*** -0.000002   

  -0.004935*** -0.001087 0.000004 0.000228 -0.001063** -0.000231 -0.000002 0.000000 

 ARCH effect matrix   -0.180557*** 0.090650*** -0.003488*** -0.000768 0.253322*** -0.164406*** 0.004322*** 0.000134 

A    0.129374*** 0.343448*** 0.000630 -0.001311*** -0.001532 0.382244*** 0.001782 -0.000090 

i=1,…,4 -0.828209*** -1.605463*** 0.016082 -0.025283*** 2.242576*** 1.687185*** -0.103583*** -0.005471 

  -0.537251 -2.920203*** 0.023937 -0.223112*** -4.185626*** -8.989765*** -0.068811 -0.214000*** 

 GARCH effect matrix  1.006113*** 0.127698*** 0.000291 -0.000934*** 0.939326*** 0.045129*** -0.002705*** -0.001231 

G    -0.053814*** 0.767290*** -0.001856*** 0.001959*** 0.002476 0.865595*** -0.001295* 0.000001 

i=1,…,4 -0.890979*** -1.981806*** -0.997966*** -0.015282*** 1.122146*** 0.552415*** 0.998771*** 0.042340** 

  0.846092*** 2.854006*** 0.296192*** 0.941878*** -13.640667*** -5.742270* -0.579707*** -0.981502*** 

Shock Spillovers from S&P500 from NIKKEI500 from US 10Y from JAP 10Y from S&P500 from NIKKEI500 from US 10Y from JAP 10Y 

to S&P500 0.032601*** 0.016738*** 0.685930*** 0.288639 0.064172*** 0.000002 5.029146*** 17.519468*** 

to NIKKEI500  0.008217*** 0.117957*** 2.577512*** 8.527586*** 0.027029*** 0.146111*** 2.846593*** 80.815869*** 

to US 10Y 0.000012*** 0.000000 0.000259 0.000573 0.000019*** 0.000003 0.010729*** 0.004735 

to JAP 10Y 0.000001 0.000002*** 0.000639*** 0.049779*** 0.000000 0.000000 0.000030 0.045796*** 

Volatility Spillovers   from S&P500 from NIKKEI500 from US 10Y from JAP 10Y from S&P500 from NIKKEI500 from US 10Y from JAP 10Y 

to S&P500 1.012263*** 0.002896*** 0.793844*** 0.715871*** 0.882333*** 0.000006 1.259212*** 186.067794*** 

to NIKKEI500  0.016307*** 0.588734*** 3.927556*** 8.145350*** 0.002037*** 0.749254*** 0.305162*** 32.973662* 

to US 10Y 0.000000 0.000003*** 0.995935*** 0.087730*** 0.000007*** 0.000002* 0.997544*** 0.336061*** 

to JAP 10Y 0.000001*** 0.000004*** 0.000234*** 0.887135*** 0.000002 0.000000 0.001793** 0.963347*** 

     Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively. 
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Table 5.19 U.S. – Germany, Stock and Bond Markets; The estimation results for the Variance Equation in the FULL BEKK Model 

                    Panel A   Pre-crisis Post-crisis 

   The Mean Equation S&P500 DAX30 US 10Y GER 10Y S&P500 DAX30 US 10Y GER 10Y 

intercept 0.056605*** 0.109746*** 0.001452 0.000753 0.099182*** 0.095280*** 0.000913 -0.000906 

AR(1) -0.150844*** -0.072663*** 0.051220** -0.191196*** -0.202242*** -0.109867*** -0.054282** -0.053741** 

The Return Spillovers  

Matrix 
Pre-crisis Post-crisis 

from S&P500 from DAX30 from US 10Y from GER 10Y from S&P500 from DAX30 from US 10Y from GER 10Y 

to S&P500    0.094229*** 1.845535*** -0.557286   0.120078*** 6.228559*** 3.873497*** 

to DAX30  0.129119*** 

 

3.428322*** -0.021693 0.102639*** 

 

4.941885*** 6.079898*** 

to US 10Y  0.000156 -0.001131 

 

-0.064974* -0.000672 0.000608 

 

0.011617 

to GER 10Y  -0.001835* 0.000682 0.363440***   -0.001042 -0.001243 0.191554***   

                    Panel B  Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix -0.114491*** 

   

0.044738       

C     -0.137642*** 0.000000 

  

0.188741*** 0.000025 

 

  

i=1,…,4 0.022109*** 0.000000 0.000000 

 

0.004004** 0.000003 -0.000001   

  0.022434*** 0.000000 0.000000 0.000000 0.012492*** 0.000003 -0.000001 0.000000 

 ARCH effect matrix   0.135708*** 0.098573** 0.006630*** 0.002260 0.182058*** 0.042031 0.012279*** 0.001479 

 A   -0.093010*** 0.183203*** 0.003261*** 0.005201*** 0.041644* 0.214488*** -0.004998*** -0.006307*** 

i=1,…,4 1.212548*** 1.850986*** 0.001338 0.045588* 2.748556*** 1.427812*** -0.008980 -0.093877*** 

  0.630704 3.166946*** -0.009108 -0.058627 0.561579 2.953336*** 0.055876* 0.239269*** 

 GARCH effect matrix  0.661904*** -0.200451*** -0.036500*** 0.007995*** 0.956980*** 0.076861* -0.030318*** -0.006574*** 

G    0.071928*** 0.982807*** 0.005118*** -0.003445*** -0.079797*** 0.875325*** 0.018602*** 0.011216*** 

i=1,…,4 11.171125*** 8.244266*** 0.807513*** 0.115445*** 6.698426*** 3.148348*** 0.965210*** 0.105227*** 

  -8.860482*** -4.057351*** -0.405219*** 0.555093*** -7.126246*** -8.681736*** -0.128908*** 0.790813*** 
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Shock Spillovers from S&P500 from DAX30 from US 10Y from GER 10Y from S&P500 from DAX30 from US 10Y from GER 10Y 

to S&P500  0.018417*** 0.008651*** 1.470272*** 0.397788 0.033145*** 0.001734* 7.554561*** 0.315371 

to DAX30  0.009717** 0.033563*** 3.426148*** 10.029549*** 0.001767 0.046005*** 2.038646*** 8.722194*** 

to US 10Y  0.000044*** 0.000011*** 0.000002 0.000083 0.000151*** 0.000025*** 0.000081 0.003122* 

to GER 10Y  0.000005 0.000027*** 0.002078* 0.003437 0.000002 0.000040*** 0.008813*** 0.057250*** 

Volatility Spillovers   from S&P500 from DAX30 from US 10Y from GER 10Y from S&P500 from DAX30 from US 10Y from GER 10Y 

to S&P500  0.438116***          0.005174*** 124.794042*** 78.508141*** 0.915810*** 0.006368*** 44.868914*** 50.783388*** 

to DAX30  0.040180*** 0.965909*** 67.967915*** 16.462097*** 0.005908* 0.766194*** 9.912097*** 75.372546*** 

to US 10Y  0.001332*** 0.000026*** 0.652077*** 0.164202*** 0.000919*** 0.000346*** 0.931630*** 0.016617*** 

to GER 10Y  0.000064*** 0.000012*** 0.013327*** 0.308128*** 0.000043*** 0.000126*** 0.011073*** 0.625385*** 

 Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively 

 

Table 5.20 U.S. – Canada, Stock and Bond Markets; The estimation results for the Variance Equation in the FULL BEKK Model 

         
           Panel A   Pre-crisis Post-crisis 

   The Mean Equation S&P500 SPTSX US 10Y CAD 10Y S&P500 SPTSX US 10Y CAD 10Y 

intercept 0.061043*** 0.094276*** 0.000141 -0.000703 0.071375*** 0.062035*** -0.000064 -0.000925 

AR(1) -0.145458*** -0.033483 -0.098493 -0.098493 -0.194434*** -0.046581 -0.176814*** -0.023708 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

from S&P500 from SPTSX from US 10Y from CAD 10Y from S&P500 from SPTSX from US 10Y from CAD 10Y 

to S&P500 -0.145458 0.146036*** 0.637649 1.270641* -0.194434*** 0.229226*** 3.702519*** 4.747858*** 

to SPTSX 0.038973* -0.033483 0.592392 -0.544040 0.019598 -0.046581 1.585542*** 1.556437 

to US 10Y 0.001900 -0.002060 -0.098493*** 0.161330*** -0.003673*** 0.006595*** -0.176814*** 0.212745*** 

 to CAD 10Y 0.000336 -0.001007 -0.038054 0.050377 -0.002077*** 0.002875*** -0.022300 -0.023708 
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                    Panel B  Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix 0.056737**       0.077148***       

C     0.408662*** -0.123604 

 

  0.026723 -0.018275 

 

  

i=1,…,4 0.000419 -0.001227 0.000000   -0.009037** -0.007454 0.000000   

  0.000857 0.003031*** 0.000000 0.000000 -0.011596*** -0.006972 0.000000 0.000000 

 ARCH effect matrix   0.167332*** 0.166353*** 0.003968*** -0.002653*** 0.246621*** 0.098074*** 0.001462 0.000491 

A    0.007727 0.347958*** 0.000304 0.003111*** -0.095436*** 0.207653*** 0.003921*** 0.001521 

i=1,…,4 -1.776918*** -0.103037 0.127612*** -0.000297 -3.649553*** -2.675723*** -0.032628 0.121376*** 

  1.297067*** -0.887555 -0.232549*** -0.145274*** -0.647361 -0.022209 0.197751*** 0.067741 

 GARCH effect matrix  0.973010*** 0.120487*** 0.000232 0.002295*** 0.797494*** -0.235162*** -0.000417 0.000175 

G    0.011697 0.624927*** -0.002041 -0.003075** 0.203377*** 1.072551*** -0.001768*** -0.000602 

i=1,…,4 0.860309*** -0.759251* 0.944203*** -0.023238*** -0.318091 0.202946 1.042737*** 0.057592*** 

  -1.067437*** 1.448311*** 0.070352*** 1.011602*** 1.157601*** 0.128027 -0.113999*** 0.873327*** 

Shock Spillovers from S&P500 from SPTSX from US 10Y from CAD 10Y from S&P500 from SPTSX from US 10Y from CAD 10Y 

to S&P500 0.028000*** 0.000060 3.157438*** 1.682383*** 0.060822*** 0.009108*** 13.319234*** 0.419076 

           to SPTSX 0.027673*** 0.121075*** 0.010617 0.787754 0.009618*** 0.043120*** 7.159494*** 0.000493 

           to US 10Y 0.000016*** 0.000000 0.016285*** 0.054079*** 0.000002 0.000015*** 0.001065 0.039106*** 

 to CAD 10Y 0.000007*** 0.000010*** 0.000000 0.021105*** 0.000000 0.000002 0.014732*** 0.004589 

Volatility Spillovers   from S&P500 from SPTSX from US 10Y from CAD 10Y from S&P500 from SPTSX from US 10Y from CAD 10Y 

to S&P500 0.946748*** 0.000137 0.740132*** 1.139422*** 0.635997*** 0.041362*** 0.101182 1.340041*** 

           to SPTSX 0.014517*** 0.390534*** 0.576462* 2.097605*** 0.055301*** 1.150365*** 0.041187 0.016391 

           to US 10Y 0.000000 0.000004 0.891519*** 0.004949*** 0.000000 0.000003*** 1.087300*** 0.012996*** 

           to CAD 10Y 0.000005*** 0.000009** 0.000540*** 1.023339*** 0.000000 0.000000 0.003317*** 0.762699*** 

  Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively 
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Table 5.21 Summary Results: The busiest routes in the post-crisis period  

 

 

MONEY MARKETS BOND MARKETS 

Pairs  Channel Domestic routes  Direct  external  route Indirect external routes Domestic routes  
Direct external  

route 
Indirect external routes 

U.S. - U.K. 

 

US :  MM to EM EM : US to UK  US  (MM) to  UK (EM) US :  BM to EM EM : US to UK  US  (BM) to  UK (EM) 

 

return   0.86 0.45 1.42 6.47 0.43 4.57 

 

channel 

   

UK: BM TO EM 

 

UK (MM) to US (EM) 

     

4.29 

 

2.27 

  

UK : MM to EM EM: UK to US UK (MM) to US (EM) US :  BM to EM MM: UK to US UK (BM) to US (EM) 

 

volatility   49.55 1.21 55.99 186.97 0.98 116.06 

 

channel 

 

MM : US to UK 

 

UK :  BM to EM  

 

US  (BM) to  UK (EM) 

   

0.72 

 

17.16 

 

107.66 

US - JAP 

 

US :  MM to EM  

 

US  (MM) to  JAP (EM) JAP :  BM to EM 

 

US  (BM) to  JAP (EM) 

 

return   0.76 

 

0.98 6.76 

 

5.99 

 

channel JAP : MM to EM 

 

JAP (MM) to US (EM) US : BM to EM 

  

  

-11.96 

 

-2.74 6.70 

  

  

JAP : MM to EM MM : US to Japan US  (MM) to  JAP (EM) JAP : BM to EM 

 

JAP (BM) to  US (EM) 

 

volatility   1.58 0.71 0.3 32.97 

 

186.07 

 

channel 

   

US :  BM to EM 

 

US  (BM) to  JAP (EM) 

     

1.26 

 

2.85 

US - GER 

 

US :  MM to EM  

 

GER (MM) to US (EM) US :  BM to EM 

 

US  (BM) to  GER (EM) 

 

return   0.95 

 

4.37 6.23 

 

4.94 

 

channel 

   

GER :  BM to EM  

 

GER (BM) to US (EM) 

     

6.07 

 

3.87 

  

GER : MM to EM MM : US to GER GER (MM) to US (EM) GER : BM to EM 

 

GER (BM) to US (EM) 

 

volatility   10.18 0.94 45.41 75.37 

 

50.78 

 

channel 

   

US :  BM to EM 

 

US (BM) to GER (EM) 

     

44.87 

 

9.91 
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US - CAD 

 

US :  MM to EM  

 

 CAD (MM) to US (EM) US :  BM to EM 

 

CAD (BM) to US (EM) 

 

return   0.89 

 

2.82 3.7 

 

4.74 

 

channel 

     

US (BM) to CAD (EM) 

       

1.58 

  

CAD: MM to EM 

 

CAD (MM) to US (EM) 

  

CAD (BM) to US (EM) 

 

volatility   22.49 

 

12.11 

  

1.34 

 

channel 

  

US  (MM) to  CAD (EM) 

   

    

5.95 

    

The comparative analysis of the summary results reported in the Table 5.21 concludes that out of the three types of routes of information 

transmission, the most active route is the indirect external route followed by the domestic one. This result is valid for both return and volatility 

channels.  Along these routes, the information flows unidirectionally from the interest rate markets to the equity markets and not vice-versa, implying 

that the interest rate markets dominate the equity markets in transmission of information. When comparing the results of the two segments of the yield 

curve it is found that the return and volatility spillover effects are much stronger when the equity markets are modelled in combination with the long-

term markets than with the money markets. Among the countries considered, the results for Canada are rather different as the Canadian markets seem 

to influence indirectly the U.S. markets. 

     



295 
 

       5.5.3 Model Implied Conditional variances and covariances 

 

      The time series of daily conditional variances and covariances implied by the full 

BEKK(1,1) model are presented for the long term money markets in Figures 5.8 to 5.15 

and for the bond markets in Figures 5.16 to 5.23. Each figure includes part a and part b, 

for the two periods studied, before and during the crisis, respectively.  

       For the one-month interest rates, the graphs of the conditional variances and 

covariances show more diversity with specific dynamics to each country. For each of these 

markets the graphs clearly indicate the turbulent periods in the two sample periods 

analysed. First, in the pre-crisis periods the most noticeable signs of instability are during 

important events such as the introduction of the euro in 2001 when all the money markets 

seem to be affected; the technology bubble in 2002-200314 mostly affecting Canada and  

Germany for a very short period.  Second, during the financial crisis the signals are clearly 

present much earlier in the U.S. from 2007 to 2009, while for the other markets the 

conditional variances and covariances become highly unstable during the interval 2008 - 

2009. Two other periods of uncertainty can be observed during 2011 and 2013 

respectively, corresponding to different episodes of the sovereign crises in the Eurozone.  

      When stock returns and long interest rates are combined, a common pattern is 

observed in the evolution of the conditional variances of the stock returns. Across three 

out four stock markets, we distinguish several periods: one of medium volatility from 

2002 to 2003, followed by a relative calm interval over the period 2003 – 2007, and then a 

period of great uncertainty marked by the financial crisis of 2007-2009. A totally different 

pattern emerges in the daily conditional variance time series of the NIKKEI500, where 

prior to the global financial crisis it follows a stationary process while during the crisis the 

Japanese stock market moves very close together with the U.S. stock market. Shifting the 

focus on the long-term bond markets the figures indicate similar dynamics but of 

significantly less magnitude for the conditional variances, confirming empirically that the 

long-term bond markets are in general less volatile than the stock markets. 

        The conditional covariances graphs suggest that inside each asset class, over both 

periods there is always a positive relationship between the two countries under study 

(except for UK-Japan). The highest degree of co-movement is present in 2002 and 2008 - 

the two turbulent periods corresponding to the technology bubble burst and the latest 

                                                           
14 The dot.com bubble in 2002 impacted significantly only the economic sectors of all countries analysed, 

the money markets have not been impacted by this event. However, the last financial crisis has spread across 

different markets from fixed-income initially to the equity and sovereign bond markets.    
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global financial crisis, respectively. For the rest of the combinations, the conditional 

covariance time series oscillate around zero with the most amplitude around the same 

time-points of 2002 and 2008, reflecting the great instability that characterizes these 

markets during a crisis.   

            

 

Figure 5.8a Conditional Variances:  U.S. – U.K. Equity and Money Markets; 

                                   Before Crisis. 

 

 

Figure 5.8b Conditional Variances:  U.S. – U.K. Equity and Money Markets; 

                                 Post-Crisis.  
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Figure 5.9a Conditional Covariance:  U.S. – U.K. Equity and Money Markets  

                                Before the Crisis.   

 
Figure 5.9b Conditional Covariance:  U.S. – U.K. Equity and Money Markets  

                                Post-Crisis.   
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Figure 5.10a Conditional Variances:  U.S. – Japan Equity and Money Markets; 

                       Before the Crisis. 

 

 

 

 

Figure 5.10b Conditional Variances:  U.S. – Japan Equity and Money Markets; 

                       Post-Crisis. 
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Figure 5.11a   Conditional Covariance:  U.S. – Japan Equity and Money Markets; 

                    Before the Crisis.   

 

Figure 5.11b   Conditional Covariance:  U.S. – Japan Equity and Money Markets; 

                      Post-Crisis.   
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Figure 5.12a Conditional Variances:  U.S. – Germany Equity and Money Markets; 

                                   Before the Crisis. 

 

 

 

 

Figure 5.12b Conditional Variances:  U.S.– Germany Equity and Money Markets; 

                                  Post-Crisis. 
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Figure 5.13a Conditional Covariance:  U.S. – Germany Equity and Money Markets; 

Before the Crisis. 

 

Figure 5.13b Conditional Covariance:  U.S. – Germany Equity and Money  

Markets; Post-Crisis. 
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Figure 5.14a Conditional Variances:  U.S. – Canada Equity and Money Markets; 

                               Before the Crisis. 

 

 

 

Figure 5.14b Conditional Variances:  U.S. – Canada Equity and Money Markets; 

                                   Post-Crisis. 
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                Figure 5.15a Conditional Covariance:  U.S. –Canada Equity and Money Markets; 

                               Before the Crisis 

            Figure 5.15b Conditional Covariance:  U.S. – Canada Equity and Money     

                                 Markets; Post-Crisis. 
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Figure 5.16a Conditional Variance:  U.S. – U.K. Equity and Long-Term Bond          

Markets; Before the Crisis.  

 

 

Figure 5.16b Conditional Variances:  U.S.-U.K. Equity and Long-Term Bond         

                       Markets; Post-Crisis           
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Figure 5.17a Conditional Covariances:  U.S. - U.K. Equity and Long-Term Bond 

Markets; Before the Crisis.   

 

Figure 5.17b Conditional Covariance:  U.S. - U.K. Equity and Long-Term Bond 

Markets; Post-Crisis.   
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Figure 5.18a Conditional Variances:  U.S.-Japan Equity and Long-Term Bond 

Markets; Before the Crisis                                

 

 

 

 

Figure 5.18b Conditional Variances:  U.S.-Japan Equity and Long-Term Bond 

Markets; Post-Crisis 
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Figure 5.19a Conditional Covariance:  U.S. – Japan Equity and Long-Term Bond 

Markets; Before the Crisis.   

 

 
Figure 5.19b Conditional Covariance:  U.S. – Japan Equity and Long-Term Bond 

Markets; Post-Crisis.   
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Figure 5.20a Conditional Variance: U.S. – Germany Equity and Long-Term Bond 

Markets; Before the Crisis 

 

 

 

Figure 5.20b Conditional Variances: U.S. – Germany Equity and Long-Term Bond 

Markets; Post-Crisis 
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Figure 5.21a Conditional Covariance: U.S. – Germany Equity and Long-Term Bond 

Markets; Before the Crisis 

 
Figure 5.21b Conditional Covariances: U.S. – Germany Equity and Long-Term 

Bond Markets; Post-Crisis 
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Figure 5.22a Conditional Variances:  U.S. – Canada Equity and Long-Term Bond      

                                   Markets; Before the Crisis 

 

 

Figure 5.22b Conditional Variances:  U.S. – Canada Equity and Long-Term Bond 

                        Markets; Post-Crisis 
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Figure 5.23a Conditional Covariance:  U.S. – Canada Equity and Long-Term Bond 

Markets; Before the Crisis 

 

Figure 5.23b Conditional Covariance:  U.S. – Canada Equity and Long-Term Bond 

Markets; Post-Crisis 
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5.7 Summary and Conclusions  

       This chapter investigates the impact of the global financial crisis of 2007-2009 (GFC) 

on the return and volatility spillovers dynamic effects among different types of markets, 

more specifically equity, long-term bonds and money markets. Given the high degree of 

financial integration shocks are likely to spread simultaneously at both, domestic and 

international level.  We examine how the GFC has spread from the U.S. to four major 

economies, namely the U.K., Japan, Germany and Canada. We employ the discrete time 

MGARCH technique – the full BEKK(1,1) model with four variables. The empirical 

results are organised pairwise, for example for the U.S.-U.K. pair we look first at the 

individual channels (return and volatility) for each combination of the equity markets with 

short-term interest rates markets on one side, and the equity markets with Government 

bond markets on the other side. 

         The empirical results provide evidence that the GFC had impacted the relationships 

between major economic and financial markets. Despite the fact, that for each country 

analysed the information transmission mechanism relatively to the U.S., has its own 

particularities before the crisis, this mechanism is subject to similar changes during the 

crisis, with the exception of Canada.  

        When the equity markets are simultaneously modelled with the short-term interest 

rates markets, the individual analysis of each country-pair yields the following results. The 

transmission of information via return channel takes place in the domestic markets mostly 

in one direction from the U.S. money market to the equity market. The other economies do 

not provide evidence of interaction between their equity and money markets via the return 

channel (apart from Japan where the money market has a negative feedback effect on the 

equity market). For the direct international route, the U.S. equity markets have the leading 

role of exporting information, while the money markets seem to exchange very little 

information or with negative effects (U.S.- Japan).  The leading role of the U.S. exporting 

information is also observed via the indirect international transmission route with the 

busiest direction from the U.S. money markets to the equity markets of the other 

economies. 

       The information transmission via volatility channel has similar patterns across 

countries. The domestic routes suggest that in all cases the U.S. markets interact less, 

while for the other economies the equity and the money market are communicating at a 

much higher intensity during the crisis. Regarding the direct (between the same asset 

classes) external routes there is a general pattern: the equity markets become closely 
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interconnected (except for Japanese equity markets), while between the money markets 

there is barely any volatility spillover effects. There is evidence of substantial indirect 

international volatility transmission from the money markets of the countries analysed to 

S&P500 (except for Japan). In general, the values of the parameter estimates measuring 

the spillover effects are rather smaller. However, the intensity of the information flows 

between Canadian and U.S. markets is much greater than between the U.S. markets and 

the other economies. There can be two lines of reasoning for these findings, one being the 

geographic closeness between the two countries and second one - the different structure of 

the Canadian financial and baking markets proved most efficient in managing the 

consequences of the last global financial crisis of 2007-2009. 

        When the long-term segment of the yield curve is modelled in conjunction with the 

equity markets, the U.K., Japan and Germany seem to be dominated by the U.S. equity 

and bond markets. The situation for Canada reverses as there are strong bidirectional 

return spillovers especially from both equity and bond Canadian markets to their U.S. 

counterparty markets. The volatility channel seems to facilitate mostly the transmission of 

information via indirect external routes and via the domestic route in one direction only, 

from the bond markets to the equity markets. The results from the analysis of both return 

and volatility channels suggest that Canada exchanges information with the U.S. in a 

different way. During the crisis, for many routes the direction of the information flows 

changes such that the Canadian markets are transmitting information to the U.S. markets.  

       To assess the role of the U.S markets as the most important source of information 

shocks we have estimated the full BEKK four-variable model for all the possible 

combinations of pairing any two countries.  A total of other 24 models have been estimated 

corresponding to six country-pairs over pre-crisis and post-crisis periods, keeping the same 

asset class combinations across the two segments of the yield curve. The estimation results 

for the additional combinations are presented in the Appendix at the end of the chapter. The 

findings from the analysis of the new pairs that do not contain the U.S. markets reveal 

weaker spillover effects especially through the volatility channel as the parameter estimates 

measuring the intensity of the information flow are substantially lower. Therefore, when the 

U.S. markets are modelled there is significant evidence of volatility spillovers effects along 

the indirect international routes, whereas when the U.S. markets are excluded these linkages 

are substantially diminished. This can be interpreted as additional evidence for the impact of 

the GFC on the return and volatility communication channels between the major global 

economies.   
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       In more general terms, the comparative analysis of the summary results reported in 

the Table 5.21 concludes that out of the three types of routes of information transmission, 

the most active routes are the indirect external route followed by the domestic one. These 

results are valid for both return and volatility channels and it emphasises the importance of 

considering this type of routes, ignored previously in the spillovers literature. Along these 

routes, the information flows unidirectionally from the interest rate markets to the equity 

markets and not vice-versa, implying that the interest rate markets dominate the equity 

markets in transmission of information. When comparing the results of the two segments 

of the yield curve it is found that the return and volatility spillover effects are much 

stronger when the equity markets are modelled in combination with the long-term markets 

than with the money markets. Among the countries considered, the results for Canada are 

rather different as the Canadian markets seem to influence indirectly the U.S. markets, 

reflecting the relative stability that Canadian markets sustained during the crisis.  
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APPENDIX 

Table A.1 U.K. – Japan, Stock and Money Markets; The estimation results for the FULL BEKK Model 

         
           Panel A   Pre-crisis Post-crisis 

   The Mean Equation FTSE100 NIKKEI500 UK 1M JAP 1M FTSE100 NIKKEI500 UK 1M JAP 1M 

intercept 0.06316***   0.00552    0.0010*    0.00002** 0.04117    0.02685    0.00007    -0.00001    

AR(1) -0.06938**    0.13186***    -0.03156    0.15354**    -0.01497 0.09154*** 0.00978 0.11816*** 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

fromFTSE100 fromNIKKEI500 fromUK 1M fromJAP 1M fromFTSE100 fromNIKKEI500 fromUK 1M fromJAP 1M 

to FTSE100   0.02379    -0.26599    -1.98479     0.02052 -0.08845 -5.90688* 

to NIKKEI500 0.02445     2.68493** -4.78553    0.09962  2.54618*** -13.0478*** 

to UK 1M  0.00078    0.00032     0.00554    0.00023 0.00032 0.00978  

to JAP 1M  -0.00006***    -0.00009***   0.00219***    0.00002 -0.00003 -0.00386  

                    Panel B  Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix -0.03354       0.13340***    

C     0.12945***    -0.00000      -0.45215*** 0.42476**   

 i=1,…,4 0.00112**    -0.00000    -0.00000     -0.00084 -0.00154*** 0.00000  

  0.00003    -0.00000    -0.00000    -0.00000    0.00007 0.00014* 0.00000 0.00000 

ARCH effect matrix   0.12390***    -0.13182***    0.00248***    -0.00022***    0.18290*** 0.15919*** -0.00054*** -0.00001 

A    0.03942**    -0.09823***    -0.00347***    -0.00024 ***   -0.00754 0.36610*** -0.00093*** 0.00003 

 i=1,…,4 0.55575    -4.38211***    0.06122***    0.00047    0.39480 4.36790*** -0.04221** -0.05896*** 

  -0.52127   -20.09670***    0.06662   1.06070***    -3.59985 -11.52234*** 0.50170*** 0.60340*** 
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 GARCH effect matrix  
0.99061*** 0.03915*** -0.00158*** 0.00004*** 

0.97372*** -0.00537 -0.00003 0.00001 

G    
-0.00764** 0.97708*** -0.00142*** -0.00003 

0.04113** 0.78389*** 0.00127*** -0.00009*** 

i=1,…,4  
2.76855 3.42125*** 0.96508*** -0.00117 

-0.61547* 0.05068 0.87881*** 0.08417*** 

  
-0.18738 7.13702*** 0.01019 0.80521*** 

0.69697 3.73540* -1.59020*** 0.82748*** 

Shock Spillovers fromFTSE100 fromNIKKEI500 fromUK 1M fromJAP 1M fromFTSE100 fromNIKKEI500 fromUK 1M fromJAP 1M 

to FTSE100  
0.01535*** 0.00155*** 0.30886 0.27173 

0.03345*** 0.00006 0.15587 12.95890 

to NIKKEI500 
0.01738*** 0.00965*** 19.20297*** 403.877*** 

0.02534*** 0.13403*** 19.9853*** 133.456*** 

to UK 1M  
0.00001*** 0.00001*** 0.00375*** 0.00444 

0.00000*** 0.00000*** 0.00178** 0.25170*** 

to JAP 1M  
0.00000*** 0.00000*** 0.00000 1.1250*** 

0.00000 0.00000 0.00348*** 0.36409*** 

Volatility Spillovers   fromFTSE100 fromNIKKEI500 fromUK 1M fromJAP 1M fromFTSE100 fromNIKKEI500 fromUK 1M fromJAP 1M 

to FTSE100  
0.98133*** 0.00006*** 7.66490 0.03511 

0.94813*** 0.00169*** 0.37880* 0.48577 

to NIKKEI500 
0.00153*** 0.95469*** 11.70499*** 50.93719*** 

0.00003 0.61448*** 0.00257 13.953* 

to UK 1M  
0.00000*** 0.00000*** 0.93139*** 0.00010 

0.00000 0.00000*** 0.77231*** 2.52874*** 

to JAP 1M  
0.00000*** 0.00000 0.00000 0.64838*** 

0.00000 0.00000*** 0.00708*** 0.68472*** 

  Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: The price discovery information is barely transmitted between the U.K. and Japanese markets, both before and after the crisis. The money 

markets seem to transmit some information to equity markets domestically and indirectly with negative effects though. However, the volatility channel is 

more active with dominance from the Japanese equity market (direct international transmission to FTSE100, 0.61448) and money market (direct 

international transmission to the U.K. money market, 0.68472). 
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Table A.2 U.K. – Japan, Stock and Bond Markets; The estimation results for the FULL BEKK Model 

 

                    Panel A   Pre-crisis Post-crisis 

   The Mean Equation FTSE100 NIKKEI500 UK 10Y JAP 10Y FTSE100 NIKKEI500 UK 10Y JAP 10Y 

intercept 0.04413** 0.04158 -0.00016 -0.00002 
0.03388** 0.06976 -0.00091 -0.00067 

AR(1) -0.12623*** 0.03909* 0.04064 -0.04679 
-0.10914*** 0.02703* 0.00336 -0.04762 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

from FTSE100 fromNIKKEI500 fromUK 10Y fromJAP 10Y fromFTSE100 fromNIKKEI500 fromUK 10Y fromJAP 10Y 

to FTSE100  

 
0.05962*** 3.68213*** 1.53502** 

 0.15197*** 5.99571*** 2.21252** 

to NIKKEI500 0.06052** 

 

2.92427*** 7.45934*** 
-0.02386**  4.99501*** 8.78173*** 

to UK 10Y  0.00077 -0.00018 

 

0.00851 
-0.00154 0.00205  0.18633 

to JAP 10Y  0.00000 0.00044 0.09719*** 

 

-0.00119 0.00045 0.08796***  

 
    

               Panel B  Pre-crisis Post-crisis 

The Variance 

Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix 0.14350*** 

   

0.06287***    

C     
-0.01071 -0.03922* 

  

-0.04644 0.22426*   

 i=1,…,4 0.00314*** 0.00203*** 0.00130* 

 

-0.03621*** -0.00773*** 0.03549*  

  0.00047 0.00135 0.00451*** -0.00078 -0.00051 -0.00095 0.00048*** 0.00000 

ARCH effect matrix   0.33953*** 0.01397 0.00178*** -0.00011 0.27770*** -0.04622 -0.01396*** -0.00012 

A    
-0.01653 0.12064*** -0.00025 -0.00005 -0.05001 0.29814*** 0.00016 -0.00148 

 i=1,…,4 -0.78285 -2.51206*** -0.03095* 0.00157 0.38267 0.14143*** 0.19012* -0.01342 

  0.42819 1.40912** 0.05072** 0.24905*** 1.25919 9.42070** -0.21169*** 0.16942*** 
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 GARCH effect matrix  0.92569*** -0.00273 -0.00083*** 0.00006 0.95243*** 0.01152 0.00312*** -0.00008 

G    
0.01386** 0.98832*** 0.00024** 0.00008 0.02455** 0.92613*** 0.00515** 0.00085 

i=1,…,4  -0.21094 0.03201 0.99380*** -0.00054 -1.48128* -1.87137 0.00711*** -0.00600 

  -0.09985 -0.11994 -0.01148** 0.95453*** 0.18295 -0.61524 0.42724** 0.97898*** 

Shock Spillovers fromFTSE100 fromNIKKEI500 fromUK 10Y fromJAP 10Y fromFTSE100 fromNIKKEI500 fromUK 10Y fromJAP 10Y 

to FTSE100  0.11528*** 0.00027 0.61285 0.18335 0.07712*** 0.00250 0.14643*** 1.58557 

to NIKKEI500 0.00020 0.01455*** 6.31047*** 1.98563** 0.00214 0.08889*** 0.02000*** 88.74957** 

to UK 10Y  0.00000*** 0.00000 0.00096 0.00257** 0.00019*** 0.00000 0.03615* 0.04481*** 

to JAP 10Y  0.00000 0.00000 0.00000 0.06202*** 0.00000 0.00000 0.00018 0.02870*** 

Volatility Spillovers   fromFTSE100 fromNIKKEI500 fromUK 10Y fromJAP 10Y fromFTSE100 fromNIKKEI500 fromUK 10Y fromJAP 10Y 

to FTSE100  0.85691*** 0.00019** 0.04450 0.00997 0.90713*** 0.00060** 2.19418* 0.03347 

to NIKKEI500 0.00001 0.97678*** 0.00102 0.01438 0.00013 0.85772*** 3.50202 0.37852 

to UK 10Y 0.00000*** 0.00000** 0.98764*** 0.00013** 0.00001*** 0.00003** 0.00005*** 0.18253** 

to JAP 10Y  0.00000 0.00000 0.00000 0.91112*** 0.00000 0.00000 0.00004 0.95840*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: When bond markets are modelled simultaneously with the equity markets the information via return channel flows on all six routes with 

intensified effects as a result of the crisis. The domestic and the indirect international flows from the bond markets to the equity markets double in the 

post-crisis period. The volatility spillovers effects are relatively small (two out of twelve estimates are larger), the strongest linkages being between the 

U.K. markets (domestic bond to equity effect) and between the Japanese and the U.K. bond markets (direct international transmission). 
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Table A.3 U.K. –  Germany, Stock and Money Markets; The estimation results for the FULL BEKK Model 

 

         
Panel A Pre-crisis Post-crisis   

The Mean Equation FTSE100 DAX30 UK 1M GER 1M FTSE100 DAX30 UK 1M GER 1M 

intercept 0.05524*** 0.10301*** 0.00105* 0.00009 0.00465** 0.00803*** -0.00011 -0.00041*** 

AR(1) -0.30259*** 0.05456* -0.00321 0.26287*** -0.29292*** 0.00524 -0.07088*** 0.78179*** 

The Return Spillovers  

Matrix 

Pre-crisis Post-crisis 

fromFTSE100 fromDAX30 fromUK 1M fromGER 1M fromFTSE100 fromDAX30 fromUK 1M fromGER 1M 

to FTSE100  

 
0.22987*** -0.56586 -0.64735 

 

0.31932*** -0.07595 0.65290*** 

to DAX30  -0.15017*** 

 

-0.91912 -0.99591 -0.04774* 

 

-0.00944 0.78127*** 

to UK 1M  0.00168** -0.00134** 

 

0.05025 -0.00203 0.00475*** 

 

0.09301*** 

to GER 1M  -0.00001 -0.00014* 0.01385*** 

 

0.00593*** 0.00060*** -0.04027*** 

  

           Panel B Pre-crisis Post-crisis 

The Variance Equation             j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

 
-0.06166*** 

   
0.01163*** 

   intercept matrix 0.00345 -0.01731 

  
0.01088*** 0.01654*** 

  C     0.01724*** -0.0050*** 0.00000 

 

0.00009*** 0.00006 0.00000 

  i=1,…,4 -0.00016 -0.00024 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 

 
0.26814*** 0.15395*** 0.00100*** -0.00188*** 0.23001*** 0.06424*** -0.00330*** -0.00145 

ARCH effect matrix   -0.06025*** 0.09817*** 0.00047 0.00132*** 0.00222 0.23303*** 0.00180** -0.00639*** 

A    -0.82213 0.18377 -0.02753 -0.04262*** 0.34878*** 0.67346*** 0.23204*** 0.08414*** 

 i=1,…,4 -11.61518*** -16.51926*** -0.29700*** 1.37995*** 2.57187*** 2.69329*** 0.16644*** 2.22396*** 
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0.89303*** -0.16357*** 0.00154** 0.00012 0.97095*** -0.00597 0.00049*** -0.00041 

 GARCH effect matrix  0.07047*** 1.04935*** -0.00190*** 0.00000 -0.00348*** 0.95514*** -0.00038*** 0.00031 

G    -3.79382*** -8.65907*** -0.61946*** 0.01890*** -0.02168* -0.06436*** 0.97992*** 0.00297 

i=1,…,4  4.47776*** 6.40879*** 0.46509*** 0.69791*** -0.38578*** -0.37433*** -0.04938*** 0.61098*** 

Shock Spillovers fromFTSE100 fromDAX30 fromUK 1M fromGER 1M fromFTSE100 fromDAX30 fromUK 1M fromGER 1M 

to FTSE100  0.07190*** 0.00363*** 0.67591 134.91249*** 0.05291*** 0.00000 0.12165*** 6.61452*** 

to DAX30  0.02370*** 0.00964*** 0.03377 272.88592*** 0.00413*** 0.05430*** 0.45355*** 7.25383*** 

to UK 1M  0.00000*** 0.00000 0.00076 0.08821*** 0.00001*** 0.00000** 0.05384*** 0.02770*** 

to GER 1M  0.00000*** 0.00000*** 0.00182*** 1.90427*** 0.00000 0.00004*** 0.00708*** 4.94599*** 

Volatility Spillovers   fromFTSE100 fromDAX30 fromUK 1M fromGER 1M fromFTSE100 fromDAX30 fromUK 1M fromGER 1M 

to FTSE100  0.79750*** 0.00497*** 14.39309*** 20.05030*** 0.94275*** 0.00001*** 0.00047* 0.14883*** 

to DAX30  0.02676*** 1.10114*** 74.97957*** 41.07256*** 0.00004 0.91229*** 0.00414*** 0.14012*** 

to UK 1M  0.00000** 0.00000*** 0.38373*** 0.21631*** 0.00000*** 0.00000*** 0.96025*** 0.00244*** 

to GER 1M  0.00000 0.00000 0.00036*** 0.48708*** 0.00000 0.00000 0.00001 0.37329*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: Clearly, U.K. communicates closer with Germany than with Japan via both return and volatility channels. The busiest return routes are from 

the German money market to both its equity market (domestic transmission) and the U.K. money market (direct international transmission). The 

volatility channel between these two countries is has most of its twelve flow estimates significant, however their values are rather small. The most 

impact via the volatility channel comes from the German money market towards all the other types of markets in the model.  
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Table A.4 U.K. –  Germany, Stock and Bond Markets; The estimation results for the FULL BEKK Model 

 
 

Panel A Pre-crisis Post-crisis 

The Mean Equation FTSE100 DAX30 UK 10Y GER 10Y FTSE100 DAX30 UK 10Y GER 10Y 

intercept 0.00529** 0.01127*** 0.00079 -0.00006 0.00484** 0.00801*** -0.00030 -0.00140 

AR(1) -0.30028*** 0.05100 0.04426* -0.01315 -0.22227*** -0.06378** 0.01408 0.03609 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix fromFTSE100 fromDAX30 fromUK 10Y fromGER 10Y fromFTSE100 fromDAX30 fromUK 10Y fromGER 10Y 

to FTSE100  

 
0.18766*** 0.44088*** -0.02711 

 

0.24243*** 0.15259** 0.85350*** 

to DAX30  -0.15070*** 

 

0.55072*** 0.16480** 0.03471 

 

0.11924 0.85895*** 

to UK 10Y  0.01605 -0.01120 

 

-0.05718** -0.00699 -0.00771 

 

0.01397 

to GER 10Y  -0.02023** 0.03515*** 0.59209*** 

 

-0.00956 -0.01728* 0.05478* 

  

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

 
-0.02189*** 

   
0.01555*** 

   intercept matrix -0.01413*** -0.00539*** 

  
0.00672** 0.01080*** 

  C     -0.00212*** 0.00241*** 0.00000 

 

0.00115 0.00416*** 0.00000 

  i=1,…,4 -0.00090** 0.00023 0.00000 0.00000 0.01310*** 0.01132*** 0.00000 0.00000 

ARCH effect matrix   0.30680*** 0.01854 0.00155 -0.00514 0.35161*** 0.25810*** 0.01453* 0.07732*** 

A    0.05686* 0.25645*** 0.00785* 0.01241*** -0.11570*** 0.13751*** -0.00459 -0.07532*** 

 i=1,…,4 0.03529 0.11144 0.00961** 0.01210 -0.18545*** -0.20975*** 0.00491 -0.28117*** 

 

-0.02437 -0.07962 0.04482 -0.01988 0.19580*** 0.26771*** 0.04715** 0.39732*** 
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0.88605*** -0.06460*** -0.00748*** -0.00157 0.90997*** -0.09298*** -0.01275*** -0.04509*** 

 GARCH effect matrix  0.01894* 0.98907*** 0.00035 -0.00234*** 0.05236*** 0.99443*** 0.00798** 0.04207*** 

G    -0.00610 0.01542* 0.99540*** 0.00025 0.25596*** 0.42280*** 0.97082*** 0.12327*** 

i=1,…,4  -0.01931 -0.00726 -0.00338** 0.99686*** -0.39282*** -0.70007*** 0.03251*** 0.74710*** 

Shock Spillovers fromFTSE100 fromDAX30 fromUK 10Y fromGER 10Y fromFTSE100 fromDAX30 fromUK 10Y fromGER 10Y 

to FTSE100  0.09412*** 0.00323* 0.00125 0.00059 0.12363*** 0.01339*** 0.03439*** 0.03834*** 

to DAX30  0.00034 0.06577*** 0.01242 0.00634 0.06662*** 0.01891*** 0.04400*** 0.07167*** 

to UK 10Y  0.00000 0.00006* 0.00009** 0.00201 0.00021* 0.00002 0.00002 0.00222** 

to GER 10Y  0.00003 0.00015*** 0.00015 0.00040 0.00598*** 0.00567*** 0.07906*** 0.15786*** 

Volatility Spillovers fromFTSE100 fromDAX30 fromUK 10Y fromGER 10Y fromFTSE100 fromDAX30 fromUK 10Y fromGER 10Y 

to FTSE100  0.78508*** 0.00036* 0.00004 0.00037 0.82805*** 0.00274*** 0.06551*** 0.15431*** 

to DAX30  0.00417*** 0.97825*** 0.00024* 0.00005 0.00865*** 0.98889*** 0.17876*** 0.49010*** 

to UK 10Y  0.00006*** 0.00000 0.99082*** 0.00001** 0.00016*** 0.00006** 0.94250*** 0.00106*** 

to GER 10Y  0.00000 0.00001*** 0.00000 0.99372*** 0.00203*** 0.00177*** 0.01520*** 0.55816*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: As in the case of money markets the information is transmitted in a very similar way as the return channel is concerned.; the German bond 

market improve its leading role both internally and internationally.  The crisis had a great impact on the volatility spillovers effects, as after the crisis all 

the twelve flows in the network are significant. The busiest routes are the direct international route from the German to the U.K. bond market and the 

domestic route inside Germany from the bond to the equity market.  
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Table A.5 U.K. –  Canada, Stock and Money Markets; The estimation results for the FULL BEKK Model 

           Panel A   Pre-crisis Post-crisis 

The Mean Equation FTSE100 SPTSX UK 1M CAD 1M FTSE100 SPTSX UK 1M CAD 1M 

intercept 0.00248 0.00712** 0.00131** 0.00287*** 0.00094 0.00521** 0.00006 0.00004 

AR(1) -0.21592*** 0.03135 -0.01041 0.20999*** -0.16534*** -0.02305 -0.03330 -0.12953*** 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix fromFTSE100 fromSPTSX fromUK 1M fromCAD 1M fromFTSE100 fromSPTSX fromUK 1M fromCAD 1M 

to FTSE100  

 
0.44023*** -0.06545 0.06443 

 

0.56523*** 0.02875 0.38843*** 

to SPTSX  0.02248 

 

-0.13701 -0.02306 0.02023 

 

-0.01608 0.00639 

to US 1M  -0.00357 -0.00358 

 

-0.00500 -0.00013 0.00407 

 

0.07196*** 

to CAD 1M  -0.00655 -0.00767 -0.03444* 

 

-0.00317 0.00786** 0.07229** 

  

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix 0.00850*** 

   
0.01004*** 

   C     0.03326*** 0.00341 

  
0.00926*** 0.00432*** 

   i=1,…,4 0.00293*** 0.00005 0.00000 

 

0.00046*** 0.00070*** 0.00000 

 
 0.00563** -0.00608** 0.00000 0.00000 0.00166*** -0.00112*** 0.00000 0.00000 

ARCH effect matrix   0.24606*** 0.28949*** -0.04463*** 0.03916*** 0.13890*** -0.11680*** -0.00626*** -0.01340*** 

A    -0.11438*** -0.02918 0.05431*** 0.00130 0.06587*** 0.19964*** 0.00142 0.00119 

 i=1,…,4 0.82963*** 0.58327*** -0.14074*** 0.07810** -0.04444 0.00330 0.23322*** 0.12489*** 

   0.07894 0.02454 -0.01643 1.02937*** 0.12936*** 0.18861*** -0.01262*** 0.41090*** 
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0.72336*** -0.11377*** 0.13592*** 0.00931* 0.94425*** -0.08662*** 0.00141*** 0.00105 

 GARCH effect matrix  0.30541*** 0.87360*** -0.07368*** -0.03629*** 0.09912 1.00462 -0.00188*** -0.00116* 

G    -2.07281*** 0.79103*** 0.76261*** 0.02788 -0.01982 0.01827 0.97399*** 0.00797*** 

i=1,…,4  -0.00927* -0.00659 -0.03038*** 0.76508*** -0.09844**** -0.07342*** -0.00687*** 0.92694*** 

Shock Spillovers fromFTSE100 fromSPTSX fromUK 1M fromCAD 1M fromFTSE100 fromSPTSX fromUK 1M fromCAD 1M 

to FTSE100  0.06055*** 0.01308*** 0.68828*** 0.00623 0.01929*** 0.00434*** 0.00197 0.01674*** 

to SPTSX  0.08380*** 0.00085 0.34020*** 0.00060 0.01364*** 0.03986*** 0.00001 0.03557*** 

to US 1M  0.00199*** 0.00295*** 0.01981*** 0.00027 0.00004*** 0.00000 0.05439*** 0.00016*** 

to CAD 1M  0.00153*** 0.00000 0.00610 1.05961*** 0.00018*** 0.00000 0.01560*** 0.16884*** 

Volatility Spillovers fromFTSE100 fromSPTSX fromUK 1M fromCAD 1M fromFTSE100 fromSPTSX fromUK 1M fromCAD 1M 

to FTSE100  0.52325*** 0.09328*** 4.29654*** 0.00009* 0.89160*** 0.00982 0.00039 0.00969*** 

to SPTSX  0.01294*** 0.76318*** 0.62573*** 0.00004 0.00750 1.00926 0.00033 0.00539*** 

to US 1M  0.01847*** 0.00543*** 0.58157*** 0.00092*** 0.00000 0.00000*** 0.94865*** 0.00005*** 

to CAD 1M  0.00009* 0.00132*** 0.00078 0.58535*** 0.00000*** 0.00000* 0.00006* 0.85923*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

 

Comments: The equity and money markets of the U.K and Canada seem to communicate more before the crisis. After the crisis, some routes of 

information transmission disappear, the bidirectional exchange of information become unidirectional, from the Canadian markets to the U.K. markets. 

Most information spillovers effects are severely reduced to minimal influences after the crisis. The return channel facilitates the highest flows when 

compared to the volatility channel, with the indirect international routes from the Canadian markets to the U.K markets being the busiest ones.  

 

 



325 
 

Table 5.6 U.K. –  Canada, Stock and Bond Markets; The estimation results for the FULL BEKK Model 
 

           Panel A   Pre-crisis Post-crisis 

The Mean Equation FTSE100 SPTSX UK 10Y CAD 10Y FTSE100 SPTSX UK 10Y CAD 10Y 

intercept 0.00413* 0.00957*** 0.00065 -0.00071 0.00347 0.00423** -0.00058 -0.00115 

AR(1) -0.24311*** -0.01094 -0.03467 -0.06141** -0.12143*** -0.09585*** -0.05483*** -0.06914*** 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix fromFTSE100 fromSPTSX fromUK 10Y fromCAD 10Y fromFTSE100 fromSPTSX fromUK 10Y fromCAD 10Y 

to FTSE100  

 
0.39981*** 0.29242*** 0.15234*** 

 

0.39408*** 0.55819*** 0.39690*** 

to SPTSX  -0.00011 

 

0.04618 0.09204* 0.01688 

 

0.04675 0.29745*** 

to UK 10Y  0.00089 0.00504 

 

0.16462*** -0.01420 0.00885 

 

0.20072*** 

to CAD 10Y  0.00755 -0.01593 0.15026*** 

 

-0.01672** 0.01360 0.03331 

  

 

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

 
0.00480* 

   
0.01989*** 

   intercept matrix 0.04576*** 0.00000 

  
0.00413 -0.00308 

  C     -0.00052 0.00000 0.00000 

 

0.00052 -0.00377*** 0.00000 

  i=1,…,4 -0.00549*** 0.00000 0.00000 0.00000 0.00127 0.00325*** 0.00000 0.00000 

ARCH effect matrix   0.26220*** 0.11368*** -0.00391 -0.00758 0.25369*** 0.11665*** -0.03010*** -0.02200*** 

A    -0.01981 0.39380*** 0.02029*** 0.00371 -0.05114 0.28393*** 0.03156*** 0.03010*** 

 i=1,…,4 -0.21157*** 0.14931 -0.01143 0.03482* -0.01773 -0.02543 0.03877** -0.08168*** 

 

0.01990 -0.11258 -0.01821** -0.12081*** -0.09205* -0.10306** -0.14773*** -0.03228* 
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 GARCH effect matrix  0.94315*** -0.00296 -0.00102 -0.00807*** 0.94330*** -0.04198*** 0.00784*** 0.00722*** 

G    0.06004*** 0.73766*** -0.00170*** 0.02621*** 0.03514** 0.95869*** -0.00233 -0.00673*** 

i=1,…,4  -0.01486* 0.02262 0.99435*** -0.01107*** -0.02347** -0.01589 0.98595*** 0.00124 

 0.01395 0.08713*** 0.00759*** 0.98664*** -0.03157 0.02206 0.00887** 0.99209*** 

 

fromFTSE100 fromSPTSX fromUK 10Y fromCAD 10Y fromFTSE100 fromSPTSX fromUK 10Y fromCAD 10Y 

to FTSE100  0.06875*** 0.00039 0.04476*** 0.00040 0.06436*** 0.00261 0.00031 0.00847* 

to SPTSX  0.01292*** 0.15508*** 0.02229 0.01267 0.01361*** 0.08062*** 0.00065 0.01062** 

to UK 10Y  0.00002 0.00041*** 0.00013 0.00033** 0.00091*** 0.00100*** 0.00150** 0.02182*** 

to CAD 10Y  0.00006 0.00001 0.00121* 0.01459*** 0.00048*** 0.00091*** 0.00667*** 0.00104* 

 

fromFTSE100 fromSPTSX fromUK 10Y fromCAD 10Y fromFTSE100 fromSPTSX fromUK 10Y fromCAD 10Y 

to FTSE100  0.88953*** 0.00360*** 0.00022* 0.00019 0.88982*** 0.00124*** 0.00055** 0.00100 

to SPTSX  0.00001 0.54414*** 0.00051 0.00759*** 0.00176*** 0.91908*** 0.00025 0.00049 

to UK 10Y  0.00000 0.00000*** 0.98872*** 0.00006*** 0.00006*** 0.00001 0.97210*** 0.00008** 

to CAD 10Y  0.00007*** 0.00069*** 0.00012*** 0.97345*** 0.00005*** 0.00005*** 0.00000 0.98424*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: The dynamics of the information spillovers effects between the U.K and Canada are similar across the two segments of the yield curve. The 

crisis had different effects on the return and volatility channels. The influence of Canadian markets has been consolidated after the crisis in terms of price 

discovery channel, while for the volatility channel the transmission of information has lost intensity, implying that the return channel facilitates better the 

communication between these two countries.   
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Table 5.7 Japan – Germany, Stock and Money Markets; The estimation results for the FULL BEKK Model 

           Panel A   Pre-crisis Post-crisis 

The Mean Equation NIKKEI500 DAX30 JAP 1M GER 1M FTSE100 

   
intercept 0.00492 0.01182*** 0.00000 -0.00006 0.00450*** 0.01583** -0.00010** -0.00089*** 

AR(1) 0.01958 -0.03304 0.05335 0.11247*** -0.17653*** 0.11175*** 0.23070*** 0.81915*** 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix fromNIKKEI500 fromDAX30 fromJAP 1M fromGER 1M fromNIKKEI500 fromDAX30 fromJAP 1M fromGER 1M 

to NIKKEI500  

 
0.16774*** -0.56310 -0.16605 

 

0.00005 -0.02338*** -0.01017*** 

to DAX30  0.05164** 

 

-0.18441 -0.03646 -2.95689** 

 

-1.35121** 0.09400 

to JAP 1M  -0.00011 0.00014* 

 

-0.00907*** 0.02504*** 0.00010 

 

0.00964*** 

to GER 1M  -0.00025 0.00225*** -0.01800 

 

0.24591*** -0.00313*** 0.00740 

  

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

 
0.14088*** 

   
0.00204*** 

   intercept matrix 0.03749*** 0.00811*** 

  
0.01535*** 0.00000 

  C     0.00012*** -0.00014*** 0.00000 

 

0.00001 0.00000 0.00000 

  i=1,…,4 -0.00065 0.00054 0.00000 0.00000 -0.00038*** 0.00000 0.00000 0.00000 

ARCH effect matrix   0.23290*** -0.00281 -0.00014 -0.00300** -0.03570 1.75675* 0.04892*** 0.63308*** 

A    -0.00414 0.16817*** 0.00019*** 0.00762*** -0.00095*** 0.16062*** 0.00071*** -0.00654*** 

 i=1,…,4 0.52021 -0.44167** 0.77428*** 0.09980** -0.01801** -0.83674*** 0.60967 -0.00269*** 

 

-1.12405*** -1.97329*** 0.01736*** 1.50643*** -0.02199*** 0.61290*** 0.02603*** 1.72173*** 
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 GARCH effect matrix  0.45204*** -0.15203*** -0.00099*** 0.00665*** 0.61501*** -9.55115*** -0.01122 0.08029 

G    0.09685*** 1.00708*** 0.00018*** 0.00145*** 0.00031*** 0.97267*** -0.00019*** 0.00066*** 

i=1,…,4  -0.13499 0.10525*** 0.86373*** -0.01482* 0.00198 0.20722*** 0.92117*** -0.00025 

 

0.11979 1.96873*** -0.00060 -0.66198*** 0.00235*** -0.12069*** -0.00277*** 0.68873*** 

 

fromNIKKEI500 fromDAX30 fromJAP 1M fromGER 1M fromNIKKEI500 fromDAX30 fromJAP 1M fromGER 1M 

to NIKKEI500  0.05424*** 0.00002 0.27062 1.26349*** 0.00127 0.00000*** 0.00032** 0.00048*** 

to DAX30  0.00001 0.02828*** 0.19507** 3.89388*** 3.08617* 0.02580*** 0.70013*** 0.37564*** 

to JAP 1M  0.00000 0.00000*** 0.59950*** 0.00030*** 0.00239*** 0.00000*** 0.37170 0.00068*** 

to GER 1M  0.00001** 0.00006*** 0.00996** 2.26933*** 0.40079*** 0.00004*** 0.00001*** 2.96436*** 

 

fromNIKKEI500 fromDAX30 fromJAP 1M fromGER 1M fromNIKKEI500 fromDAX30 fromJAP 1M fromGER 1M 

to NIKKEI500  0.20434*** 0.00938*** 0.01822 0.01435 0.37824*** 0.00000*** 0.00000 0.00001*** 

to DAX30  0.02311*** 1.01421*** 0.01108*** 3.87588*** 91.22450*** 0.94608*** 0.04294*** 0.01457*** 

to JAP 1M  0.00000*** 0.00000*** 0.74602*** 0.00000 0.00013 0.00000*** 0.84855*** 0.00001*** 

to GER 1M  0.00004*** 0.00000*** 0.00022* 0.43821*** 0.00645 0.00000*** 0.00000 0.47434*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: The relationships between the Japanese and German equity and money markets are described by numerous negative effects, implying some 

evidence of divergence/decoupling effects. The results regarding the return channel suggest a certain level of divergence between the equity markets of 

the two countries and also domestically for Japan with a negative influence from the money market to its equity market. Volatility wise, the strongest 

route is between the equity markets especially after the crisis (91.2245).  
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Table 5.8 Japan –  Germany, Stock and Bond Markets; The estimation results for the FULL BEKK Model 

 

           Panel A   Pre-crisis Post-crisis 

The Mean Equation 
        

intercept 0.08633*** 0.01404*** -0.00013*** 0.00030 0.01007** 0.00927*** -0.00020 -0.00139 

AR(1) 0.04910* -0.01111 0.14060*** -0.00096 -0.05459** -0.02937** -0.05742 0.07356*** 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix 
fromNIKKEI50

0 
fromDAX30 fromJAP 10Y fromGER 10Y 

fromNIKKEI50

0 
fromDAX30 fromJAP 10Y fromGER 10Y 

to NIKKEI500  

 
0.82967*** -1.12261 4.47905*** 

 

0.21738*** 0.52098** 0.93002*** 

to DAX30  0.00616* 

 

-0.99135*** 0.43218*** -0.02506 

 

-0.36302*** 0.91524*** 

to JAP 10Y  -0.00001 0.00042*** 

 

-0.00170*** 0.00052** -0.00710 

 

0.13522*** 

to GER 10Y  -0.00001 -0.00017 -0.19181 

 

-0.01378** -0.02183*** 0.10879** 

  

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix 0.91903*** 

   
-0.01646*** 

   C     0.03941*** -0.01255*** 

  
0.00645*** -0.01819*** 

   i=1,…,4 -0.00014*** 0.00000 0.00000 

 

-0.00116** -0.00061 0.00000 

  0.00070 0.00382*** 0.00000 0.00000 0.00196*** -0.00390*** 0.00002 0.00001 

ARCH effect matrix   -0.36976*** -0.01248*** -0.00003 -0.00079 0.08088*** 0.05802*** 0.00157 -0.00092 

A    0.32416 0.23815*** 0.00011 0.00387* 0.05392*** 0.30550*** 0.00224 -0.00572 

 i=1,…,4 1.02085 -0.67507 1.00789*** -0.20316 -1.91228*** -0.34756*** -0.14434*** -0.11540*** 

 

-2.82991** 0.12555 0.00338*** -0.04555** -0.02573 -0.00707 0.01693* 0.01731 
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 GARCH effect matrix  0.49754*** -0.01851*** 0.00021*** -0.00072* 0.92378*** -0.01258* -0.03590*** -0.01593*** 

G    0.67832*** 0.98683*** -0.00028*** 0.00345*** -0.00376 0.93678*** 0.01018*** 0.01341*** 

i=1,…,4  2.04300 0.27347 0.82965*** 0.04451* 2.10849*** 0.46390*** 0.95740*** 0.04163* 

 

0.41397*** 0.04127*** -0.00007 0.99255*** -0.08786*** -0.09142*** -0.00114 0.98718*** 

 

fromNIKKEI500 fromDAX30 fromJAP 10Y fromGER 10Y fromNIKKEI500 fromDAX30 fromJAP 10Y fromGER 10Y 

to NIKKEI500  0.13672*** 0.10508 1.04213 8.00842** 0.00654*** 0.00291*** 3.65681*** 0.00066 

to DAX30  0.00016*** 0.05671*** 0.45572 0.01576 0.00337*** 0.09333*** 0.12080*** 0.00005 

to JAP 10Y  0.00000 0.00000 1.01583*** 0.00001*** 0.00000 0.00001 0.02083*** 0.00029* 

to GER 10Y  0.00000 0.00001* 0.04127 0.00207** 0.00000 0.00003 0.01332*** 0.00030 

 

fromNIKKEI500 fromDAX30 fromJAP 10Y fromGER 10Y fromNIKKEI500 fromDAX30 fromJAP 10Y fromGER 10Y 

to NIKKEI500  0.24755*** 0.46011*** 4.17385 0.17137*** 0.85337*** 0.00001 4.44571*** 0.00772*** 

to DAX30  0.00034*** 0.97383*** 0.07479 0.00170*** 0.00016* 0.87756*** 0.21520*** 0.00836*** 

to JAP 10Y  0.00000*** 0.00000*** 0.68832*** 0.00000 0.00129*** 0.00010*** 0.91661*** 0.00000 

to GER 10Y  0.00000* 0.00001*** 0.00198* 0.98515*** 0.00025*** 0.00018*** 0.00173* 0.97453*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: When the long-term segment of the yield curve is combined with the equity markets for Japan – Germany pair, the linkages  along the 

return channel  got stronger as a result of the crisis with the indirect international route being the busiest one. The volatility channel, however, has been 

less active post crisis, the only route that allowed for increased information flow is the domestic route from the Japanese bond market to its equity 

market represented by the return on the NKKEI500 index. 
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Table 5.9 Japan – Canada, Stock and Money Markets; The estimation results for the FULL BEKK Model 

 

           Panel A   Pre-crisis Post-crisis 

The Mean Equation NIKKEI500 SPTSX JAP 1M CAD 1M NIKKEI500 SPTSX JAP 1M CAD 1M 

intercept 0.00265 0.00213 0.00001 0.00282*** 0.00478 0.00365** -0.00003 0.00005 

AR(1) 0.06575*** 0.05066** 0.18759*** 0.34323*** -0.02457 -0.04042** 0.27219*** -0.11071*** 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix fromNIKKEI500 fromSPTSX fromJAP 1M fromCAD 1M fromNIKKEI500 fromSPTSX fromJAP 1M fromCAD 1M 

to NIKKEI500  

 
0.38006*** -0.45151 0.39200*** 

 

0.38261*** 1.54115*** 0.42209*** 

to SPTSX  0.04522*** 

 

0.11574 0.39225*** 0.01880* 

 

0.21542 0.04136 

to JAP 1M  -0.00010 0.00074*** 

 

0.00116*** 0.00011 0.00121*** 

 

0.00960*** 

to CAD 1M  -0.00687* 0.00808** -0.09941** 

 

0.00026 0.00812** -0.02306* 

  

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix -0.03123*** 

   
-0.04878*** 

   C     -0.07333*** 0.00000 

  
-0.01022*** -0.00340*** 

   i=1,…,4 0.00011*** 0.00000 0.00000 

 

0.00052*** -0.00001 0.00000 

 

 
0.00435*** 0.00000 0.00000 0.00000 -0.00013 0.00107*** 0.00000 0.00000 

ARCH effect matrix   0.09052*** -0.03936*** -0.00095*** -0.00568 -0.13650*** -0.01227*** 0.00124*** 0.00196*** 

A    0.14686*** 0.33318*** 0.00310*** -0.02541*** -0.04329*** 0.19784*** 0.00279*** -0.01497*** 

 i=1,…,4 0.01538 0.04015 0.83006*** -0.02467 2.13632*** -0.13750*** 0.62062*** 0.01925*** 

 

0.36102*** 0.50545*** 0.00094* 1.09893*** 0.66345*** 0.29384*** 0.00168** 0.35640*** 
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 GARCH effect matrix  0.98148*** -0.02943*** 0.00007** -0.00077 0.86254*** -0.01021*** 0.00752*** 0.00044*** 

G    -0.09522*** 0.53647*** 0.00104*** 0.11449*** 0.03511*** 0.97889*** -0.00346*** 0.00247*** 

i=1,…,4  -0.04712 -0.39873** 0.85787*** 0.12150** -16.49322*** -0.57526*** 0.81732*** 0.01808*** 

 

-0.15315*** -0.23281*** -0.00169*** 0.69336*** -0.25764*** -0.07894*** 0.00071*** 0.94972*** 

 

fromNIKKEI500 fromSPTSX fromJAP 1M fromCAD 1M fromNIKKEI500 fromSPTSX fromJAP 1M fromCAD 1M 

to NIKKEI500  0.00819*** 0.02157*** 0.00024 0.13034*** 0.01863*** 0.00187*** 4.56385*** 0.44017*** 

to SPTSX  0.00155*** 0.11101*** 0.00161 0.25548*** 0.00015*** 0.03914*** 0.01891*** 0.08634*** 

to JAP 1M  0.00000*** 0.00001*** 0.68900*** 0.00000* 0.00000*** 0.00001*** 0.38517*** 0.00000** 

to CAD 1M  0.00003 0.00065*** 0.00061 1.20765*** 0.00000*** 0.00022*** 0.00037*** 0.12702*** 

 

fromNIKKEI500 fromSPTSX fromJAP 1M fromCAD 1M fromNIKKEI500 fromSPTSX fromJAP 1M fromCAD 1M 

to NIKKEI500  0.96330*** 0.00907*** 0.00222 0.02346*** 0.74398*** 0.00123*** 272.02615*** 0.06638*** 

to SPTSX  0.00087*** 0.28780*** 0.15898** 0.05420*** 0.00010*** 0.95823*** 0.33093*** 0.00623*** 

to JAP 1M  0.00000** 0.00000*** 0.73594*** 0.00000*** 0.00006*** 0.00001*** 0.66802*** 0.00000*** 

to CAD 1M  0.00000 0.01311*** 0.01476** 0.48075*** 0.00000*** 0.00001*** 0.00033*** 0.90197*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: For Japan and Canada combination the stock and money markets have been complexly interconnected before the crisis. While some of the 

routes in the network lost some intensity, there are two particular routes through which the information transmission intensifies after the crisis in the 

context of both return and volatility channels. They are the indirect international routes from the Japanese and Canadian money markets to the equity 

markets of the other country. There is weak evidence of information flows from the other direction, more specifically from the equity markets to the 

bond markets. Internally, in Japan the money market greatly influences post-crisis the NIKKEI500 index via both return and volatility channels.   
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Table 5.10 Japan – Canada, Stock and Bond Markets; The estimation results for the FULL BEKK Model 

 

Panel A Pre-crisis Post-crisis 

The Mean Equation NIKKEI500 SPTSX JAP 10Y CAD 10Y NIKKEI500 SPTSX JAP 10Y CAD 10Y 

intercept 0.00675*** 0.00672*** 0.00005*** -0.00067*** 0.00644* 0.00469** -0.00081* -0.00206* 

AR(1) 0.09577*** 0.01412*** 0.26982*** -0.00319 -0.02064 -0.03753* -0.06138*** -0.04977* 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix fromNIKKEI500 fromSPTSX fromJAP 10Y fromCAD 10Y fromNIKKEI500 fromSPTSX fromJAP 10Y fromCAD 10Y 

to NIKKEI500  

 
0.39451*** -1.11962*** 1.91312*** 

 

0.31005*** 0.98940*** 1.02598*** 

to SPTSX  0.00676*** 

 

0.34398*** 0.03986** 0.02275* 

 

0.03590 0.29853*** 

to JAP 10Y  0.00002* -0.00197*** 

 

0.00251*** 0.00269 -0.00010 

 

0.13409* 

to CAD 10Y  0.00154*** 0.00609*** -0.02986** 

 

-0.00102 0.01455* 0.03057** 

  

 

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix -0.00560*** 

   
0.09321*** 

   C     -0.00658*** 0.00002 

  
0.00457*** -0.00280*** 

   i=1,…,4 0.00001* -0.00001 0.00001*** 

 

0.00007 0.00104*** 0.00000 

 

 
0.00034*** 0.00062*** -0.00058*** 0.00000 0.00218*** 0.00503*** 0.00066 0.00035 

ARCH effect matrix   0.20349*** 0.01019*** -0.00002*** 0.00002 0.44523*** 0.01623** -0.00060 0.00030 

A    -0.08174*** 0.10843*** -0.00453*** 0.00228*** -0.41739*** 0.26622*** 0.00456*** 0.01677*** 

 i=1,…,4 -0.70486*** 0.00091 0.70840*** 0.01394*** 0.72429*** 0.20409*** -0.19831*** -0.09012*** 

 

-0.32674*** -0.02339*** 0.00011*** 0.23849*** -0.06458 -0.11509*** 0.00688*** 0.13668*** 
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 GARCH effect matrix  0.97949*** -0.00182*** 0.00000*** -0.00002* 0.65095*** -0.00152 -0.00206*** -0.00766*** 

G    0.01794*** 0.98598*** 0.00049*** 0.00008 0.14495*** 0.95864*** -0.00055*** -0.00304*** 

i=1,…,4  0.04542*** -0.01891*** 0.90854*** -0.00015 0.33205*** 0.11083*** 0.98188*** -0.00073 

 

0.08242*** 0.00668*** 0.00004*** 0.97294*** -0.08188*** 0.02825*** -0.00185*** 0.98170*** 

 

fromNIKKEI500 fromSPTSX fromJAP 10Y fromCAD 10Y fromNIKKEI500 fromSPTSX fromJAP 10Y fromCAD 10Y 

to NIKKEI500  0.04141*** 0.00668*** 0.49682*** 0.10676*** 0.19823*** 0.17421*** 0.52460*** 0.00417 

to SPTSX  0.00010*** 0.01176*** 0.00000 0.00055*** 0.00026** 0.07087*** 0.04165*** 0.01324*** 

to JAP 10Y  0.00000*** 0.00002*** 0.50182*** 0.00000*** 0.00000 0.00002*** 0.03933*** 0.00005*** 

to CAD 10Y  0.00000 0.00001*** 0.00019*** 0.05688*** 0.00000 0.00028*** 0.00812*** 0.01868*** 

 

fromNIKKEI500 fromSPTSX fromJAP 10Y fromCAD 10Y fromNIKKEI500 fromSPTSX fromJAP 10Y fromCAD 10Y 

to NIKKEI500  0.95939*** 0.00032*** 0.00206*** 0.00679*** 0.42374*** 0.02101*** 0.11026*** 0.00670*** 

to SPTSX  0.00000*** 0.97216*** 0.00036*** 0.00004*** 0.00000 0.91898*** 0.01228*** 0.00080*** 

to JAP 10Y  0.00000*** 0.00000*** 0.82545*** 0.00000*** 0.00000*** 0.00000*** 0.96408*** 0.00000*** 

to CAD 10Y  0.00000* 0.00000 0.00000 0.94662*** 0.00006*** 0.00001*** 0.00000 0.96373*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: The long segment of the yield curve modelled simultaneously with the stock markets between Japan and Canada do not change substantially 

from the analysis involving the short-term segment of the yield curve. Both channels (return and volatility) are active across most of the possible routes 

before and after the crisis. The magnitude of the estimates for the return channels are higher than those for the volatility channel.  Also, the dynamics of 

information transmission process are affected in a similar way along the two channels. The domestic route in both countries bond-to-equity markets and 

the direct external route between the two bond markets becomes busier as a result of the crisis. The Canadian markets seem to have a leading role in 

exporting more information to the Japanese markets. 
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Table 5.11 Germany – Canada, Stock and Money Markets; The estimation results for the FULL BEKK Model 

 

           Panel A   Pre-crisis Post-crisis 

The Mean Equation DAX30 SPTSX GER 1M CAD 1M DAX30 SPTSX GER 1M CAD 1M 

intercept 0.01074*** 0.00850*** 0.00007** 0.00093*** 0.00786** 0.00392 -0.00009** 0.00014 

AR(1) -0.05721*** -0.05952*** 0.30168*** 0.05145*** -0.18058*** -0.07700*** 0.72524*** -0.14770*** 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix fromDAX30 fromSPTSX fromGER 1M fromCAD 1M fromDAX30 fromSPTSX fromGER 1M fromCAD 1M 

to DAX30 

 
0.27014*** -0.28100** 0.11638*** 

 

0.30402*** 0.81204*** 0.20509*** 

to SPTSX 0.04207*** 

 

-0.23133*** -0.00116 -0.01245 

 

0.46647*** 0.00071 

to GER 1M 0.00181*** 0.00116** 

 

0.00132** 0.00341*** -0.00459*** 

 

0.02977*** 

to CAD 1M -0.00006 -0.01446*** -0.06547** 

 

-0.00361 0.00478 0.01575 

  

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

intercept matrix 0.01045*** 

   
-0.02662*** 

   C     0.04573*** 0.01075*** 

  
-0.00428*** -0.00226* 

   i=1,…,4 0.00056*** -0.00092*** 0.00000 

 

0.00000 0.00014 0.00000 

 

 
-0.00431*** -0.00209* 0.00000 0.00000 -0.00018 -0.00215*** 0.00000 0.00000 

ARCH effect matrix   0.12191*** 0.02565*** 0.01098*** -0.00758** 0.20460*** 0.08791*** -0.01519*** 0.00423*** 

A    0.09304*** 0.27782*** -0.00121 -0.04290*** -0.02827*** 0.17427*** 0.01979*** -0.00368*** 

 i=1,…,4 -2.93243*** -2.60824*** 2.00236*** -0.97771*** 2.40315*** 1.01357*** 2.04706*** -0.15265*** 

 

0.17813*** 0.10449*** 0.00522*** 0.64904*** -0.07157*** 0.11095*** -0.03440*** 0.38816*** 
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 GARCH effect matrix  0.98739*** 0.02512*** 0.00036 -0.01564*** 0.91364** -0.07571*** 0.00095** -0.00085*** 

G    -0.03026*** 0.75485*** -0.00409*** 0.09378*** 0.11040*** 1.01863*** -0.00098** 0.00003 

i=1,…,4  0.73911*** 0.62923*** 0.60005*** 0.28474*** -0.40861*** -0.03793*** 0.66743*** 0.02288*** 

 

-0.15427*** -0.23094*** -0.00243 0.87256*** 0.00609* -0.02984*** 0.01079*** 0.94094*** 

 

fromDAX30 fromSPTSX fromGER 1M fromCAD 1M fromDAX30 fromSPTSX fromGER 1M fromCAD 1M 

to DAX30 0.04186*** 0.00087*** 8.59914*** 0.03173*** 0.04186*** 0.00080*** 5.77514*** 0.00512*** 

to SPTSX 0.00066*** 0.07718*** 6.80291*** 0.01092*** 0.00773*** 0.03037*** 1.02733*** 0.01231*** 

to GER 1M 0.00012*** 0.00000 4.00945*** 0.00003*** 0.00023*** 0.00039*** 4.19044*** 0.00118*** 

to CAD 1M 0.00006** 0.00184*** 0.95591*** 0.42125*** 0.00002*** 0.00001*** 0.02330*** 0.15067*** 

 

fromDAX30 fromSPTSX fromGER 1M fromCAD 1M fromDAX30 fromSPTSX fromGER 1M fromCAD 1M 

to DAX30 0.97494*** 0.00092*** 0.54629*** 0.02380*** 0.83474** 0.01219*** 0.16696*** 0.00004* 

to SPTSX 0.00063*** 0.56980*** 0.39593** 0.05334*** 0.00573*** 1.03762*** 0.00144*** 0.00089*** 

to GER 1M 0.00000 0.00002*** 0.36006*** 0.00001 0.00000** 0.00000** 0.44546*** 0.00012*** 

to CAD 1M 0.00024** 0.00879*** 0.08108*** 0.76137*** 0.00000*** 0.00000 0.00052*** 0.88536*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: The Canadian markets have well- established connections with Germany before the crisis, some of which consolidate in the post-crisis 

period. Their equity markets communicate better from both directions via both channels however with greater influence fom SPTSX index to the 

DAX30 index, while the bond markets are also more interlinked with Canadian money market as the main exporter of information shocks through both 

return and volatility markets.   There is little evidence of substantial spillovers effect through the indirect international route. 
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Table 5.12 Germany – Canada, Stock and Bond Markets; The estimation results for the FULL BEKK Model 

 

           Panel A   Pre-crisis Post-crisis 

The Mean Equation DAX30 SPTSX GER 10Y CAD 10Y DAX30 SPTSX GER 10Y CAD 10Y 

intercept 0.00514 0.00639*** 0.00028 -0.00105 0.00576** 0.00898*** -0.00064 -0.00048 

AR(1) -0.11320*** -0.00909 -0.13880*** 0.01870 -0.14692*** -0.08080*** 0.10850*** -0.17472*** 

The Return Spillovers   Pre-crisis Post-crisis 

Matrix fromDAX30 fromSPTSX fromGER 10Y fromCAD 10Y fromDAX30 fromSPTSX fromGER 10Y fromCAD 10Y 

to DAX30 

 
0.27520*** 0.09520 0.38080*** 

 

0.27453*** 0.65640*** 0.30349*** 

to SPTSX 0.01300 

 

-0.02310 0.07420 -0.00353 

 

0.11584** 0.17586*** 

to GER 10Y -0.00287*** 0.00024** 

 

0.40300*** -0.02151*** 0.02332** 

 

0.10456*** 

to CAD 10Y 0.00039 -0.01050 0.0107 

 

-0.00456 0.00731 0.42978*** 

  

Panel B Pre-crisis Post-crisis 

The Variance Equation  j=1 j=2 j=3 j=4  j=1 j=2 j=3 j=4 

 

0.00822 

   

0.02063*** 

   intercept matrix 0.05090** 0.00972 

  
0.00149 -0.00379** 

  C     0.00498 -0.01170 0.03040 

 

0.00517*** -0.00323*** -0.00234*** 

  i=1,…,4 0.01140 -0.02950 0.01830 0.00000 0.00008 0.00183*** -0.00094* 0.00000 

ARCH effect matrix   0.25540*** 0.11290*** 0.01320 0.01410 0.11327*** -0.12748*** -0.03299*** 0.00114 

A    -0.04540 0.24150*** -0.01170 -0.01960 0.27532*** 0.30098*** 0.00701*** -0.00036 

 i=1,…,4 -0.03140 0.07610 0.00111 0.18050** 0.16574*** 0.09538*** 0.15033*** 0.01404* 

 

-0.13550 -0.12640 0.10600*** -0.32290*** -0.14874*** -0.00848 -0.01610 0.13145*** 
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 GARCH effect matrix  0.97020*** 0.03440 0.00942 0.00192 0.96014*** 0.02613*** 0.01770*** -0.00267*** 

G    0.01860 0.69490*** 0.04740 0.02970 -0.03503*** 0.95125*** -0.00999*** 0.00092*** 

i=1,…,4  -0.24780 -0.34600 0.40030 -0.35310 -0.16579*** -0.03662*** 0.96668*** -0.01080*** 

 

-0.05550 -0.13980 -0.16430 0.65900*** 0.09706*** 0.02384*** 0.02096*** 0.99382*** 

 

fromDAX30 fromSPTSX fromGER 10Y fromCAD 10Y fromDAX30 fromSPTSX fromGER 10Y fromCAD 10Y 

to DAX30 0.06523*** 0.00206 0.00099 0.01836 0.01283*** 0.07580*** 0.02747*** 0.02212*** 

to SPTSX 0.01275*** 0.05832*** 0.00579 0.01598 0.01625*** 0.09059*** 0.00910*** 0.00007 

to GER 10Y 0.00017 0.00014 0.00000 0.01124*** 0.00109*** 0.00005*** 0.02260*** 0.00026 

to CAD 10Y 0.00020 0.00038 0.03258** 0.10426*** 0.00000 0.00000 0.00020* 0.01728*** 

 

fromDAX30 fromSPTSX fromGER 10Y fromCAD 10Y fromDAX30 fromSPTSX fromGER 10Y fromCAD 10Y 

to DAX30 0.94129*** 0.00035 0.06140 0.00308 0.92188*** 0.00123*** 0.02749*** 0.00942*** 

to SPTSX 0.00118 0.48289*** 0.11972 0.01954 0.00068*** 0.90487*** 0.00134*** 0.00057*** 

to GER 10Y 0.00009 0.00225 0.16024 0.02699 0.00031*** 0.00010*** 0.93446*** 0.00044*** 

to CAD 10Y 0.00000 0.00088 0.12468 0.43428*** 0.00001*** 0.00000*** 0.00012*** 0.98768*** 

Note: ***, ** and * indicate that the estimate is statistically significant at 1%, 5% and 10%, respectively;  

            The value 0.00000*** means that the parameter estimate is extremely small (non-zero) but still statistically significant.  

 

Comments: These results provide evidence of the impact that the crisis had on the dynamics of the spillovers of information when the German and 

Canadian bond markets are simultaneously modelled in conjunction with equity markets. The pre-crisis period reveals a less degree of interconnection 

between the two countries, with more routes becoming busy after the crisis. The return channel is more active when compared with the volatility channel 

as the estimates measuring the intensity of information spillovers have larger values in Panel A of the table. There most active routes in the post-crisi 

period are the indirect external routes (unidirectional, only from the bond to the equity markets), the direct external link between the equity markets with 

greater influence from SPTSX index, and the direct external route between the two bond markets.   
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Chapter 6  

Conclusions and Further Research  

 

       The three extensive empirical studies presented in this thesis have the general aim to 

dynamically estimate and forecast the term structure of interest rates within contexts that 

have not been considered before.  

The first empirical investigation contributes not only empirically but also in the 

theoretical direction by extending the multivariate CKLS modelling framework to four- 

and five-factor specifications. There are very few empirical studies in the TSIR literature 

that test such highly dimensional yield curve models, one reason being the computational 

and econometric challenges1 that arise when using such complex models.  

        Following Nowman’s (2003, 2006) approach, four continuous time term structure 

models, the general CKLS model and three other classic models nested in the CKLS 

framework (Vasicek, CIR and BS) are employed to estimate the short- and long-term 

segments of the yield curve using the Gaussian methods of dynamic estimation developed 

by Bergstrom (1983,1984). The short-end of the yield curve is examined in an 

international context based on five major currency-LIBOR rates over the period 2000-

2013, with a total of forty continuous time models to be estimated. For longer maturities 

the nominal U.K. yield curve is dynamically estimated using eight continuous time 

models. 

       The empirical results favour the five-factor models over the four-factor models as the 

addition of the fifth factor increases substantially the goodness of fit across all four 

specifications. For all five LIBOR currencies (GBP, USD, JPY, EUR and CAD) the 

restricted models are statistically rejected against the unrestricted CKLS specification.   

Interestingly however, in the case of the longer-term segment of the nominal U.K. curve 

the best fit from the restricted models has been provided by the Vasicek model, which 

narrowly failed the validity test against the CKLS model.  This result could suggest that 

                                                           
1 By adding extra variables, the optimization algorithm (the objective function) becomes more complex; it 

may also lead to over-fitting the data and to identification issues (see Hamilton and Wu, 2012). 
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in the current environment of very low interest rates models models that have been 

previously rejected based on their admittance of negative interest rates (such as Vasicek) 

should be reconsidered.  

       Another important finding is that the transition from four- to five-factor specification 

can be associated with a decrease in the value of the diffusion parameter measuring the 

sensitivity of the instantaneous volatility with respect to the level of the instantaneous 

interest rate. This may suggest that less flexible models introduce a specification bias by 

overestimating how elastic the volatility is.  

        In addition, the benefit of increasing the number of factors, is that one could observe 

the changes in the structure of the variance-covariance matrix between the two 

extensions. This allows the identification of which maturity yields have the strongest 

interconnections. For the short-term segment of the yield curve, it was found that the last 

three factors - the three-, six- and twelve-month LIBOR rates - move together very 

closely. Based on this evidence one may conclude that if any twists were to exist in the 

term structure of interest rates over the period 2000-2013 they should have occurred 

outside this three to twelve-month maturity segment. This feature of the analysis has 

important implications for the investment decision making process; investors who focus 

on certain segments of the term structure of interest rates could determine the regions 

where a twist/inversion may occur along the yield curve.  

       The forecasting performance of the TSIR models employed here is assessed and 

compared with the forecasting results from discrete time benchmark models such as VAR 

(1) and AR(1). Based on five, both statistical and economic, measures of forecasting 

accuracy it was found that for shorter maturity (up to six months) interest rates, the 

continuous time models nested in the CKLS framework outperform consistently the 

discrete time models. However, once the model involves interest rates of longer 

maturities, the situation reverses. This is an important conclusion, that adds new insights 

into the debate of parsimonious versus complex modelling, suggesting that complex 

models are necessary to capture well the dynamics of the short-end of the yield curve. 

These findings could have great implications for financial areas where the accuracy of 

interest rate forecasting is crucial. In conclusion, the forecasting results suggest that the 

availability of alternative forecasting methods should become an intrinsic feature of any 

forecasting analysis of the short end of the yield curve. If most of the richer models would 

produce this superior performance over parsimonious models, then the final averaged 

forecasts should give more weight to more the sophisticated models when this maturity 

segment is concerned.  
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       For further research, the newly extended models in this chapter have a great appeal 

for applications to any asset class where there is a term structure such as futures contracts 

in general and commodity (oil, gold) futures, dividend, FX and real estate futures in 

particular.  

       In the second empirical investigation of this thesis, the dynamics of the yield curves 

for three Scandinavian countries (Denmark, Norway and Sweden) are explored for the 

first time in the literature by using one-, two- and three-factor versions of the general 

Babbs and Nowman (1999) model. The Kalman filter and maximum likelihood estimates 

of twenty-seven models are mostly highly significant, including several market prices of 

risk parameters which are difficult to estimate in general. Based on formal statistical tests 

and residual analysis, the empirical results indicate that the three-factor specification 

explains best the changes over time in the shape of the yield curve for Denmark and 

Norway. For Sweden, the BIC statistical test does not reject the two-factor model against 

the three-factor formulation. There is evidence of a structural break during the third 

quarter of 2007 as the estimation results for the pre-crisis data-sample differ considerably 

from those from the post-crisis period. Additionally, the loadings (sensitivity) of the yield 

curve on each factor are extracted and analysed in order to determine the nature of their 

associated factor. Moreover, the time series of the unobservable factors implied by the 

Kalman filter are compared to the data-based factors of level, slope and curvature. For 

Denmark and Norway, the interpretation of the factors is very similar and straightforward 

in terms of level, slope and curvature as there is a high level of correlation between the 

two types of factors. However, for Sweden the paths of the extracted factors are not 

consistent with the dynamics of the data-implied factors.  

          The estimation results are used to compute optimal daily forecasts for the last three 

months in 2014 and compare all the models in terms of prediction power. In terms of 

forecasting performance there is a clear winning model only for Norway where the three-

factor model performs best, while for Denmark and Sweden the one-factor and three-

factor have comparable performance. Overall, the BN models achieve very good quality 

forecasts across all maturities and given their tractability they can be very useful in 

hedging strategies and pricing interest rates derivatives.  

        The latent factor BN model can be further discussed in comparison with more recent 

extensions of the classic non-parametric Nelson-Siegel (1987) model, such as the 

dynamic version (DNS) and the arbitrage-free version (AFNS) presented in Diebold and 

Rudebusch (2013). Following Diebold et al. (2006), one could investigate which 

macroeconomic variables can relate to the theoretical factors implied by these models. In 
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this way one could determine which model is most appropriate to extract continuous 

information regarding particular macroeconomic variables such inflation and monetary 

policy instruments.  

     The third empirical study in this thesis, investigates the impact of the financial crisis of 

2007-2009 on the return and volatility spillovers dynamic effects among different types of 

markets, more specifically equity, long-term bonds and money markets. Given the high 

degree of financial integration, shocks in one market are likely to spread simultaneously 

at both domestic and international level.  To include these two levels, the dynamic 

interaction between two asset classes (internal) across two different countries (external) is 

modelled simultaneously in the four-factor modelling framework the traditional discrete 

time multivariate M-GARCH model, the full BEKK variant.  This framework allows to 

examine how the global financial crisis of 2007-2009 has spread from the U.S. to four 

major economies, namely U.K., Japan, Germany and Canada. The empirical results are 

organised pairwise, for example for the U.S.-U.K. pair we look first at the combination of 

stocks and one-month T-bills markets and then stock and 10-year government bonds.         

The empirical results resulted from the estimation of sixteen models contain evidence that 

the last financial crisis has definitely impacted the relationships between major economic 

and financial markets. The empirical results emphasize that, relative to the U.S., for each 

country analysed the information transmission mechanism has its own particularities even 

before the crisis. This mechanism is subject to changes during the crisis, with one 

consistent result that the U.S. bond markets become the dominant exporters of 

information either through the price discovery or volatility channel mostly to the equity 

markets of the other country. Out of the three types of routes of information transmission, 

the most active routes are the indirect external route followed by the domestic one. These 

results are valid for both return and volatility channels and it emphasises the importance 

of considering this type of routes, ignored previously in the spillovers literature. Along 

these routes, the information flows unidirectionally from the interest rate markets to the 

equity markets and not vice-versa, implying that the interest rate markets dominate the 

equity markets in transmission of information.  

        The return and volatility spillover effects are much stronger when the equity markets 

are modelled in combination with the long-term markets than with the money markets. 

Among the countries considered, the results for Canada are significantly different, as the 

Canadian markets seem to influence indirectly the U.S. markets, reflecting the relative 

stability that Canadian markets sustained during the crisis. 
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      This line of research could be continued further by employing the five-factor 

extension of the CKLS framework, where the fifth factor would be the exchange rate 

between the U.S. and the respective country. It would be of interest to conduct a 

comparative investigation between this continuous time framework and the discrete time 

approach followed by Ehrmann et al. (2011).   
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