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ABSTRACT
We present a polynomial expansion of the standardized Student-t distribution. Our
density, obtained through the polynomial adjusted method in Bagnato, Potí, and Zoia
(2015. “TheRoleofOrthogonal Polynomials inAdjustingHyperbolic Secant andLogistic
Distributions to Analyse Financial Asset Returns.” Statistical Papers 56 (4): 1205–12340),
is an extension of the Gram–Charlier density in Jondeau and Rockinger (2001. “Gram-
Charlier Densities.” Journal of Economic Dynamics and Control 25 (10): 1457–1483). We
derive the closed-form expressions of the moments, the distribution function and
the skewness–kurtosis frontier for a well-defined density. An empirical application is
also implemented for modeling heavy-tailed and skewed distributions for daily asset
returns. Both in-sample and backtesting analysis show that this new density can be a
good candidate for risk management.
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1. Introduction

TheGram–Charlier (GC) distribution studied, among others, in Corrado and Su (1996), Jondeau andRockinger
(2001, henceforth JR), Del Brio and Perote (2012), Schlögl (2013), León andMoreno (2017) and Zoia, Biffi, and
Nicolussi (2018) has become popular in financial economics as a generalization of the normal distribution. The
GC density is the expansion of the standard normal density based on orthogonal polynomials.1 It can be seen as
a particular case of the polynomially adjusted (PA) class of densities of Bagnato, Potì and Zoia (2015, henceforth
BPZ) and so, theGC is also referred to as the PAGaussian (PAG). These authors show a simple theorem that links
the higher-order moments (skewness and kurtosis) of a polynomially expanded (parent) distribution to those of
the target distribution. The selected parent density tends to verify the properties of symmetry and unimodality
and as a result, the associated PA density presents advantages in terms of theoretical tractability and empirical
applicability. The two parameters of the polynomial expansion become directly the skewness and excess kurtosis
implied in the PA density, indeed. The orthogonality of the polynomials depends on the selected parent density.
For instance, the Hermite polynomials verify the orthogonality condition when the parent density is Gaussian.
BPZ ( 2015) also consider, as parent densities, the standardized forms of both the hyperbolic secant and logistic
densities to obtain their corresponding PA densities referred to as PAHS and PAL, respectively.2

We present the polynomial expansion of the standardized Student-t (T) distribution or PA Student-t (PAST
hereafter). The PAST nests the PAG as the T distribution’s degrees of freedom tend to infinity and hence, it
becomesmore flexible than the latter for modeling the heavy-tailed and skewed distributions of asset returns.3 It
is well known that the PAGdensity is only suitable for return series withmoderate kurtosis. The literature on this
topic has developed very quickly during recent years, see, for instance, Wilhelmsson (2006), Komunjer (2007),
Bali, Mo, and Tang (2008), Zhu and Galbraith (2011), Dendramis, Spungin, and Tzavalis (2014), Harvey and
Sucarrat (2014), Liu, Li, and Ng (2015), Feunou, Jahan-Parvar, and Tédongap (2016), Kumar and Patil (2016),
León and Ñíguez (2020) and Thiele (2020). Contributing to this line of research, we show that the PAST can
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be a good candidate for statistical analysis of financial returns and, in general, for fitting series with high levels
of kurtosis. Another advantage of using PAST is that it nests the standard normal (N) which is an advantage in
terms of tractableness.

We illustrate the practical use of the PAST pdf through an application to modeling the conditional distri-
bution of asset returns. For that purpose, we implement the popular conditional variance model by Glosten,
Jagannathan, and Runkle (1993, henceforth GJR). We test the performance of our model through in-sample
and out-of-sample (OOS) analyses. The data we use comprises three stock indexes, four exchange rates, and
three commodity indexes. For comparison purposes, we consider the following alternative densities: both N
and T as benchmark densities; PAL, PAHS and GC as alternative PA densities, and the skewed-t (sk-T) density
of Hansen (1994). Models relative forecasting performance is evaluated through the backtesting methods for
Value-at-Risk (VaR) and expected shortfall (ES) of Du and Escanciano (2017).

The remainder of the paper is structured as follows. Section 2 deals with the general framework to construct
PA densities according to the results in BPZ (2015) and provides some new statistical properties. In Section 3,
we present the PAST distribution and specifically, we obtain the probability density function (pdf), cumulative
distribution function (cdf) and study the parametric properties together with its skewness–kurtosis frontier
that guarantees the non-negativeness of the PAST density. Section 4 provides an empirical application to asset
returns and a performance comparative analysis. Conclusions are given in Section 5. The proofs for some results
in Section 3 are collected in the appendix.

2. Polynomial adjusted distributions

2.1. Density function

Let f (x, δ) denote a parent standardized symmetric and unimodal density function such that x ∈ R and δ is the
parameter vector implied in the density, then BPZ ( 2015) shows that its corresponding PA density is obtained
as

g(x; δ, θ) = f (x; δ)ψ(x; δ, θ), (1)

where θ = (θ3, θ4) is another parameter vector, and ψ(·) is defined as

ψ(x; δ, θ) = 1 + θ3

γ3
p3(x)+ θ4

γ4
p4(x), (2)

such that pj(x) is a polynomial of order j with

p3(x) = x3 − a1x, p4(x) = x4 − a2x2 + a3 (3)

and

a1 = m4, a2 = m6 − m4

m4 − 1
, a3 = m6 − m2

4
m4 − 1

, (4)

where mk = Ef [xk] denotes the kth non-central moment of x with f (x, δ) as pdf. Note that mk = mk(δ),
then ai = ai(δ). Both polynomials in (3) with coefficients in (4) verify the orthogonality condition, i.e.
Ef [p3(x)p4(x)] = 0, and Ef [pj(x)] = 0. Finally, the coefficient γj = γj(δ) is the squared norm associated to pj(x),
i.e. γj = Ef [p2j (x)] = Ef [xjpj(x)], then

γ3(δ) = m6 − a1m4, γ4(δ) = m8 − a2m6 + a3m4. (5)

Note that γ3 and γ4 in (5) are equations depending on δ since the moments mk are functions of δ. Thus, δ is a
parameter vector that determine the momentsmk from the selected parent density.4
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2.2. Non-central moments

The selected parent density f (x; δ)must verify that its moments of all order exist or, at least, those necessary to
compute ai in (4). Sincem1 = 0,m2 = 1 andmk = 0 for k odd due to the symmetry of f (·), then the first non-
central moments from (1), denoted as m̃k = Eg[xk], are given by m̃1 = 0, m̃2 = 1, m̃3 = θ3 and m̃4 = m4 + θ4.
Thus, θ3 and θ4 become directly the skewness and excess kurtosis of g(x; δ, θ), and ψ(x; δ, θ) is interpreted as a
polynomial shape-adapter function reshaping f (x; δ) for skewness via θ3 and excess kurtosis via θ4.5 Note that
Ef [xkp4(x)] = 0 if k is odd, while Ef [xkp3(x)] = 0 if k is even, then the general expression of m̃k for k ∈ N is
given by

m̃k(δ, θ) =
{
mk(δ)+ θ4γ

−1
4 Ef [xkp4(x)], k even,

θ3γ
−1
3 Ef [xkp3(x)], k odd.

(6)

In short, m̃k only depends on the skewness θ3 (excess kurtosis θ4) when k is odd (even).

2.3. Cumulative distribution function and expected shortfall

Let be the cumulative distribution function, or cdf, G(x; δ, θ) = ∫ x
−∞ g(u; δ, θ) du with g(·) as the pdf in (1). By

plugging (2) and (3) into (1), we get the expanded version of g(u; δ, θ) as a function of powers of the variable u
and then, integrating over the unbounded interval (−∞, x] we obtain

G(x; δ, θ) =
4∑

j=0
ωjξj(x; δ), (7)

where

ξj(x; δ) =
∫ x

−∞
ujf (u; δ) du (8)

and

ω0 = 1 + θ4γ
−1
4 a3, ω1 = −θ3γ−1

3 a1, ω2 = −θ4γ−1
4 a2, ω3 = θ3γ

−1
3 , ω4 = θ4γ

−1
4 . (9)

Consider j = 0 in (8), then we have ξ0(x; δ) = ∫ x
−∞ f (u; δ) du as the cdf of the parent density f (x; δ), hence-

forth F(x; δ). Note also that ξj(x; δ) for j ≥ 1 can be rewritten in terms of one-sided truncated jth moments,
i.e. ξj(x; δ) = F(x; δ)Ef [uj | u ≤ x] where Ef [uj | u ≤ x] = ∫ x

−∞ ujft(u; v) duwith ft(u; δ) = f (u; δ)/F(x; δ) as the
pdf for the truncated distribution with support the interval (−∞, x] such that

∫ x
−∞ ft(u; δ) du = 1. Thus, ft(·)

comes from the normalization of f (·) as the pdf of the complete distribution with support (−∞,∞).
The expected shortfall, or ES, corresponding to the random variable x with g(·) as the pdf in (1) is easily

obtained as

Eg[x | x ≤ xα] =
∫ xα

−∞
xgt(x; δ, θ) dx = 1

α

∫ xα

−∞
xg(x; δ, θ) dx, (10)

where gt(x; δ, θ) = g(x; δ, θ)/G(xα ; δ, θ) denotes the pdf for the truncated distribution with support (−∞, xα]
such that xα = G−1(α; δ, θ) is the α-quantile, or VaR, i.e. G−1(α; δ, θ) = inf{x |G(x; δ, θ) ≥ α} with G(·) as the
cdf in (7). If we solve the integral in (10) following the same procedure as in the cdf G(x; δ, θ), we finally obtain
an expression for Eg[x | x ≤ xα] that is rather similar to (7) but with different coefficients, i.e.

Eg[x | x ≤ xα] =
5∑

i=1
	iξi(xα ; δ), (11)

where ξi(xα ; δ) is according to (8), and

	1 = 1
α

(
1 + θ4a3

γ4

)
, 	2 = −θ3a1

αγ3
, 	3 = −θ4a2

αγ4
, 	4 = θ3

αγ3
, 	5 = θ4

αγ4
. (12)
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Let y = μ+ σx be a linear transformation of x where μ ∈ R and σ > 0 denote, respectively, the location and
scale parameters. It is verified that E[y | y ≤ yα] = μ+ σEg[x | x ≤ xα] with yα = μ+ σxα .

2.4. Positivity restrictions

For a correct PA density in (1), we need to ensure the positivity of ψ(x; δ, θ). There are two different methods.
First, the one suggested by Gallant and Nychka (1987) consisting on squaringψ(x; δ, θ).6 However, by doing so,
one loses the interpretation of the parameters θj in (2), as the skewness and excess kurtosis, since we would face
a new pdf: h(x; δ, θ) = λ+f (x; δ)ψ2(x; δ, θ) with λ−1

+ = 1 + θ23γ
−1
3 + θ24γ

−1
4 . Second, the method suggested in

JR ( 2001) for building the domain, or restricted parameter set, �, over which ψ(x; δ, θ) > 0 for every x. In
this study, we follow the latter approach and leave the former for further research. So, we are interested in the
boundary of � by using the analytical geometry concept of the envelope. For a given x, the skewness–kurtosis
frontier (SKF) that guarantees positivitymust satisfy the following equation system:ψ(x; δ, θ) = 0 and ∂ψ/∂x =
0. As a result, we obtain the SKF expressions for θ3 and θ4 as functions of x, which are given by

θ3(x; δ) = −γ3 4x3 − 2a2x
x6 + β4x4 + β2x2 + β0

, θ4(x; δ) = γ4
3x2 − a1

x6 + β4x4 + β2x2 + β0
, (13)

whereβ4 = a2 − 3a1,β2 = a1a2 − 3a3 andβ0 = a1a3. In short, the PAdensity in (1) will be subject to θ ∈ �(δ)
such that any point in the frontier of�(δ) is obtained according to (13). In the following section, we use�(δ) =
�(v) where v denotes the degrees of freedom for the standardized Student-t as the parent density.

3. The PAST distribution

3.1. Density function

The standardized Student-t density, or T density, is given by

f (x; v) = 1
(v − 2)1/2B(v/2, 1/2)

(
1 + x2

v − 2

)−(v+1)/2

(14)

where B(a, b) = ∫ 1
0 ua−1(1 − u)b−1 duwith a, b> 0 is the ordinary beta function. The non-central momentsmj

only exist for 0< j< v verifying thatm1 = 0,m2 = 1,m2k+1 = 0 for j = 2k+ 1, and

m2k(v) = (v − 2)k
k∏

i=1

(
2i − 1
v − 2i

)
(15)

for j = 2k. The PAST pdf is given by (1), then g(x; v, θ) = f (x; v)ψ(x; v, θ)with f (·) as the parent density in (14)
and ψ(·) is the polynomial function in (2) subject to v> 8 so as to obtain γj(v) in (5). For instance, if we take
v = 10, then ai in (4) and γj are given by a1 = 4, a2 = 12, a3 = 8, γ3 = 24 and γ4 = 672.

For v → ∞, we obtain the GC pdf: gGC(x; θ) = φ(x)ψGC(x; θ) where φ(x) is the standard normal pdf and
ψGC(x; θ) = 1 + θ3

3!H3(x)+ θ4
4!H4(x) with Hj(x) as the jth (orthogonal) Hermite polynomial. The first four

Hermite polynomials are: H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x and H4(x) = x4 − 6x2 + 3.
Figure 1 provides an illustration of the PAST density with v = 15 (PAST15) as it compares to the sk-T and

PAHS, plots of zoomed lower tails are also provided. All these densities have zero mean, unit variance and
the same levels of skewness (−0.47) and kurtosis (11). More details about these latter values and the densities’
parameters can be seen below in Section 3.3.

3.2. Cdf and ES

The PAST cdf is given by G(x; v, θ) in (7) with ξj(x; v) in (8) such that f (·) is the parent pdf in (14). Next, we
obtain the corresponding expressions of ξj(x; v).
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Figure 1. Distribution/tail shapes comparison
This figure provides a comparison of density, g(x), and left-tail shapes of PAST15, sk-T and PAHS.

Corollary 3.1: Let ξ0(x; v) = F(x; v) be the cdf of the standardized ST distribution, then

F(x; v) = 1/2(1 + sgn(x)Iη(x)(1/2, v/2)), (16)

where sgn(x) = x/|x| for x �= 0 (and 0, for x = 0), η(x) = x2/(x2 + v − 2), Ix(a, b) = B(x; a, b)/B(a, b) is the
regularized beta function, and B(x; a, b) = ∫ x

0 ua−1(1 − u)b−1 du is the incomplete beta function.

Proof: See Appendix. �

Proposition 3.1: The closed-form expression of ξj(x; v) when j is an even number is obtained as

ξ2k(x; v) = m2k(v)
2

+ sgn(x)(v − 2)k
B

( v
2 − k, k + 1

2
)

2B
( v
2 ,

1
2
) Iη(x)

(
k + 1

2
,
v
2

− k
)
, (17)

with m2k(v) in (15).

Proof: See Appendix. �

Proposition 3.2: The closed-form expression of ξj(x; v) when j is an odd number is obtained as

ξ2k+1(x; v) = (v − 2)k+
1
2
B

( v−1
2 − k, k + 1

)
2B

( v
2 ,

1
2
) [

Iη(x)
(
k + 1,

v − 1
2

− k
)

− 1
]
. (18)

Proof: See Appendix. �

Hence, the cdf G(x; v, θ) in (7) for PAST (henceforth, GPAST(x; v, θ)) is computed given Equations (16), (17)
and (18), and the expressions of ωj in (9). For v → ∞, we obtain the GC cdf: GGC(x; θ) = �(x)−
θ3
3!H2(x)φ(x)− θ4

4!H3(x)φ(x) where�(x) is the standard normal cdf.7
Figure 2 showcases the cdf and ES of PAST when v = 15 (PAST15) and v = 300 (PAST300), and both with

zero mean, unit variance, skewness θ3 = −0.5 and excess kurtosis θ4 = 2.4545. The kurtosis of the parent T pdf
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Figure 2. Cumulative distribution and expected shortfall.
This figure plots cdf, G(x), and ES, Eg[x | x ≤ xα ], of PAST15 and PAST300 (aprox. GC) pdfs.

according to m4(v) in (15), is 3.5455 for the case of v = 15 and 3.0121 for v = 300. Note that the latter case
converges to the parent N pdf and hence, to the GC pdf with the same above values of θ3 and θ4. In short, the
skewness is the same for both PAST pdfs, and the kurtosis is 6 for PAST15 and 5.46 for PAST300. The plotted
ES values for both PAST pdfs are computed according to Equations (11), (17), (18) and the expressions of	i in
(12). The ES values are displayed for the range−4 to−3 whereGPAST(−3; 15, θ) = 0.0096,GPAST(−3; 300, θ) =
0.0125,GPAST(−4; 15, θ) = 0.0029, andGPAST(−4; 300, θ) = 0.001 with θ =(−0.5, 2.4545). We find that the ES
(dashed) line for PAST300 is above the PAST15 one, which means that expected losses (i.e. ES with a negative
sign) are greater the lower is the parameter v. So, higher kurtosis levels for the same skewness levels lead to
higher expected losses when we move deep inside the left tail.

3.3. Skewness–kurtosis frontier

Figure 3 exhibits several frontiers of�(v) by using both equations in (13) for the PASTpdfwith v ∈ {9, 10, 15, 20}
and v → ∞ for the PA Gaussian, or GC, pdf. More precisely, the frontiers are in terms of kurtosis instead of
excess kurtosis. In short, the points of the skewness–kurtosis frontier (SKF) are given by (sk, ku) = (θ3,m4(v)+
θ4)withm4 in (15). Note that the SKFs are symmetric with respect to the x-axis. It is shown that the lower v, the
higher ku and the lower sk, so the PAST’s SKF enlarges significantly the GC’s. For instance, any point from the
frontier of�(∞), or GC frontier, verifies that 3 ≤ ku ≤ 7, |sk| ≤ 1.0493, and themaximum size for sk is reached
for θ4 = 2.4508. The equations in (13) for v → ∞ are: θ3(x) = −24H3(x)/q(x) and θ4(x) = 72H2(x)/q(x)
where q(x) = x6 − 3x4 + 9x2 + 9. See also JR (2001).

In order to illustrate the effect that the PAST envelope for different ν has on the shape of the distribution,
Figure 4 plots theoretical quantiles from zero mean and unit variance densities of the sk-T against PAL, PAHS
and PAST with fixed ν = 10, 15 (PAST10 and PAST 15, respectively). We showcase the comparison for both
distribution tails: lower tail (quantiles from 0.001 to 0.05) and upper tail (quantiles from 0.95 to 0.999). Specif-
ically, we employ a total of fifty equally spaced quantiles in each tail. The PA distributions’ parameters are
fine-tuned so that their values of sk and kumatch those of the sk-T. The specific higher-order moment values are
sk0 = −0.4672 and ku0 = 10.9588 (rather similar to those empirical values exhibited below in Table 1, see also
Figure 1 for an illustration of these densities).8 This means that θ3 = −0.4672 for the three PA distributions,
whilst θ4 = 6.7588 for PAL (i.e. m4 = 4.2 for the parent logistic pdf) and θ4 = 5.9588 for PAHS (i.e. m4 = 5
for the parent hyperbolic secant pdf). Note that the PAST, contrary to PAL and PAHS, can provide the level of
ku0 under different combinations of v and θ4 as exhibited in Figure 3. We consider, for example, only two cases,
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Figure 3. PAST skewness–kurtosis frontiers.
Skewness–kurtosis frontiers for PAST with v = 9, 10, 15, 20, and GC or PA Gaussian (v → ∞).

Table 1. Summary statistics for the daily percent log returns.

JAP-EU JAP-US US-UK SWI-US FTSE CAC AEX GSCITOT GOLD BRENT

Mean −0.01 0.00 −0.01 −0.01 −0.01 0.00 0.00 −0.03 0.02 −0.01
Median 0.01 0.00 0.00 0.01 0.04 0.04 0.06 0.00 0.01 0.00
Std. dev. 0.75 0.63 0.64 0.66 1.49 1.67 1.55 1.49 1.14 2.29
Min −6.79 −4.61 −8.31 −11.42 −14.21 −14.85 −13.13 −12.52 −9.81 −26.83
Max 4.84 3.71 4.47 8.47 12.22 12.14 12.32 7.62 8.59 19.08
Skewness −0.40 −0.25 −0.61 −1.21 −0.41 −0.23 −0.31 −0.59 −0.24 −0.58
Kurtosis 9.66 8.17 14.73 41.33 15.02 11.64 13.05 9.28 9.18 16.31

Notes: This table presents the summary statistics for the daily percent log return series of: yen to euro (JAP-EU); yen to dollar (JAP-US); dollar to
British pound (US-UK); Swiss franc to dollar (SWI-US); FTSE 100, CAC 40 and AEX stock indexes; Goldman Sachs Standard & Poors (S&P) commod-
ity index (GSCITOT); GSGCTOT S&P Gold index (GOLD); and GSBRSPT S&P Brent Crude Oil (BRENT). Sample: 9 November 2007 to 4 April 2021
(T = 3500 observations).

namely, θ4 = 6.9588 for PAST with v = 10 (i.e.m4 = 4 for the parent T pdf with v = 10), and θ4 = 7.4133 for
PAST with v = 15 (i.e. m4 = 3.5455 for the parent T with v = 15). Note that PAST10 becomes more flexible
to capture higher kurtosis levels than PAST15, when both are restricted to the same skewness level of −0.47,
as displayed in Figure 3. Several conclusions are suggested from Figure 4. First, we find that PAST10 provides
much closer quantiles to those of the sk-T than PAST15 for both tails. That is, PAST10 quantiles are closer to
the 45-degree dashed line. Second, PAL and PAHS quantiles are very similar for the lower tail, whilst PAHS
quantiles are nearer to sk-T for the upper tail. Third, it is verified that more significant differences among PA
quantiles (respecting sk-T ones) can be seen at the end of both tails. Finally, PAL and PAST15 seem to provide
similar quantiles for both tails.

3.4. Conditional distribution of asset returns

Let rt be the asset return process characterized by the sequence of conditional densities h(rt | It−1;ϒ), where
It−1 denotes the information set available prior to the realization of rt ,ϒ = (μ, ς , v, θ) is the vector of unknown
parameters with µ as the constant mean of rt , ς is the subset characterizing the conditional variance of rt , and
(v, θ) characterize the shape of the PAST distribution innovations, zt . Thus, the asset returnmodel is rt = μ+ εt
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Figure 4. Distribution tail comparison sk-T versus PA densities.
This figure plots theoretical quantiles of sk-T versus PA densities for both tails: lower tail (quantiles from 0.001 to 0.05) and upper tail (quantiles from 0.95 to 0.999).
There is a total of fifty equally spaced quantiles in each tail. All densities have zero mean, unit variance and the same levels of skewness (−0.47) and kurtosis (11).

with εt = σtzt such that σ 2
t = E[ε2t | It−1] is the GJR model:

σ 2
t = α0 + βσ 2

t−1 + α+
1 (ε

+
t−1)

2 + α−
1 (ε

−
t−1)

2, (19)

such that α0 > 0, β ≥ 0, α+
1 ≥ 0, α−

1 ≥ 0, and consider ε+t = max(εt , 0), ε−t = min(εt , 0). Henceforth, the
above process for rt is referred to as GJR-PAST model. Note that the GJR nests the GARCH when α+

1 = α−
1 .

Following He and Teräsvirta (1999), we can rewrite the GJR as σ 2
t = α0 + ctσ 2

t−1 with ct = β + α+
1 (z

+
t−1)

2 +
α−
1 (z

−
t−1)

2. If we assume (19) to be covariance stationary, then the unconditional variance of εt is E(ε2t ) =
E(σ 2

t ) = α0(1 − E(ct))−1 such that E(ct) = β + (α−
1 + α+

1 )/2 < 1. Since E[rt | It−1] = μ, then E(ε2t ) is the
unconditional variance of rt . Let lt = ln h(rt | It−1;ϒ) be the log-likelihood (LL) function for a particular
observation rt , then

lt = −1
2
ln(σ 2

t )− 1
2
ln(v − 2)− lnB

(
v
2
,
1
2

)
− v + 1

2
ln

(
1 + z2t

v − 2

)
+ lnψ(zt ; v, θ), (20)

where zt = (rt − μ)/σt . Finally, alternative distributions for zt are also implemented here for a robustness anal-
ysis. Thus, zt ∼ i.i.d. D(0, 1) such thatD(0, 1) denotes a specific density (N, T, sk-T, GC, PAST, PAHS and PAL)
with zero mean and unit variance, and lDt as the corresponding LL per observation. Specifically, the expression
of lDt with a general PA density (henceforth, lPAt ) under both constant mean and GJR structure in (19) is easily
obtained as

lPAt = −1
2
ln(σ 2

t )+ ln f (zt ; δ)+ lnψ(zt ; v, θ), (21)

with zt = (rt − μ)/σt . From now on, lt in (20) will be denoted as lPASTt . We employ for PA densities the method
of constrainedmaximum likelihood (CML) so as to guarantee the positivity ofψ(·) in (21). Indeed, wemaximize
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LL(ϒ) = ∑T
t=1 l

PA
t subject to �(v, θ) < 0, which denotes a system of two nonlinear inequations as functions of

(v, θ) according to (30) and (31) in BPZ (2015). Note that for each value of v, both �(v, θ) < 0 and �(v) in
Section 2.4 become the same.

4. Empirical application

First, we start with the descriptive statistics analysis of the daily return series. Second, we estimate the return
unconditional distribution for each series under different densities. Indeed, in this stage, we are interested in the
PAST relative performance for fitting the distribution tails. Third, we analyze the fit of the conditional distribu-
tion considering a model from the GARCH family under different densities for the standardized return series.
Finally, we implement an exhaustive backtesting procedure to compare the distributions’ OOS performance for
predicting VaR and ES.

4.1. Data and descriptive statistics

We use the log-returns computed as rt = 100 ln(Pt/Pt−1) from samples of daily closing prices {Pt}Tt=1 of (1)
exchange rates (FX): yen to euro (JAP-EU), yen to dollar (JAP-US), dollar to British pound (US-UK) and Swiss
franc to dollar (SWI-US); (2) stock indexes: FTSE 100, CAC 40 and AEX; (3) Commodity indices: Goldman
Sachs Standard & Poors (S&P) commodity index (GSCITOT), GSGCTOT S&PGold index (GOLD) and GSBR-
SPT S&PBrent CrudeOil (BRENT). The data, downloaded fromDatastream, cover the period from9December
2007 to 4 April 2021 for a total of T = 3500 observations. Table 1 provides the return descriptive statistics. All
series present negative skewness ranging from−0.23 (CAC) to−1.21 (SWI-US), and high kurtosis ranging from
8.17 (JAP-US) to 41.33 (SWI-US). The non-reported Jarque–Bera test null of normality is rejected in all cases
motivating the use of alternative distributions to the Gaussian for modeling returns.

4.2. Unconditional distribution estimation

We showcase the estimation of themodels for the return series standardized by their samplemeans and standard
deviations. Table 2 presents the parameter estimates of the PAST density as well as alternative pdfs considered
for robustness comparison purposes. Besides, to assess the stability in the PAST estimation, we also consider
PASTwith fixed ν = 10, 15, 20 (i.e. PAST10/15/20). The estimation is carried out using theMLmethod for both
T and sk-T densities, and CML for all PA densities.

The parameter estimates θ3, θ4 (PA densities), λ (sk-T) and ν (T, sk-T and PAST) are all statistically significant
for stock indices, GSCITOT, GOLD and BRENT series, indicating skewness and leptokurtosis. For FX returns
the results are mixed: (1) both ν and θ4 are statistically significant for all series indicating leptokurtosis; (2) the
sk-T asymmetry parameter, λ, and θ3 from the rest of models are not statistically significant for JAP-US indi-
cating that the unconditional distribution of this series is symmetric; (3) for JAP-EU and US-UK, the parameter
estimates indicate milder or no skewness. In particular, for JAP-EU, the λ parameter is significant at 5 %; and
θ3 is significant at 5 % (GC), 10 % (PAST, PAST15 and PAST20) or not significant (PAL, PAHS, PAST10). For
US-UK series, λ is significant at 5 % level, but θ3 is not at any reasonable significance level in any of the other
densities. (4) Finally, for SWI-US, λ and θ3 are both statistically significant at 5 % level, except in PAHS and
PAST.

For the goodness-of-fit (GoF) comparison of nested pdfs, we apply the Akaike Information Criterion (AIC).
We find that sk-T performs better than T for all series except for JAP-US, for which the λ parameter is not
significant indicating that the distribution is symmetric. In short, the lower AIC from the T pdf for this series
responds to the principle of parsimony penalizing the sk-T model for a parameter that is not doing too much
work to fit this series. The three-parameter PAST log-likelihood values (not reported) are always larger than
those of PAST with restricted ν, but differences are very small in most cases to turn into better fit according to
the AIC. Only for SWI-US and AEX, the three-parameter PAST provides a superior fit. The PAST20 only does
it better for JAP-EU while the PAST10 for US-UK. For the rest of the six series, the PAST15 performs better.
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Table 2. Unconditional distribution estimation for standardized returns.

JAP-EU JAP-US US-UK SWI-US FTSE CAC AEX GSCITOT GOLD BRENT

T
v 3.600∗∗∗ 3.689∗∗∗ 4.302∗∗∗ 3.483∗∗∗ 2.968∗∗∗ 3.113∗∗ 3.055∗∗∗ 3.385∗∗∗ 3.351∗∗∗ 3.108∗∗∗

(0.130) (0.143) (0.217) (0.121) (0.063) (0.078) (0.071) (0.107) (0.109) (0.080)
AIC 2.6576 2.6741 2.6840 2.5639 2.5031 2.5644 2.5342 2.6350 2.6363 2.5586

sk-T
λ −0.054∗∗ −0.022 −0.042∗∗ −0.044∗∗ −0.069∗∗∗ −0.052∗∗∗ −0.071∗∗∗ −0.067∗∗∗ −0.030∗∗ −0.050∗∗∗

(0.016) (0.016) (0.019) (0.017) (0.015) (0.015) (0.015) (0.015) (0.014) (0.014)
v 3.591∗∗∗ 3.689∗∗∗ 4.293∗∗∗ 3.478∗∗∗ 2.964∗∗∗ 3.138∗∗∗ 3.057∗∗∗ 3.378∗∗∗ 3.358∗∗∗ 3.107∗∗∗

(0.128) (0.143) (0.216) (0.120) (0.062) (0.078) (0.071) (0.107) (0.110) (0.080)
AIC 2.6555 2.6742 2.6833 2.5629 2.4984 2.5621 2.5293 2.6309 2.6359 2.5564

PAL
θ3 −0.157 −0.049 −0.152 −0.246∗∗ −0.273∗∗ −0.411∗∗∗ −0.490∗∗∗ −0.348∗∗∗ −0.285∗∗∗ −0.294∗∗∗

(0.107) (0.107) (0.112) (0.123) (0.110) (0.103) (0.108) (0.102) (0.105) (0.107)
θ4 3.825∗∗∗ 3.785∗∗∗ 3.367∗∗∗ 4.195∗∗∗ 6.002∗∗∗ 5.649∗∗∗ 5.782∗∗∗ 4.577∗∗∗ 4.342∗∗∗ 5.416∗∗∗

(0.420) (0.419) (0.435) (0.434) (0.372) (0.379) (0.371) (0.402) (0.405) (0.390)
AIC 2.6739 2.6861 2.6869 2.5904 2.5434 2.5882 2.5617 2.6518 2.6573 2.5912

PAHS
θ3 −0.165 −0.048 −0.165 −0.249 −0.337∗∗ −0.446∗∗∗ −0.554∗∗∗ −0.375∗∗∗ −0.301∗∗ −0.286∗∗

(0.138) (0.133) (0.138) (0.163) (0.139) (0.129) (0.133) (0.124) (0.130) (0.133)
θ4 3.541∗∗∗ 3.575∗∗∗ 3.350∗∗∗ 4.553∗∗∗ 6.953∗∗∗ 6.272∗∗∗ 6.816∗∗∗ 4.626∗∗∗ 4.351∗∗∗ 5.952∗∗∗

(0.619) (0.631) (0.648) (0.657) (0.568) (0.580) (0.564) (0.622) (0.615) (0.607)
AIC 2.6613 2.6751 2.6849 2.5757 2.5234 2.5745 2.5445 2.6391 2.6417 2.5745

GC
θ3 −0.125∗∗ −0.067 −0.067 −0.126∗∗ −0.173∗∗∗ −0.219∗∗∗ −0.236∗∗∗ −0.187∗∗∗ −0.193∗∗∗ −0.178∗∗∗

(0.055) (0.057) (0.057) (0.059) (0.058) (0.056) (0.057) (0.057) (0.057) (0.058)
θ4 1.979∗∗∗ 1.807∗∗∗ 1.467∗∗∗ 1.825∗∗∗ 2.474∗∗∗ 2.405∗∗∗ 2.379∗∗∗ 2.039∗∗∗ 1.981∗∗∗ 2.221∗∗∗

(0.102) (0.101) (0.107) (0.107) (0.094) (0.096) (0.097) (0.099) (0.098) (0.097)
AIC 2.7144 2.7266 2.7606 2.7399 2.6390 2.6504 2.6495 2.6951 2.7019 2.6735

PAST
θ3 −0.142∗ −0.056 −0.155 −0.238 −0.225∗∗∗ −0.319∗∗∗ −0.405∗∗∗ −0.271∗∗∗ −0.251∗∗ −0.261∗∗∗

(0.074) (0.082) (0.116) (0.152) (0.087) (0.079) (0.096) (0.080) (0.078) (0.086)
θ4 3.436∗∗∗ 3.733∗∗∗ 8.087∗ 37.185∗∗∗ 6.205∗∗∗ 4.807∗∗∗ 6.560∗∗∗ 3.888∗∗∗ 3.823∗∗∗ 5.231∗∗∗

(0.609) (0.701) (4.458) (11.154) (1.288) (0.706) (1.494) (0.636) (0.657) (1.121)
ν 18.447∗∗∗ 15.649∗∗∗ 10.184∗∗∗ 8.528∗∗∗ 13.820∗∗∗ 16.579∗∗∗ 12.941∗∗∗ 17.198∗∗∗ 16.972∗∗∗ 14.583∗∗∗

(4.207) (2.781) (1.369) (0.165) (1.919) (2.365) (1.636) (2.911) (2.983) (2.285)
AIC 2.6785 2.6928 2.6871 2.5843 2.5524 2.5930 2.5715 2.6576 2.6645 2.5975

PAST10
θ3 −0.150 −0.044 −0.158 −0.252∗∗ −0.249∗∗ −0.390∗∗∗ −0.468∗∗∗ −0.334∗∗∗ −0.276∗∗ −0.285∗∗∗

(0.112) (0.109) (0.116) (0.124) (0.106) (0.098) (0.103) (0.100) (0.103) (0.103)
θ4 9.279∗∗∗ 9.294∗∗∗ 8.743∗∗∗ 10.494∗∗∗ 13.816∗∗∗ 13.019∗∗∗ 13.426∗∗∗ 10.872∗∗∗ 10.380∗∗∗ 12.677∗∗∗

(0.903) (0.908) (0.954) (0.922) (0.780) (0.799) (0.780) (0.864) (0.871) (0.828)
AIC 2.6838 2.6959 2.6865 2.5860 2.5559 2.6020 2.5737 2.6648 2.6703 2.6023

PAST15
θ3 −0.146∗ −0.055 −0.111 −0.222∗∗ −0.221∗∗∗ −0.332∗∗∗ −0.371∗∗∗ −0.286∗∗∗ −0.258∗∗ −0.259∗∗∗

(0.081) (0.084) (0.087) (0.092) (0.084) (0.080) (0.085) (0.082) (0.082) (0.085)
θ4 4.129∗∗∗ 3.915∗∗∗ 3.366∗∗∗ 4.049∗∗∗ 5.560∗∗∗ 5.358∗∗∗ 5.271∗∗∗ 4.487∗∗∗ 4.349∗∗∗ 5.044∗∗∗

(0.296) (0.294) (0.309) (0.303) (0.263) (0.269) (0.266) (0.281) (0.284) (0.272)
AIC 2.6789 2.6923 2.6895 2.5936 2.5520 2.5927 2.5716 2.6574 2.6642 2.5969

PAST20
θ3 −0.141∗ −0.060 −0.094 −0.196∗∗ −0.209∗∗∗ −0.299∗∗∗ −0.324∗∗∗ −0.256∗∗∗ −0.242∗∗ −0.238∗∗∗

(0.072) (0.075) (0.077) (0.081) (0.075) (0.073) (0.076) (0.074) (0.074) (0.076)
θ4 3.252∗∗∗ 3.025∗∗∗ 2.540∗∗∗ 3.078∗∗∗ 4.252∗∗∗ 4.114∗∗∗ 4.032∗∗∗ 3.446∗∗∗ 3.353∗∗∗ 3.832∗∗∗

(0.209) (0.207) (0.218) (0.215) (0.188) (0.192) (0.191) (0.199) (0.201) (0.193)
AIC 2.6780 2.6931 2.6942 2.6009 2.5557 2.5933 2.5758 2.6574 2.6644 2.5993

Notes: This table presents ML estimates of density model parameters for standardized returns, zt . Heteroscedasticity-consistent standard errors
are provided in parentheses below the parameter estimates. AIC denotes Akaike Information Criterion. (∗∗∗) indicates significance at 1% level;
(∗∗) at 5% level and (∗) at 10% level. Sample: 9 November 2007 to 4 April 2021 (T = 3500 observations).
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Table 3. Number of standardized returns outside the interval [−3, 3].

JAP-EU JAP-US US-UK SWI-US FTSE CAC AEX GSCITOT GOLD BRENT

Empirical 23-25 27-23 21-19 15-16 31-23 32-23 34-20 32-23 29-24 31-24
N 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4
T 22-22 22-22 20-20 23-23 23-23 23-23 23-23 23-23 23-23 23-23
sk-T 25-18 24-20 23-17 24-19 26-18 25-19 26-18 27-18 25-20 25-19
PAL 27-20 25-23 26-20 30-19 36-23 38-20 41-19 32-18 31-19 35-21
PAHS 24-19 22-21 24-19 28-18 32-19 34-16 35-15 31-16 28-17 30-20
GC 29-23 25-23 22-19 28-22 35-29 36-27 36-26 31-23 31-22 33-26
PAST 32-26 28-24 22-17 18-11 38-27 42-26 39-21 36-23 35-23 37-26
PAST10 21-17 20-18 21-17 25-16 27-19 30-14 31-14 27-15 26-16 27-17
PAST15 31-24 28-25 26-21 33-20 40-29 41-26 42-25 36-22 34-22 38-26
PAST20 33-26 29-27 27-23 33-24 42-31 43-28 43-26 37-25 36-25 39-27

Notes: This table exhibits the number of standardized observations zt under each assumed distribution (in row), with parameters exhibited in
Table 2, for the alternative return series (in column) that lie outside the interval [−3, 3]. Each cell of the table contains two values separated by a
dash, i.e. Nl–Nr where the left tail is the number of observations lower than−3 (denoted as Nl) and the right tail is the number of observations
higher than 3 (denoted as Nr ). The first row with the name ‘empirical’ is related to the empirical distribution of the return series. All series have
the same number of observations, T = 3500.

Table 3 analyzes the behavior of both tails under the alternative distributions fitted to the standardized return
series, with parameters in Table 2, by counting those observations that fall outside the specific interval [−3, 3].9
Note that under theNormal density, the probability of observations outside the previous interval is 0.27%, which
is at least three times lower than the one observed in all series. Each cell in the table exhibits two values separated
by a dash, i.e.Nl –Nr where the left tail is the number of observations lower than−3 (denoted asNl) and the right
tail is the number of observations higher than 3 (denoted asNr). The first rowwith the title ‘empirical’ shows the
same information respecting the return series empirical distributions. We obtain the following results. First, all
series exhibit longer left tails than right ones according to all fitted skewed densities such as sk-T and PA ones.
This empirical evidence is in line with the negative skewness values displayed in Table 1 for all series. Second,
the asymmetry effect on the distribution tail behavior can be seen if we compare the symmetric T (that is more
suitable than N due to the high kurtosis levels shown in Table 1) with the other densities. All series show longer
left tails under both sk-T and PA because of the negative skewness. The only exceptions correspond to JAP-EU
and JAP-US under the PAST10 with a total of observations of 21 and 20, respectively. These numbers are lower
than 22 under T in both series. Third, the same previous analysis applied to the right tail concludes that in most
cases, as expected, there are now more observations under the T distribution. Note that most exceptions occur
under the PAST20 that shows longer right tails than T. Fourth, if we compare sk-T and PAST we see that PAST
exhibit longer tails than sk-T in most cases, except for SWI-US and, to a lesser extent, for US-UK. Fifth, the
sk-T underestimates both tails of the empirical distribution in seven cases out of the ten. Note, for instance, the
SWI-US case where sk-T (also PAL, PAHS and GC) overestimates both empirical tails, nevertheless PAST only
does it for the left tail.

Finally, a more in-depth analysis of the tail behavior, respecting the previous one in Table 3, is displayed
in Figure 5. This figure presents a comparison of the theoretical quantiles of a density with the sample stan-
dardized returns ones for both distribution tails. The tails are measured as the range of quantiles from 0.001
to 0.05 for the left tail, and 0.95 to 0.999 for the right tail. Specifically, a total of fifty equally spaced quan-
tiles in each tail. To shorten, we only select four densities as the most representative ones: sk-T, PAL, PAHS
and PAST. As an example, this figure only displays four return series: JAP-US, GSCITOT, GOLD and BRENT.
Each series analysis is exhibited in both panel A (lower tail) and panel B (upper tail), where each panel con-
tains four graphs (each for a different density). First, the results do not throw a clear-cut better model between
sk-T and PAST for both tails in most series except for JAP-US, where sk-T seems to fit the lower or left tail
better than PAST while a similar fit occurs for the upper or right tail. Second, PAL, PAHS and PAST make
similar performance in most cases. For BRENT, the PAST performs slightly better than PAL and PAHS for the
left tail.
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4.3. Conditional distribution estimation

Next, we obtain the estimation of models for the return series conditional distribution. Table 4 presents the
parameter estimates of the PAST density with the GJR conditional variance (GJR-PAST). First, themean param-
eter, µ, is not statistically significant for any return series. Second, the GJR equation parameter estimates indicate
presence of persistence in the conditional variance as well as asymmetric response of volatility to positive and
negative shocks. These estimates are very similar to the quasi-ML estimates (QMLE), so they are not reported

Figure 5. Distribution tail fit analysis for standardized returns.
This figure provides sk-T, PAL, PAHS and PAST theoretical quantiles versus sample standardized return quantiles for both distribution tails: lower tail (quantiles from
0.001 to 0.05) and upper tail (quantiles from 0.95 to 0.999). There is a total of 50 equally spaced quantiles in each tail. Series: JAP-US, GSCITOT, GOLD and BRENT
standardized returns (T = 3500 obs.)
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Figure 5. Continued.

to save space. Third, the θ3 parameter estimates show the presence of negative skewness, which is statistically
significant at least at 5 % level for all series except for US-UK. Fourth, the estimates for θ4 and ν indicate excess
kurtosis in the distribution of all return series. Fifth, the unconditional standard deviations (std) implied by
the GJR-PAST model for returns, i.e. σ = √

α0/(1 − E(ct)), are very close to the sample ones. For instance, the
estimation of σ is equal to 0.62 and the sample std is 0.63 for JAP-US.

Table 5 provides the parameter estimates for the alternative densities. As for the PAST, the GJR parameter
estimates in all cases are very similar to the non-reported QMLE ones. The parameter estimates show that after
accounting for GARCH effects, there is still statistically significant skewness and kurtosis in all cases. The dis-
cussion of the results is close to that of Table 2. In regard to the relative GoF, the sk-T performs better than the T
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Figure 5. Continued.

for all series except for the JAP-US as for the unconditional distribution estimation. Among the different PAST
models, we conclude the following. First, only for JAP-EU and US-UK, the three-parameter PAST provides a
superior fit. Second, PAST10 does it better for SWIS-US and BRENT series, while PAST20 for FTSE and AEX.
Finally, PAST15 performs better for the remaining four series.

Summing up, the analysis in this section shows that the PAST densities provide improvements in some cases
with respect to the alternative densities considered. A cross-comparison of all models, including non-nested
ones, as regards forecasting VaR and ES is performed through a backtesting analysis next.
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Figure 5. Continued.

4.4. Backtesting analysis

We take the first T-N observations for the first in-sample window and an OOS period of lengthN = 1000 using
a daily constant-sized rolling window. We adopt a two-stage estimation method to each window as can be seen,
among others, in Zhu and Galbraith (2011). The mean and GJR parameters are estimated by QML, then each
density parameters are obtained byML using the standardized residuals, zt , from the first stage. We evaluate the
forecasting performance for the returns’ lower tail, that is, for instance, of particular interest to pension fund
managers concerned with the probabilities of losing a large part of investment portfolio value in a single day.We
study the OOS performance, through VaR and ES backtesting, under alternative distributions of zt .
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Table 4. GJR-PAST model estimation results.

JAP-EU JAP-US US-UK SWI-US FTSE CAC AEX GSCITOT GOLD BRENT

μ 0.003 0.003 0.002 −0.005 −0.010 −0.001 0.008 −0.014 0.023 −0.002
(0.008) (0.007) (0.007) (0.007) (0.016) (0.018) (0.016) (0.018) (0.015) (0.026)

α0 0.002∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.001∗∗∗ 0.020∗∗∗ 0.018∗∗∗ 0.017∗∗∗ 0.011∗∗ 0.004∗ 0.033∗∗∗
(0.001) (0.001) (0.001) (0.0005) (0.007) (0.006) (0.006) (0.004) (0.002) (0.012)

β 0.957∗∗∗ 0.953∗∗∗ 0.951∗∗∗ 0.964∗∗∗ 0.901∗∗∗ 0.912∗∗∗ 0.911∗∗∗ 0.941∗∗∗ 0.962∗∗∗ 0.924∗∗∗
(0.009) (0.007) (0.008) (0.005) (0.022) (0.015) (0.018) (0.008) (0.006) (0.011)

α+
1 0.027∗∗∗ 0.036∗∗∗ 0.027∗∗∗ 0.028∗∗∗ 0.012 0.007 0.010 0.027∗∗∗ 0.040∗∗∗ 0.034∗∗∗

(0.007) (0.006) (0.006) (0.005) (0.011) (0.007) (0.008) (0.008) (0.009) (0.009)
α−
1 0.051∗∗∗ 0.045∗∗∗ 0.053∗∗∗ 0.036∗∗∗ 0.164∗∗∗ 0.159∗∗∗ 0.151∗∗∗ 0.080∗∗∗ 0.027∗∗∗ 0.107∗∗∗

(0.011) (0.008) (0.009) (0.007) (0.036) (0.028) (0.032) (0.012) (0.006) (0.017)
θ3 −0.226∗∗∗ −0.192∗∗ −0.013 −0.304∗∗ −0.317∗∗∗ −0.371∗∗∗ −0.380∗∗∗ −0.441∗∗∗ −0.208∗∗∗ −0.548∗∗∗

(0.055) (0.088) (0.089) (0.121) (0.068) (0.083) (0.072) (0.106) (0.090) (0.120)
θ4 1.290∗∗∗ 2.388∗∗ 0.728 28.814∗∗∗ 1.406∗∗∗ 1.763∗∗∗ 1.163∗∗∗ 2.012∗ 2.699∗∗∗ 12.227∗∗

(0.259) (1.026) (1.040) (10.273) (0.273) (0.578) (0.219) (1.060) (0.670) (4.768)
v 18.364∗∗∗ 13.146∗∗∗ 9.421∗∗∗ 8.122∗∗∗ 23.625∗∗∗ 14.952∗∗∗ 25.394∗∗ 12.273∗∗∗ 16.033∗∗∗ 8.538∗∗∗

(4.081) (4.485) (1.200) (0.038) (8.583) (4.402) (12.236) (4.052) (4.275) (0.291)
σ 0.684 0.620 0.566 0.628 1.392 2.00 1.427 1.376 1.042 2.443
AIC 1.9127 1.6846 1.5616 1.7136 3.0525 3.3470 3.1547 3.2565 2.7952 4.0268

Model: rt = μ+ εt , εt = σtzt , σ 2
t = α0 + βσ 2

t−1 + α+
1 (ε

+
t−1)

2 + α−
1 (ε

−
t−1)

2, zt ∼ i.i.d. PAST (0,1) distributed with parameters (v, θ3, θ4).Notes:
This table presents CML estimates of the GJR-PAST parameters for the return series in Table 1. Heteroscedasticity-consistent standard errors are
provided in parentheses below the parameter estimates. σ denotes the unconditional GJR-PAST standard deviation, and AIC is Akaike Informa-
tion Criterion. Finally, (∗∗∗) indicates significance at 1% level; (∗∗) at 5% level and (∗) at 10% level. Sample: 9 November 2007 to 4 April 2021
(T = 3500 observations).

4.4.1. Backtesting tests
Consider a nominal coverage rate α, the one-day conditional VaR is given by

VaRt(α) = κ0,t + κ1,tQ−1(α), (22)

where κ0,t = μ+ aσt and κ1,t = bσt . Let ht(α) = I(rt < VaRt(α)) denote the violation or hit variable. We are
interested in checking whether the centered violations {ht(α)− α}∞t=1 follow a martingale difference sequence
(MDS), which implies zero mean property and no correlation. Testing MDS leads to both the uncondi-
tional backtest (or unconditional coverage test) and conditional backtest (or independence test). The null
hypothesis for the unconditional backtest, H0,U : E[ht(α)] = α, corresponds to the well-known test statistics
by Kupiec (1995):

UVaR(α) =
√
N(h(α)− α)√
α(1 − α)

a∼ N(0, 1), (23)

where h(α) is the sample average of {̂ht(α)}Nt=1 such that ĥt(α) = I (̂ut ≤ α) with ût as the estimation of ut =
F(rt | It−1) where F(· | It−1) denotes the conditional cdf for returns according to the pdf of zt . For testing the
conditional backtest null hypothesis,H0,C : E[ht(α)− α | It−1] = 0, we implement the approach by Escanciano
and Olmo (2010) based on the Box–Pierce test statistic:

C(m) = N
m∑
i=1

ρ̂2j
a∼ χ2

m , (24)

which is asymptotically a χ2 distribution with m degrees of freedom such that ρ̂j is the jth lag of the sample
autocorrelation defined as ρ̂j = γ̂j/γ̂0 where

γ̂j = 1
N − j

N∑
t=1+j

(̂ht(α)− α)(̂ht−j(α)− α). (25)

The unconditional and conditional ES backtests are the analogues to the above VaR ones. Du and Escan-
ciano (2017) provide the ES backtest based on the notion of cumulative violations (CV), which accumulates
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Table 5. Alternative density (D) parameter estimates from GJR-D model.

JAP-EU JAP-US US-UK SWI-US FTSE CAC AEX GSCITOT GOLD BRENT

T
v 6.156∗∗∗ 4.926∗∗∗ 7.978∗∗∗ 5.909∗∗∗ 6.048∗∗∗ 5.971∗∗ 6.620∗∗∗ 5.754∗∗∗ 3.951∗∗∗ 5.235∗∗∗

(0.653) (0.417) (1.209) (0.733) (0.597) (0.602) (0.709) (0.583) (0.280) (0.493)
AIC 1.9274 1.6299 1.6926 1.6172 3.0559 3.3507 3.1622 3.2589 2.7845 4.0265

sk-T
λ −0.063∗∗∗ −0.025 −0.048∗∗ −0.064∗∗∗ −0.117∗∗∗ −0.116∗∗∗ −0.134∗∗∗ −0.094∗∗∗ −0.034∗ −0.080∗∗∗

(0.021) (0.022) (0.022) (0.022) (0.021) (0.023) (0.022) (0.020) (0.020) (0.020)
v 6.122∗∗∗ 4.937∗∗∗ 7.950∗∗∗ 5.902∗∗∗ 6.107∗∗∗ 6.175∗∗∗ 6.939∗∗∗ 5.984∗∗∗ 3.986∗∗∗ 5.357∗∗∗

(0.652) (0.419) (1.186) (0.721) (0.609) (0.636) (0.775) (0.620) (0.284) (0.509)
AIC 1.9257 1.6301 1.6920 1.6155 3.0488 3.3440 3.1531 3.2544 2.7843 4.0232

PAL
θ3 −0.145 −0.116 −0.067 −0.150 −0.349∗∗∗ −0.418∗∗∗ −0.487∗∗∗ −0.448∗∗∗ −0.267∗∗ −0.410∗∗∗

(0.104) (0.113) (0.092) (0.110) (0.088) (0.094) (0.101) (0.095) (0.106) (0.099)
θ4 0.980∗∗ 1.895∗∗∗ 0.284 1.048∗ 0.958∗∗ 1.237∗∗∗ 1.177∗∗∗ 1.159∗∗∗ 2.375∗∗∗ 1.204∗∗∗

(0.418) (0.493) (0.277) (0.542) (0.415) (0.393) (0.312) (0.343) (0.453) (0.399)
AIC 1.9270 1.6306 1.6943 1.6266 3.0526 3.3461 3.1557 3.2536 2.7891 4.0232

PAHS
θ3 −0.053 −0.072 −0.083 −0.177 −0.329∗∗ −0.425∗∗∗ −0.358∗∗∗ −0.415∗∗∗ −0.280∗∗ −0.447∗∗∗

(0.110) (0.140) (0.177) (0.140) (0.134) (0.138) (0.111) (0.136) (0.125) (0.141)
θ4 0.269 1.682∗∗ 0.145 0.906 0.610 1.248∗∗ 0.689∗∗ 1.123∗∗ 1.874∗∗∗ 1.287∗∗

(0.588) (0.770) (0.325) (0.770) (0.893) (0.551) (0.316) (0.529) (0.687) (0.503)
AIC 1.9282 1.6296 1.7008 1.6279 3.0552 3.3504 3.1621 3.2554 2.7817 4.0221

GC
θ3 −0.172∗∗∗ −0.074 −0.090 −0.148∗∗ −0.266∗∗∗ −0.282∗∗ −0.319∗∗∗ −0.267∗∗∗ −0.150∗∗ −0.233∗∗∗

(0.058) (0.062) (0.055) (0.070) (0.055) (0.056) (0.053) (0.058) (0.064) (0.059)
θ4 0.991∗∗∗ 1.421∗∗∗ 0.801∗∗∗ 1.489∗∗∗ 1.088∗∗∗ 1.053∗∗∗ 0.977∗∗∗ 1.014∗∗∗ 1.646∗∗∗ 1.134∗∗∗

(0.122) (0.155) (0.138) (0.527) (0.122) (0.128) (0.121) (0.122) (0.140) (0.128)
AIC 1.9405 1.6551 1.7110 1.7298 3.0593 3.3611 3.1584 3.2706 2.8181 4.0477

PAST10
θ3 −0.190∗ −0.134 −0.086 −0.167 −0.397∗∗∗ −0.463∗∗∗ −0.565∗∗∗ −0.504∗∗∗ −0.276∗∗ −0.444∗∗∗

(0.113) (0.119) (0.107) (0.114) (0.092) (0.095) (0.100) (0.096) (0.108) (0.102)
θ4 3.248∗∗∗ 5.340∗∗∗ 1.117 2.948∗∗∗ 3.198∗∗∗ 3.731∗∗∗ 3.443∗∗∗ 3.461∗∗∗ 6.288∗∗∗ 3.637∗∗∗

(1.071) (1.128) (0.854) (1.104) (1.023) (1.043) (0.795) (0.944) (0.974) (1.051)
AIC 1.9291 1.6340 1.6923 1.6176 3.0550 3.3471 3.1567 3.2562 2.7966 4.0265

PAST15
θ3 −0.213∗∗ −0.107 −0.099 −0.147∗ −0.351∗∗∗ −0.370∗∗∗ −0.447∗∗∗ −0.398∗∗∗ −0.216∗∗ −0.329∗∗∗

(0.085) (0.086) (0.078) (0.080) (0.074) (0.074) (0.070) (0.076) (0.086) (0.079)
θ4 1.548∗∗∗ 2.410∗∗∗ 0.842∗∗∗ 1.591∗∗∗ 1.808∗∗∗ 1.758∗∗∗ 1.439∗∗∗ 1.582∗∗∗ 2.870∗∗∗ 1.853∗∗∗

(0.316) (0.356) (0.309) (0.348) (0.320) (0.333) (0.311) (0.317) (0.323) (0.331)
AIC 1.9288 1.6338 1.6936 1.6211 3.0529 3.3464 3.1548 3.2561 2.7946 4.0274

PAST20
θ3 −0.205∗∗∗ −0.097 −0.103 −0.139∗∗ −0.327∗∗∗ −0.340∗∗∗ −0.403∗∗∗ −0.355 −0.188∗∗ −0.295∗∗∗

(0.075) (0.076) (0.069) (0.071) (0.067) (0.067) (0.064) (0.070) (0.077) (0.072)
θ4 1.289∗∗∗ 1.965∗∗∗ 0.818∗∗∗ 1.383∗∗∗ 1.507∗∗∗ 1.444∗∗∗ 1.244∗∗∗ 1.322 2.325∗∗∗ 1.531∗∗∗

(0.223) (0.255) (0.224) (0.246) (0.225) (0.235) (0.229) (0.225) (0.235) (0.230)
AIC 1.9293 1.6347 1.6947 1.6245 3.0521 3.3468 3.1542 3.2569 2.7950 4.0286

Notes: This table presents either CML or ML estimates of different density (D) parameters from GJR-D model. GJR estimates are not presented
to save space. Heteroscedasticity-consistent standard errors are provided in parentheses below the parameter estimates. AIC denotes Akaike
Information Criterion. (∗∗∗) indicates significance at 1% level; (∗∗) at 5% level and (∗) at 10% level. Sample: 9 November 2007 to 4 April 2021
(T = 3500 observations).

the violations across the tail distribution and can be rewritten as

Ht(α) =
∫ α

0
ht(u) du = 1

α
(α − ut) I (ut ≤ α) . (26)

Note that Equation (26) measures the distance of the returns from the corresponding α-quantile in (22) dur-
ing the violations. It is shown that {Ht(α)− α/2}∞t=1 follows the MDS property. The null hypothesis for the
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unconditional backtest is H0,U : E[Ht(α)] = α/2 and the related test statistics is given by

UES =
√
N

(H(α)− α
2
)√

α
( 1
3 − α

4
) a∼ N(0, 1), (27)

where H(α) is the mean of {Ĥt(α)}Nt=1 such that Ĥt(α) = 1
α
(α − ût)I (̂ut ≤ α). The null for the conditional

backtest hypothesis is H0,C : E[Ht(α) | It−1] = α/2 with the same test statistics in (24) such that

γ̂j = 1
N − j

N∑
t=1+j

(
Ĥt(α)− α

2

) (
Ĥt−j(α)− α

2

)
. (28)

4.4.2. Backtesting results
Following Deng and Qiu (2021), and references therein, a larger coverage level α for ES than VaR is selected to
compare both risk measures. Specifically, we consider the following rule-of-thumb: the coverage level for ES is
twice, or close to twice, than that of VaR. We focus on α = 2.5% and α = 5% for ES, corresponding roughly to
α = 1% and α = 2.5% for VaR in a standard normal distribution.10 Table 6 shows the results of the descriptive
analysis of violations. First, all models perform better than theNormal for bothVaR(1%) and ES(2.5%). Respect-
ing VaR(2.5%) and ES(5%), there are very few exceptions for which the performance of some models is worse
than that of the Normal, and primarily for the FX series: JAP-US and SWI-US. Second, most skewed density
models do not perform worse than the T, with some exceptions mainly again found in the FX series. Indeed,
there are no exceptions for any of the stock index series. Third, the GC (or PAST when ν → ∞) works better
than sk-T for most series and coverage levels. Fourth, the PAST works similarly or better than the sk-T for stock
and commodity indexes, whilst sk-T does it better than PAST for the FX series. Fifth, PAHS performs better than
PAL for most series. Sixth, among the two-parameter PAST (i.e. PAST10/15/20) densities, PAST20 makes the
best performance. Furthermore, PAST20 beats sk-T for all series (and coverage levels) except for US-UK. This
result is in line with the already mentioned very good performance of GC since both densities tend to resemble
each other for higher values of ν, see Section 3.2.

Table 6 also reports the significance at 5% level of both unconditional and conditional backtesting for VaR
and ES (see superscripts u and c for the cases of rejecting the null hypotheses). For the unconditional tests, the
null is not accepted for most stock and commodity indexes under both N and T, whilst there is no rejection for
FX series for these symmetric distributions. Respecting the conditional tests, there are many more rejections
than in the case of unconditional ones independently of the densities. For the series JAP-EU, JAP-US, GOLD
and BRENT there are hardly any rejections of the conditional null.

Finally, the previous VaR results are reinforced by the magnitude of exceptions for VaR measured through
the quadratic loss (QL) function, see Lopez (1999). The QL incorporates the exception magnitude and so, it
provides useful information to discriminate among similar models according to the unconditional coverage
test, i.e. QLt(α) = (rt − VaRt(α))

2 × ht(α). We are interested in the sample average of QL (AQL) for the OOS
period of N observations. Table 6 only exhibits both the first- and second-best models according to the AQL
measure and denoted, respectively, with the symbols ♣ and ♦.11 First, we find that the Normal renders the
highest AQL values. Second, for SWI-US, CAC, AEX, GOLD and BRENT, either PAST or PAST20 provides the
lowest AQL at 1%, while PAHS performs better for US-UK, FTSE and GSCITOT at 1%. Third, GC provides the
lowest AQL in most cases at 2.5%. Note that the second-best model is provided by the PAST family, except for
PAST10, in most series at both 1% and 2.5% levels.

5. Conclusions

We present a polynomial expansion of the standardized Student-t distribution, referred to as PAST. The density
belongs to the polynomially adjusted (PA) class of Bagnato, Potì, and Zoia (2015), and it is a generalization
of the Gram–Charlier (GC) density in Jondeau and Rockinger (2001). The two parameters in the polynomial
expansion are by construction the skewness and excess kurtosis of this new density. We derive its parametric
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Table 6. Descriptive analysis of violations and backtesting procedures.

VaR(1%) ES(2.5%) VaR(2.5%) ES(5%) VaR(1%) ES(2.5%) VaR(2.5%) ES(5%)

JAP-EU JAP-US
N 13 14.12 22 22.16 16 15.93 23 24.12
T 9 11.02 20 21.66 9 12.33 23 23.63
sk-T 9 9.82 19 19.71 8 12.11 23 23.31
PAL 9 10.49 20 20.94 10 12.66 23 23.92
PAHS 9 10.04 19 19.97 9 12.14 22 22.91
GC 8c♣ 8.84 18♣ 17.29 8♣ 10.61 18♣ 20.40
PAST 9 10.56 21 21.32 12 13.26 26 24.77
PAST10 10 11.42 21 22.39 12 14.01 26 25.60
PAST15 9 10.05 20 20.56 9 12.37 24 24.17
PAST20 8c� 9.53 19� 19.62 8� 11.64 22� 23.25

US-UK SWI-US
Normal 13 15.44 29 28.04c 12c 14.43c 24c 22.94c

T 8c 11.91 29 26.45c 8c 10.59c 23c 22.39c

sk-T 8c 10.82 24 25.13c 6c 8.90c 22c 20.10c

PAL 8c 10.73 25 25.21c 5c 8.71c 22c 20.81c

PAHS 6♣ 9.19 21c♣ 23.80c 5c 8.45c 22c 20.36c

GC 8c� 10.30 22c� 24.04c 6c 7.00c 15u,c♣ 16.52u,c

PAST 8c 11.70 28 26.42c 9c 12.68c 25c 25.23c

PAST10 8c 12.18 28 26.69c 7c 10.60c 25c 23.14c

PAST15 8c 12.13 28 26.62c 5c� 8.40c 22c 20.51c

PAST20 8c 11.71 28 26.20c 5c♣ 7.58c 20c� 19.27c

FTSE CAC
N 27u 25.84u,c 38u,c 34.93u,c 24u,c 22.79u,c 32c 32.43c

T 17u,c 21.09u,c 37u,c 33.10u,c 16 18.71u 31c 31.21c

sk-T 16c 17.79c 29c 29.31c 15 16.26 27c 27.57c

PAL 16c 18.01c 32c 30.30c 14 15.84 27c 28.21c

PAHS 13♣ 16.49c 29c� 29.30c 14� 15.55 27c 27.93c

GC 15c 16.89c 28 27.00c 14 15.75 24c♣ 25.05c

PAST 15c� 17.05c 29c♣ 28.80c 14 16.30 27c 28.69c

PAST10 16c 19.33u,c 34c 31.70c 15 17.12 30c 29.98c

PAST15 15c 17.59c 32c 29.92c 14 15.96 27c 28.13c

PAST20 15c 17.09c 29c 29.04c 14♣ 15.59 27c� 27.25c

AEX GSCITOT
N 22u,c 25.10u,c 38u,c 35.29u,c 22u 24.99u 34 35.61u

T 18u 20.23u 37u,c 33.45u 19u 20.78u 34 34.32u

sk-T 14 16.37 30 29.08 18u 18.20u 31 30.40
PAL 12 15.73 31 29.61c 15� 16.74 30 29.89
PAHS 12 15.65 32 29.68 15♣ 16.11 30 29.93
GC 12 14.84 26c♣ 26.16 17u 17.51 29♣ 27.75
PAST 11♣ 15.02 30� 27.72 17u 18.00 32 31.01
PAST10 15 17.37 35c 31.28c 18u 18.21u 32 31.72
PAST15 11 15.54 30 29.04c 17u 17.41 30 30.07
PAST20 11� 15.02 30 28.08 16 17.21 29� 29.33

GOLD BRENT
N 17u 19.01u 32 27.65 21u 23.28u 34 34.86u

T 9 14.22 32 27.35 18u 19.03u 32 33.72u

sk-T 7 13.33 30 26.39 17u 16.90 29 30.36
PAL 7 12.20 28 25.41 14 16.09 28 29.94
PAHS 7 11.86 26 24.59 14� 15.29 28 29.35
GC 7 9.56 21♣ 20.46 14 16.04 21♣ 26.59
PAST 7� 11.22 26 24.52 16 16.89 30 30.70
PAST10 9 14.64 32 27.60 17u 17.51 32 31.96
PAST15 7 11.68 27 25.14 14 16.24 29 30.11
PAST20 7♣ 10.65 25� 23.87 14♣ 15.85 28� 29.10

Notes: This table shows the violations for VaR and the cumulative violations in (26) from N, T, sk-T, PAL, PAHS, PAST and PAST10/15/20 models.
We also report the significance for (i) the VaR backtesting tests in (23) and (24) with γ̂j in (25), and (ii) the ES backtesting tests in (27) and (24)
with γ̂j in (28). We setm = 5 in the Box–Pierce test statistic (24) for the two conditional backtests. The superscripts u and c indicate significance
at 5% level for the unconditional and conditional backtests, respectively. The subscripts ♣ and ♦ indicate the first- and second-best models,
respectively, for VaR by considering the magnitude of exceptions through the average of the quadratic losses, AQL (the lower AQL, the better).
The OOS period covers from 9 June 2017 to 8 April 2021. Predictions: 1000.
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properties, including the moments, the distribution function and the skewness and kurtosis frontiers (SKF) for
which the density is well-defined. We show how the PAST’s SKF enlarges that of the GC.

The performance of the PAST is tested through an empirical application to different types of asset returns:
exchange rates, stock indexes and commodities. We consider several distributions for comparison purposes,
including: Normal, Student-t, Hansen’s skewed T, GC, PA logistic and PA hyperbolic secant. For robustness
checks, we also consider two-parameter PAST densities where the degrees of freedom are fixed to 10, 15 and 20.
We find that the estimated PAST features flexibility to capture both skewness and high levels of kurtosis for both
the unconditional and conditional distributions of the return series. Our in-depth in-sample analysis shows that
the PAST density is capable to provide improvements respecting the alternative distributions. A more general
analysis based on backtesting VaR and ES shows that the PAST performance can beat the alternative densities.

Notes

1. See Chihara (1978) for an introduction to orthogonal polynomials.
2. These PA densities are also known as Gram–Charlier-like (GC-like) expansions. See Nicolussi and Zoia (2020) for the case of

multivariate GC-like expansions.
3. See Mauleón and Perote (2000) and Ñíguez and Perote (2017) for an alternative approach to polynomial expansions of the

Student-t distribution.
4. If we consider the PAST pdf in Section 3, it is verified that δ only contains the degrees of freedom, v, of the standardized Student-

t. Since δ = v, thenmk = mk(v) and γj = γj(v). Nevertheless, for other parent densities in this paper, such as standard Normal,
PAL and PAHS each corresponding δ does not contain any parameters and so, the momentsmk of each parent density become
specific values.

5. Since θ4 is equal to PA density kurtosis minus parent density kurtosis, the particular case of excess kurtosis measured as kurtosis
minus 3, corresponds to the standard Normal as the parent pdf.

6. See León, Mencía, and Sentana (2009) for the parametric properties of the Gallant–Nychka density.
7. See Proposition 3.2 in León and Moreno (2017). Note that the Hermite polynomials are expressed as orthonormal, instead of

orthogonal, ones.
8. Both sk0 and ku0 are obtained by plugging the sk-T parameters of λ = −0.1 (parameter controlling skewness) and v = 4.8

(degrees of freedom) into the skewness and kurtosis equations of the sk-T pdf in JR (2003).
9. See Tolikas (2014) for a rather similar analysis.
10. For a discussion about the correspondence between coverage levels of ES and VaR, see Kerkhof and Melenberg (2004).
11. To save space, the AQL values and all previous backtesting test statistics are not reported here, but they are available upon

request.
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Appendix
Proof of Corollary 3.1: The cdf of the standardized ST distribution in (16) is obtained by using previously the integral of a
symmetric region, i.e. ∫ t

−t
f (u; v) du = c

∫ t

−t

(
1 + u2

v − 2

)−m

du = 2c
∫ t

0

(
1 + u2

v − 2

)−m

du

such that t> 0,m = (v + 1)/2 and c = (v − 2)−1/2B(v/2, 1/2)−1. If we make the substitution y−1 = 1 + u2
v−2 , we obtain

u = (v − 2)1/2(1 − y)1/2y−1/2, du = − 1
2 (v − 2)1/2y−3/2(1 − y)−1/2 dy. (A1)

Then,

2c
∫ t

0

(
1 + u2

v − 2

)−m

du = B(v/2, 1/2)−1
∫ 1

θ(t)
ym−3/2(1 − y)−1/2 dy

= B(v/2, 1/2)−1
∫ 1

θ(t)
yv/2−1(1 − y)−1/2 dy

= B(v/2, 1/2)−1[B(v/2, 1/2)− B(θ(t); v/2, 1/2)]

= 1 − Iθ(t)(v/2, 1/2) = I1−θ(t)(1/2, v/2),

where θ(t) = v−2
t2+v−2 and 1 − θ(t) = t2

t2+v−2 . Hence, F(t) = 1
2 + 1

2 Iη(t)(1/2, v/2) with η(t) = 1 − θ(t) and F(−t) = 1 − F(t) =
1
2 − 1

2 Iη(t)(1/2, v/2). Finally, we have F(x) = 1
2 + 1

2 sgn(x) Iη(x)(1/2, v/2) where x ∈ R. �

It should be noted that the following proofs use the previous change of variable in (A1).

Proof of Proposition 3.1: First, an alternative expression for the even-moments in (15), that is useful for the proof, is given by

m2k(v) =
∫ +∞

−∞
u2kf (u; v) du = 2c

∫ +∞

0
u2k

(
1 + u2

v − 2

)−m

du

= (v − 2)kB(v/2, 1/2)−1
∫ 1

0
(1 − y)k−1/2ym−k−3/2 dy

= (v − 2)kB(v/2, 1/2)−1B(v/2 − k, k + 1/2). (A2)

Second, the even-moment ξ2k(t; v) = ∫ t
−∞ u2kf (u; v) du with t> 0 in (17) is obtained as

ξ2k(t; v) = m2k

2
+ c

∫ t

0
u2k

(
1 + u2

v − 2

)−m

du

= m2k

2
+ (v − 2)k

2B(v/2, 1/2)

∫ 1

θ(t)
ym−k−3/2(1 − y)k−1/2 dy

= m2k

2
+ (v − 2)k

2B(v/2, 1/2)
[B(v/2 − k, k + 1/2)− B(θ(t); v/2 − k, k + 1/2)]

= m2k

2
+ (v − 2)k

2
B(v/2 − k, k + 1/2)

B(v/2, 1/2)
[1 − Iθ(t)(v/2 − k, k + 1/2)]

= m2k

2
+ (v − 2)k

2
B(v/2 − k, k + 1/2)

B(v/2, 1/2)
Iη(t)(k + 1/2, v/2 − k). (A3)

Note that limt→+∞ η(t) = 1 in (A3) and hence, limt→+∞ Iη(t)(k + 1/2, v/2 − k) = I1(k + 1/2, v/2 − k) = 1. If we consider (A2),
then it is shown that limt→+∞ ξ2k(t; v) = m2k. Finally, ξ2k(−t; v) with t> 0 can be expressed as

ξ2k(−t; v) = m2k − ξ2k(t; v). (A4)

It is verified that limt→+∞ ξ2k(−t; v) = m2k − m2k = 0. If we consider both (A3) and (A4), we have ξ2k(x; v) where x ∈ R in (17).
�
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Proof of Proposition 3.2: The odd-moment ξ2k+1(t; v) = ∫ t
−∞ u2k+1f (u; v) du with t> 0 in (18) can be rewritten as

ξ2k+1(t; v) = −c
∫ +∞

0
u2k+1

(
1 + u2

v − 2

)−m

du + c
∫ t

0
u2k+1

(
1 + u2

v − 2

)−m

du. (A5)

To shorten, let q = 2k+ 1, ϕ = (v−2)q/2
2B(v/2,1/2) , a1 = m − (q + 1)/2 and a2 = (q + 1)/2. Then,

c
∫ +∞

0
uq

(
1 + u2

v − 2

)−m

du = ϕ

∫ 1

0
(1 − y)(q−1)/2ym−(q+3)/2 dy = ϕB(a1, a2) (A6)

and

c
∫ t

0
uq

(
1 + u2

v − 2

)−m

du = ϕ

∫ 1

θ(t)
(1 − y)(q−1)/2ym−(q+3)/2 dy

= ϕ[B(a1, a2)− B(θ(t); a1, a2)]

= ϕB(a1, a2)[1 − Iθ(t)(a1, a2)]

= ϕB(a1, a2)Iη(t)(a2, a1). (A7)

By plugging (A6) and (A7) into (A5), we have

ξ2k+1(t; v) = ϕB(a1, a2)[Iη(t)(a2, a1)− 1]

= (v − 2)k+
1
2
B

( v−1
2 − k, k + 1

)
2B

( v
2 ,

1
2
) [

Iη(t)
(
k + 1,

v − 1
2

− k
)

− 1
]
. (A8)

Finally, ξ2k+1(−t; v) with t> 0 can be expressed as

ξ2k+1(−t; v) = −
∫ +∞

t
u2k+1f (u; v) du = −ϕ

∫ θ(t)

0
(1 − y)(q−1)/2ym−(q+3)/2 dy

= −ϕB(θ(t); a1, a2) = · · · = ϕB(a1, a2)[1 − Iη(t)(a2, a1)]. (A9)

Note that limt→+∞ η(t) = 1 in (A9), hence limt→+∞ Iη(t)(k + 1, v−1
2 − k) = 1 and limt→+∞ ξ2k+1(−t; v) = 0. Finally, if we

consider both (A8) and (A9), we have ξ2k+1(x; v) where x ∈ R in (18). �
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