

WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Experiences of teaching UML within the information systems
curriculum

Huseyin Dagdeviren
Radmila Juric
Patrick Lees

School of Electronics and Computer Science

Copyright © [2004] IEEE. Reprinted from ITI 2004: Proceedings of the 26th
International Conference on Information Technology Interfaces, Cavtat,
Croatia, Jun 07-10, 2004. University of Zagreb, pp. 381-386. ISBN
9539676991.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.westminster.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

381

Experiences of Teaching UML within the Information Systems Curriculum

Huseyin Dagdeviren, Radmila Juric, Patrick Lees
Cuvendish School of Computer Science, Department of Information Systems,

University of Westminster, I15 New Cuvendish Street, London W1 W 6UW
dagdevh@wmin.ac.uk. iuricr@wmin.ac.uk, leesp@,wmin.ac.uk

Abstract. The Unified Modelling Language
(UML) has been a standard modelling language
for the development of software intensive systems
since 2000. As a consequence, the Information
Systems (IS) curriculum, at the Cavendish School
of Computer Science, University of Westminster
in London, had UML teaching incorporated two
years ago. We have encouraged the introduction
to and use of UML in modules that replaced
traditional approaches to IS development. In
this paper we report on experiences of using
UML within the two modules of our
undergraduate curriculum, delivered by the IS
department. The first module is taught in the
second year, i.e. at level 5, and delivers
requirements analysis with UML. The second
module uses the UML for modelling and
designing distributed business applications and
is taught in the final year, at level 6. In both
modules it is assumed that an introduction to
modelling in IS, with the syntax and semantics of
a selection of UML modelling elements and
diagrams, has been done earlier. We single out
some problems and give a rationale for changes
in the next academic year.

Keywords. UML, Modelling in Information
Systems, Requirements Analysis, Distributed
Business Applications, IS Curriculum.

1. Introduction

The UML specification became the software
industry’s standard modelling language in 2000
[IO]. The advantages of having a common
modelling language for visualising, specifying,
constructing and documenting the artefacts of
software intensive systems [4], has attracted
software practitioners, tool vendors, academics
and researchers. All of them have had their own
‘say’ on this shared graphical language [13],
which ranges from the systems developer’s
practical needs for UML, to the constemation of
researchers about UML [6] and only partially

successful UML adoption by tool vendors [SI.
Regardless of UML prospects within software
engineering (SE) and IS communities, the UML
is a standard modelling language adopted by
practitioners and researchers at a rate that has
surprised even the most optimistic Object
Management Group (OMG) expectations [15].
When the Cavendish School of Computer
Science, at the University of Westminster in
London UK, was considering changes in the IS
curriculum, as part of our IS course review
program, we made the use of UML explicit [9].
We decided not to train students as UML experts
hut through our program students will attempt to
secure their modelling competence, whilst
obtaining a medium through which concepts of
“object-oriented”, “relational”, “process” etc. can
be more readily assimilated and communicated.
One intention was to build on students’ increased
willingness to express ideas and opinions about
the world and enhance the rigour and precision
of their expression [9], [IS].

Two years after the adoption of the new IS
curriculum, we report on our experiences of
delivering and using the UML within our
undergraduate program. The purpose of this
paper is to

reflect on two different modules where the
UML plays a major role, influences the
weekly teaching schedule and affects
students’ assessment;
document our experiences in a systematic
way that can be shared by our colleagues and
serve as a hasis for our future curriculum
reviews.

.

We give our experiences of teaching and
using UML in two undergraduate modules:
Requirements Analysis (RA), which is given in
section 2, and Distributed Business Applications
(DBA), which is given in section 3. Details of
module syllabi are available at [IS]. We report
briefly on problems related to the UML adoption

2dh Int. Conf. lnformation Technology Interfaces /TI 2004, June 7-10. 2004, Cavtat, Croatia

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 10:49:58 UTC from IEEE Xplore. Restrictions apply.

mailto:dagdevh@wmin.ac.uk
mailto:iuricr@wmin.ac.uk
mailto:leesp@,wmin.ac.uk

382

throughout these two modules and reflect on
possible changes in future academic years. In
both modules it is assumed that an introduction
to modelling in IS, with the syntax and semantics
of a selection of UML modelling elements and
diagrams has been done in the Modelling in
Information Systems (MiuIS) module at level 4
(year 1).

This paper does not try to justify our decision
to make UML teaching explicit. We leave any
evaluation of our students’ modeling competence
and their ability to express ideas and opinions
about the world with rigour and precision, for
future works, when the course matures and all
modules will have run.

2. Requirements Analysis

2.1. The role of the module, its aims and
teaching/assessment patterns

The RA module aims to teach students the
knowledge and skills required to perform
requirements analysis, from their elicitation to
specification. It has replaced the Systems
Analysis module from our old programs, where
traditional systems analysis and design teaching
[5] , [19] was essential in the IS curriculum. The
RA module’s prerequisite MinIS focuses on the
syntax and semantics of a selection of UML
modelling elements and diagrams. The RA
module is (a) a core module for students studying
for the BSc degrees in IS and IS with Business
Management and (b) an optional module for
Computing, SE and Information Product Design
students, all at level 5. The module is taught by
a combination of lectures (24 hours), supervised
tutorial sessions (24 hours), where students can
study in groups, and self-study exercises, which,
together with coursework preparation, require 96

. hours of students’ independent work.

The module’s assessment includes two
pieces of coursework, for 50% of the total marks,
and an exam. A group coursework requires
students to elicit and model requirements from a
given case study using the UML. Students’
ability to express their approach to the
requirements analysis, adoption of appropriate
terminology and modelling principles are
reflected on and assessed in the self-assessment
part of the coursework report. The closed book
exam has more of a summative role that allows

the assessment of student’s retention and
understanding of RA topics drawn from the
entire module.

2.2. Teaching RA with UML

The UML plays a very important part in the
delivery of the RA module, which is based on
student’s modelling skills obtained in its
prerequisite MinIS. The RA module does not
only refine the UML diagrams introduced in
MinIS, but also continues with some other
diagrams relevant to the RA topics.
Consequently, there is an overlapping between
the two modules, particularly when Use Case
diagrams and Class diagrams are taught and
used. However, the purpose of the MinIS
module is to introduce UML diagrams, which
could be used in any context, such as conducting
RA or designing IS.

The RA module strays slightly from the
requirement engineering (RE) teaching known
from [I l l , which can be found within many SE
degrees. Consequently, our essential text book
[3] is the main source of the teaching material
used in both lectures and tutorials for the RA
module. It adopts a process that is largely
consistent with Unified Systems Development
Process (USDP) [7]. We have adopted their
approach to the IS development, which has
assisted us in placing the UML into the context
of a requirements analysis process’. The
following outlines how the UML was used
within the RA module:
(a) To document the results of the requirements

elicitation process using use case diagrams
and scenarios;

@) To analyse object interactions within each
use case separately by using collaboration
diagrams;

(c) To produce an analysis class diagram by
integrating all collaboration diagrams;

(d) To perform further analysis by
i using sequence diagrams for object

interaction
ii using state diagrams for objects that

have complex state dependent behaviour.
Subsequently, the analysis class diagram is
refined by reflecting the effects of the further
analysis and enhanced by incorporating other
modelling elements such as generalization
and aggregation relationships.

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 10:49:58 UTC from IEEE Xplore. Restrictions apply.

We have excluded some UML diagrams such
as component or deployment diagrams, which
would fit better within design modules and do
not necessarily bond with RA. However, we
needed at least 6 lectures and 10 tutorial
sessions, i.e. almost 70% of teaching time, to
cover (a) to (d) above.

2.3. Problems encountered

As implied above, teaching the UML
modelling elements and diagrams constitutes a
significant part of the module delivery, i.e. the
UML dominates the module. The RA topics
covered within the remaining time were
(a) an ovenriew of IS development practices
(b) structured and object-oriented IS

developments with their underlying
principles and assumptions

(c) problems in IS development and the role of
requirements

(d) requirements capture, user involvement and
overview of user analysis.

Consequently, we have had two undesirable
effects:
i. We shifted the module’s emphasis from

reyuirements analjsis to modelling. While
some students were able to perceive that the
modelling is a vehicle to capture and analyse
requirements rather than being the actual
goal of the module, many students viewed it
as a continuation of the prerequisite MinIS
module and interpreted the purposes and
roles of these two modules similarly.

ii. The domination of UML has had a knock-on
effect on the module’s assessments.
Assessment questions were supposed to be
centred either on requirements, modelling
with UML or both. While it is difficult to
label all questions strictly as a modelling with
UML question or a ‘requirement question ’ it
has become clear that the creation of UML
diagrams will constitute a large proportion of
the assessment, due to its dominating role
within lecture and tutorial sessions.
Consequently, more than 60% of the exam
marks were allocated to creating UML
diagrams and assessing student’s ability to
interpret the syntax and semantics of UML
modelling elements correctly, whereas less
than 40% of the marks were related to
requirements analysis itself. Furthermore,
we could play down the role of UML in an
individual coursework, which was a phase

test with questions based on basic concept,
and terminology within the module, but the
modelling tasks within the group coursework
uniformly emphasised the UML. Wefailed to
ensure that not only the modelling skills are
assessed but also issues of eliciting and
specijjing requirements stayed in the core of
our assessment strategy. Shouldn’t the latter
represent the essence of the RA module
delivery?

2.4. Possible solutions

Eliminating some of UML diagrams that
contribute the least or relate little to RA can
alleviate the problem of the UML domination in
the module. This means that we free more
lecture and tutorial time for delivering the
requirements elicitation and specification topics.
We propose to eliminate State diagrams because:
(a) They can be used to describe the behaviour

of control and boundary classes in later
stages of a design process, as opposed to
their minor role in RA for assessing the
behaviour of complex entity classes.

(b) Their tasks of assessing the behaviour of
complex entity classes for refining class
diagrams may to some extent be done with
sequence diagrams.

(c) Their syntax and semantics require a
considerable amount of teaching time, which
does not make them cost-effective in this
module.

(d) Consequently, they would make a good
candidate for the design module that follows
the RA module.

However, the implications of this change will
be in tailoring the currently used ‘process’ [3] or
employing our own ‘process’ that would deal
with a strictly prescribed set of UML modelling
elements and diagrams suitable for the RA
module delivery.

In the light of the above, the assessment will
be easy to change. The syntax and semantics of
UML modelling elements and diagrams should
be secondary within the module’s assessment,
This can be achieved by forming questions
carefully. For example, the “What are the
different @pes of relationships that can be used
in a class diagram?” question is more related to
UML and its role within modelling in general,
while the question “How do the generalisation
and aggregation relationships in a class diagram

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 10:49:58 UTC from IEEE Xplore. Restrictions apply.

32

contribute to the development of a resilient
system?” is more appropriate for the RA
assessment. These kinds of questions will be
correctly interpreted by all students as long as the
module is not perceived as a continuation of
modelling exercises practices in the prerequisite
ainIS.

3. Distributed Business Applications

3.1. The role of the module, its aims and
teachinglassessment patterns

The DBA module introduces students to
traditional and emerging distributed applications:
from their business aspectsidomain and strategies
for development, to their impact on
organisational and cultural changes in terms of
the rising dominance of the Internet. The
problem of modelling and designing such
applications is addressed through the issues of
heterogeneity and distribution and through
various frameworksiarchitectural models and
middleware technologies that deploy distributed
applications. Consequently, one of the module’s
aims is to teach students how to compose a
suitable requirement specification which leads
towards an architectural model of a distributed
application, and the analysis of a suitable
technology for the application deployment. The
module is (a) a core module for students studying
for the BSc degree in Internet Computing and (b)
an optional module for IS, Computing and SE
students, all at level 6. As it is delivered by the
IS department, the module’s syllabus and its
assessment mirror a specific approach in
modelling and designing, where tasks short of
final software implementations are not unusual.

The module is taught by a combination of
lectures (12 hours) and tutorials (24 hours) and
students are expected to undertake their own
research to deliver their coursework and facilitate
tutorials. The assessment is 100% coursework-
based. Students submit three pieces of work:
(i) an essay based on individual research on
distributed computing platforms available in
industry, (ii) group coursework on modelling
and deploying an example of distributed business
application and (iii) a presentation of a topic in
the areas of e-commerce applications, Computer
Supported Collaborative Work, component based
technologies and web services.

$4

For the modelling tusk students develop their
own requirement specification from a given case
study, and derive an architectural model which
addresses a distribution of data and processes
within a given problem domain. This requires
adequate modelling skills and the
communication of solutions. Clear diagrammatic
solutions are required in order to pass this
coursework. It is essential to use UML
throughout: from conducting requirement
analysis and specification, to delivering a
component based architectural solution and
design which outlines the choice of technology
for the deployment and implementation of the
application’s components.

3.2. Using UML within a particular
‘process’

The UML is essential for the module
delivery. It is used everywhere: from discussions
on diagrams generated from tutorial case studies
to a coursework which includes modelling tasks.
Tutorials are supported by a text book which
advocates the design of distributed applications
with UML and the Java platform [l]. This choice
of text book also dictates a process for the DBA
design and implementation. We have not blindly
adopted the book’s process in the module, but
we discussed and tailored it into the following
steps:
(a) Generate a use case model with detailed

scenarios, exceptionskommonalities and
generalisations;

(b) Derive sequence diagrams from each use
case with boundary and control objects as
the first two to be revealed, followed by any
number of entity or any other objects;

(c) Generate class diagrams with all classes
involved - including entity classes - and
group them in order to prepare a system for
technology selection;

(d) Create a component based architectural
model (we used UML package modelling
elements) which also shows the technology
needed for the implementations of the
component’s functionality (we used package
dependencies with technology components);

(e) Decide on the application design, i.e. give
choices of sessions and entity beans within
the Enterprise JavaBeans (EJB) platform [11.

Steps (a) to (e) are used in tutorials when
following certain sections from the text book and
they also mirror the tasks given in the
coursework on modelling.

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 10:49:58 UTC from IEEE Xplore. Restrictions apply.

385

3.3. Problems encountered

Problems. were polarised around the
following two:

Problem 1: The heterogeneous class in the
DBA module consisted of students from all four
of our undergraduate degrees: IS, SE, Internet
Computing, Computing degrees. Consequently
students may have
I .

11.

...
111

iv

V.

various modelling skills - some students only
have experiences of modelling techniques in
structured analysis and design methodologies
as in [5] , [19] and some are familiar with the
extraction of abstraction for object oriented
systems development [3], [141;
different levels of UML adoption: from UML
experts to students who have never been
taught UML or who were self-taught;
various perceptions of the purpose and role
of UML in the development of IS and
distributed application in particular - some
students still perceive the ,UML as a
methodology, hence the issue of having a
standardised modelling language without
having a standardised process which
prescribes how and where to use modelling
diagrams represents a problem;
diverse experiences of applying the UML
modelling elements in various application
domains - we have students with experience
of using UML in SE applications with a
strong emphasis on design and code
generation [14], [16] which is a contrast to
the high level of abstraction needed when
employing the same modelling elements and
diagrams within requirements and s o h a r e
architecture models [11 ;
different views of processes where UML
modelling elements and diagrams are put in a
certain perspective - students are puzzled by
questions such as: which diagrams should I
use and why? In which order? Is there any
process? Is this our process? If there are
some processes available where I can use
UML, how do I choose which one to use?

Problem 2: The module is 100% coursework-
based, which has implied poorer lecture
attendance and little communication with the
lecturer compared with modules that involve
formal exams. Consequently, the assessment
tasks required a certain level of lecturer
involvement: the coursework on modelling and
designing a DBA included a ‘check-point’ where

students were supposed to have their initial
modelling solution approved by a lecturer. There
were other strong reasons for such a prerequisite:
1 Initial system requirements’ models given

through UML diagrams determine the
success of all other coursework tasks for the
design and deployment of DBA (see steps
(a)-(e) from 3.2) and
The variability of the UML modelling skills
acquired outside this module could have
impaired students’ performance in this
module.

Consultations with a lecturer, in order to pass
a ‘check-point’, took approximately 1-2 hours
per group, which culminated in 20 contact-hours
outside scheduled lecture and tutorial sessions.
This might become unfeasible when the number
of students taking the module increases from the
current 41.

3.4. Possible Solutions

=

Problem 1 will be difficult to remedy as long
as we allow the DBA module to be a free choice
module for all our students. However, it could
have helped if our teaching had had a stronger
emphasis throughout all our degrees on
a. modelling skills with UML,
b. clear perception on the role and purpose of

UML when developing software systems,
c. understanding the current trends in

methodologies, i.e. ‘processes’, that may use
UML, and which range from USDP [7] to
XP [2] and agile developments [17].

Consequently, we would not have bad to exercise
any check-points within students’ assessments on
the scale currently needed.

4. Conclusion

Our experiences of including UML within
the IS curriculum may generate many questions.
We chose to outline the following two:

In spite of having UML successfully
incorporated across the IS curriculum, we feel
that introducing students to UML and teaching
them how to apply it is not balanced. Students
obviously need more time in the first year to
familiarise themselves with modelling in general
and with the adoption of a specific modelling
language, if we want them to apply both later in
their studies. We might also think about the

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 10:49:58 UTC from IEEE Xplore. Restrictions apply.

synchronisation of UML deployment across all
our courses in the school, if we want to keep
modules such as DBA a free choice module for
all our degrees.

We also share various concems from
practitioners regarding the UML role within a
process that supports IS development. It is
difficult to choose one, when they range from
heavy-weight USDP [7] and light-weight agile
development [17] to various selections of UML
diagrams generated in order to follow a ‘process’
that many potential text books advocate
[12],[3],[1]. For decades we have taught IS
students how essential methodologies and their
techniques for IS development are. It appears
that not having ‘a methodology’, where you can
place UML diagrams in a certain order and for a
certain purpose, might he a problem when
teaching UML.

All these issues will he considered when
designing weekly teaching programs for all
modules with UML involvement in September
2004.

5. Acknowledgements

We are grateful to our colleaque Ms Jackie
Croft for. her proof-reading and constructive
suggestions.

References

Arrington C T, Rayhan S H. Enterprise
Java with UML. John Wiley and Sons:
2003.
Beck K. Extreme Programming
Explained: Embrace Change. Reading,
MA: Addison Wesley; 1999.
Bennett S, McRobb S, Farmer R. Object
Oriented Systems Analysis and Design
Using UML. Maidenhead: McGraw Hill;
2002.
Booch G, Rumbaugh J, Jacobson I. The
Unified Modelling Language User Guide.
Redwood City, C A Addison Wesley
Longman Publishing Co.; 1999.
DeMarco T. Structured Analysis and
System Specification. Upper Saddle
River, NJ: Prentice-Hall Company; 1979.
Dori D. Why Significant UML Change is
Unlikely. In CACM, November 2002,
Volume 45, No 11, pp 82-85.

Jacobson I, Booch G, Rumbaugh J. The
Unified Software Development Process.
Reading, MA: Addison Wesley; ACM
Press, 1999.
Juric R, Kuljis J. Building an Evaluation
Instrument for 00 CASE Tool
Assessment for UML Support. In R.H.
Sprague (ed.) Proceedings of the 32”’
Hawaii Intemational Conference on
Systems Sciences; 1999 Jan; Hawaii,
USA, IEEE Computer Society Press.
Juric R, Lees P, Photos T. Experiences of
Revalidating the Undergraduate and
Postgraduate Courses Within the
Information Systems Curricula at
University of Westminster, UK. In
Joumal of Computing and Information
Technology 2003; 11(4), 2003, pp. 243-
252.
Kobryn C. UML 2001: A Standardisation
Odyssey. In CACM, October 1999,
Volume 42, No IO, pp 29-37.
Kotonoya G, Sommerville I.
Requirements Engineering: Processes and
Techniques, John Wiley and Sons; 1998.
Maciaszek L A. Requirements Analysis
and Systems Design: Developing
Information Systems with UML. Harlow:
Addison Wesley; 2001.
Miller J. What UML should be. In
CACM, November 2002, Volume 45, No
11, pp. 70-72.
Priestley M. Practical Object-Oriented
Design with UML. McCraw-Hill; 2000.
Selic B, Ramackers G, Kobryn C.
Evolution, not Revolution. In CACM,
November 2002, Volume 45, No 11, pp.

Sommerville 1. Sofiware Engineering,
Reading, MA: Addison Wesley; 2001.
The Official Agile Modelling Site.
httd/www.agilemodeling.com/
[I5 Apr 20041.
University of Westminster, Cavendish
School of Computer Science, Department
of Information Systems, BSc (Hons)
Information Systems Course Handbook,
2002.
Weaver P L, Lambrou N, Walkley M.
Practical SSADM Version 4+. London:
Pitman Publishing; 1998.

70-73.

Authorized licensed use limited to: University of Westminster. Downloaded on May 21,2010 at 10:49:58 UTC from IEEE Xplore. Restrictions apply.

http://httd/www.agilemodeling.com

