
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Modeling and Optimizing Patient Flows

Chishti, I., Basukoski, A. and Chaussalet, T.J.

A paper presented at the 8th Annual International Conference on ICT: Big Data, Cloud &

Security, Singapore 21 to 22 Aug 2017.

The published version is available under DOI:10.5176/2251-2136_ICT-BDCS17.52

© Copyright 2017 GSTF.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

Page | 1

Modeling and Optimizing Patient Flows

Irfan Chishti, Artie Basukoski, Thierry Chaussalet

Department of Computer Science

University of Westminster

London, UK

I.chishti@westminster.ac.uk

Abstract—constructing a consistent process model and its

simulation can be instrumental to be used in healthcare issues such

as Consistent patient flow modeling. Current process modeling

techniques used in healthcare are intuitive and imprecise such as

flowcharts, unified modeling language activity diagram (UML

AD) and business process modeling notation (BPMN). These

techniques are vague in process description and cannot fully

capture the complexities of the types of activities and types of

temporal constraints between them. Additionally, to schedule

patient flows; current modeling techniques does not offer any

mechanism so healthcare relies on critical path method(CPM) and

program evaluation review technique (PERT) that also have

limitations i.e. finish-start barrier. It is imperative that temporal

constraints between the start and/or end of a process needs to be

specified, e.g., the start of A precedes the start (or end) of B, etc.,

however, these approaches failed to provide us with a mechanism for

handling these temporal situations. This paper proposes a

framework that provides enumeration of core concepts to describe

a general knowledge base for Business and Healthcare domains.

Algorithms are provided to represent the semantics of concepts i.e.

based on their ontology. Furthermore, this logical basis is

supported by Point graph (PG); a graphical tool, which has a

formal translation to a point interval temporal logic (PITL) is used

to simulate Patient flows for enhanced reasoning and correct

representation. We will briefly evaluate an illustrative discharge

patient flow example initially modeled using Unified Modeling

Language Activity Diagram (UML AD) with the intention to

compare with the technique presented here for its potential use to

model patient flows.

Keywords—patient flow, business process modeling; point

interval temporal logic; scheduling; optimizing; ontology;

semantics; point graph

I. INTRODUCTION

The scale and complexity of healthcare sector have a huge
impact on the level of patients’ care. Therefore, attempts to
model a whole hospital are rare [5], and the possible reason is
the difficulty of representing the complexity of hospital
activities within a simulation model [19]. However, it may be
easier to select one part of hospital activity, for example
modeling a patient flow separately. Because of this, there is an
increasing recognition that developing a good systems’
understanding of how a healthcare process works is an essential
step to effective quality improvement [4, 20]. Such a systems’
understanding is often lacking in healthcare [21].

A good system refers to a consistent model and a simulation
that can be instrumental in addressing issues such as consistent
patient flow modeling. On one hand side, current process
modeling techniques used in healthcare are intuitive, imprecise

and provide vague descriptions e.g. temporal flow of tasks and
their corresponding relationships in the flow chart, unified
modeling language activity diagram (UML AD) [18] and
business process modeling notation (BPMN) [17]. Also, they
use differing concepts such as UML AD use ‘action’ to
represent an atomic unit of work and BPMN use ‘task’ to
represent the same. On the other hand, they all lack quantitative
representation of processes involved; therefore, healthcare
sector use scheduling approaches such as critical path method
(CPM) and program evaluation review technique (PERT) [15].
They only allow temporal relations between activities i.e. finish-
start barrier and cannot fully capture the systems’ complexities
that address all available temporal constraints to construct the
model which is precise enough.

If both qualitative and quantitative information provided
with a precise description of concepts under one platform then
it could provide an aid not only for correct modeling but can
help in improved scheduling. A recent survey in [22] analyses
current modeling techniques in terms of providing temporal
perspective to capture complex temporal constraints to provide
a consistent model. But reveals that current standard such as
business process modeling notation (BPMN) variant TIME
BPMN doesn’t allow to model temporal constraints relating to
the duration of the business process activities such as the
activity lasts ‘x’ time units, and ‘x’ may be limited by a given
interval. This survey lacks in identifying the temporal objects
which are crucial if one needs to deal with the complexities of
temporal constraints.

From the above, we have identified two issues that need

addressing. First is the knowledge base used by the process

modeling techniques which require a logical basis for the

concepts/terms used and if provided this could improve its

reasoning and representation [10]. Second the inference

mechanism is missing that can be provided using the lexicon of

the logic that offers a qualitative and quantitative representation

of points and intervals of a system, e.g., the start of process A

precedes the start (or end) of process B etc. A tremendous amount

of work to solve such problems has been done; however, we

find very little effort in overcoming the stated shortcomings of

the traditional modeling and scheduling approaches. The state

of the art framework proposed here is based on methodological

approach by identifying the core concepts/terms used in current

modeling techniques. Subsequently it provides formal

semantics that could be used to construct a consistent model.

The rest of the paper is organized as follows; Section II

describes the framework providing an enumeration of core

mailto:I.chishti@westminster.ac.uk

Page | 2

concepts; based on their ontology they are formally defined i.e.

semantics, to construct a consistent model based on a class of

temporal logic i.e. point interval temporal logic (PITL) [1].

Section III provides the verification of the model presented in

Section II. Section IV provides validation of the proposed

system using point graph (PG) [2] which can provide enhanced

reasoning. Section V discusses the application of the

framework for evaluating a UML AD model of a discharge

patient flow and compares it with the approach presented in this

paper to construct a consistent model used for effectively

scheduling; Section VI concludes this research paper.

II. FRAMEWORK

A. Axiomatic System

Intelligent control techniques such as temporal logic (TL),
fuzzy logic (FL) and neural networks (NN) been used where the
concepts/terms are ill-defined, complex, nonlinear, time-
varying and stochastic. To use logic, we consider TL; as it
provides consistency based on explicit axioms whereas
modeling business and healthcare processes i.e. patient flows,
deal with the practical problems from real life processes. We
will provide an enumeration of core concepts and a
corresponding ontology that can be used in current modeling
techniques. Further explicit axioms i.e. consistent semantics,
are provided based on point interval temporal logic (PITL). We
use PITL to reason and represent a consistent but general
knowledge base that can be used in business and healthcare
domains to model processes/patient flows such as
process/discharge, action/treatment, event/admission time etc.

In the spectrum of TL, many temporal theories provided but
always left some unanswered questions. To maintain
knowledge about intervals; a theory based on intervals taken as
primitive and its 13 qualitative temporal relationships in time is
presented in [12]. In [14], ‘moment’ i.e. an interval which
cannot be broken down further, was introduced to be used as an
alternative to point. McDermott introduced point algebra [6]; to
model processes and events using temporal point as primitive.
However, [1, 17] proposed a class of TL which considers a
point, an interval and both point and interval as primitives,
which we have used in this paper.

The following conventions constituting a range of
connectives and quantifiers; will be used throughout in this
paper in their standard interpretation as:

• ˄ conjunction, ˅ disjunction, ¬ negation,

• ⇒ implication,  equivalence, ⊢ provable, ⊨ logical
entailment

• Universal quantifier, and  Existential quantifier

Formalism provided in [2] considers a single time line. To
show the qualitative temporal relation between any two
intervals with nonzero lengths on the time line are related by
one of the seven relationships as shown in fig. 1 using point
interval temporal logic (PITL), i.e. case I specify relations
between two intervals, case II specify relations between a point
and an interval and case III specify relations between two
points. We can also use PITL to reason and represent
quantitative temporal information.

Fig. 1. Qualitative temporal relations providing semantics

To construct a model, we use a model-theoretic approach
[5] in this paper and use a schema [11] based on temporal basis
for representing the idea of an abstract process i.e. theory, and
subsequently, an instance will be used to model it i.e.
verification of the abstract model.

B. Abstract model

In this section, we provide core concepts that will constitute
an abstract model. An abstract model is considered to represent
an abstract process which is comprised of core conceptual terms
such as an atomic process i.e. task/action, process, sub-process,
and special atomic process i.e. event, and temporal relationship
to represent the flow between them. Core axioms are provided
defining ontology of these concepts i.e. formal semantics. For
the convenience of expression, we use an interval relation ‘In’
[13], relation ‘Part’ which accommodates both interval and
point [16], and are given below.

In(t1,t2)Starts(t1,t2)During(t1,t2)Finishes(t1, t2) (R 1)

Part(t1, t2)  Equal(t1, t2)  In(t1, t2) (R 2)

Using a predicate ‘Occurs’ to represent an abstract process
that occurs over a time element with a duration assignment and
can be expressed as Occurs (a, t, D(t)). Where ‘a’ stands for a
process symbol, ‘t’ represents time element with a
corresponding duration assignment ‘D(t)’. In general, to
provide axiomatization of abstract processes that applies to
divisible intervals, non-divisible moments or time points using
temporal relation R1 and R2 is given below:

Page | 3

Occurs(a, t, D(t))  t1  D(t1) ˃ 0 (In(t1, t))  t2  D(t) ≥ 0
(Part(t2, t1)  Occurs(a, t2)) (Ax. 1)

1) Definition 1-Atomic Process: An atomic process is the

basic element of the abstract model that may apply to non-

divisible moments or time points [8]; using R1 it can be

expressed as:

Occurs(a,t,D(t))¬(t1˄In(t1,t)˄Occurs(a,t1,D(t1))) (Ax. 2)

Ax. 2 defines an atomic process that occurs over the time
moment or time point. If an atomic process associated with the
time moment then it is referred to general terminologies used in
business process modeling (BPM) and patient flow modeling
(PFM) such as task, action, assessment of a patient respectively,
which can be assigned to a single agent responsible for its
completion. Once an atomic process is started, it continues to
completion without reference to other atomic processes. It
neither wait for other atomic processes to complete, nor
initiating other atomic processes before its completion. An
atomic process that is associated with a time point is notated
here as special atomic process. It can be referred to BPM and
PFM terminologies such as event, hospital i.e. patient
admission and discharge time respectively.

2) Definition 2-Business Process (Process): In this paper,

we will be using term business process (BP) and process

interchangeably. A business process P is defined as a pair

(A,R(A)) where

A={a1, a2,…….,an} (Ax. 3)

‘A’ is a finite set of atomic process names, where for all ‘ai’
can be expressed as Occurs (ai, ti, D(ti)). A process occurs over
a time interval may comprise of several atomic processes for
instance, a process occurs over time interval ‘i’ which is
decomposable; comprised of two-time elements ‘t1’ and ‘t2’ such

that ‘i = t1  t2’; where ‘t1’ and ‘t2’ may refer to 2 atomic
processes. A process P defined here refers to business processes
of BPM and patient flows such as diagnosis, discharge and
treatment processes of PFM that can be broken down further.
Corresponding temporal relation between atomic processes is
given as R(A) = {R(ti, tj) | 1 ≤ i, j ≤ n}. R(A) using ‘Meets’
relation. This defines a BP of logical conjunction and
disjunction.

3) Definition 3-Deduced Temporal Constraint: In this

paper, for conformance of temporal relations in R(A) we use

DR(A) to denote the deduced temporal constraints which

contains all the relations plus all the other relations that can be

derived from R(A). These constraints are used to control the

flow of the processes in the model and is given as:

DR(A) ⊨ R(A) (Ax. 4)

Let’s prove it by deduction theorem, assume the following

a) Assumption 1: Every relation of DR(A) also belongs

to a relation of R(A). Let R{(a)} be any relation of DR(A), if

R{(a}} is a relation of DR(A), then it follows that R{(a)} also

belongs to a relation of R(A). i.e. DR(A) ⊨ R(A).

b) Assumption 2: Let R{(a)} be any relation of R(A) that

is also a relation of DR(A), i.e. DR(A)⊨R(A).

Ax. 4 is valid as it holds bidirectional and there exists at least
one transitive relation containing R(A), and the disjunction of
transitive relations is transitive. Hence the transitive closure of
DR(A) is the disjunction of all transitive relations containing
R(A).

C. Properties of the Abstract Model.

Soundness and completeness are two major issues in
verifying a formal system; in our case its abstract model.
Soundness refers to the correctness of the abstract process and
completeness implicates that all the possible inferences can be
derived by using the resolution algorithm in [3]. Formal
definitions of these are presented here for convenience.

1) Definition 4-Abstract Model is Sound: An abstract

model is called sound, if any temporal relation R(A) has been

proved from a set of deduced temporal constraint DR(A) by a

proof procedure such that

DR(A) ⊢ R(A) (Ax. 5)

It follows logically from DR(A), i.e., (Ax.4); DR(A)⊨R(A).

2) Definition 5: Abstract Model is Complete: An abstract

model is called complete, if for any R(A), that follows logically

from a given set of deduced temporal constraint DR(A), i.e. Ax.

4 and the proof procedure can prove R(A), i.e. Ax. 5. Now, we

will follow a proof procedure presented in [3] and provide 2

theorems to prove the soundness and completeness of abstract

model defined above.

a) Theorem I-Abstract Model is Sound: Proof:

Given a set of deduced temporal constraints DR(A) and a goal

R(A). Suppose we derived R(A) from DR(A) by the resolution

theorem. We thus have DR(A) ⊢ R(A). We want to prove that

the derivation is logically sound i.e. (Ax 4). Let us prove the

theorem by the method of contradiction, presume that the

consequent of DR(A)⊨R(A) is false, which means DR(A) ⊨ 

R(A). Thus,  R(A) is satisfiable or true. To satisfy, we assign

truth values (true/false) to all temporal relations that are used in

R(A). We now claim that for such assignment, resolution of any

two relations from DR(A) will be true. Thus, the resulting

temporal relation even after exhaustion of all possible relations

through resolution will not be false. Thus (Ax 5) is a

contradiction. Hence, the assumption DR(A) ⊨ R(A) is false,

and consequently (Ax 4) holds, and proves that abstract model

is sound.

b) Theorem II-Abstract Model is Complete:

Proof: Let R(A) be a temporal constraint such that from a given

set of deduced temporal constraints DR(A), we have

DR(A)⊨R(A) i.e. R(A) can be logically proved from DR(A).

We must show there exists a proof procedure for R(A) i.e. (Ax

5). We shall prove it by the method of contradiction, let’s

assume DR(A) ⊢ R(A) is false that means DR(A) ⊢  R(A). In

Page | 4

other words, R(A) is not derivable by a proof procedure from

DR(A).

By using ground resolution theorem [3] that “if a set of
ground derived temporal constraint is false, then the resolution
closure of those deduced temporal constraints contains the
‘false’ deduced temporal constraint. Thus, DR(A1) is false, the
resolution closure of DR(A1) yields the null relation, which
causes a contradiction to (Ax 5). therefore, the assumption is
wrong, and hence DR(A) ⊨ R(A) satisfies i.e. (Ax 4), and
proves that abstract model is complete.

3) Definition 6-Sub Process:A process P1 = (A1, R(A1)) is

called a sub-process of a process P = (A, R(A)), iff

A1  A (Ax. 6)

DR(A1)  DR(A) (Ax. 7)

So, we can say that A  (A  (A  A1)) and DR(A) 

(DR(A)  (DR(A)  DR(A1))). From Ax. 4, we can have
DR(A1) ⊨ R(A1) therefore we could say that (A1, R(A1)) is a
sub-process of a process (A, R(A)) i.e. P1 is a sub-process of P.

In the next sub-section, we would provide the verification of
the abstract model.

III. VERIFICATION OF THE ABSTRACT MODEL

So far, the model introduced above is abstract. We may refer
abstraction as theory or process type or process class and the
interpretation as real world model or process token or process
instance respectively. To achieve this, we formally define the
meaning of the relationship of theory to model, type to token, or
process class to the process instance. In this paper, we follow the
axiomatic method [14], that defines theory as an axiomatic
system i.e. abstract model/process, and a concrete realization as
its interpretation in some real world domain i.e. real world
model. By interpretation, we mean that a domain of real world
can be chosen with its constant elements and predicates; taken
in such a way that, with this enumeration of the primitive
elements of the theory and their corresponding axioms are true
propositions. Note that the existence of the real world
interpretation ensures temporal consistency of the abstract
model. To do this, we define instances of core elements of the
abstract model along with a function that will map abstract
model to concrete model.

1) Definition 7-Abstract Model Instance: An abstract

model is a triad of (a, t, D(t) where aA, tT and D(t)ℝ.

Therefore, an abstract process instance can be defined as

aRAR, tRTR and D(T(aR)D(TR) ≥ 0. For a real world

domain containing abstract process instance symbols ‘aR’ with

its occurring time instance tR, and duration assignment instance

D(t(aR). The function D(t(aR)) into D(tR) is just a real duration

assignment of the occurrences of the abstract process. In this

case, the real world model is an instance of the abstract process.

Note that the existence of the real world interpretation ensures

automatically the consistency of the abstract model. To do this,

we introduce a mapping function from abstract to a real world.

2) Definition 8-AtomicProcess Instance: We use mapping

 for interpretation of the abstract model to its corresponding

instances from a real world. We consider AR a set of atomic

process instances such that there exists a mapping  between

the set of atomic processes ‘A’ in the abstract model to those in

the instance/realization and denote this mapping as

(A) → AR (Ax. 8)

However, a set of atomic processes is comprised of process
names, occurring time elements and their corresponding

duration assignment. For convenience, mapping  of a process

element p is denoted as pR, so that (p) = pR. Similarly, there

exists mapping , from time instances tR and duration
assignment of corresponding instances of time elements D(tR)
to the time elements t and duration assignments D(t) in the

abstract model; can be expressed as (t) = tR and D((t)) = D(tR)
where

ttR(D(t) = r)  D((tR) = r)  D(tR) (Ax. 9)

This mapping function allows us to define instances of an
atomic process class i.e. real-world action/task instance, and
special atomic process class i.e. event instance.

3) Definition 8-Business Process (Process) Instance: A

process instance PR (AR, R(AR)) of the abstract model

P(A,R(A)) is an actual realization, i.e. (A) → AR, shows the

mapping of a process of the abstract model to a real world

process. However, R(AR) is a set of temporal relation instances

such that there exists a mapping  between the temporal

relations R(A) in the abstract model and those in the instance,

denoted the mapping as (R(A)) → R(AR). We define R(AR) in

the interpretation, as

ti,tjt(Meets(ti,tj)R(A)Meets((ti),(tj)) R(AR) (Ax. 10)

For a concrete process to be an instance of the process of
the abstract model, we must be able to establish the mapping

‘’ from the processes of a concrete realization with the real-
world times expressing their duration to the processes in the
abstract model. But the real-world processes must satisfy the
same sequencing constraints as are specified in the abstract
model, i.e. PR = (AR, R(AR)) must be temporally consistent.

4) Definition 9-Sub-Process Instance: A sub-process

instance P1(A1, R(A1)) of a sub-process of abstract model is the

actual realization of PR1 (AR1, R(AR1)), we derive from the

mapping of (A), i.e. (A1) → AR1. R(AR1) is a set of temporal

relation instances such that there exists a mapping between the

temporal relation R(A1) in the abstract model to those in the

instance and denote the mapping as (R(A1)) → R(AR1), we

define R(AR1) in the interpretation as

t’,t”  t (Meets(t’,t”)  R(A1)  Meets((t’), (t”)) 
R(AR1) (Ax.11)

A sub-process of the abstract model is a part of the parent
process of the abstract model, which is consistent such that

there exists mapping  of sub-process of abstract model to

Page | 5

concrete, real-world sub-process and must be temporally
consistent that must satisfy the sequencing constraints as are
specified in the sub-process of the abstract model i.e.
PR1=(AR1,R(AR1)).

To validate, we are going to present a visual representation
of the abstract model using Point Graph (PG) is given in next
section

IV. VALIDATION

A. Process modeling using Point Graph

Point Graph (PG) is based on PITL and represents the
temporal statements. An inference engine based on PITL infers
new temporal relations among system intervals/moments,
identifies temporal ambiguities and errors (if present) in the
system’s specifications, and finally identifies the intervals of
interest defined by the user. In a PG, a node represents a point
(or a composite point), and an edge between two points
represents one of the two temporal relations, before and
precedes, between the two. Two or more points are represented
as a composite point [pi;pj;...;pn], or a single node in a PG, if all
are mapped to a single point on the timeline. The statements in
PITL can be converted to an equivalent PG representation with
the help of the corresponding analytic inequalities shown in fig.
1. For convenience. PG is defined PG [2] below.

1) Definition 10-Point Graph(PG): A Point Graph (PG),

(V,EA, D, T) is a directed graph with:

• V: Set of vertices with each node or vertex v ∈ V
representing point instant on the timeline. Points Pi, Pj,
…, Pn are represented as a composite point [Pi; Pj;…;
Pn] if all are mapped to a single point on the line.

• EA: Union of two sets of edges: EA = E∪E≤, where
E: Set of edges with each edge e12 ∈ E, between two
vertices v1 and v2, also denoted as (v1, v2), representing
a relation ‘<‘(before) between the two vertices, i.e.,
(v1<v2). The edges in this set are called LT edges; and
E≤ : Set of edges with each edge e12 ∈ E≤, between two
vertices v1 and v2, also denoted as (v1, v2), representing
a relation ‘≤‘ (precedes) between the two vertices, i.e.
(v1≤v2). The edges in this set are called LE edges.

• D: Edge-length function (every edge is assigned a
length): E ∈ ℜ

• T: Vertex-stamp function (a vertex may or may not
have stamp): V ∈ ℜ.

This graphical representation with the underlying logical
structure forms the link between the axiomatic system
presented in Section II and III, and practical modeling
techniques of business processes and patient flows of the
healthcare sector. Keeping thus in mind, a PG of a process
instance PR is the same as that of a process P in the abstract
model, such that connected with unique start and end vertices.
These vertices correspond to the process start and end instances
i.e. special atomic processes (events). For any given atomic
process instance aR, we accordingly term the two special atomic
processes as start vertex (aRS) and end vertex (aRE). However,
each time element t is denoted as a directed arc of the PG
labeled by t representing its duration (if it is known).

2) Definition 11-Source and Sink Nodes: In PG A source

node Vin and a sink node Vout

(a) ∀vi, vi ∈ V such that ∗v= φ, i.e., null set, connect the

source node Vin to all vi’s by LE type edges (Vin, vi).

(b) ∀vi, vi ∈ V such that v∗ = φ, connect the sink node Vout

to all vi’s by LE type edges (vi, Vout).

3) Definition 12-Pre-set (Post-set): A pre-set (post-set) of a
node contains all the nodes in V that have directed edges
originating from (terminating at) them and terminating at
(originating from) node v. The notation *v (v*) represents the
pre-set (post-set) of a node v, where ∀ vi, vi ∈∗v, then (vi, v) ∈
EA. Similarly, ∀vi, vi ∈ v∗, then (v,vi) ∈ EA.

The quantitative information is in the form of stamps for
points and lengths for intervals. Sometimes the quantitative
temporal information is not exact but is in the form of lower
and upper bounds to actual values. PITL specification utilize
virtual nodes, i.e. no temporal variable, to allow lower and
upper bounds on the stamp (point) or the length (interval) as
given in Table I. Since no value attached to it, so it doesn’t
appear in any PITL statements as shown in fig. 2 and 3
respectively.

TABLE I. QUANTITATIVE REPRESENTATION OF PITL

Temporal

Objects

Quantitative Representation

PITL

Expression
LB Stamp UB Stamp

X; a point;

[pX]

Stamp X=d;

pX=d

Stamp X ≥ d;

pX ≥ d

Stamp X ≤ d;

pX ≤ d

Y; an interval;

[sY,eY]

Length Y=d;

eY-sY=d

Length Y ≥ d;

ey – sy ≥ d

Length Y ≤ d

ey – sy ≤ d

Fig. 2. Lower and Upper bounds on stamp

Fig. 3. Lower and Upper bounds on length(interval)

PG provides further algorithms to ensure a consistent flow;
these algorithms are unification, branch/merge, i.e., branch
folding and join folding and are defined below.

4) Definition 13-Unification:

a) Let vi = [pi;...;pn] and vj = [pj;...;pm] be two nodes in

a PG representation. If there exists a point pk such that pk ∈

[pi;...;pn] and pk ∈ [pj;...;pm] or T(vi) = T(vj) then the two

nodes are merged into a single composite node ‘vi; vj’ such

that: vi;vj = [pi;...;pn] ∪ [pj;...;pm] where *vi;vj=*vi ∪ *vj and

vi;vj* = vi* ∪ vj*.

Page | 6

The change in pre-and post-sets of unified nodes results in
the redefinition of the set EA in the PG representation. The
nature of the edges involved in the unification does not change
in the redefinition.

b) For all vi and vj ∈ V, such that T(vi) < T(vj) construct

a directed edge from node vi to vj with D(vi, vj) = T(vj) – T(vi).

The corresponding sets V, EA, and the functions D, T are

accordingly updated.

The unified PG is then scanned for branch and join nodes
with quantitative information on their incoming and outgoing
edges, respectively.

5) Definition 14-Branch Folding: PG folding process

establishes new relations among system intervals, inferred

through the quantitative analysis of the known relations

specified by interval lengths and stamps [2]. A branch node vi

∈ V is said to be folded if, for all vj and vk in the post-set of vi.

a) D(vi, vj) < D(vi, vk) the edge from vi to vk, denoted

as (vi, vk), is replaced by an edge (vj, vk) with D(vj,vk) =

D(vi,vk) − D(vi,vj) and the vertex vk removed from the post-

set.

b) D(vi, vj) = D(vi, vk), the two vertices vj and vk are

merged into a single vertex with composite label ‘vj;vk’, and

D(vi,vj;vk) =D(vi,vk){=D(vi,vj)}

c) vi has multiple edges to vj; if the edges are all of the

same type (LT or LE) then only one edge is retained and others

are deleted; if at least one of them is of type LT then it is

retained, and others are deleted; if D(vi,vj) is defined for one of

these edges, the value is assigned to the surviving edge. The

corresponding sets V, EA, and the functions T, D are

accordingly updated. The methodology applies the branch

folding process to all the original and newly created (formed

during the folding process) branch nodes in the unified PG. The

branch folding process, when applied to all the branch nodes of

a PG, yields a partially folded PG having nodes with at most

one outgoing edge with edge-length expression. Since all the

edges in the PG may not have edge lengths associated with

them, the branch folding may not result in a branch-node-free

PG.

6) Definition 15-Join Folding: A join node vi ∈ V is said to

be folded if, for all vj and vk in the pre-set of vi, with:

a) D(vj, vi) < D(vk, vi), the edge (vk, vi), is replaced by

an edge (vk, vj) with D(vk, vj) = D(vk, vi) – D(vj, vi) and the

vertex vk removed from the pre-set.

b) D(vj, vi) = D(vk, vi), the two vertices vj and vk are

merged into a single vertex with composite label ‘vj;vk,’ and

D(vj;vk, vi) = D(vk, vi) = D(vj, vi).

c) vi has multiple edges from vj. If the edges are all the

same type (LT or LE), then only one edge is retained, and others

are deleted. If at least one of them is of type LT, then it is

retained, and others are deleted. If D(vj, vi) is defined for one

of these edges, the value is assigned to the surviving edge. PG’s

corresponding sets V, EA, and the functions T, D are

accordingly updated. (Note: Case c is redundant if branch

folding is applied before join folding).

B. Scheduling using Point Graph

PG specification provides scheduling feature to construct a
consistent model. The scheduling algorithms applied to the PG
representation calculate three parameters for each node in the
PG. The parameter values are calculated by running two sets of
algorithms, Forward* followed by Reverse*, on the graph [2].
The values of these parameters help determine the critical
processes i.e. atomic processes and special atomic processes,
and time floats/slacks for intervals in the system defined to be
represented using PG. The three parameters are called earliest
occurrence (Ev), Late occurrence (Lv), and latest occurrence
(Tv) of a node ‘v’ and for convenience defined below.

1) Definition 16-Earliest Occurrence Time (Ev): Ev is the

smallest time stamp on the node that satisfies the earliest

occurrences of the preceding nodes requiring a forward

traversal of the PG starting from the sink node, which by default

is given a 0 value for the earliest occurrence of time [2] as

shown in fig. 4.

Fig. 4. Earliest occurrence time (EV)

2) Definition 17-Late/Latest Occurrence Time (Lv/Tv): Lv

(Tv) is the largest time stamp on the node that satisfies the

earliest (latest) occurrences of the following nodes as shown in

fig. 5. The calculation of these two parameters requires a

reverse traversal of the PG starting from the sink node, which

is by default initialized to the earliest occurrence time,

calculated during the forward sweep, for both late and latest

occurrence times [2].

Fig. 5. Late/Latest occurrence time (EV)

Page | 7

Identifying critical and non-critical processes can provide
aid in optimizing a business process model or patient flow
model.

3) Definition 18-Critical Activity: An activity is defined to

be critical if:

a) delay in its start will cause a delay in the completion

time of the entire system,

• for a special atomic process (point) i.e. event, v ∈ V,
Ev=Tv;

• for an atomic process (moment) i.e. action/task [v1, v2],
where v1, v2 ∈ V, v ∈ [v1, v2], Ev = Tv or

b) for an atomic process (moment), it ‘Meets’ another

critical process. For a special atomic process (point), it ‘Starts,’

and/or ‘Ends’ another critical process or

c) an earliest (or latest) occurrence of its start node does

not ensure an earliest (or latest) occurrence of its end node, i.e.,

for [v1,v2], Ev1 + D([v1,v2]) < Ev2, or Tv1+D([v1,v2]) < Tv2.

The condition (c) represents an atomic process that, for a
given start-to-end system duration is required to start and end
at specific times, to satisfy the preceding and following atomic
process timings.

4) Definition 19-Total Float (TF) and Free Float (FF):

Total Float (TF) is the difference between the maximum time

available to perform an atomic process and its duration. Free

Float (FF) is defined by if all the atomic processes start as early

as possible. It is the excess time available over its duration [9].

a) Total float (TF) and free float (FF) for a non-critical

special atomic process (point/event), v, are calculated from

TFv=Tv – Ev and FFv = Lv – Ev.

b) Total float (TF) and free float (FF) for a non-critical

atomic process [v1, v2], are calculated from:

• TF [v1,v2] = Tv2 − Ev2 = Tv1−Ev1

• FF [v1,v2] = Lv2 − Ev2 = Lv1−Ev1

• For all critical activities, TF = FF = 0

The difference between the actual duration and the required
duration is called stretch float (SF) and is defined below.

5) Definition 20-Stretch Float (SF): For a critical process

[v1, v2] of type defined in Definition 18(c), Stretch Float (SF)

is defined to be the excess time available over the duration

between the earliest occurrences of its start ‘v1’ and end ‘v2’

nodes, i.e., SF[v1,v2]=Ev2−Ev1−D([v1,v2]) or

SF[v1,v2]=Tv2−Tv1−D(v1,v2). if SF exists, then it presents

the following set of alternatives to a plan.

a) For a critical process [v1, v2] with SF, any one of the

following may hold:

• Lv1 + D([v1,v2]) = Ev2;

• Tv1 + D([v1,v2]) = Lv2;

• Tv1+D([v1,v2]) =Ev2.

Then, the process is scheduled in the corresponding interval.

b) For the process Tv1 + D([v1,v2]) < Ev2: If started at

the latest time still ends earlier than required by some of the

preceding atomic processes, but the process’ end time can be

delayed by an amount equal to its SF after its start. Then, the

process is stretched.

c) For a process that does not satisfy any conditions in

part (a) and cannot be stretched, i.e. part (b); then the system

cannot be planned without extending the start-to-end duration

of the system. A dummy activity is created with length equal to

the new duration (value of the objective function) and added to

the list of the system processes. The analysis is applied to the

new PG so obtained [2].

V. APPLICATION

Now we take an illustrative example from the real world
scenario of a patient flow from a hospital to discharge a patient
[8]. It has been modeled in Unified Modeling Language Activity
Diagram (UML AD) as shown in fig. 6 below, which can
systematically be converted into a PIL representation, and
equivalent Point Graph notation.

Fig. 6. Discharge patient flow modelled in UML AD

In UML AD although syntax of a model can usually be
checked by a static inspection, dynamic semantics such as the
conflicting constraints, an absence of deadlocks and livelocks
cannot be completely verified until runtime. The problem here
is that UML AD is not an executable language. Also, we
understand UML AD is a conceptual modelling language and
therefore chose not to represent quantitative information. But if
provided then it can additionally be helpful not only for
modelers for consistent modeling but also to assist in the
scheduling of the processes involved in a model for its
optimization.

After visual inspection of fig. 6 drawn in UML AD, we have
found that the discharge patient flow has semantic incorrectness;

Page | 8

inaccurate and inconsistent. For instance, at a decision point,
soon after the start of patient’s discharge process, in case no
transitional care needed, an atomic process i.e. decides discharge
date, occurs, and after completion of this atomic process, another
decision point has been placed to make the same decision which
is inaccurate representation. Similarly, a decision about
discharge date by the multi-disciplinary team has informed
transitional care team occurs after a patient’s needs been
assessed. However, this is shown as one of the possibility of the
decision, which causes semantic error. With the aid of PITL and
PG, we can overcome many issues such as enhanced reasoning
and consistent representation of processes of an organization
and process optimization. To elaborate this, we transform the
above example in natural language processing as shown in Table
II below.

TABLE II. NATURAL LANGUAGE REPRESENTATION

Natural Language Representation

Atomic

Processes
Description PITL

A Deciding the discharge date A meets D & F

B Request for Assessment for
transitional care

B meets C

C Assess patient needs C meets E

D Informs TCT discharge date D meets E

E Confirms transitional care
service

E meets F

F Generate discharge summary F meets G

G Runs through the discharge
checklist

G meets H

H Patient discharged eC precedes eD

In Table II, a PITL statement which is derived from the given
scenario which UML AD representation of fig. 6 cannot capture
i.e. a relation that eC precedes eD is derived, and shows
inconsistency using PG representation in fig. 7.

Fig. 7. Discharge patient flow (inconsistent) modeled in PG

The above investigation establishes that derived temporal
relations can assist in capturing the complexities of a system,
that may assist in constructing a consistent model. However,
different researchers used either point or interval based systems
which cannot derive all the temporal relations that PITL can.

The investigation conducted also establishes that both
qualitative and quantitative temporal information, if available, is
crucial not only in constructing a correct model but also to
optimize it. This could be achieved as shown in fig. 8 by using
PITL relations provided in fig. 1 with some assumptive but
realistic quantitative information given in Table III.

TABLE III. SCHEDULING FOR PROCESS OPTIMIZATION

Scheduling

Atomic

Processes
Dur Ev Tv Critical TF FF

A 18 0 18 Yes 0 0

B 5 0 5 Yes 0 0

C 10 5 15 Yes 0 0

D 15 0 15 Yes 0 0

E 3 15 18 Yes 0 0

F 2 18 20 Yes 0 0

G 2 20 22 Yes 0 0

H 2 22 24 Yes 0 0

Fig. 8. A consistent and optimized discharged parient flow

We have simulated the axiomatic system based on PITL
provided in Section II; to construct a consistent process model
with the core concepts i.e. process and atomic process, special
atomic process. With added features such as quantitative
information handling of a qualitative represented consistently
model; an optimized process model can be achieved which
current modeling standards such as UML AD lacks to present.

VI. CONCLUSION & FUTURE WORK

In this paper, we have identified the gap of consistent
business process modeling and its optimization which is present
both in theory and practice. Rigorous investigation of current
business process modeling standards i.e. UML AD and BPMN
is conducted, and their ability to construct a precise model;
which they are lacking. The reason is that they do not provide
the formal semantics which leads to ambiguous models.
Another issue identified is that these standards do not provide
any aid to optimize by scheduling of resources such as time
which is a pivotal feature and if provided it could improve the
waiting times of patients in a hospital i.e. an Accident and
Emergency department’s waiting times, for instance.

The framework proposed in this paper uses a
methodological approach. This presents core concepts and their
corresponding ontology which in turn provides the formal
semantics to construct a consistent model. Which is desired by
most organizations in general but especially by healthcare
sector to correctly model hospital patient flows.

This framework is general enough to be used as a
knowledge base for business and patient flow modeling. This
could also be used as an analytical tool to provide an insight for
the modelling standards to report errors and ambiguity.
Subsequently, it can be used to correct these errors and assist in

Page | 9

removing any ambiguity attached with the models constructed
using UML AD and/or BPMN by providing enhanced
reasoning to assist in constructing a correct model. We have
also used a graphical tool i.e. PG, that has not only the ability
to validate the model which is proposed here but also provide
additional features such as scheduling to optimize the resource
usage within a process model.

As a continued effort to provide formal semantics to UML
AD and BPMN, and subsequently unify them; in the future, we
will transform the UML AD and BPMN into an equivalent PG
representation that may become a standard for the both business
and IT industries.

REFERENCES

[1] A.K. Zaidi, On temporal logic programming using Petri nets, IEEE

Transactions on SMC, 1999, 29(3), pp 245-254.

[2] A.K. Zaidi, and L.W. Wagenhals. Planning temporal events using point–

interval logic. Mathematical and computer modeling, 2006, 43(9),
pp.1229-1253.

[3] A. Konar. Artificial intelligence and soft computing: behavioral and
cognitive modeling of the human brain, CRC Press, 1999.

[4] A. Newell, The knowledge level. Artificial Intelligence, 1982, 18(1), pp.
87–127.

[5] D. Fone, S. Hollinghurst, M. Temple, A. Round, N. Lester, A.
Weightman, K. Roberts, E. Coyle, G. Bevan, S. Palmer. Systematic
review of the use and value of computer simulation modelling in
population health and health care delivery. Journal of Public Health. 2003;
25(4), pp. 325-35.

[6] D. Hilbert. Grundlagen die geometrie. Leipzig: Dritte Auflage, 1909.

[7] D. McDermott, A Temporal Logic for Reasoning about Processes and
Plans, Cognitive Sc, 1982, 6, pp. 101-155

[8] G.T. Jun, J. Ward, Z. Morris, J. Clarkson. Health care process modeling:
which method when?. International Journal for Quality in Health Care.
2009 Apr 10: mzp016.

[9] H.A.Taha. Operation Research: An Introduction. Collier Macmillan,
1992.

[10] I. Chishti, A grounding of business process modeling based on temporal
logic, International Conference on Information Society, IEEE, Inc.,
Piscataway, NJ, USA, 2014, pp. 266-273.

[11] I. Chishti. Towards a general framework for business process modeling.
Infonomics Society, 2014, vol 5(3), pp 443-453.

[12] J.F. Allen, Maintaining knowledge about temporal intervals, ACM, 1983,
26(11), pp.832-843.

[13] J.F. Allen, Towards a General Theory of Action and Time”, Artif
Intelligence, 1984, 23, pp.123-154.

[14] J.F. Allen. & P.J. Hayes, Moments and Points in an Interval-based
Temporal-based Logic, Computational Intelligence, 1989, 5, pp225-238.

[15] J.J. Moder and C.R. Phillips. Project Management with CMP and PERT.
Van Nostrand Reinhold Company; 1970.

[16] J. Ma, and B. Knight, A General Temporal Theory, the Computer Journal
1994, 37(2). pp 114-123.

[17] J. Recker. Opportunities and constraints: the current struggle with
BPMN. Business Process Management Journal, 2010,16(1), pp.181-201.

[18] K. Lano. UML 2 Semantics and Applications. John Wiley & Sons, 2009

[19] M. M. Gunal and M. Pidd, Supporting smart thinking to improve hospital
performance, proceedings of the DGHPSim Conference, Miami, FL,
IEEE Comp Society Press, NJ, 2008, pp 1484–1489.

[20] N. Edwards, Can quality improvement be used to change the wider
healthcare system? QualSaf Health Care, 2005, 14, pp. 75-75.

[21] PJ. Clarkson, P. Buckle, R. Coleman, D. Stubbs, J. Ward, J. Jarrett, R.
Lane, J. Bound. Design for patient safety: a review of the effectiveness of
design in the UK health service. Journal of Engineering Design. 2004,
15(2),1pp. 23-40.

[22] S, Cheikhrouhou, S. Kallel, N. Guermouche, and M. Jmaiel, “The
temporal perspective in business process modeling: a survey and research
challenges. Service Oriented Computing and Applications, 2015, 9(1),
pp.75-85.

