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Abstract 

Options require risk measurement that is also computationally efficient as it is 

important to derivatives risk management. There are currently few methods that are 

specifically adapted for efficient option risk measurement. Moreover, current methods 

rely on series approximations and incur significant model risks, which inhibit their 

applicability for risk management.  

In this paper we propose a new approach to computationally efficient option risk 

measurement, using the idea of a replicating portfolio and coherent risk measurement. 

We find our approach to option risk measurement provides fast computation by 

practically eliminating nonlinear computational operations. We reduce model risk by 

eliminating calibration and implementation risks by using mostly observable data, we 

remove internal model risk for complex option portfolios by not admitting arbitrage 

opportunities, we are also able to incorporate liquidity or model misspecification risks. 

Additionally, our method enables tractable and convex optimisation of portfolios 

containing multiple options. We conduct numerical experiments to test our new approach 

and they validate it over a range of option pricing parameters.  

 

 

Key words: Options, model risk, option risk, replicating portfolio, risk measurement, 

delta method, efficient risk measurement, liquidity risk, arbitrage, portfolio optimisation, 

complex options, option trading strategies, static replication. 
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1  Introduction and Outline of Paper 
Computationally efficient risk measures of options are of paramount importance to 

research and industry, especially with the progressive increase in options trading and 

hedging. The events of the global credit crisis and past financial crises have demonstrated 

the necessity for adequate option risk management and measurement; poor risk 

measurement and management can result in bankruptcies and threaten collapses of an 

entire finance sector (see Kabir and Hassan (2005)). This is further exacerbated by the 

nonlinear losses associated with options and low margin requirements for options trading, 

which magnify losses.  

Recently, there has been substantial literature on risk theory and risk measures, 

yet these have generally focussed on assets (e.g. stocks and bonds) rather than derivatives. 

Consequently, there is very little literature on option specific risk measurement. In order 

to measure the risk associated with an option we require the option’s loss distribution. 

For the purpose of this paper let Z(t) denote the loss distribution associated with some 

asset or derivative. For example  

 

Z(t)=C(0)C(t), 

 

where C(0) and C(t) represent the call option price at time now and time t respectively. 

We denote a risk measure by (.) and measuring risk by (Z).  

As the option loss distribution is typically not available in a closed form solution, 

it must be obtained by Monte Carlo simulation. However, this can be computationally 

time consuming, even for the simplest option pricing models, because it requires 

computation of nonlinear functions (relating to the option pricing equation). Such long 

computation times are unsuitable for many financial applications e.g. high frequency 

trading. Consequently, this has led to the development of more computationally efficient 

methods of option risk measurement. 

To improve the computation speed of option risk, the typical approach has been to 

apply some mathematical approximation to the option’s loss distribution (e.g. Delta 

method). However, such computational improvements have been generally achieved at 

the cost of model risk, that is unforeseen losses associated with using a model e.g. 

calibration errors, implementation errors etc.. Since the purpose of such models are to 

measure or manage risk, such model risks defeat the purpose of the models and represents 

a significant issue. 

Model risk is becoming increasingly important in risk management due to the 

increasing potential for it to cause significant losses; this has partly arisen due to the 

increasing reliance on models in the financial industry.  For instance, model risk has been 

cited as a partial cause of the global financial crisis. Many institutions prefer to use models 

with lower model risk than models that are theoretically more consistent e.g. single factor 

interest rate models are preferred to multi-factor models due to their lower model risk. 

Although multi-factor models may be more realistic at explaining interest rate 

movements, they can result in higher estimation errors compared to single factor models. 

 In this paper we approach option risk measurement from a new direction. Rather than 

pursuing approximation methods (as has been done with prior methods for option risk 

measurement), we measure option risk using the risk of its equivalent replicating 

portfolio. This replicating portfolio method practically eliminates the requirement for 

calculating nonlinear operations for option risk and so provides faster computation times. 

Moreover, our replicating portfolio approach has lower model risk compared to 

competing computationally efficient option risk measurement methods. The replicating 

portfolio method does not admit arbitrage opportunities for portfolios containing put and 
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call options (unlike other models), our method also has lower calibration risk, it can take 

into account liquidity risks and model misspecification, it can model the option risk of 

option portfolios without losing computational tractability and enables portfolio 

optimisation. 

The outline of the paper is as follows: firstly we introduce option risk measurement 

and review current computationally efficient methods for measuring option risk. In the 

next section we then introduce our replicating portfolio approach to risk measurement. 

We then discuss the advantages of the replicating portfolio approach with respect to 

computational efficiency and model risk. We then conduct numerical experiments and 

finally end with a conclusion. 

2  Introduction to Option Risk Measurement and Literature 

Review 
In this section we introduce and review the literature on risk measurement, model risk, 

and computationally efficient option risk measurement. 

2.1  Risk Measurement and Model Risk 

A risk measure  is a function mapping Z to R, that is  

 

: Z →R 

 

We denote measuring risk by (Z). A popular industry risk measure is VaR (see Szego 

(2005)), that is F(Z(t)VaR)=, where F(.) is the cumulative probability distribution 

function and  is a cumulative probability associated with threshold value VaR, on the 

loss distribution of Z(t).  

A significant milestone in risk measurement was achieved when Artzner et al. (1997) 

proposed the coherency axioms: axioms that risk measures (.) should obey to correctly 

measure risk. The coherency axioms are included in the Appendix for reference and 

further discussions on risk measures can be found in Goovaerts et al. (2004) and 

references therein. 

To measure option risk we apply some risk measure to the loss distribution governing 

C(0)C(t), where C(t) is the option value at some future time step t. Whereas for 

stocks it is possible to analytically model the loss distribution in order to apply some risk 

measure, this is typically not possible for option loss distributions. Consequently, the 

option loss distribution of C(0)C(t) must be obtained by computational methods (such 

as Monte Carlo simulation) and therefore the key difficulty in option risk measurement 

resides in obtaining the loss distribution in a computationally efficient approach. Once 

this distribution is obtained, we can apply a risk measure (.) to this distribution. For 

example, the VaR risk measure would determine the value associated with a cumulative 

probability .  

Currently, all option risk methods achieve computational efficiency in speed of 

computation by allowing model risk to increase. Model risk is defined as the risk of 

working with a potentially incorrect model, which leads to unexpected losses. Examples 

of model risks that can be incurred are increased calculation error, increased calibration 

errors or violation of fundamental theorems in Finance e.g. Law Of Arbitrage (to be 

addressed in later sections). 

Model risk is a key problem in Finance; model errors can result in significant losses 

(e.g. Long Term Capital Management), they are playing an increasingly important role in 

industry and institutions are becoming ever more reliant on models for a variety of 
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purposes. In option risk models, model risk is a particularly important issue because such 

models are used for risk management purposes. Hence it is important that such models 

have low model risks to prevent the models themselves incorrectly measuring risk or 

becoming a source of risk in themselves. 

To give an example of model risk, the Delta-Gamma method (to be discussed later) 

should be theoretically always more preferable to  the Delta method (to be discussed 

later) in calculating option risk. The Delta-Gamma method is a theoretically more 

accurate method than the Delta method, however the Delta-Gamma method requires 

calculation of European option parameter . As  may not be available in analytic form 

for many option pricing models, it can only be calculated by computational methods, 

which can distort calculation accuracy but also increase total computation time. In fact it 

should be noted that computationally evaluating second order partial differential 

equations in general (such as ) can be inaccurate. Hence the model risk (and 

computational efficiency) of the Delta-Gamma method will be worse than the Delta 

method. Furthermore, the Delta-Gamma method removes the linear relation between the 

change in stock price S and change in call option price C (see later sections for more 

details), which significantly complicates valuing portfolios with options and portfolio 

optimisation (unlike in the Delta method). 

The current literature on model risk is limited in finance. In Kerkhof et al. ( 2010), 

model risk is taken into account to determine capital reserves for banks. In particular, 

estimation risk, identification and misspecification models risks are addressed and 

combined with standard risk measures such as VaR. In Kondo and Saito (2012), a 

Bayesian method is proposed for measuring model risk for the insurance loss ratio. This 

method makes specific distribution assumptions and is focussed around VaR calculations, 

rather than application to any specific risk measure. In Alexander and Sarabia (2012) 

they develop a method for calculating model risk with respect to quantile risk 

measurement only. This allows institutions to adjust capital reserves to meet potential 

losses arising from model risk. In Schmeiser et al. (2012) analyse model risk with respect 

to solvency measures in the insurance sector.  

Although there exists literature on model risk, the literature on model risk and 

computationally efficient option risk methods is non-existent to the best of our 

knowledge. The closest literature to address model risk with respect to option risk 

measurement is in Guillaume  and  Schoutens (2012), where model risk is investigated 

specifically with respect to calibration risk for vanilla and exotic options. However no 

reference is made with respect to computationally efficient option risk methods. 

 

2.2  Option Risk Measurement 
The current literature on option risk measurement is limited, particularly for 

computationally efficient methods. The most direct or “brute-force" approach to option 

risk measurement is the “full valuation method"  (see Christoffersen (2003)). This 

involves Monte Carlo simulation of S
i
(t) using some stock price model (e.g. geometric 

Brownian motion), where i denotes the index of the simulation sample. The option price 

value associated with S
i
(t), that is C

i
(t), is then calculated. The algorithm for the full 

valuation method is given in the Appendix for the Black-Scholes option pricing model 

C(S(t),t,T,r,,K), which is also defined in the Appendix. 

The advantages of the full valuation method is that firstly its accuracy can be 

improved as necessary; the accuracy of option risk calculation is always improved by 

increasing the number of simulations. Secondly, the full valuation method can be easily 
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implemented, all that is required is Monte Carlo simulation of S
i
(t) from some stock 

price model. The main disadvantage of the full valuation method is that it is a 

computationally expensive method (that is, it is a highly time consuming method); it 

requires computational calculations of C
i
(t) for each simulated value S

i
(t). The C

i
(t) 

requires computing nonlinear terms (e.g. the Black-Scholes option pricing model requires 

calculating (d
1
) and (d

2
)), which is computationally time consuming. Hence the 

computation of the option loss distribution is not computationally efficient, and 

inefficiency increases further for portfolios of options. 

The high computation time incurred by the full valuation method has led to the 

development of alternative option risk methods with faster computation. One of the most 

popular option risk methods is the Delta method (see Britten-Jones and Schaefer 

( 1998)). The call option’s delta (t) can give the option loss distribution of C by 

approximation:  

 

∆(𝑡) =
𝜕𝐶

𝜕𝑆
 , 

 

∆(𝑡) ≈
𝛿𝐶

𝛿𝑆
 , 

 

                             ∴ C  (t)S.    (1) 

 

We obtain S by simulating S(t) as we would under the full valuation method. The main 

advantage of the Delta method is that it has a significantly lower computation time than 

the full valuation method (see Christoffersen (2003)) as it mainly consists of computing 

linear operations, unlike the full valuation method. Additionally, the Delta method can 

generally be implemented quite easily, as (t) is either available analytically, or can be 

easily evaluated by computational methods. A disadvantage of the Delta method is that 

the method is fundamentally dependent on an approximation of C, therefore the accuracy 

of this method is fundamentally limited and cannot be improved by increasing Monte the 

number of simulations. 

An alternative to the Delta method is the Delta-Gamma method, which uses a Taylor 

expansion to expand C up to squared terms (see Christoffersen (2003)). This gives:  

 

CS+ 


2
(S)2, where = 

2C

S2 . 

 

The advantages of the Delta-Gamma method are that firstly it is theoretically more 

accurate than the Delta method. The Delta method only takes a Taylor expansion upto 

terms of power 1, whereas the Delta-Gamma method includes squared terms, and so will 

always be more accurate. Secondly, the Delta-Gamma method is computationally more 

efficient than the full valuation method. Although the Delta-Gamma method requires 

calculation of a nonlinear term γ, this is only required once for determining the entire 

option loss distribution, hence it is not a substantial increase in computation time. 

Furthermore, the option loss distribution requires calculation of the (S)2 term, for every 

sample; although this nonlinearity adds to the computational time it is still significantly 

less than the full valuation method. 

 The disadvantages of the Delta-Gamma method are firstly, it is fundamentally less 

accurate than the full valuation method. As the Delta-Gamma method is fundamentally 
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dependent on an approximation of C, the method’s accuracy is fundamentally limited 

and cannot be improved by increasing Monte Carlo simulation. Secondly, the additional 

computation time required for the (S)2 terms means that it is not as computationally 

efficient as the Delta method. Finally, as mentioned before, the Delta-Gamma method 

requires γ  and this may not be analytically available, therefore computation of this 

second order partial differential can introduce model risks e.g. calculation errors. 

In addition to the Delta and Delta-Gamma method, other less well-known option 

risk methods exist. In Sorwar and Dowd (2010) a simulation-lattice computational 

method is proposed. This enables one to estimate risk for various option positions, for a 

range of options (including exotic options and early exercise feature) as well as important 

underlying distribution features, such as heavy tails. However, such a computational 

method is computationally intensive and so does not offer fast computation, which is the 

focus of our paper. 

In Hao  and  Yang  (2011)  option risk is measured but under the assumption of a 

regime switching stock price process. Also, the risk measurement is restricted to scenario 

based risk measures, hence its applications (and accuracy) are limited. In Broda  (2012)  

computable expressions for risk are given, however this is restricted to the expected 

shortfall risk measure and that portfolios follow an elliptic multivariate t-distribution. 

Other option risk measurements exist that apply approximation methods (hence also 

incur model risk). For example, one method is to apply the Cornish-Fisher approximation 

(see Christoffersen (2003)), where we assume the underlying return distribution is 

Gaussian with mean 0 and constant variance. Using a quadratic approximation we can 

obtain the first 3 moments of the distribution of C, we can then approximately calculate 

VaR using a Cornish-Fisher approach. Other researchers have also applied moment 

matching and approximations to measure option risk by VaR e.g. see El-Jahel  et al. 

(1999). The Delta-Gamma method has been developed in terms of a Cornish-Fisher 

expansion in Jaschke (2002); in Glasserman  et al. (2001) Delta-Gamma is used to 

provide more efficient Monte Carlo simulated estimates of VaR; in Siven et al. (2009) 

Delta-Gamma is used along with Fourier inversions to calculate VaR. 

 

 

3  Option Risk Measurement by Replicating Portfolio 
As can be seen from the previous section, option risk methods are typically based on some 

approximation method and this can incur significant model risk. This is an important 

problem as such models are frequently used for risk management purposes. In this section, 

we show that we can measure option risk with a computationally efficient method by 

taking a different approach: using its replicating portfolio. This also provides significant 

model risk advantages. 

In this section we first explain how our replicating portfolio method provides 

computational advantages in measuring option risk; we also show this method has 

computational advantages for a portfolio of options and portfolio optimisation. We also 

discuss key model risk advantages of our method, specifically put-call parity consistency, 

lower implementation risk, calibration risk and can take into account model 

misspecification and liquidity risk. It should also be noted that the replicating portfolio 

method can be applied to any contingent claim with a replicating portfolio and not just 

options. 
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3.1  Option Risk Calculation Method 
The key insight of Black and Scholes (1973) is that we can represent a European option 

by a replicating portfolio V(t), based on a no arbitrage argument. A replicating portfolio 

V(t) consists of 
1
(t) number of shares in the underlying of the option and 

2
(t) number 

of units in a riskless bond:  

 

                           V(t)=
1
(t)S(t)

2
(t)B(t),  (2) 

 

where B(t) is the price of a riskless bond at time t (see Appendix for full equation). The 

negative sign for bonds means we short 
2
(t)B(t) bonds rather than purchase them. In the 

case of the Black-Scholes equation we have 
1
(t)=(t). 

We achieve computationally efficient risk measurement of options by using its 

replicating portfolio for risk measurement and applying the coherency axioms. This 

allows the elimination of nonlinear operations in the computational calculation of option 

risk and so significantly reduces computation time. We now state this in our theorem.  

 

Theorem 1 For a coherent risk measure (.) the risk of an option, or any contingent 

claim, replicated by a replicating portfolio ((t)S(t),
2
(t)B(t)) is given by  

 

(dC(t))=(dS(t))+(S(t)C(t))rdt. (3) 

Hence it can be seen from equation (3) that, excluding (.), the number of operations that 

are a nonlinear function of dS(t) is zero.  

 

Proof:  
 

 

dC (t) = ∆(t)dS(t) − φ2(t)dB(t) by self-financing property, (4) 

ρ(dC )  = ρ(∆(t)dS(t) − φ2(t)dB(t)), (5) 

= ρ(∆(t)dS(t)) + φ2(t)dB(t) by translation invariance axiom, (6) 

= ∆(t)ρ(dS(t)) + φ2(t)dB(t) by homogeneity axiom, (7) 

 

since dB(t)=rB(t)dt, then we have  

 

 (dC(t))=(t)(dS(t))+
2
(t)B(t)rdt,  

 

substituting φ2(t)B(t) = ∆(t)S(t) − C (t), we have  

 

  (dC(t))=(t)(dS)+((t)S(t)C(t))rdt.■ 

 

 

To be able to understand our method it is important to understand the variables that 

are functions of S(t), since such (non-linear) functions significantly increase 

computation time as they must re-calculated for every simulated value of S(t). This is 



9 

achieved by understanding the principles relating to a replicating portfolio, namely no 

arbitrage and self-financing. 

The replicating portfolio V(t) is an adapted process to C(t); it has identical values to 

C(t) for all t, assuming the market is arbitrage free (see the Appendix for a definition). 

Therefore  

 

 C(t)=V(t), tT. 

 

This also implies the risk of V(t) and C(t) must be identical because their loss functions 

must be identical. In other words, we have:  

 

 (C(t))=(V(t)), tT. 

 

A replicating portfolio also has the important property that it must be self-financing. 

This is normally not a crucial issue in option theory, however for our option risk 

measurement method it is crucial to the derivation. By self-financing we have:  

 

 dV(t)=
1
(t)dS(t)

2
(t)dB(t),  (8) 

 =
1
(t)dS(t)

2
(t)rB(t)dt. (9) 

 

In terms of option risk, the key part of equation (8) is that neither 
1
(t) nor 

2
(t) change 

when we calculate dV (or dC), for they are constant. Therefore to determine the option 

loss distribution associated with dC we do not need to calculate 
1
(t) and 

2
(t) for each 

simulated value of S(t). This is because both 
1
(t) and 

2
(t) are functions of S(0) but 

not S(t). If V(t) were not a self-financing portfolio then we would have under standard 

differentiation (see Kwok (1998))  

 

 dV(t)=
1
(t)dS(t)

2
(t)dB(t)+d

1
(t)S(t)d

2
(t)B(t). 

 

This equation would significantly complicate computational calculation of option price 

changes because we would need to simulate changes in d
1
 and d

2
, in addition to dS. 

In such a case it may be better to use the full valuation method instead. 

The reasons that both 
1
(t) and 

2
(t) are functions of S(0) but not S(t) in equation 

(8) are financial and mathematical. Mathematically the theory is related to forward 

differences in stochastic differentials (the reader is referred to Bjork (2004) for a thorough 

discussion). Essentially, if we were to discretise equation (9) we would have (Jarrow  

and Turnbull (1996))  

 

 V
1
(t)(S(t+t)S(t))

2
(t)rB(t)t. 

 

At time t we have only observed S(t) and not S(t+t); 
1
(t) remains unchanged during 

the time period t to t+t. After time t+t (so t has elapsed), S(t+t) has been observed 

and then we adjust the number of shares and bonds to give the new values 


1
(S(t+t),t+t)  and 

2
(S(t+t),t+t) . From a financial point of view, we 

cannot have 
1
(t) (or 

2
(t)) changing until we observe S(t) because the number of stocks 

and bonds we trade depend on the stock price we actually observe now. 
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In conclusion we can say that (t), C(t) and S(t) are not functions of dS (and so they 

are constant in dC) due to the self-financing property. Hence in calculating (dC(t)) we 

do not need to re-calculate them or perform nonlinear operations for each simulated value 

of dS. In fact other than calculating the option t) there are no nonlinear operations and 

t) is only calculated once during the entire simulation, hence does not represent a 

significant increase computation time. The replicating portfolio method is therefore a 

computational efficient method of calculating option risk. 

It is also worth pointing out that t) is generally calculated for contingent claims 

even if no risk measurement is conducted, hence it generally imposes no additional 

computational time or analytical ’cost’. We also note that (t) and 
2
(t) represent the 

number of units of stocks and bonds respectively (and are constants). hence we can apply 

the homogeneity axiom and take them outside (.) (see equation (7)). They are also 

normally given in analytic form and so do not increase computation time (alternative 

expressions for them are given in the Appendix). 

The replicating portfolio method is also able to achieve computational efficiency 

without sacrificing accuracy. The replicating portfolio option risk measure is based on 

equation (9); this equation is an identity for dC, therefore it is identical to dC for all states 

of the world and is not an approximation. We can therefore always increase accuracy by 

increasing the number of simulations and reducing t to produce results of C equivalent 

to that of the full valuation method. On the other hand, to increase the accuracy of the full 

valuation method involves increasing the number of simulations and so the number of 

nonlinear operations, which is computationally expensive. 

The Delta method (and other methods) are fundamentally limited in accuracy because 

they are approximations. For instance, the Delta and Delta-Gamma methods are taken 

from an approximation of the Taylor series expansion of C; in order to achieve full 

accuracy we require the Taylor series to an infinite series expansion with increasingly 

more nonlinear terms (which increases computation time). The Delta and Delta-Gamma 

methods will therefore never reach as accurate a calculation of C as that of the full 

valuation method, regardless of the number of simulations executed. Such inaccuracies 

can be particularly important in high volume trading (e.g. high frequency trading), where 

minor inaccuracies can lead to magnified and cause unforeseen trading losses. 

 

3.2 Portfolios with Options: Option Risk Measurement and 

Portfolio Optimisation  
We would like to be able to value the change in value of a portfolio containing options, 

so that we could obtain the portfolio loss distribution and so measure its risk. Additionally 

portfolios frequently require rebalancing, that is optimising the weighting of assets and 

derivatives in the portfolio, to optimise some metrics (e.g. risk, expected etc.). 

Consequently, portfolio models are not only required for risk measurement but also for 

enabling optimisation. 

In Christoffersen (2003) the Delta and Delta-Gamma methods are examined in terms 

of their use for portfolio risk measurement, when a portfolio contains stocks and options 

on the same stock (i.e. the underlying). In Christoffersen (2003) a portfolio D(t) 

containing n units of a stock and an option on the same stock (underlying) is defined by 

 

D(t)=nS(t)+C(S(t)). 
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We now model the same portfolio D(t) using the replicating portfolio method (instead of 

the Delta and Delta-Gamma methods) and show that the replicating portfolio method is  

computational efficient as well as has benefits for portfolio optimisation (unlike the Delta-

Delta-Gamma methods). 

Using the replicating portfolio method to model the change in the portfolio’s value 

D(t) we have  

 

 D(t)(n+)S(t)+
2
B. 

 

For a full detail of the proof, please see the Appendix. Hence the change in the portfolio’s 

value involves linear operations and so is not computationally expensive. If we were to 

use the Delta-Gamma method then we would have (S)2 terms in the D(t) expression 

and so would incur higher computation time (due to the calculation of nonlinear terms). 

Alternatively, using the Delta method would be computationally more efficient than the 

Delta-Gamma method, however it would be less accurate than the replicating portfolio 

method. 

If D(t) is extended to include a set of n options with different K and T (but on the 

same underlying stock), that is  

 

 D(t)= 
i=1

n
 C

i
(S(t),K

i
,T

i
),  

 

then by the replicating portfolio method we have  

 

 D 
i=1

n
 

1n
S+

2n
B. 

 

Now if we assume we have a more complex portfolio:  

 

                             D(t)= 
i=1

n
 v

i
S

i
+ 

j=1

m
 v

j
C

i
(S

i
(t),K

i
,T

i
),  

 

where v
i
 and v

j
 represent the number of units stocks and options, respectively, and m 

equals the total number of different stocks. Additionally, if we apply the same modelling 

assumptions used in the Delta method for modelling such portfolios then we assume all 

stocks and options are uncorrelated. Therefore the replicating portfolio approach gives 

 

                             D(t) 
i=1

n
 v

i
S

i
+ 

j=1

m
 v

j


j
S

j
(t)+

2j
B. 

 

The replicating portfolio method is computationally more efficient than if we used the 

Delta-Gamma method (since this would involve non-linear terms). The replicating 

portfolio method is more computational efficient as we do not need to re-calculate any 

non-linear terms with each simulation. Similarly, the Delta method may be marginally 

more efficient but it would lead to more inaccurate valuation of D(t). 
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In addition to efficient risk measurement of portfolios with options, the replicating 

portfolio method offers computational advantages in portfolio optimisation. Specifically, 

for a portfolio L(t) containing N stocks and M options, we would like to optimise  

 

                     max
w

i
,w

j
i,j

f(dL(t))= 
i=1

N
 w

i
dS

i
(t)+ 

j=1

M
 w

j
dC

j
(t),  

 

where w
i
,w

j
 are the stock and option weights respectively. The inclusion of options in 

L(t) means the optimisation of f(dL(t)) is nonconvex, and therefore a non-trivial 

optimisation. Firstly there exist fewer algorithms for nonconvex optimisation, so there 

may not exist an optimisation method. Secondly, nonconvex optimisation implies that an 

optimal solution may only be a locally optimal solution, rather than a globally optimal 

solution. 

If one were able to replace options with a linear expression then one would have a 

linear optimisation, which is highly desirable as they enable powerful and well-developed 

algorithms to be applied (such as linear programming and stochastic programming) to 

large portfolios. Linear optimisation of L(t) is possible by using the replicating portfolio 

approach to options. Therefore we would have:  

 

max
w
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f(dL(t)) = 
i=1

N
 w

i
dS

i
(t)+ 

j=1

M
 w

j
(

j
(t)(dS

j
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(t)S

j
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j
(t)dS

j
(t). 

 

The last line is possible because ((
j
(t)S

j
(t)C

j
(t))rdt) is a constant and so does not affect 

the optimisation (other than in the possible case there are linear constraints imposed in 

the optimisation). 

3.3  Calibration and Implementation Risk 
A key model risk that is frequently incurred in models is calibration risk, that is 

unexpected losses arising from incorrect model calibration. For instance, the model is 

calibrated using bias data, or the calibration method itself leads to inaccurate modelling 

(for example minimising least squares error in linear regression is known to lead to 

inaccurate modelling if outliers exist in the calibration data). In fact in industry, local 

volatility models are preferred to stochastic volatility models due to their lower 

calibration risk.  

Another important area of model risk is implementation risk,  that is unexpected 

losses arising from implementing the model. In order to utilise a model it requires some 

method of implementation, typically using a computational program, and this introduces 

some risk as the implementation may introduce some unexpected errors in calculation. 

For example, in implementing a model in a program one may be required to calculate the 

Normal cumulative probabilities and this requires some method to calculate the 

probabilities (e.g. using a table, applying some approximation of the cumulative 

distribution function, etc.). Consequently, some models are not used in industry due to 

the implementation risks involved (e.g. using models with unusual probability 

distributions may be difficult to implement in computer programs). 
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We will now explain how our replicating portfolio method has significant model risk 

advantages compared to other computationally efficient option risk methods.  

 

3.3.1 General Calibration and Implementation Risk 

For the replicating portfolio method, other than t) the remaining parameters in 

equation (3) (that is S(t),C(t) and r) are observable variables and so the method does not 

require calibration to any data or any calculation (we define an observable variable to 

mean a variable whose value can be observed in the market or ‘real world’ without 

requiring calibration of models to calculate its value e.g. S(t),T and r).  Furthermore the 

calculation of t) is a function of observable variables (except volatility). Therefore the 

number of parameters that could cause model risk are significantly limited; our method 

requires no more observability than the observability required for the Black-Scholes 

model itself, which is considered a highly observable model. Additionally, the limited 

calibration required increases the stability of calibration of the model, that is the model 

will not require frequent re-calibration to enable realistic model forecasting. 

Our replicating portfolio method reduces implementation risk by its tractable 

computational implementation. The method requires usage of observable variables and 

just 1 calculation for t), and this is a computationally tractable calculation. It can be 

numerically evaluated easily (e.g. binomial trees or finite difference methods), even for 

non-trivial S(t) processes, and with sufficient level of accuracy. For example, for an 

American option we can easily calculate the t) using a binomial tree method. The t 

calculation would not form part of the Monte Carlo simulation; the t is always a one-

off calculation and so the replicating portfolio method still remains computationally 

efficient. For a basket option the replicating portfolio method only requires calculation of 


1
 for each asset in the portfolio (and 

2
 can be deduced using equations (26) and (25)). 

To implement the replicating portfolio method we require t and this is generally 

analytically possible to determine for a range of option pricing models. Other risk 

measuring methods are not as easy to implement. For instance, the Delta-Gamma method 

requires calculating  and this is a second order partial derivative. Such a derivative may 

not be easily available and may be analytically intractable to derive, especially for 

complex contingent claims or non-trivial S(t) processes. Furthermore, it is well known 

that numerical computation can be intractable for second order partial derivatives, leading 

to inaccurate calculations. In the case of a basket option the Gamma method requires a 

second order partial differential equation for each asset in the portfolio (by applying 

multivariate Taylor’s Theorem), which can become intractable for large portfolios. 

The replicating portfolio method reduces implementation risk further as it is also 

analytically more tractable compared to other methods, in particular we can analytically 

derive (dC) from (dS) and using equation (3). For instance, we can easily calculate 

VaR using equation (3):  

 

                   VaR(dC(t))=(t)VaR(dS(t))+((t)S(t)C(t))rdt, 

 

(we note that VaR only fails as a coherent risk measure in terms of subadditivity, hence 

we can apply the translation invariance axiom to VaR to obtain this equation). 

Furthermore, if we assume dS follows geometric Brownian motion then VaR will be the 

VaR for a Gaussian distribution (for which many analytic equations exist), multiplied by 

(t), with its centre shifted by the drift term and the expression ((t)S(t)C(t))rdt. 
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If one were to apply another method to measure option risk, we would not necessarily 

be able to derive analytical solutions for any given risk measure. For eample, if we wished 

to determine VaR using the Delta-Gamma method then  

 

                       VaR(dC)=VaR 








S+ 


2
(S)2 . 

 

This would not be a tractable method of measuring VaR (and similarly for other risk 

measures). Firstly, the measurement of VaR(dC) is a function of , which can difficult to 

accurately determine for options. Secondly, the VaR measurement is now on a non-trivial 

distribution: the distribution obtained from adding the distributions of S and (S)2. There 

may not exist any analytical solution for the overall distribution, let alone the VaR 

equation (or any risk measure). Furthermore, computational implementation to obtain 

VaR or any other risk measure would be computationally expensive. 

Finally, the replicating portfolio method reduces implementation risk and general 

model risk by having a parsimonious model with few modelling assumptions. The 

replicating portfolio method is based on an identity for C using the self-financing 

property and arbitrage free assumption (both of these are not restrictive assumptions). Our 

method is not restricted to any risk measure, particular to any assets or distributions. Other 

risk measurement methods make restrictive assumptions about stock price distributions, 

variables (e.g. state of the economy) and apply to particular risk measures only (e.g. VaR). 

 

3.3.2 Extreme Values: Calibration and Implementation Risk 

Using the replicating portfolio method, the estimation error will be lower for extreme 

values compared to other methods. It is important to be able to measure the risk of extreme 

losses, however, measuring and managing risk under extreme values poses a number of 

significant problems. Firstly, many option risk measures cannot value at extreme values 

because they are only valid over small changes e.g. the Delta method. Secondly, there 

may not exist sufficient observations to confidently estimate extreme values; this is 

particularly the case for extreme values as such extreme events tend to occur rarely.  

Finally, the inability to accurately fit or estimate distributions for extreme values means 

that we cannot provide an realistic models for extreme values (see Dowd (2011)). 

In risk management theory, one applies EVT (extreme value theory) to determine the 

risk of extreme values on stocks. Therefore, our replicating portfolio method can also 

obtain risk measures on extreme values of options,  by applying EVT to stock prices. In 

other words, from equation (3) it can be seen that we can obtain extreme risk measurement 

values of (dC) from extreme risk measurement of (dS).  

If we were using other models we would not necessarily be able to obtain extreme 

values for option risk in the same way. For instance in the Delta-Gamma model, to obtain 

extreme value measurements in dC we would require simulations of dS and dS2, hence 

any estimation errors in simulation would be squared. Such errors would be magnified 

further when calculating extreme values using Extreme Value Theory. Additionally, we 

must multiply the dS2 term by , which is a partial derivative and so is difficult to 

accurately compute or estimate, leading to higher potential extreme value errors. 
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3.4  Arbitrage Free Option Modelling: Put-Call Parity 

Consistency 
The put-call parity is an important theorem between calls C(S(t),t,T,r,K) and puts 

P(S(t),t,T,r,K); an explanation is given in the Appendix. The put-call parity holds under 

a range of conditions, it is a model independent requirement, and its violation implies 

arbitrage between puts and calls (a serious mispricing and hence it is generally not 

violated). The put-call parity has important industry applications because it is frequently 

used in industry to value puts because quoted put prices are normally not available; using 

quoted call prices and the put-call parity we can value put prices. 

 The put-call parity is also important to enable correct valuation of portfolios 

containing a range of options e.g. in option trading strategies and static replication 

methods (see for instance Ma et al. (2016)). Option trading strategies (e.g. a butterfly, a 

strip and a strangle to name a few) involve purchasing a range of put and call options on 

the same underlying (see Hull (2000)). This portfolio of options is bought in such a way 

as to construct a net position that will benefit from a particular movement in the 

underlying. Static replication involves using a portfolio of plain vanilla European puts 

and calls to hedge an exotic derivative (see Derman  et al., ( 1995)). Both option trading 

strategies and exotic derivatives hedging are becoming increasingly popular in industry 

and so also important to risk manage. 

There exist option risk methods that violate the put-call parity, specifically the Delta 

and the Delta-Gamma methods (two of the most popular option risk models), and so allow 

arbitrage opportunities. We will now prove this.  

Lemma 1 For any given underlying and any option pricing model, the Delta and Delta-

Gamma methods do not obey the put-call parity. Therefore the Delta and Delta-Gamma 

methods admit arbitrage opportunities in porfolios containing at least any two of the 

following: put option, call option or shares in the underlying.  

Proof: 
By Delta-Gamma method we have  

 

 P
p
S+ 

2

2
(S)2, (10) 

 

where 
p
 is the option delta for a put. 

By the put-call parity we also have  

 

 P=Ker(Tt)S(t)+C,  (11) 

 dP=dC+d(Ker(Tt))dS,  (12) 

 PC+(Ker(Tt))S. (13) 

 

By the Delta-Gamma method we can express C as  

 

                             CS+ 
2

2
(S)2. (14) 

 

Also for any option pricing model it is known that  

 

                             
p
=1.   (15) 
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Now if we substitute C from equation (14) into equation (13) then we have  

 

                    P(S+ 
2

2
(S)2)+(Ker(Tt))S,  (16) 

                      S(1)+ 
2

2
(S)2+(Ker(Tt)),  (17) 

                      SpS(Ke-r(T-t)) by equation (15)       (18) 

 

Hence equation (10) and equation (18) are not equal. Therefore put-call parity does not 

exist and so there exists arbitrage. ■  

Remark 1 The Delta method is a special case of the Delta-Gamma method and so by the 

same proof it can be seen that the Delta method does not have put-call parity. Therefore 

the Delta method also allows arbitrage opportunities.  

An explanation of the proof is as follows: if the Delta-Gamma method obeyed the put-

call parity then substitution of an equation or expression from the put-call parity equation 

should give the same equation for P, that is equations (10) and equation (18) should be 

equal. However these 2 equations are not equal and so this implies the put-call parity is 

not obeyed. An example of the Delta-Gamma method giving arbitrage opportunities in 

the put-call parity is given in the Appendix. 

The replicating portfolio method must obey the put-call parity by construction and so 

does not admit arbitrage opportunities arising from this (for completeness we give the 

proof in the Appendix). The inability for some option risk methods to obey the put-call 

parity has significant consequences upon the applicability and risk management. Firstly, 

it can allow arbitrage opportunities to occur; incorrect models will not be able to detect 

incorrect prices according to the put-call parity, allowing serious mispricing to occur. 

Secondly, incorrect models encourage ‘internal’ arbitrage opportunities (see 

Alexander (2001)). This is when 1 department within an institution takes advantage of 

the mispricing of derivatives and securities by another department (within the same 

institution). This enables one department to make riskless profits at the expense of another 

department making a riskless loss; such weakening of a department by another 

department (within the same institution) does not lead to overall profits for the institution 

and so is not a productive activity. The replicating portfolio method eliminates the 

possibility of internal arbitrage opportunities as it will always guarantee obeying the put-

call parity, unlike the Delta or Delta-Gamma methods. 

Finally, option risk methods that do not obey the put-call parity can give different risk 

measurements on the same portfolio. For instance, in equations (28) and (29) we have 2 

different values for exactly the same option, which would give 2 different risk 

measurements for the same option. This can lead to inconsistent risk management of the 

same portfolio. 

3.5  Model Misspecification 
Model misspecification is becoming an increasing important factor in model risk. An 

example of model misspecification would be to model volatility as a constant (instead of 

varying with time) and so lead to incorrect values of volatility at different points in time. 

A popular method for addressing misspecification is the banded parameter model (see 

Wilmott et al. (1998)); in this model we subsume the misspecification into an appropriate 

variable and allow this variable’s value to vary between a maximum and minimum limit. 

For example, if we choose the variable volatility then its value will be allowed to vary 

between the limits <<+; alternatively we could have chosen r so that r would be 

bounded r<r<r+. The banded model is also useful because we can determine worst and 
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best case scenarios for option risk, which are important as they are frequently used in risk 

management. 

We would like to be able to use the banded parameter model in option risk modelling 

to take into account model misspecification risk. To achieve this, we must be aware that 

the banded parameter model is only applicable if the model assumes the no arbitrage 

conditions. Therefore we can apply the replicating portfolio method to option risk to the 

banded parameter model because it is based on no arbitrage conditions.  

For the purposes of option risk measurement we will restrict our attention to varying 

volatility in bands (first proposed by Avellaneda et al. (1995)), rather than any other 

variable, because it is a common source of model misspecification. In the banded 

parameter model, the worst and best case scenarios are not simply obtained by using the 

lowest and highest volatility values but by applying the arbitrage principles. 

The Black-Scholes equation is derived on the assumption that it constructs a riskless 

hedge; for a call option we have  

 

                             dCdS=
2
dB. 

 

Now to avoid arbitrage opportunities we assume the return on the worst case replicating 

portfolio earns the riskless rate, that is  

 

                   min


<<

+(dCdS)=
2
dB,  

                        min


<<

+d=
2
dB,  

 

where d=dCdS. Our objective is  

 

                     min


<<

+ 








 
C

t
+ 
2S2

2
. 

 

It can be shown that we minimise d if =+ for >0 and = for <0. Therefore to 

find the best case option risk measurement we use =+ if <0 and = if >0; for the 

worst case option risk measurement we would use =+ for >0 and = for <0. 

 As discussed before, some models do not obey the no arbitrage assumption (e.g. 

under put-call parity). Consequently, models such as Delta and Delta-Gamma cannot be 

applied to the banded parameter method for model misspecification. Therefore the Delta 

and Delta-Gamma methods do not allow us to determine best and worst case scenarios 

for option risk measurement, or take into account model misspecification risks. 

3.6  Liquidity Risk 
An increasingly important component of model risk is liquidity risk (see for example 

Acharya et al. (2015)), which is essentially the risk of transaction costs (T) increasing. 

Transaction costs can form a significant part of risk because they can substantially 

increase the losses incurred in trading, they can also vary with trading volume, the state 

of the economy and the market size to name a few factors. 

Although there exist many liquidity models for stocks, currently there do not exist 

many liquidity models for options. One model by Krakovsky (1999) prices liquidity costs 

into options by modifying the partial differential equation governing the option pricing 

equation. However the resulting partial differential equation has no analytic solution, so 

it must be solved computationally, which is computationally expensive. Krakovsky 
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(1999)  model  also ignores bid-ask spreads changing with time, which is an important 

factor in liquidity risk. 

One popular and well known liquidity model is Leland (1985) transaction cost model. 

Using the replicating portfolio method of option risk modelling it is possible to take into 

account liquidity risk using Leland’s model. This is possible because Leland’s model is 

based on the replicating portfolio principle, unlike other option risk models. In Leland’s 

model the transaction costs T are proportional to the total value of the underlying 

transacted:  

 

                                    T=S(t)n(t)k, 

 

where n(t) is the number of units (e.g. shares for equities) bought or sold at time t and k/2 

is the transaction cost for one share (sold or bought). 

Under our replicating portfolio approach, to model C with transaction costs we apply 

Leland’s model:  

 

                             CS(t)rB(t)t 
k

2
||S(t),  

 

where the last term represents the transaction cost in our model. It has been shown by 

Leland that  

 

𝑘

2
|𝛿𝛥|𝑆(𝑡) ≈

𝜎2

2
�̅�𝑆(𝑡)2𝛾𝛿𝑡, 

 

where the Leland number  L   is 

 

                          L  =  








 
2


 








 
k

 t
. 

 

Hence our option risk model with liquidity risk is  

 

                    

ρ(δC) ≈  Δρ(δS(t)) + rB(t)δt +
σk

√2π
S(t)2γ√δt                                                             (19) 

 

We note from equation (19) that in order to measure option risk with liquidity risk there 

is no significant increase in the level of computation. This is because the last term in 

equation (19) is not a function of S(t+t) but S(t); hence it does not require recalculation 

for each simulated S(t+t). We also notice from equation (19) that the option risk 

measurement with liquidity risk does not require significant parameter estimation. In fact, 

most of the parameters contributing to the transaction costs can be observed or calculated 

from observable variables. Furthermore, Leland (1985) model  and the replicating 

portfolio method are both derived without admitting arbitrage opportunities, which is 

important to model risk and preventing internal arbitrage opportunities (see for instance 

Erel et al. (2015)). 
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4  Numerical Experiments 
In this section we conduct numerical experiments to demonstrate and validate the 

replicating portfolio method of measuring option risk. To gauge the performance of the 

replicating portfolio method we also conducted numerical experiments on the Delta 

method to act as a fair benchmark. In this section first we explain our method, present the 

results of our experiments and then discuss them. 

4.1  Method 
In this section we conducted two numerical experiments. Firstly, we conducted a 

numerical experiment to measure the computation time of the replicating portfolio 

method against the Delta and full valuation methods. Secondly we evaluated the accuracy 

of the Delta and replicating portfolio methods in determining changes in option prices. 

All the numerical experiments were executed on a 1.61 GHz computer, with 992MB 

RAM, running Matlab version 6.5. 

For the computation time experiment we measured the time taken to compute the 

distribution of the change in call option price C under a Black-Scholes model. The time 

measured was for a C distribution consisting of one million samples. To obtain one 

million sample points we required one million random samples of S=S(t)S(0). The S 

random samples were obtained by generating the distribution of S(t) under the Black-

Scholes model (geometric Brownian motion). 

Using the samples of S we calculated C: for the full valuation method we applied 

the method outlined in the Appendix, for the Delta method we used equation (1) and for 

the replicating portfolio method we used equation (3). We note that the choice of Black-

Scholes parameters K,T, etc. do not affect any of the computation times. The Black-

Scholes option pricing equation along with other Black-Scholes parameters (e.g. option 

delta) did not require implementation as they are already available in the Matlab financial 

toolbox. The entire experiment was repeated ten times to obtain an average value of 

computation times. The results are presented in the next section. 

In the second experiment we compared the accuracy of the Delta method against the 

replicating portfolio method. This was done by calculating C over one day as this 

represents a realistic time period over which institutions may wish to evaluate the risk of 

options (although any time period could have been chosen). We compared the replicating 

portfolio methods’ accuracies over a range of K and ; we chose our range of K for 

|K/S(0)1|10% to test well beyond the range of actively traded options; the range of K 

for actively traded options tend to be within a range of |K/S(0)1|3% (see Fouque et al. 

(2000)) and beyond this range option prices tend to suffer from significant liquidity 

effects (see Fouque et al. (2000)). We also tested a range of volatility values  from 5% 

to 20%. The typical volatility for an index is =10%, with =20% considered to be high 

volatility (possibly occurring during a financial crisis), hence our testing ranges are robust 

well beyond standard ranges. 

The range of dS/S was chosen to be 1%, 2% and 5% to reflect possible price 

changes in the underlying under different scenarios. Since a 10% return is the average 

return over one year for an index (see Hull (2000)), a range of dS/S of 5% in one day 

reflects a scenario of a large price change. A 1% price change would be considered a 

normal price change and so reflects a typical price change scenario. A 2% change would 

be considered a significant change, although a possible scenario. All scenarios were tested 

for robustness of our method. 

We chose our option to have parameters r=5%, T=100 days, S(0)=1000 (although any 

values could have been chosen), as these are representative of typical option parameter 
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values. We compared the accuracy of each method using the percentage relative error, 

taking the full valuation method as our correct answer. For example, for the Delta method 

the percentage relative error was calculated as  

 

 
|v

FVM
v

D
|

|v
FVM

|
100,  

 

where v
FVM

 is the C calculated by the full valuation method and v
D
 was C calculated 

by the Delta method. A similar equation was applied to the replicating portfolio method. 

To calculate the average relative percentage error we took the average of these results 

over 1000 samples for each K and . 

 

4.2  Results 

  

Table 1: Computation Time for Calculating C (In Seconds) 

 

Experiment Delta Method Replicating Portfolio  

Method 

Full Valuation Method 

1 166.375 166.812 504.312 

2 167.609 166.578 508.312 

3 165.485 168.000 510.297 

4 167.734 168.078 510.250 

5 167.453 167.453 507.469 

6 167.282 167.437 533.313 

7 167.469 167.906 512.562 

8 169.437 168.546 532.890 

9 169.656 166.859 510.015 

10 167.657 166.703 511.984 

Average 167.416 167.437 514.140 

  

 

Table 2: Average Relative Percentage Error for  1% Stock Range 

 

Strike =5% =10% =15% =20% 

K R D R D R D R D 

900 0.00 15.60 1.25 15.46 6.20 20.43 16.29 33.18 

950 0.48 15.26 5.96 21.61 13.34 27.99 24.01 39.43 

1000 15.84 53.68 14.55 29.40 24.21 39.76 38.58 55.57 

1050 25.89 40.62 27.20 42.21 38.30 54.78 46.78 62.15 

1100 45.79 58.99 47.61 64.87 68.79 90.29 136.94 171.62 
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Table 3: Average Relative Percentage Error for  2% Stock Range 

 

Strike =5% =10% =15% =20% 

K R D R D R D R D 

900 0.00 7.27 0.91 8.26 3.32 9.97 6.35 12.84 

950 0.61 7.84 3.68 9.82 7.82 15.08 10.74 17.38 

1000 8.30 13.35 9.47 15.53 14.89 22.94 24.19 34.42 

1050 27.57 32.26 17.40 23.37 24.41 33.28 26.64 34.96 

1100 52.05 56.61 37.78 47.86 24.98 31.39 111.86 139.58 

 

Table 4: Average Relative Percentage Error for  5% Stock Range 

 

Strike =5% =10% =15% =20% 

K R D R D R D R D 

900 0.02 3.09 1.39 4.86 2.92 4.82 4.21 6.22 

950 1.86 5.10 5.26 7.00 6.28 8.14 6.96 8.94 

1000 19.74 21.05 13.46 15.32 12.31 14.98 20.56 29.90 

1050 63.38 64.71 24.51 26.19 16.58 18.44 14.16 16.17 

1100 117.07 118.13 38.89 41.10 24.55 26.95 19.79 22.20 

Note: R denotes the replicating portfolio method and D denotes the Delta method. 

 

4.3 Analysis 
The numerical experiments in Table 1 demonstrate that full valuation is 

computationally far more expensive than the Delta method; it takes approximately three 

times as long. The experiments also confirm that the replicating portfolio method is 

significantly less time consuming (computationally) than the full valuation method, in 

fact its computation time is practically identical to the Delta method. 

It is worth noting in passing that in the past 20 years trading has become increasingly 

dominated by automated trading in many markets. Consequently, many trades are opened 

and closed on scales of the order of milliseconds (for example algorithmic trading). Hence 

even marginal improvements in computing times can make the difference between profit 

or loss trades. Therefore the significant computational time improvement by the 

replicating portfolio method is beneficial. 

We expect both the Delta and replicating portfolio methods to have far lower 

computation times than the full valuation method because they require practically no 

calculation of nonlinear functions (other than for the one-off calculation of the option’s 

Delta). The full valuation on the other hand must calculate the Black-Scholes equation 

(highly nonlinear function) for each sampled stock price. The replicating portfolio method 

therefore provides a significant saving in computation time, at a time comparable to the 

Delta method. 

The savings in computation time become particularly important as we increase the 

number of options in a portfolio and the frequency with which the portfolio is valued 

during the day. Hence it can be seen that the full valuation method becomes increasingly 

impractical compared to the Delta and replicating portfolio methods. Additionally, we 

have used the Black-Scholes model to value the options, for which there exist many 
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optimised computational implementations. For other option pricing models (e.g. with 

different underlying processes) the full valuation method will increase computation time. 

The numerical experiments in Tables 2-4 demonstrate that the replicating portfolio is 

more accurate than the Delta method and most importantly, this is achieved with little 

additional computation time. The numerical experiments demonstrate that the replicating 

portfolio outperforms the Delta method over all K,  and price ranges. This is because 

the additional terms obtained from the replicating portfolio argument (and are not present 

in the Delta method) enable more accurate modelling. To be more specific, the replicating 

portfolio takes into account the change in option price more accurately due to taking into 

account the impact of the option variables time and riskless rate. This is not achieved in 

the Delta method. 

We observe that both the Delta and replicating portfolio increase in error as we 

increase with K. This is because the Black-Scholes call Delta is =(d
1
), therefore t 

decreases as K increases. As we multiply dS by t in both the Delta method and 

replicating portfolio equation, a reduction in t has the effect of changes in stock price 

being unable to model changes in option price. However, it should be noted in all cases 

the replicating portfolio method still provides a lower error than the Delta method. 

The effect of increasing  generally has the impact of increasing the error of both the 

Delta and replicating portfolio method. However the influence of  is less predictable due 

to its relation with t. Since =(d
1
) for call options it can be shown that  has no 

monotonic increasing or decreasing relation with t (whilst all other parameters are kept 

constant). Moreover, if we vary K and  then both will affect t, which in turn will 

affect the accuracies of our method. 

The numerical experiments show that the replicating portfolio method is more 

accurate over all K,  and price ranges than the Delta method. In portfolios containing a 

range of options at different K (e.g. option trading strategies or static replicating 

portfolios) therefore the replicating portfolio offers a more accurate modelling method 

than the Delta method. Additionally, the replicating portfolio method does not admit 

arbitrage opportunities to occur in the modelling, unlike the Delta method. Most 

importantly, all these advantages are achieved without increasing computation cost, 

which is the main purpose behind such methods. Hence our replicating portfolio method 

is better suited to valuing portfolios of options than the Delta method. 

In conclusion our numerical experiments show that our computational method is 

significantly faster than the full valuation method and has a computation time comparable 

to the delta method, demonstrating the fast computation time of our method. Secondly, 

our computation method is more accurate than the delta method for a range of volatilities, 

strikes and expiries. Hence the negligible increase in computation time using our 

computation method is worthwhile given the significant gain in accuracy. Additionally, 

our method does not admit arbitrage opportunities and other model risk errors. 

 

5  Conclusion 
In this paper we have proposed a new method of measuring option risk using the 

replicating portfolio method. We have shown that this method provides a fast computation 

of options by practically eliminating the requirement for evaluating nonlinear functions. 

This has resulted in computation times that are practically identical to the Delta method. 

We have shown that the replicating portfolio approach provides many significant 

model risk advantages. Unlike prior models, one key advantage is that the replicating 

portfolio method does not allow arbitrage opportunities for complex portfolios of options. 



23 

Furthermore, our model has lower calibration risk (only requiring observable market data 

to be implemented (except t)), it has parsimonious implementation and fewer model 

assumptions compared to competing models, which reduces implementation risk. Unlike 

competing methods, the replicating portfolio method can be applied to other models to 

take into account important model risk factors (e.g. liquidity risk and model 

misspecification). Another key advantage is that our method enables linear optimisation 

of portfolios containing options. 

We conducted numerical experiments on our replicating portfolio method to validate 

our method. These results have demonstrated that the replicating portfolio method 

computes changes in option prices in times practically identical to those of the Delta 

method whilst also giving lower relative error. In conclusion, we believe the replicating 

portfolio offers significant modelling and computational advantages over alternative 

modelling methods and this will be of interest to industry professionals. 

In terms of future possible areas of research, this should involve developing the 

computational method for other contingent claims, such as exotic options, energy options 

and barrier options. Another area for future research is to develop the replicating portfolio 

method with relaxed Black-Scholes modelling assumptions, such as the explicit inclusion 

of taxes, dividends and stochastic interest rates. Finally, the risk measurement method 

could be extended to real options analyses, as risk measurement is important for corporate 

finance applications. 
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6  Appendix 

6.1: Black-Scholes Equation 
The Black-Scholes option pricing model is given by  

 

C (S(t), t, T , r, σ, K ) = S(t)Ψ(d1) − K e−r(T −t)Ψ(d2)         (20) 

 

           where d
1
= 

ln(S(t)/K)+(r+ 
1

2
2)(Tt)

 (Tt)
, (21) 

 

                 d
2
= 

ln(S(t)/K)+(r 
1

2
2)(Tt)

 (Tt)
, 

 

                  =d
1
 (Tt). 

 

In C(S(t),t,T,r,,K) t is the time at which C is being priced, T is the expiration date, () 

is the standard normal cumulative distribution function and K is the strike price. 

6.2: Algorithm for Full Valuation Method 
Let index i={1,2,..,n} where n is the number of Monte Carlo simulations.  

1. Calculate initial option price C(0): C(S(0),t,T,r,,K). 

Set i=1.  

2. Simulate S(t) from S(0). 

Denote simulated value for iteration i as S
i
(t).  

3. Calculate option price C
i
(t) using S

i
(t): Ci(Si(t),t,T,r,,K).  

4. Calculate loss: C(0)-C
i
(t).  

5. Increment i. 

If i=n+1 then stop, otherwise goto step 2.  

6.3: Bond Price Equation 
The price of a bond B(t) is given by Bjork (2004)  

 

 B(t)=B(0)exp 











 

0

t

 rdt , 

 dB= rB(t)dt.  (22) 

6.4: Arbitrage Definition 
An arbitrage possibility in a financial market is a portfolio V(t) such that:  

• V(0)0;  

• V(T)0 almost surely and  

• E[V(T)]0.  
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6.5: Expressions for Call Option Terms 
For a call option it can be shown that (see Baxter and Rennie (1996)):  

 

 
1
(t)= (t),   (23) 

 B(t)
2
(t)=Ker(Tt)(d

2
). (24) 

 

Alternatively we can express B(t)
2
(t) as  

 

 B(t)
2
(t)=S(t)C(t),  (25) 

 =
1
(t)S(t)C(t). (26) 

 

6.6: Proof for Portfolio with Options 

 

 D(t)(n+)S(t)+
2
B. 

We have  

 

 D(t)nS(t)+C(S(t)),  

 nS(t)+
1
dS+

2
B,  

 (n+
1
)S(t)+

2
B,  

 (n+)S(t)+
2
B. 

6.7: Proof of Put-Call Parity of Replicating Portfolio Method 

A put option can be replicated by 
p
 units of shares and a long position in 

2p
(t) units in 

bonds.  

 

 P=
p
S(t)+

2p
(t)B(t),  

 dP=
p
dS(t)+

2p
(t)dB(t),  

 P
p
S(t)+

2p
(t)rB(t)t(t). (27) 

 

We also have  

 

 
2p

(t)B(t)=Ker(Tt)
2
(t)B(t),  

 
2p

(t)dB(t)=d(Ker(Tt))
2
(t)dB(t). 

 

By put-call parity we have  

 

 PC+(Ker(Tt))S,  

 (S
2
(t)B(t))+(Ker(Tt))S,  

 
p
S+((Ker(Tt))

2
(t)B(t)),  
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p
S+

2p
(t)B(t). (28) 

 

Hence equations (28) and (27) are equal. Therefore the put-call parity is obeyed. 

6.8: Coherency Axioms for Risk Measurement 
 

A risk measure (.) is coherent if it is:  

1. monotonic: if Z
1
Z

2
 then (Z

1
)(Z

2
);  

2. homogeneous: (Z
1
)=(Z

1
), where κR+ is a positive constant; 

3. translation invariant: (Z
1
+)=(Z

1
), where R is a constant (or a riskless 

bond portfolio); 

4. subadditive: (Z
1
+Z

2
)(Z

1
)+(Z

2
).  

6.9: Put-Call Parity 
The put-call parity theorem states that, in an arbitrage free market,  a call C(S(t),t,T,r,K) 

and put P(S(t),t,T,r,K) with the same S(t), K and T obey the relation:  

P(S(t),t,Tr,K)=Ke−r(T−t)−S(t)+C(S(t),t,T,r,K)       (29) 

 

6.10: Example of Internal Arbitrage By Put-Call Parity 
Let us assume there are 2 departments  in 1 company, H1 and H2. Department H1 creates 

a portfolio M consisting of buying put option P, and short selling a call option C. Hence:  

 

  M=PC, 

and  

 

  M=PC. 

 

Both P and C are identical in terms of option parameters, that is T, r, K, , S(t) etc.. By 

the Delta-Gamma method:  

 

 P
p
S+ 

2

2
(S)2, 

 

where 
p
 is the option delta for a put and C is  

 

 CS+ 
2

2
(S)2, 

 (
p
+1)S+ 

2

2
(S)2. 

 

The previous line is possible because in any option pricing model it is known that =
p
+1

. Therefore  

 

 M=PC,  
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 =(
p
S+ 

2

2
(S)2)((

p
+1)S+ 

2

2
(S)2),  

                                =S. 

 

Hence department H1 expects S payoff from its portfolio M. Now department H2 can 

sell the portfolio M to department H1. By the put-call parity:  

 

 P=Ker(Tt)S(t)+C,  

 PC=Ker(Tt)S(t). 

 

So H2’s payout from the above portfolio will be:  

 

 dPdC=d(Ker(Tt))dS,  

 PCKer(Tt)S. 

 

Now H2 will only need to pay out S to H1 for the portfolio it sold to H1 because H1 is 

expecting S from its model. However the correct value of the portfolio is given in the 

last equation. Hence using the last equation we see that H2 will always be able to make a 

riskless profit of Ker(Tt) , regardless of the value of S(t). Hence this represents an 

arbitrage opportunity. 
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