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ABSTRACT 

Cloud computing is an established technology allowing users to share resources 

on a large scale, never before seen in IT history. A cloud system connects multiple 

individual servers in order to process related tasks in several environments at the 

same time. Clouds are typically more cost-effective than single computers of 

comparable computing performance. The sheer physical size of the system itself 

means that thousands of machines may be involved. The focus of this research 

was to design a strategy to dynamically allocate tasks without overloading Cloud 

nodes which would result in system stability being maintained at minimum cost. 

This research has added the following new contributions to the state of 

knowledge: (i) a novel taxonomy and categorisation of three classes of schedulers, 

namely OS-level, Cluster and Big Data, which highlight their unique evolution and 

underline their different objectives; (ii) an abstract model of cloud resources 

utilisation is specified, including multiple types of resources and consideration of 

task migration costs; (iii) a virtual machine live migration was experimented with 

in order to create a formula which estimates the network traffic generated by 

this process; (iv) a high-fidelity Cloud workload simulator, based on a month-long 

workload traces from Google's computing cells, was created; (v) two possible 

approaches to resource management were proposed and examined in the 

practical part of the manuscript: the centralised metaheuristic load balancer and 

the decentralised agent-based system. The project involved extensive 

experiments run on the University of Westminster HPC cluster, and the promising 

results are presented together with detailed discussions and a conclusion.  
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1. INTRODUCTION 

The main focus of this project was to research and design a feasible strategy for 

managing and balancing a workload within a virtualised Cloud system – a system 

in which the computing cells are built from many thousands of networked nodes, 

and where the workload is significantly diversified and consists of short-lived 

batch jobs as well as long-lasting services. The shape of resources utilised by 

running tasks changes rapidly, thereby creating a very dynamic environment.  

For a working solution to be designed, the first step required is to identify the 

challenges related to the allocation of tasks in different environments. Therefore, 

the initial part of this research focuses on analysing currently-utilised scheduling 

schemes and shortlisting areas which has potential for improvements. 

Chapter 2 presents a novel taxonomy and categorisation of workload schedulers, 

focusing in particular on the key design factors that affect the scalability of a given 

solution, in addition to the features which improved the scheduler’s architecture. 

This chapter describes their evolution, from early adoption to their modern 

implementations; in doing so, it sets out in detail their scheduling algorithms. This 

background review notes a trend towards the greater parallelisation of all three 

classes of examined schedulers, a factor which shaped the approaches adopted 

later in the research. 

This introductory chapter explains the motivation behind this project, its research 

background, and how it has evolved over time. 

1.1. PROJECT MOTIVATION 

The biggest cloud systems offering elastic resource allocation are: Amazon EC2 

(Jackson et al., 2010), Microsoft Azure (Li et al., 2010), Google Cloud Platform 
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(Bedra, 2010), IBM Cloud (Kochut et al., 2011), Oracle Cloud (Jain and Mahajan, 

2017), Alibaba Cloud (Zhou, 2017), Rackspace (Li et al., 2010) and GoGrid (ibid.). 

While the information on the size of the largest Cloud is not publicly available, 

Bloomberg Technology estimates that the Amazon EC2 consists of 1.5 million 

servers (Clark, 2014), while Gartner, Inc., an American technology research and 

advisory firm approximates its size to be more than two million servers. The total 

number of nodes in Google Cloud is estimated to be ca. 900k machines, making 

this market extremely competitive, with enormous forecasted market size 

growth. Gartner predicts a 17% annual growth in public spending for cloud 

services, reaching $411.4 billion by 2020 (Van der Meulen and Pettey, 2017). A 

few well-known examples of services backed up by cloud computing include 

Dropbox, Gmail, Twitter, Facebook and YouTube. 

Clouds are typically more cost-effective than single computers of comparable 

speed, and usually enable applications to have higher availability than a single 

machine. This makes the software even more attractive as a service and is 

shaping the way applications are built today. Companies no longer need to be 

concerned with maintaining a huge infrastructure of thousands of servers in 

order to have enough computing power for those critical hours when their 

service is in highest demand. Instead, companies can simply rent a fleet of servers 

for a few hours (Wang et al., 2018).  

Across the history of IT, such an elasticity of resources without paying a premium 

for a large-scale usage is exceptional. Recent developments in Big Data systems 

and Machine Learning technologies have fuelled growth in demand for cheap 

computing power; in response, several vendors have collaborated and the range 

of computing services offered to the market has significantly expanded. Prices 

have also been driven down and, as of 24 July 2018, the cost of renting a general-

use instance of 16-core machine with 64GB memory was 80 cents per hour (data 

from aws.amazon.com/ec2/pricing website). These Cloud properties are 



INTRODUCTION 

3 | P a g e  
 

 

particularly important for both small and medium-sized enterprises, who are able 

to minimise their initial outlay for building IT infrastructure. They can also focus 

on swiftly delivering the product to the market, a fact which is critical for any 

innovative proposal. The rapid development of Cloud technologies has 

introduced a new set of challenges and problems which require immediate 

solution. Cloud systems are usually made up of machines with different hardware 

configurations and capabilities (Mateescu et al., 2011), and these systems can be 

rapidly configured based on the user's requirements (Buyya et al., 2009). 

Therefore, dynamic resource sharing is a necessity. Resource management has 

been an active research area for a considerable period of time and the systems 

often feature a highly specialised load balancing strategies such as Google’s Borg 

(Burns et al., 2016), Microsoft’s Apollo (Boutin et al., 2014) or Alibaba’s Fuxi 

(Zhang et al., 2014b). Since larger computing cells are likely to be required in the 

near future (Wilkes, 2016), Cloud load balancing is a topic worthy of dedicated 

research. 

The focus of this project was to examine possible solutions to allocating and 

managing many concurrently running tasks in a Cloud system. The initial 

assumption was that existing Cloud management software could be improved by 

deploying intelligent load balancing routines and therefore, achieving a better 

allocation quality and higher system scalability. The main novel aspects of this 

approach were to schedule the incoming tasks, which allows running programs 

to be offloaded to alternative system nodes on the fly (hence the name ‘load 

balancing’), in addition to designing algorithms capable of proactively managing 

a workload in such a dynamic environment (hence the name ‘intelligent’). This 

research breaks with the concept that the execution of a task in a cluster is 

immovable or unstoppable, and instead examines the available technology to 

implement such a strategy. Since none of the commercially available cluster 

schedulers realise such a feature, the objective of this research is to implement a 
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working prototype for the Cloud load balancer, and to evaluate their 

performance advances emerging out of the designed solution.  

1.2. RESEARCH PROBLEM 

The background review and crafting of the schedulers’ taxonomy (Chapter 2) 

helped to formally define the D-Resource System Optimisation Problem (D-RSOP) 

which is later discussed in Chapter 3. The presented model consists of nodes and 

tasks with the main function of the load balancer being to keep a good load 

balance through resource vectors comparisons. D-RSOP belongs to the NP-Hard 

problems class which are believed to be unsolvable in polynomial time, i.e. the ‘P 

versus NP’ problem (Frieze, 1986). Cloud systems are focused on maintaining the 

continuity of third party operations with minimum disturbance; therefore, this 

model also considers the cost of change when deploying new tasks or when re-

allocating existing tasks.  

Following the study presented in Chapter 3, the two first goals of the load 

balancing solution were formed, namely: 

• Goal (I) – maintaining a global balance across the Cloud system so that an 

individual node is not overloaded. In virtualised Cloud environments, this 

goal is achieved through the Virtual Machine Live Migration (VM-LM) 

allowing a running program to be migrated to alternative nodes without 

stopping their execution. The formal definition is presented as (2) in 

section 3.3. 

• Goal (II) – minimising the System Transformation Cost (STC) which is the 

global cost of task re-allocations on Cloud infrastructure, i.e. minimising 

the total size of data transferred across the Cloud’s network during VM-

LM process. For detailed explanation see (5) in section 3.3. 
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These goals will now shape the initial concepts of the balancing strategy 

presented in the subsequent sections. However, the D-RSOP model relies mainly 

on the VM-LM feature to re-allocate tasks between nodes. Further research was 

required to establish a reliable technique for measuring the VM-LM cost within 

the Cloud infrastructure. 

1.3. RESEARCH PLAN 

With the expected outcome established, the project was then able to move to 

the planning phase in which further challenges were identified. This included the 

unknown impact of offloading a running task and the lack of sufficiently detailed 

Cloud simulation tools. Considering the diversity of the research areas involved, 

the decision was made to execute the project in consecutive stages as presented 

in Figure 1: 

 
Figure 1: Research project stages 

The above plan of action allowed the gradual refinement of the project goals as 

more knowledge was acquired. As the steps were completed, the foundations of 

the load balancer prototype were incrementally built. The flow was followed with 

the exception of a few selected routines in the centralised metaheuristic load 

balancer code implemented early in the project as a proof of concept. 

In order to improve the readability of the manuscript, each stage of the project 

has a dedicated chapter (Chapters 2 to 7) which contains a literature review, core 

content and a detailed summary. The below sections summarise the main 

outcomes realised in those stages and list the main achievements, while the 

overall conclusions are covered in Chapter 8. 
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1.4. MIGRATION COST 

Chapter 4 details the VM-LM feature which forms the backbone of the proposed 

solution. It allows a working application, within a VM instance, to be migrated to 

an alternative node without stopping its execution. This technology allows the 

dynamic balancing of the workload between suitable nodes within the Cloud 

system.  

The existing research focused on examining the impact of VM-LM on the VM 

instance, such as: (i) the impact of allocated VM memory size on migration time 

(Zhao and Figueiredo, 2007; Salfner et al., 2011; Dargie, 2014); (ii) the impact of 

memory page dirtying rate on migration time (Verma et al., 2011, Rybina et al., 

2015) and the downtime length (Salfner et al., 2011; Liu et al., 2013); (iii) the 

effect of available network bandwidth on migration time (Akoush et al., 2010; 

Zhang et al., 2016; Deshpande and Keahey, 2017); (iv) the energy overhead 

required to perform VM-LM (Huang et al., 2011; Liu et al., 2013; Callau-Zori et al., 

2017), (v) determining the Quality of Service specifications for migrated VMs and 

applying resource control mechanisms during VM-LM (Abali et al., 2017), (vi) a 

strategy for parallel migrations of multiple VMs (Sun et al., 2016), (vii) various 

memory transfer optimisations as presented in Noel and Tsirkin (2016), Noel and 

Tsirkin (2016), Ramasubramanian and Ahmed (2017). 

However, the migration of VM instances causes disruptions at the infrastructure 

level when non-trivial volumes of data need to be transferred and network 

bandwidth which could be allocated to alternative processes is consumed. The 

research work presented in Chapter 4 evaluates the overall cost of this process 

on the network, rather than only on individual nodes. Figure 2 visualises the 

process of VM-LM: 
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Figure 2: Virtual Machine Live Migration process 

Chapter 4 presents an analysis of the five major areas of the VM-LM process, 

namely: CPU registers, memory, permanent storage, network switching and code 

structure and dynamics – and analyses their impact on the size of the migrated 

data. However, to provide a reliable VM-LM cost estimation technique, actual 

practical experiments were required.  

The next phase of the project involved setting up an isolated network of several 

machines with VirtualBox installed, in addition to measuring the size of the 

transferred data during VM-LM between them. VirtualBox was chosen due to its 

universal compatibility with hardware, popularity and easy-to-use GUI 

management console. Additionally, VirtualBox is an Open Source project and its 

code could be analysed with a focus on VM-LM. During experiments, a Live 

Migration Data Transfer (LMDT) formula was devised which could be successfully 

used to estimate data transferred during VM-LM. 

1.5. SIMULATION TOOL 

The D-RSOP model was based on a conceptual analysis and it was clear that a 

more practical approach was necessary since the project could not progress 

further without workload data from a real-world Cloud environment. As 
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discussed in Chapter 5, realistic workload data input could be obtained via two 

main approaches: 

• Using an artificial Cloud workload generator (Beitch et al., 2010; 

Ganapathi et al., 2010; Wang et al., 2011; Malhotra and Jain, 2013). 

• Acquiring and parsing real-world workload traces (Iosup et al., 2008; 

Hellerstein et al., 2010; Kavulya at al., 2010; Klusáček, 2014; Feitelson et 

al., 2014) to a format which could be used in further research. 

Upon detailed examination, existing artificial workload generators such as 

CloudSim, GreenCloud and EMUSIM did not provide the necessary resource 

utilisation statistics that could be used in this project. Such accurate and realistic 

parameters could be obtained only from actual workload traces. 

Given this scenario, the best option was to acquire and parse real-world workload 

traces and base the simulation on these. Additionally, one of the project’s 

practical activities was to examine actual workload traces to better understand 

challenges in workload planning. For this, it was possible to retrieve and analyse 

traces from the Google Cluster Data (GCD) project (Hellerstein et al., 2010). GCD 

workload traces are month-long, and contain processing data from a computing 

cell of ca. 12.5k nodes. Google services are constantly utilised, 24-hours a day, 

from any location around the globe. As such, they provide a good variety of tasks 

found within the production environment. Additionally, GCD are generally of a 

high quality and only a small number of anomalies are present. 

Cloud environments can have a very complex structure. . This is the result of not 

only the sheer size of workload, but also the relationships between the nodes and 

tasks executed on them. One should also consider the overall high dynamicity of 

a typical Cloud environment where running programs dynamically allocate and 

release resources such as memory and CPU cores. During examination of GCD 
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workload traces structure (Reiss et al., 2013), additional major complications 

were noted. Based on this, two further load balancing strategy goals were added:  

• Goal (III) – aside from being able to allocate enough resources, nodes 

should also match the constraints of tasks. The four tasks’ constraints 

types were defined as in the GCD structure: equal, not equal, greater than 

and less than. For example, a task might require a node with an external 

IP address. In such cases it will define a constraint which requires the IP 

address flag to be equal to true. Subsection 5.5.2 introduces the concept 

of Task Constraints. 

• Goal (IV) – the solution should handle the occurrences of Resource Usage 

Spikes (RUS), where a running program significantly increases its resource 

consumption in a short period of time. User-defined required resources 

(i.e. resources not currently being used but which are defined in task 

specification) from all production tasks allocated to a given node should 

never exceed this node capacity. The node, therefore, should always be 

able to execute all its production tasks at full capacity. See subsection 

7.5.4 for detailed explanation of RUS. 

The project’s focus has shifted into creating Accurate Google Cloud Simulator 

(AGOCS) framework, a high-fidelity Cloud workload simulator which could 

reliably replay month-long GCD workload traces and simulate a Cloud 

environment. Given the sheer size of GCD data, the main requirement for AGOCS 

was a highly parallel design. Therefore, AGOCS was built upon functional 

programming concepts with a Scala and Akka Actors/Streams framework 

(Roestenburg et al., 2015). AGOCS inherited many beneficial features from this 

technology stack, such as native support for objects immutability, lock-free 

collections and components, native agents’ supervision strategies for recovery 

from data corruption errors, thread-safe TrieMap (Prokopec et al., 2012), and a 
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mature test-kit. In order to guarantee a reasonably bug-free code, an extensive 

suite of test units was created. 

During the research, AGOCS was deployed at the University of Westminster’s HPC 

cluster (see Appendix C), where most of further experiments took place. AGOCS 

allowed the running of simulations where a given solution could be tested if and 

how well, it satisfies D-RSOP goals. 

1.6. LOAD BALANCER DESIGNS 

Finally, with a solid simulation environment up and running, the project reached 

a state where it could progress further with the design of load balancing solutions. 

The next steps, as presented in Chapter 6 and 7, involved designing and 

implementing two main load balancer prototypes: 

• Centralised load balancing strategy with the use of metaheuristic 

algorithms – this approach has been already examined by previous 

researchers (Józefowska et al., 2002; Leung, 2004), yielding a satisfactory 

quality of results. However, it was found out the given algorithms could 

be slightly improved. Chapter 6 covers details of this solution. 

• Decentralised load balancing with the use of an agent-based network – 

this approach is based on utilising the technology of software agents, 

cooperating to find allocations for a number of tasks on a set of machines 

(Kim et al., 2004; Leung et al., 2010). This work is presented in Chapter 7. 

The preliminary analysis focused on the pros and cons of the above solutions. The 

findings are summarised in Tables 1 and 2: 
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Advantages Disadvantages 

• Well-studied approach; 
• Better control over job execution 

and centralised management of 
failover and restarting controls; 

• Predicable behaviour; 
• Supports complex scheduling 

policies and fairness. 
 

• Single point of failure – prone to 
‘head-of-line’ blocking job; 

• Complex strategies imply scheduler’s 
high overheads; 

• Metaheuristic algorithms might not 
scale well enough to support huge 
systems. 

 

Table 1: Advantages of Metaheuristic Load Balancer 

Advantages Disadvantages 

• Very scalable – scheduling decision 
computations are distributed over 
several independent nodes; 

• Possibility of deploying advanced 
scheduling strategies (for example 
artificial intelligence and autonomy 
of an agent); 

• No single point of failure.  
 

• Unpredictable and difficult to control 
– difficult to enforce scheduling 
policies and fairness; 

• Communication overhead of an 
agent-based system; 

• Overall performance might be lower 
than using a centralised approach. 

 

Table 2: Advantages of Decentralised Agent-based Load Balancer 

The design of the centralised load balancing strategy assumed that metaheuristic 

algorithms would be able to dynamically balance the Cloud workload – an 

approach known as ‘monolithic’ scheduling (Schwarzkopf et al., 2013). A variety 

of metaheuristic algorithms were tested, such as Greedy, Genetic Algorithms 

(GA), Tabu Search (TS) and Simulated Annealing (SA). A novel variant of the 

Seeded Genetic Algorithms (SGA) which seeded the initial GA population with 

results from Greedy, TS and SA performed substantially better than their 

counterparts.  

However, after extensive experiments, it was noted that this approach did not 

scale well because of the high computation overhead of metaheuristic algorithms. 

The centralised metaheuristic load balancer could efficiently support around sixty 

tasks executed on twelve nodes; however, as more tasks and nodes were added, 

and the solution search space grew, the quality of returned allocations rapidly 
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decreased. None of the tested designs could scale to reliably schedule ca. 140k 

tasks on 12.5k nodes, as required in the data from GCD workload traces. 

Therefore, further research was focused on designing a decentralised load 

balancing strategy, where nodes represented by software agents could negotiate 

task allocations between themselves and Service Allocation Negotiation (SAN) 

protocol was created. In the prototype implementation of the Multi-Agent 

System Balancer (MASB) system, each node is represented by Node Agent (NA) 

which monitors its node’s resources allocations levels and makes sure that the 

node is not overloaded. When the allocated tasks exceed the node’s resources, 

NA will communicate with other NAs and attempt to offload overloading tasks. 

The MASB could support scheduling 140k tasks on 12.5k nodes. However, the 

decentralisation of scheduling logic also removed the centrally available store 

object with the state of the system. Each scheduling decision had to be made only 

on the partial information of the computing cell state. Therefore, another 

software agent component was introduced – Broker Agents (BA). BA’s task was 

to gather information about the state of the nodes and to provide a quoting 

mechanism to initially retrieve the best available candidates for a given task. The 

SAN protocol was extended accordingly, and the capability of forced-migrations 

was added to better support restrictive constraints on some of the tasks. 

In brief, the SAN protocol could be seen as the process of narrowing down the 

selection of candidate nodes. At first, randomly selected BA provides a quote with 

a number of candidate node recommendations, and since BA uses its own cache 

of node states, the recommendations most likely do not represent the current 

state of the node. After this, the source NA messages all the NAs of those 

candidate nodes, receiving information as to whether NA would accept task 

migration. Having collected all the replies, the source NA decides which of the 

candidate nodes is the best fit for a given task and attempts to migrate task there. 
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This step might be repeated if a selected candidate node is no longer accepting a 

task – in such a case, the second-best candidate node is selected. 

Moving away from the concept of the centralised load balancing and offloading 

the actual scheduling logic to the nodes themselves resulted in more time 

available for the execution of allocation routines. As such, more sophisticated 

algorithms could be deployed, such as metaheuristic methods. Both BA and NA 

use Service Allocation Score (SAS) functions to calculate their Allocation Score (AS) 

value. This determines how well the nodes’ resources are utilised, with more 

proportional allocations given a higher value. Both BAs and NAs, when making 

task allocation recommendations and decisions, tend to gravitate towards more 

desirable allocations. It was found that using different functions for Service Initial 

Allocation Score (SIAS) and Service Re-allocation Score (SRAS) was beneficial. This 

pattern improved the tightness of task allocations, which resulted in lower 

resource waste. NAs were given more autonomy in deciding which tasks to 

accept and which to offload in order to preserve their node’s stable state. 

Ultimately, a working solution was found, and the remaining part of this project 

was focused on testing the suitability and scalability of the MASB prototype and 

on introducing enhancements to improve the performance of the proposed 

solution. At peak times, almost all nodes of HPC Cluster at the University of 

Westminster was running experimental simulations which allowed the MASB to 

be rapidly reiterated and improved. 
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1.7. CONTRIBUTIONS TO KNOWLEDGE 

This research added the following new contributions to the knowledge: 

i. A novel taxonomy and categorisation of three classes of schedulers, 

namely OS-level, Cluster and Big Data, which highlight their unique 

evolution and underline their different objectives (Chapter 2); 

ii. An abstract model of cloud resources utilisation is specified, including 

multiple types of resources and consideration of task migration costs 

(Chapter 3); 

iii. A virtual machine live migration was experimented with in order to create 

a formula which estimates the network traffic generated by this process 

(Chapter 4); 

iv. A high-fidelity Cloud workload simulator, based on a month-long 

workload traces from Google’s computing cells, was created (Chapter 5); 

v. Two possible approaches to resource management were proposed and 

examined in the practical part of the manuscript: the centralised 

metaheuristic load balancer (Chapter 6) and the decentralised agent-

based system (Chapter 7); 

In addition, the practices of running a Scala-based computation-intensive 

application on HPC machines are summarised and presented in Sliwko (2018a) 

and Sliwko (2018b). 
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2. TAXONOMY OF SCHEDULERS 

Although managing workload in a Cloud system is a modern challenge, scheduling 

strategies are a well-researched field as well as being an area where there has 

been considerable practical implementation. This background review started by 

analysing deployed and actively used solutions, and presents a taxonomy in 

which schedulers are divided into several hierarchical groups based on their 

architecture and design. While other taxonomies do exist (e.g. Krauter et al., 2002; 

Yu and Buyya, 2005; Pop et al., 2006; Smanchat and Viriyapant, 2015; Rodriguez 

and Buyya, 2017; Zakarya and Gillam, 2017; Tyagi and Gupta, 2018), this review 

has focused on the key design factors that affect the throughput and scalability 

of a given solution, as well as the incremental improvements which bettered such 

an architecture. 

Figure 3 visualises how the schedulers’ groups are split. Each of these groups is 

separately discussed in the sections which follow. 

 
Figure 3: Schedulers taxonomy 

It should be noted that this chapter is based partially on work already published 

in Sliwko and Getov (2015b). 
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2.1. METACOMPUTING 

The concept of connecting computing resources has been an active area of 

research for a considerable period of time. The term ‘metacomputing’ was 

established as early as 1987 (Smarr and Catlett, 2003) and since then the topic of 

scheduling has been one of the key subjects in many research projects, such as (i) 

service localising idle workstations and utilising their spare CPU cycles – 

HTCondor (Litzkow et al., 1988); (ii) the Mentat – a parallel run-time system 

developed at the University of Virginia (Grimshaw, 1990); (iii) blueprints for a 

national supercomputer (Grimshaw et al., 1994), and (iv) the Globus 

metacomputing infrastructure toolkit (Foster and Kesselman, 1997). 

Prior to the work of Foster et al. (2001), there was no clear definition of what 

‘grid’ systems referred to. Following this publication, the principle that grid 

systems should allow a set of participants to share a number of connected 

computer machines and their resources became established. These shared 

system policies are defined by a list of rules, for example the resources which are 

shared, who (and the extent to which) they can use those resources, and the kind 

of quality of service that might be expected. 

As shown in the following sections, the requirements of a load balancer in a 

decentralised system varies significantly compared to scheduling jobs on a single 

machine (Hamscher et al., 2000). One important difference are network 

resources, in that the machines are usually geographically distributed and 

transferring data from one machine to another is costly. In addition to the 

effective spreading of tasks across networked machines, the load balancer in 

Clusters generally provides a mechanism for fault-tolerance and user session 

management. The sections below also explain the workings of several selected 

current and past schedulers and distributed frameworks. Understanding these 

will help to develop our knowledge about how scheduling algorithms were 
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developed over time, and how they have been conceptualised in different ways. 

This is by no means a complete taxonomy of all available designs, but rather an 

analysis of some of the landmark features and ideas in the history of schedulers. 

2.2. OS SCHEDULERS 

The Operating System (OS) Scheduler, also known as a ‘short-term scheduler’ or 

‘CPU scheduler’, works within very short time frames, i.e. time-slices. During 

scheduling events, an algorithm must examine planned tasks and assign them 

appropriate CPU times (Bulpin, 2005; Arpaci-Dusseau and Arpaci-Dusseau, 2015). 

This requires schedulers to use highly optimised algorithms with very small 

overheads. Process schedulers have the difficult task of maintaining a delicate 

balance between responsiveness (minimum latency) and throughput. This is 

generally achieved by prioritising the execution of processes with a higher 

sleep/processing ratio (Pabla, 2009). 

At the time of writing, the most advanced strategies also take into consideration 

the latest CPU core where the process ran the previous time. This is known as 

‘Non-Uniform Memory Access (NUMA) awareness’, where the aim is to reuse the 

same CPU cache memory wherever possible (Blagodurov et al., 2010). The 

memory access latency differences can be very substantial, for example ca. 3-4 

cycles for L1 cache, ca. 6-10 cycles for L2 cache and ca. 40-100 cycles for L3 cache 

(Drepper, 2007). NUMA awareness also involves prioritising the act of choosing a 

real idle core which must occur prior to its logical SMT sibling, also known as 

‘Hyper-Threading (HT) awareness’. Given this, NUMA awareness is a crucial 

element in the design of modern OS schedulers. With a relatively high data load 

to examine in a short period of time, implementation needs to be strongly 

optimised to ensure faster execution. 
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OS Schedulers tend to provide only a very limited set of tuneable parameters, 

wherein the access to modify them is not straightforward. Some of the 

parameters can change only during the kernel compilation process and require 

rebooting, such as compile-time options CONFIG_FAIR_USER_SCHED and 

CONFIG_FAIR_CGROUP_SCHED, or on the fly using the low-level Linux kernel’s 

tool ‘sysctl’. 

2.2.1.  COOPERATIVE MULTITASKING 

Early multitasking Operating Systems, such as Windows 3.1x, Windows 95, 96 and 

Me, Mac OS prior to X, adopted a concept known as Cooperative Multitasking or 

Cooperative Scheduling (CS). In early implementations of CS, applications 

voluntarily ceded CPU time to one another. This was later supported natively by 

the OS, although Windows 3.1x used a non-pre-emptive scheduler which did not 

interrupt the program, wherein the program needed to explicitly tell the system 

that it no longer required the processor time. Windows 95 introduced a 

rudimentary pre-emptive scheduler, although this was for 32-bit applications 

only (Hart, 1997). The main issue in CS is the hazard caused by the poorly 

designed program. CS relies on processes regularly giving up control to other 

processes in the system, meaning that if one process consumes all the available 

CPU power, it causes all the systems to hang. 

2.2.2.  SINGLE QUEUE 

Prior to Linux kernel version 2.4, the simple Circular Queue (CQ) algorithm was 

used to support the execution of multiple processes on the available CPUs. The 

selection of the next process to run was based on a Round Robin policy 

(Shreedhar, 1995). In kernel version 2.2, processes were further split into non-

real/real-time categories, and scheduling classes were introduced. This algorithm 

was replaced by O(n) scheduler in Linux kernel versions 2.4-2.6. In O(n), processor 
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time is divided into epochs, and within each epoch every task can execute up to 

its allocated time slice before being pre-emptied. The time slice is given to each 

task at the start of each epoch, and is based on the task's static priority added to 

half of any remaining time-slices from the previous epoch (Bulpin, 2005). Thus, if 

a task does not use its entire time slice in the current epoch, it can execute for 

longer in the next epoch. O(n) scheduler requires iteration through all currently 

planned processes during a scheduling event (Jones, 2009) – this can be seen as 

a weakness, especially for multi-core processors. 

Between Linux kernel versions 2.6-2.6.23 came the implementation of the O(1) 

scheduler. O(1) further splits the processes list into active and expired arrays. 

Here, the arrays are switched once all the processes from the active array have 

exhausted their allocated time and have been moved to the expired array. The 

O(1) algorithm analyses the average sleep time of the process, with more 

interactive tasks being given higher priority in order to boost system 

responsiveness. The calculations required are complex and subject to potential 

errors, where O(1) may cause non-interactive behaviour from an interactive 

process (Wong et al., 2008; Pabla, 2009). 

2.2.3.  MULTILEVEL QUEUE 

With Q(n) and O(1) algorithms failing to efficiently support the interactivity of 

applications, the design of OS Scheduler evolved into a multilevel queue in which 

repeatedly sleeping (interactive) processes are pushed to the top of queue and 

executed more frequently. At the same time, background processes are pushed 

down and run less frequently, although for longer periods. 

Perhaps the most widespread scheduler algorithm is Multilevel Feedback Queue 

(MLFQ), which is implemented in all modern versions of Windows NT (2000, XP, 

Vista, 7 and Server), Mac OS X, NetBSD and Solaris kernels (up to version 2.6, 
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when it was replaced with Q(n) scheduler). MLFQ was first described in 1962 in a 

system known as the Compatible Time-Sharing System (Corbató et al., 1962). 

Fernando Corbató was awarded the Turing Award by the ACM in 1990 ‘for his 

pioneering work organizing the concepts and leading the development of the 

general-purpose, large-scale, time-sharing and resource-sharing computer 

systems, CTSS and Multics’. In MLFQ, jobs are organised into a set of queues Q0, 

Q1, …, Qi wherein a job is promoted to a higher queue if it does not finish within 

2i time units. The algorithm processes the job from the front of the lowest queue 

at all times, meaning that short processes are given preference. While having a 

very poor worst-case scenario, MLFQ turns out to be very efficient in practice 

(Becchetti et al., 2006). 

Staircase Scheduler (Corbet, 2004), Staircase Deadline Scheduler (Corbet, 2007), 

Brain F. Scheduler (Groves et al., 2009) and Multiple Queue Skiplist Scheduler 

(Kolivas, 2016) constitute a line of successive schedulers developed by Con 

Kolivas since 2004 which are based on a design of Fair Share Scheduler from Kay 

and Lauder (1988). None of these schedulers have been merged into the source 

code of mainstream kernels and they are available only as experimental ‘-ck’ 

patches. Although the concept behind those schedulers is similar to MLFQ, the 

implementation details differ significantly. The central element is a single, ranked 

array of processes for each CPU (‘staircase’). Initially, each process (P1, P2, …) is 

inserted at the rank determined by its base priority; the scheduler then picks up 

the highest ranked process (P) and runs it. When P has used up its time slice, it is 

reinserted into the array but at a lower rank, where it will continue to run but at 

a lower priority. When P exhausts its next time-slice, its rank is lowered again. P 

then continues until it reaches the bottom of the staircase, at which point it is 

moved up to one rank below its previous maximum, and is assigned two time-

slices. When P exhausts these two time-slices, it is reinserted once again in the 

staircase at a lower rank. When P once again reaches the bottom of the staircase, 

it is assigned another time-slice and the cycle repeats. P is also pushed back up 
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the staircase if it sleeps for a predefined period. This means that interactive tasks 

which tend to sleep more often should remain at the top of the staircase, while 

CPU-intensive processes should continuously expend more time-slices but at a 

lower frequency. Additionally, each rank level in the staircase has its own quota, 

and once the quota is expired all processes on that rank are pushed down. 

Most importantly, Kolivas’ work introduced the concept of ‘fairness’, in which 

each process gets a comparable share of CPU time to run, proportional to the 

priority. If the process spends much of its time waiting for I/O events, then its 

spent CPU time value is low, meaning that it is automatically prioritised for 

execution. This means that interactive tasks which spend most of their time 

waiting for user input get execution time when they need it. This represents the 

notion of ‘sleeper fairness’. This design also prevents a situation in which the 

process is ‘starved’, i.e. never executed.  

2.2.4.  TREE-BASED QUEUE 

While the work of Con Kolivas has never been merged into the mainstream Linux 

kernel, it has introduced the key concept of ‘fairness’, which is the crucial feature 

of the design of most current OS schedulers. At the time of writing, Linux kernel 

implements Completely Fair Scheduler (CFS), which was developed by Ingo 

Molnár and introduced in kernel version 2.6.23. A central element in this 

algorithm is a self-balancing red-black tree structure in which processes are 

indexed by spent processor time. CFS implements the Weighted Fair Queueing 

(WFQ) algorithm, in which the available CPU time-slices are split between 

processes in proportion to their priority weights (‘niceness’). WFQ is based on the 

idea of the ‘ideal processor’, meaning that each process should have an equal 

share of CPU time adjusted for their priority and total CPU load (Jones, 2009; 

Pabla, 2009). 
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Lozi et al. (2016) offers an in-depth explanation of the algorithm’s workings, 

noting potential issues regarding the CFS approach. The main criticism revolves 

around the four problematic areas: 

• Group Imbalance – the authors’ experiments have shown that not every 

core of their 64-core machine is equally loaded: some cores run either 

only one process or no processes at all while the rest of the cores were 

overloaded. It was found that the scheduler was not balancing the load 

because of the hierarchical design and complexity of the load tracking 

metric. To limit the complexity of the scheduling algorithm, the CPU cores 

are grouped into scheduling groups, i.e. nodes. When an idle core 

attempts to steal work from another node, it compares only the average 

load of its node with that of its victim’s node. It will steal work only if the 

average load of its victim’s group is higher than its own. This creates 

inefficiency since idle cores will be concealed by their nodes' average load. 

• Scheduling Group Construction – this concern relates to the way 

scheduling groups are constructed which is not adapted to modern NUMA 

machines. Applications in Linux can be pinned to a subset of available 

cores. CFS might assign the same cores to multiple scheduling groups with 

those groups then being ranked by distance, for example nodes one hop 

apart, nodes two hops apart and so on. This feature was designed to 

increase the probability that processes would remain close to their 

original NUMA node. However, this could result in the application being 

pinned to particular cores which are separated by more than one hop, 

with work never being migrated outside the initial core. This might mean 

that an application uses only one core. 

• Overload-on-Wakeup – this problem occurs when a process goes to sleep 

on a particular node and is then awoken by a process on the same node. 

In such a scenario, only cores in this scheduling group will be considered 

to run this process. The aim of this optimisation is to improve cache 
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utilisation by running a process close to the waker process, meaning that 

there is the possibility of them sharing the last-level memory cache. 

However, the might be the scheduling of a process on a busy core when 

there are idle cores in alternative nodes, resulting in the severe under-

utilisation of the machine. 

• Missing Scheduling Domains – this is the result of a line of code omission 

while refactoring the Linux kernel source code. The number of scheduling 

domains is incorrectly updated when a particular code is disabled and 

then enabled, and a loop exits early. As a result, processes can be run only 

on the same scheduling group as their parent process. 

Lozi et al. (2016) have provided a set of patches for the above issues, and have 

presented experimental results after applying fixes. They have also provided a set 

of tools on their site which could be used to detect those glitches early in the 

Linux kernel lifecycle. Moreover, it has been argued (Lozi et al., 2016) that the 

sheer number of optimisations and modifications implemented into CFS 

scheduler changed the initially simple scheduling policy into one which was very 

complex and bug-prone – as of 26th June 2018, there were 742 commits to CFS 

source code (‘fair.c’ file in github.com) since November 2011. As such, an 

alternative approach is perhaps required, such as a scheduler architecture based 

on pluggable components. This work clearly demonstrates the immerse 

complexity of scheduling solutions catering to the complexities of modern 

hardware. 

2.3. CLUSTER SCHEDULERS 

Distributed computing differs from traditional computing in many ways. The 

sheer physical size of the system itself means that thousands of machines may be 

involved, with thousands of users being served and millions of API calls or other 

requests needing processed. While responsiveness and low overheads tend to be 
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the focus of process schedulers, the focus of cluster schedulers is to focus upon 

high throughput, fault-tolerance and scalability. Cluster schedulers usually work 

with queues of jobs spanning to hundreds of thousands, and indeed sometimes 

even millions of jobs. They also seem to be more customised and tailored to the 

needs of organisation which is using them.  

Cluster schedulers usually provide complex administration tools with a wide 

spectrum of tuneable parameters and flexible workload policies. All configurable 

parameters can usually be accessed through configuration files or via the GUI 

interface. However, it has been documented that site administrators only rarely 

stray from a default configuration (Etsion and Tsafrir, 2005). The most used 

scheduling algorithm is simply a First-Come-First-Serve (FCFS) strategy with 

backfilling optimisation. 

The most common issues which cluster schedulers must deal with are:  

• Unpredictable and varying load (Moreno et al., 2013); 

• Mixed batch jobs and services (ibid.); 

• Complex policies and constraints (Adaptive Computing, 2002); 

• Fairness (ibid.); 

• A rapidly increasing workload and cluster size (Isard et al., 2007); 

• Legacy software (ibid.); 

• Heterogeneous nodes with a varying level of resources and availability 

(Thain et al., 2005); 

• The detection of underperforming nodes (Zhang et al., 2014b); 

• Issues related to fault-tolerance (ibid.) and hardware malfunctions 

(Gabriel et al., 2004). 

Another interesting challenge, although one which is rarely tackled by 

commercial schedulers, is minimising total power consumption. Typically, idle 
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machines consume around half of their peak power (McCullough et al., 2011). 

Therefore, the total power consumed by a Data Centre can be lowered by 

concentrating tasks on a reduced number of machines and powering down the 

remaining nodes (Pinheiro et al., 2001; Lang and Patel, 2010).  

The proposed grouping of Cluster schedulers loosely follows the taxonomy 

presented in Schwarzkopf et al. (2013). 

2.3.1.  MONOLITHIC SCHEDULER 

The earliest Cluster schedulers were built with a centralised architecture in which 

a single scheduling policy allocated all incoming jobs. The tasks would be picked 

from the head of the queue and scheduled on system nodes in a serial manner 

by an allocation loop. Examples of centralised schedulers include Maui (Jackson 

et al., 2001) and its successor Moab (Adaptive Computing, 2015), Univa Grid 

Engine (Gentzsch, 2001), Load Leveler (Kannan et al., 2001), Load Sharing Facility 

(Etsion and Tsafrir, 2005), Portable Batch System (Bode et al., 2000) and its 

successor TORQUE (Klusáček et al., 2013), Alibaba’s Fuxi (Zhang et al., 2014b), 

Docker Swarm (Naik, 2016), Kubernetes (Vohra, 2017) and several others.  

Monolithic schedulers implement a wide array of policies and algorithms, such as 

FCFS, FCFS with backfilling and gang scheduling, Shortest Job First (SJF), and 

several others. The Kubernetes (Greek: ‘κυβερνήτης’) scheduler implements a 

range of scoring functions such as node or pod affinity/anti-affinity, resources 

best-fit and worst-fit, required images locality, etc. which can be additionally 

weighted and combined into node’s score values (Lewis and Oppenheimer, 2017). 

As an interesting note – one of the functions (BalancedResourceAllocation 

routine) implemented in Kubernetes evaluates the balance of utilised resources 

(CPU and memory) on a scored node. 
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Monolithic schedulers are often plagued with a ‘head-of-queue’ blocking 

problem in which as a long job is awaiting a free node, the shorter jobs which 

follow are held. To partially counter this problem, the schedulers often 

implement ‘backfilling’ optimisation, where shorter jobs are allowed to execute 

while the long job is waiting. Perhaps the most widespread scheduler is Simple 

Linux Utility for Resource Management (SLURM) (Yoo et al., 2003). SLURM uses 

a best-fit algorithm which is based on either Hilbert curve scheduling or fat tree 

network topology; it can scale to thousands of CPU cores (Pascual, 2009). At the 

time of writing, the fastest supercomputer in the world is Sunway TaihuLight 

(Chinese: ‘神威·太湖之光’), which uses over 40k CPU processors, each of which 

contains 256 cores. Sunway TaihuLight’s workload in managed by SLURM 

(TOP500 Project, 2017). 

The Fuxi (Chinese: ‘伏羲’) scheduler presents a unique strategy in that it matches 

newly-available resources against the backlog of tasks rather than matching tasks 

to available resources on nodes. This technique allowed Fuxi to achieve a very 

high utilisation of Cluster resources, namely 95% utilisation of memory and 91% 

utilisation of CPU. Fuxi has been supporting Alibaba’s workload since 2009, and 

it scales to ca. 5k nodes (Zhang et al., 2014b). 

While Cluster scheduler designs have generally moved towards more parallelised 

solutions, as demonstrated in the next subsection, centralised architecture is still 

the most common approach in High-Performance Computing. Approximately half 

the world’s supercomputers use SLURM as their workload manager, while Moab 

is currently deployed on about 40% of the top 10, top 25 and top 100 on the 

TOP500 list (TOP500 Project, 2017). 

The research presented in Chapter 6 attempted to improve a centralised 

scheduler’s design by introducing metaheuristic algorithms as a fundamental 
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component of scheduling logic. The resulting metaheuristic load balancer 

prototype is presented together with the experimental results and discussion. 

2.3.2.  CONCURRENT SCHEDULING 

Historically, monolithic schedulers were frequently built on the premise of 

supporting a single ‘killer-application’ (Barroso et al., 2003). However, the 

workload of the data centre has become more heterogeneous as systems and a 

modern Cluster system runs hundreds of unique programs with distinctive 

resource requirements and constraints. A single code base of centralised 

workload manager means that it is not easy to add a variety of specialised 

scheduling policies. Furthermore, as workload size is increased, the time to reach 

a scheduling decision is progressively limited. The result of this is a restriction in 

the selection of scheduling algorithms to less sophisticated ones, which affects 

the quality of allocations. To tackle those challenges, the Cluster schedulers 

evolved into more parallelised designs. 

2.3.2.1. STATICALLY PARTITIONED 

The solution to the numerous policies and the lack of parallelism in central 

schedulers was to split Cluster into specialised partitions and manage them 

separately. Quincy (Isard et al., 2009), a scheduler managing workload of 

Microsoft’s Dryad, follows this approach.  

The development of an application for Dryad is modelled as a Directed Acyclic 

Graph (DAG) model in which the developer defines an application dataflow 

model and supplies subroutines to be executed at specified graph vertices. The 

scheduling policies and tuning parameters are specified by adjusting weights and 

capacities on a graph data structure. The Quincy implements a Greedy strategy. 

In this approach, the scheduler assumes that the currently scheduled job is the 
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only job running on a cluster and so always selects the best node available. Tasks 

are run by remote daemon services which periodically update the job manager 

about the vertex’s execution status. A vertex might be re-executed in case of 

failure. If any task has failed more than a configured number of times, the entire 

job is marked as failed (Isard et al., 2007). 

Microsoft has built several frameworks on top of Dryad, such as COSMOS 

(Helland and Harris, 2011) which provided SQL-like language optimised for 

parallel execution. COSMOS was designed to support data-driven search and 

advertising within the Windows Live services owned by Microsoft, such as Bing, 

MSN and Hotmail. It analysed user behaviours in multiple contexts, such as what 

people searched for, what links they clicked, what sites they visited, the browsing 

order, and the ads they clicked on (ibid.). Although the Dryad project had several 

preview releases, it was ultimately dropped when Microsoft shifted its focus to 

the development of Hadoop. 

The main criticism of the static partitioning is inflexibility – the exclusive sets of 

machines in a Cluster are dedicated to certain types of workload. That might 

result in a part of scheduler being relatively idle, while other nodes are very active. 

This leads to the Cluster’s fragmentation and the suboptimal utilisation of 

available nodes since no machine sharing is allowed. 

2.3.2.2. TWO-LEVEL HIERARCHY 

The solution to the inflexibility of static partitioning was to introduce two-level 

architecture in which a Cluster is partitioned dynamically by a central coordinator. 

The actual task allocations take place at the second level of architecture in one of 

the specialised schedulers. The first two-level scheduler was Mesos (Hindman et 

al., 2011), developed at the University of California (Berkeley), and is now hosted 

in the Apache Software Foundation. Mesos was a foundation base for other 
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Cluster systems such as Twitter’s Aurora (Aurora, 2018) and Marathon 

(Mesosphere, 2018). 

Mesos introduces a two-level scheduling mechanism in which a centralised 

Mesos Master acts as a resource manager that dynamically allocates resources 

to different scheduler frameworks, for example Hadoop, Spark and Kafka, via 

Mesos Agents. Mesos Agents are deployed on cluster nodes and use Linux’s 

cgroups or Docker container (depending upon the environment) for resource 

isolation. Resources are distributed to the frameworks in the form of ‘offers’ 

which contain currently unused resources. Scheduling frameworks have 

autonomy in deciding which resources to accept and which tasks to run on them. 

Mesos works most effectively when tasks are relatively small, short-lived and 

have a high resource ‘churn rate’, i.e. they relinquish resources more frequently. 

In the current version 1.4.1, only one scheduling framework can examine a 

resource offer at any given time. This resource is effectively locked for the 

duration of a scheduling decision, meaning that concurrency control is pessimistic. 

Several practical considerations for using Mesos in the production environment 

as well as best practices advice are presented in Campbell (2017). 

Two-level schedulers offered a working solution to the lack of parallelisation 

found in central schedulers and the low efficiency of statically partitioned 

Clusters. Nevertheless, the mechanism used causes resources to remain locked 

while the resources offer is being examined by a specialised scheduler. This 

means the benefits from parallelisation are limited due to pessimistic locking. In 

addition, the schedulers do not coordinate between each other and must rely on 

a centralised coordinator to make them offers, which further restricts their 

visibility of the resources in a Cluster. 
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2.3.2.3. SHARED STATE 

To address the limited parallelism of the two-level scheduling design, the 

alternative approach taken by some organisations was to redesign schedulers’ 

architecture into several schedulers, all working concurrently. The schedulers 

work on a shared Cluster’s state information and manage their resources’ 

reservations using an optimistic concurrency control method. A sample of such 

systems includes: Microsoft’s Apollo (Boutin et al., 2014), Omega – the Google 

Borg’s spinoff (Schwarzkopf et al., 2013), HashiCorp’s Nomad (HashiCorp, 2018), 

and also Borg (Burns et al., 2016) itself which has been refactored from 

monolithic into parallel architecture after the experimentations with Omega. 

By default, Nomad runs one scheduling worker per CPU core. Scheduling workers 

pick job submissions from the broker queue and then submit it to one of the three 

schedulers: a long-lived services scheduler, a short-lived batch jobs scheduler and 

a system scheduler, which is used to run internal maintenance routines. 

Additionally, Nomad can be extended to support custom schedulers. Schedulers 

process and generate an action plan, which constitutes a set of operations to 

create new allocations, or to evict and update existing ones (HashiCorp, 2018). 

Microsoft’s Apollo design seems to be primarily tuned for high tasks churn, and 

at peak times is capable of handling more than 100k of scheduling requests per 

second on a ca. 20k nodes cluster. Apollo uses a set of per-job schedulers called 

Job Managers (JM) wherein a single job entity contains a multiplicity of tasks 

which are then scheduled and executed on computing nodes. Tasks are generally 

short-lived batch jobs (Boutin et al., 2014). Apollo has a centralised Resource 

Monitor (RM), while each node runs its own Process Node (PN) with its own 

queue of tasks. Each PN is responsible for local scheduling decisions and can 

independently reorder its job queue to allow smaller tasks to be executed 

immediately, while larger tasks wait for resources to become available. 
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Additionally, PN computes a wait-time matrix based on its queue which publicises 

the future availability of the node’s resources. Scheduling decisions are made 

optimistically by JMs based on the shared cluster’s resource state, which is 

continuously retrieved and aggregated by RM. This design helps to avoid 

decisions which are suboptimal and conflicting were the architecture to be 

completely decentralised (ibid.).  

Furthermore, Apollo splits tasks into those which are regular and those which are 

opportunistic. Opportunistic tasks are used to fill resource gaps left by regular 

tasks. The system also prevents overloading the cluster by limiting the total 

number of regular tasks that can be run on a cluster. Apollo implements locality 

optimisation by taking into consideration the location of data for a given task. For 

example, the system will score nodes higher if the required files are already on 

the local drive as opposed to machines needing to download data (ibid.). 

Historically, Omega was a spinoff from Google’s Borg scheduler. Despite the 

various optimisations acquired by Borg over the years, including internal 

parallelism and multi-threading, in order to address the issues of head-of-line 

blocking and scalability problems, Google decided to create an Omega scheduler 

from the ground up (Schwarzkopf et al., 2013). Omega introduced several 

innovations, such as storing the state of the cluster in a centralised Paxos-based 

store that was accessed by multiple components simultaneously. The eventual 

conflicts were resolved by optimistic locking concurrency control. This feature 

allowed Omega to run several schedulers at the same time and improve the 

scheduling throughput. Many of Omega’s innovations have since been folded 

into Borg (Burns et al., 2016). 

Omega’s authors highlight the disadvantages of the shared state and parallel 

reservation of resources, namely: (i) the state of a node could have changed 

considerably when the allocation decision was being made, and it is no longer 
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possible for this node to accept a job; (ii) two or more allocations to the same 

node could have conflicted and both scheduling decisions are nullified; and (iii) 

this strategy introduces significant difficulties when gang-scheduling a batch of 

jobs as (i) or (ii) are happening (Schwarzkopf et al., 2013). 

In this research, special attention was given to Google’s Borg, one of the most 

advanced and published schedulers. Moreover, while other schedulers are 

designed to support either a high churn of short-term jobs, for example 

Microsoft’s Apollo (Boutin et al., 2014), Alibaba’s Fuxi (Zhang et al., 2014b), or 

else a limited number of long-term services, such as Twitter’s Aurora (Aurora, 

2018), Google’s engineers have created a system which supports a mixed 

workload. Borg has replaced two previous systems, Babysitter and the Global 

Work Queue, which were used to manage long-running services and batch jobs 

separately (Burns et al., 2016). Given the significance of Borg’s design for this 

research, it is discussed separately in section 2.4. 

2.3.3.  DECENTRALISED LOAD BALANCER 

This research proposes a new type of Cluster’s workload orchestration model in 

which the actual scheduling logic is processed on nodes themselves, which is a 

significant step towards completely decentralised Cluster orchestration. The 

cluster state is retrieved from a subnetwork of BAs, although this system does 

not rely on the accuracy of this information and uses it exclusively to retrieve an 

initial set of candidate nodes where a task could potentially run. The actual task 

to machine matching is performed between the nodes themselves. As such, this 

design avoids the pitfalls of the concurrent resource locking, which includes 

conflicting scheduling decisions and the non-current state of nodes’ information. 

Moreover, the decentralisation of the scheduling logic also lifts complexity 

restrictions on scheduling logic, meaning that a wider range of scheduling 

algorithms can be used, such as metaheuristic methods. 



TAXONOMY OF SCHEDULERS 

33 | P a g e  
 

 

Chapter 7 presents MASB – a decentralised agent-based load balancer prototype 

– in which the TS algorithm supports making scheduling decisions separately on 

each node. Furthermore, MASB breaks with the concept that the execution of a 

task is immovable or unstoppable. As a result of the advances of the virtualisation 

technology and the introduction of the VM-LM feature, a running program can 

now be offloaded to an alternative node without stopping its execution. 

Therefore, MASB is not only scheduling the coming tasks, it is also actively moving 

the currently existing tasks so that they can fit better on the available resources 

of the Cluster, hence the name ‘load balancer’. 

2.3.4.  BIG DATA SCHEDULERS 

In taxonomy presented in this chapter, Big Data schedulers are visualised as a 

separate branch from Cluster Schedulers. Although it could be argued that Big 

Data Schedulers belong to one of the Cluster schedulers designs discussed 

previously, this separation signifies their over-specialisation, and that only a very 

restricted set of operations is supported (Isard et al., 2007; Zaharia et al., 2010). 

The scheduling mechanisms are often intertwined with the programming 

language features, with Big Data frameworks often providing their own API 

(Zaharia et al., 2009; White, 2012) and indeed sometimes even their own custom 

programming language, as seen with Skywriting in CIEL (Murray et al., 2011).  

Generally speaking, Big Data frameworks provide very fine-grained control over 

how data is accessed and processed over the cluster, such as Spark RDD objects 

persist operations or partitioners (Zaharia et al., 2012). Such a deep integration 

of scheduling logic with applications is a distinctive feature of Big Data technology. 

At the time of writing, Big Data is also the most active distributed computing 

research area, with new technologies, frameworks and algorithms being released 

on a regular basis. 
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Big Data is the term given to the storage and processing of any data sets so large 

and complex that they become unrealistic to process using traditional data 

processing applications based on relational database management systems. It 

depends on the individual organisation as to how much data is described as Big 

Data, but the following examples may be considered to get an idea of scale: 

• The NYSE (The New York Stock Exchange) produces about 15 TB of new 

trade data per day (Singh, 2017); 

• Facebook warehouse stores upwards of 300 PB of data, with an incoming 

daily rate of about 600 TB (Vagata and Wilfong, 2014); 

• The Large Hadron Collider (Geneva, Switzerland) produces about fifteen 

petabytes of data per year (White, 2012). 

As a result of a massive size of the stored and processed data, the central element 

of a Big Data framework is its distributed file system, such as Hadoop Distributed 

File System (Gog, 2012), Google File System (Ghemawat et al., 2003) and its 

successor Colossus (Corbett et al., 2013). The nodes in a Big Data cluster fulfil the 

dual purposes of storing the distributed file system parts, usually in a few replicas 

for fault-tolerance means, and also providing a parallel execution environment 

for system tasks. The speed difference between locally-accessed and remotely 

stored input data is very substantial, meaning that Big Data schedulers are very 

focused on providing ‘data locality’ which means running a given task on a node 

where input data are stored or are in the closest proximity to it. 

The origins of the Big Data technology are in the ‘MapReduce’ programming 

model, which implements the concept of Google’s inverted search index. 

Developed in 2003 (Dean and Ghemawat, 2010) and later patented in 2010 (U.S. 

Patent 7,650,331), the Big Data design has evolved significantly since, and is 

presented in the subsections below. 
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2.3.4.1. MAPREDUCE 

MapReduce is the most widespread principle which has been adopted for 

processing large sets of data in parallel. The name MapReduce originally referred 

only to the Google’s proprietary technology, but the term is now broadly used to 

describe a wide range of software, such as Hadoop, CouchDB, Infinispan and 

MongoDB. The key features of MapReduce are its scalability and fine-grained 

fault-tolerance. The original thinking behind MapReduce was inspired by the 

‘map’ and ‘reduce’ operations present in Lisp and other functional programming 

languages (Dean and Ghemawat, 2010): 

• ‘Map’ is an operation used in the first step of computation and is applied 

to all available data that performs the filtering and transforming of all key-

value pairs from the input data set. The ‘map’ operation is executed in 

parallel on multiple machines on a distributed file system. Each ‘map’ task 

can be restarted individually and a failure in the middle of a multi-hour 

execution does not require restarting the whole job from scratch. 

• The ‘Reduce’ operation is executed after ‘map’ operations complete. It 

performs finalising operations, such as counting the number of rows 

matching specified conditions and yielding fields frequencies. The 

‘Reduce’ operation is fed using a stream iterator, thereby allowing the 

framework to process list of items one at the time, thus ensuring that the 

machine memory is not overloaded (Dean and Ghemawat, 2010; Gog, 

2012). 

Following the development of the MapReduce concept, Yahoo! engineers began 

the Open Source project Hadoop. In February 2008, Yahoo! announced that its 

production search index was being generated by a 10k-core Hadoop cluster 

(White, 2012). Subsequently, many other major Internet companies, including 

Facebook, LinkedIn, Amazon and Last.fm, joined the project and deployed it 
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within their architectures. Hadoop is currently hosted in the Apache Software 

Foundation as an Open Source project. 

As in Google’s original MapReduce, Hadoop’s users submit jobs which consist of 

‘map’ and ‘reduce’ operation implementations. Hadoop splits each job into 

multiple ‘map’ and ‘reduce’ tasks, which subsequently process each block of 

input data, typically 64MB or 128MB (Gog, 2012). Hadoop’s scheduler allocates 

a ‘map’ task to the closest possible node to the input data required – so-called 

‘data locality’ optimisation. In so doing, the following allocation order is used: the 

same node, the same rack and finally a remote rack (Zaharia et al., 2009). To 

further improve performance, the Hadoop framework uses ‘backup tasks’ in 

which a speculative copy of a task is run on a separate machine in order to finish 

the computation faster. If the first node is available but behaving poorly, it is 

known as a ‘straggler’, with the result that the job is as slow as the misbehaving 

task. This behaviour can occur for many reasons, such as faulty hardware or 

misconfiguration. Google estimated that using ‘backup tasks’ could improve job 

response times by 44% (Dean and Ghemawat, 2010). 

At the time of writing, Hadoop comes with a selection of schedulers, as outlined 

below: 

• ‘FIFO Scheduler’ is a default scheduling system in which the user jobs are 

scheduled using a queue with five priority levels. Typically, jobs use the 

whole cluster, so they must wait their turn. When another job scheduler 

chooses the next job to run, it selects jobs with the highest priority, 

resulting in low-priority jobs being endlessly delayed (Zaharia et al., 2009; 

White, 2012). 

• ‘Fair Scheduler’ is part of the cluster management technology Yet Another 

Resource Negotiator (YARN) (Vavilapalli et al., 2013), which replaced the 

original Hadoop engine in 2012. In Fair Scheduler, each user has their own 
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pool of jobs and the system focuses on giving each user a proportional 

share of cluster resources over time. The scheduler uses a version of ‘max-

min fairness’ (Bonald et al., 2006) with minimum capacity guarantees that 

are specified as the number of ‘map’ and ‘reduce’ task slots to allocate 

tasks across users’ job pools. When one pool is idle, and the minimum 

share of the tasks slots is not being used, other pools can use its available 

task slots. 

• ‘Capacity Scheduler’ is the second scheduler introduced within the YARN 

framework. In essence, this can be seen as a number of separate 

MapReduce engines with FCFS scheduling for each user or organisation. 

Those queues can be hierarchical, with a queue having children queues, 

and with each queue being allocated task slots capacity which can be 

divided into ‘map’ and ‘reduce’ tasks. Task slots allocation between 

queues is similar to the sharing mechanism between pools found in Fair 

Scheduler (White, 2012).  

The main criticism of MapReduce is the acyclic dataflow programming model. The 

stateless ‘map’ task must be followed by a stateless ‘reduce’ task, which is then 

executed by the MapReduce engine. This model makes it challenging to 

repeatedly access the same dataset, a common action during the execution of 

iterative algorithms (Zaharia et al., 2009).  

2.3.4.2. ITERATIVE COMPUTATIONS 

Following the success of Apache Hadoop, a number of alternative designs were 

created to address Hadoop’s suboptimal performance when running iterative 

MapReduce jobs. Examples of such systems include HaLoop (Bu et al., 2010) and 

Spark (Zaharia et al., 2010). 
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HaLoop has been developed on top of Hadoop, with various caching mechanisms 

and optimisations added, and making the framework loop-aware, for example by 

adding programming support for iterative application and storing the output data 

on the local disk. Additionally, HaLoop’s scheduler keeps a record of every data 

block processed by each task on physical machines, and tries to schedule 

subsequent tasks taking inter-iteration locality into account. This feature helps to 

minimise costly remote data retrieval, meaning that tasks can use data cached 

on a local machine (Bu et al., 2010; Gog, 2012). 

Similar to HaLoop, Spark’s authors noted a suboptimal performance of iterative 

MapReduce jobs in the Hadoop framework. In certain kinds of application, such 

as iterative Machine Learning algorithms and interactive data analysis tools, the 

same data are repeatedly accessed in multiple steps and then discarded; 

therefore, it does not make sense to send it back and forward to central node. In 

such scenarios Spark will outperform Hadoop (Zaharia et al., 2012). 

Spark is built on top of HDSF, but it does not follow the two-stage model of 

Hadoop. Instead, it introduces resilient distributed datasets (RDD) and parallel 

operations on these datasets (Gog, 2012):  

• ‘reduce’ - combines dataset elements using a provided function;  

• ‘collect’ - sends all the elements of the dataset to the user program; 

• ‘foreach’ - applies a provided function onto every element of a dataset. 

Spark provides two types of shared variables: 

• ‘accumulators’ - variables onto each worker can apply associative 

operations, meaning that they are efficiently supported in parallel; 

• ‘broadcast variables’ - sent once to every node, with nodes then keeping 

a read-only copy of those variables (Zecevic, 2016). 
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The Spark job scheduler implementation is conceptually similar to that of Dryad’s 

Quincy. However, it considers which partitions of RDD are available in the 

memory. The framework then re-computes missing partitions, and tasks are sent 

to the closest possible node to the input data required (Zaharia et al., 2012).  

Another interesting feature implemented in Spark is the concept of ‘delayed 

scheduling’. In situations when a head-of-line job that should be scheduled next 

cannot launch a local task, Spark’s scheduler delays the task execution, and lets 

other jobs start their tasks instead. However, if the job has been skipped long 

enough, typically up to ten seconds, it launches a non-local task. Since a typical 

Spark workload consists of short tasks, meaning that it has a high task slots churn, 

tasks have a higher chance of being executed locally. This feature helps to achieve 

almost optimal ‘data locality’ with a minimal impact on fairness, and the cluster 

throughput can be almost doubled, as shown in an analysis performed on 

Facebook’s workload traces (Zaharia et al., 2010).  

2.3.4.3. DISTRIBUTED STREAM PROCESSING 

The core concept behind distributed stream processing engines is the processing 

of incoming data items in real time by modelling a data flow in which there are 

several stages which can be processed in parallel. Other techniques include 

splitting the data stream into multiple sub-streams, and redirecting them into a 

set of networked nodes (Liu and Buyya, 2017). 

Inspired by Microsoft’s research into DAG models (Isard et al., 2009), Apache 

Storm (Storm) is a distributed stream processing engine used by Twitter following 

extensive development (Toshniwal et al., 2014). Its initial release was 17 

September 2011, and by September 2014 it had become open-source and an 

Apache Top-Level Project. 
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The defined topology acts as a distributed data transformation pipeline. The 

programs in Storm are designed as a topology in the shape of DAG, consisting of 

‘spouts’ and ‘bolts’: 

• ‘Spouts’ read the data from external sources and emit them into the 

topology as a stream of ‘tuples’. This structure is accompanied by a 

schema which defines the names of the tuples’ fields. Tuples can contain 

primitive values such as integers, longs, shorts, bytes, strings, doubles, 

floats, booleans, and byte arrays. Additionally, custom serialisers can be 

defined to interpret this data. 

• The processing stages of a stream are defined in ‘bolts’ which can perform 

data manipulation, filtering, aggregations, joins, and so on. Bolts can also 

constitute more complex transforming structures that require multiple 

steps (thus, multiple bolts). The bolts can communicate with external 

applications such as databases and Kafka queues (Toshniwal et al., 2014). 

In comparison to MapReduce and iterative algorithms introduced in the 

subsections above, Storm topologies, once created, run indefinitely until killed. 

Given this, the inefficient scattering of application’s tasks among Cluster nodes 

has a lasting impact on performance. Storm’s default scheduler implements a 

Round Robin strategy and for resource allocation purposes, Storm assumes that 

every worker is homogenous. This design results in frequent resource over-

allocation and inefficient use of inter-system communications (Kulkarni et al, 

2018). To remedy this phenomenon, more complex solutions are proposed such 

as D-Storm (Liu and Buyya, 2017). D-Storm’s scheduling strategy is based on a 

metaheuristic algorithm Greedy, which also monitors the volume of the incoming 

workload and is resource-aware. 

Typical examples of Storm’s usage include:  
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• processing a stream of new data and updating databases in real time, e.g. 

in trading systems wherein data accuracy is crucial;  

• continuously querying and forwarding the results to clients in real time, 

e.g. streaming trending topics on Twitter into browsers, and  

• a parallelisation of computing-intensive query on the fly, i.e. a distributed 

Remote Procedure Call (RPC) wherein a large number of sets are being 

probed (Marz, 2011). 

Storm has gained widespread popularity and is being used by companies such as 

Groupon, Yahoo!, Spotify, Verisign, Alibaba, Baidu, Yelp, and many more. A 

comprehensive list of users is available at the storm.apache.org website. 

At the time of writing, Storm is being replaced at Twitter by newer distributed 

stream processing engine – Heron (Kulkarni et al, 2018) which continues the DAG 

model approach, but focuses on various architectural improvements such as 

reduced overhead, testability and easier access to debug data. 

2.4. GOOGLE’S BORG 

To support its operations, Google utilises a high number of data centres around 

the world, which at the time of writing number sixteen. Borg admits, schedules, 

starts, restarts and monitors the full range of applications run by Google. Borg 

users are Google developers and system administrators, and users submit their 

workload in the form of jobs. A job may consist of one of more tasks that all run 

the same program (Burns et al., 2016). 

2.4.1.  DESIGN CONCEPTS 

The central module of the Borg architecture is BorgMaster, which maintains an 

in-memory copy of most of the state of the cell. This state is also saved in a 

distributed Paxos-based store (Lamport, 1998). While BorgMaster is logically a 
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single process, it is replicated five times in order to improve fault-tolerance. The 

main design priority of Borg was resilience rather than performance. Google 

services are seen as very durable and reliable, the result of multi-tier architecture, 

where no component is a single point of failure exists. Current allocations of tasks 

are saved to Paxos-based storage, and the system can recover even if all five 

BorgMaster instances fail. Each cell in the Google Cluster in managed by a single 

BorgMaster controller. Each machine in a cell runs BorgLet, an agent process 

responsible for starting and stopping tasks and also restarting them should they 

fail. BorgLet manages local resources by adjusting local OS kernel settings and 

reporting the state of its node to the BorgMaster and other monitoring systems. 

The Borg system offers extensive options to control and shape its workload, 

including priority bands for tasks (i.e. monitoring, production, batch, and best 

effort), resources quota and admission control. Higher priority tasks can pre-

empt locally-running tasks in order to obtain required resources. The exception 

is made for production tasks which cannot be pre-empted. Resource quotas are 

part of admission control and are expressed as a resource vector at a given 

priority, for a period of time (usually months). Jobs with insufficient quotas are 

rejected immediately upon submission. Production jobs are limited to actual 

resources available to BorgMaster in a given cell. The Borg system also exposes a 

web-based interface called Sigma, which displays the state of all users’ jobs, 

shows details of their execution history and, if the job has not been scheduled, 

also provides a ‘why pending?’ annotation where there is guidance about how to 

modify the job’s resource requests to better fit the cell (Verma et al., 2015). 

The dynamic nature of the Borg system means that tasks might be started, 

stopped and then rescheduled on an alternative node. Google engineers have 

created the concept of a static Borg Name Service (BNS) which is used to identify 

a task run within a cell and to retrieve its endpoint address. The BNS address is 

predominantly used by load balancers to transparently redirect RPC calls to a 
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given task's endpoints. Meanwhile, the Borg's resource reclamation mechanisms 

help to reclaim under-utilised resources from cell nodes for non-production tasks. 

Whilst in theory users may request high resource quotas for their tasks, in 

practice they are rarely fully utilised in a continuous manner; rather, they have 

peak times of day or are used in this way when coping with a denial-of-service 

attack. BorgMaster has routines that estimate resource usage levels for a task 

and reclaim the rest for low-priority jobs from the batch or the best effort bands 

(Verma et al., 2015). 

2.4.2.  JOBS SCHEDULERS 

Early versions of Borg had a simple, synchronous loop that accepted jobs requests 

and evaluated on which node to execute them. The current design of Borg 

deploys several schedulers working in parallel – the scheduler instances use a 

share state of the available resources, but the resource offers are not locked 

during scheduling decisions (optimistic concurrency control). In case of conflict, 

when two or more schedulers allocate jobs to the same resources, all the jobs 

involved are returned to the jobs queue (Schwarzkopf et al., 2013). 

When allocating a task, Borg’s scheduler scores a set of available nodes and 

selects the most feasible machine for this task. Initially, Borg implemented a 

variation of Enhanced Parallel Virtual Machine algorithm (E-PVM) (Amir et al., 

2000) for calculating the task allocation score. Although this resulted in the fair 

distribution of tasks across nodes, it also resulted in increased fragmentation and 

later difficulties when fitting large jobs which required the most of the node’s 

resources or even the whole node itself. An opposite to the E-PVM approach is a 

best-fit strategy, which, in turn, packs tasks very tightly. The best-fit approach 

may result in the excessive pre-empting of other tasks running on the same node, 

especially when the resources required are miscalculated by the user, or when 

the application has frequent load spikes. The current model used by Borg’s 
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scheduler is a hybrid approach that tries to reduce resource usage gaps (Verma 

et al., 2015). 

Borg also takes advantage of resources pre-allocation using 'allocs' (short for 

allocation). Allocs can be used to pre-allocate resources for future tasks in order 

to retain resources between restarting a task or to gather class-equivalent or 

related tasks, such as web applications and associated log-saver tasks, onto the 

same machine. If an alloc is moved to another machine, its tasks are also 

rescheduled. 

One point to note is that, similar to MetaCentrum users (Klusáček and Rudová, 

2010), Google’s users tend to overestimate the memory resources needed to 

complete their jobs, in order to prevent jobs being killed due to exceeding the 

allocated memory. In over 90% of cases, users tend to overestimate the amount 

of resources required, wasting in some cases close to 98% of the requested 

resource (Moreno et al., 2013; Ray et al., 2017). 

2.4.3.  OPTIMISATIONS 

Over the years, Borg design has acquired a number of optimisations, namely: 

• Score caching – checking the node’s feasibility and scoring it is a 

computation-expensive process. Therefore, scores for nodes are cached 

and small differences in the required resources are ignored; 

• Equivalence classes – submitted jobs often consist of a number of tasks 

which use the same binary and which have identical requirements. Borg’s 

scheduler considers such a group of tasks to be in the same equivalence 

class. It evaluates only one task per equivalence class against a set of 

nodes, and later reuses this score for each task from this group; 
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• Relaxed randomisation – instead of evaluating a task against all available 

nodes, Borg examines machines in random order until it finds enough 

feasible nodes. It then selects the highest scoring node in this set. 

While the Borg architecture remains heavily centralised, this approach does seem 

to be successful. Whilst this eliminates head-of-line job blocking problems and 

offers better scalability, it also generates additional overheads for solving 

resource collisions. Nevertheless, the benefits from better scalability often 

outweigh the incurred additional computation costs which arise when scalability 

targets are achieved (Schwarzkopf et al., 2013). 

2.5. SUMMARY AND CONCLUSIONS 

This chapter has presented a taxonomy of available schedulers, ranging from 

early implementations to modern versions. Aside from optimising throughput, 

different class schedulers have evolved to solve different problems. For example, 

while OS schedulers maximise responsiveness, Cluster schedulers focus on 

scalability, provide support a wide range of unique (often legacy) applications, 

and maintain fairness. Big Data schedulers are specialised to solve issues 

accompanying operations on large datasets and their scheduling mechanisms are 

often extensively intertwined with programming language features.  

Table 3 presents a comparison of the presented schedulers with their main 

features and deployed scheduling algorithms: 
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OS 
Schedulers No No 

Simple 
(compile-time 
and runtime 
parameters) 

CS, CQ, MLFQ, O(n), 
O(1), Staircase, 

WFQ 

very low - 
low 

• single machine 
• NUMA awareness 
• responsiveness 
• simple configuration 

Cluster 
Schedulers 

Yes1 Yes 
Complex 

(configuration 
files and GUI) 

FCFS (backfilling and 
gang-scheduling), 

SJF, Best-Fit, Scoring 
Functions 

low - high 

• distributed nodes 
• fairness 
• complex sharing policy 
• power consumption 
• fault-tolerance  

Big Data 
Schedulers 

Yes2 Yes 
Complex 

(configuration 
files and GUI) 

Best-Fit, FCFS 
(locality and gang-

scheduling), Greedy, 
Fair Scheduler, 
Round Robin  

low - 
medium 

• specialised frameworks 
• parallelism 
• distributed data storage 
• massive data 

1. Cluster users are notorious in overestimating resources needed for the completion of their tasks, which results in 
cluster system job schedulers often over-allocating resources (Klusáček and Rudová, 2010; Moreno et al., 2013). 

2. MapReduce jobs tend to have consistent resource requirements, i.e. in majority of cases, every ‘map’ task 
processes roughly the same amount of data (input data block size is constant), while ‘reduce’ task requirements 
shall be directly correlated to the size of returned data. 

Table 3: Schedulers comparison 

OS schedulers have evolved in such a way that their focus is on maximising 

responsiveness while still providing good performance. Interactive processes 

which sleep more often should be allocated time-slices more frequently, while 

background processes should be allocated longer, but less frequent execution 

times. CPU switches between processes extremely rapidly which is why modern 

OS scheduling algorithms were designed with a very low overhead (Wong et al., 

2008; Pinel et al., 2011). The majority of end-users for this class of schedulers are 

non-technical. As such, those schedulers usually have a minimum set of 

configuration parameters (Groves et al., 2009). 

OS scheduling was previously deemed to be a solved problem (Torvalds, 2001), 

but the introduction and popularisation of multi-core processors by Intel (Intel 

Core™2 Duo) and AMD (AMD Phenom™ II) in the early 2000s enabled 

applications to execute in parallel. This mean that scheduling algorithms needed 
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to be re-implemented in order to once again be efficient. Modern OS schedulers 

also consider NUMA properties when deciding which CPU core the task will be 

allocated to. Furthermore, the most recent research explores the potential 

application of dynamic voltage and frequency scaling technology in scheduling to 

minimise power consumption by CPU cores (Sarood et al., 2012; Padoin et al., 

2014). It is not a trivial matter to build a good universal solution which caters to 

the complexities of modern hardware; therefore, it would be reasonable to 

develop the modular scheduler architecture suggested in (Lozi et al., 2016). 

Cluster schedulers have a difficult mission in ensuring ‘fairness’, that is, sharing 

cluster resources proportionally to every user while maintaining stable 

throughput in a very dynamic environment consisting of variety of applications. 

Cluster systems tend to allow administrators to implement complex resource 

sharing policies with multiple input parameters (Adaptive Computing, 2002). 

Cluster systems implement extensive fault-tolerance strategies and sometimes 

also focus on minimising power consumption (Lang and Patel, 2010). Surprisingly, 

the most popular approach to scheduling is a simple FCFS strategy with variants 

of backfilling. However, due to the rapidly increasing cluster size, the current 

research focuses on parallelisation, as seen with systems such as Google’s Borg 

and Microsoft‘s Apollo. 

Big Data systems are still rapidly developing. Nodes in Big Data systems fulfil the 

dual purposes of storing distributed file system parts and providing a parallel 

execution environment for system tasks. Big Data schedulers inherit their general 

design from cluster system’s jobs schedulers. However, they are usually much 

more specialised for the purpose of the framework and are also intertwined with 

the programming language features. Big Data schedulers are often focused on 

‘locality optimisation’ or running a given task on a node where input data is 

stored or in the closest proximity to it.  
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The design of modern scheduling strategies and algorithms is a challenging and 

evolving field of study. While early implementations were often based on 

simplistic approaches, such as a CS, it is the case that modern solutions use 

complex scheduling schemas. Moreover, the literature frequently mentions the 

need for a modular scheduler architecture (Vavilapalli et al., 2013; Lozi et al., 

2016) which could customise scheduling strategies to hardware configuration or 

applications. 

This project’s key research question was to investigate possible advances to the 

designs of Cloud load balancers. Two discrete research tracks emerged during 

this background review, namely: (i) further improvements to the existing 

monolithic scheduler design and (ii) a novel decentralised architecture based on 

agent system. These approaches are subsequently detailed in Chapters 6 and 7 

respectively. However, before those load balancer designs could be 

experimented with, the research had to complete other crucial steps, such as 

formally defining the research problem as presented in the following chapter. 
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3. CLOUD RESOURCES UTILISATION MODEL 

The examination of existing schemas in Chapter 2 provided a clear outlook of how 

a scheduler should work and what its main design goals should be, insofar as the 

workload model could be defined. Of all the solutions researched, the most 

similar was the orchestration software used in Clusters. However, while Cluster 

schedulers are predominantly focused on the fair use of available resources, the 

main purpose of commercial Cloud systems is to keep third party operations 

working continuously and with minimal disturbance. Grid or Cluster systems have 

the capacity to queue jobs when requested resources are not immediately 

available and to process them when they become available, while Cloud systems 

must provide or deny resources with the minimum possible delay to compute the 

decision (Hacker, 2010). 

Therefore, in the majority of problem instances, it may be assumed that the 

system already has the capacity to process all current jobs, although the system 

should be able to detect and handle situations where existing resources are 

insufficient. The main challenge is to allocate those jobs properly so that no single 

node is overloaded and the system is stable, as understood in (2) in section 3.3. 

In recent years, services provided by Cloud data centres have become gradually 

more diversified (Kanev et al., 2015) as well as bigger (Verma et al., 2015, Burns 

et al., 2016). Given this, the scheduler system should be able to cope with such 

an effect. This research will focus mainly on providing system stability combined 

with optimal minimal cost. Other features, such as fairness and data locality, will 

be considered only as secondary objectives. 

This chapter introduces the Cloud Resource Utilisation Model (CRUM), and is 

based on work published in Sliwko (2008), Sliwko and Getov (2015a) and Sliwko 

et al. (2015). 
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3.1. NODES AND TASKS 

The CRUM consists of nodes and tasks where the purpose of the load balancer is 

to keep a good load balance through resource vector comparisons. The Cloud 

Computing definition recognises four distinctive service models (Mell and Grance, 

2011; Burnett et al., 2011; Limoncelli et al., 2014):  

• Software as a Service (SAAS), where the consumer uses a provider’s 

applications running on a Cloud infrastructure. The applications might be 

accessed directly by consumers, such as through web-based email and 

web services, or via a specialised program, as with most mobile 

applications. The cloud infrastructure is completely transparent for the 

end-user. 

• Platform as a Service (PAAS), where the consumer is provided with the 

ability to deploy and run its applications within a Cloud system. However, 

the consumer does not control the underlying cloud infrastructure, but 

has control over the deployed applications and limited control over the 

hosting environment’s configuration and settings. 

• Infrastructure as a Service (IAAS), where the consumer is provided with a 

variety of fundamental computing resources – usually network-based – as 

with DNS, routing, storage, databases and firewalls. 

• Unified Communication as a Service (UCAAS), where the service provider 

packages multi-platform communications channels. These services might 

include physical devices including mobile devices, IP telephony or video 

conferencing modules.  

This research will focus on the PAAS model. In considering what is actually 

constituted as a ‘task’ in a Cloud environment, an example may be seen in a 

popular Cloud environment such as Amazon’s EC2, where applications are 

deployed within the Virtual Machine (VM). Those VM instances often carry much 
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more than they need in order to support different hardware configurations, 

execution environments, and varying user tasks (Younge et al., 2010). Depending 

on the design, some long-lived tasks might come also with preinstalled local 

database such as PostgreSQL. This schema has many benefits, such as the almost 

complete separation of the execution contexts and OS environment parameters, 

although the tasks might still share the same hardware if deployed on the same 

node. Depending on the type of contract signed, tasks might have guaranteed 

execution environment parameters, which would generally be for a fixed price, 

or share resources with other VM, which would generally be pay-as-you-go (e.g. 

Amazon EC2 Spot Instances). 

Tasks require resources which are provided by the nodes. Every node has a 

certain quantity of variable resources available, referred to in this manuscript as 

the available resources. All resources on nodes are considered renewable and 

continuous, meaning that these resources do not expire and cannot be depleted: 

assigning a task to a node only lowers the available resource levels temporarily. 

To simplify the definition, both the resources needed by the task and the 

resources available on the node are described by the vector of non-negative real 

numbers. Several types of resources exist which can be utilised by the task, such 

as memory, CPU cycles and disk I/O operations. The model also supports artificial 

resources, called ‘virtual resources’. Given this, the number of defined resources 

is potentially unlimited.  

Tasks may have their resource needs shaped differently. There will be tasks 

experiencing hourly, daily or weekly variability in usage (Mao and Humphrey, 

2011). Some Cloud systems introduce features that ensure an application will be 

able to cope with increasing traffic to maintain performance (Namjoshi and 

Gupte, 2009). One such example of this is the Amazon EC2 AutoScale, which can 

automatically start and stop additional application instances during demand 

spikes and lulls in order to minimise costs. AutoScale is part of Amazon’s 
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CloudWatch package, which can monitor a range of basic system values such as 

CPU utilisation, data transfer and disk usage activity. Additionally, in can handle 

several complex metrics including DynamoDB tables, EBS volumes, Elastic Load 

Balancers and Amazon SQS queues. 

3.2. SYSTEM TRANSFORMATION COST 

A Cloud system environment is characterised by very dynamic changes in 

resource availability. To name just a few possible scenarios during its operation, 

some nodes might become idle or overloaded, additional resources might 

become available, new nodes might be added to the network, the demand for 

particular service may decrease, or part of a cloud network could go offline. 

Therefore, it is critical to provide a mechanism to proactively migrate tasks to 

alternative nodes. 

Distributed systems often store or process large amounts of ‘state’. State consists 

of data such as databases, files, relations, session data and identifiers which are 

frequently updated (Qiao et al., 2013). On the other hand, ‘corpus’ is a body of 

data that is rarely updated and relatively static, as with a library index which may 

be updated once per month, as opposed to an email system, which is constantly 

updated as new messages arrive continuously. The system might store all state 

on one machine, although this strategy quickly reaches its limit as one machine 

might be able to store only a limited amount of state, and may be unable to serve 

data requests fast enough. Distributed computing system designers have created 

several strategies to deal with this issue. Most use replication, sharing and 

sharding, which brings problems of consistency, availability and partitioning of 

data (Limoncelli et al., 2014). 

In modern virtualised Cloud environments, programs are usually deployed in VMs 

(Limoncelli et al., 2014). VM state transfer is performed via VM-LM where VM 
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instance is transferred on the fly to another machine. This process, known as 

‘teleporting’ in VirtualBox (Oracle, 2018) and ‘vMotion’ in VMware (Marshall, 

2015), transfers CPU, registry, memory, network connections and mappings to 

the persistent storage of another machine without stopping the execution of the 

original instance. In addition to the saved task’s state, the cloud system might 

also need to copy huge VM system image files, such as custom Linux VM images 

in Amazon EC2 cloud, wherein the size varies according to which system image is 

used. The size of VM image might significantly impact on the migration cost, 

meaning that image trimming is always advised. Younge et al. (2010) identified 

one case in which the system image was significantly decreased from 4GB to 

636MB without any loss in the functionality provided.  

In this research, it is assumed that every virtualised application deployed on the 

Cloud is available to be migrated live. In this model, every task has a cost value 

assigned, which can be seen as an abstract representation of the impact the task 

migration will have. The model considers the task migration cost to be the total 

data transferred over a network such that it can move the already running 

application to an alternative node. Chapter 4 discusses this approach and details 

the LMDT formula which can be used to estimate the total size of the transferred 

data during VM-LM. 

The task migration cost value is considered to be constant in a given time window 

since the migration of a certain task to any node will cause the same impact 

throughout the whole system. Furthermore, the deployment process is 

standardised and automated regardless of the vendor – in most cases it is just 

enough to start VM instance in listening mode on the target node, and then to 

point the currently running VM instance to this location. The VM manager will 

take care of the proper allocation itself. In other words, the amount of work 

required to initiate the same program in different environments is either the 

same, or there is very little variation. 
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Figure 4 visualises the system transformation process, and highlights the 

migration costs incurred by re-allocating tasks.  

 
Figure 4: System Transformation Cost 

Here, the left side of the figure presents the initial state of the system in which 

tasks 1, 2 and 3 are being executed on Node A, and tasks 4 and 5 are run on Node 

B. The system undergoes transformation, with the nodes exchanging tasks 2 and 

5 (on the right side of the figure). Tasks are being migrated via VM-LM and this 

process incurs the following migration costs: 105MB for the migration of Task 2 

and 240MB for the migration of Task 5. The total size of data transferred while 

re-allocating tasks to alternative nodes is called System Transformation Cost 

(STC). In this sample, STC is 345MB. STC is formally defined as (4) in the following 

section.  

3.3. PROBLEM FORMULATION 

To better introduce the D-Resource System Optimisation Problem (D-RSOP), 

Figure 5 visualises how the node’s resources are utilised by tasks and shows how 

the node’s state is evaluated as being stable or overloaded. Both Figures 4 and 5 

present the same scenario; however, the former highlights the resources 

utilisation changes as the system is transformed (i.e. tasks are re-allocated): 
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Figure 5: Sample system transformation 

Here, two resource types are defined in the system. For example, Task 1 requires 

(5,3) of resources, which could be CPU and memory. Again, the left side of the 

figure presents the initial state of the system in which Node A is overloaded due 

to the available resource levels being negative, i.e. Node A available resources 

equal (11,-2) with the second value in pair being negative. In such a setup, Node 

B is stable, but since Node A is overloaded, the system state is overloaded.  

After the system transformation (the right side of the figure), which consists of 

migrations Task 2 to Node B and Task 5 to Node A, both system nodes are stable. 

As such, the system state is stable. It should be also noted that this system 

transformation incurs STC – a total of all migrations costs of re-allocated tasks 

(see Figure 4 for a relevant sample). 

In the D-RSOP, let us define: 

• 𝜂 = {𝑛%, 𝑛', … , 𝑛)} as a set of all nodes in the system; 
 

• 𝜏 = ,𝑡%, 𝑡', … , 𝑡./	as a set of all tasks in the system; 
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• 𝜓 = {𝑖%, 𝑖',… , 𝑖3} as a set of all kinds of resource types defined in the 

system such as CPU, memory, network bandwidth, and so on. Please note 

that the below definitions are subscripted with ‘𝑖’  as a function for a 

resource type 𝑖 . The model also supports ‘virtual resources’ (see 

discussion in section 3.1). 

E.g. for a system with three resource types we could define 𝑖 ∈

{𝐶𝑃𝑈,𝑚𝑒𝑚𝑜𝑟𝑦, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘}; 
 

• 𝑎: 𝜓 × 𝜂 → ℝFG as a node’s total resources function and
	
𝑎H(𝑛) as a total 

level (non-negative real number) of a resource 𝑖 on the node 𝑛. 

E.g. 𝑎KLM(𝑛%) = 2 specifies node 𝑛%  as having two CPU cores installed 

and dedicated to use by tasks; 
 

• 𝑟:𝜓 × 𝜏 → ℝFG  as a task’s required resources function and 𝑟H(𝑡)  as a 

required level (non-negative real number) of a resource 𝑖 of task	𝑡. 

E.g. 𝑟KLM(𝑡%) = 0.5 specfies task 𝑡% as requiring half of CPU core’s time to 

run; 
 

• 𝑐: 𝜏 → ℝG	as a task migration cost function and 𝑐(𝑡)	as a task migration 

cost (the size of data in MB) for a task 𝑡 , namely the cost incurred 

migrating task’s executable and its state. 

E.g. 𝑐(𝑡%) = 210 specifies task 𝑡% as needing to transfer 210MB of data 

during task migration process (see Chapter 4 for details of LMDT formula); 
 

• 𝜇: 𝜏 → 𝜂 as a task assignment function where a task has to be assigned to 

a node, i.e. 𝜇	is defined for each 𝑡 ∈ 𝜏. Each task 𝑡 is initially assigned by 

task assignment function 𝜇F  to some node 𝑛 ∈ 𝜂 . During the system 

transformation, any number of tasks can be re-allocated to different 

nodes and a new task assignment function 𝜇% is created. Such a system 

transformation is referred to as (𝜇F → 𝜇%). 

E.g. 𝜇(𝑡%) = 𝑛% specifies that task 𝑡%	is assigned to node 𝑛%. It is assumed 

that task 𝑡% consumes the resources available on node 𝑛%; 
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• 𝛬 = (𝜏, 𝜂, 𝜓, 𝑎, 𝑟, 𝑐) is considered as a problem space and pair (𝛬, 𝜇) as a 

system. Please note that when computing the system transformation, 𝛬 

remains unchanged while 𝜇 is modified; 
 

• For every node 𝑛 ∈ 𝜂 we define a set 𝜏V = {𝑡 ∈ 𝜏:	𝜇(𝑡) = 𝑛}	of all tasks 

assigned to the node	𝑛. 

E.g. if the system consists of node 𝑛% and tasks 𝜏 = {𝑡%, 𝑡'}, and 𝜇(𝑡%) =

𝑛% and 𝜇(𝑡') = 𝑛% (meaning that tasks 𝑡%	and 𝑡' are assigned to node 𝑛%), 

then 𝜏VW = {𝑡%, 𝑡'}; 
 

• 𝑓:𝜓 × 𝜂 → ℝ as the available resources levels function on the nodes 

𝑓H(𝑛) = 𝑎H(𝑛) − Z 𝑟H(𝑡)
[∈\]

 (1) 

E.g. if the system consists of node 𝑛%  and tasks 𝜏 = {𝑡%, 𝑡'}, and 𝜏VW =

{𝑡%, 𝑡'}, 𝑎KLM(𝑛%) = 2, 𝑟KLM(𝑡%) = 0.5 and 𝑟KLM(𝑡') = 0.2, then 

𝑓KLM(𝑛%) = 𝑎KLM(𝑛%) − ^𝑟KLM(𝑡%) + 𝑟KLM(𝑡')` = 2 − (0.5 + 0.2) = 1.3, 

meaning that node 𝑛% has 1.3 CPU core available (as a CPU idle time). 

We consider system (𝛬, 𝜇) as stable, if: 

𝑓H(𝑛) ≥ 0, i.e. ∑ 𝑟H(𝑡)[∈\] ≤ 𝑎H(𝑛) for every 𝑛 ∈ 𝜂, 𝑖 ∈ 𝜓 (2) 

Meaning, that every node in the system is stable (has no overloaded resources). 

Otherwise, the system (𝛬, 𝜇) is overloaded. This consideration is referred to as 

Goal (I). 

During the system transformation (𝜇F → 𝜇%), a task may be re-allocated to a 

different node. This process is referred to as task migration. Definition (3) 

specifies the cost of migration for task 𝑡  within the system transformation 

(𝜇F → 𝜇%): 
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𝑐(ef→eW)(𝑡) = g 0,
𝑐(𝑡),

			𝜇F(𝑡) = 𝜇%(𝑡)
			𝜇F(𝑡) ≠ 𝜇%(𝑡)

 (3) 

This denotes that task migration cost is incurred only if the task changes the node 

it is assigned to. E.g. if within (𝜇F → 𝜇%) we re-allocate task 𝑡% and 𝑡', but don’t 

re-allocate task 𝑡i , then 𝑐(ef→eW)(𝑡i) = 0, meaning only migrated tasks incur 

migration costs. 

Every system transformation process (𝜇F → 𝜇%) has STC defined as a sum of all 

incurred migration costs (unmigrated tasks have zero migration cost): 

𝑠(ef→eW) =Z𝑐(ef→eW)(𝑡)
[∈\

 (4) 

Considering the initial task assignment µF, the task assignment 𝜇∗ is optimal for 

𝜇F, if 𝜇∗ renders system (𝛬, 𝜇∗) stable and: 

𝑠(ef→e∗) ≤ 𝑠(ef→e), for every stable system (𝛬, 𝜇) (5) 

N.b. when (𝛬, 𝜇F) is stable for initial task assignment 𝜇F, the STC equals zero as it 

is considered optimal. Minimising the STC is referred to as Goal (II). 

We also consider two task assignment functions 𝜇F and 𝜇%	to be neighbours if: 

|{𝑡 ∈ 𝜏: 𝜇F(𝑡) ≠ 𝜇%(𝑡)}| = 1 (6) 

This means that, only a single task has changed node within the system 

transformation (𝜇F → 𝜇%). Definition (6) has been introduced in order to better 

support a design based on selected metaheuristic algorithms in which a single 

step evaluates a set of neighbour solutions (algorithms are listed in subsections 

6.1.1 to 6.1.5). 
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3.4. PROBLEM ANALYSIS 

The class of problems for which an algorithm can provide an answer in polynomial 

time is called ‘class P’. For some problems, there is no known way to find an 

answer ‘fast’ in polynomial time; nevertheless, the answer can be verified in 

polynomial time, for example the subset sum problem ‘given a set of integers, 

does some nonempty subset of them sum to zero?’ (Frieze, 1986). A class of 

problems for which an answer cannot be verified in polynomial time is called NP. 

NP-Hard class problems are those which are ‘at least as difficult as problems in 

NP’ (Schirmer, 1995); all NP problems can be reduced in polynomial time to NP-

Hard class. NP-Hard problems need not be in NP since they need not have 

solutions verifiable in polynomial time. 

NP-Complete problems (Karp, 1972) can be solved through an exhaustive search, 

although the time to wait for the solution grows unacceptably with the problem 

size as the number of iterations needed to solve the problem becomes enormous 

(Schirmer, 1995). In such cases, the best scenario is to use super-polynomial time 

algorithms. The ‘P versus NP’ problem (Levin, 1973; Cook, 1975) is one of the 

seven open Millennium Prize Problems of the Clay Mathematics Institute, and is 

considered by many to be the most important open problem in the field (Fortnow, 

2009). It is now commonly believed that P ≠ NP, and that it is rather unlikely that 

any efficient (Polynomial Time) exact algorithms will be able to solve NP-hard 

problems. NP-hard problems may be of any type, ranging from search, decision, 

or optimisation problems to feasibility problems (Schirmer, 1995), although 

discrete optimisation problems are generally NP-hard problems.  

The D-RSOP is a variant of a classical Resource-Constrained Project Scheduling 

Problem (RCPSP), meaning that D-RSOP also belongs to the NP-hard 

(Nondeterministic Polynomial-time hard) problems class. Since its advent, RCPSP 
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has been examined numerous times by researchers, with numerous solutions 

having been proposed, implemented and tested (Boctor, 1990; Demeulemeester 

and Herroelen, 1992; Józefowska et al., 2002; Bouleimen and Lecocq, 2003; 

Brucker et al., 2003; Lim et al., 2013). 

RCPSP can be solved using simple heuristics, such as the algorithms H1m and 

HCRA (Józefowska et al., 2002), but the result quality is low. Although exact 

methods have been explored, either they have a limitation of problem size such 

as Branch and Bound (Bouleimen and Lecocq, 2003) and Constraint-Propagation-

Based Cutting Planes (Demassey et al., 2005), or focus only on deriving new lower 

bounds. The reason for this is that the optimal solution can be found and verified 

only in small problem instances (Józefowska et al., 1998; Lim et al., 2013). 

Interesting examples include X-Pass methods (Davis and Patterson, 1975; Cooper, 

1976), Scatter Search (Debels et al., 2006; Mobini et al., 2009) and Filter-and-Fan 

(Ranjbar, 2008). An exhaustive survey on the various methods employed to solve 

RCPSP problems can be found in Boctor (1990) and Kolisch and Hartmann (2006), 

where the standard benchmark data (Kolisch and Sprecher, 1997) is used for 

performance evaluation. 

3.5. NP-HARDNESS PROOF 

The defined D-RSOP can be compared to the so-called bin-packing problem in 

Computational Complexity Theory. The bin-packing relates to the questions of 

packing a number of objects of different volumes into a finite number of bins of 

a known capacity in a way that minimises the number of bins used. Finding a 

solution for 𝑘 bins is known as an NP-complete problem (Coffman et al., 1996). 

Let us define it as a 𝑃n_pHV  problem. 

Let us define the 𝑃q.[_pHV  problem as the problem of minimising the number of 

bins which can contain a specified set of objects. We can find a solution of 𝑃n_pHV  
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by solving the 𝑃q.[_pHV  problem: it is enough to compute an optimal number of 

bins 𝑘q.[  and compare it with 𝑘 . Thus, 𝑃q.[_pHV  is NP-hard as 𝑃n_pHV  can be 

reduced to 𝑃q.[_pHV  by a polynomial-time many-one reduction. 

Let us define the problem 𝑃3_q.[_pHV	as an instance of a D-RSOP with the following 

re-definitions: 

• 𝑎:𝜓 × 𝜂 → {𝑣}, where 𝑣 ∈ ℝFG is the known bin capacity (7) 

• 𝑐: 𝜏 → {0}, i.e. there is no task migration cost (8) 

The above assumptions imply the STC is zero (as every task 𝑡 ∈ 𝜏 can be freely re-

allocated). In such a definition, (5) is always satisfied, and thus the task 

assignment optimality is subject only to (2). 

If we add the additional consideration: 

• |𝜓| = 1, i.e. we consider only one kind of a resource (9) 

we can see that 𝑃q.[_pHV ≤ 𝑃3_q.[_pHV, i.e. 𝑃3_q.[_pHV  is at least as hard as 𝑃q.[_pHV . 

Then 𝑃3_q.[_pHV  is NP-hard; consequently, D-RSOP is NP-Hard ■	

3.6. SUMMARY AND CONCLUSIONS 

Modelling the workings of a Cloud system is a non-trivial task. The CRUM 

presented here is the outcome of a review of the scheduling mechanisms which 

currently exist, and the related literature as presented in Chapter 2. 

Based on this analysis, the D-RSOP was defined together with Goals (I) and (II), 

which are then used to evaluate the designed load balancer solution. Two crucial 

challenges were identified, which subsequently became the focal areas of the 

following research: 



CLOUD RESOURCES UTILISATION MODEL 

62 | P a g e  
 

 

• Firstly, this chapter highlighted the key problem of calculating the STC, i.e. 

the impact of reassigning consecutive tasks to alternate nodes. Chapter 4 

will focus on examining the dimensions of this problem, directly 

estimating the task migration cost via experimental work. 

• Secondly, this analysis also highlighted the vast complexity of the load 

balancing in distributed systems, especially when considering the overall 

dynamicity of Cloud environments. It became apparent that, by itself, 

static modelling does not yield satisfactory results, and therefore that a 

more practical approach is required for the research. The resulting high-

fidelity Cloud workload simulator is presented in Chapter 5. 

Although very stimulating, the formal analysis presented in this chapter did not 

provide a definitive answer to the researched problem of large-scale load 

balancing. This said, it did yield a substantial stepping-stone, which was useful in 

research. 
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4. VIRTUAL MACHINE LIVE MIGRATION 

Having identified the main challenges and requirements of a comprehensive load 

balancing strategy for a Cloud, the next area of study was to determine how to 

practically re-allocate running programs between nodes. CRUM, introduced in 

Chapter 3, requires that tasks can move across Cloud nodes without losing their 

execution state. Therefore, an additional study was needed in order to become 

more familiar with Cloud virtualisation layers. 

Cloud systems are unique in their elasticity, that is, their ability to dynamically 

allocate available resources to applications is unprecedented in computer science 

history. This elasticity is backed up by large-scale virtualisation, where every 

aspect of an application runs in a dedicated VM environment. Applications are 

executed in VM instances and are no longer bounded to a physical node. This 

means it is possible to move the VM instances around and to place them easily 

within another node if the target node meets the requisite task constraints. VM 

instances can be migrated ‘cold’, whereby an instance is suspended, transferred 

to an alternative node and resumed, although it should be noted that during the 

migration progress services rendered by tasks are unavailable (Sapuntzakis et al., 

2002). Modern VMs such as XenServer (Barham et al., 2003), VirtualBox, and 

VMware also support VM-LM, where VM instances are migrated on the fly. In this 

case there is no offline period, except for a short final synchronisation pause of 

around 60 to 300ms (Clark et al., 2005). 

Historically, VM-LM technology was debuted by VMware with the introduction 

of vMotion and GSX Server in 2003. Soon, other vendors attempted to develop 

VM-LM features of their own, for example Microsoft added Quick Migration in its 

Windows Server 2008 Hyper-V (later renamed to Live Migration) (Savill, 2016) 

and Citrix released XenMotion for XenServer in the same year. There have been 
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several studies modelling various aspects of the transfer cost for VM-LM since 

then. The most notable examples of related work include: 

• The impact of allocated VM memory size on migration time (Zhao and 

Figueiredo, 2007; Salfner et al., 2011; Dargie, 2014); 

• The impact of memory page dirtying rate on migration time (Verma et al., 

2011, Rybina et al., 2015) and the downtime length (Salfner et al., 2011; 

Liu et al., 2013); 

• The effect of available network bandwidth on migration time (Akoush et 

al., 2010; Zhang et al., 2016; Deshpande and Keahey, 2017); 

• The energy overhead required to perform VM-LM (Huang et al., 2011; Liu 

et al., 2013; Callau-Zori et al., 2017); 

• Determining the Quality of Service specifications for migrated VMs and 

applying resource control mechanisms during VM-LM (Abali et al., 2017); 

• A strategy for parallel migrations of multiple VMs (Sun et al., 2016); 

• Various memory transfer optimisations as presented in Noel and Tsirkin 

(2016), Noel and Tsirkin (2016), Ramasubramanian and Ahmed (2017). 

While these approaches are valid in general, they focus solely on the impact for 

a particular VM instance and consider only factors such as loss of performance or 

network packages, length of downtime or impact on users. However, the 

migration of VM instances also causes disruptions on the infrastructure level, 

especially when non-trivial volumes of data need to be transferred and clutter 

network bandwidth, which could be allocated to alternative processes. Therefore, 

the research work presented in this article focuses on VM-LM and evaluates the 

total volume of information to be migrated. The main contributions of this 

chapter are the experiments and the Live Migration Data Transfer (LMDT) 

formula which helps to estimate the total size of data transferred over a network 

during the VM-LM process. 
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4.1. VIRTUAL MACHINES IN CLOUD COMPUTING 

While a range of tools and virtualisation technologies for building Clouds exist (Jin 

et al., 2010; Luo et al., 2011), the virtualisation solutions currently deployed 

across service providers are unfortunately not standardised, and differ 

significantly in many aspects. In particular, larger and highly specialised solutions 

such as Google Cluster (Hellerstein, 2010) tend to be vastly customised in order 

to support their core operations. Based on the initial classification (Shirinbab et 

al., 2014), the existing virtualisation approaches can be divided into the following 

five categories: 

• Full virtualisation relies upon an on the fly in-kernel translation of 

privileged instructions to user-level instructions. This results in significant 

performance drop since binaries of applications and their libraries must 

be analysed and transformed during the execution. 

• Paravirtualisation requires modification to the source code of the Guest 

OS. All privileged instructions are replaced with function calls to the 

hypervisor services, i.e. ‘hypercalls’. The biggest drawback of this method 

is the necessity to have access to the source code of the Guest OS, which 

is not always possible and may interfere with the intellectual property 

rights of commercial OS-es. 

• Hybrid virtualisation generally offers superior performance in comparison 

to the types above. In this model the Guest OS uses paravirtualisation for 

certain hardware drivers and full virtualisation for other features. For 

example, the Guest OS can take advantage of hardware support for 

nested page tables, thereby reducing the number of hypercalls required 

for virtual memory operations. At the same time the Guest OS can benefit 

from fast I/O operations via lightweight access to paravirtualised devices 

as there is no need to rely on emulated hardware (Chisnall, 2008). 
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• Hardware-assisted virtualisation has the advantage of hardware-level 

support. Recent additions to hardware have introduced several 

processor-level and memory-level mechanisms which directly support 

virtualisation as part of the microarchitecture. Typical examples include 

Intel’s VT-x and the AMD-V architectures at processor-level, while 

memory-level support is usually achieved within a memory management 

unit. This approach eliminates the need to hook and emulate privileged 

instructions by hypervisors, meaning the guest OS can run at its native 

privilege levels.  

• Virtual containers (VC) is an OS level virtualisation methodology in which 

a specially patched kernel allows multiple isolated user-space instances. 

This solution is not a true hypervisor, but rather should be considered as 

an advanced implementation of the chroot operation. Nevertheless, from 

the users' point of view it is perceived as a real server (Dua et al., 2014). 

VCs impose almost none of virtualisation overhead costs since they 

operate inside a single kernel and require no hardware support to run 

efficiently. VCs are generally locked to a single kernel version such as 

Docker, LXC or OpenVZ, which makes this technology more suitable for 

running multiple instances of a single application (Tang et al., 2014; Smith, 

2017). User-space instances are separated only by a container abstraction 

layer, and the VC security is considerably lower than in other virtualisation 

techniques. 

For the purposes of this research work, six widespread VMs that support VM-LM 

have been shortlisted. Our main selection criterion was to include only mature 

and optimised implementations of the VM-LM technology. While VM-LM was 

first introduced as far back as 2009, this feature is still being added and is 

available only as an experimental feature in many VMs. Therefore, we have given 

preference to VMs supported by established corporations or a vast open-source 

community. Additionally, all selected VMs support a variety of platforms and 
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generally have good compatibility with commonly available hardware, with the 

exception of XenServer, which requires certain hardware features to be available. 

The shortlisted VMs are as follows: 

• XenServer (Barham et al., 2003) has become a very popular choice for 

Cloud systems, and is currently being used as a primary VM hypervisor in 

several Cloud providers including Amazon EC2, IBM SoftLayer, Liquid Web, 

GoGrid, Fujitsu Global Cloud Platform, Rackspace Cloud, and CloudEx (Jin 

et al., 2010). 

• VirtualBox supports a wide set of Host OS-es, namely Linux, Mac OS X, 

Windows XP and in its later versions, Solaris, and OpenSolaris. In addition, 

there are ports to FreeBSD and Genode. Natively supported Guest OS-es 

are almost all versions of Windows, Linux, BSD, OS/2, Solaris, and so on. 

To achieve the best possible integration, VirtualBox comes with a set of 

native drivers and system applications called ‘Guest Additions’ that 

optimise the Guest OS for better performance and usability. 

• The WMware product is a line of hypervisors. Type 1 runs directly on 

hardware while Type 2 runs on OS such as Windows, Linux and Mac OS X. 

VMware supports VM-LM, but it does not emulate instruction sets for 

hardware components that are not physically present. Instead, it focuses 

on running CPU instructions directly on the machine. However, this 

feature might cause problems when a VM instance is migrated to a 

machine which has a different hardware setup, such as using different 

instruction sets or having a different number of CPU cores (Mashtizadeh 

et al., 2011; Marshall, 2015). 

• A KVM (Kernel-based VM) component was merged into Linux mainline 

kernel version 2.6.20. For KVM to work, the CPU must offer hardware-

assisted virtualisation support: Intel’s VT-x for the x86 architecture and 

VT-i for Itanium architecture or AMD-V for AMD processors. KVM 

currently supports saving/restoring the VM state and offline/online 
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migrations. In addition, the VM-LM can be performed between AMD and 

Intel hosts. 

• Hyper-V is also known as Windows Server Virtualisation services. It 

provides virtualisation services in Windows 8 or newer versions. Hyper-V 

is capable of running several unique instances, called ‘partitions’, each 

with its own kernel. Although VM-LM is supported, it is quite restricted 

and has several limitations, chief of which is that a VM instance can be 

migrated only between identical versions of Windows Server 2008. 

Furthermore, only x64 or Itanium architectures are supported, and all 

cluster nodes must be on the same TCP/IP sub-net. 

• Docker works on the principles of VCs and relies on the resource isolation 

features of the Linux kernel, such as cgroups and kernel namespaces. 

Docker enables the creation of multiple independent VCs to run within a 

single Linux instance (Merkel, 2014), in which each is seen as a full OS 

capable of running services, handling logging, and so on. At the time of 

writing, Docker did not support Live Migration; the integration with the 

Checkpoint/Restore In Userspace (CRIU) tool does not allow the migration 

of a running application to the alternative container on the fly. However, 

recent publications (Yu and Huan, 2015) describe early experiments with 

Live Migration feature, while a working prototype was also demonstrated 

in 2016 (Estes and Murakami, 2016). 

Table 4 presents a comparison of the selected VMs based on their core 

characteristics. It should be noted that the Host OS and the Guest OS lists are not 

exhaustive; other OS-es may work without modifications. XenServer and 

WMware are implemented as type-1 (bare-metal) hypervisors which can work 

directly on hardware without the need for a Host OS. Unfortunately, further 

information, including more details about design decisions and operational 

principles, tend to be proprietary, and as such not publicly available. 
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Virtual 
Machine 

Virtualisation 
approach 

Guest OS 
performance 

Live Migration 
technology Host OS Guest OS License 

XenServer Paravirtualisation Native XenMotion, 
Storage 

XenMotion 
Windows, OS X 
x86, Linux 

Windows 2008/7/8/10, 
CentOS, Red Hat/SUSE/ 
Oracle/Scientific/Debian 
Linux, Ubuntu, CoreOS 

Open Source, 
Commercial 

VirtualBox Full virtualisation, 
Paravirtualisation Close to native, 

Native Teleporting Windows, OS X 
x86, Linux, Solaris, 
FreeBSD 

Windows 98/NT/XP/2000/ 
Vista/2008/7/8/10, DOS, 
OS/2, FreeBSD, Mac OS, 
Solaris, Linux, Syllable, 
Ubuntu 

Open Source 

WMware Full virtualisation Close to native vMotion Windows, OS X 
x86, Linux 

Windows, Linux, Solaris, 
FreeBSD, Netware, Mac OS, 
OS/2, DOS, CoreOS, BeOS, 
Darwin, Ubuntu, SUSE/Oracle 
Linux 

Commercial 

KVM Full virtualisation 

(requires AMD-V 
or Intel-VT-x) Close to native Live Block 

Migration Linux, FreeBSD, 
illumos 

Windows Vista/2008/7/8/ 
2012, CentOS, Red Hat, 
SUSE/Oracle Linux, Solaris 

Open Source 

Hyper-V Full virtualisation Close to native Live Migration 
(formerly: Quick 

Migration) 
Windows 8/Server 
2012 (R2), 
Microsoft Hyper-V 
Server 

Windows Vista/7/8/10/2008/ 
2012/2016, Red Hat, Oracle/ 
SUSE/Debian Linux, Cent/OS, 
FreeBSD 

Commercial 

Docker Virtual Containers Native working prototype 
(but not Open 

Source yet) 

Windows Server 
2016 (only worker 
node), CentOS, 
Red Hat/SUSE/ 
Oracle Linux 

(same as Host OS) Open Source, 
Commercial 

Table 4: Virtual Machines comparison 

In this research VirtualBox is considered as a representative VM in VM-LM 

research for the following reasons: 

• VirtualBox does not require any dedicated hardware while XenServer 

Type 1, for example, runs only on a limited set of hardware. 

• VM-LM has been supported since version 3.1, meaning it should be 

considered as a mature solution. Upon detailed inspection of VirtualBox’s 

source code (see detailed discussion in subsection 4.2.2), it was 

established that this feature’s design does not differ substantially from 

other VM implementations. 

• During VM-LM, VirtualBox transfers only what is currently allocated and 

being used by the VM memory, i.e. not the total memory configured for 

the VM. The difference in transferred data might be substantial if 
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applications within the VM instance do not fully utilise the available VM 

memory (Hu et al., 2013). 

• VirtualBox is widely used. There are a number of freely available ports for 

all major operating systems such as Windows, Linux, Mac OS X, Solaris and 

FreeBSD in existence. There are many publicly available guides and 

resolutions to issues available on the Internet, as well as many free out-

of-the-box and preinstalled VirtualBox images, such as 

VirtualBoxImages.com and VirtualBoxes.org websites. 

• One of the biggest strengths of VirtualBox is its ability to virtualise nearly 

any type of platform, including Linux, Windows, OS X, Solaris, Android and 

Chromium OS. The VirtualBox community is very active and continuously 

improves compatibility with currently supported platforms as well as 

adding new ones. Furthermore, VirtualBox has universally good 

compatibility with hardware due to Guest Additions package. 

• VirtualBox is used as a foundation for VC systems such as Docker. For 

example, on Mac OS X, docker-machine tool provisions a specialised 

VirtualBox VM instance to run its kernel. 

• In comparison to other listed VMs, VirtualBox instances generally have 

fewer problems being migrated to nodes with a different Host OS and 

different processor architecture. As an example of the opposite, Hyper-V 

and WMware require the same type of CPU architecture between the 

source and target hosts. 

In addition, VirtualBox is also easy to set up since binaries are provided directly 

from the Oracle site. VirtualBox provides a GUI management console and is 

generally easy to use even for inexperienced users, which makes experiments 

much easier. Since version 4, VirtualBox has been released as an Open Source 

project, leading to many fixes, improved stability and optimised performance 

patches being added to its source code. 
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4.2. LIVE MIGRATION 

Both cold migration and VM-LM are techniques for moving one VM instance from 

one node to another, usually of the same type. Depending on the vendor, various 

restrictions might apply, although in general the same CPU architecture is 

required and the VM will also perform a check of available features and 

extensions. A number of VMs also support open formats, such as the Open 

Virtualisation Format, which allows the distribution of virtual appliances in a 

manner not tied to any particular hypervisor or processor architecture (Bernstein 

et al., 2009).  

Cold migration requires stopping a VM and saving its state to snapshot files, 

moving these files to the destination and then restoring the VM instance from a 

previously saved state. An obvious disadvantage of this approach is the 

unavoidable downtime required to stop the VM, transfer the state files and start 

the VM on the target node during which the service is not accepting requests. 

Furthermore, Shirinbab et al. (2014) distinguish between cold migration, where 

the VM instance is actually shutdown, and hot migration, where the VM instance 

is only suspended, whereby the application preserves most of its state. 

However, modern VMs support a more advanced on the fly migration. The VM-

LM feature – called ‘teleporting’ in VirtualBox (Oracle, 2016) or ‘vMotion’ in 

VMware (Marshall, 2015) – is a powerful functionality of modern VMs. The VM-

LM dramatically reduces the downtime needed for virtualised applications and is 

the most suitable approach to achieving high-availability services. In essence, a 

continuously running VM instance is transferred to another VM running on a 

different physical machine without stopping its execution. This is done by 

transferring all VM memory and CPU registers on the fly, switching network 

devices to a new network address, and then either transferring the whole local 

disk storage content or reopening interfaces used in the Network Attached 
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Storage (NAS). Therefore, the transfer cost of VM-LM depends on the specific 

application workload for the major areas of the migration process – CPU registers, 

memory, permanent storage, and network switching. In the following 

subsections, key VM-LM challenges, as well as a performance analysis of their 

impact on the total migration cost for those four major categories of application 

workload, are discussed. 

4.2.1.  COMPUTATION-INTENSIVE APPLICATIONS 

Wu and Zhao (2011) have shown that the amount of available CPU cycles on a 

machine has a substantial impact on the migration time. One of their tests 

demonstrates that assigning more CPU cycles to the VM-LM process often results 

in an exponential reduction in the total migration time, but only to a point of 

around 50% CPU utilisation. In our research, assigning more than 50% of CPU 

utilisation did not shorten the migration time any further. Furthermore, our 

experiments have also shown that changes between 40% and 80% in the CPU 

utilisation for different applications did not noticeably affect the migration time. 

This can be explained by the relatively small size of the CPU registers and the 

L1/L2/L3/L4 caches that need to be copied over. 

4.2.2.  MEMORY-INTENSIVE APPLICATIONS 

Memory usage intensity has a huge impact on migration time. Memory migration 

can be achieved by directly copying memory to a target node. This process 

consists of copying all memory pages one by one onto a target node. If the 

content of a memory page is altered during migration, this memory page is 

marked as dirty, which will result in another attempt to copy it again in the future. 

Generally speaking, during every migration the majority of pages which are not 

modified frequently will be copied either once, or a small number of times. 
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However, a subset of memory pages, commonly referred to as a Writable 

Working Set (WWS), will be altered in a very rapid manner – much faster than the 

speed at which network adapters can exchange information. These pages are 

often used for the stack and the local variables of the running processes as well 

as for network and disk buffers. 

The usual solution in this scenario is for the VM-LM mechanisms to detect and 

mark hot pages by counting how many times a memory page has been dirtied 

during migration (Jin et al., 2009), and then to synchronise those remaining 

memory pages at the final stage while both VMs are paused. In the first migration 

round all memory pages are copied to the target VM while the source VM 

continues to run. During that round, some of the pages will have their content 

modified and will be marked as dirty. In the next round there will be a further 

attempt to copy them. The next few rounds, i.e. round 2 and round 3 as shown 

in Figure 6, will attempt to copy previously dirtied pages, thereby hopefully 

decreasing the number of dirtied memory pages. 

 
Figure 6: Memory migration rounds 

However, some memory pages are dirtied so rapidly that network adapters 

cannot transfer them over the network fast enough. Therefore, the final round 

pauses the source VM and all remaining pages are copied onto the target VM, 

which subsequently starts while the source VM stops and shuts down. Clarke et 
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al. (2005) provide an analysis and estimation of the size of WWS. Furthermore, 

specific research in Wu and Zhao (2011) has substantively examined what kinds 

of memory operations have an impact on WWS size. One of their testing 

scenarios has been split into two variants, that is, memory-read-intensive 

applications and memory-write-intensive applications. 

The memory size initially allocated to an application had a linear impact on the 

migration time which is expected since more data had to be copied and there was 

no additional impact on the migration time when the memory-read-intensity 

increased. However, increases in memory-write-intensity did significantly slow 

down the migration process, albeit not linearly. When enough CPU cycles had 

been assigned to benchmark and the memory page dirtying ratio was high 

enough, the XenServer momentarily entered its final synchronisation, and the 

migration time was not increased any further. It is difficult to provide actual 

numbers as to where the memory writing rate reaches a critical point. The 

existing research results in Liu et al. (2013) show that the memory writing rate 

started to significantly impact upon the migration time at around 800Mbit/s, 

although these results are isolated to the specific research testing machine. 

In practice, however, WWS is usually relatively small and VM downtime is barely 

noticeable for most applications. VM-LM usually requires a minimum stoppage 

before the next VM continues its execution at its final destination, providing a 

practically seamless migration of a running VM. For example, the XenServer 

requires only 60-300ms to perform final memory synchronisation when 

migrating the Quake 3 server (Clark et al., 2005). 

The same research shows, that during the VM-LM of the VM running SPECweb99 

benchmark, only 18.2MB out of a total 676.8MB allocated memory was 

transferred in the final synchronisation phase. The Quake 3 server needed to 

suspend the VM to transfer only 148KB of a total of 56.3MB allocated memory. 
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Nevertheless, it is possible to design extreme scenarios where the VM is writing 

to a certain region of the memory faster than the network can transfer it, for 

example the custom program ‘MMuncher’ resulted in the transfer of a huge 

222.5MB out of a total of 255.4MB allocated memory in the final synchronisation 

phase. It should be noted that the VM migration process itself generally does not 

consume much memory. In the worst-case scenario, recent research has shown 

that one of the tested VMs required just a little over 200MB to migrate 2GB of 

virtual memory (Hu et al., 2013). 

There is a further significant difference depending on the implemented memory 

transfer method. More specifically, VMs such as KVM, VMware and VirtualBox 

transfer only the currently allocated and used by the VM memory, while other 

VMs such as Hyper-V and XenServer transfer the total configured memory. This 

difference in transferred data might be substantial, potentially even one order of 

magnitude (247-354MB vs. 2255-2266MB) of the total transferred migration data 

(Hu et al., 2013). 

In VirtualBox, the number of VM-LM rounds is explicitly controlled by the VM 

downtime. VirtualBox implements a voting mechanism, where all defined 

modules – 'units' in VirtualBox’s source code – vote in each VM-LM round for the 

completion of the live data transferring stage and the suspension of VM. From 

VM-LM’s point of view, the most interesting modules in VirtualBox are ‘Saved 

State Manager’ and ‘Page Manager and Monitor’ in files ‘SSM.cpp’ and 

‘PGMSavedState.cpp’ respectively, which contain decision logic for triggering the 

VM suspension and for entering the final round of VM-LM. The decision is based 

on the estimated remaining dirty pages migration time, separately for the short-

term average over the last four rounds and the long-term average based on all 

previous rounds. This algorithm then computes if the migration of all currently 

dirty pages exceeds the hardcoded 250ms maximum downtime. It should be 

noted that the mentioned source code has not been updated since its initial 
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implementation in 2010, and could be improved further, potentially reducing the 

VM-LM overhead. 

Researchers have also proposed certain optimisation techniques which could 

reduce memory migration time. Two such techniques are identified below:  

• Jin et al. (2009) propose the adaptive compression of migrated memory 

pages based on word similarity. Experiments show that most memory 

pages fall into either low or high word similarity, with the former usually 

a good candidate for fast compression algorithm. 

• Du et al. (2010) suggest an ordered transfer of memory pages based on 

their dirtying rates as well as factoring in the available network bandwidth. 

The next migration iteration starts as soon as the accumulated dirtying 

rate exceeds the available bandwidth. 

4.2.3.  DISK I/O-INTENSIVE APPLICATIONS 

Storage migration either involve transferring the whole storage over the network 

or only reopening the connection to a configured NAS device. Modern Cloud 

systems typically implement NAS as a preferable storage option since it has many 

advantages such as centralised administration, a variety of standardised solutions 

across many different vendors and reduced failure rate features.  

If any virtual devices are mapped on local storage media, they also need to be 

migrated together with the VM instance. The VM is generally not aware of higher 

level data structures from the Guest OS, such as files or memory segments. The 

VM only reads and/or writes its serialised form as a stream of bytes. Therefore, 

the VM does not recognise which data is left over from previous operations but 

which is now marked as clean, meaning that the process saves everything as 

shown in Figure 7: 
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Figure 7: Virtual disk read/write operations 

Following the write/delete operation, the Guest OS keeps only sectors 1-5 and 7-

8 as allocated, even though the VM/Host OS does not know that dirty sectors 6, 

9 and 10 are unused and saves them as valid data in its state file. Therefore, upon 

migration, more data than indicated by the Guest OS might need to be migrated 

since it involves copying the unused/dirty sectors. 

Disk I/O operations are not easy to measure correctly since any modern OS 

successfully caches files in its memory. In addition, modern persistent storage 

drives may have substantial caches (‘disk buffers’) built-in. At the time of writing, 

hard drives come with 128MB of such memory such as Seagate STBD6000100 

6TB SATA, while solid-state drives come with up to 1GB cache memory such as 

Samsung SSD 850 PRO. 

Previous research has shown that it is possible to significantly exceed the 

available disk cache memory in order to force the VM to save data to actual 

persistent storage (Wu and Zhao, 2011). In this test, a sequential read pattern 
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was used as it can generate more consistent I/O Operations Per Second (IOPS) 

compared to either sequential write or random read or write patterns. As with 

memory, an increase in IOPS caused an exponential increase in migration time, 

but the authors did not notice the existence of a ‘break point’, after which time 

further increases do not occur. This could be explained by a lack of monitoring of 

the disk sectors dirtying ratio implemented in VM. Generally speaking, memory 

operations have a bandwidth a several orders of magnitude wider than 

respective I/O operations, especially for random access transfers. 

When migrating local storage data, it should be noted that generally storage data 

is less dynamically modified than memory. As such, the time needed to migrate 

storage media is more linear. Hu et al. (2013) advise Cloud administrators to 

ensure their virtualisation system supports delta migration, where the target 

node has a snapshot or a recent state image, and there is a need to migrate and 

then merge only delta of the new data. 

4.2.4.  NETWORK-INTENSIVE APPLICATIONS 

For network resources, VM-LM relies on maintaining all open connections 

without the involvement of any kind of network traffic forwarding mechanism on 

the original node, since this may go offline and slow down responses from the 

host. VM-LM also copies the TCP stack state and, in addition, will carry IP 

addresses.  

One suggested method to resolve these challenges is to keep all network 

interfaces on a single switched LAN (Clark et al. 2005). This would allow the target 

node to generate an unsolicited ARP reply, broadcasting that the IP has moved 

to a new location and has a new Ethernet MAC Address. This would cause all 

routers to update their ARP cache and direct all network packages to the new 

host. An alternative solution is to migrate the Ethernet MAC Address together 
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with other resources, relying on the network switch to detect the port change, 

although this may result in lost packages. 

The impact of network utilisation intensity on migration time has also been 

studied (Liu et al., 2013). Migrating the VM’s state between different physical 

nodes requires transferring a significant amount of data, and therefore the 

available network bandwidth is a valid concern. It can be noted that increases in 

network bandwidth utilisation exponentially decreases migration time. 

Additional complexity which is not tackled in this research, comes from the 

physical placement of Cloud servers. The transfer rate between two servers from 

the same rack which would tend to be connected by high-speed fibre optic cables 

isolated from Cloud network noise, will generally be faster than servers from two 

different racks. This would also be much faster than the connection between 

server racks in two geographically different data centres. Faster connections 

could significantly reduce the time as well as reduce the number of rounds 

needed to perform VM-LM. 

4.2.5.  CODE STRUCTURE AND DYNAMICS 

The discussion in subsection 4.2.2 reveals that the number of VM-LM rounds and 

the amount of data transferred in each of those rounds is directly related to the 

size of WWS. Previous research (Clark et al., 2005; Wu and Zhao, 2011; Hu et al., 

2013) suggests that the memory write operations are the core cause of the 

repeated migrations of memory pages forming WWS. However, those 

investigations do not specify which applications are more prone to migrate 

harder and how the VM-LM is actually impacted. 

The WWS is heavily impacted by the exact instruction composition of the 

application’s compiled native code, or, as in the case of Java Virtual Machine 

(JVM), the interpreted byte code which is then compiled to the executable code. 
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Frameworks equipped with Automatic Memory Management (AMM) such as 

Java’s Garbage Collector (GC) (Urma et al., 2014) frequently move memory pages 

as new objects are created and are then released, which is a very common 

pattern within object-oriented programming. Furthermore, the frequency and 

the distribution of modified memory addresses strongly depend on the code's 

design and its style of programming. For example, the frequent use of immutable 

objects and singletons results in somewhat more static memory, while the 

common use of mutable objects and dynamically growing collections, such as 

linked lists, lead to bigger WWS, which means that the application will be 

migrated harder. The reuse of existing objects from object pools (‘flyweight’ 

pattern) has the potential to lower the WWS size. Nevertheless, it is extremely 

challenging to predict what kind of behaviour VM-LM will demonstrate without 

knowledge of the technology stack and a detailed analysis of the application code. 

While experimenting with the VM-LM process of various applications, a non-

linear relation of the size of WWS to LMDT was noted. However, as shown below 

in the details of the experiments, this phenomenon is quite specific to an 

application. For some programs it is barely noticeable, while for others is clearly 

visible. As demonstrated in sections below, rapid exponential increases in LMDT 

are especially visible for the busy backend application running in VMs which use 

AMM, such as JVM’s GC. This is the result of massive memory movements during 

the memory reclamation phases of GC and, therefore, higher amount of dirtied 

memory pages which need to be copied in the next VM-LM round. 

4.3. EXPERIMENTS 

This research focuses on finding which parameters would significantly impact the 

size of the LMDT. Therefore, based on the above analysis, several experiment 

scenarios were designed. These are presented below. 
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4.3.1.  CONFIGURATION 

The scope of this experiment has been necessarily limited to hardware which is 

accessible in the laboratory and the available network infrastructure as described 

below. The tests were designed with a focus on Open Source solutions, which 

gave the option to examine the source code and better understand the inner 

workings of migrated applications. Experiments were performed on a 100BASE-T 

network consisting of two servers (Intel Celeron 1.8 GHz with 2GB memory), a 

router and a NAS device exposing a shared folder via Samba server (CIFS). As such, 

the testing network was fully isolated, and the network noise was minimised. The 

testing machines had Kubuntu 15.04 installed as the Host OS, using the default 

configuration. The experiments used VectorLinux 6.0 Standard ‘Voyager’ as the 

Guest OS, this being a lightweight and slimmed down Linux distribution designed 

to avoid resources overhead on existing system services and daemons. 

VectorLinux 6.0 uses a Linux 2.6.27 kernel which proved to be most stable during 

teleportations. 

In order to perform the experiments, it was necessary to define VM instances in 

VirtualBox. Each instance consists of two objects, the VM instance configuration 

and the virtual disk image (VDI) file. The VDI is usually stored on NAS device and 

is available to every node in this system as a remote share. Here, the VDI file is 

mapped via the Common Internet File System (CIFS), shared via the Samba server. 

VirtualBox requires the identical definition of a particular VM so as to exist on 

both source and target hosts. 

The example below shows the creation of ‘VM_VectorLinux_512’, prepared for a 

Linux 32-bit host system with 512MB memory and one virtual CPU core: 
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VBoxManage createvm --name VM_VectorLinux_512 --ostype Linux_32 --
register 
VBoxManage modifyvm VM_VectorLinux_512 --memory 512  
VBoxManage modifyvm VM_VectorLinux_512 --cpus 1 
VBoxManage storageattach VM_VectorLinux_512 --storagectl  
"IDE Controller" --port 0 --device 0 --type hdd --medium 
/mnt/VM_Shares/VM_VectorLinux_512.vdi 

The VM-LM process itself is seemingly effortless from a user’s perspective – it is 

sufficient to start the target VM instance in listening mode: 

VBoxManage modifyvm VM_VectorLinux_512 --teleporter on --
teleporterport 6000 

The next step is to execute the teleportation command from the source VM 

hypervisor's command prompt, providing the target host’s IP address: 

VBoxManage controlvm VM_VectorLinux_512 teleport --host 192.168.1.210 
--port 6000 

VirtualBox will take care of the migration by itself and report any errors. 

VirtualBox performs a strict comparison between CPU models and types and it 

was necessary to disable strict CPU id checks so as to complete VM-LM. 

Nevertheless, regardless of whether a strict CPU identification check was enabled 

or disabled, the CPU on the target machine still had to support the same set of 

architectural features and extensions such as SSE, SSE2 and MMX, as the CPU on 

the source machine. 

Data transfer measurements were taken with the help of the iptraf tool. Used 

bandwidth was measured separately for sent and received data and then totalled. 

The measurement error of iptraf was only 1.96%; when exactly 100MB of random 

traffic was sent, the iptraf recorded transferred data averaged 84790KB (n=20, 

s=1654KB). Figure 8 demonstrates a sample measurement in which the VM-LM 

was performed on port 6000, showing that the source host sent 85216593 bytes 

and the target host sent 1455690 bytes (the last pair of TCP Connections). 
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Figure 8: Measuring transferred data with the iptraf tool 

4.3.2.  EXPERIMENTAL SCENARIOS 

Cloud systems allow users to deploy a very wide range of applications and 

services. In order to have a wide variety of applications this experiment was 

performed with the following configurations: 

• An idle VM with only basic kernel canonical services running and a simple 

Xfce-4.4.3 Window Manager. During VM-LM, a whole environment is 

migrated – the OS and the running service itself. Therefore, this 

configuration was used as a reference point and it was possible to 

measure the impact of only Guest OS on migration. 

• SPECjvm2008 is a benchmark program suite, released by the Standard 

Performance Evaluation Corporation in 2008, for measuring the Java 

runtime environments. It consists of 38 benchmark routines focusing on 
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core java functionality, and is grouped into eleven categories. It has a wide 

variety of workloads, from computation-intensive calculations to XML file 

processors (Oi, 2009). The SPECjvm2008 workload mimics a variety of 

common general-purpose application computations. For a more detailed 

study of SPECjvm2008 performance, see Shiv et al. (2009). In the 

experiment, SPECjvm2008 benchmark ran on Java 1.6.0_06-b20. 

SPECjvm2008 is free to use, while newer suites such as SPECjbb2015, 

require a license. 

• It is estimated that the Apache HTTP Server (Apache) serves about half of 

all active websites and is still the most widely deployed Internet web 

server. As of November 2017, Apache is running 44.55% of all active 

websites (Netcraft, 2017). Apache is often used with a range of 

technologies such as PHP, Perl, Python and frameworks such as 

WordPress. Apache is available as open-source software released under 

the Apache License for a wide number of Operating Systems such as UNIX-

based, Microsoft Windows, NetWare and OS/2. In this experiment, static 

content was deployed and an external machine with a JMeter (v2.13) 

used to simulate user traffic. 

• In a typical online system, the data are stored in a persistent storage 

component, usually a database. This experiment examined the impact of 

the VM-LM process performed while PostgreSQL version 9.2.24 database 

(Obe and Hsu, 2017) was running ‘select’ and ‘update’ queries on a large 

database table. PostgreSQL is a popular database, with a market share of 

26.5% of all actively used databases worldwide (Stack Overflow, 2017). 

• VM Allocator is a custom application used to simulate a running 

application with a static read only memory area and sizeable WWS 

memory. Such an approach enabled the configuration of an exact set of 

dirtying pages and their ratio to total memory; therefore, experiments 
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could be conducted with higher confidence. To make the simulation more 

realistic, the VM Allocator ran several threads in parallel.  

4.3.3.  IDLE VIRTUAL MACHINE 

To analyse the impact of allocated/used memory in VM-LM, the first experiment 

was the migration of the same Guest OS and running applications in three 

different VM configurations: 256MB, 512MB and 1024MB. No other parameters, 

such as the number of CPU cores, the enabled CPU features (PAE/NX, VT-s/AMD-

V), and the configured peripherals, were altered.  

Figure 9 presents the VM-LM of an idle VM. In this test, it was possible to observe 

a slight increase in the allocated kernel memory as well as an increase in the 

memory allocated to the VM. This is the effect of the Linux kernel requiring about 

2MB of memory for managing every additional 256MB of memory. In this setup 

the memory stack size was set to 8192 bytes. 

 
Figure 9: Idle VM Live Migration (256/512/1024MB) 
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It can also be noted that there was a minor increase in the total data transferred 

during the VM-LM. However, adding additional memory to idle the VM instance 

has only a minimal impact on the total transferred data: migrating an idle VM 

with 256MB memory transferred about 80MB and increasing the size of the 

configured VM memory from 256MB to 1024MB resulted in only around 10MB 

more data being transferred. 

4.3.4.  APACHE HTTP SERVER 

In this experiment we deployed the Apache HTTP Server (v2.4.18 compiled with 

APR 1.5.2) in the Guest OS. The Apache server was configured to serve static 

content (10MB of images) over the HTTP channel. To have a reference point, an 

idle Apache HTTP Server instance was measured initially. 

Transferring a VM instance using an idle Apache HTTP Server instance required 

ca. 170MB of network traffic. To simulate increasing user traffic, multiple 

continuous requests were generated with JMeter (v2.13) deployed on the 

external machine. JMeter is software designed to load test functional behaviour 

and measure performance of Web Applications such as web servers or services. 

In this research, JMeter simulated from 50 to 250 concurrent users, ca. 65 to 220 

requests per second. It should be noted that the requested content was static, 

meaning that the additional allocated memory was mainly to support the 

increasing number of simultaneously open connections. 

Figure 10 demonstrates the almost linear correlation between the total 

transferred data and memory utilisation. It should be noted that opening and 

handling additional TCP connections is processed in the system’s TCP/IP stack, 

which could impact the size of the canonical memory allocated by the Linux 

kernel. 
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Figure 10: 50-250 users Apache HTTP Server Live Migration 

This test scenario produces a near-linear correlation, as the migrated webserver 

is light on computations and the writable memory set size is rather constant. 

Therefore, an additional SPECjvm2008 experiment was used to examine how 

CPU-intensive applications behave during VM-LM. 

4.3.5.  SPECJVM2008 SUITE 

The experiments with CPU-intensive applications involved the SPECjvm2008 

benchmark suite executed on Java 1.6.0_06-b20 OpenJDK. SPECjvm2008 

evaluates the performance of encryption and decryption implementations, 

various compression methods, floating point operations, objects 

serialisation/deserialisation, graphics visualisation, XML transformations and 

others. Therefore, this suite performs a set of backend-heavy operations. 

Similar to the previous test with the Apache HTTP Server, it was necessary to 

firstly examine the impact of the VM memory size on data transfer. In order to 

force the loading and caching system libraries, a single SPECjvm2008 process was 
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run initially. It should be noted that SPECjvm2008 batch files were configured 

with a 96MB maximum heap space. Java, by default, allocates a quarter of the 

available physical memory upon starting, which might interfere with the running 

of as many as eight benchmark processes in parallel. 

The test deployed an increasing number of SPECjvm2008 instances which were 

executed on a single VM machine. The main reason for this test was that those 

processes are separated; therefore, each of them will increase the WWS by a 

comparable size. Figure 11 demonstrates the test results, which are visibly 

clustered in groups denouncing from 1 to 8 instances executed in parallel. Aside 

from the first SPECjvm2008 process which loads up about 32MB of libraries, each 

additional SPECjvm2008 process allocates additional ca. 15.5MB of memory. The 

increase in transferred data is visibly exponential. 

 
Figure 11: SPECjvm2008 Live Migration (1-8x processes) 

This test also highlights a relative inefficiency when the active Java applications 

within a VM instance are being migrated. Good results are hard to achieve due 

to the increased memory movements caused by Java's GC. A solution to remedy 
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such scenarios has been proposed by Hou et al. (2015), namely a custom kernel 

module which pauses JVM and invokes the GC just before each VM-LM round, 

then only objects from the tenured generation are being copied. In the final VM-

LM round with the VM entirely paused, all objects from both the young and the 

tenured generation of the heap are being copied. Presented results show 

significant reduction of the total VM-LM time by over 90%, compared to the 

vanilla VM migration. 

4.3.6.  POSTGRESQL DATABASE 

A typical online system consists of a frontend application, its backend services 

provider and a persistent storage component, usually in the form of a database. 

Having examined a popular frontend application (Apache HTTP Server) and a 

simulated backend application (SPECjvm2008), the persistent storage 

component now needs to be examined. While the current IT universe offers a 

wide range of specialised database solutions, such as graph-databases, NoSQL-

databases, object and document-oriented databases which are suited to 

different data models, the most commonly used are still relational databases, 

such as Oracle, MySQL, Microsoft SQL Server and PostgreSQL, among others. 

In this research, a PostgreSQL version 9.2.24 database (Obe and Hsu, 2017) was 

selected due to its popularity, ease of use, reliability, stability, wide range of 

supported platforms, and design fit for a high-volume environment, while also 

being an Open-source project. At the time of writing, the PostgreSQL is often 

rated as third or fourth in the popularity index, with a market share of 26.5% of 

all actively used databases worldwide (Stack Overflow, 2017). Given this, it is a 

representative choice for experimentation. 
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The following SQL commands were used to generate a test data table with one 

million rows of randomly generated strings, and then to apply an index to one of 

the columns: 

SELECT  

  generate_series(1,1000000) AS id, 

  md5(random()::text) AS dataRaw, 

  md5(random()::text) AS dataIndexed INTO TestData; 

CREATE INDEX TestData_idx ON TestData(dataIndexed); 

The test data came in two types: unindexed and indexed using default 

PostgreSQL B-tree. The SQL query optimiser can use database indexes when 

filtering and retrieving data from database tables, meaning a reduction in 

response time. B-tree indexes support general comparison operations such as >, 

<, =, etc., and also partially 'like' clauses. B-tree indexes can also be used to 

retrieve data in a sorted order. The test database which was generated allocated 

2.11GB of disk space. It was stored remotely to the NAS device and mapped 

locally. 

The next trials were designed to measure changes in the data transferred during 

VM-LM as PostgreSQL was running an SQL query. Those experiments were the 

most challenging to register consecutive results since the PostgreSQL database 

relies on multi-level caching to speed up its operations. It should be also noted 

that those tests did access files outside their VM as PostgreSQL was configured 

to store the bulk of its data on a remotely accessed NAS device and its cache 

buffers were cleaned between tests by restarting the server daemon service. OS 

was also forced to first synchronise and then drop disk caches within the same 

commands flow: 

sync; /etc/init.d/postgresql-9.0 stop; echo 1 > 

/proc/sys/vm/drop_caches; /etc/init.d/postgresql-9.0 start 
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The subsequent experiments were split into two groups, presenting different 

scenarios: 

• Where ‘select’ queries were run first on an indexed data and then on 

unindexed data, with the ‘like’ clause appended in both scenarios. In the 

first scenario, the query engine used a previously created index and 

loaded only data for matching rows. In the second scenario, the query 

engine was forced to iterate through each of the table’s rows to collect 

results. The main assumption for this group was that the additional 

memory activity from loading all the data would significantly increase the 

size of WWS and, as such, the first scenario would result in a smaller LMDT. 

• Where an ‘update’ query modified parts of a test table. Five separate 

scenarios were designed, updating 20%, 40%, 60%, 80% and 100% of 

consecutive table rows respectively. Updating larger data sets involves 

building larger database transactions logs and requires more intensive 

memory operations which results in the expansion of the WWS. 

Furthermore, the ‘update’ operations require the modification of remote 

database files which are accessed over the network, and changes must be 

additionally committed via the CIFS protocol, the mechanism which is the 

additional source of memory activity. 

During experiments using the ‘select’ query, the PostgreSQL processes allocated 

ca. 229MB in addition to the memory allocated by Guest OS. Predictably, queries 

involving the indexed data were executed much faster than queries executed on 

unindexed data, taking three and eight minutes respectively. Interestingly, there 

was no noticeable LMDT difference when executing ‘select’ queries on indexed 

and unindexed data columns, meaning that the size of the WWS remained 

roughly the same. The explanation for this behaviour is the extensive reuse of the 

memory cache buffers by PostgreSQL. Until buffers are not dirtied by data 

modifications, they can be rapidly released and reused. The PostgreSQL exposes 
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‘pg_buffercache’ view, which is useful for examining the inner workings of the 

buffering. The first noticeable aspect during the scenarios with ‘update’ 

operations was the considerable slowdown during the VM-LM process. Normally, 

the update of one million rows would take two minutes outside VM-LM, and five 

minutes while VM was being migrated. 

Figure 12 presents the results of the experiments. Processing ‘update’ operations, 

which altered 20% of rows, resulted in ca. 310MB being allocated by PostgreSQL. 

Increasing the range of updated rows resulted in ca. 40-55MB memory being 

further allocated by database processes for each additional 20% of all the data 

rows processed. The allocated memory size changed very rapidly, and so only the 

range of memory changes is given. There was no noticeable difference between 

when an indexed or unindexed data was updated. 

 
Figure 12: PostgreSQL Live Migration (20%-100% updated rows) 

This test emphasised the exponential nature of LMDT while migrating rapidly 

changing data. However, it also highlighted the difficulties of measuring the exact 

size of allocated memory and isolating WWS. Considering those difficulties, the 
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next series of tests has focused on creating a custom program generating an 

artificial WWS. 

4.3.7.  CUSTOM VM-ALLOCATOR 

The above scenarios test real-world scenarios, but it is difficult to measure the 

exact parameters of the running applications, such as the WWS size. It was 

decided to implement a simple custom program (see Appendix D), VM-Allocator, 

to help with the experiment. VM-Allocator used the following parameters: 

• Total Allocated Memory size – this memory is allocated and randomised 

upon the program’s start. It should be noted that the setting of the VM-

Allocator’s memory pages remain fixed for the duration of test; 

• WWS Size – this memory is part of the Total Allocated Memory and is 

continuously overwritten with random data. Several continuously 

working threads are used to write to WWS memory area; 

• WWS Overwrite Interval – this parameter controls the speed of writing to 

the WWS memory area. In experiments the interval was set at one second; 

• WWS Overwrite Threads Count – this parameter sets the number of 

concurrently memory overwriting threads. In test implementation, a 

single thread writes to the memory sequentially, thus in our experiments 

four threads were used to keep dirtying memory pages more randomly. 

There was a preference to avoid overwriting memory faster than the network 

could transfer it. This would result in very linear VM-LM data transferred increase. 

Since the WWS memory area would be transferred every VM-LM round, the 

memory could only be finally synchronised in the final round. 
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Figure 13: VM-Allocator Live Migration Cost (WWS 10%-30%) 

Figure 13 presents our WWS test results. In this assessment, the aim was to 

measure the impact of the WWS size on the transferred data. Therefore, it was 

necessary to test several different ratios of WWS vs. Total Allocated Memory – 

10%, 20% and 30%. The increase in WWS size (without an increase of the memory 

overwriting speed) exponentially increases the LMDT size. The VM Allocator 

initialises all memory only once upon starting. Therefore, the measured used 

memory varies only marginally. As in previous examinations, the increase in 

transferred data is exponential. 

4.4. LIVE MIGRATION DATA TRANSFER FORMULA 

Designing a method to accurately estimate live program migration time is not a 

trivial task. Nevertheless, a considerable amount of research has been done on 

the issue and several approximation models have been proposed (Clark et al., 

2005; Jin et al., 2009; Akoush et al., 2010; Liu et al., 2013) with very good results. 

In Shirinbab et al. (2014), a large real-time telecommunication application was 

migrated in several scenarios and the results compared. In Zhang et al. (2016) the 
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authors determined the network bandwidth required to guarantee a particular 

VM migration time. 

It has been noted that the most feasible approach is to rely on historical data of 

memory dirtying rate for that particular program (Liu et al., 2013). In larger data 

centres, most of the workload is heterogeneous and service-oriented. The 

memory access pattern of each application may vary depending on the actual 

utilisation of the provided functionality. In such cases actual cost estimation may 

cause deviations if a model uses only previously sampled data. Experimental 

results have proven that when an adaptive model relies on historical data yields, 

the results have a higher than 90% accuracy. 

However, historical migration data is not always available due to new 

applications, or programs not yet migrated, or where the utilisation of service has 

increased significantly, or where it has not been traced. In addition, changes in 

the environment may have a high impact on the migration time, for example the 

migration process itself consumes CPU cycles and network bandwidth, and a lack 

of these will slow down the migration process. Therefore, deriving a reliable VM-

LM cost estimation formula is of utmost importance. 

Designing a general use formula for migration time is not feasible in practice. 

While total migration time is consistent for the same VM software, experiments 

show huge variances when migrating the same applications between different 

vendors. For example, the migration of the virtualised Ubuntu instance took 

between 7 and 23 seconds depending on the VM used (Hu et al., 2013). This is 

also confirmed by further research (Che et al., 2010; Chierici and Veraldi, 2010; 

Feng et al., 2011; Huang et al., 2011; Tafa et al., 2011). 

One of the less researched factors in VM-LM is the actual size of data transferred. 

This has a direct impact on the Cloud infrastructure because every additional 
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transferred byte limits the available bandwidth, and introduces noise to Cloud 

operations. Other factors such as decreased service performance, downtime, and 

increased CPU usage are local and isolated to a single VM instance or a particular 

physical machine at most. This experiment resulted in the following observations:  

• The total configured VM memory has a small effect on the total 

transferred data. The reason for this is that the Guest OS kernel allocates 

a small fraction of its memory to manage the total memory. In the test 

experiment, the kernel required about 2MB of memory to manage 256MB 

memory. Extending the VM memory from 256MB to 1024MB resulted 

only in the transference of only 10MB of additional data. 

• The number of open network connections has minimal effect on the total 

data transferred. This is explained by the fact that current TCP/IP 

implementations are very mature, optimised and do not require many 

resources to perform network operations. 

• Serving static content that does not require processing is economical in 

terms of VM-LM. Since data is mostly static, the majority of memory 

operations are read only. Therefore, transferring the memory page can 

be done only once, and thus the increase in transferred data during VM-

LM is nearly linear. 

• The high degree of computation activity by itself has no noticeable impact 

on the size of transferred data. However, the computation-intensive 

processes and programs that significantly alter the memory state have the 

most substantial impact on the VM-LM data transfer size. When a 

memory page is repeatedly changed by write operations, the VM would 

repeatedly transfer it over the network. When the speed of dirtying those 

memory pages exceeds the available network bandwidth, those pages will 

be marked and must be transferred in the final round of migration. 
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• In experiments, every node has pre-mapped remote storage upon start. 

Therefore, there is no additional cost for accessing shared drives. Such 

setup is widely used in clusters and Clouds.  

From the above observations, the most significant factor in estimating the size of 

transferred data during the VM-LM process is the migrated application’s 

allocated memory itself. Very rapid (i.e. faster than the network can transfer it) 

and fully overwriting WWS will result in this area of memory being fully migrated 

over and over again throughout all VM-LM rounds. Therefore, the increase of 

transferred data in this rare case is linear since WWS will always be transferred 

n-times. However, it is highly unlikely that the application will consistently 

overwrite WWS fully. Based on our experiments, the following formula for the 

size of the LMDT has been devised: 

𝐿𝑀𝐷𝑇 = 	𝐶𝑀𝐷𝑇 + 𝑀𝐹 ∗ 𝑒(xy∗xz) (10) 

• AM (Application Memory): 

𝐴𝑀 = 𝑇𝑜𝑡𝑎𝑙	𝑈𝑠𝑒𝑑	𝑀𝑒𝑚𝑜𝑟𝑦 − 𝐶𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙	𝑀𝑒𝑚𝑜𝑟𝑦 (11) 

Note that in our experiments, the Canonical (Kernel) Memory was 

measured together with any libraries loaded. System libraries and 

modules are loaded upon request and then are cached in the kernel 

memory and are shared by other applications. 

• AF (Application Factor) – this parameter varies per application, and 

experiments show that the best approach is to estimate it by running 

several simulations. This parameter determines how steep the rise of 

LMDT is. In general, applications with complex logic modify memory pages 

more often and a significantly higher number of memory pages are being 

marked as dirty. This is especially true for AMM, which tends to re-
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allocate substantial amounts of data during the memory reclaim phase. 

The values presented in Table 5 were estimated from test experiments. 

• MF (Migration Factor) – this parameter depends on infrastructure and it 

has been constant through all test experiments. In this experiment MF = 

9.6MB. 

• CMDT (Canonical/Kernel Memory Data Transferred) – each VM and the 

contained applications transfer a certain chunk of data every time. This is 

measured when both the VM and applications are idle, i.e. no user 

requests are served and no data is processed. It should also be noted that 

the first instance of the application increases the canonical memory since 

the required libraries are loaded and cached in the memory. The 

estimated values in the test experiments are summarised in Table 5. 

When applied to the experiment data, the above formula closely estimates the 

total size of the transferred data. For less computation-intensive applications, 

such as the Apache HTTP Server, the average approximation error is about ±4%; 

the value is adjusted for iptraf measurement error margin. For computation-

intensive codes like SPECjvm2008, PostgreSQL and VM-Allocator, the average 

approximation error is between ±8% and ±11%. 

Application (for 1024MB VM configuration) CMDT [MB] AF 

Idle VM 90 - 
Apache HTTP Server (v2.4.18 compiled with APR 1.5.2) 175 0.00682 
SPECjvm2008 115 0.03305 
PostgreSQL (v9.2.24) 145 0.01072 
VM-Allocator Test I (WWS is 10% of total memory) 213 0.00620 
VM-Allocator Test II (WWS is 20% of total memory) 213 0.00676 
VM-Allocator Test III (WWS is 30% of total memory) 213 0.00714 

Table 5: Application estimated LMDT values 

The presented LMDT formula does not consider the cost of switching existing 

network connections to a new node. This is usually negligible since it is done in 

the hardware layer but depending on the implemented solution this additional 
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cost might vary. In addition, network data compression and optimizations like 

adaptive memory pages’ compression (Liu et al., 2013) might significantly reduce 

the size of the transferred data. 

The input parameters in LMDT formula, such as AM, AF, MF and CMDT, were 

computed for a particular test configuration. These values will differ depending 

on environment, for example VM vendor and version, hardware specifications, 

network structure and available bandwidth, type and configuration of Guest OS, 

a particular migrated application, and so on. However, an analysis of the code 

reveals likeness of algorithms used in other VMs and the implemented network 

transfer method (i.e. TCP/IP packages streaming). It has been noted that, given 

similar environments, there is little variety in the VM-LM impact, and historical 

data can be used to accurately estimate these metrics and parameters. 

The most practical way to obtain those values is through experimentation. 

Therefore, the working model should be capable of monitoring ongoing VM-LM 

and adjusting itself accordingly. Such a solution has been presented in the 

literature (Akoush et al., 2010; Verma et al., 2011) with good results. In practice, 

the best approach may be to initially benchmark all applications that are 

deployed on the Cloud system and then use these data to project the migration 

cost for this particular application based on recorded parameters. 

4.5. SUMMARY AND CONCLUSIONS 

This research demonstrates that while the methodology for estimating the VM-

LM cost should be tailored to a particular environment such as the deployed VM, 

network configuration, used storage types, available CPU cycles for migration, it 

is possible to find a reliable approach for the purposes of estimation. From the 

previous research and our experimental results, several factors have been 

identified as having a significant impact on the task migration cost: 
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• The size of the allocated application memory and the size of WWS (or 

memory dirtying rate) – memory-write-intensive applications are difficult 

to migrate since frequently modified memory pages must be migrated 

repeatedly over and over again. As presented in experiments in this 

chapter, the size of WWS is often related to a specific application design 

and utilisation level. 

• Frameworks equipped with AMM – this type of solutions, such as Java's 

GC, are considerably harder to migrate. This is due to the significant 

amounts of data being re-allocated during the memory reclaim phase 

which results in larger numbers of memory pages being marked as dirty 

in each VM-LM round. As mentioned in section 4.5 there exist efficient 

strategies trying to address this weakness, however they require much 

tighter coupling with the application deployed within the VM which might 

not be always possible. 

• The available spare CPU cycles on both the target and the source 

machines – migration is an OS process executed on the same physical 

machine as a hypervisor. Low CPU cycles can create a bottleneck in the 

migration process itself (Wu and Zhao, 2011). It was also noted that 

assigning additional CPU cycles to the migration process reduces the total 

migration time but only to a certain point. 

• The size of the virtual drivers mapped to the local storage media and the 

IOPS rate – if data is stored locally and not on a NAS device, it needs to be 

transferred together with the VM state. Persistent data size can be 

substantial such as several TBs of data and can be a dominant factor in 

the migration time (Hu et al., 2013). 

• Migrating several VM instances in parallel – multiple concurrent 

migrations might interfere with each other. They are also likely to be 

slower than the same VM instances migrated sequentially one after 

another. 
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• The network bandwidth available for migration – the migration process 

consists of transferring amounts of serialised data over the network to 

another physical node. The more network throughput can be allocated to 

migration, the faster it will complete. Additionally, a slow transfer rate 

might result in larger WWS, i.e. the memory dirtying rate exceeds network 

capabilities (Clark et al., 2005; Liu et al., 2013). Earlier experiments were 

performed on a Wi-Fi network, where VM teleportation was very unstable.  

Analysing the VM-LM cost is not simplistic and can have many dimensions and 

return various results based on the Cloud system. Therefore, it is necessary to 

apply appropriate limitations to the cost model and focus exclusively on the most 

important factors. As has been demonstrated in our experiments, estimating the 

LMDT size is not a trivial task, and many parameters need to be considered. 

Nevertheless, the results computed with LMDT formula have an acceptable 

approximations level of up to ±11% in the worst-case scenario. 

The scope of this research has been necessarily limited to the available software 

and hardware. All tested applications were executed on a single VM instance, 

while present systems tend to have more complex dependencies, such as 

distributed databases and file systems and 3rd party systems. Especially, the 

design of modern systems seems to follow the micro-services architecture 

principles. In such environments, loss of performance in one system component 

could easily propagate to other parts of the system. 

The experiments presented and the resulting LMDT formula completed the 

CRUM introduced in Chapter 3, meaning that the project could move to the 

practical part of research. The following chapters describe, firstly, (i) a simulation 

framework based on a real-world workload traces (Chapter 5), and then (ii) the 

actual implementation of two Cloud load balancer prototypes (Chapters 6 and 7). 
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5. ACCURATE GOOGLE CLOUD SIMULATOR 

Theoretical investigations into the Cloud's resources model, in addition to 

practical experiments on the virtualisation layer (as detailed in Chapter 3 and 4), 

have highlighted the immense complexity of the workings of the Cloud 

environment. It became obvious that statistical data and a dry analysis by itself 

were insufficient for the research to move further, and that a more detailed and 

concrete approach was required, such as an analysis of the actually recorded 

Cloud workload. 

The direct predecessors of Cloud systems were cluster and grid systems. The 

difference between a cloud and a cluster is that a cluster is a group of computers 

which are interconnected between themselves using high-speed networks, such 

as gigabit Ethernet, SCI and Myrinet, whereas Cloud servers can be geographically 

distributed. The main difference between the cloud and the grid is the resource 

distribution strategy applied. The grid model is decentralised and computation 

may occur over many administrative areas, whereas the cloud features a 

centralised resource distribution and resources are dynamically provisioned 

(Mateescu et al., 2011). In addition, clouds are usually a collection of computers 

owned by one party which are open to the public, the available computing power 

of which can be rented by anyone. In contrast to this open access, grid computers 

are owned by multiple parties and are usually closed to the public (Armbrust et 

al., 2009).  

Correctly characterising user behaviour is of utmost importance when modelling 

Cloud workloads (Sharma et al., 2011; Malhotra and Jain, 2013; Shen et al., 2015). 

Cloud workloads have been researched in detail and are reasonably well 

understood (Mishra et al., 2010; Wang et al., 2011; Sharma et al., 2011; Zhang et 

al., 2011; Moreno et al., 2013; Reiss et al., 2012; Abdul-Rahman, et al., 2014). 

There have been limited attempts to accurately simulate Cloud workloads with 
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consideration of detailed task parameters and constraints (Beitch et al., 2010; 

Ganapathi et al., 2010; Kliazovich et al., 2012; Calheiros et al., 2013), especially 

with consideration of workload scheduling. 

Evaluating the performance of distributed applications and services without 

unrestricted access to existing Cloud environments is a very difficult task. The 

characteristics of a cloud workload in a data centre differ significantly from 

traditional grid computing (Di et al., 2012). There is only a limited number of 

publicly available cloud system workload traces in existence, and those are 

stripped of useful details (Mishra et al., 2010). The research community relies 

predominantly on simulations and models to conduct their experiments. The 

quality of input data and its realistic nature is a very important factor since it has 

a direct impact on the accuracy of results. Cloud systems are very dynamic, 

complex entities, and even the best simulation models must employ 

simplifications and are unable to provide realistic user configurations. This 

problem is even more visible when the studied area touches deep system-critical 

mechanisms such as task scheduling or fault handling and prevention schemes.  

Normally, Cloud providers would not allow developers to alter core system 

components such as the scheduler or the provisioning services in a working 

system. In an ideal scenario, every Cloud system designer would have 

unconstrained access to a Cloud system of a considerable size which could be 

used as a test bed for developing models and strategies. However, in reality, a 

developer has to compete for access to a computing centre with many other 

business units. 

Therefore, this part of the research has focused on building a flexible Cloud 

workload simulation framework which could be deployed in a local environment, 

i.e. the researcher’s desktop machine or laptop, while providing at the same time 

high-quality, detailed and accurate workload parameters of the simulated Cloud 
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system. Previous research and analysis of available workload traces show that 

Cloud workloads are usually highly variable and non-cyclical. Spread around the 

globe, Clouds’ users are not constrained by predefined schedules, meaning that 

the workload is not correlated to season or time of day, in contrast to Grid and 

Cluster environments. Therefore, to research the proposed problem, a realistic 

Cloud workload simulation model is required. In order to setup a realistic scenario, 

two approaches can be used: 

• Use an artificial Cloud workload generator (Beitch et al., 2010; Ganapathi 

et al., 2010; Wang et al., 2011; Malhotra and Jain, 2013). 

• Acquire and parse real-world workload traces (Iosup et al., 2008; Kavulya 

et al., 2010; Hellerstein et al., 2010; Klusáček, 2014; Feitelson et al., 2014; 

El-Sayed et al., 2017) to a format which can be used in further research. 

A number of simulators already exist addressing various aspects of the current 

Cloud systems such as computations, for example CloudAnalyst (Wickremasinghe, 

2009), CloudSim (Garg et al., 2011) or networking/energy use, for example 

GreenCloud/NS2 platform (Kliazovich et al., 2012). However, those simulators, 

while very flexible, do not provide details about the fine-grained parameters that 

might be required in some types of simulation, such as memory page size, cache 

size, disk I/O time, cycles and memory access per instruction. Such low-level 

parameters can be obtained only from detailed real-world workload logs. 

This chapter presents the AGOCS – a novel high-fidelity Cloud workload simulator 

which is based on parsing real-world workload traces. According to previous 

research and personal computing experience, building a high-fidelity workload 

generator is an extremely difficult task. The number of dependencies, constraints 

and other details required to capture the overall dynamicity of Cloud systems 

(Zhang et al., 2011) forces researchers to simplify models and make assumptions. 
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Therefore, a decision was made to base the test approach and simulation on real-

world workload giving greater detail. 

This chapter is based on previous work published in Sliwko and Getov (2016). 

5.1. WORKLOAD TRACES ARCHIVES 

The following workload traces are publicly available: 

• Google Cluster Data (GCD) project (Hellerstein et al., 2010) – this 

repository (available from github.com/google/cluster-data) includes 

detailed traces over a month-long period (May 2011) from a 12.5K-node 

network. The statistics include CPU usage, memory usage, disk I/O 

operations (only for the first two weeks, after that the logs’ configuration 

changed), network speed etc.; 

• Grid Workload Archive (Iosup et al., 2008) – hosted in Delft University of 

Technology in the Netherlands. This repository contains workload traces 

from almost a dozen grid systems. The majority include CPU usage, 

memory usage and disk I/O operations; 

• Parallel Workloads Archive (Feitelson et al., 2014) – this repository 

contains over 30 workload logs from around the world. The earliest traces 

are from 1993 and the latest from 2012. Those workload traces were 

thoughtfully cleaned of anomalies and data errors; 

• MetaCentrum Workload Log (Klusáček, 2014) and CERIT-SC Grid 

Workload (Klusáček and Parák, 2017) – archive contains data sets 

generated from TORQUE workload traces, deployed in the Czech National 

Grid Infrastructure (22 clusters having 219 nodes with 1494 CPUs); 

• Yahoo! M45 Supercomputing Project (Kavulya et al., 2010) – Yahoo! made 

its 4k-node Hadoop cluster’s workload traces freely available to selected 

universities for academic research. 
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All the above repositories, except for the Yahoo! workload logs, can be used 

freely for research work since there are no legal restrictions and/or requirements 

for presenting these data or derived data in any kind of research work. 

For the purposes of this research, real-world workload traces from the GCD 

project are used. The main reason for the selection of this repository is the high 

quality of workload traces. Traces are complete and contain a low number of 

anomalies which are thoughtfully explained including their schema and format 

(Reiss et al., 2013). They have been gathered from a large system over a 

significant period of time. 

Google offers a variety of services, and therefore their backend systems are 

diversified and represent a complete spectrum of computation requirements. 

Few computing services require as much computation per request as search 

engines. On average, a single query requires the examination and processing of 

hundreds of megabytes of data, even when elegant optimisations like reverse-

index (Byrne et al., 2001) applied. At the heart of every Google search query 

processing lays the PageRank algorithm (Richardson and Domingos, 2001) which 

tracks and evaluates the importance of every result, meaning that users can 

receive the most significant results at the top of results page. Additionally, every 

query is checked by the Spell Checker service and is also processed by the Ads 

server, where most of Google revenue comes from. For a detailed description of 

how the search query is processed at Google datacentres, please see additional 

research findings (Barroso et al., 2003). 

Google engineers focused on designing a throughput-oriented framework in 

which ca. 80% of the workload consists of a high number of batch jobs, which 

have a runtime of 12 to 20 minutes (Schwarzkopf et al., 2013) and a smaller 

number of long-lived service jobs. This mixed longevity of submitted jobs creates 

very good testing field for the purpose of this research, where the aim is to design 
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a flexible and scalable scheduler capable of handling very high workload on any 

number of nodes. Other designs seem to be focused on processing either the high 

churn of short-lived batch tasks (e.g. Microsoft’s Apollo and Alibaba’s Fuxi) or a 

smaller number of long-term services (e.g. Twitter’s Aurora). Finally, Google Inc. 

is a global company and its data centres are working continuously 24-hours a day. 

Its clusters’ workloads are not cyclical, which could be a problem if using traces 

from a more local data centre. 

Almost all Google Cloud performance profiling is done with help of the Google 

Wide Profiling (GWP) framework (Ren et al., 2010). GWP is inspired by systems 

such as DCPI (Anderson et al., 1998) and is based on the premise of low overhead 

sampling both of the machines within the datacentre and of the execution time 

within a machine. Every day, GWP collectors randomly select a limited number 

of Cloud nodes to profile and start profiling routines via RPC calls. The profile data 

are collected via the ‘perf’ tool and are tagged with corresponding code locations. 

They are then aggregated with samples from other machines in the Dermel 

database (Melnik et al., 2010) for convenient analysis (Kanev et al., 2015). 

The GCD workload traces are stored in the Cloud Storage in the bucket 

‘clusterdata-2011-2’, and can be downloaded using the 'gsutil' tool. The 

compressed archives are approximately 41GB, while the uncompressed archives 

are about 191GB. Unfortunately, no logging system is perfect, and every 

workload trace examined has a proportion of anomalies. The GCD logs are of high 

quality, although there are a few known inconsistences: 

• Disk time data is not logged after the first 14 days due to changes in the 

monitoring system; 

• Approximately 0.003% of jobs are not listed as they run on nodes not 

included in the workload traces; 
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• Approximately 70 jobs have no task information. The explanation given is 

that those jobs run but the tasks were disabled; 

• Approximately 0.013% of the task events and 0.0008% of the job events 

have missing fields; 

• Fewer than 0.05% of job and task scheduling event records are missing 

and less than 1% of resource usage measurements are missing. 

Some resource statistics data are inaccurate, for example the cycles per 

instruction and the memory accesses per instruction parameters have values out 

of range for the underlying micro-architecture. The cause of this might be bugs 

in the statistic measurement system. 

Additionally, GCD traces were obfuscated from user data, operating system and 

platform details, job purpose information and special constraints’ names and 

values. These characteristics would be a very interesting point of research. It is 

also important to point out that GCD workloads are delayed by ten minutes. This 

shift has been applied in order to split pre-existing cluster conditions such as 

already existing nodes from new incoming requests, for example scheduled tasks 

and resource utilisations. 

5.2. GOOGLE CLOUD WORKLOAD 

There are many ways of splitting the distributed computing system’s workload 

into unique categories of tasks. Based on existing Google Cluster workloads 

analysis, the 80th percentile of batch jobs finish within 12 to 20 minutes, while 

the 80th percentile of tasks finish within 29 days. Most jobs (ca. 80%) are batch 

jobs. Batch jobs tend to have a fast turnaround with a short execution time; in 

Google Cluster the 80th percentile inter-arrival time is between 4 to 7 seconds. 

Therefore, a low-overhead and low-quality allocation algorithm is suitable for this 

type of job. Services execute for much longer, and usually involve some type of 
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interactivity, meaning that high-quality allocation guaranteeing good 

performance is critical. In Google Cluster fewer than 20% of all jobs show the 80th 

percentile inter-arrival time as between 2 to 15 minutes. However, services tend 

to consume a majority of system resources – approximately 55-80% of all 

resources in Google Cluster (Schwarzkopf et al., 2013). Those values seem to be 

comparable with results from a similar analysis of available cluster workload 

traces like Yahoo! (Kavulya et al., 2010), Facebook (Chen et al., 2012) and Google 

(Mishra et al., 2010; Sharma et al., 2011; Zhang et al., 2011; Reiss et al., 2012). 

The examined workload traces do not specify details about underlying 

architecture, although some details about Google Cloud’s architecture and jobs 

specifications can be found in Kanev et al. (2015). From examining the workload 

logs, it was found that Google Cloud jobs show significant diversity in workload 

behaviour, with no single hotspot application. From a software point of view, the 

jobs’ executables look sound and Google engineers seem to put a considerable 

amount of effort into profiling and optimising them. While a significant number 

of Google services are written in a variety of programming languages, such as C++, 

Java, Python and Go, it is the C++ code that consumes most of CPU cycles. Code 

sharing is frequent, but binaries are generally statistically linked in order to avoid 

dynamic dependency issues, as well as to gain a small performance boost at the 

expense of executable size, which often reaches 100MB. Almost all Google’s 

datacentre software is stored in a single shared repository and is built using a 

single build system – Bazel (ibid.). 

Google services are deployed on RedHat. Instances are heavily customised, and 

many OS-level libraries were modified to boost performance or to provide better 

security, for example in the replacement of malloc by tcmalloc (Ghemawat and 

Menage, 2005). 
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Google Cloud has an architecture formed of distributed, multi-tiered services, 

where services expose only limited sets of APIs. Such a pattern helps to reduce 

necessary testing. Communication between services is performed only via RPC 

calls, where requests and responses are serialised in a Protocol Buffers format 

optimised for reducing the size of data (Varda, 2008). Protocol Buffers do not 

explicitly implement any type of compression, although it supports ‘varint 

encoding’ – a variable-length encoding for integer data that means small values 

use less space, i.e. values 0-127 take one byte plus the header, even if the field 

type is bit-wise wider, for example 64-bit integer. As with many other Cloud 

systems, Google Cloud is gradually becoming more and more diversified. Data 

centres were initially built with a single ‘killer-application’ in mind (Barroso et al., 

2003), but nowadays the utilisation model of typical Cloud system is to accept a 

continuously increasing pool of diverse applications and services. 

Kanev et al. (2015) analysed workload traces over a three-year period and noted 

that during the earliest period examined (August 2011), the top 50 applications 

accounted for 80% of CPU cycles. Three years later (August 2014), the top 50 

applications (not necessary the same binaries) consumed only 60% of CPU cycles. 

The authors argue that Google Cloud data centres are still more specialised in 

their operations than publicly available clouds, which are exposed to much more 

varied technology stacks. Jobs executed on Google Cloud nodes include (Reiss et 

al., 2013): (i) the processes responsible for content ad targeting which matches 

ads with web pages based on page content; (ii) scalable distributed storage 

(‘bigtable’) (Chang et al., 2008); (iii) flight search and pricing engine; (iv) gmail 

back-end server and front-end server (‘gmail’ and ‘gmail-fe’); (v) the components 

of search indexing pipeline; (vi) search engine services (‘search1’, ‘search2’, etc.) 

(Meisner et al., 2011), (vi) video processing tasks (‘video’) such as transcoding and 

feature extraction, and so on. 
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The GCD workload traces are stored in Google Storage for Developers in the 

bucket ‘clusterdata-2011-2’. Traces can be downloaded by the 'gsutil' tool, and 

the compressed archives are approximately 41GB. The uncompressed archives 

are about 191GB. The schema and format of available assets of GCD is detailed 

in Reiss et al. (2013); a description of the structure is presented in Table 6: 

Files Description 
Size 

(uncompressed) 

machine_attributes/ 
part-00000-of-
00001.csv 

Aside from computational capacities (i.e. memory and CPU), each 
machine might have a set of machine attributes as key-value pairs. 
Those represent machine properties, such as kernel version, CPU 
clock speed or presence of an external IP address. Unfortunately, 
those values have been obfuscated, and only hashes are available. 

1.21GB 

machine_events/ 
part-00000-of-
00001.csv 

The majority of nodes existed in the system before the logging 
process. However, during the cluster operation a number of nodes 
were shut down, upgraded or added. This part of the workload traces 
contains a list of events with those actions. 

2.9MB 

job_events/ 
part-00000-of-
00500.csv 
part-00001-of-
00500.csv 
… 
part-00499-of-
00500.csv 

The jobs queue is the base of all processing. Those files contain a 
sequential list of all submitted jobs to the cell. Entries in those files 
state which user submitted the task, the priority of the task and the 
local scheduling class (i.e. priority of access to local machine’s 
resources). 

332MB 

task_constraints/ 
part-00000-of-
00500.csv 
part-00001-of-
00500.csv 
…  
part-00499-of-
00500.csv 

Tasks can specify constraints on machine attributes (detailed in 
subsection 5.5.2). There are four types of constraints: 

• EQUAL – checks if attribute exists and has required value 
• NOT EQUAL – checks if attribute is not defined or has 

different value than specified 
• LESS THAN – checks if attribute (specified as integer 

number) is strictly less than passed value 
• GREATER THAN – checks if attribute (specified as integer 

number) is strictly greater than passed value 

3.04GB 

task_events/ 
part-00000-of-
00500.csv 
part-00001-of-
00500.csv 
… 
part-00499-of-
00500.csv 

Every job contains a number of tasks to be scheduled and executed 
on networked computers. Tasks specify requested resources, such as 
CPU cores, memory and local disk space, priority and local scheduling 
class. 

16.55GB 

task_usage/ 
part-00000-of-
00500.csv 
part-00001-of-
00500.csv 
… 
part-00499-of-
00500.csv 

Task usage is the biggest (ca. 89% of data size-wise) and the most 
interesting piece of data, containing real metrics of resources used by 
tasks. This includes mean and maximum memory usage, 
mapped/unmapped page cache memory usage, mean and maximum 
disk I/O time and cycles per instruction. The usage values were 
gathered from each measurement window (usually 300 seconds), and 
in some cases were aggregated from several sub-containers. 

170.54GB 

Table 6: Google Cluster Data archive structure 
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It is also important to note that GCD workloads are delayed by ten minutes. This 

shift has been applied in order to split pre-existing cluster conditions such as 

already existing nodes from new incoming requests, e.g. scheduled tasks. 

5.3. AGOCS ARCHITECTURE 

The presented framework generates and accurately times workload events and 

feeds them to the designated scheduler instance (push model). The typical 

architecture for testing consists of a single stand-alone AGOCS server and a 

number of simultaneously running instances of scheduling algorithms. 

 
Figure 14: AGOCS use case 

AGOCS framework was implemented in Scala functional programming language. 

Since Scala is based on JVM, it allows access to a wide range of mature Java 

libraries such as Google Guava and Apache Commons (see Appendix B for the 

specifications of runtime libraries). The detailed simulations of distributed 

computing models require a high degree of parallelisation in order to run 

effectively. To develop such a highly concurrent program, an Akka 

Actors/Streams framework is used because it has a very low overhead per 

instance, approximately 300 bytes. Additionally, given that Akka framework can 

be deployed in a distributed environment, AGOCS can be deployed on multiple 

machines through simple configuration changes. Additionally, Akka library uses 

Google’s efficient Protocol Buffers (Varda, 2008) as its default serialisation 

mechanism for internal communications, i.e. between Akka cluster nodes. 
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The development of AGOCS (and also the load balancer prototypes detailed in 

Chapters 6 and 7) was done with the help of IntelliJ IDEA using native Scala plugin 

(see Appendix A). This is presented in Figure 15, where a part of NA source code 

can be seen: 

 
Figure 15: Scala IntelliJ IDEA 

An interesting feature of AGOCS is that it can be paused at any time, allowing 

users to take a snapshot of current tasks distributions and the state of scheduled 

jobs. The snapshot files contain all simulation data in a serialised form, meaning 

that they can be stored and examined later. This approach enables researchers 

to conveniently and directly compare various scheduling algorithms at any time 

while they are running. The native Java’s serialisation mechanism (which can be 

used in Scala) was initially used to store the simulation’s state; however, it was 

found that it does not support very large context objects generated by 

experiments simulating 100k or more nodes, and was replaced by Kryo 

framework. While most simulation framework functionalities are enabled in 

configuration files or triggered by a command line, AGOCS also offers a graphical 
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simulation monitor module implemented in JavaFX (the visual layout of nodes is 

generated procedurally from Halton sequence): 

 
Figure 16: AGOCS simulation monitor 

AGOCS was designed for common desktop machines even though it requires 

loading and processing a huge amount of workload traces data (191GB of 

uncompressed data). Therefore, running a simulation framework server is disk 

I/O-intensive and may interfere with OS’s swap memory operations. Despite this, 

it was still possible to work around this issue by attaching an external disk drive 

to the test machine. 

5.4. RELATED WORK 

There currently exist a number of Cloud simulation frameworks such as 

CloudAnalyst (Wickremasinghe, 2009), GreenCloud (Kliazovich et al., 2012), 

Network CloudSim (Garg et al., 2011; Malhotra and Jain, 2013) and EMUSIM 

(Calheiros et al., 2013). Those frameworks were designed to cover a wide range 

of Cloud systems simulations, while AGOCS was designed with a focused goal of 

simulating a Google Computing Cloud cell environment with consideration of a 

very fine-grained and detailed aspect simulation such as tasks resource utilisation, 
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task constraints, jobs queue simulation, jobs and tasks priority class, node’s local 

scheduler simulation, detailed statistic as memory cache hit ratio and so on. A 

brief comparison between these frameworks is shown in Table 7: 

Framework AGOCS 
CloudAnalyst 

(Wickremasinghe, 
2009) 

GreenCloud 
(Kliazovich et al., 

2012) 

Network 
CloudSim 

(Garg et al., 
2011) 

EMUSIM 
(Calheiros et 

al., 2013) 

Platform Scala/Akka CloudSim NS2 CloudSim AEF 

Language Scala Java C++/OTCL Java Java 

Simulator Type Event Based Event Based Packet Level Packet Level Event Based 

Supported 
workload traces 

Google Cluster 
Data (CSV files) 

Custom 
(ASCII/XML) 

Loadable 
configuration 
settings (TCL) 

Custom 
(ASCII/XML) 

Custom 
(ASCII/XML) 

Networking Limited Limited Full Full Limited 

Resource 
constraints 

Yes Yes Yes Yes Yes 

Supported and 
reported 

resource types 

- CPU Cores 
(Used and 
requested) 
- Canonical 
Memory (Used) 
- Assigned 
Memory (Used 
and requested) 
- Page Cache 
Memory (Used) 
- Disk I/O Time 
(Used) 
- Local and 
Remote Disk 
Space (Used) 
- Cycles Per 
Instruction 
(Used) 
- Memory Access 
Per Instruction 
(Used) 
- Local Scheduler 
(Priority Class) 
- Jobs Priority 
- Tasks Priority 

- CPU Cores 
(Requested) 
- Bandwidth 
(Requested) 
- Memory 
(Requested) 
- Millions of 
Instructions Per 
Second 

- Server Load 
factor (Used and 
requested) 
- Bandwidth (Used 
and requested) 
- Memory (Used 
and requested) 
- Energy Used 
(split by servers, 
switches, etc.) 
- Service Timeout 

- CPU Cores 
(Requested) 
- Bandwidth 
(Requested) 
- RAM size 
(Requested) 
- Millions of 
Instructions 
Per Second 

- CPU Cores 
(Requested) 
- Bandwidth 
(Requested) 
- RAM size 
(Requested) 
- Millions of 
Instructions 
Per Second 

Attribute 
constraints 

Yes Limited No Limited Limited 

Build-in 
scenarios 

Google Cluster 
(cell A), 12.5K 

nodes 

Generator and 
examples Examples 

Generator and 
examples 

Several 
predefined 
scenarios 

Table 7: Cloud simulators comparison 
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5.5. SIMULATION FRAMEWORK DESIGN 

All workload traces come in similar formats, where a change in the environment 

state is reported as an event. In GCD the jobs queue is the base of all processing. 

All entries in the jobs queue traces relate to jobs submissions, jobs cancellations, 

changes in jobs’ priorities and so on. Listed jobs contain a series of tasks, which 

are reported in separate log files, that are subsequently executed on available 

nodes. The configuration of available nodes is reported in yet another log file. 

Given this, the simulation framework must cope with several independent 

sources of system configuration and must process them in a synchronised 

manner. All entries in the traces files come with a timestamp or period range. 

There are four main sources of configuration state changes in the workload 

simulation model, namely: 

• Dynamic resource usage of processes – the resources utilisation levels are 

not constant through the life on an application, and indeed sometimes 

vary greatly from their specified requirements; 

• New jobs are scheduled and current jobs complete their processing or are 

cancelled – this is the core operation in any scheduled system. When a 

job is scheduled, the user specifies the required resources and constraints; 

• Changes in jobs resource requirements and/or constraints – during 

execution, tasks might have their resource requirements and constraints 

altered. This may result in a node no longer being suitable for certain 

types of task; 

• Changes in nodes’ configurations – during a cluster system lifecycle, 

nodes might be taken offline for maintenance or upgraded, with new 

nodes being added or old nodes removed. This scenario is rarely visible in 

smaller data centres, for example MetaCentrum infrastructure is 

relatively infrequently updated (Klusáček, 2014). It is more common to 
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find frequent alterations to configuration within larger systems such as 

Google Cluster. 

5.5.1.  WORKLOAD EVENTS 

To be able to handle this highly concurrent environment, all workload state 

updates, such as new tasks, updated constraints, new nodes and removed nodes, 

are done via immutable events, as shown in Figure 17. 

 
Figure 17: Workload events class diagram 

Every event is marked with a timestamp to sort event batches from several 

parsers in the correct execution order. Such a setup enables the simulation 

system to maintain consistency of state even under a heavy load. Detailed 

descriptions of all workload events are presented below: 

• AddTaskWorkloadEvent – generated for each new task. Tasks are always 

generated with initial resource requirements and constraints; 

• UpdateTaskRequiredResourcesWorkloadEvent – in the majority of cases, 

requested resources values do not change after initial value. However, in 

several instances tasks get their required resources updated and this 

event will be generated; 

• UpdateTaskUsedResourcesWorkloadEvent – upon execution, tasks 

dynamically allocate various amounts of memory, utilise storage space in 

different levels and so on. This event is generated to keep track of 

currently allocated resources; 
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• UpdateTaskConstraintsWorkloadEvent – task constraints are a set of 

logical operators set on node attributes and their values enable or disable 

execution of that task on certain node; 

• RemoveTaskWorkloadEvent – this event is generated when the task 

finishes its execution or is killed by the system or user. When examining 

Google workload traces it was observed that significant parts of the tasks 

were killed by the native system; 

• AddNodeWorkloadEvent – this event is generated when a new node is 

added to the cluster. The majority of these events are generated upon the 

start of the simulation; 

• UpdateNodeTotalResourcesWorkloadEvent – during simulation lifecycle, 

certain nodes are taken offline and their resources updated (i.e. new 

memory banks are added). As with AddNodeWorkloadEvent, the majority 

of such events occur at the start of the simulation; 

• AddNodeAttributesWorkloadEvent – this event is generated if node 

attributes are updated or new attributes are added. The GCD project does 

not specify the meaning of attributes as values and names are obfuscated, 

but it does suggest features like the existence of external IP address and 

the specific version of Linux kernel; 

• RemoveNodeAttributesWorkloadEvent – as in the event above, node 

attributes can be removed, for example a given node might have lost its 

external IP address; 

• RemoveNodeWorkloadEvent – during the recorded period certain nodes 

were taken down for maintenance, or were completely removed from the 

cluster. This event removes the node from the available nodes pool. 

GCD traces keep record of all tasks updates and action. A task might have only 

two states with a number of transformations between those states: (i) pending 

(task is awaiting allocation to a node), or (ii) running (task is running on a node). 
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Once allocated, the running task cannot go back to pending state. If a task is 

evicted or lost a clone task is created added to the queue. Figure 18 presents the 

lifecycle of a task and Table 8 demonstrates how those updates are directly 

mapped to workload events in the simulator: 

 
Figure 18: Workload events lifecycle diagram 

Action Description Workload Event Type 

SUBMIT 
Task has been submitted to cluster 
scheduler 

AddTaskWorkloadEvent 

(action creates a task in the queue and sends it to 
Workload Manager – this is where the initial task resource 
requirements are registered in) 

SCHEDULE 
Task has been scheduled by cluster 
scheduler 

(actions are the results of the actions of the internal Google 
scheduler, therefore the simulator is ignoring them and no 
event is generated) 

EVICT 

Task has been evicted (and killed) from 
node. Reasons include: (i) higher 
priority task was scheduled on this 
node, (ii) node was taken offline, (iii) 
hardware malfunctions and (iv) task 
used resources exceeded node 
capacity. RemoveTaskWorkloadEvent 

(actions mark the end of a task and the simulator will 
delete task’s definition and remove all references to it) 

 

FAIL Task failed or became unresponsive 
(i.e. execution crashed) 

FINISH Task finished normally 

KILL Task has been killed (by user or system) 

LOST Task was terminated, but there is no 
record indicating that 

UPDATE 
PENDING  

Task priority, resource levels or 
constraints were updated UpdateTaskRequiredResourcesWorkloadEvent 

(actions mark changes in task priority, required resources 
and constraints; these are often the result of users 
changing the requirements of already submitted tasks) 

UPDATE 
RUNNING  

Task priority, resource levels or 
constraints were updated during 
execution 

Table 8: Tasks to workload events mapping 
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5.5.2.  TASK CONSTRAINTS 

Changes in task constraints are independently managed via 

UpdateTaskConstraintsWorkloadEvent. Aside from the required resources, 

incoming tasks provide a set of constraints for the node they can run on. These 

data can be found in the task_constraints files and is in the format of triple: 

attribute name, attribute value and logical constraint operator. The logical 

constraint operator can be: 

• Equal (both numeric and text values are allowed) – the attribute has to be 

present on the node and have a value equal to the specified constraint 

value, or empty if no value has been specified; 

• Not Equal (both numeric and text values are allowed) – the attribute has 

to be either missing from node attributes list or have a different value 

than the specified constraint value; 

• Less Than (only numeric values are allowed) – the node’s attribute value 

must be strictly less than the specified constraint value; 

• Greater Than (only numeric values are allowed) – the node’s attribute 

value must be strictly greater than the specified constraint value. 

Figure 19 shows the implemented design of Task Constraints: 

 
Figure 19: Task Constraints 
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It should further be pointed out that task constraints, as well as resource 

requirements, can be dynamically updated. Ensuring that tasks are only executed 

on nodes with attributes which match Task Constraints is referred to as Goal (III). 

5.5.3.  EVENT PARSERS 

The simulator uses five independent Events Parser, which are implemented as 

the Actors from Akka framework, which read and parse workload traces data files 

and generate Workload Events. Each Events Parser holds a buffer of events, thirty 

minutes ahead of simulation time to avoid synchronous methods’ calls. When a 

worker remains idle and the system usage is low, it will fill the events buffer. Table 

9 lists Event Parsers: 

MachineEventsGoogleClusterDataFileEventParser 

Reads /machine_events files and generates nodes configuration events: 
• AddNodeWorkloadEvent 
• RemoveNodeWorkloadEvent 
• UpdateNodeTotalResourcesWorkloadEvent 

 

TaskEventsGoogleClusterDataFileEventParser 

Reads /task_events files and generates tasks events: 
• AddTaskWorkloadEvent 
• RemoveTaskWorkloadEvent 
• UpdateTaskRequiredResourcesWorkloadEvent 

 

TaskUsageGoogleClusterDataFileEventParser 

Reads /task_usage files and generates task migration cost events: 
• UpdateTaskUsedResourcesWorkloadEvent 

 

TaskConstraintsGoogleClusterDataFileEventParser 

Reads /task_constraints files and generates task constraints events: 
• UpdateTaskConstraintsWorkloadEvent 

 

MachineAttributesGoogleClusterDataFileEventParser 

Reads /machine_attributes files and generates machine attributes events: 
• AddNodeAttributesWorkloadEvent 
• RemoveNodeAttributesWorkloadEvent 

Table 9: Workload events parsers 
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Every five seconds WorkloadGenerator collects events from events parsers and 

updates the system state in shared system object ContextData. The ContextData 

object is repeatedly read by various system elements, meaning that it has been 

designed so that it can support highly concurrent scenarios. All workload state is 

stored in TrieMap, which is a set of thread-safe lock-free implementations of a 

hash array mapped trie (Odersky et al., 2016). The TrieMap structure is more 

detailed as researched (Prokopec et al., 2012). The workload simulator is highly 

concurrent, and updating the shared system state is performed with custom non-

blocking operations where the main part of the code is executed in parallel. Such 

a design allows the full utilisation of all available testing machine CPU cores. 

Due to the size of the archive (191GB) it was not possible to fit it into the memory, 

and so it was decided that the best way forward was to continuously keep reading 

and parsing trace files on runtime while keeping a set of events in fast-access 

memory. The main purpose of these buffers is to minimise blocking operations 

while reading and preparing the next set of events. Each events parser keeps a 

buffer of events in memory (thirty minutes of events ahead and no more than 

one million events) and releases them to the Workload Manager on request 

every five seconds. If events parser does not have the requested set events, it will 

block the request (synchronous call) until enough events are loaded from the 

data files. While idle, each events parser will passively keep reading the data files, 

parsing them into buffered events. 

Such a lightweight design allows the model to comfortably run a month-long 

simulation on the testing machine (see Appendix A for specifications) in ca. nine 

hours with 100x speed factor, which is equal to processing ca. 21.22GB of data 

per hour. The majority (ca. 89%) of data (170.54GB) comes from resource usage 

log files. After the initial loading and buffering of data (ca. 20 seconds), the system 

runs with consistent ca. 10-15% CPU usage. 
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Figure 20: Workload events generation 

5.6. ALTERNATIVE DESIGNS 

During this experiment, the design of the simulation framework significantly 

evolved based on project requirements and experiences. While Scala and other 

high-level languages offer a variety of out-of-the-box routines and functions, 

especially related to concurrency, it is sometimes better to implement certain 

functionalities to maintain better control of data flow. In the case of this workload 

simulator the design featured fine-details process for generating and maintaining 

workload state, while leaving the task of running processes in parallel to the Akka 

framework. 

Nevertheless, there are several optimisations and strategies that could be applied 

to build an even more efficient workload simulator. The subsections below 

discuss alternative designs for a simulator. 

5.6.1.  PRE-PROCESSING OF DATA FILES 

The current implementation of simulator reads directly from GCD work traces 

files and parses data on the fly. However, only a fraction of all available data was 

actually employed. These data were especially visible when reading and parsing 
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task resource usage (task_usage) files, where a majority of fields were 

disregarded (i.e. mapped/unmapped page cache memory usage, mean and 

maximum disk I/O time, cycles per instruction and so on). The simulator flow 

could be refactored into two stages: 

• First, where all available workload traces data are read, processed and 

then stored into a list of events. The result list of events could be persisted 

to file or other persistence media in a serialised form which could be 

directly read into objects; 

• Second, where workload generator reads, and replays stored previously 

stored events. This step could be additionally improved by streaming 

techniques as explained in the following subsection. 

Such an approach would help avoid processing massive amounts of original data 

and significantly reduce the overhead from parsing logic. However, the trade-off 

would be higher complexity of the code and less flexibility during the experiment. 

5.6.2.  STREAMING EVENTS GENERATION 

Java 8 (and also Scala as it is based on JVM) introduced a number of features and 

optimisations for streaming operations. Most implemented transformations, 

such as parsing files, filtering bogus events or sorting by timestamp, could be 

natively converted into parallel operations. Such a stream would be split into 

separate pipelines, with each event created and examined in a separate process 

and the OS would execute each pipeline in parallel on multiple CPU cores.  

Research literature includes information about Java 8 streams with an 

explanation about their processing (Urma et al., 2014). It is difficult to estimate 

performance gains from this approach, although it could significantly reduce the 

complexity of the existing code base. The trade-off would be less control over a 
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generation of events – i.e. proper timing and staging would be difficult to achieve 

when framework controls the utilisation of pipelines.  

The flow of proposed stream operations is presented below. The Workload 

Events stream would start with reading and streaming lines from all archive files 

in parallel (flatMap operation). Generating a single Workload Event might (i) 

require combining several lines from several files, the logic of which is 

encapsulated in Event Parsers (map operation). Each Events Parser would (ii) 

generate a uniformed Workload Event object which is then (iii) accepted/denied 

by Events Filter (filter operation). Filtering events is critical in order to avoid bogus 

data. Finally, a collection of those objects (iv) is ordered by timestamp (sortBy 

operation) and (v) feed to Workload Generator (collect operation), which then 

distributes them to destination services. This kind of flow-based processing is 

popular among functional programmers. 

Pre-processed data could be stored either in a set of files or a database. Storing 

data in a database would provide the additional benefit of a mature query 

interface (i.e. SQL or NoSQL APIs) which could be used to directly examine 

workload data by external applications. 

 
Figure 21: Stream-based simulator 

5.7. DATA CORRUPTION 

Reiss et al. (2013) states a number of reported anomalies in GCD traces. However, 

during experiments several further irregularities were found. The subsections 
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below present these findings, detailing the adjustment made to the simulation 

framework to mitigate those glitches. 

5.7.1.  REPORTED RESOURCE USAGE IRREGULARITIES 

The AGOCS framework tracked global resource usage ratios, i.e. how much of the 

available resource is allocated globally across all nodes. Figure 22 visually 

presents global usage ratios in GCD, separately for CPU and memory, over a full-

month simulation period. A single bar corresponds to one minute. 

 
Figure 22: Global CPU and memory usage ratios (per minute) 
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Occasionally, the total memory allocated by all tasks is higher than the total 

available memory on the system nodes, as reported in GCD. During simulations 

in this research, five occurrences of this phenomenon were identified: 

• The first spike at minute 3118 of the simulation, reporting around 130% 

memory usage; 

• A seven-hour period between minute 12387 and minute 12799 of the 

simulation, reporting ca. 104% of peak memory usage; 

• The second spike at minute 26589 of the simulation, reporting ca. 120% 

memory usage; 

• The third spike at minute 34694 of the simulation, reporting ca. 145% 

memory usage; 

• A half-hour period between minute 41479 and minute 41516 of the 

simulation, reporting ca. 106% peak memory usage. 

Following analysis, it was discovered that a large number of non-production tasks 

were killed and then immediately restarted. Due to a ten-minute reporting 

window in GCD traces, those spikes resulted in abnormal usage reports. 

Therefore, the highlighted periods should be treated as examples of data 

corruption and are excluded from measurements. 

5.7.2.  USER-DEFINED RESOURCE REQUIRED IRREGULARITIES 

User-defined requirements ratios for production tasks for CPU and memory 

create a more flattened pattern compared to the task resource usage in Figure 

22, oscillating around 80-90% and 60-70% respectively. The memory spike at 

minute 15489 was caused by a glitch in the monitoring system when a wide batch 

of production tasks were cancelled and the reported values from two ten-minute 

time windows overlapped. 
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Figure 23 presents CPU and memory as user-defined requirements global ratios 

for production tasks: 

 
Figure 23: Global CPU and memory required ratios (per minute) 

5.7.3.  TASKS’ CONSTRAINTS IRREGULARITIES 

GCD workload traces contain a number of internal irregularities in task 

constraints events. This point was discussed briefly with Google engineers over 

email exchanges, with one possible cause identified as a bug which collapsed 

‘greater or equal’ and ‘less or equal’ constraints into ‘greater than’ and ‘less than’ 
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constraints while the data were being obfuscated. As such, it was not possible for 

some tasks to be matched to any node at any time. During experiments, a total 

of ca. 22.4k unique tasks with unmatchable constraints were found, grouped into 

1903 execution batches. Those irregularities represent less than 0.01% of all tasks 

and are easy to filter out. In this and in following simulations, those tasks are 

reported as an error and ignored. 

5.8. SIMULATION ACCURACY 

It is virtually impossible to estimate error margins of simulation without knowing 

the exact tools used to monitor workload in GCD traces. One major bottleneck in 

the examined workload is memory, while CPU cores are relatively unallocated in 

comparison to user-defined requirements. The high memory footprint comes 

from Borg programs that are statically linked to reduce dependencies on their 

runtime environment (Verma et al., 2015). The result of this would be the 

allocation of more memory than if they were using shared libraries. 

Additionally, GCD traces provide a very comprehensive array of memory usage 

parameters, such as canonical (kernel) memory used, page cache memory used, 

memory access per instruction and so on. Barring several unusual occurrences in 

workload traces (see section 5.7), the traces seem to accurately report true 

memory usage. This assumes that memory readings were very accurate and were 

drawn directly from the kernel. This is also supported by data, where memory is 

often allocated at exactly the maximum level for a given node. In such a scenario, 

the error margin for the presented simulations must have been negligible. 

The GCD data has been obfuscated, and the size of the requested and used 

memory and the CPU are available only in normalised form, with a value of 0.5 

being the most frequent for a node. As such, determining the amount of memory 

allocated for a program is not trivial. While Google does not disclose the 
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hardware parameters of its node servers, in 2009 CNET’s reporter captured a rare 

photo of Google server mainboard Gigabyte GA-9IVDP (Shankland, 2009), 

equipped with eight filled DIMM slots of memory and with the custom-made 12V 

battery attached (used to reduce the impacts of power outages): 

 
(Image reproduced with permission of the rights holder, Stephen Shankland/CNET) 

Figure 24: Google node server photography (2009) 

GCD traces were recorded in May 2011, meaning that it is safe to assume that 

the presented server was commonly used as a node in Google data centres over 

this period. Using this hardware, a typical fully-equipped GCD node would be able 

to support up to 64GB of memory. The assumption about this value is shared in 

Zhang et al. (2014a) and is used as an input for calculating the task migration cost. 

As an interesting aside, it should be noted that Google’s hardware has advanced 

significantly since GCD traces were first recorded. Since 2015, Google has 

deployed Tensor Processing Units (TPU) in its data centres. TPUs are used to 

support deep learning algorithms, and have very high computing power 

requirements, especially for speech recognition services (Jouppi et al., 2017). In 

November 2015, Google released TensorFlow, an open source library for 
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supporting Machine Learning routines such as defining models and training them 

(Abadi et al., 2016). 

The AGOCS framework itself records minuscule variances in nodes and tasks 

counts that are the result of concurrent update operations, while modifying 

shared context data objects (see the note in Appendix F). In comparing results 

from distinctive simulations, no instance has been identified where node counts 

differ by more than one node in one-minute intervals. Regarding task counts, the 

highest difference found was nineteen tasks. Considering the insignificance of 

this effect, it was therefore accepted as a trade-off for better performance. 

5.9. PERFORMANCE EVALUATION 

The closest alternative Cloud simulator to AGOCS is CloudSim package (Calheiros 

et al., 2011), created by Melbourne ‘Clouds’ Lab. CloudSim. For the purpose of 

this experiment the 3.1 version available was used. Both tools are created using 

JVM-based technologies and therefore the testing environment is identical – see 

Appendix A for detailed hardware and software specification. 

CloudSim offers greater flexibility when setting up an environment. Nodes and 

tasks, referred to as 'cloudlets' in the CloudSim package, are set up in Java classes 

which are then compiled to separate jar package and run together with the main 

jar file. This approach is advantageous as compiled classes can be further 

automatically optimised by JVM even during execution (HotSpot technology). 

On the other hand, AGOCS is not configured statistically, but continuously reads 

workload traces files and updates its state. That ensures simulation is very 

scalable; however, those parsing operations are quite expensive and might create 

bottlenecks on some machines.  
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In order to realise comparable input data sizes, both frameworks in presented 

tests were configured to run the same number of tasks and nodes. During 

simulation, on average, GCD schedules ca. 140k tasks on ca. 12.5k nodes. This 

means that the experiments tended to preserve this ratio of eleven tasks per one 

node in the below performance evaluation, for example 5500 tasks were 

submitted to 500 nodes. CloudSim was configured to assign a single VM to a 

single host machine. AGOCS was run with the highest possible speed factor that 

the testing machine was capable of running. Figure 25 presents the simulation 

time results. 

 
Figure 25: Simulator performance comparison 

CloudSim performs better in smaller sets of data, although the computation time 

increases significantly for more complex sets. AGOCS’s computation time 

increase is less rapid, although it requires initial time to preload data to its buffers. 

AGOCS was designed with multi-threading in mind and can take advantage of all 

available CPU cores. Its main bottleneck is workload traces’ reading speed. 

CloudSim is completely memory-driven but implemented as a single-threaded 

application and utilises only one CPU core. CloudSim’s code is prone to over-use 
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of Java’s ArrayList class, while HashSet would work much faster – a significant 

amount of CloudSim’s simulation time is spent in Java's ArrayList.removeAll 

method. Overall, AGOCS simulates more layers of complexity and it is more 

accurate when describing secondary machine parameters: 

• AGOCS supports adding and removing nodes during simulation. In smaller 

Cloud systems such as MetaCentrum (Klusáček, 2014), this may not be an 

issue as machine configuration is very static. However, in a larger 

environment, nodes are frequently modified and/or exchanged; 

• Tasks being executed have actual values for both requested and actually 

used resources. This is very important factor as the task resources 

utilisation level is not constant and usually fluctuates depending on 

activity tasks currently performed. Therefore, to obtain a realistic and 

current view on node machine utilisation a simulation framework needs 

to consider actually used resources rather than requested ones. It should 

also be noted that the CloudSim framework also supports several 

resource utilisation models defined on task: full, stochastic and 

predefined (based on PlanetLab datacentre’s traces); 

• Tasks and nodes are a representation of real machines and tasks run on 

Google Cluster. While CloudSim can generate random parameters based 

on statistical analysis, this approach will widen error margins and 

uncommon machine configurations might be missed; 

• AGOCS simulation provides not only values for defined resources but also 

a number of secondary parameters such as disk I/O time, cycles per 

instruction and memory access per instruction. This makes the simulation 

more realistic and might serve as an input for processes; 

• AGOCS's tasks have sets of constraints while nodes have sets of attributes. 

While a node may have enough resources to run certain tasks, it might be 

missing some features required to successfully complete the task fully, for 

example the availability of external IP address.  
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Therefore, AGOCS provides more complex and accurate simulations than 

CloudSim package, albeit at the expense of performance and flexibility. However, 

AGOCS has limitations and constraints that the researcher should be aware of, 

namely: 

• While providing a relatively detailed description of the physical layer and 

requested resources as well as rich set of secondary parameters, AGOCS 

does not provide values for bandwidth utilisation. Unfortunately, GCD 

workload traces do not provide values for network transfer, which could 

be a critical missing feature in certain research projects; 

• CloudSim package is easily extendable by a third party, and several other 

tools have been already built upon this framework (Wickremasinghe, 

2009; Garg et al., 2011; Malhotra and Jain, 2013), often adding new 

features and new resource types. AGOCS is based on already existing 

workload traces and until Google decides to repeat this experiment and 

potentially extend set of monitored parameters, new modules are highly 

unlikely; 

• The main risk of using AGOCS for research is that the generated workload 

does not change between interactions. Simulation is replayed the same 

way every time, with features such as timings of tasks and changes of 

nodes always identical. This may lead to developing over-specialised or 

over-trained algorithms that work on a single particular set of data only. 

However, the length of provided traces (one-month) is more than enough 

to evaluate the researched product in wide variety of situations. This said, 

the researcher must be aware of the above limitations in an attempt to 

achieve an accurate simulation.  

AGOCS and CloudSim share many similarities and features even though they 

represent quite different approaches to the same research problem. CloudSim 

provides an informative top view of a Cloud system and is strong in testing high-
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level algorithms and strategies, while AGOCS is very suitable to fine-tune those 

algorithms and running simulations that are as close as possible to real Cloud 

systems. Load balancing strategies need to consider very fine-grained details and 

effects, often originating from the physical layer of a tested system. Due to 

implemented complexity, AGOCS is very appropriate for this class of research. 

5.10.  SUMMARY AND CONCLUSIONS 

There are several notable aspects of the design of the workload simulator which 

are identified below:  

• Simulating Cloud workloads on a complex network is not simplistic. The 

considerable number of parameters and dependencies require a well-

designed domain model. Goals (III) and (IV) were added to the load 

balancing solution’s feasibility criteria. This acquired knowledge was 

crucial when designing and implementing the load balancer prototypes, 

which are presented in the following chapters; 

• The system should be able to cope with data anomalies and data 

corruption. The available traces are of high quality, but anomalies exist in 

the data provided. The system should be able to continue upon receiving 

bogus data. Common data errors include: corrupted state of task (i.e. task 

is marked as running when job has already finished), corrupted usage logs 

(i.e. reporting task resource usage, when task has not been created yet) 

and the global usage of any reported resource exceeding cluster 

capabilities. . Therefore, a working simulation framework must gracefully 

handle those errors without crashing, as highlighted in section 5.7; 

• Several sources of workload state updates exist – for example task 

required resources and task constraints are provided by two different sets 

of files which are not synced time-wise. In experimental simulations, the 
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GCD workload traces were split into one-minute intervals as detailed in 

section 7.6; 

• Due to the complexity of data, it is difficult to properly test the created 

simulator. The design should allow for simulator ‘testability’ in mind. 

Every object and state should have appropriate unit tests during 

implementation. A sample test units suite is presented in Appendix E. 

AGOCS was designed with usability and performance in mind. As a very 

lightweight framework it is capable of being run on typical desktop machine 

available in any laboratory. During the experiment it was found that it was 

comfortable to operate a month-long simulation test in approximately nine hours 

with 100x speedup factor, which is equal to processing ca. 21GB of workload 

traces data per hour. As a result of these characteristics, the AGOCS framework 

successfully serves as a foundation for both metaheuristic load balancer and 

distributed agent-based load balancer prototypes, as detailed in Chapters 6 and 

7 respectively. 
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6. METAHEURISTIC LOAD BALANCER 

Having examined the existing scheduling strategies (Chapter 2), defined the 

theoretical and practical restrictions concerning load balancing strategies 

(Chapter 3 and 4) and, more importantly, developed a robust simulation 

framework (Chapter 5), this study can now explore the applicable approaches to 

task allocations. Examining real-world workload traces from a working Cloud 

provides a valuable outlook into the mechanics of a massively distributed system. 

It also highlights additional challenges that were not identified during the 

modelling phase, namely tasks’ execution constraints and RUS. It should further 

be noted that this chapter is based on work published in Sliwko (2008) and Sliwko 

and Getov (2015a). 

Initial experiments with metaheuristic algorithms were performed at a very early 

stage of this research, helping to shape its general direction, prior to formally 

defining CRUM and then D-RSOP and Goals (I) and (II). The original design idea of 

this project was to extend existing load balancing strategies, such as FCFS, SJF, 

Round Robin and ‘best-fit’, towards more complex algorithms designed to solve 

NP-Hard problems. It was assumed that by introducing a holistic approach, where 

the scheduler tries to improve tasks’ allocations globally by reducing resource 

usage gaps, the overall throughput of the Cluster would increase. At the same 

time, the load balancer should ensure that the STC stays within designed 

parameters. Given those design goals, the research focused on implementing 

those procedures, and the sections below describe this approach in detail. 

Although a simple heuristic can be used to solve D-RSOP, their results are of poor 

quality (Sliwko, 2008; Sliwko and Zgrzywa, 2009). As such, the general approach 

to solve job-scheduling problems is to employ metaheuristic strategies. One can 

argue that metaheuristics might not be acceptable as a solution for load 

balancing problems given that each scheduling event can be very time consuming 
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and have high overheads. However, the resources management in a distributed 

system has nowhere near the dynamic and robustness level required on 

scheduling processes on CPU cores. As long as the load balancer provides viable 

configuration changes or changes in tasks assignment within ten minutes, this 

strategy may be considered successful. 

In the field of approximation algorithms, various strategies have been designed 

to find near optimal solutions to NP-Hard problems (Buyya et al., 2009; Ausiello, 

2012; Pooranian et al., 2015) including metaheuristic algorithm. The term 

‘metaheuristic’ originally derives from the Greek ‘μετá’ (a higher level) and 

‘ευρισκειν’ (to discover) and is a scientific method that solves a problem with the 

help of iterative stochastic processes. A heuristic algorithm usually sacrifices the 

optimality of the solution in order to finish within a satisfactory timeframe. 

Generally speaking, it is possible to find a reasonably satisfactory solution, but 

there is no proof that the result could not be better or that the solution found by 

the heuristic algorithm would be feasible in the first place. 

Many different metaheuristic algorithms are present in the literature, and new 

variants are continually being proposed. Some of the most significant 

contributions to the field are Evolutionary and GA, TS, Ant Colony, SA and 

Quantum Annealing (QA), Particle and Swarm Intelligence and Immune Systems. 

Metaheuristic strategies tend to avoid iterating through the whole solution space 

by testing candidate solutions only in close proximity to a current state (for 

example the ‘crossover’ step in GA) with occasional attempts to escape local 

optima via a ‘mutation’ step in GA or ‘tunnelling’ in QA, for example. Such 

approaches result in reasonably good solutions reasonably quickly. 

Based on previous research, including Józefowska et al. (1998), Józefowska et al. 

(2001), Sliwko (2008), Sliwko and Zgrzywa (2009), (Kalra and Singh, 2015), 
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(Pooranian et al., 2015) and (Fanjul-Peyro et al., 2017) not every algorithm will 

perform well in the context of the D-RSOP problem. The main issue in this model 

is the fact that not every solution is feasible, and that in fact the majority of 

candidates are not feasible at all. Such a setup proves to be difficult for the 

majority of existing strategies since usually only a small percentage of neighbour 

solutions are acceptable. Additionally, there is usually no starting state, with the 

strategy having to find this point by itself. 

6.1. LOAD BALANCER DESIGN 

The load balancer prototype was implemented in the functional programming 

language Scala. The core of the load balancer is a decision-making module based 

on metaheuristic algorithms which assigns tasks to nodes. The load balancer 

sequence was designed as shown in Figure 26 below: 

 
Figure 26: Load balancer sequence 
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The load balancer must maintain a difficult balance between the speed and 

quality of its decisions since badly assigned tasks can cause global system 

instability. The selection of the most efficient algorithm is crucial. For the purpose 

of the experiment several of the most promising strategies were studied, as 

outlined in the following subsections. 

6.1.1.  GREEDY 

Greedy is an algorithm that follows the problem-solving heuristic of making the 

locally optimal choice at each stage with the hope of finding a global optimum 

(Chvatal, 1979). In many problems, a greedy strategy is effective, although it does 

not usually produce a globally-good solution in this research. Nevertheless, a 

greedy heuristic will yield locally optimal solutions in a very quick time. Greedy 

relies on examining immediate neighbourhood for better solutions (as per 

definition (6) in section 3.3). 

6.1.2.  TABU SEARCH 

TS was introduced by Fred W. Glover in 1986 (Glover, 1986) and further 

formalised in 1989 (Glover, 1989). This algorithm has been suggested by previous 

research pertaining to a similar problem (Józefowska et al., 2002). Like Greedy, 

TS searches for an improved solution in its neighbours. TS enhances its 

performance by maintaining a list of visited solutions so that the algorithm does 

not consider that possibility repeatedly. 

6.1.3.  SIMULATED ANNEALING 

SA is a general method for finding the global optimum via a process inspired from 

annealing, a metallurgical process where a material is heated and cooled in a 

controlled way so as to increase the size of its crystals and reduce their defects 

(Weinberger, 1990). This effect is implemented in the SA algorithm by a slow 
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decrease in the probability of accepting worse solutions as it explores the 

solution space. Previous research concerning the use of this strategy in load 

balancing can be found (Józefowska et al., 2001). 

6.1.4.  GENETIC ALGORITHM 

GA is a search heuristic that mimics the process of natural selection. GA belongs 

to the larger class of evolutionary algorithms which generate solutions to 

optimisation problems using techniques inspired by natural evolution, such as 

inheritance, mutation, selection, and crossover. Unmodified GA has been 

previously examined with good results (Józefowska et al., 1998). In this research, 

a variant of Genetic Drift step was developed (Sliwko, 2008).  

6.1.5.  SEEDED GENETIC ALGORITHM 

SGA is the generation of random solutions that represents the costliest step in 

GA strategy, sometimes taking up to 60-70% of a total computation time. 

Therefore, a novel approach was implemented, where Genetic Drift step (Sliwko, 

2008) is replaced with locally optimal solutions (i.e. solutions seeding) found by 

Greedy, TS and SA algorithms. This approach was calculated to allow for a 

dramatic lowering of the total size of population since individual genotypes are 

of higher quality. 

To test this approach, respective strategy variations were created, namely SGA-

Greedy, SGA-TS and SGA-SA. 

6.1.6.  FULL SCAN 

Full Scan (FS) is the strategy which performs a full search over all available 

configurations. FS strategy is convergent, meaning that it is able to find the 

globally optimal solution in finite time, under appropriate modelling assumptions. 
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Multiple optimisation techniques have been implemented in this algorithm, such 

as shaving and path-cut (Demassey et al., 2005), and task-with-largest-migration- 

cost-first, i.e. the algorithm sorts tasks by their migration costs and the tasks with 

the highest migration cost are selected to be re-allocated first; the algorithm 

returns as soon as current STC is greater or equal to any previously found STC. 

6.2. EXPERIMENTS SETUP 

This experiment generated test configuration based on previous research (Mishra 

et al., 2010; Iosup et al., 2011; Di et al., 2012; Moreno et al., 2013) and also on 

personal professional experience while working with Amazon EC2 cloud instances. 

Tables 10 and 11 present test configurations. 

Three strategies (Greedy, TS and SA) were designed with the end state, i.e. that 

no more steps were possible. If a strategy finished before a given time it was 

continuously re-run and the best result was selected. The number of runs 

significantly varied per strategy, especially in the lower sizes of the solutions 

space. Each algorithm creates a number of candidate solutions during their run. 

Deciding whether a candidate solution is stable, meaning that no nodes are 

overloaded, tends to be the most expensive step in computations: around 50-70% 

of CPU time depending on the strategy tested, is spent on the validation of 

solution feasibility routines. 

As an optimisation, implementations were caching newly created solutions (see 

subsection 6.4.2), meaning that the same tasks assignment setup is never tested 

twice for being stable since the result is retrieved from memory. 



METAHEURISTIC LOAD BALANCER 

143 | P a g e  
 

 

Ta
sk

 

In
iti

al
 n

od
e 

M
ig

ra
tio

n 
co

st
 

Re
so

ur
ce

 I 
(C

PU
) 

Re
so

ur
ce

 II
 

(M
em

or
y)

 

Re
so

ur
ce

 II
I  

(N
et

w
or

k)
 

Re
so

ur
ce

 IV
 

(I/
O

 sp
ee

d)
 

 
Ta

sk
 

In
iti

al
 n

od
e 

M
ig

ra
tio

n 
co

st
 

Re
so

ur
ce

 I  
(C

PU
) 

Re
so

ur
ce

 II
 

(M
em

or
y)

 

Re
so

ur
ce

 II
I  

(N
et

w
or

k)
 

Re
so

ur
ce

 IV
 

(I/
O

 sp
ee

d)
 

01 A 4 1 10 4 2  31 J 4 19 18 1 8 
02 C 5 1 6 5 2  32 H 10 6 14 3 7 
03 G 4 5 2 5 6  33 I 2 3 10 3 2 
04 A 17 10 17 1 2  34 E 4 2 8 1 8 
05 D 10 14 10 1 1  35 E 9 8 9 9 5 
06 C 3 3 12 3 8  36 F 4 8 15 13 1 
07 C 6 15 2 18 3  37 G 2 12 8 5 3 
08 F 6 1 4 8 4  38 E 2 16 11 1 2 
09 D 4 4 3 17 10  39 D 8 13 8 6 4 
10 D 4 8 19 19 8  40 G 3 6 9 10 1 
11 B 8 5 9 18 4  41 I 6 14 1 11 8 
12 I 6 16 14 3 2  42 H 7 8 3 10 3 
13 G 4 6 5 17 11  43 F 9 9 9 10 9 
14 E 5 18 11 13 4  44 A 8 11 8 12 11 
15 F 1 10 9 12 8  45 C 2 5 5 7 18 
16 A 9 12 17 14 1  46 G 6 2 7 3 2 
17 D 5 3 6 8 6  47 J 5 4 3 10 16 
18 B 5 8 12 3 11  48 H 8 5 2 14 8 
19 C 7 15 12 8 9  49 B 2 6 7 1 1 
20 G 1 4 8 6 12  50 I 1 1 9 6 13 
21 F 7 12 10 5 1  51 G 4 4 11 9 6 
22 G 2 3 16 16 2  52 L 3 7 2 7 5 
23 H 5 6 19 1 4  53 E 12 6 6 10 12 
24 D 3 16 11 2 3  54 J 10 3 9 8 10 
25 F 4 14 8 15 9  55 K 8 5 5 4 8 
26 G 10 4 15 7 8  56 H 7 6 3 5 7 
27 B 2 20 19 5 2  57 A 3 8 12 2 6 
28 B 8 16 2 3 5  58 F 1 12 17 1 9 
29 G 6 16 10 3 1  59 F 6 10 8 6 14 
30 F 5 1 1 3 10  60 C 5 9 2 3 8 

Table 10: Experiment data – Tasks configuration 

Node Resource I 
(CPU) 

Resource II 
(Memory) 

Resource III 
(Network) 

Resource IV 
(I/O speed) 

A 100 50 100 70 
B 70 40 70 50 
C 50 80 70 50 
D 60 60 50 80 
E 50 90 80 40 
F 60 100 50 60 
G 80 50 50 40 
H 80 80 80 90 
I 60 60 50 8 
J 40 50 80 100 
K 50 80 80 40 
L 50 50 60 80 

Table 11: Experiment data – Nodes configuration 
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The following chart plots the average number of unique candidate solutions 

created in each test scenario: 

 
Figure 27: Runs count (per minute) 

 
Figure 28: Unique candidate solutions created (per minute) 
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Five testing scenarios were designed to test how each strategy copes with the 

increasing complexity of the problem. An assumption was made that new nodes 

are added only when new tasks are deployed and the demand for computing 

resources increases. This scenario is simulated by enabling additional nodes, and 

in each test two additional nodes and ten more tasks are added. It is assumed 

that the load balancer will be run periodically, thus the selection of an arbitrary 

computation time, after which the best-found solution was selected as the 

output result. 

Scenario Deployed 
tasks 

Enabled 
nodes 

Computation 
time 

Search space 
size 

Test I 1-20 A-D 30 seconds 204 
Test II 1-30 A-F 1 minute 306 
Test III 1-40 A-H 2 minutes 408 
Test IV 1-50 A-J 4 minutes 5010 
Test V 1-60 A-L 8 minutes 6012 

Table 12: Experiment data – Tests I, II, III, IV and V 

The Full Scan strategy was used only as a benchmark if a global optimal solution 

was found and such a limit was not imposed. The Full Scan strategy was unable 

to finish scenarios Test IV and Test V in reasonable time, taking 24 hours and five 

days respectively. The results of all other strategies were plotted on the chart 

above. It should be noted that lower STCs are preferable. 

6.3. EXPERIMENTAL RESULTS 

As demonstrated in previous research (Józefowska et al., 2002; Leung, 2004; 

Sliwko, 2008), when solving RCPSP and its variants, more complex metaheuristics, 

such as TS, SA and GA, perform significantly better than simple algorithms such 

as Greedy. This was confirmed in the test results presented in Figure 29, where 

more sophisticated algorithms generally had better results, i.e. lower STC. A 

discussion of the outcomes of each strategy follows below. 
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Figure 29: Simulation results 

6.3.1.  GREEDY 

A very short execution time allowed this strategy to be repeatedly run and 

therefore a few stable solutions were found in each test. Result solutions were of 

average quality; the most time-consuming step was the generation of solution’s 

neighbours, for example during the Test V scenario, each step required up to 60 

x 12 = 720 solutions to be examined. 

6.3.2.  TABU SEARCH 

The main bottleneck in this approach was the last step where all the same-value 

solutions had to be visited and marked as Tabu. Therefore, it was decided to 

introduce a maximum limit of dull moves (i.e. without bettering solution) the 

strategy will perform before it gives up and returns the actual solution. Overall, 

the TS algorithm worked very well in small instances of a problem, which confirms 

the results documented in Józefowska et al. (2002). 
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6.3.3.  SIMULATED ANNEALING 

SA strategy did require a much larger number of computations, often reaching 

only a fraction of runs in the same time as Greedy or TS. However, it did not 

require costly generation of all the solution neighbours, therefore the re-runs 

count decreased at a much slower pace than when the above strategies were 

deployed. This strategy benefited the most from introducing the solution cache. 

6.3.4.  GENETIC ALGORITHM 

GA variant has been previously examined (Sliwko, 2008), where its main 

drawback was identified as being the costly generation of random solutions in 

the Genetic Drift step, especially when more types of resources are considered, 

and a solution space grows in size. Performance was shown to be sufficient when 

examining two kinds of resources. However, due to the number of random 

generations required in order to create the initial population, the strategy 

performed quite poorly when four resources were introduced. As in Józefowska 

et al. (1998), the larger the problem size, the lower the quality of the found 

solution. However, the performance of simpler algorithms, such as Greedy, TS 

and SA, was not impacted that much. Upon detailed examination it was found 

that the randomised solutions pool often contained a significant number of poor 

quality solutions. They were often eliminated in the next step; however, this 

process had a computation cost. This became apparent in instances of a larger 

problem, where ten or more nodes were involved. 

6.3.5.  SEEDED GENETIC ALGORITHM 

SGA was the most interesting strategy in the experiment. As mentioned in GA, 

the randomised solutions pool contains low quality solutions, and eliminating 

those is costly. Therefore, solutions seeding replaced the previously designed 
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Genetic Drift step in the GA, which allowed for the downsize of the available 

genetic pool to 25% of its original size, thereby greatly reducing the computation 

time (ca. 50-70%) required to find good solutions without a reduction in quality. 

SGA returned the best results within the set time frame. In each case Greedy vs. 

SGA-Greedy, TS vs. SGA-TS and SA vs. SGA-SA, the found solution was improved, 

and generally less candidate solutions were examined. In Test V ca. 14% less 

candidates were visited. In this experiment the variant with TS strategy returned 

the best results. 

6.3.6.  FULL SCAN 

Full Scan strategy guarantees that a globally optimum solution is found. Over the 

course of the research, this strategy has been heavily optimised. Currently, only 

ca. 9% of a solutions tree is traversed; the strategy starts moving tasks with the 

highest migration costs first, as the algorithm cuts solution tree’s leaves as soon 

as partial solution is deemed unstable. However, this still cannot be considered 

an efficient strategy due to a large number of computations required. In this 

experiment, Full Scan strategy was used to produce a global optima solution only 

in minor instances of a problem. 

6.4. SYSTEM OPTIMISATIONS 

System wide enhancements and optimisations can dramatically increase the 

performance of certain algorithms. However, based on personal professional 

experience, hot spots – areas of a program’s code where a high proportion of 

CPU-cycles is spent during the program's execution – can be found in very 

surprising places, especially in complex real-time systems. Generally speaking, 

this makes dry source code analysis pointless. A system developer needs to see a 

detailed and full application performance and memory profile before attempting 

to improve it. 
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Therefore, in the course of the research, the experiment routines have been 

profiled with YourKit Java Profiler (YKJP), with several bottlenecks being 

identified. Aside from programming optimisations, such as refactoring loops into 

tail recursive function, marking values and methods for lazy initialisation, and 

converting all objects as immutable case classes, there has been the identification 

and implementation of several system-wide optimisations. The majority of code 

optimisations and refactors were focused on improving the parallelism of the 

implemented prototype as to fully use the available HPC cluster machines 

(Appendix C) – the detailed explanations of profiling exercises and testability can 

be found in subsections 7.6.1 and 7.6.2 respectively. 

6.4.1.  ENHANCED RANDOM SOLUTION GENERATION 

The starting point of many metaheuristic algorithms is the initial random state 

(or a pool of states), which the algorithm then revises into a better and improved 

result in each step. In this case, generating the initial candidate solution is 

expensive since it needs to be verified as stable - i.e. that no nodes are overloaded. 

The verification process is computation-intensive since all tasks on each node 

need to be iterated and their resource vectors need to be added to check if they 

exceed the available resources on this node. 

The optimisation generates an initial random solution, which it then attempts to 

convert into a stable one through randomly moving tasks only from unstable 

nodes. This reduced the routine execution time by an order of magnitude. 

Previously, only one task had been randomly moved at a time (see definition of 

the neighbour solution (6) in section 3.3); however, further experimentation 

showed that an additional half of time could be shaved off by moving several 

tasks in each step. The fastest convergence was achieved by moving 10% of all 

tasks (but no less than 1) from the unstable nodes in one step. The pseudo-code 

is presented below: 
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ALGORITHM: Find stable random solution via multiple mutations on unstable nodes 

INPUT: 

A set	of tasks where τ = ,t%, t',… , t�/ 

A set of nodes where η = {n%, n',… , n�} 

A set of resource types ψ (see definition of resource types in section 3.3) 

OUTPUT:  

𝜇q�[: 𝜏 → 𝜂 as output tasks assignment function 

BEGIN 

1 Randomly initialise task assignment function 𝜇�[�.: 𝜏 → 𝜂 to random 

  (initially all tasks are assigned to random nodes) 

2 WHILE 𝜇�[�. 
is not stable (as per definition (2) from 3.3) 

(repeat until current tasks assignment 𝜇�[�. is not stable) 

2.1 Select a set of overloaded nodes 

𝜂q��� = ,𝑛 ∈ 𝜂: ∃𝑖 ∈ 𝜓: 𝑓�[�._H(𝑛) < 0/ , where 𝑓�[�._H(𝑛)  
is the 

available resources levels function for resource 𝑖 on node 𝑛 for task 

assignment 𝜇�[�. (see (1) in section 3.3) 

2.2 Select a set 𝜏q��� = ,𝑡 ∈ 𝜏: 𝜇�[�.(𝑡) ∈ 𝜂q���/ 
  (select a set of all tasks on all overloaded nodes) 

2.3 Calculate migrations count 𝑥 = 10% ∙ |𝜏q���| (but no less than 1)
 

(for higher number of overloading tasks, swap multiple nodes) 

2.4 Randomly select a set 𝜏q���_� = {𝑡 ∈ 𝜏}, where �𝜏q���_�� = 𝑥 

(randomly select a subset of x tasks from 𝜏q���) 

2.5 Create a new task assignment function 

(re-assign tasks from 𝜏q���_�  to random different nodes) 

  𝜇V��[(𝑡) = g
𝑟𝑎𝑛𝑑𝑜𝑚^𝜂 − ,𝜇�[�.(𝑡)/`,				𝑡 ∈ 𝜏q���_�
	𝜇�[�.(𝑡),																																				𝑡 ∉ 𝜏q���_�	

 

2.6 𝜇�[�. = 𝜇V��[  

(repeat loop with new task assignment) 

3 RETURN 𝜇�[�. 

END 
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Additionally, to take advantage of the multi-core architecture, the candidate 

stable solutions were created in parallel. Initially, the implementation used Scala 

Future objects running on Executor from default ExecutionContext (Odersky et 

al., 2016); however, later Futures were replaced with Akka framework. 

As a result of all the optimisations above, the CPU time spent in seeding solutions 

step was reduced from ca. 40% to 3% for GA and SGA. For other tested strategies 

(Greedy, SA and TS) the total CPU time spent in searching for starting solution 

was reduced from ca. 20% to 7%. 

6.4.2.  SOLUTION CANDIDATES CACHE 

During execution, the strategies generated and tested a number of candidate 

solutions to compare them with the solution in the current step. Operations on 

the solution object, such as verifying whether the solution was stable, iterating 

unstable nodes and computing the STC, cost CPU cycles. To remedy this and to 

save CPU-cycles, a cache of created solutions was created. This meant that every 

newly created solution, from random generation, mutation, crossover and so on, 

were added to the cache if a solution was generated before the object in cache 

was used. This helps to avoid duplicate computations as solutions in cache might 

have had their methods executed once already. For example, unstable nodes may 

have been filtered before, and their results stored inside the object’s private 

fields (‘lazy’ pattern). 

The trade-off of this approach is the cache amount of memory that needs to be 

allocated to store all cached objects. Early experiments used default Scala 

mutable map implementation, which has been repeatedly cleared upon reaching 

a set size limit. However, further experimentation shows much enhanced results 

with CacheBuilder from Google Guava library. The base idea behind expiring 

cache is to evict entries that have not been used either recently or very often 
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(‘sinking cache’ pattern). In this implementation, Google’s CacheBuilder starts 

evicting items when approaching a size limit of memory, which is specified upon 

cache initialisation (here: five hundred thousand). 

It is difficult to measure the exact impact that the use of cache made on test 

performance, since cache is used in multiple of areas in the test algorithms. Test 

implementations of Greedy and plain GA were especially prone to testing a huge 

number of duplicate candidate solutions. In the experiments it was estimated 

that enabling cache speeds-up executions of tested strategies by around 25-45%, 

meaning that more algorithm’s steps were executed in the same amount of time. 

6.5. SCALABILITY TESTS 

The initial trials on a static dataset were promising, and clearly showed the 

potential for improving the quality of tasks' allocations. Given this, the next step 

was to test how the designed strategy would perform under a real-world 

workload. 

Although the prototype centralised load balancer had been designed and 

implemented in the early stages of this research, the scalability tests were 

delayed until the AGOCS framework was ready. Eventually, the simulation 

framework was implemented, with the metaheuristic algorithms back-ported to 

it. Initially, only a fraction of the original GCD workload was used to find out how 

algorithms would perform on it. 

Table 13 details the time required to compute a single load balancing sequence 

during simulation. All below test simulations were run on compute nodes from 

the University of Westminster HPC Cluster (see Appendix C). 
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Test and size 

Test I Test II Test III 

62 nodes and 
199 tasks 

62 nodes and 
326 tasks 

62 nodes and 
503 tasks 

Greedy1 1 hour 9 minutes 16 hours 59 minutes 3 days 22 hours 9 
minutes 

TS1 4 hours 35 minutes 18 hours 18 minutes 5 days 9 hours 34 
minutes 

SA1 5 hours 27 minutes 13 hours 20 minutes 2 days 23 hours 51 
minutes 

GA1,3 3 hours 12 minutes 22 hours 13 minutes 1 day 22 hours 48 
minutes 

SGA-Greedy2,3 2 hours 48 minutes 19 hours 33 minutes 3 days 1 hour 1 
minute 

SGA-TS2,3 2 hours 27 minutes 12 hours 6 minutes 1 day 21 hours 23 
minutes 

SGA-SA2,3 4 hours 49 minutes 14 hours 33 minutes 2 days 16 hours 46 
minutes 

1. Greedy, TS and SA strategies were constrained to run for a maximum of ten minutes and then restarted. 
This process was continued until a stable solution (i.e. no overloaded nodes) was found. 

2. GA, SGA-Greedy, SGA-TS and SGA-TA strategies were run continuously until a stable solution was found, 
but for no less than ten minutes. 

3. Due to high memory demand, the solution candidates’ cache size (as detailed in 6.4.2) was limited to 500k 
of items. 

Table 13: Time required to compute a single load balancing sequence 

The above simulations were run on 62 nodes, which is roughly 0.5% of all GCD 

nodes. To test performance of solution, the total number of tasks was set to 

0.15%, 0.25% and 0.4% of all GCD tasks in Tests I, II and III respectively. 

Although previously presented tests have shown that a proposed strategy can 

indeed manage a small cluster with a limited number of running tasks, because 

of the lengthy computation time required to load balance a given instance, it 

cannot be considered as a feasible solution for tasks orchestration in Cloud. In 

the original GCD workload traces, the new tasks were scheduled with an average 

frequency of more than ca. 1.1k tasks per minute; this solution could not handle 

such a throughput. 
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Additionally, the proposed design employs VM-LM feature, where running tasks 

can be offloaded to alternative nodes and, therefore, a centralised load balancer 

must track all tasks existing in Cloud systems. This additional logic needed to 

handle running tasks and their migrations multiples the complexity of the load 

balancing algorithm, resulting in even higher computation power requirements. 

A number of optimisations were implemented during the code iterations which 

were focused especially on parallelisation, caching and non-blocking processing. 

Even so, the processing speed did not improve to an acceptable level. 

6.6. SUMMARY AND CONCLUSIONS 

After analysing the performance of the algorithms, the following conclusions 

were reached, which might assist in the design of new algorithms in the future 

and/or enhance algorithms which already exist: 

• Metaheuristic algorithms rely on traversing a search space using small 

steps, meaning that the next selected solution is usually similar to the 

current one, and is also usually better. It might be beneficial to give higher 

priority to moving already-migrated tasks since they have already 

increased their migration cost, as well as to prioritise moving tasks with a 

smaller migration cost due to the reduced impact on the STC (introduced 

in Chapter 3). However, this step requires building problem-specific 

knowledge into the algorithms. This conclusion is very important for the 

design of the decentralised agent-based load balancer prototype detailed 

in Chapter 7, in which the chance of selecting a task to re-allocate is 

inversely proportional to its migration cost (see (12) in subsection 7.4.1). 

• The initial random generation of candidate solutions is expensive. This 

behaviour is clearly visible in the upward trend in the number of candidate 

solutions created and tested using the GA strategy. The number of tested 

solutions does not correlate with the quality of solutions, and better 
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results can be achieved if the solutions pool is initially created from an 

already precomputed set. 

• Whilst a few strategies succeed in reaching a certain solution level, they 

face difficulties in moving out from this or in recognising a last state, for 

example when only one neighbouring solution is better. The TS algorithm, 

in particular, is prone to this and higher numbers of steps didn’t increase 

the quality of the solution. However, the further experiments with TS 

variants have shown it to be a good candidate for selecting a set of tasks 

based on arbitrary criteria (as detailed in subsection 7.4.1). 

While the proposed solution was able to efficiently schedule tasks on twelve 

nodes, further experiments have shown that the scalability of this approach is 

insufficient for supporting huge Clusters, such as 12.5k nodes in GCD traces. 

During scalability tests, the metaheuristic algorithm required several hours to 

execute a single load balancing sequence. When more nodes and tasks were 

added, the search space size grew exponentially. Whilst metaheuristics were still 

able to greatly reduce examined search space, the solutions found were either of 

decreasing quality or they consumed too much computation time to be viable. 

Therefore, under the described Goals (I) and (II) from Chapter 3, and (III) and (IV) 

from Chapter 5, this method was recognised as being an inadequate foundation 

for the Cloud load balancer, and therefore an alternative approach was needed. 

Nevertheless, although it is unlikely that metaheuristic algorithms by themselves 

could orchestrate tasks allocation in a large computing cell, metaheuristic 

algorithms can still play a supporting role. For example, in the Czech National Grid 

Infrastructure MetaCentrum, experimental extensions based on TS are being 

used to improve the tasks queue in TORQUE Resource Manager (Klusáček et al., 

2013). The following chapter will demonstrate that metaheuristic algorithms can 

indeed be efficiently used to form a local AI, which can locally manage a set of 

tasks on a node. 
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7. DECENTRALISED AGENT-BASED LOAD BALANCER 

With a centralised load balancer prototype failing to scale well enough to yield 

satisfactory results (Chapter 6), the project shifted its focus to decentralised 

strategies such as agent-based systems. 

The experiments in Chapter 6 have shown that improving the tasks’ allocations 

quality requires higher computation time, and that a processing scheduling logic 

on a single head node machine would be the main holdup in scaling Cloud 

systems to larger sizes. The reasons behind this are, firstly, the higher rate of 

incoming tasks reduces the time window allowed for making the allocation 

decision, and secondly, as was observed, that the larger number of nodes 

increases the solution search space of feasible allocations. 

In the subsequent design, the core strategy for developing the Cloud load 

balancer prototype was to offload the scheduling logic’s processing to nodes 

themselves and to execute complex strategies locally. The principle of this 

approach is that when new nodes are added, the available processing capacity 

simultaneously grows. Early experiments have demonstrated that this strategy is 

not only viable, but it also allows the implementation of more sophisticated 

decision-making routines in the form of a software agent’s AI. The sections below 

introduce a working prototype of a decentralised Cloud load balancer – Multi-

Agent System Balancer (MASB). 

It should be noted the solution presented in this chapter is partially based on 

work published in Sliwko and Zgrzywa (2009), Sliwko (2010) and Sliwko et al. 

(2015). 
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7.1. LOAD BALANCING WITH AGENTS 

Agent technologies can be dated back to 1992 (Sargent, 1992), at which point it 

was predicted that intelligent agent would become the next mainstream 

computing paradigm. Agents were described as the most important step in 

software engineering, representing a revolution in software (Guilfoyle and 

Warner, 1994). Since its inception, the field of multi-agent systems has 

experienced an impressive evolution, and today it is an established and vibrant 

field in computer studies. The software agents research field spans many 

disciplines, including mathematics, logic, game theory, cognitive psychology, 

sociology, organisational science, economics, philosophy, and so on (Weiss, 

2013). Agents are considered to be a viable solution for large-scale systems, for 

example through spam-filtering and traffic light control (Brenner et al., 2012), or 

by managing an electricity gird (Brazier et al., 2002). 

It is difficult to argue for any precise definition of an agent, with the research 

literature seeming to suggest that there are four key properties of an Agent 

(Castelfranchi, 1994; Gensereth and Ketchpel, 1994; Wooldridge and Jennings, 

1995), namely: 

• Autonomy when allowing agents to operate without direct human 

intervention; 

• Social ability when agents communicate and interact with other agents; 

• Reactivity when agents actively perceive their environment (physical or 

digital) and act on its changes; 

• Proactiveness when agents not only dynamically respond to changes in 

environments but are also able to take initiative and exhibit goal-oriented 

behaviour as well as real-time communications. 
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A software agent it is generally defined as being of acting independently of its 

user in order to accomplish tasks on behalf of its user (Nwana, 1996). An agent 

can be described as a being which is supposed to act intelligently according to 

environmental changes and the user’s input (Goodwin, 1995). 

Software agents are found across many computer science disciplines, including 

AI, decentralised systems, self-organising systems, load balancing and expert 

systems (Guilfoyle and Warner, 1994; Milano and Roli, 2004; Cabri et al. 2006). 

Previous research has also shown that by deploying agents it is possible to 

achieve good global system performance (Nguyen et al., 2006), improve system 

stability and reduce downtime (Corsava and Getov, 2003), attain dynamic 

adaptation capability (Kim et al., 2004) and to realise robustness and fault-

tolerance (Xu and Wims, 2000). 

Agents were also found to be useful for the performance monitoring of 

distributed systems (Brooks et al., 1997). Several additional benefits may also be 

achieved, including more cost-effective resource planning (Buyya, 1999), a 

reduction of network traffic (Montresor et al., 2002), the autonomous activities 

of the agents (Goodwin, 1995), and decentralised network management (Yang et 

al., 2005). Multi-agent systems were also successfully used for forecasting 

demand and then adapting the charging schedule for electric cars (Xydas et al., 

2016), and also to effectively coordinate emergency services during crisis 

(Othman et al., 2017). Reddy et al. (2017) presents an agent-based framework to 

model procurement operations in India. The most state-of-art research generally 

focuses on negotiation protocols and communications (Wang et al., 2014; Marey 

et al., 2015; Monteserin et al., 2017; Wyai et al., 2018). 

Agent-based systems generally rely on decentralised architecture (Jones and 

Brickell, 1997; Shi et al., 2005; Wang et al., 2014; Monteserin et al., 2017), 

considering it to be more reliable. However, those schemas require complex 
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communication algorithms, with negotiation protocols often being required for 

distributed architecture to attain a good level of performance (Bigham and Du., 

2003; Yang, 2005; Wyai et al., 2018). 

The idea of job scheduling with agents is not new; a single-machine multi-agent 

scheduling problem was introduced in 2003 (Baker and Smith, 2003; Agnetis et 

al., 2004). Since this time, the problem has been extended and exists in several 

variations, such as deteriorating jobs (Liu and Tang, 2008), the introduction of 

weighted importance (Nong et al., 2011), scheduling with partial information 

(Long et al., 2011), global objective functions (Tuong et al., 2012), and adding 

jobs' release times and deadlines (Yin et al., 2013). A suitable taxonomy of multi-

agent scheduling problems in presented in Perez-Gonzalez et al. (2014). 

The research on workload sharing via agents has a long history, with the papers 

below in particular having influenced the design of the MASB: 

• Schaerf et al. (1995) presents a study concerning a multi-agent system in 

which all decision making is performed by a learning AI. The likeness of 

selection of a particular node for the processing of a given task depends 

on the past capacity of this node. The Agent’s AI uses only locally-

accessible knowledge, meaning that it does not rely on information 

shared by other agents. 

• Chavez et al. (1997) introduces Challenger, a multi-agent system, in which 

agents communicate with each other to share their available resources in 

an attempt to utilise them more fully. In Challenger, agents act as buyers 

and sellers in a resources marketplace, always trying to maximise their 

own utility. MASB follows a similar pattern, where nodes try to maximise 

their utilisation (via score system). 

• Bigham and Du (2003) shows that cooperative negotiation between 

agents representing base stations in a mobile cellular network can lead to 
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a near global optimal coverage agreement within the context of the whole 

cellular network. Instead of using a negotiation model of alternating 

offers, several possible local hypotheses are created, based on which 

parallel negotiations are initiated. The system commits to the best 

agreement found within a defined timeline. The cooperative model in 

which agents negotiate between themselves is the base of the distributed 

scheduling presented in this research. 

• Kim et al. (2004) proposes a load-balancing scheme in which a mobile 

agent pre-reserves resources on a target machine prior to the occurrence 

of the actual migration. The system also prevents excessive centralisation 

through the implementation of a mechanism whereby when the workload 

processed on a particular machine exceeds a certain threshold, this 

machine will attempt to offload its agents to neighbouring machines.  

• Cao et al. (2005) describes a solution in which agents representing a local 

grid resource uses past application performance data and iterative 

heuristic algorithms to predict the application’s resource usage. In order 

to achieve a globally-balanced workload, agents cooperate with each 

other using a Point-to-Point (P2P) service advertisement and discovery 

mechanism. Agents are organised into a hierarchy consisting of agents, 

coordinators and brokers, who are at the top of the entire agent hierarchy. 

The authors conclude that for local grid load balancing, the iterative 

metaheuristic algorithm is more efficient than simple algorithms such as 

FCFS. 

• Ilie and Bădică (2013) details a solution built on top of the ant colony 

algorithm, a solution which takes its inspiration from the metaphor of real 

ants searching for food. ‘Ants’ are software objects that can move 

between nodes managed by agents. A move between nodes which is 

managed by the same agent is less costly. Ants explore paths between 

nodes, marking them with different pheromone strength. Whenever an 
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Ant visits a node, the agent managing it saves the recorded tour and 

updates its own database. Ants who subsequently visit this node read its 

current knowledge, meaning they have the potential to exchange 

information in this environment, which adds to the predictability of the 

whole solution. 

• Eddy et al. (2015) presents a prototype in which agents operate an 

electricity market. Agents exchange ‘offers’ and ‘bids’ for those offers via 

a custom-designed communication protocol based on TCP/IP. Among 

other specialised agents, the system implements a short-lived 

coordinating agent to facilitate those exchanges, ensuring that the supply 

of electricity is managed. A comparable schema is implemented in MASB, 

in which the BA initially advises candidate target nodes where an 

overloading task can be re-allocated. 

7.2. MASB DESIGN PRINCIPLES 

The MASB project has been developed over several years, during which time it 

has undergone many changes in terms of both the technology used and the 

design of the architecture. This has included, for example, migration from Java to 

Scala, the change from thread pools to an Akka Actors/Streams framework, and 

the introduction and use of concurrency packages and non-locking object 

structures. However, the main design principles have not been altered and are 

presented below: 

• To provide a stable and robust (i.e. no single point of failure) load balancer 

and scheduler for a Cloud-class system; 

• To efficiently reduce the cost of scaling a Cloud-class system so that it can 

perform in an acceptable manner on smaller clusters (where there are 

tens of nodes) as well on huge installations (where there are thousands 

of nodes); 
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• To provide an easy way of tuning the behaviours of a load balancer where 

the distribution of tasks across system nodes can be controlled.  

Many other Cluster managing systems, such as Google’s Borg (Verma et al., 2015), 

Microsoft’s Apollo (Boutin et al., 2014) and Alibaba’s Fuxi (Zhang et al., 2014b), 

were built around the concept of the immovability and unstoppability of a task’s 

execution. This means that once a task is started it cannot be re-allocated: it can 

only be stopped/killed and restarted on an alternative node. This design is 

particularly well suited when there is a high task churn, as observed in Apollo or 

Fuxi where tasks are generally short-lived, meaning that the system’s scheduling 

decisions do not have a lasting impact. However, in order to support a mixed 

workload which features both short-lived batch jobs and long-running services, 

alternative solutions needed to be developed. One such solution is the resource 

recycling routines present in Borg wherein resources allocated to production 

tasks but not currently employed are used to run non-production applications 

(Verma et al., 2015). 

MASB takes advantage of virtualisation technology features, namely VM-LM, to 

dynamically re-allocate overloading tasks. VM-LM allows programs which are 

running to be moved to an alternative machine without stopping their execution. 

As a result, a new type of scheduling strategy can be created which allows for the 

continuous re-balancing of the cluster’s load. This feature is especially useful for 

long-term services which initially might not be fitted to the most suitable node, 

or where their required resources or constraints change. 

Nevertheless, this design creates a very dynamic environment in which it is 

insufficient to schedule a task only once. Instead, a running task has to be 

continuously monitored and re-allocated if the task’s current node cannot 

support its execution any longer. 
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The design of MASB relies on a number of existing tools and frameworks. The 

main technologies used are listed below: 

• Decentralised software agents – a network of independent AI entities that 

can negotiate between each other and allocate Cloud workload between 

them. In MASB, specialised agents control nodes and manage the system 

workload. Due to the decentralised nature of MASB, there is no complete 

up-to-date system state. Instead, yet another type of agent is responsible 

for caching the nodes’ statistics and providing an interface whereby a set 

of candidate nodes which a particular task can be migrated to can be 

requested. 

• Metaheuristic selection algorithms – while the majority of the processing 

of load balancing logic is done via negotiation between agents, a few 

system processes are handled locally. One such example is that when an 

agent discovers its node is overloaded, it will select a subset of its tasks 

which it will attempt to migrate out. This selection is performed by TS 

algorithm. 

• VM-LM which allows the transfer of a running application within the VM 

instance to an alternative node without stopping its execution. The 

vendors’ strategy is to implement mixed production and low-priority jobs 

on a single machine. While production jobs are idler, low-priority jobs 

consume the nodes’ resources. However, when production job resources 

need to be increased, the low-priority jobs are killed. The non-production 

jobs in Google Cluster (Verma et al., 2015) and the spot-instances in 

Amazon EC2 (Wang et al., 2018) use such an approach. MASB takes 

advantage of VM-LM to offload tasks without stopping their execution, 

collecting information about tasks in order to estimate the VM-LM cost of 

such a task. 

• Functional programming language Scala and accompanying libraries (see 

Appendix B) – due to the decentralised design and loose coupling 
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between the system’s components, the implementation language is of 

secondary importance. However, load balancing algorithms require a 

significant amount of tuning, especially if the Cloud is designed to have a 

high utilisation of available resources. This would mean that resource 

waste is low, and therefore the cost-per-job execution is also low. Due to 

the complexity of inner-system relations and dependencies, a high-fidelity 

simulation environment is necessary to evaluate the expected 

performance of a given configuration and implemented changes before is 

deployed to a production system, e.g. the FauxMaster simulator used by 

Google Engineers (Verma et al., 2015). In this implementation, Akka 

Actors framework was selected as the core parallelisation technology. 

7.3. MASB ARCHITECTURE 

The experiments in Chapter 6 that used a centralised load balancer based on 

metaheuristic algorithms demonstrated that, due to the high overheads of these 

algorithms, a scheduling strategy implemented on a single machine is highly 

unlikely to efficiently manage a large number of tasks. Therefore, MASB has been 

built around the concept of a decentralised load balancing architecture, an 

architecture which could scale well beyond the limits of a centralised scheduler.  

The prototype has been built on top of an AGOCS framework (detailed in Chapter 

5), meaning that the entire research and development process took advantage of 

the continuous testing on a real-world workload traces from the GCD project 

(Hellerstein et al., 2010). 

MASB relies on a network of software agents to organically distribute and 

manage the sizeable system load. All communication between the agents is 

performed via a specialised stateless P2P protocol which promotes loose 

coupling. Figure 30 visualises the communications’ flow within MASB system: 
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Figure 30: MASB communications’ flow 

Two types of agents are deployed: NA and BA. NAs are supervising system nodes, 

are responsible for keeping those nodes stable. NAs actively monitor the used 

resources on their nodes (1) and periodically forward this information to the 

subnetwork of BAs (2). BAs continuously exchange nodes’ load information 

between themselves (3) and, therefore, effectively cache the state of the 

computing cell. 

NA contains an AI module which is based on a metaheuristic algorithm TS. It 

manages a workload on a node. When an NA detects that its node is overloaded, 

it will attempt to find an alternative node for overloading tasks with the help of 

SAN protocol (the details can be found in section 7.4). The first step of SAN 

communication is to retrieve alternative nodes from BA (4). BAs provide a query-

mechanism for NAs, which returns a set of candidate nodes for the migrations of 

tasks. However, because the information found in BAs is assumed to be outdated, 

once the NA completes this step, it communicates directly with their NAs so as to 

re-allocate this task (5). 

The following two subsections describe the types of agents noted and detail their 

responsibilities. The annotated arrows 2 to 5 in Figure 30 correspond to inter-

agent communications – messages that are exchanged within the system are 

detailed in subsection 7.3.3. 
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7.3.1.  NODE AGENT 

Every node in the system has a dedicated instance of NA. NA continuously 

monitors the levels of defined resources and periodically reports the state of its 

node and levels of utilised resources to BAs. Should any of the monitored 

resources be over-allocated, NA will initialise a SAS process. In addition, NA 

performs the following functions: 

• Accept/deny task migration requests – NA listens to task migration 

requests, and accepts or denies them. This routine is simple, with NA 

projecting its resource availability with that task as follows: projected 

allocation of resources = current allocation of resources (existing tasks 

which also includes tasks being migrated out from this node) + all tasks 

being migrated to this node + requested task (from request). If the 

projected resources do not overflow the node, the task is accepted and 

the migration process is initiated. The source node does not relinquish 

ownership of the task while it is being re-allocated, meaning that source 

node is regarded as a primary supplier of the service until the migration 

process successfully completes. It should be noted that during task 

migration, its required resources are allocated twice, to both the source 

node and the target node. 

• Task migration – after accepting the task migration request, NA 

immediately starts listening for incoming VM-LM. In order to perform task 

migration, NA must have access to the administrative functions of VM and 

be able to initiate VM-LM to another node. This functionality can be either 

implemented by the calls of the VM manager API or by executing the 

command line command. This process may vary considerably per VM 

vendor. 
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7.3.2.  BROKER AGENT 

BA is responsible for storing and maintaining information about nodes’ online 

status and their available resources. BA is a separate process which can coexist 

with NA on the same node since its operations are not computing-intensive. BA 

has two main purposes in the system. These are outlined below: 

• Nodes resources utilisation database – NA periodically reports to its BA 

about the state of its node and available resources. BA stores all this data 

and can query them on demand. Every node entry is additionally stored 

with its timestamp, showing how long ago the data were updated. It has 

additional protection against the node silently going offline, for example 

through hardware malfunction or the network becoming unreachable, in 

that if this entry is not updated for five minutes, the node is assumed to 

be offline and entry is removed. This means that it will not be returned as 

the candidate node. 

• Evaluating candidate nodes for a task migration – BA listens for 

GetCandidateNodesRequest and computes a list of candidate nodes for a 

task migration. In order to create a list of candidate nodes, BA retrieves 

nodal data from the local cache and then scores them using Allocation 

Scoring Function. BA scores the future state of the system as if task 

migration were being carried out. After scoring all the cached nodes, BA 

selects a configured number of candidate nodes with the highest score 

and sends them back to the asking node. In this research this number was 

set to fifteen candidate nodes, wherein higher numbers failed to yield 

superior results. 
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7.3.3.  MESSAGE TYPES 

In order to avoid costly broadcasts, since broadcast packages need to be rerouted 

through a whole network infrastructure consuming the available bandwidth, 

both NA and BA always communicate P2P. In the system there are several types 

of requests and responses between agents, outlined in Table 15 below: 

Request Type Description 

GetCandidateNodesRequest Requests a number of candidate nodes for the migration 
of a specified tasks set. Send from NA to BA. 

GetCandidateNodesResponse Reply with a set of candidate nodes for task migration, 
together with their resource statistics.  

TaskMigrationRequest Request from source NA to candidate NA as to whether 
task migration is accepted. 

TaskMigrationAcceptanceResponse 

Replay from target candidate NA that task migration will 
be accepted. 

Note: No resource allocation takes place after this 
request. 

TaskMigrationRejectionResponse Replay from target node’s NA that task migration will 
not be accepted. 

TaskMigrationProcessRequest 

Request to selected target node’s NA to start task 
migration. 

Note: this request has an optional forced flag, 
requesting the target NA to skip the currently available 
resources check. The total node’s resources check and 
constraints check will be still performed. 

TaskMigrationProcessConfirmationResponse 

Confirmation from the target node’s NA that the task 
migration process can start. 

Note: Resources are allocated for the migrated task and 
the live migration process starts. 

TaskMigrationProcessErrorResponse Denial of task migration process. This reply is generated 
if the NA can no longer accommodate the migrated task. 

Table 14: Message types 

Agent-to-agent communications follow the ‘request-response’ pattern, in which 

each request object has one or more matching response objects. The message 

objects carry additional metadata such as fitness value (as explained in (12) in 

subsection 7.4.1), forced migration flag, and detailed node and task information. 
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Section 7.4 below explains the process in which messages are exchanged, while 

the subsections 7.4.1 to 7.4.4 show detailed samples of such objects. 

7.4. SERVICE ALLOCATION NEGOTIATION PROTOCOL 

When NA detects its node is overloaded, it will select a task (or a set of tasks) and 

attempt to migrate them to an alternative node or nodes. Since SAN is 

asynchronous, this means a single NA can run several SAN processes in parallel. 

In the current implementation, NA selects a number of tasks in the first step – 

Select Candidate Services (SCS) – and processes their allocation in parallel. Figure 

31 visualises this process – for simplicity, the chart presents the allocation 

negotiation of one task only: 

 
Figure 31: Service Allocation Negotiation 
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SAN is a five-stage process, involving a single source node (Node Agent S), one of 

the system BAs and several of other nodes in the system (Node Agent A, Node 

Agent B and Node Agent C).  

When migrating-out a given task, NA at first sends a GetCandidateNodesRequest 

to BA to get with a set of candidate nodes where the task can potentially be 

migrated to. BA scores all its cached nodes and sends back the top fifteen to NA. 

Additionally, in order to help to avoid collisions, BA does not directly select only 

top candidate nodes, but instead selects them randomly from a node pool, where 

candidate node score is a weight, wherein higher scored nodes are selected more 

frequently. This design helps to avoid a situation where an identical subset of 

candidate nodes is repeatedly selected for a number of tasks with the same 

resource requirements. 

Upon receiving this list, NA sends task migration requests to all of those candidate 

nodes (Step 3), and waits for a given time (in this case for thirty seconds) for all 

replies. After this time, NA evaluates all accepted task migration responses (Step 

4) and orders them in relevance order (nodes with the highest score first) and 

then attempts to migrate a task to a target node with top score (Step 5). If target 

node returns an error, the source NA will pick the next target node and attempt 

to migrate a task there. 

At each of these stages, the target node’s NA might reject task migration or return 

an error, for example when task migration is no longer possible because the 

current node’s resource utilisation levels have increased or because the node 

attributes no longer match the task’s constraints. Depending on a system 

utilisation level, such collisions might be more or less frequent. However, they 

are resolved at node-to-node communication level and do not impact the system 

performance as a whole.  
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In a situation where there are insufficient candidate nodes available due to the 

lack of free resource levels, the BA will return candidate nodes with the ‘forced 

migration’ flag set to true.  

The algorithm’s five steps are explained in the following subsections, while the 

forced migrations feature is detailed in supplementary subsection 7.4.6 below. 

7.4.1.  STEP 1: SELECT CANDIDATE SERVICES 

SCS routine is executed when the NA detects that the currently existing tasks are 

overloading its node. This step is processed on the node wholly locally. The 

purpose of this routine is to select the task (or set of tasks) that NA will attempt 

to migrate out and become stable (i.e. non-overloaded) during that process. All 

tasks currently running on this node are evaluated, taking into consideration 

various aspects, namely: 

• The cost of running a task on this particular node. NA will aim to have the 

highest node score for its own node. If removing this particular task will 

cause its AS (calculated by SAS functions – see subsection 7.5 for details) 

to be higher, then this task is more likely to be selected. 

• The cost of migration of a task – VM migrations cause disruptions on the 

Cloud system. In this research, cost is estimated by LMDT formula 

(Chapter 4) as the additional network traffic required to migrate the 

running VM instance to an alternative node. Additional notes are 

provided in subsection 5.8. 

• The likeness to find an alternative node – the majority of tasks do not have 

major constraints and can be executed on a wide range of nodes. 

However, there are a small number of tasks with very restrictive 

constraints that significantly limit the number of nodes that the task can 

be executed on. If such a task can only be executed locally, i.e. the node 
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has enough total resources capacity and task constraints are matched, 

then NA is unlikely to migrate out those tasks. 

• Any task which cannot be executed on a local node is compulsory selected 

as a candidate task. This scenario could occur if the task constraints or 

node attributes were updated. 

NA first computes a list of compulsory candidate tasks, i.e. tasks that can no 

longer be executed on this node. Following this, if the remaining tasks are still 

overloading the node, it will select a subset of tasks to be migrated out. 

The candidate tasks selection algorithm tries to minimise the total migration cost 

of selected tasks, and also to achieve the highest AS for a node, under the 

assumption that the selected subset of candidate tasks is successfully migrated 

to the alternative node. In order to achieve this, the algorithm defines the Fitness 

Function as coded inside SCS: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =	
𝑁𝑜𝑑𝑒	𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒
𝑇𝑜𝑡𝑎𝑙	𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡

 (12) 

For the above in a NP-Hard problem with a substantial search space, e.g. twenty 

tasks on a node, the search space size is over one million combinations. Given 

this, the Full Scan approach (as detailed in subsection 6.1.6) will be substantially 

computation-intensive. Therefore, the use of metaheuristic algorithms is justified. 

In previously researched scheduling concept, a variant of TS has been successfully 

applied to solve a similar class of problems (subsection 6.3.2). The TS algorithm 

has the following properties: 

• It has a small memory imprint since only the list of visited solutions is 

maintained thorough execution; 

• It can be easily parallelised as a variant which is restarted multiple times; 
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• It is very controllable through setting up a limited number of steps and 

number of runs; 

• It is stoppable, and the best-found result can be retrieved immediately; 

• It generally returns good results. 

It was found that multiple restarts (herein a twenty five re-run limit) with a 

shallow limit of steps (herein five) yield very good results, with only about 2-7% 

of solutions in the whole search space (i.e. selecting a subset of tasks being run 

on a node) being examined in each invocation. Additionally, instead of restarting 

the algorithm an arbitrary number of times, a stop condition for this algorithm 

has been implemented when the best-found solution has not been improved in 

a certain number of the last steps (herein six). 

A sample log entry is presented below, wherein the subset of candidate tasks is 

being computed: 

 
12:44:22.016 NodeAgentActor (node=2274790707) INFO 
SAMPLE: 
 Selected overloading tasks for node [2274790707] 
 Node total resources = [0.5000000000,0.2493000000] 
 Node used resources (all tasks) = [0.5598619000,0.2060380000] 
 Node used prod resources (all tasks) = [0.4812960000,0.2190280000] 
 All tasks (* Selected): 
  Task [2902878580-1081] (PROD) Priority=11  Required resources=[0.0062480000,0.0014570000] 
   Used resources=[0.0149800000,0.0269200000] Migration cost = 6876.02 [MB] 
  Task [2902878580-3147] (PROD) Priority=11  Required resources=[0.0062480000,0.0014570000] 
   Used resources=[0.0105300000,0.0250900000] Migration cost = 3820.05 [MB] 
  Task [3998352223-38] (PROD) Priority=9  Required resources=[0.3125000000,0.1592000000] 
   Used resources=[0.1680000000,0.0761700000] Migration cost = 69139054863.11 [MB] 
  Task [5726057648-7] (PROD) Priority=9  Required resources=[0.0625000000,0.0077670000] 
   Used resources=[0.0168200000,0.0058140000] Migration cost = 106.72 [MB] 
* Task [6218406404-243] (PROD) Priority=0  Required resources=[0.0406500000,0.0206900000] 
   Used resources=[0.0056840000,0.0057980000] Migration cost = 106.69 [MB] 
  Task [6218406404-959] (PROD) Priority=0  Required resources=[0.0406500000,0.0206900000] 
   Used resources=[0.0082550000,0.0057910000] Migration cost = 106.67 [MB] 
* Task [6251414911-1447] Priority=1  Required resources=[0.0625000000,0.0318000000] 
   Used resources=[0.0007629000,0.0076750000] Migration cost = 112.37 [MB] 
  Task [6251664479-137] (PROD) Priority=2  Required resources=[0.0125000000,0.0077670000] 
   Used resources=[0.0422400000,0.0055920000] Migration cost = 106.25 [MB] 
  Task [6251784940-1615] Priority=2  Required resources=[0.0249900000,0.0254500000] 
   Used resources=[0.0291700000,0.0135000000] Migration cost = 183.40 [MB] 
  Task [6251787910-686] Priority=2  Required resources=[0.0249900000,0.0333900000] 
   Used resources=[0.0321000000,0.0150100000] Migration cost = 236.79 [MB] 
* Task [6251803864-88] Priority=2  Required resources=[0.0249900000,0.0254500000] 
   Used resources=[0.1665000000,0.0102700000] Migration cost = 128.94 [MB] 
* Task [6251812952-159] Priority=2  Required resources=[0.0249900000,0.0795900000] 
   Used resources=[0.0648200000,0.0084080000] Migration cost = 115.72 [MB] 
  Task [6251812952-2072] (unstarted) Priority=2  Required resources=[0.0249900000,0.0795900000] 
   Used resources=[0.0000000000,0.0000000000] Migration cost = 101.00 [MB] 
 Node used resources (remaining tasks) = [0.3220950000,0.1738870000] 
 Node used prod resources (remaining tasks) = [0.4406460000,0.1983380000] 
 Total migration cost (selected tasks) = 463.71561966381125 [MB] 
  

Here, the thirteen tasks are being executed on node ‘2274790707’. However, the 

used resources exceed the node’s total resources, i.e. all tasks are utilising 
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0.5598619 CPU, while the node can provide only 0.5 CPU (values are normalised). 

The node’s NA detects the node is overloaded and triggers the SCS routine. The 

SCS routine selects four tasks (here: the production task ‘6218406404-243’ and 

non-production tasks: ‘6251414911-1447’, ‘6251803864-88’ and ‘6251812952-

159’; marked with *) which are then added to candidate tasks, and NA will 

attempt to migrate out this set in the next step. The potential reduction of used 

resources is an effect of removing a subset of tasks from this node: (i) CPU 

reserved for production tasks is potentially reduced from 0.481296 to 0.440646 

which is ca. 88% utilisation of total 0.5 CPU available on this node, and (ii) 

memory reserved for production tasks is potentially reduced from 0.219028 to 

0.198338 which is ca. 80% utilisation of the total 0.2493 memory available on this 

node. The total migration cost for this set of migrations is ca. 463.72MB. 

7.4.2.  STEP 2: SELECT CANDIDATE NODES 

After selecting candidate nodes, NA sends a GetCandidateNodes request to BA. 

A part of this request, task information data, such as currently used resources 

and constraints, are sent. BA also itself caches a list of all nodes in system with 

their available resources and attributes. Based on this information, BA prepares 

a list of alternative candidate nodes for a task in request. The main objective of 

this process is to find alternative nodes which have the potentially highest node 

AS, under the assumption that the task will be migrated to a scored node. The 

size of this list is limited to an arbitrary value to avoid network congestion when 

NA will send actual migration requests query in the next step. In this 

implementation, it is set to fifteen candidate nodes returned in each response. 

This step is the most computing intensive of all, and represents a potential 

bottleneck for negotiating logic processing. BA needs to examine all system nodes, 

check their availability for a given task and score them accordingly. The request 

processing is self-contained and highly concurrent, meaning that the node 
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scoring can be run in parallel and the final selection of top candidate nodes is run 

in sequence. Originally, this code was extensively profiled and improved, and 

designed BA to be able to run in a multi-instance mode if needed and to handle 

heavy usage. However, in experiments, the quoting mechanism proved to be very 

lightweight and the demand not that high, meaning that a single BA was sufficient 

to handle 12.5k nodes in the system. Below, a sample log entry is presented when 

such a list is computed and returned to a NA: 

 
17:53:28.516 NodeAgentActor (node=97967489) INFO 
SAMPLE: 
 Candidate nodes recommendations for migration-out of task: 
  Task [6251414911-740] Priority=1  Required resources=[0.0625000000,0.0318000000] 
  Used resources=[0.0476100000,0.0097350000] Migration cost = 124.29 [MB] 
 Source node: Node [97967489] [0.5000000000,0.4995000000]: 
  CandidateNodeRecommendation[nodeId=2110696959,nodeAvailableResources=[0.1167000800,0.0578920000], 
   fitnessValue=5.027797352070,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=2274669582,nodeAvailableResources=[0.0846342000,0.1311130000], 
   fitnessValue=4.351440488446,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=294847211,nodeAvailableResources=[0.2073230300,0.0232970000], 
   fitnessValue=3.990484728735,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=1302354,nodeAvailableResources=[0.2147855300,0.0715080000], 
   fitnessValue=3.368267142480,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=7246234,nodeAvailableResources=[0.3283863000,0.0205610000], 
   fitnessValue=2.444197290198,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=2887932822,nodeAvailableResources=[0.3051645700,0.1098830000], 
   fitnessValue=2.147161970183,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=38743543,nodeAvailableResources=[0.3583948000,0.1018340000], 
   fitnessValue=1.769829840087,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=6568110,nodeAvailableResources=[0.2394051100,0.2629800000], 
   fitnessValue=1.711800790297,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=38709566,nodeAvailableResources=[0.3584505000,0.1189080000], 
   fitnessValue=1.697701710745,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=3739348304,nodeAvailableResources=[0.2367339800,0.2681720000], 
   fitnessValue=1.696017579836,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=1093461,nodeAvailableResources=[0.3801150000,0.0841200000], 
   fitnessValue=1.681960083254,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=4217347623,nodeAvailableResources=[0.3635202600,0.1467840000], 
   fitnessValue=1.553194840995,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=16918689,nodeAvailableResources=[0.3916948000,0.1250880000], 
   fitnessValue=1.456396783346,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=257495090,nodeAvailableResources=[0.0367722000,0.0736920000], 
   fitnessValue=0.000000000001,forceMigration=true] 
  CandidateNodeRecommendation[nodeId=38679534,nodeAvailableResources=[0.3811526500,0.0066530000], 
   fitnessValue=0.000000000001,forceMigration=true] 
 

Here, NA on node ‘97967489’ requested candidate nodes for the migration of the 

task ‘6251414911-740’. BA returned top candidate nodes for a given task ordered 

by their suitability score, i.e. fitness value. Here values returned are: 

5.02779735207 for node ‘2110696959’, 4.351440488446 for node ‘2274669582’, 

3.990484728735 for node ‘294847211’, 3.36826714248 for node ‘1302354’, and 

so on. Additionally, the last recommendations for nodes ‘257495090’ and 

‘38679534’ are forced-migrations (forceMigration is set to true). 

Within the node recommendation there is additional information, such as node 

available resources and other metadata (not shown in listing). It is not necessary 
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to return this extra information, but it was found to be very useful for logging and 

sampling purposes, and then efficient tuning of the system (for details see 

subsection 7.6.3). 

7.4.3.  STEP 3: SEND MIGRATION REQUESTS 

Forced migration candidates will be always added to the list of accepted 

candidate nodes in the next step but with minimal scores. Each NA analyses its 

own node availability for a given task, i.e. both the available resources and the 

node’s attributes, and responds with TaskMigrationAcceptanceResponse or 

TaskMigrationRejectionResponse.  

Acceptance response only implies the readiness to accept a task with NA not yet 

allocating any resources. Additionally, TaskMigrationAcceptanceResponse 

message contains this node’s current resources usage levels, which are used in 

the next step to rescore this node, since the data from BA are less recent.  

7.4.4.  STEP 4: SELECT TARGET NODE 

NA waits for a defined time, or until all candidate nodes have responded by either 

the acceptance or rejection of a migrated task, and computes a list of nodes that 

accepted this task. NA evaluates each of the accepting nodes using the SRAS 

function, with the assumption that the task will be re-allocated to a scored node. 

From this pool, a target node is then selected. The selection is weighted with 

node scores but still randomised, which helps to avoid conflicts when many task 

migrations compete for the same node. 

As noted above, all forced migration candidate nodes will be added to this list but 

will be selected only in last place, once all other alternative migrations attempts 

fail. This strategy ensures that NA always has an alternative node to offload the 

task. A scenario in which only one node is capable of running a given task is 
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considered to be an error, and is reported to the system administrator. For fault-

tolerance reasons, the system should always have multiple nodes able to run any 

given task. 

A sample log entry is presented below: 

 
17:48:51.541 NodeAgentActor (node=30790115) INFO 
SAMPLE: 
 Accepted recommendations for migration-out of task: 
  Task [4844000327-3] (PROD) Priority=10  Required resources=[0.0625000000,0.0031090000] Used 
resources=[0.0037420000,0.0018860000] Migration cost = 101.86 [MB] 
 Source node: Node [30790115] [0.5000000000,0.2493000000] 
 All non-expired recommendations (* selected): 
  CandidateNodeRecommendation[nodeId=72,nodeAvailableResources=[0.2409250200,0.0802350000], 
   fitnessValue=2.737788312063,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=4995304750,nodeAvailableResources=[0.2017312000,0.1336360000], 
   fitnessValue=2.704122369764,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=6608641,nodeAvailableResources=[0.1552938500,0.1871200000], 
   fitnessValue=2.657728011619,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=336053478,nodeAvailableResources=[0.2798536000,0.0479556000], 
   fitnessValue=2.558664832112,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=351638129,nodeAvailableResources=[0.2121407240,0.1468220000], 
   fitnessValue=2.505822852307,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=431038304,nodeAvailableResources=[0.3267638000,0.0397480000], 
   fitnessValue=2.142784872639,forceMigration=false] 
* CandidateNodeRecommendation[nodeId=3650320528,nodeAvailableResources=[0.3118476200,0.0739690000], 
   fitnessValue=2.101080438228,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=351664198,nodeAvailableResources=[0.3099791000,0.1114180000], 
   fitnessValue=1.926755718413,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=6565510,nodeAvailableResources=[0.3613202000,0.1106346000], 
   fitnessValue=1.564594925411,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=1273895,nodeAvailableResources=[0.3402396000,0.1485660000], 
   fitnessValue=1.556209187067,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=662212,nodeAvailableResources=[0.4032697100,0.0658030000], 
   fitnessValue=1.431851646113,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=1272936,nodeAvailableResources=[0.3443891900,0.2676010000], 
   fitnessValue=1.119583713082,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=2594787,nodeAvailableResources=[0.3313337000,0.3637160000], 
   fitnessValue=0.874210901828,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=2098371268,nodeAvailableResources=[0.3326411500,0.0528420000], 
   fitnessValue=0.000000000001,forceMigration=true] 
  CandidateNodeRecommendation[nodeId=1332336,nodeAvailableResources=[0.2588359500,0.3254990000], 
   fitnessValue=0.000000000001,forceMigration=true] 
 

Here, NA on a node ‘30790115’ is selecting a target node for the migration of task 

‘4844000327-3’ (with the migration cost of 101.86MB). All accepted 

recommendations from previous step (within thirty seconds) or forced 

recommendations (forceMigration is set to true) are re-scored and a single node 

is selected (here: node ‘3650320528’; marked with *). Then, NA sends 

TaskMigrationProcessRequest to initiate a task migration process itself. NA stores 

received candidate node recommendations in its memory in case the task 

migration fails, and the next target node has to be selected. 

Once the task is removed from a node, meaning it is re-allocated, and has finished 

its execution, is killed or crashes, all its candidate node recommendations are 

automatically invalidated and deleted. Additionally, candidate node 
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recommendations expire after an arbitrary defined time, in this case three 

minutes. This mechanism exists in order to remove recommendations with out-

dated node data. If no candidate node recommendations are left (or expire), and 

the node is still overloaded, the SAN process restarts from Step 1. 

7.4.5.  STEP 5: MIGRATION PROCESS 

When NA receives TaskMigrationProcessRequest, it performs a final suitability 

check, wherein both node’s available resources and task constraints are validated. 

If the forced-migration flag is set, NA ignores the existing tasks and validates the 

required resources against total node resources. Occasionally, the target NA can 

reject task migration process or migration fails. In such a scenario the algorithm 

returns to Step 4 and selects the next candidate node (via weighted randomised 

selection). 

In practice, this happens only for 6-8% of all task migration attempts (in simulated 

GCD workload), the majority being the result of task migration collisions where 

two or more tasks are being migrated to the same node. The first-to-arrive 

TaskMigrationProcessRequest is generally successful, meaning that Steps 4 and 

5 are repeated only for the rejected migrations. There have been no observations 

of an increase in collisions when the larger Cloud system is simulated (up to 100k 

nodes, as detailed in section 7.6.10). This is because a single NA communicates 

with only a limited set of other agents, and the P2P communication model is used 

exclusively. This means that the communication overhead does not go up when 

the system size is increased. 

7.4.6.  FORCED MIGRATION 

In rare circumstances, approximately 10-15 out of 10k tasks present constraints 

which restrict the execution of a task to a very limited number of nodes. 
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Considering this, there is a scenario in which NA wants to migrate out a given task 

but is unable to find an alternative node because all suitable nodes have already 

been allocated to other tasks, and the majority of their resources have been 

utilised. In such a scenario, BA returns candidate node recommendations with a 

forced-migration flag set. In response, the BA can also mix non-forced migrations 

and forced migrations. In a worst-case scenario, all returned recommendations 

would be forced, but this approach ensures there is always an acceptable node 

to run a given task on. This prevents a starvation of the task resources, where the 

task is never executed. 

A forced migration flag signals that a node is capable of executing a task but that 

its current resources utilisation levels do not allow it to allocate additional tasks, 

since this will cause the node to be overloaded. Forced migration forces the node 

to accept the task migration request while skipping the available resources check. 

However, task constraints are still validated, including the check if the node’s 

total resources are sufficient to run the task. This design helps to avoid a situation 

where a task has very limiting constraints and only a few nodes in the system can 

execute it. If those nodes have no available resources then it will not be possible 

to allocate a task to them, and therefore tasks will not run. As such, the nodes 

are forced to accept this task, which then many trigger the target node’s NA to 

migrate out some of its existing tasks to alternative nodes. 

7.5. SERVICE ALLOCATION SCORE FUNCTIONS 

SAS functions are a crucial part of the system, which greatly impacts global 

resource usage level. That is, they determine how well nodes' resources are 

utilised. They are used when a new task is allocated or when a system needs to 

re-allocate an existing task to an alternative node. 
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SAS functions evaluate how well a given task will fit a scored node system-wise 

by returning AS value. In this implementation, SAS input is constructed from the 

total node resources, the currently available node resources and the currently 

required resources for a given task. SAS function returns a value when a task fits 

the available resources on a node, and also when a node is overloaded by a task. 

If a node cannot fulfil a task's constraints, the node is deemed non-suitable and 

the scoring function is undefined. 

This research concludes that node AS are failing in six separate areas: 

• Idle Node – a completely idle node is a special case of allocation, in which 

no task has been allocated to this node. Such a node could be completely 

shut down, resulting in lower power usage for a cluster. In this research, 

idle nodes are scored most highly when determining a suitable node for 

initial task allocation. 

• Super Tight Allocation (STA) – where some of the node's resources are 

utilised in the 90%-100% range. STA is regarded as stable allocation; 

however, due to the dynamic resource usage, this is actually not a 

desirable scenario. Complete, or almost complete, resource usage can 

frequently lead to resource over-allocation, whereby one or more tasks 

increase their resource utilisation. This experimentation has determined 

that leaving 10% of any given resource unutilised gives the best results 

since it reduces task migration but still ensures the efficient use of the 

system resources (see discussion in subsection 7.5.4). 

• Tight Allocation (TA) – where all node resources are utilised in the 70-90% 

range. This is the most desirable outcome as it promotes the best fitting 

allocation of tasks and, therefore, low resource wastage. 

• Proportional Allocation (PA) – while tight-fit is the most desirable 

outcome, the majority of tasks in this research consumed a small amount 

of each resource. Most scheduled tasks are short batch jobs which have a 
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very short execution time. In such a scenario, it is desirable to keep 

proportional resources' usage ratios on all nodes which would, therefore, 

generally enable nodes to fit more tasks with ease. 

• Disproportional Allocation (DA) – where the node's resources are not 

proportionally utilised, thereby making it difficult to allocate additional 

tasks if required. For example, a setup where tasks on a node allocate 75% 

of CPU but only 20% of memory is not desirable. 

• Overloaded Node – when allocated resources overload the total available 

resources on the node. Naturally, this is an unwanted situation, and such 

a node is given a score of zero. 

Figure 32 visualises AS types for the two resources (CPU and memory): 

 
Figure 32: Allocation Score types (two resources) 

SAS function should never allow overloading allocations to take place in order to 

prevent a scored node to become overloaded and unstable. Additionally, during 

the research it was determined that STAs are very prone to over-allocate nodes 

and are damaging to overall system stability. Therefore, they are also accorded a 

score of zero. DAs increase global resource wastage and should be avoided; 
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nevertheless, they are acceptable if none of the more desired types of AS are 

possible. The desirability order varies and depends on the task’s state, as 

discussed in subsections 7.5.2 and 7.5.3 below, while the following subsection 

introduces the concept of Service Allocation Lifecycle (SAL). 

7.5.1.  SERVICE ALLOCATION LIFECYCLE 

Tightly fitting tasks on as few nodes as possible are beneficial for global system 

throughput. However, during this research the following facts were observed: 

• Initially, a Cloud user specifies the task’s required resources. Users tend 

to overestimate the amount of resources required, wasting in some cases 

close to 98% of the requested resource (Moreno et al., 2013). Therefore, 

only after the task is executed could realistic resource utilisation values 

be expected. Allocating new tasks in a tight-fit way (i.e. TA and STA areas 

in Figure 32) does result in turmoil when the task is actually executed and 

the exact resource usages levels are logged. Therefore, the initial 

allocation should rather aim to distribute tasks across nodes and keep the 

resource utilisation levels on individual nodes low (i.e. PA area in Figure 

32), than pile them on the lowest possible number of nodes. 

• In GCD, only about 20-40% of tasks qualify as long-running tasks, meaning 

that they run for longer than twenty minutes (Schwarzkopf et al., 2013). 

The remaining scheduled tasks consisted of short-term jobs which 

generally have much lower resource requirements than long-running 

tasks. The majority of tasks are short and will not exist for long at all in the 

system. Therefore, it is important for an initial allocation not to spend too 

much time in trying to tightly fit them into available nodes. 

• While the majority of tasks are short-lived (up to twenty minutes), there 

exists a number of long-running tasks that have more demanding 

resource requirements, meaning that the majority of resources (55–80%) 
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are allocated to long-lived services (ibid.). Therefore, it is more difficult to 

fit them into nodes, and these allocations should be much tighter to 

minimise global system resource waste. More nodes need to be scored 

which therefore consumes more CPU time when allocating a single task. 

Given the above reasons, the ideal scenario for a task is to be initially allocated 

on a lowly-utilised node, before it is gradually migrated towards more tightly-

fitted allocations with other tasks. Figure 33 represents resulting SAL: 

 
Figure 33: Service Allocation Lifecycle 

Originally, the MASB framework did not have distinct scoring functions for SIAS 

and SRAS; a single SAS function, with the same scoring model as SRAS, was used 
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for all allocations which resulted in lowered performance. The design was 

ultimately altered, and SAS function was split. 

During Initial Allocation, a randomly selected BA is responsible for allocating a 

newly arrived task to a worker node. BA uses SIAS function (detailed in subsection 

7.5.2) to score nodes. Only a limited number of candidate node 

recommendations are calculated (here: 200) before selecting the top 

recommendations. This is to prevent scoring routine calculations from processing 

for too long. The limit of 200 applies only to non-forced recommendations for 

matching nodes. 

MASB uses a network of BAs to provide a set of the best candidate nodes (nodes 

with the highest AS) to allocate the task. However, some applications such as Big 

Data frameworks often send multiples of an identical task in a batch. Those tasks 

execute the same program and have the same (or very similar) resource 

requirements. As such, a limited set of nodes will be highly scored and may result 

in a multiple repeated allocations requests to the same node over a very short 

period of time. To prevent this phenomenon, the pool of candidate nodes is 

randomly shuffled each time BA receives a request. 

A once allocated (and running) task can be re-allocated to an alternative node if 

necessary. In such a scenario NA of a node which the task is being executed is 

responsible for finding a candidate node. Both NA and BA use SRAS function 

(detailed in subsection 7.5.3) to score candidate nodes. Similar to calculating 

recommendations for new tasks, as an additional optimisation, only a limited 

number of candidate node recommendations are calculated before selecting the 

top recommendations. However, because this routine is invoked much less 

frequently, two thousand nodes are analysed. The two thousand limit applies 

only to non-forced recommendations for matching nodes. 
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7.5.2.  SERVICE INITIAL ALLOCATION SCORE 

As explained in the subsection above, in order to minimise the impact of Cluster 

user’s overestimating resource requirements, the initial allocation should 

attempt to spread tasks widely across all system nodes. Therefore, when initially 

allocating existing tasks, candidate nodes should be scored in the following order: 

PA, TA and finally DA. 

In this implementation, the SIAS function for two resource types (CPU and 

memory) was used. Figure 34 is a graphical representation of SIAS function: 

 
Figure 34: Service Initial Allocation Score (two resources) 

Three separate areas can be noticed: 

• Lower-left (the highest score) – this promotes PA, which will leave 

resource utilisation at a low level or proportionately used. 

• Upper-right corner (the medium score) – this promotes TA, where tasks 

on this node will closely utilise all its resources. 

• The upper-left and lower-right corners (the lowest score) – these DAs will 

leave one resource utilised almost fully and the other resource wasted. 
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It should be noted that the maximum resource usage is 90%, and that values 

above this level are in an undesired STA’s area (and have zero AS). The following 

SIAS function was used: 

𝑆𝐶𝑂𝑅𝐸 = 𝐹_𝑆𝑇𝐸𝐸𝑃^�����y_��x�∙����_ ¡¢`∙^� £ �y_��x�∙� £ _ ¡¢` − 𝐹_𝐹𝐿𝑂𝑂𝑅 (13) 

• 𝑟KLM,	𝑟z¤z – current resources utilisation levels on a node (values are normalised to 

between 0 and 1); 

• 𝑟KLM_zx¥,	𝑟z¤z_zx¥ – total resources available on a node (values are normalised to 

between 0 and 1); 

• 𝐹_𝐵𝐼𝐴𝑆 – score factor which sets the bias towards low (i.e. SIAS function) or high (i.e. 

SRAS function) utilisation of resources on a node. Here, a value of 0.3 was used; 

• 𝐹_𝑆𝑇𝐸𝐸𝑃 – parameter describing how aggressively the system should increase scores 

of the more desired AS-es (which impacts the probability of a node selection). Here, a 

value of 350 was used; 

• 𝐹_𝐹𝐿𝑂𝑂𝑅	– parameter describing how aggressively the system should reduce scores 

of less desired AS-es (which impacts the probability of skipping a node). Here, a value 

of 0.8 was used; 

• Additionally, negative score values are adjusted to zero (to prevent the selection of a 

node). 

It should be noted that the SIAS is calculated exclusively from user-defined 

resource requirements since the actually-used resource requirements are 

unknown before the task execution actually starts. 

7.5.3.  SERVICE RE-ALLOCATION SCORE 

This research has found that the best throughput results are achieved when tasks 

are packed tightly into available nodes, i.e. where global resource utilisation is 

the highest. The best fit scenario, where the task fully utilises 90% of all available 

resources on a node, is scored the highest. Therefore, when migrating existing 

tasks, candidate nodes should be scored in the following order: TA, PA, then DA. 
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Like the SIAS function presented in 7.5.2, the SRAS function for two resource 

types (CPU and memory) was used. Figure 35 is a graphical representation of 

SRAS function: 

 
Figure 35: Service Re-allocation Score (two resources) 

Three separate areas can be noticed: 

• Upper-right corner (the highest score) – this promotes TA, where tasks on 

this node will closely utilise all its resources. 

• Lower-left (the medium score) – this promotes PA that will leave resource 

utilisation at a low level or proportionately used. 

• The upper-left and lower-right corners (the lowest score) – these DAs will 

leave one resource utilised almost fully and the other resource wasted. 

In this implementation, the following SRAS was used: 

𝑆𝐶𝑂𝑅𝐸 = 𝐹_𝑆𝑇𝐸𝐸𝑃^�����y_��x�∙����_ ¡¢`∙^� £ �y_��x�∙� £ _ ¡¢` − 𝐹_𝐹𝐿𝑂𝑂𝑅 (14) 

(with the exceptions of 𝐹_𝑆𝑇𝐸𝐸𝑃	where a value of 500 was used and 𝐹_𝐵𝐼𝐴𝑆 where a value 

of 0.6 was used; the parameter definitions are the same as in (13) in subsection 7.5.2) 
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As can be observed visually, SRAS is a mirror image to the SIAS function 

(presented in Figure 34). The main difference is changing the score bias (i.e. 

𝐹_𝐵𝐼𝐴𝑆  parameter) which shifts the peak score point from (0,0) to (90,90) 

(percentage of utilised resources), and which relates to the change in the most 

desirable AS from PA to TA.  

It should be noted that the SRAS is calculated exclusively from actually-allocated 

resource requirements. User-defined resource requirements are evaluated as 

part of the RUS routine, explained in detail below. 

7.5.4.  RESOURCE USAGE SPIKES 

Occasionally, a task might instantly increase its resource usage as the result of 

sudden increase of a demand for a task; at such times, a node should have the 

capacity to immediately accommodate this request, without needing to migrate 

the task to an alternative node (since this takes time). In such a situation, other 

VMs running on this machine can be paused or killed to let the VM instance 

executing this task instantly allocate more resources. 

As such, an additional feature was implemented in MASB to handle RUS. Aside 

from checking the actually-used resources for tasks and ensuring that the node 

has the capacity to support it, the system also calculates the maximum possible 

resource usage of all production tasks based on user-defined resource 

requirements, as well as making sure that the node has the capacity to support 

all production tasks at their full resource utilisation. This constraint is limited only 

to production jobs since VMs running non-production jobs can be suspended 

without disturbing business operations. The continuously fulfilment of this 

constraint is referred to as Goal (IV). 
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The introduction of RUS constraint adds another dimension to the tasks 

allocations’ logic. Figure 36 visualises how user-defined resource requirements 

for production tasks and actually-used resources for all tasks are integrated: 

 
Figure 36: Production vs. non-production allocated resources 

In this 60 node sample (a single bar represents one node), approximately half the 

nodes have a very high CPU user-defined allocation for production tasks, while 

the real usage is much lower. It should be noted that while memory usage stays 

proportionally high thorough the GCD workload, the gaps between the requested 

and the actually-used memory are much smaller. This is a relatively common 

pattern for GCD workload. Additionally, the chart marks the allocation type (STA, 

TA, DA, PA) for each node in this sample on the horizontal axis. 
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Whilst RUS do not occur frequently, they do have the significant potential to 

destabilise an affected node. Table 15 represents the average frequency of RUS 

in examined GCD workload traces with ca. 12.5k nodes and ca. 140k tasks being 

continuously executed by them (with different RUS thresholds examined): 

RUS threshold Average RUS 
(count per minute) 

Peak RUS 
(count per minute) 

5% 659 7538 

10% 212 4362 

15% 66 2390 

20% 47 1925 

25% 26 1135 

Table 15: Resource Usage Spike frequencies (GCD) 

Here, while running a simulation based on replaying the original Borg’s allocation 

decisions (as detailed in 7.6.7), the RUS threshold of 10%, i.e. whenever there 

was a greater than 10% increase in the overall node resource utilisations levels in 

any of the monitored resources, was breached 212 times per minute on average, 

with a peak of 4362 breaches. 

In this research, a threshold of 10% was selected for the experimental simulations 

as an overall good balance between efficiently allocating nodes’ resources and, 

at the same time, leaving the running tasks enough headroom for occasional 

activity spikes. Generally, lower thresholds resulted in many task migrations (and 

thus incurred additional task migration costs), and the thresholds above 10% 

were not utilising resources effectively (the system throughput was lowered). 

Consequently, the SAS functions were tuned to allocate up to 90% of all available 

resources on the node (as seen in Figure 32) which seem to give the best overall 

results. 
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RUS are a significant design consideration, and a misconfiguration might lead to 

multiple premature terminations of the tasks and suboptimal performance of the 

system. Google’s engineers implemented a custom resource reservation strategy 

using a variant of step moving average, as detailed by John Wilkes in a 

presentation during the GOTO 2016 conference in Berlin (Wilkes, 2016). To cite 

an alternative solution to handle RUS, El-Sayed et al. (2017) proposes a Machine 

Learning framework for predicting task terminations, with the resulting task-

cloning policy mitigating the effect. 

7.6. EXPERIMENTAL RESULTS 

The previously developed AGOCS framework (Chapter 5) was used as the base of 

the experimental simulation. AGOCS is a very detailed simulator which provides 

a multiple of parameters and logical constraints for simulated jobs. The scope of 

the available variables is very broad, including memory page cache hit and 

instructions per CPU cycle; however, in this project simulations were based on 

the following assumptions: 

• Requested (by user) and realistic (monitored) resources’ utilisation levels 

for memory and CPU; 

• Detailed timing of incoming tasks and any changes in available nodes 

(within one-minute cycles); 

• Nodes attributes and attributes’ constraints defined for tasks (as specified 

in GCD workload traces). 

This level of detail comes at the price of extensive computing power 

requirements. While dry simulation itself can run on a typical desktop machine 

(see Appendix A) in ca. nine hours, adding layers of scheduling logic, agents’ 

states and inter-system communication requires a significant increase in 
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processing time. In order to realistically and correctly simulate scheduling 

processes on a Cloud system, the Westminster University HPC Cluster was used. 

7.6.1.  TEST ENVIRONMENT AND CODE PROFILING 

The MASB prototype was initially developed on a personal desktop, but as the 

size and level of detail of the simulations grew, it was necessary to move to a 

Cluster environment where more computing power was available. All the 

experiments were executed on the Westminster University HPC Cluster, 

regarding which more details concerning the software and hardware 

specifications can be found in Appendix C.  

While this cluster offered a sizable array of GPUs, the simulations did not take 

advantage of that computing power, and instead all processing took place on 

CPUs. Although it would have been possible to achieve higher throughput when 

using GPU with frameworks such as ScalaCL or Rootbeer, JVM does not natively 

support GPU processing. Having as few external dependencies as possible was 

therefore preferred, since they make maintaining the project more time-

consuming. Interestingly, Google’s BorgMaster process, which manages a single 

cell in the production environment for one computing cell, uses 10–14 CPU cores 

and up to 50GB of memory. The statistics presented are valid for an intensely 

utilised computing cell, for example one which completes more than 10k tasks 

per minute on average (Verma et al., 2015). 

In experiments, MASB allocated all available 40 CPU cores (20 cores + HT siblings) 

and used them continuously at 60% to 80%. The MASB process allocated ca. 7GB 

of memory. It is difficult to measure exactly how much computing power was 

spent on supporting activities such as simulating messaging interactions between 

agents, i.e. enqueuing and dequeuing messages to and from Akka actors. 

However, after tuning exercises of the default configuration, the Akka Actors 
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framework proved to be quite resilient. It is estimated that the framework’s 

processing did not take up more than 10-15% of the total CPU time, with the 

relatively lightweight AGOCS simulator framework consuming about 15-25% of 

all CPU time. As an interesting note, Akka’s optional Thread-pool executor 

performed noticeably better on the test HPC machines (Appendix C) than on the 

default Fork-join-pool executor, which is based on a work-stealing pattern. This 

phenomenon, as well as other experiences of running computation-intensive 

applications on HPC machines, were discussed during in two presentations 

(Sliwko, 2018a; Sliwko, 2018b). All the profiling and the above estimation were 

completed with help of YKJP, similar to the profiling exercises detailed in section 

6.4. Figure 37 presents a sample screenshot from the code profiling exercises: 

 
Figure 37: YourKit Java Profiler exercise 

YKJP was an excellent tool which helped to optimise the code execution time. 

However, in a truly multi-core environment, a different approach was required – 

one which focused on minimising context switches frequency and average CPU 

idle time across all available cores. Once the MASB framework was moved into 

the Cluster environment, the ‘pidstat’ command tool was used to gather statistics, 

before the refactor and fine-tune framework so as to achieve better parallelism. 
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During MASB simulations, the typical observed context switches frequency was 

ca. 500-700 per second per thread, which is comparable with a fully loaded 

webserver (Mechalas, 2012). 

7.6.2.  TESTABLE DESIGN 

Building a framework which fully simulates the Google computing cell from GCD 

traces has been previously recognised as a challenging task, where there are 

many aspects to consider (Sharma et al., 2011; Abdul-Rahman, et al., 2014; Zhu 

et al., 2015). GCD traces contain details of nodes, including their resources, 

attributes and historical changes in their values. Traces also contain 

corresponding parameters for tasks, such as user-defined and actually-used 

resources, as well as attributes’ constraints. This has created a multi-dimensional 

domain with a range of relations which has resulted in complex error-prone 

implementation. In order to mitigate the risk of coding errors, especially during 

rapid iterations, a number of programming practices were used: 

• A comprehensive test units suite was developed (see Appendix E), along 

with prototype code. Test units were executed upon every build to catch 

errors before being deployed to production. This software engineering 

pattern allowed for a rapid development of prototype and helped to 

maintain the high code quality; 

• A number of sanity checks were built into the runtime logic, such as 

checking whether the task’s constraints could be matched to any node’s 

attributes within the system and checking whether the total of all 

scheduled tasks’ resources exceeded the computing cell compatibilities; 

• Recoverable logic flow was implemented for both NA and BA. In the case 

of various errors such as division by zero or null pointer exceptions, the 

error is logged but the agent continues to run; 



DECENTRALISED AGENT-BASED LOAD BALANCER 

195 | P a g e  
 

 

• Keeping a separate error log file with the output of all warnings and errors 

was a considerable help in terms of resolving bugs. 

The implementation of the above features gave high confidence in terms of 

realising a good quality and reasonably bug-free code. 

7.6.3.  PLATFORM OUTPUTS 

Adding detailed logging features to MASB has proved surprisingly difficult. Due 

to the highly parallel nature of the simulated Cloud environment, an enormous 

number of log messages were generated upon each simulation, making it difficult 

to analyse the behaviour of tested algorithms. In addition, writing and flushing 

log streams caused pauses in simulation. Switching to a Logback framework 

designed with a focus on concurrent writes provided a solution to this problem, 

although it was necessary to split the data into distinct log files in order to 

improve readability, e.g. separate errors from algorithms’ output data. 

7.6.3.1. LOGGING 

In order to fine-tune MASB, excessive logging routines were implemented. All 

messages, counters and errors are logged to four types of log-files: 

• /logs/*.log files – standard log outputs containing all logs messages and 

also samples; 

• /logs/*-error.log – errors and corrupted data exceptions are written to 

separate files to help with debugging and troubleshooting; 

• /logs/*-ticks.csv – CSV files with periodically generated overall system 

stats, such as the number of idle and overloaded nodes, number of 

migration attempts, global resources-allocation ratio, and so on; 

• /usage/*.csv – detailed node usage stats and task allocations are written 

periodically to a file, that is, every hundred minutes of simulation time. 
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7.6.3.2. SAMPLING 

Sampling proved to be one of the most important logging features implemented. 

While examining every decision process in MASB simulation is virtually 

impossible, frequent and recurrent analysis of the details and values was useful 

for fine-tuning the system and the scoring functions. Not all the details of every 

single decision process were logged, rather just a small percentage of all 

invocations. In the current implementation, the following items are sampled: 

• The selection of overloading tasks by the NA, ca. 1 sample per 50 

invocations (a sample is presented in 7.4.1); 

• The scoring and selection of candidate nodes by the BA, ca. 1 sample per 

5k invocations (see log entry in 7.4.2); 

• The selection of the target node from the candidate node list, ca. 1 sample 

per 5k invocations (as listed in subsection 7.4.4). 

7.6.4.  SYSTEM EVOLUTIONS AND OPTIMISATIONS 

In order to achieve high resources utilisation and low resources waste, several 

enhancements were implemented and then fine-tuned, including: 

• Limiting the number of candidate nodes returned from BA to fifteen, and 

introducing the forced migrations feature (subsection 7.4.6); 

• Fine-tuning SCS routine to maintain the balance between migration cost 

and the node allocation score as specified in subsection 7.4.1, which 

refers to finding the right combination of steps of the TS algorithm, as well 

as its termination depth; 

• Splitting the SAS function into SIAS and SRAS and then limiting the number 

of candidate nodes examined in those functions (200 and 2k respectively); 
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• Adjusting input parameters for SIAS and SRAS functions, namely values 

for 𝐹_𝐵𝐼𝐴𝑆, 𝐹_𝑆𝑇𝐸𝐸𝑃 and 𝐹_𝐹𝐿𝑂𝑂𝑅 for the best results based on samples 

logged (subsections 7.5.2 and 7.5.3); 

• Adding the timestamp parameter to the candidate node 

recommendations, and regularly removing those which have expired. In 

scenarios where the task migration request is repeatedly refused, this 

mechanism forces NA to disregard the results of old calculations and 

request newly scored recommendations from BAs. In this implementation, 

the recommendation’s age threshold was set to three minutes 

(simulation time) with lower values not yielding better results (see 

subsection 7.4.4).  

7.6.5.  TEST SIMULATIONS SETUP 

During the later stages of the development of the MASB prototype, several 

simulations were continuously run. They were frequently paused, tuned and then 

resumed to see whether a given tweak would improves the results. This 

methodology allowed the research to progress at a good speed while 

simultaneously iterating a number of ideas and tweaks. Therefore, the testing 

process did not have noticeable stages, but instead the stages blended into each 

other. This said, it is possible to logically split the testing into four main areas: 

• Benchmarking – GCD workload traces also contain actual Google’s Borg 

scheduler task allocations. In the Borg’s simulation, MASB will replay all 

recorded events, mirroring tasks allocations as per the Google scheduler, 

i.e. not using its own scheduling logic. This simulation was used as a 

controlling run in order to test the system, and also as a benchmark to 

compare results with the original allocations.  

• Throughput – secondly, MASB was tested to identify whether it was 

capable of allocating the same workload as Borg system. The size of the 
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workload was then increased gradually in 2% steps while preserving the 

configuration of the system nodes. To ensure the correctness of results, 

another technique, called ‘cell compaction’ (Verma et al., 2015) was used 

in which, instead of adding additional tasks, the system nodes were 

removed. The results were then compared to the original GCD workload. 

• Migration Cost – thirdly, this batch of experiments focused on migration 

costs incurred via use of VM-LM. A collection of different SAS functions 

and their variants were tried in order to research their impact on total 

migration cost while allocating the given workload. 

• Scalability – finally, the MASB simulation was run with multiplies of GCD 

workload in order to test the scalability limits of the designed solution. 

Although this step was the least work-intensive, it took the longest time 

to perform. 

As noted in Zhu et al. (2015), simulating GCD workload is not a trivial task. The 

main challenge when running such large and complex simulations is the demand 

for computation power and the continuous processing. During this experiment, 

the AGOCS framework was modified to also allow the testing of computing cells 

larger than 12.5k. This was achieved by duplicating randomly selected existing 

tasks and their events, for example ‘Create Task A event from GCD workload trace 

files’ will create events AddTaskWorkloadEvent events for task A and A’. This 

feature is based on the hashcode of object’s ID, which is a constant value. 

The largest experiments simulated a single Cloud computing cell with 100k nodes 

and required nine months of uninterrupted processing on one of the University 

of Westminster HPC cluster’s nodes. At this juncture, it should be noted that early 

simulations often fail due to unforeseen circumstances, such as NAS detachment 

or network failure. One solution to this was to frequently save snapshots of the 

state of the simulation and to keep a number of previous snapshots in case of 

write file failure. 
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Figure 38: University of Westminster HPC Cluster utilisation 

At the peak of the experiment, eighteen out of twenty computing nodes were 

committed to running MASB simulations, as can be seen in Figure 38. 

7.6.6.  ALLOCATION SCORE RATIOS 

Clearly, when examining the suitability of load balancing, the key parameter is 

the number of overloaded nodes, which should be kept to minimum. It was found 

that replaying GCD traces using Google’s original Borg’s allocation decisions 

results in up to 0.5% of nodes being overloaded in a simulated one-minute period. 

It was assumed that this phenomenon was the result of delayed and compacted 

resource usage statistics, which were recorded and averaged over ten-minute 

periods. As such, in further experiments this ratio was used as an acceptable error 

margin. 

The second researched property was how nodes were distributed amongst 

allocation score types during simulations. Therefore, each experiment recorded 

a number of nodes with each allocation score type, and averaged them out over 

the simulation period. The set of normalised values for STA, TA, PA and DA are 

referred to as Allocation Score Ratios (ASR). Idle Nodes and Overloaded Nodes 

are discussed separately, and they are excluded from the ASR. The ASR values 
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describe how well the Cluster is balanced, that is, how well nodes are balanced 

as a whole group. 

The ASR values are used to describe the experimental results presented in the 

subsections below to highlight the differences in how various load balancing 

strategies perform under a GCD workload. Figure 39 chart visualises the AS 

distribution during a month-long simulation. The horizontal axis is the measure 

of time and the vertical axis represents the number of nodes having a particular 

allocation type (as per coloured legend): 

 
Figure 39: MASB – Allocation Scores distribution (12.5k nodes) 

The most dominant AS was PA, meaning that each of the node’s resources is 

utilised between 0% and 70%. Ca. 68% of all the cluster’s nodes are found within 

these parameters, which is the direct result of their initial allocation using SIAS 

function. The second biggest group, ca. 22% of all servers, are nodes allocated 

disproportionally in which one or more resources are highly used but the other 
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resources are relatively idle. The remainder of the nodes have either an STA or 

TA allocation score type. The PA to DA ratio of roughly 3:1 is characteristic for a 

typical workload as recorded in GCD traces and processed by MASB. 

The chart also highlights two periods of low and elevated workload, marked A 

and B respectively: 

• During the low workload period (A), SIAS function can schedule most 

newly-arriving tasks to relatively unused nodes, thereby successfully 

preserving their resource usage proportions. As such, the number of PAs 

increases while the number of DAs decreases. Existing long-running 

services continue to run uninterrupted on their nodes, and so the ratio of 

STA to TA remains flat. 

• During an elevated workload period (B), SIAS function is unable to find 

relatively unused nodes anymore. It thus selects lower quality allocations, 

resulting in a decrease in PAs. Due to the scarcity of resources, tasks are 

also re-allocated more frequently by SRAS function. This results in tighter 

fit allocations, which is seen as an increase in STAs and TAs counts. 

This cycle is repeated thorough cluster activity, wherein MASB balances the 

workload. The subsections which follow describe several implemented 

optimisations and their rationales, as well as the experimental results and a 

commentary on them.  

7.6.7.  BENCHMARK  

Given that GCD traces have a complicated structure and contain a vast amount 

of data, only rarely are they analysed to the full extent of their complexity. MASB 

design shares similarities with BorgMaster in areas such as constraining tasks, 

defining memory and CPU cores as resources, using scoring functions for 

candidate node selection, and handling RUS. It also closely follows the lifecycle of 
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tasks as presented in subsection 5.5.1. As things stand, there is no publicly 

available literature which contains descriptions of similar experiments which 

could be compared with the simulation results of MASB. Therefore, the closest 

comparable results are the original Borg’s allocation decisions that were 

recorded in GCD traces. For the purposes of this research, it was decided that 

they be used as a benchmark for the results from MASB’s experiments. 

Both simulations processed full month-long GCD traces. The average values were 

used because MASB simulation works in one-minute intervals whilst GCD traces 

provide usage statistics in ten-minute windows that occasionally overlap. Given 

this, peak or median values were not accurate. To highlight differences in 

workings between the MASB and Google Borg algorithms, Figure 40 presents the 

AS distribution during the period recorded in GCD (replayed Google’s Borg 

allocation events): 

 
Figure 40: Borg – Allocation Scores distribution (12.5k nodes) 
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In comparison to the experimental data presented in Figure 39, MASB behaves 

more organically during periods of low and elevated workload. This is especially 

visible during the period of elevated workload (B) where MASB managed to 

preserve a better ratio of PA to DA Nodes than Google’s Borg. This behaviour is 

the result of allowing a given task to be re-allocated during its execution, meaning 

that MASB can dynamically shape its workload and improve the health of its 

allocations. This feature also allows greater flexibility in altering the requirements 

of running tasks, in which the load balancer attempts to offload an alternative 

node. 

Table 16 directly compares ASR parameters of both pre-recorded Google’s Borg 

and MASB simulations. 

Parameter 
(average, one-minute 

interval) 

Framework 

Borg 
(Figure 40) 

MASB 
(Figure 39) 

Idle Nodes 
1.01 

(0.01%2) 

78.10 

(0.63%2) 

STA1 Nodes 
820.49 

(6.58%2) 

487.01 

(3.91%2) 

TA1 Nodes 
459.57 

(3.69%2) 

564.18 

(4.53%2) 

PA1 Nodes 
6597.14 

(52.94%2) 

8508.08 

(68.28%2) 

DA1 Nodes 
4578.49 

(36.74%2) 

2810.69 

(22.56%2) 

Overloaded Nodes 
4.04 

(0.03%2) 

12.62 

(0.10%2) 

1. STA, TA, PA and DA as defined in section 7.5. 

2. Totals do not sum to 100 percent due to rounding. 

Table 16: Benchmark results – Borg and MASB 

The listed ASR values highlight the differences in Borg and MASB workings: 
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• Idle Nodes – Borg’s design has a definite advantage over MASB because 

Borg’s schedulers can access the shared cluster’s state and iterate over 

the complete set of system nodes. MASB relies on a network of BAs, each 

of which has only partial information about the cluster’s state. Therefore, 

a subset of idle nodes might never be scored, even if they represent the 

best allocation for a given task. 

• STA and TA Nodes – in both systems, under normal workload conditions, 

incoming tasks are reasonably well distributed between the nodes. Only 

ca. 10% of all system nodes register higher resource usage scores, when 

at least one of resource utilisation levels crosses 90%. The exact scoring 

algorithm of Google’s Borg has not been disclosed, but the results suggest 

a degree of similarity to the SIAS function. 

• PA and DA Nodes – the ratio of PAs to DAs is visibly different in Borg and 

MASB. Borg’s original scheduling decisions had a ratio of roughly 3:2, 

meaning that for every three proportionally allocated nodes in the system, 

there were two nodes that were disproportionately allocated. MASB 

managed to achieve a better ratio of 3:1, suggesting that the use of SIAS 

and SRAS scoring functions together with VM-LM feature can potentially 

create a more balanced scheduling system. 

Given the superior ratio of PA to DA nodes as measured, and the possibility of 

increased throughput, the next experiment focused on processing increased 

workload. 

7.6.8.  THROUGHPUT TESTS 

The MASB framework has been designed as a general solution for balancing 

workload in a decentralised computing system. After numerous iterations, MASB 

was eventually able to schedule the entire GCD workload, with additional tasks 

also added. Table 17 presents a comparison of the results: 
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Parameter 
(average per 

minute) 

Workload Size (tasks) 

100% (original) 102% 104% 106% 

Nodes Count 12460.391 12460.361 12460.681 12460.351 

Tasks Count 132061.151 134738.921 137399.931 142936.051 

Global CPU 
Usage Ratio 43.64% 44.54% 45.42% 46.89% 

Global Memory 
Usage Ratio 62.05% 63.33% 64.58% 66.57% 

Idle Nodes 
76.41 

(0.61%) 

73.08 

(0.59%) 

72.75 

(0.58%) 

52.18 

(0.42%) 

STA Nodes 
479.91 

(3.85%) 

480.22 

(3.85%) 

423.51 

(3.40%) 

447.73 

(3.59%) 

TA Nodes 
566.20 

(4.54%) 

545.74 

(4.38%) 

447.75 

(3.59%) 

355.88 

(2.86%) 

PA Nodes 
8507.49 

(68.28%) 

8718.76 

(69.97%) 

9316.35 

(74.77%) 

9576.67 

(76.86%) 

DA Nodes 
2818.11 

(22.62%) 

2610.04 

(20.95%) 

2084.06 

(16.73%) 

1718.08 

(13.79%) 

Overloaded 
Nodes 

12.28 

(0.10%) 

32.53 

(0.26%) 

116.25 

(0.93%) 

309.79 

(2.49%) 

1. The AGOCS framework itself records minuscule variances in node and task counts that are the 
result of concurrent update operations, while modifying shared context data objects. See 
section 5.8 for details. 

Table 17: Throughput results (100%-106% workload size) 

As demonstrated above, MASB was able to schedule, on average, an additional 

ca. 2.6k tasks per minute (ca. 2% more tasks). Further tuning was unable to 

improve those results, with workload sizes greater than 102% increasing the 

number of overloaded nodes above the defined threshold of 0.5%. 

To further ensure the correctness of the attained results, another set of 

experiments was run in parallel. Here, instead of multiplying the original GCD 
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workload, the random machines were removed from the cluster until the 

workload could no longer be fitted. This method, known as ‘cell compaction’, is 

suggested in Verma et al. (2015) for simulations with GCD traces. 

Similar to the previously detailed experiments which had augmented workload, 

even when the cluster size was reduced to ca. 98% of its original size (242 nodes 

being removed), the original GCD workload could still be fitted without breaching 

the 0.5% limit of overloaded nodes. Table 18 details the experimental results: 

Parameter 
(average per 

minute) 

Cluster Size (nodes) 

100% (original) 99% 98% 97% 

Nodes Count 12460.39 12332.92 12218.61 12081.30 

Tasks Count 132061.15 132057.96 132057.54 132055.86 

Global CPU 
Usage Ratio 43.64% 44.09% 44.52% 45.05% 

Global Memory 
Usage Ratio 62.05% 62.72% 63.39% 64.08% 

Idle Nodes 
76.41 

(0.61%) 

53.29 

(0.43%) 

58.96 

(0.48%) 

75.87 

(0.63%) 

STA Nodes 
479.91 

(3.85%) 

480.28 

(3.89%) 

404.13 

(3.31%) 

448.67 

(3.71%) 

TA Nodes 
566.20 

(4.54%) 

572.24 

(4.64%) 

485.55 

(3.97%) 

500.75 

(4.14%) 

PA Nodes 
8507.49 

(68.28%) 

8412.71 

(68.21%) 

8866.13 

(72.56%) 

8663.88 

(71.66%) 

DA Nodes 
2818.11 

(22.62%) 

2800.30 

(22.71%) 

2361.64 

(19.33%) 

2339.31 

(19.35%) 

Overloaded 
Nodes 

12.28 

(0.10%) 

14.11 

(0.11%) 

42.20 

(0.35%) 

62.07 

(0.51%) 

Table 18: Throughput results (97%-100% cluster size) 
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On average, GCD traces utilise ca. 40-50% of the globally available CPUs and ca. 

60-70% of globally available memory while continuously guaranteeing ca. 85% of 

CPUs and ca. 70% of memory to production tasks to handle RUS. It should be 

noted that Borg’s scheduling routines have been perfected following decades of 

work by a team of brilliant Google engineers. The conclusion of this research is 

that, it is hard to substantially improve this impressive result given those 

constraints. 

Although the throughput of the original Google Scheduler could not be 

significantly improved, the results from both methods of evaluation show the 

benefits of using VM-LM to fit additional tasks in an already very tightly-fitted 

cluster. 

7.6.9.  MIGRATION COST 

The MASB framework relies on a VM-LM feature to balance workload by moving 

running tasks across Cloud nodes. While the VM-LM process is reasonably cheap 

in terms of the computing power, it does incur a non-trivial cost on the Cloud’s 

infrastructure. In order to avoid excessive networks transfers, NAs carefully 

decide which tasks will be migrated out from a given node. To score candidate 

tasks, the SCS function is used which takes the task’s estimated migration cost 

into consideration as well as released resources (see 7.4.1 for more details).  

Unexpectedly, when searching for ways to lower the total migration cost, 

although modifications of SCS function seemed to be the most palpable place to 

start, significantly better results were not obtained. Based on experience from 

previous experiments, it was discovered that the biggest reduction in task 

migrations was achieved by improving the quality of the initial task allocation. 

Therefore, further experimentation focused on testing variants and combinations 

of the score functions. 
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Figure 41 presents the evolutions of scoring functions: 

 
Figure 41: Scoring functions evolution 

As previously mentioned, initially MASB implemented a single SAS function which 

prioritised the scattering of tasks amongst nodes. With introduction of SAL 

(detailed in subsection 7.5.1), the SAS function was split into SIAS and SRAS 

functions biased towards opposite allocation types, namely PA and TA. However, 

during the study of the impact of frequent re-allocations on STC, it was found that 

those scoring functions can be further improved by introducing GAIN variants. 

The GAIN variants of SIAS and SRAS functions are defined here as SIAS_GAIN and 

SRAS_GAIN respectively: 

• 𝑆𝐼𝐴𝑆_𝐺𝐴𝐼𝑁 = 𝑆𝐼𝐴𝑆(𝑇′) − 𝑆𝐼𝐴𝑆(𝑇) 

• 𝑆𝑅𝐴𝑆_𝐺𝐴𝐼𝑁 = 𝑆𝑅𝐴𝑆(𝑇′) − 𝑆𝑅𝐴𝑆(𝑇) 
(15) 

where 𝑇  is the current set of allocated tasks, and 𝑇′  is the candidate set of 

allocated tasks on a given node. Additionally, cases when a node would lower its 

AS as a result of migrations have a zero score. 

In the GAIN variants of scoring functions, the relative AS gains are prioritised over 

the absolute AS values for an individual node. For example, given the scenario in 

which the task migration to node A would change its AS from 0.1 to 0.4 (a 300% 

gain), while the same task could also be migrated to node B, changing its AS from 

0.4 to 0.6 (a 50% gain), the former option will be selected as yielding a higher gain 
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(since 300% is greater than 50%) regardless of the potentially higher absolute 

score value of node B. 

Table 19 presents the results under the variants of the scoring functions: 

Parameter 
(average per 

minute) 

Scoring Functions 

SIAS 

SRAS 

SIAS 

SRAS_GAIN 

SIAS_GAIN 

SRAS 

SIAS_GAIN 

SRAS_GAIN 

Total Migration 
Cost [GB] 1490.65 7008.30 1252.50 5925.41 

Cost per Task 
Migration [MB] 338.09 795.90 339.02 954.21 

Idle Nodes 
83.54 

(0.67%) 

105.80 

(0.85%) 

76.14 

(0.61%) 

79.33 

(0.64%) 

STA Nodes 
495.09 

(3.97%) 

687.77 

(5.52%) 

490.42 

(3.94%) 

654.18 

(5.25%) 

TA Nodes 
656.67 

(4.54%) 

560.65 

(4.50%) 

558.57 

(4.48%) 

547.38 

(4.39%) 

PA Nodes 
8515.95 

(68.34%) 

8492.21 

(68.15%) 

8511.61 

(68.31%) 

8451.12 

(67.82%) 

DA Nodes 
2785.23 

(22.35%) 

2586.43 

(20.76%) 

2810.95 

(22.56%) 

2707.73 

(21.73%) 

Overloaded 
Nodes 

14.88 

(0.12%) 

27.54 

(0.22%) 

12.67 

(0.10%) 

20.61 

(0.17%) 

Table 19: Results comparison of SAS, SIAS and SRAS (migration cost) 

The combination of SIAS_GAIN and SRAS functions was most efficient, i.e. the 

total average migration cost as well as the average cost per task migration were 

lowest, while ASR remained virtually unchanged. Nonetheless, the good results 

were also yielded with the combination of SIAS and SRAS. 

The experiment showed that focusing on the node AS’s absolute value as well as 

value gain are both viable strategies during the initial task allocation (with the 
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former being relatively better). However, it is the selection of the task re-

allocation strategy that is crucial and should be dedicated to maximising the 

absolute value of the node’s allocation score. As mentioned previously, the 

majority of tasks scheduled on the GCD cluster are short-lived batch jobs which 

tend not to have high resource requirements (see section 5.2). As such, there is 

no need to carefully fit them to a node. As a result of their limited time on the 

cluster, the chance of re-allocation is low. Long-running services, however, 

should be fitted tightly onto available nodes and continue to run there due to the 

additional cost of further re-allocations because of the typically large amounts of 

used memory. 

7.6.10.  SCALABILITY STUDY 

The final step in the experiments was to examine the scalability of the MASB 

framework. Due to the simulation’s high computational requirements, its one-

minute time slices were split into ‘rounds’, in which every NA could both respond 

to migration requests as well as send its own requests, although sent requests 

would be unanswered until the next ‘round’. This meant that the simulated 

scenarios were as realistic as possible whilst also emulating massive Cloud 

installations. The typical time required to run a single full simulation with 100k 

nodes cluster, with both nodes and tasks proportionally multiplied, was around 

nine months on a compute node from University of Westminster HPC cluster 

(Appendix C). 

Such a long simulation was necessary in order to achieve reliable and quality 

results. The month-long GCD workload traces were produced by an actual Cluster 

system and contain many real-world scenarios which would not be possible to 

synthesise in any other way. Special thanks are due to University of Westminster 

IT staff which provided a massive help and support during those experiments. 
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Table 20 demonstrates the results achieved through the multiplication (here: two, 

four and eight times) of the original GCD workload; it also highlights the lack of 

changes in ASR values: 

Parameter 
(average per 

minute) 

Cluster Size (nodes) 

12.5k (original) 25k (2x) 50k (4x) 100k (8x) 

Nodes Count 12460.70 24921.49 49842.99 99685.97 

Tasks Count 132061.35 264155.80 528336.38 1056645.92 

Idle Nodes 
71.61 

(0.57%) 

95.82 

(0.38%) 

226.42 

(0.45%) 

413.03 

(0.41%) 

STA Nodes 
492.67 

(3.95%) 

805.60 

(3.23%) 

1920.99 

(3.85%) 

3868.22 

(3.88%) 

TA Nodes 
570.37 

(4.58%) 

962.14 

(3.86%) 

2232.10 

(4.48%) 

4300.70 

(4.31%) 

PA Nodes 
8502.06 

(68.24%) 

18118.11 

(72.71%) 

34102.21 

(68.42%) 

68999.49 

(69.22%) 

DA Nodes 
2812.74 

(22.57%) 

4914.55 

(19.72%) 

11324.77 

(22.72%) 

22031.79 

(22.10%) 

Overloaded 
Nodes 

11.26 

(0.09%) 

25.25 

(0.10%) 

36.49 

(0.07%) 

71.83 

(0.07%) 

Table 20: Scalability tests – 12.5k, 25k, 50k and 100k nodes 

MASB was able to orchestrate a cell size of 100k without a noticeable scalability 

cost and without crossing the limit of 0.5% overloaded nodes. With the current 

MASB framework implementation, the simulation of this size took around nine 

months on a single node of the University of Westminster HPC (see Appendix C 

for specifications). 

Google has never disclosed the size of their largest cluster, but it has been noted 

in Verma et al. (2015) that Borg computing cells are similarly sized to the clusters 
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managed by Microsoft’s Apollo system, which have in excess of 20k nodes (Boutin 

et al., 2014). A 12.5k node cells in GCD traces have been described as ‘average’ 

or ‘median’, cells with fewer than 5k nodes have been called ‘small’ or ‘test’ 

(Verma et al., 2015). Additionally, (ibid.) gives an example of a larger cell C, which 

is 150% the size of cell A and therefore also approximately 20k nodes. As such, in 

this research it is assumed that the computing cell of the large Borg is around 20-

25k nodes. 

Therefore, as demonstrated, the designed multi-agent load balancing strategy 

scaled beyond the original GCD workload without incurring noticeable scalability 

costs. The paradigm of offloading the scheduling logic onto nodes themselves has 

the following benefits: (i) it enables the implementation of more complex 

scheduling schemas as the nodes resources can be used for that purpose; (ii) the 

computing power dedicated to cluster orchestration increases together with the 

Cluster size (so allowing for greater scalability); and, (iii) limits the amount of 

communications required to maintain up-to-date Cluster state information. The 

result of such a schema is the ability to enlarge the computing cells to the sizes 

of 100k nodes while preserving a good throughput and performance.  

7.7. COMPETITIVE SOLUTIONS 

During work on the Cloud load balancer prototype, a number of publications 

were examined and later compared with the proposed MASB design. Aside from 

the solutions presented in section 7.1, the following three systems listed in the 

subsections below have been found to share a degree of similarity with MASB. 

7.7.1.  ANGEL SYSTEM 

The ANGEL system (Zhu et al., 2015) is based on a concept wherein a multi-agent 

system manages its workload in a virtualised Cloud environment. This solution 
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also takes advantage of the VM-LM feature to re-allocate running tasks to an 

alternative node if necessary. While the basic concept of ANGEL and the MASB 

system is similar, the design of the architecture and features differ substantially: 

• Within ANGEL each task is represented by Task Agent created upon task 

arrival and destroyed when the task is complete. VM Agent represents a 

VM hypervisor running on a physical node and accepting/rejecting tasks. 

In comparison, during the development of MASB, it was found that the 

sheer number of tasks made it impractical to create an entity for each task 

responsible for its allocation; given this, the responsibility was assigned to 

NAs. In MASB, NAs themselves are responsible for keeping their node 

stable and offloading overloading tasks to alternative nodes. Therefore, 

MASB can potentially support very larger number of tasks. Indeed, during 

simulations one million tasks were continuously managed. 

• In ANGEL, Manager Agent acts as a leader for this computing cell and 

stores the complete system state in a ‘VM Information Board’. VM Agents 

are constantly updating Manager Agent as to changes in their state, such 

as available resource (CPU and memory) changes, VM creations and 

cancellations. The ANGEL system assumes that the stored system state is 

always current, and Manager Agent this information to match Task Agents 

with VM Agents. In MASB a subnetwork of BAs has responsibility of 

caching the global system; however, this information is accepted as 

outdated by design, and so system uses it only for building initial 

candidate nodes list which is then sent to NAs. Therefore, MASB doesn’t 

rely on accurate and timed updates from system nodes and the actual 

task allocation is resolved later between NAs themselves. 

• MASB is focused on a Cluster throughput and scalability whereby resource 

usages gaps are reduced, and tasks are fitted into available nodes. The 

focus of the project was to achieve tightness of task allocations no worse 

than in the GCD traces while improving scalability. The aim of ANGEL is to 
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guarantee the ratio of tasks guaranteed to meet their deadlines which are 

also priority-adjusted. Therefore, ANGEL seems to be more aimed at high 

churn of short-term tasks, while MASB is designed to support mixed-

workload consisting of batch jobs as well as long-lived services. 

The authors of ANGEL also tested their solution on GCD traces. In so doing, they 

acknowledged the difficulty of conducting experiments on the whole month-long 

traces because of the enormous count of tasks in the trace logs. As such, they 

performed their experiments exclusively on the 18th day of traces, which has 

been recognised as being the most representative time period in GCD traces 

(Moreno et al., 2013). However, the results presented use different metrics and 

do not specify further details of the experiments, such as whether authors also 

matched task constraints and whether tasks were allocated with regards to 

handing RUS. 

7.7.2.  US PATENT 5,031,089 

Liu and Silvester (1991) filed a patent which described a set of routines that could 

be deployed on nodes in order to balance system-wide workload. The first 

routine periodically examines a number of jobs on the node's queue and 

computes the 'workload value', which is then provided on request to other nodes 

by the second routine. The third routine, meanwhile, is triggered periodically 

when the node is idle, and at the end of each job completion. This routine 

contains the main bulk of load balancing logic and evaluates whether the node's 

'workload value' is below a pre-established value that would indicate that the 

node is relatively idle. If the node is recognised as being under-utilised and 

available for more jobs, then the routine will poll all the other nodes for their 

'workload value', and transfer jobs from the node with the highest 'workload 

value' to its own queue. 
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The feasibility of this invention was validated via several simulations, although 

those results are not shared in the cited patent. The authors list several 

assumptions made during the performance testing of this study, such as the 

homogeneity of all the tasks and their resource requirements, as well as the 

assumption that the job's transfer cost is negligible. The main criticism of this 

solution is that it oversimplifies the Cluster workload's model, and it omits the 

continuous changes of resources used by jobs. Only the job’s queue length was 

used as 'workload value'. Furthermore, only non-started jobs can be transferred 

to alternative nodes. The solution relies on polling all nodes in the cluster for their 

utilisation levels, which in a large cluster might be not feasible and may create a 

bottleneck. 

7.7.3.  US PATENT 8,645,745 

Barsness et al. (2014) notes that there is a problem when a centralised job 

scheduler needs to pass through a large number of nodes in order to find one 

which can be used to run the task, and proposed a solution whereby each node 

is continuously scanning a shared-file to determine which job could be executed 

on this node. When a job requires multiple nodes, the one on the nodes becomes 

a primary node, which then assigns and monitors the job execution on the 

multiple nodes. 

In comparison to MASB, the main similarity is that there is no centralised 

manager to assign tasks to nodes. This means that nodes are themselves 

responsible for selecting and then running the accepted tasks. However, the main 

difference is that proposed patented strategy doesn’t examine all nodes, and the 

task is allocated to the first (quickest) scheduler that picks the task. In MASB a 

task allocation is a multi-step process in which each node tries to increase its AS 

by selecting the best-matching tasks. Moreover, MASB dynamically manages 

workload by offloading currently running tasks to the best candidate nodes (with 
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the highest AS score), and, by doing that, the overall system efficiency is 

increased. 

Given that the patent paper provides no results from experiments, it is difficult 

to directly compare systems’ performances. 

7.8. SUMMARY AND CONCLUSIONS 

The primary challenge when sequencing a queue of tasks on a cluster is to fit 

them tightly so as to reduce resource usage gaps. The scheduling algorithm 

attempts to reduce the situations where a resource on a given node is overly un-

utilised at the same time that other resources on that node are mostly allocated. 

It is extremely important to shrink the gaps in resource utilisation and to allocate 

them proportionally, especially when initially scheduling new tasks which tend to 

have balanced resource requirements. 

Fitting objects of different volumes into a finite number of containers is known 

as a ‘bin-packing’ problem, and belongs to class of NP-Hard problems. The 

traditional way of solving NP-Hard problems are metaheuristic algorithms. 

However, experiments in Chapter 6 demonstrated that although metaheuristic 

algorithms yield good solutions, they do not scale well to the required number of 

nodes in a Cloud system.  

Alternative solutions and a large number of optimisations can be devised, such 

as caching computed solutions and then retrieving them based on task similarity, 

multiple concurrent schedulers working on a single data store, and pre-allocating 

resources for the whole task batches (Verma et al., 2015). However, these 

solutions and optimisations still incur substantial computational costs, and it is 

inevitable that any model where the head node processes all scheduling logic by 
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itself will eventually work less effectively when the cluster size grows and the 

frequency of incoming tasks increases. 

The MASB framework offers an alternative approach to task allocations in that all 

the actual processing of scheduling logic is offloaded to nodes themselves. This 

framework uses loose coupling at every stage of its scheduling flow, meaning that 

scheduling decisions are made only on locally-cached knowledge and all 

communication between nodes is kept to minimum. Each node tries to increase 

its AS by selecting and offloading tasks, with the assumption being that by 

bettering individual ASs, the global system performance will be improved. This 

design also takes advantage of the VM-LM feature, where a running program 

within a VM instance can be migrated on the fly to an alternative node without 

stopping a program execution. 

Design of this schema created a set of new challenges, such as selecting 

alternative nodes with limited and non-current knowledge about the state of 

other nodes, estimating the VM-LM cost of migrating a running program, 

understanding the classifying and scoring functions of the allocation type of a 

node, and designing the stateless node-to-node communication protocol, to 

identify just a few. 

In this research, realistic (i.e. pre-recorded) workload traces from GCD were used 

and were run on the AGOCS framework described above as a very detailed 

simulation. The costs involved were the substantial computing power required to 

run experiments as well as time, in that a single simulation run took about a 

month on a forty-core (twenty physical cores + HT siblings) machine. In order to 

benchmark the research results, original scheduling decisions made by Google’s 

Borg scheduler are examined which are also part of GCD traces. This generated 

statistics such as total resource usage, the number of idle nodes and production-

allocated resources. 
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When examining GCD traces, it is important to note that Google’s engineers did 

a phenomenal job in first designing and then iteratively improving the Borg 

system. Incoming tasks are packed very tightly and, although production jobs 

always have additional resources available to them within defined requirements’ 

limits, the spare resources are efficiently recycled for low priority jobs. Google 

Cluster has been built upon hardware without direct support for virtualisation, 

meaning that its orchestrating software design had to accommodate this 

limitation. This research should be considered an as-if scenario and assumes the 

availability of the VM-LM feature to shuffle running tasks within a Cluster. 

In this research, there was only limited success in terms of improving the 

throughput of executed tasks on a simulated computing cell. This was mainly due 

to the constraints arising from handling RUS. During throughput tests, the MASB 

achieved a similar level as Google’s Borg, understood here as the total number of 

executed tasks. During the progressively more intensive workload, ASR values 

indicated a degradation in the quality of allocations so that eventually the 

throughput could be improved by a margin of 2%. However, MASB could achieve 

higher scalability and run multiple sizes of examined computing cell without 

noticeable scalability costs. Simulations up to 100k nodes from GCD were tested, 

yielding relatively comparable results when run with smaller instances of 

simulations. 

Although the experimental results prove that it is feasible to deploy the 

presented decentralised architecture in a live environment, there are several 

possible other improvements, as listed below: 

• During experimentations, several nodes remained idle. This effect was a 

result of iterating only a limited number of nodes while computing a 

candidate node’s set for a given task migration. A potential solution to 

this issue is a separate size-limited list of relatively under-utilised nodes 



DECENTRALISED AGENT-BASED LOAD BALANCER 

219 | P a g e  
 

 

which would be compulsorily scored each time a BA is issued a 

GetCandidateNodesRequest request. Such a list could be exchanged 

separately between BAs; 

• The SCS routine (Step 1 in the SAN protocol) is triggered only when the 

NA detects that its node is overloaded. However, the system could 

employ a more proactive approach in which the NA would periodically try 

to offload its tasks in order to improve its AS, even if the node is stable. 

This would create a secondary mechanism to distribute the load, which 

would potentially reduce resource utilisation gaps even further. However, 

this feature would also place additional pressure on BAs and, as such, 

needs to be carefully balanced; 

• In a real-world system it is expected that a number of nodes will 

experience failure. NA’s AI module could maintain a set of blacklisted 

nodes which repeatedly did not respond to requests. Such a set could be 

shared with BAs, similar to the way it is implemented in Fuxi (Zhang et al., 

2014b), and presented to system administrators. 

These suggestions deal with algorithm- and protocol-level details. A list of high-

level propositions is presented in the research summary in Chapter 8. 



SUMMARY AND CONCLUSIONS 

220 | P a g e  
 

 

8. SUMMARY AND CONCLUSIONS 

The chapters above detail a journey from an initial concept, through the research 

process, the multiple iterations of implementations and experiments and, finally, 

to achieving a working prototype for the Cloud load balancer. The initial 

assumption of the project was that existing Cloud management software could 

be improved by deploying intelligent load balancing routines such as dynamic re-

allocations of running tasks, and that task allocation quality could be bettered by 

adding more refined strategies, such as metaheuristic algorithms. The research 

began with a presentation in Chapter 2 of a review of existing scheduling software 

and strategies which helped to define the CRUM in Chapter 3.  

CRUM assumed the mobility of tasks being executed on nodes. It also defined the 

cost incurred on Cloud’s infrastructure when a task is re-allocated to an 

alternative node. There are limitless potential scenarios as to how such 

procedures could be performed, ranging from simple stop-copy-restart, to 

snapshotting processes’ memory and then restoring it on another machine, or 

indeed moving the program state using custom routines, to name but a few. This 

research assumes that Cloud environments are substantially virtualised and that 

its applications are run within VM instances and, thus, can be migrated by VM-

LM process. 

Chapter 4 investigated a VM-LM feature which allows the migration of a running 

VM instance to an alternative machine on the fly, without stopping its execution. 

The chapter also presents the LMDT formula which can be used to estimate VM-

LM migration cost. Since Public Cloud companies are selling their platforms to a 

range of business customers, they must prioritise the availability of applications 

run on their platform. The VM-LM feature, although incurring additional costs, 

ensures the continuous and uninterrupted execution of tasks. The VM-LM 

process cost definition could be interpreted in many ways, such as performance 
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drop, the extra resources needed for the migration process itself, or the 

additional expense of energy. In this research, the task migration cost is a direct 

cost inflicted by VM-LM on a global Cloud network infrastructure that is the size 

of the data transferred over the network during VM-LM. 

Chapter 5 details the design of AGOCS, a high-fidelity Cloud workload simulator 

that has been developed to test load balancer prototypes using a realistic 

workload. AGOCS is based on the notion of replaying the workload data available 

from month-long GCD traces. GCD traces are very rich because they contain many 

monitored parameters such as the number of CPU cores requested and used, 

canonical (kernel) and assigned (application) memory requested and used, page 

cache memory stats, disk I/O time, average cycles per instruction, average 

memory access per instruction, task priority and local scheduler process priority, 

to name a few. Additionally, GCD traces provide task constraints and matching 

attributes on nodes. Those qualities make GCD traces a remarkable source for 

real-world Cloud computing workload. 

8.1. RESEARCH SUMMARY 

Chapters 2 to 5 discussed research in order to establish a theoretical as well as a 

practical base for further experimentations. AGOCS provided a solid base for 

further experiments and simulations with the load balancing prototype. Chapters 

6 and 7 described the proposed load balancing designs and the way in which they 

have evolved during the project. The main consideration of this project was to 

research the possible improvements to load balancing strategies whilst also 

maintaining scalability. The main novelty has been the use of the VM-LM feature 

on a large scale to re-allocate running applications on a Cloud to alternative 

nodes without stopping their execution.  
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Orchestrating workload on thousands of machines is a surprisingly complex 

challenge which has many different dimensions, including:  

• the cluster’s operations need to be continuous, and applications and 

programs must be able to recover in the case of failure; 

• the cluster's resources should be utilised to their highest extent because 

every resource utilisation gap potentially blocks a number of tasks from 

being run, and lowers the overall cluster throughput; 

• tasks scheduled on the cluster should be run with minimum delay, and 

the fairness of cluster utilisation should be maintained; 

• the load balancer should be able to handle a variety of tasks, each with 

unique requirements and rapidly changing resource utilisation levels; 

• the load balancer should also be able to proactively adapt to the cluster’s 

configuration changes as new nodes are added, or when existing nodes 

are taken offline for maintenance or removed. 

Those considerations lead to an interesting challenge in which all the parameters 

identified above needed to be balanced against each other and where, based on 

business requirements, it was necessary for the Cloud architecture to be able to 

adapt to variable workloads. 

The first prototype of a centralised metaheuristic load balancer was developed 

as a proof of concept very early in this research. A number of metaheuristic 

algorithms and their variants were implemented and experimented with, their 

results being subsequently discussed. Although early trials were promising, the 

subsequent full-scale experiments using the AGOCS framework demonstrated 

that while there are scenarios (i.e. small-size clusters) that could benefit from the 

above approach, it is not a solution that is likely to scale well enough to support 

large distributed environments with thousands of nodes, such as 12.5k-nodes 

computing cell from GCD traces. 
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Given this, an alternative approach was required. Experiences from the first 

design suggested that metaheuristic algorithms could indeed improve allocation 

decisions when compared to traditional methods such as Round Robin, FCFS, JSF, 

‘best-fit’ and so on; however, those results are isolated to smaller sets of 

examined entries. Nonetheless, the literature suggested that a network of 

software agents could be deployed to offload heavy logic processing to remote 

machines whilst simultaneously communicating with each other via P2P protocol. 

Hence, the focus of the research shifted to a decentralised agent-based scheduler 

in which an agent represents each node and communicates with other agents, 

trying to keep its node stable. 

Subsequently, AGOCS was refactored into a multi-agent system based on the 

Akka Actors/Streams framework. A new scheduling logic layer was added in the 

form of a SAN protocol, together with NA’s AI module. The resulting system was 

named MASB, which has been iterated multiple times with many optimisations 

having been progressively folded into its source code. These include: (i) a 

subnetwork of BAs, caching the global system state; (ii) original SAS functions 

were split into SIAS and SRAS functions, with GAIN variants of scoring functions 

then created; (iii) planning for RUS was introduced; and (iv) NA’s AI module was 

refactored into using metaheuristic algorithms, namely TS variant. 

While replaying GCD traces via the AGOCS framework is a reasonably un-

obstructing process which consumes little CPU time, the scheduling logic added 

in MASB extension proved to be a process with excessive computational 

demands, especially during the development of NA’s AI module. As such, MASB 

instances were deployed on University of Westminster’s HPC Cluster (see 

Appendix C for software and hardware specifications). During peak periods, 

eighteen out of the twenty available computing nodes were committed to 

running simulations. 
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As a benchmark, the project utilised the workload traces of Google’s Borg 

scheduler as recorded in May 2011. These are freely available from the GCD 

repository. Comparing the results between the original Borg allocations and the 

MASB simulations suggested a degree of similarity between implemented 

algorithms, albeit with a few noteworthy differences:  

• The centrally managed scheduling mechanism which relied on shared 

Cluster state information (as implemented in Google’s Borg) provided a 

better overall view concerning the state of all Cluster nodes. The idle 

nodes were swiftly identified and used, while the decentralised solution 

had a larger ratio of unutilised nodes. 

• The VM-LM feature, together with different scoring schemas for initial 

and secondary task migrations (i.e. SIAS and SRAS functions), improved 

the load balance of the cluster by keeping the nodes’ resources more 

proportionally utilised. The ASR vectors, derived from the counts of nodes 

with a given AS type, were used to monitor the health state of the Cluster. 

In comparison to Borg, MASB behaved more organically, fluently moving 

between the higher concentration of tasks under elevated workload and 

the wider distribution of allocations during low workload periods. 

• The experiments resulted in the Cluster performing comparably, with 

MASB having a small edge and being able to additionally schedule ca. 2.6k 

tasks per minute in comparison to original GCD worktraces. However, this 

was at the expense of the increased infrastructure utilisation required to 

perform task migrations. Additional experiments were performed where 

the focus was on lowering the total cost of task migrations, and the 

resulting combination of scoring function variants could reduce this 

property to a fraction of its original value. 

• Most importantly, although throughput could not be substantially 

improved in this research, the final version of the system could scale 

multiple times of the original GCD size without a noticeable scalability cost. 
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The MASB was able to execute its role well even when the experiments 

simulated massive 100k nodes computing cells. As in throughput testing, 

the key indicator of the health of a Cluster workload balance was the ASR 

vectors. Despite increases in the simulated Cluster size, the ASR values 

remained the same, which demonstrates the greater scalability of 

proposed solution. 

The following sections will: (i) summarise the key findings made during this 

research; (ii) list the potential applications of the developed technology; and (iii) 

conclude the project with recommendations for future directions.  

8.2. KEY FINDINGS 

In this section, the most important achievements and key findings of this research 

are detailed: 

• Running a detailed simulation of a Cloud environment is no simple 

challenge. The sheer number of tasks, the complexity and dynamicity of 

the requirements, the split between production and non-production 

applications, the dependencies on other tasks and timings are some of 

the factors which create a very multifaceted system. AGOCS, a custom 

fine-grained Cloud workload simulation framework created within this 

research, is a unique creation on its own; 

• VM-LM technology can seamlessly migrate a running task within the VM 

instance. This technology can be efficiently used to dynamically load 

balance a Cloud system whilst not inflicting a cost on Cloud network 

infrastructure. This research provided a LMDT formula which can be used 

to closely estimate this cost as an alternative to historical data; 

• Whilst metaheuristic algorithms can indeed improve task allocation 

quality, their scalability is insufficient for managing workload on the larger 
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clusters, such as 12.5k-nodes cell from GCD traces. Metaheuristic 

algorithms can efficiently manage workload on smaller scale and are a 

good candidate for managing workload on a single node. In the presented 

solution, metaheuristic algorithms are part of NA’s AI routines; 

• Decentralised load balancing is a viable approach and, while allocation 

quality could not be substantially improved in this research, the prototype 

load balancer was able to manage multiplies of the original GCD workload 

without a noticeable scalability cost. Under this approach, nodes are 

represented by NAs, continuously negotiating tasks’ allocations between 

themselves using P2P communications model. This design is supported by 

a subnetwork of BAs caching the global state of cluster; 

• The proposed approach did not eliminate the centralised cluster’s state 

knowledge store; instead, a network of BAs was created which was able 

to cache the cluster’s state knowledge and provide an interface to query 

it. By design, this knowledge is expected to be outdated, and so is required 

only during the initial step of the SAN protocol. During the subsequent 

steps, however, NAs exchange load information between themselves.  

8.3. APPLICATIONS OF TECHNOLOGY 

In late 2017, a team of marketing experts from IBM estimated that the world 

generates roughly 2.5 million TBs of data per day, with 90% of all data having 

been created in the past few years alone (IBM, 2017). With novel technologies 

emerging, new devices and sensors being connected, the data growth rate will 

accelerate even more. To process such vast data streams, new distributed 

computing models are being designed. In recent years, the trend for software 

development has been towards Big Data systems and Machine Learning 

algorithms, specifically: 
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• Big Data systems are characterised by a high degree of parallelism. A 

typical Big Data system design is based on a distributed file system, where 

nodes have the dual function of storing data as well as processing it. One 

program in such a system might need to crunch tens of TBs of data split 

across thousands of nodes. Even with the ideal allocation of Big Data tasks, 

where every node is processing data from local storage, a single machine 

would still need to process GBs of data. In order to speed up this time-

consuming process, the partial datasets can be split even further and 

processed on more nodes; 

• Machine Learning is yet another rapidly developing area where there is 

high demand for computing power. The training algorithms for deep 

neural networks require multiple iterations over datasets, and the recent 

research is shifting towards greater parallelism (Chung et al., 2017; Sun 

and Liu, 2018). However, important algorithms such as k-means clustering, 

alternating least squares, and logistic regression are already very suited 

to run in parallel (Abadi et al., 2016). Open Source libraries such as 

Google’s TensorFlow and Spark’s MLlib, and the affordability of 

specialised clusters (e.g. Google’s Cloud TPU) makes it easy for businesses 

as well as researchers to utilise those technologies to enhance their 

offerings. It can certainly be argued that industries will be adopting 

Machine Learning in order to increase competitiveness. 

Therefore, the organisations which employ those modern technologies are highly 

likely to build computing cells with even more inter-connected nodes in the near 

future. To manage larger computing cells, more scalable workload orchestration 

technologies are required, such as the presented MASB prototype. Experiments 

have shown that MASB design can run a workload on a large Cloud system (100k 

nodes) with a throughput comparable to Google’s Borg system. It should be 

noted that larger computing cells are also more economical – Google’s Borg 

demonstrated (Verma et al., 2015) that running a mixed-workload consisting of 
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short-lived batch jobs and long-running services as well as production and non-

production jobs on the same cluster is not only possible, but allows to utilise of 

available resources more efficiently. Essentially, resource usage gaps are reduced. 

Therefore, industries such as financials, health or even government, could make 

monetary savings if their processing centres were joined and more heterogenous 

workload was introduced in those clusters. MASB is a good candidate for such an 

integration. 

8.4. FUTURE DIRECTIONS 

The project was challenging as well as very satisfying. However, no research is 

ever complete, and this document is by no means a final blueprint for a Cloud 

load balancer. This research has tackled the problem of load balancing within 

large Cloud systems, proving that the presented decentralised load balancing 

solution is feasible and can improve certain aspects of currently used strategies. 

The prototype has been experimented with on real-world data from GCD traces, 

and the experimental results demonstrate that the selected strategy is feasible. 

It has given a strong indication that it would be a viable approach were it 

implemented on a real Cloud system. 

Nevertheless, the list below provides a series of possible next directions and 

areas that could be further developed in order of perceived importance: 

• The MASB prototype does not address fault-tolerance, which is an 

important aspect of Cloud design. This feature could be realised in 

multiple ways, such as running cloned instances of tasks, periodically 

saving process checkpoints, and ensuring the applications’ state is 

synchronised across all its instances. The fault tolerance could also be 

improved by implementing service/node anti-affinity scheduling 

strategies where a scheduler tries to allocate replicas of a given service to 
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possibly distanced nodes. In critical failure scenarios, such programs have 

a greater chance to survive and continue operations. For example, the 

Kubernetes scheduler implements anti-affinity scoring functions, which 

gives higher priority to nodes not running services from the same 

application (Lewis and Oppenheimer, 2017); 

• Resource usage quotas per user, group or other entity, would make 

another welcome feature. This is something which is often present in 

commercial Cluster schedulers. However, it would also require adding an 

accountancy module with a decentralised dataset in order to maintain 

scalability. The same mechanism could be used to throttle the 

submissions of new tasks so as to not extend the Cluster’s capabilities; 

• The proposed design does not account for task priorities, meaning that 

tasks are only split into production and non-production groups. 

Production tasks have committed resources which, under normal 

circumstances, are guaranteed to be available. However, during critical 

system-wide failures, such as a power failure or network infrastructure 

collapse, the system should degrade gracefully (as opposed to an 

uncontrolled crash). In scenarios where the current workload cannot be 

sustained, the system should shut down lower priority tasks first and use 

the remaining available nodes to offload high-priority tasks; 

• In this project, it is assumed that NAs and BAs agents are continuously 

running without breakdowns. Nevertheless, agents are also a piece of 

software, meaning that they are prone to bugs and errors. As a possible 

improvement to detect and restore hung agents, a hierarchy model could 

be introduced in which an agent supervises a number of other agents and 

restarts them if necessary. This concept is similar to the Akka Actors 

implementation (Roestenburg et al., 2015) in which a parent actor 

manages the failures of its children. Additionally, a hierarchy of BAs could 
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be used to propagate the cluster’s state knowledge in a more efficient 

manner; 

• MASB does not attempt to implement locality optimisation when the 

task’s part of a distributed file is processed faster if accessed locally. 

Currently, GCD task descriptions contain only restrictions which disallow 

nodes that the task could be executed on. However, adding optional 

metadata, such as the ID of the distributed file’s part, could prioritise a 

set of nodes and improve the overall cluster performance. This 

functionality is featured in some of the Big Data frameworks; 

• Even though the experimental results presented are of good quality, they 

suggest a number of potential improvements, especially in locating and 

then scheduling tasks to idle nodes. One possible improvement could be 

sharing vector idle nodes between all BAs, and then compulsory 

prioritising them over utilised nodes; 

• The LMDT formula presented in Chapter 4 specifically addresses VM-LM 

impact on Cloud network infrastructure. Other migration costs of tasks 

were considered marginal since they impacted only individual nodes 

rather than the Cloud system as a whole. However, given advances in 

virtualisation technology, such as common VDI standard in addition to 

progressively better hardware support for virtualisation, more 

comprehensive future research in that area might be advantageous. It 

should be noted that presented input parameters are for a particular test 

configuration, and so might need to be re-adjusted for the configuration 

of a specific Cluster, i.e. hardware, network infrastructure, VM vendor and 

version, and deployed applications; 

• The Cloud architectures’ design is moving towards greater use of VCs such 

as Docker. At the time of writing, Docker does not fully support LM – the 

integration with CRIU does not allow the migration of a running 

application to the alternative container on the fly. Instead, the user must 
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copy checkpoint files and restore them on an alternative node (cold 

migration). However, the available literature describes early experiments 

with LM feature (Yu and Huan, 2015) and the working prototype was 

demonstrated in a presentation during the OpenStack Summit 2016 

conference in Barcelona (Estes and Murakami, 2016). Once LM becomes 

the part of mainstream technology, the load balancing strategy presented 

in this research could be adapted to use VCs; 

• MASB estimates the task migration cost, and considers this value when 

selecting which tasks to migrate out from a node. However, it does not 

calculate the fact that neighbouring nodes (e.g. those in the same server 

rack) might offer much faster transfer rates than more remote nodes. 

Therefore, adjusting the task migration cost by the nodes’ distances could 

improve the overall cluster performance; 

• Energy efficiency is the next possible area to expand. In its current design, 

MASB focuses on reducing the cost of task re-allocations necessary to 

keep the Cloud system stable. However, this approach could be shifted to 

focus on completely offloading idle nodes, at which point the system 

would be able to power down those nodes in order to save energy; 

The suggested directions of future study and possible expansions as listed above 

have the potential to improve the results of this research. Nevertheless, the 

ultimate aim of this work was to advance our ability to design a feasible strategy 

for managing and proactively balancing a workload within a virtualised Cloud 

system – an objective which has been achieved. 
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APPENDICES 

A. DEVELOPMENT ENVIRONMENT  
 

Model MacBook Pro11,1 
Operating System OS X 10.13.5 (High Sierra) 
CPU 2.4GHz dual-core Intel Core i5  
Memory 8GB 1600 MHz memory 
Storage 256GB PCIe-based flash storage 
Java Virtual Machine 1.8.0_111-b14 Oracle (previously Sun Microsystems) 
Scala IDE IntelliJ IDEA 2017.1.4 (Community Edition) 
YourKit Java Profiler 2017.02 build 75 

Table A1: Development environment specifications 

B. SYSTEM DEPENDENCIES 
 

JVM OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode) 
Scala Scala 2.12.4 
Akka akka-actors (2.5.6), akka-streams (2.5.6) 
Google’s Guava guava 23.0 
Apache Commons commons-math3 (3.6.1), commons-lang3 (3.5), commons-csv (1.4) 
Logback logback-classic (1.2.3) 
Kyro kyro-shaded (4.0.1), chill (0.9.2) 

Table B1: Runtime libraries specifications 

C. UNIVERSITY OF WESTMINSTER HPC CLUSTER  
 

Model Dell R730xd 
Operating System CentOS Linux release 7.2.1511 (Core) 
CPU 16x Intel E5-2630 v3 
Memory 32GB memory 
Storage 11TB 
Networking 10Gb Ethernet 
Java Virtual Machine OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode) 

Table C1: Head node (March 2016) 

Model Dell R630 
Operating System CentOS Linux release 7.2.1511 (Core) 
CPU 20x 2.3GHz Intel E5-2650 v3 
Memory 96GB memory 
Storage 1TB 
Networking 10Gb Ethernet 
Java Virtual Machine OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode) 

Table C2: Nodes compute01-20 (March 2016) 
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D. VM ALLOCATOR SOURCE CODE 

The code below is an application used to measure the impact of WWS size on 

data size transferred over the network during VM-LM. 

#include <stdio.h> 
#include <stdlib.h> 
#include <ctime> 
 
void writeRandomMemory(char* buffer, int memSizeBytes) { 
 for (size_t i = 0; i < memSizeBytes; i++) { 
  buffer[i] = rand() % 256; 
 } 
} 
 
int main(int argc, char **argv) { 
 printf("VM-Allocation Tester\n"); 
 
 if (argc != 4) { 
  printf("Usage" \ 
    "[memory size MB] " \ 
    "[writable working set size MB] "\ 
    "[writable working set over-write interval ms] " \ 
    "[over-writing threads count]\n"); 
  exit(EXIT_SUCCESS); 
 } 
 
 //read arguments 
 int memSize = atoi(argv[1]); 
 int wwsSize = atoi(argv[2]); 
 int wwsInterval = atoi(argv[3]); 
 int wwsThreadsCount = atoi(argv[4]); 
 
 if (memSize<=0) { 
  printf("Memory Size must be positive!\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 if (wwsSize<=0) { 
  printf("Writable Working Set Size must be positive!\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 if (wwsInterval<=0) { 
  printf("Writable Working Set Over-Write Interval must be positive!\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 if (wwsThreadsCount<=0) { 
  printf("Over-Write Threads Count must be positive!\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 printf("Allocating %i MB memory\n", memSize); 
 printf("Writable Working Set Size is %i MB\n", wwsSize); 
 printf("Writable Working Set Over-Write Interval %i ms\n", wwsInterval); 
 
 int memSizeBytes = memSize * 1024 * 1024 / sizeof(char); 
 int wwsSizeBytes = wwsSize * 1024 * 1024 / sizeof(char); 
 
 char* buffer = (char*) malloc(memSizeBytes); 
 
 if (buffer == 0) { 
  printf("Cannot allocate memory!\n"); 
  exit(EXIT_FAILURE); 
 } 
 
 //write all memory 
 printf("Over-Writting all memory (%i bytes)\n", memSizeBytes); 
 writeRandomMemory(buffer, memSizeBytes); 
 printf("Done\n"); 
 
 for (int i=0; i<wwsThreadsCount; i++) { 
  int uid = fork(); 
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  if (uid<0) { 
   printf("Cannot fork!\n"); 
   exit(EXIT_FAILURE); 
  } 
 
  //create timespec structure for nanosleep 
  struct timespec tim; 
  tim.tv_sec = rand() % 10; 
  tim.tv_nsec = 0; 
 
  if (uid>0) { 
   //random delay (threads won't start on the same memory) 
   nanosleep(&tim, NULL); 
 
   printf("%i: Over-writing Thread started\n", i); 
   tim.tv_sec = wwsInterval / 1000; 
   tim.tv_nsec = wwsInterval % 1000 * 1000000; 
 
   //keep writing random values to wws buffer 
   for (;;) { 
    printf("%i: Over-writing Writable Working Set (%i bytes)\n", i, wwsSizeBytes); 
    writeRandomMemory(buffer, wwsSizeBytes); 
 
    //sleep 
    nanosleep(&tim, NULL); 
   } 
  } 
 } 
 
 //endlessly wait for kill signal 
 while (wait(1)>0) { 
  /* no-op */; 
 } 
 
 return EXIT_SUCCESS; 
} 
 

E. TEST UNITS SAMPLE 

The code below is a sample of the MASB unit tests package which is used to 

ensure the correctness of the implemented solution. 

package com.masb.domain 
 
import org.scalatest.{FlatSpec,Matchers} 
 
class TaskConstraintsTest extends FlatSpec with Matchers { 
 "EqualAttributeConstraint" should "be implemented correctly" in { 
 
  EqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "value A")))) should be(true) 
 
  EqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "value B")))) should be(false) 
 
  EqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "")))) should be(false) 
 
  EqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes.NONE) should be(false) 
 
  EqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "")))) should be(false) 
 
  EqualAttributeConstraint("attribute 1", "").checkConstraint( 
  NodeAttributes.NONE) should be(true) 
 
  EqualAttributeConstraint("attribute 1", "").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "")))) should be(true) 
   
  EqualAttributeConstraint("attribute 1", "").checkConstraint( 
  NodeAttributes(Map(("attribute 2", "value A")))) should be(true) 
 } 
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 "NotEqualAttributeConstraint" should "be implemented correctly" in { 
 
  NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "value A")))) should be(false) 
 
  NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "value B")))) should be(true) 
 
  NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "")))) should be(true) 
 
  NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes.NONE) should be(true) 
 
  NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "")))) should be(true) 
 
  NotEqualAttributeConstraint("attribute 1", "").checkConstraint( 
  NodeAttributes.NONE) should be(false) 
 
  NotEqualAttributeConstraint("attribute 1", "").checkConstraint( 
  NodeAttributes(Map(("attribute 1", "")))) should be(false) 
 } 
 
 "LessThanAttributeConstraint" should "be implemented correctly" in { 
 
  LessThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes(Map(("attribute 1", "10")))) should be(false) 
 
  LessThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes(Map(("attribute 1", "9")))) should be(true) 
 
  LessThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes(Map(("attribute 1", "99")))) should be(false) 
 
  LessThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes(Map(("attribute 1", "11")))) should be(false) 
 
  LessThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes.NONE) should be(true) 
 } 
 
 "GreaterThanOrEqualAttributeConstraint" should "be implemented correctly" in { 
 
  GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes(Map(("attribute 1", "10")))) should be(false) 
 
  GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes(Map(("attribute 1", "9")))) should be(false) 
 
  GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes(Map(("attribute 1", "99")))) should be(true) 
 
  GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes(Map(("attribute 1", "11")))) should be(true) 
 
  GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint( 
  NodeAttributes.NONE) should be(false) 
 } 
 
  "BetweenAttributeConstraint" should "be implemented correctly" in { 
 
      BetweenAttributeConstraint("attribute 1", 0, 10).checkConstraint( 
      NodeAttributes(Map(("attribute 1", "10")))) should be(false) 
     
      BetweenAttributeConstraint("attribute 1", 5, 10).checkConstraint( 
      NodeAttributes(Map(("attribute 1", "9")))) should be(true) 
     
      BetweenAttributeConstraint("attribute 1", 0, 10).checkConstraint( 
      NodeAttributes(Map(("attribute 1", "99")))) should be(false) 
  } 
} 
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F. CONCURRENT MAP UPDATE OPERATIONS 

The code below is an implementation of concurrent map update operations in 

the MASB package. Although the operations are asynchronously executed and 

updates are non-blocking, there is no strict guarantee of the order of consecutive 

modifications on the same value object. In practice, during MASB simulations, 

less than 0.02% of all ‘replaceWith’ operations weren’t immediately executed. 

package com.masb.helper 
 
import java.util.concurrent.ThreadLocalRandom 
 
object ConcurrentMapOps { 
  implicit class ConcurrentMapOpsImpl[A,B](val map: collection.concurrent.Map[A, B]) { 
 
    @inline 
    def replaceWith(key: A, function: B => B): Option[B] = { 
      //repeat till replace is successful 
      while (true) map.get(key) match { 
        case None => return None 
        case Some(value) => 
          if (map.replace(key, value, function(value))) { 
            return Some(value)  //replace success - return value (exit) 
          } else { 
            Thread.`yield`()    //replace failure – yield control 
          } 
      } 
      None 
    } 
  } 
} 
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GLOSSARY 

• AS – Allocation Score 
• AGOCS – Accurate Google Cloud Simulator 
• AMM – Automatic Memory Management 
• ASR – Allocation Score Ratios 
• BA – Broker Agent 
• BNS – Borg Name Service 
• CFS – Completely Fair Scheduler 
• CIFS – Common Internet File System  
• CQ – Circular Queue 
• CRIU – Checkpoint/Restore In Userspace tool 
• CRUM – Cloud Resource Utilisation Model 
• CS – Cooperative Scheduling 
• D-RSOP – D-Resource System Optimisation Problem 
• DA – Disproportional Allocation 
• DAG – Directed Acyclic Graph 
• E-PVM – Enhanced Parallel Virtual Machine algorithm 
• FCFS – First-Come-First-Serve 
• GA – Genetic Algorithm 
• GC – Java’s Garbage Collector 
• GCD – Google Cluster Data project 
• GFS – Google File System 
• GWP – Google Wide Profiling framework 
• HT – Hyper-Threading 
• IAAS – Infrastructure As A Service 
• IOPS – I/O Operations Per Second 
• JVM – Java Virtual Machine 
• LMDT – Live Migration Data Transfer formula 
• MASB – Multi-Agent System Balancer 
• MLFQ – Multilevel Feedback Queue 
• NA – Node Agent 
• NAS – Network Attached Storage device 
• NUMA – Non-Uniform Memory Access 
• OS – Operating System 
• P2P – Point-to-point communication 
• PA – Proportional Allocation 
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• PAAS – Platform As A Service 
• QA – Quantum Annealing 
• RCPSP – Resource-Constrained Project Scheduling Problem 
• RDD – Resilient Distributed Datasets 
• RPC – Remote Procedure Call 
• RUS – Resource Usage Spike 
• SA – Simulated Annealing 
• SAAS – Software As A Service 
• SAL – Service Allocation Lifecycle 
• SAN – Service Allocation Negotiation protocol 
• SAS – Service Allocation Score function 
• SCS – Select Candidate Services routine 
• SGA – Seeded Genetic Algorithm 
• SGA-Greedy – Genetic Algorithm seeded by Greedy 
• SGA-SA – Genetic Algorithm seeded by Simulated Annealing 
• SGA-TS – Genetic Algorithm seeded by Tabu Search 
• SIAS – Service Initial Allocation Score function 
• SJF – Shortest Job First  
• SLURM – Simple Linux Utility for Resource Management 
• SRAS – Service Re-allocation Score function 
• STA – Super Tight Allocation 
• STC – System Transformation Cost 
• TA – Tight Allocation 
• TPU – Tensor Processing Unit 
• TS – Tabu Search 
• UCAAS - Unified Communication as a Service 
• VC – Virtual Container 
• VDI – Virtual Disk Image 
• VM – Virtual Machine 
• VM-LM – Virtual Machine Live Migration 
• WFQ – Weighted Fair Queueing 
• WWS – Writable Working Set memory 
• YARN – Yet Another Resource Negotiator 
• YKJP – YourKit Java Profiler tool 
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