
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Intelligent Load Balancing in Cloud Computer Systems

Sliwko, L.

This is an electronic version of a PhD thesis awarded by the University of Westminster.

© Mr Leszek Sliwko, 2019.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

INTELLIGENT LOAD BALANCING IN

CLOUD COMPUTER SYSTEMS

LESZEK SLIWKO

A thesis submitted in partial fulfilment of the

requirements of the University of Westminster for the
degree of Doctor of Philosophy

JANUARY 2019

ABSTRACT

II | P a g e

ABSTRACT

Cloud computing is an established technology allowing users to share resources

on a large scale, never before seen in IT history. A cloud system connects multiple

individual servers in order to process related tasks in several environments at the

same time. Clouds are typically more cost-effective than single computers of

comparable computing performance. The sheer physical size of the system itself

means that thousands of machines may be involved. The focus of this research

was to design a strategy to dynamically allocate tasks without overloading Cloud

nodes which would result in system stability being maintained at minimum cost.

This research has added the following new contributions to the state of

knowledge: (i) a novel taxonomy and categorisation of three classes of schedulers,

namely OS-level, Cluster and Big Data, which highlight their unique evolution and

underline their different objectives; (ii) an abstract model of cloud resources

utilisation is specified, including multiple types of resources and consideration of

task migration costs; (iii) a virtual machine live migration was experimented with

in order to create a formula which estimates the network traffic generated by

this process; (iv) a high-fidelity Cloud workload simulator, based on a month-long

workload traces from Google's computing cells, was created; (v) two possible

approaches to resource management were proposed and examined in the

practical part of the manuscript: the centralised metaheuristic load balancer and

the decentralised agent-based system. The project involved extensive

experiments run on the University of Westminster HPC cluster, and the promising

results are presented together with detailed discussions and a conclusion.

LIST OF CONTENTS

III | P a g e

LIST OF CONTENTS

ABSTRACT .. II

LIST OF CONTENTS .. III

LIST OF FIGURES .. VII

LIST OF TABLES ... IX

ACKNOWLEGEMENTS .. X

DECLARATION ... XI

1. INTRODUCTION .. 1
1.1. PROJECT MOTIVATION .. 1
1.2. RESEARCH PROBLEM .. 4
1.3. RESEARCH PLAN .. 5
1.4. MIGRATION COST .. 6
1.5. SIMULATION TOOL ... 7
1.6. LOAD BALANCER DESIGNS ... 10
1.7. CONTRIBUTIONS TO KNOWLEDGE .. 14

2. TAXONOMY OF SCHEDULERS ... 15
2.1. METACOMPUTING ... 16
2.2. OS SCHEDULERS .. 17

2.2.1. Cooperative multitasking ... 18
2.2.2. Single Queue .. 18
2.2.3. Multilevel Queue .. 19
2.2.4. Tree-based Queue .. 21

2.3. CLUSTER SCHEDULERS ... 23
2.3.1. Monolithic Scheduler .. 25
2.3.2. Concurrent Scheduling ... 27
2.3.3. Decentralised Load Balancer .. 32
2.3.4. Big Data Schedulers ... 33

2.4. GOOGLE’S BORG ... 41
2.4.1. Design Concepts ... 41
2.4.2. Jobs Schedulers .. 43
2.4.3. Optimisations ... 44

2.5. SUMMARY AND CONCLUSIONS ... 45

3. CLOUD RESOURCES UTILISATION MODEL ... 49
3.1. NODES AND TASKS ... 50
3.2. SYSTEM TRANSFORMATION COST .. 52
3.3. PROBLEM FORMULATION .. 54
3.4. PROBLEM ANALYSIS ... 59
3.5. NP-HARDNESS PROOF .. 60
3.6. SUMMARY AND CONCLUSIONS ... 61

4. VIRTUAL MACHINE LIVE MIGRATION ... 63
4.1. VIRTUAL MACHINES IN CLOUD COMPUTING .. 65

LIST OF CONTENTS

IV | P a g e

4.2. LIVE MIGRATION ... 71
4.2.1. Computation-intensive Applications ... 72
4.2.2. Memory-intensive Applications .. 72
4.2.3. Disk I/O-intensive Applications ... 76
4.2.4. Network-intensive Applications .. 78
4.2.5. Code Structure and Dynamics ... 79

4.3. EXPERIMENTS …………………………………………………………………………………………………..80
4.3.1. Configuration ... 81
4.3.2. Experimental Scenarios .. 83
4.3.3. Idle Virtual Machine ... 85
4.3.4. Apache HTTP Server ... 86
4.3.5. SPECjvm2008 Suite ... 87
4.3.6. PostgreSQL Database ... 89
4.3.7. Custom VM-Allocator ... 93

4.4. LIVE MIGRATION DATA TRANSFER FORMULA ... 94
4.5. SUMMARY AND CONCLUSIONS ... 99

5. ACCURATE GOOGLE CLOUD SIMULATOR.. 102
5.1. WORKLOAD TRACES ARCHIVES ... 105
5.2. GOOGLE CLOUD WORKLOAD .. 108
5.3. AGOCS ARCHITECTURE .. 112
5.4. RELATED WORK .. 114
5.5. SIMULATION FRAMEWORK DESIGN .. 116

5.5.1. Workload Events .. 117
5.5.2. Task Constraints ... 120
5.5.3. Event Parsers ... 121

5.6. ALTERNATIVE DESIGNS .. 123
5.6.1. Pre-processing of Data Files ... 123
5.6.2. Streaming Events Generation ... 124

5.7. DATA CORRUPTION .. 125
5.7.1. Reported Resource Usage Irregularities .. 126
5.7.2. User-defined Resource Required Irregularities 127
5.7.3. Tasks’ Constraints Irregularities .. 128

5.8. SIMULATION ACCURACY .. 129
5.9. PERFORMANCE EVALUATION .. 131
5.10. SUMMARY AND CONCLUSIONS ... 135

6. METAHEURISTIC LOAD BALANCER ... 137
6.1. LOAD BALANCER DESIGN ... 139

6.1.1. Greedy ... 140
6.1.2. Tabu Search ... 140
6.1.3. Simulated Annealing .. 140
6.1.4. Genetic Algorithm .. 141
6.1.5. Seeded Genetic Algorithm .. 141
6.1.6. Full Scan ... 141

LIST OF CONTENTS

V | P a g e

6.2. EXPERIMENTS SETUP .. 142
6.3. EXPERIMENTAL RESULTS .. 145

6.3.1. Greedy ... 146
6.3.2. Tabu Search ... 146
6.3.3. Simulated Annealing .. 147
6.3.4. Genetic Algorithm .. 147
6.3.5. Seeded Genetic Algorithm .. 147
6.3.6. Full Scan ... 148

6.4. SYSTEM OPTIMISATIONS.. 148
6.4.1. Enhanced Random Solution Generation .. 149
6.4.2. Solution Candidates Cache ... 151

6.5. SCALABILITY TESTS ... 152
6.6. SUMMARY AND CONCLUSIONS ... 154

7. DECENTRALISED AGENT-BASED LOAD BALANCER .. 156
7.1. LOAD BALANCING WITH AGENTS ... 157
7.2. MASB DESIGN PRINCIPLES .. 161
7.3. MASB ARCHITECTURE .. 164

7.3.1. Node Agent .. 166
7.3.2. Broker Agent .. 167
7.3.3. Message Types ... 168

7.4. SERVICE ALLOCATION NEGOTIATION PROTOCOL ... 169
7.4.1. Step 1: Select Candidate Services .. 171
7.4.2. Step 2: Select Candidate Nodes .. 174
7.4.3. Step 3: Send Migration Requests .. 176
7.4.4. Step 4: Select Target Node ... 176
7.4.5. Step 5: Migration Process ... 178
7.4.6. Forced Migration ... 178

7.5. SERVICE ALLOCATION SCORE FUNCTIONS .. 179
7.5.1. Service Allocation Lifecycle ... 182
7.5.2. Service Initial Allocation Score .. 185
7.5.3. Service Re-allocation Score ... 186
7.5.4. Resource Usage Spikes ... 188

7.6. EXPERIMENTAL RESULTS .. 191
7.6.1. Test Environment and Code Profiling .. 192
7.6.2. Testable Design .. 194
7.6.3. Platform Outputs ... 195
7.6.4. System Evolutions and Optimisations ... 196
7.6.5. Test Simulations Setup ... 197
7.6.6. Allocation Score Ratios ... 199
7.6.7. Benchmark ... 201
7.6.8. Throughput Tests ... 204
7.6.9. Migration Cost ... 207
7.6.10. Scalability Study ... 210

LIST OF CONTENTS

VI | P a g e

7.7. COMPETITIVE SOLUTIONS .. 212
7.7.1. ANGEL System .. 212
7.7.2. US Patent 5,031,089... 214
7.7.3. US Patent 8,645,745... 215

7.8. SUMMARY AND CONCLUSIONS ... 216

8. SUMMARY AND CONCLUSIONS .. 220
8.1. RESEARCH SUMMARY ... 221
8.2. KEY FINDINGS 225
8.3. APPLICATIONS OF TECHNOLOGY .. 226
8.4. FUTURE DIRECTIONS... 228

APPENDICES... 232
A. DEVELOPMENT ENVIRONMENT ... 232
B. SYSTEM DEPENDENCIES... 232
C. UNIVERSITY OF WESTMINSTER HPC CLUSTER .. 232
D. VM ALLOCATOR SOURCE CODE .. 233
E. TEST UNITS SAMPLE ... 234
F. CONCURRENT MAP UPDATE OPERATIONS ... 236

GLOSSARY .. 237

LIST OF REFERENCES .. 239

LIST OF FIGURES

VII | P a g e

LIST OF FIGURES

Figure 1: Research project stages

Figure 2: Virtual Machine Live Migration process

Figure 3: Schedulers taxonomy

Figure 4: System Transformation Cost

Figure 5: Sample system transformation

Figure 6: Memory migration rounds

Figure 7: Virtual disk read/write operations

Figure 8: Measuring transferred data with the iptraf tool

Figure 9: Idle VM Live Migration (256/512/1024MB)

Figure 10: 50-250 users Apache HTTP Server Live Migration

Figure 11: SPECjvm2008 Live Migration (1-8x processes)

Figure 12: PostgreSQL Live Migration (20%-100% updated rows)

Figure 13: VM-Allocator Live Migration (WWS 10%-30%)

Figure 14: AGOCS use case

Figure 15: Scala IntelliJ IDEA

Figure 16: AGOCS simulation monitor

Figure 17: Workload events class diagram

Figure 18: Workload events lifecycle diagram

Figure 19: Task Constraints

Figure 20: Workload events generation

Figure 21: Stream-based simulator

Figure 22: Global CPU and memory usage ratios (per minute)

Figure 23: Global CPU and memory required ratios (per minute)

Figure 24: Google node server photography (2009)

Figure 25: Simulator performance comparison

Figure 26: Load balancer sequence

Figure 27: Runs count (per minute)

Figure 28: Unique candidate solutions created (per minute)

Figure 29: Simulation results

Figure 30: MASB communications’ flow

LIST OF FIGURES

VIII | P a g e

Figure 31: Service Allocation Negotiation

Figure 32: Allocation Score types (two resources)

Figure 33: Service Allocation Lifecycle

Figure 34: Service Initial Allocation Score (two resources)

Figure 35: Service Re-allocation Score (two resources)

Figure 36: Production vs. non-production allocated resources

Figure 37: YourKit Java Profiler exercise

Figure 38: University of Westminster HPC Cluster utilisation

Figure 39: MASB – Allocation Scores distribution (12.5k nodes)

Figure 40: Borg – Allocation Scores distribution (12.5k nodes)

Figure 41: Scoring functions evolution

LIST OF TABLES

IX | P a g e

LIST OF TABLES

Table 1: Advantages of Metaheuristic Load Balancer

Table 2: Advantages of Decentralised Agent-based Load Balancer

Table 3: Schedulers taxonomy

Table 4: Virtual Machines comparison

Table 5: Application estimated LMDT values

Table 6: Google Cluster Data archive structure

Table 7: Cloud simulators comparison

Table 8: Tasks to workload events mapping

Table 9: Workload events parsers

Table 10: Experiment data – Tasks configuration

Table 11: Experiment data – Nodes configuration

Table 12: Experiment data – Tests I, II, III, IV and V

Table 13: Time required to compute a single load balancing sequence

Table 14: Message types

Table 15: Resource Usage Spike frequencies (GCD)

Table 16: Benchmark results – Borg and MASB

Table 17: Throughput results (100%-106% workload size)

Table 18: Throughput results (97%-100% cluster size)

Table 19: Results comparison of SAS, SIAS and SRAS (migration cost)

Table 20: Scalability tests – 12.5k, 25k, 50k and 100k nodes

Table A1: Development environment specifications

Table B1: Runtime libraries specifications

Table C1: Head node (March 2016)

Table C2: Nodes compute01-20 (March 2016)

ACKNOWLEGEMENTS

X | P a g e

ACKNOWLEGEMENTS

I would like to express the deepest appreciation to Director of Studies, Professor

Vladimir Getov, for his continuously upbeat attitude, his boundless support,

patience and availability with regards to this research and scholarships, his

excellence in teaching and all his other advice. I would especially like to thank him

for introducing me to the amazing world of Cluster computing. Special thanks are

also due to Dr Alexander Bolotov for his encouragement and invaluable help with

this manuscript. Without his guidance and suggestions, this project would not

have been possible.

I would also like to thank the University of Westminster for their permission to

use their High-Performance Computing Centre, a massive help during this

research. I would like to thank all the IT staff for all their support and incredible

patience with setting up and executing research applications in this environment.

In addition, I would like to thank all researchers who have published and shared

their work. In particular, I would like to thank Google’s engineers and scientists:

Joseph Hellerstein, Abhishek Verma, John Wilkes, Charles Reiss, Malte

Schwarzkopf and many others, for freely releasing workload traces and

explaining the workings of the Borg system in their publications.

This research was supported by a grant from the Student Development Fund

2016 at the University of Westminster, London.

DECLARATION

XI | P a g e

DECLARATION

I declare that all the material contained in this thesis is my own work. Parts of the

work presented in this dissertation have been published in the following journals

and conferences:

1. Sliwko, Leszek, Vladimir Getov, and Alexander Bolotov. "Intelligent Load

Balancing in Cloud Computer Systems." University of Westminster.

Faculty of Science and Technology Doctoral Conference 2018, pp. 23.

2. Sliwko, Leszek, and Vladimir Getov. "Transfer Cost of Virtual Machine Live

Migration in Cloud Systems." University of Westminster. Technical Report.

November, 2017: 1-21.

3. Sliwko, Leszek, and Vladimir Getov. "AGOCS – Accurate Google Cloud

Simulator Framework." In Scalable Computing and Communications

Congress, 2016 Intl IEEE Conferences, pp. 550-558. IEEE, 2016.

4. Sliwko, Leszek, and Vladimir Getov. "A Meta-Heuristic Load Balancer for

Cloud Computing Systems." In Computer Software and Applications

Conference, 2015 IEEE 39th Annual, vol. 3, pp. 121-126. IEEE, 2015.

5. Sliwko, Leszek, and Vladimir Getov. "Workload Schedulers-Genesis,

Algorithms and Comparisons." International Journal of Computer Science

and Software Engineering 4, no. 6 (2015): 141-155.

6. Sliwko, Leszek, Vladimir Getov, and Alexander Bolotov. "Distributed

Agent-Based Load Balancer for Cloud Computing." Automated Reasoning

Workshop, 2015.

7. Sliwko, Leszek. "An Overview of Java Multi-Agent System Balancer."

International Journal of Computational Intelligence and Information

Security, Vol. 1, No. 2, pp. 4-11, 2010

8. Sliwko, Leszek, and Aleksander Zgrzywa. "A Novel Strategy for Multi-

Resource Load Balancing in Agent-Based Systems." International Journal

DECLARATION

XII | P a g e

of Intelligent Information and Database Systems 3, No. 2, pp. 180-202,

2009.

9. Sliwko, Leszek. "A Reinforced Evolution-Based Approach to Multi-

Resource Load Balancing." Journal of Theoretical and Applied Information

Technology, Vol. 4, No. 8, pp. 717-724, 2008.

10. Sliwko, Leszek, and Aleksander Zgrzywa. "Multi-Resource Load

Optimization Strategy in Agent-Based Systems." Lecture Notes in

Computer Science, 1(4496), pp. 348-357, 2007.

11. Sliwko, Leszek, and Ngoc Thanh Nguyen. "Using Multi-Agent Systems and

Consensus Methods for Information Retrieval in Internet." International

Journal of Intelligent Information and Database Systems 1, no. 2 (2007):

181-198.

The following relevant presentations have been delivered:

• Sliwko, Leszek. "Scala on 40-core HPC machine." Scala in the City #5.

Signify Technology. June 27, 2018.

• Sliwko, Leszek. "Running Akka and Scala on a high-performance

computing (HPC) system with 800 cores and 1.8 TB RAM." The Forge Talk.

UK Home Office. May 31, 2018.

INTRODUCTION

1 | P a g e

1. INTRODUCTION

The main focus of this project was to research and design a feasible strategy for

managing and balancing a workload within a virtualised Cloud system – a system

in which the computing cells are built from many thousands of networked nodes,

and where the workload is significantly diversified and consists of short-lived

batch jobs as well as long-lasting services. The shape of resources utilised by

running tasks changes rapidly, thereby creating a very dynamic environment.

For a working solution to be designed, the first step required is to identify the

challenges related to the allocation of tasks in different environments. Therefore,

the initial part of this research focuses on analysing currently-utilised scheduling

schemes and shortlisting areas which has potential for improvements.

Chapter 2 presents a novel taxonomy and categorisation of workload schedulers,

focusing in particular on the key design factors that affect the scalability of a given

solution, in addition to the features which improved the scheduler’s architecture.

This chapter describes their evolution, from early adoption to their modern

implementations; in doing so, it sets out in detail their scheduling algorithms. This

background review notes a trend towards the greater parallelisation of all three

classes of examined schedulers, a factor which shaped the approaches adopted

later in the research.

This introductory chapter explains the motivation behind this project, its research

background, and how it has evolved over time.

1.1. PROJECT MOTIVATION

The biggest cloud systems offering elastic resource allocation are: Amazon EC2

(Jackson et al., 2010), Microsoft Azure (Li et al., 2010), Google Cloud Platform

INTRODUCTION

2 | P a g e

(Bedra, 2010), IBM Cloud (Kochut et al., 2011), Oracle Cloud (Jain and Mahajan,

2017), Alibaba Cloud (Zhou, 2017), Rackspace (Li et al., 2010) and GoGrid (ibid.).

While the information on the size of the largest Cloud is not publicly available,

Bloomberg Technology estimates that the Amazon EC2 consists of 1.5 million

servers (Clark, 2014), while Gartner, Inc., an American technology research and

advisory firm approximates its size to be more than two million servers. The total

number of nodes in Google Cloud is estimated to be ca. 900k machines, making

this market extremely competitive, with enormous forecasted market size

growth. Gartner predicts a 17% annual growth in public spending for cloud

services, reaching $411.4 billion by 2020 (Van der Meulen and Pettey, 2017). A

few well-known examples of services backed up by cloud computing include

Dropbox, Gmail, Twitter, Facebook and YouTube.

Clouds are typically more cost-effective than single computers of comparable

speed, and usually enable applications to have higher availability than a single

machine. This makes the software even more attractive as a service and is

shaping the way applications are built today. Companies no longer need to be

concerned with maintaining a huge infrastructure of thousands of servers in

order to have enough computing power for those critical hours when their

service is in highest demand. Instead, companies can simply rent a fleet of servers

for a few hours (Wang et al., 2018).

Across the history of IT, such an elasticity of resources without paying a premium

for a large-scale usage is exceptional. Recent developments in Big Data systems

and Machine Learning technologies have fuelled growth in demand for cheap

computing power; in response, several vendors have collaborated and the range

of computing services offered to the market has significantly expanded. Prices

have also been driven down and, as of 24 July 2018, the cost of renting a general-

use instance of 16-core machine with 64GB memory was 80 cents per hour (data

from aws.amazon.com/ec2/pricing website). These Cloud properties are

INTRODUCTION

3 | P a g e

particularly important for both small and medium-sized enterprises, who are able

to minimise their initial outlay for building IT infrastructure. They can also focus

on swiftly delivering the product to the market, a fact which is critical for any

innovative proposal. The rapid development of Cloud technologies has

introduced a new set of challenges and problems which require immediate

solution. Cloud systems are usually made up of machines with different hardware

configurations and capabilities (Mateescu et al., 2011), and these systems can be

rapidly configured based on the user's requirements (Buyya et al., 2009).

Therefore, dynamic resource sharing is a necessity. Resource management has

been an active research area for a considerable period of time and the systems

often feature a highly specialised load balancing strategies such as Google’s Borg

(Burns et al., 2016), Microsoft’s Apollo (Boutin et al., 2014) or Alibaba’s Fuxi

(Zhang et al., 2014b). Since larger computing cells are likely to be required in the

near future (Wilkes, 2016), Cloud load balancing is a topic worthy of dedicated

research.

The focus of this project was to examine possible solutions to allocating and

managing many concurrently running tasks in a Cloud system. The initial

assumption was that existing Cloud management software could be improved by

deploying intelligent load balancing routines and therefore, achieving a better

allocation quality and higher system scalability. The main novel aspects of this

approach were to schedule the incoming tasks, which allows running programs

to be offloaded to alternative system nodes on the fly (hence the name ‘load

balancing’), in addition to designing algorithms capable of proactively managing

a workload in such a dynamic environment (hence the name ‘intelligent’). This

research breaks with the concept that the execution of a task in a cluster is

immovable or unstoppable, and instead examines the available technology to

implement such a strategy. Since none of the commercially available cluster

schedulers realise such a feature, the objective of this research is to implement a

INTRODUCTION

4 | P a g e

working prototype for the Cloud load balancer, and to evaluate their

performance advances emerging out of the designed solution.

1.2. RESEARCH PROBLEM

The background review and crafting of the schedulers’ taxonomy (Chapter 2)

helped to formally define the D-Resource System Optimisation Problem (D-RSOP)

which is later discussed in Chapter 3. The presented model consists of nodes and

tasks with the main function of the load balancer being to keep a good load

balance through resource vectors comparisons. D-RSOP belongs to the NP-Hard

problems class which are believed to be unsolvable in polynomial time, i.e. the ‘P

versus NP’ problem (Frieze, 1986). Cloud systems are focused on maintaining the

continuity of third party operations with minimum disturbance; therefore, this

model also considers the cost of change when deploying new tasks or when re-

allocating existing tasks.

Following the study presented in Chapter 3, the two first goals of the load

balancing solution were formed, namely:

• Goal (I) – maintaining a global balance across the Cloud system so that an

individual node is not overloaded. In virtualised Cloud environments, this

goal is achieved through the Virtual Machine Live Migration (VM-LM)

allowing a running program to be migrated to alternative nodes without

stopping their execution. The formal definition is presented as (2) in

section 3.3.

• Goal (II) – minimising the System Transformation Cost (STC) which is the

global cost of task re-allocations on Cloud infrastructure, i.e. minimising

the total size of data transferred across the Cloud’s network during VM-

LM process. For detailed explanation see (5) in section 3.3.

INTRODUCTION

5 | P a g e

These goals will now shape the initial concepts of the balancing strategy

presented in the subsequent sections. However, the D-RSOP model relies mainly

on the VM-LM feature to re-allocate tasks between nodes. Further research was

required to establish a reliable technique for measuring the VM-LM cost within

the Cloud infrastructure.

1.3. RESEARCH PLAN

With the expected outcome established, the project was then able to move to

the planning phase in which further challenges were identified. This included the

unknown impact of offloading a running task and the lack of sufficiently detailed

Cloud simulation tools. Considering the diversity of the research areas involved,

the decision was made to execute the project in consecutive stages as presented

in Figure 1:

Figure 1: Research project stages

The above plan of action allowed the gradual refinement of the project goals as

more knowledge was acquired. As the steps were completed, the foundations of

the load balancer prototype were incrementally built. The flow was followed with

the exception of a few selected routines in the centralised metaheuristic load

balancer code implemented early in the project as a proof of concept.

In order to improve the readability of the manuscript, each stage of the project

has a dedicated chapter (Chapters 2 to 7) which contains a literature review, core

content and a detailed summary. The below sections summarise the main

outcomes realised in those stages and list the main achievements, while the

overall conclusions are covered in Chapter 8.

INTRODUCTION

6 | P a g e

1.4. MIGRATION COST

Chapter 4 details the VM-LM feature which forms the backbone of the proposed

solution. It allows a working application, within a VM instance, to be migrated to

an alternative node without stopping its execution. This technology allows the

dynamic balancing of the workload between suitable nodes within the Cloud

system.

The existing research focused on examining the impact of VM-LM on the VM

instance, such as: (i) the impact of allocated VM memory size on migration time

(Zhao and Figueiredo, 2007; Salfner et al., 2011; Dargie, 2014); (ii) the impact of

memory page dirtying rate on migration time (Verma et al., 2011, Rybina et al.,

2015) and the downtime length (Salfner et al., 2011; Liu et al., 2013); (iii) the

effect of available network bandwidth on migration time (Akoush et al., 2010;

Zhang et al., 2016; Deshpande and Keahey, 2017); (iv) the energy overhead

required to perform VM-LM (Huang et al., 2011; Liu et al., 2013; Callau-Zori et al.,

2017), (v) determining the Quality of Service specifications for migrated VMs and

applying resource control mechanisms during VM-LM (Abali et al., 2017), (vi) a

strategy for parallel migrations of multiple VMs (Sun et al., 2016), (vii) various

memory transfer optimisations as presented in Noel and Tsirkin (2016), Noel and

Tsirkin (2016), Ramasubramanian and Ahmed (2017).

However, the migration of VM instances causes disruptions at the infrastructure

level when non-trivial volumes of data need to be transferred and network

bandwidth which could be allocated to alternative processes is consumed. The

research work presented in Chapter 4 evaluates the overall cost of this process

on the network, rather than only on individual nodes. Figure 2 visualises the

process of VM-LM:

INTRODUCTION

7 | P a g e

Figure 2: Virtual Machine Live Migration process

Chapter 4 presents an analysis of the five major areas of the VM-LM process,

namely: CPU registers, memory, permanent storage, network switching and code

structure and dynamics – and analyses their impact on the size of the migrated

data. However, to provide a reliable VM-LM cost estimation technique, actual

practical experiments were required.

The next phase of the project involved setting up an isolated network of several

machines with VirtualBox installed, in addition to measuring the size of the

transferred data during VM-LM between them. VirtualBox was chosen due to its

universal compatibility with hardware, popularity and easy-to-use GUI

management console. Additionally, VirtualBox is an Open Source project and its

code could be analysed with a focus on VM-LM. During experiments, a Live

Migration Data Transfer (LMDT) formula was devised which could be successfully

used to estimate data transferred during VM-LM.

1.5. SIMULATION TOOL

The D-RSOP model was based on a conceptual analysis and it was clear that a

more practical approach was necessary since the project could not progress

further without workload data from a real-world Cloud environment. As

INTRODUCTION

8 | P a g e

discussed in Chapter 5, realistic workload data input could be obtained via two

main approaches:

• Using an artificial Cloud workload generator (Beitch et al., 2010;

Ganapathi et al., 2010; Wang et al., 2011; Malhotra and Jain, 2013).

• Acquiring and parsing real-world workload traces (Iosup et al., 2008;

Hellerstein et al., 2010; Kavulya at al., 2010; Klusáček, 2014; Feitelson et

al., 2014) to a format which could be used in further research.

Upon detailed examination, existing artificial workload generators such as

CloudSim, GreenCloud and EMUSIM did not provide the necessary resource

utilisation statistics that could be used in this project. Such accurate and realistic

parameters could be obtained only from actual workload traces.

Given this scenario, the best option was to acquire and parse real-world workload

traces and base the simulation on these. Additionally, one of the project’s

practical activities was to examine actual workload traces to better understand

challenges in workload planning. For this, it was possible to retrieve and analyse

traces from the Google Cluster Data (GCD) project (Hellerstein et al., 2010). GCD

workload traces are month-long, and contain processing data from a computing

cell of ca. 12.5k nodes. Google services are constantly utilised, 24-hours a day,

from any location around the globe. As such, they provide a good variety of tasks

found within the production environment. Additionally, GCD are generally of a

high quality and only a small number of anomalies are present.

Cloud environments can have a very complex structure. . This is the result of not

only the sheer size of workload, but also the relationships between the nodes and

tasks executed on them. One should also consider the overall high dynamicity of

a typical Cloud environment where running programs dynamically allocate and

release resources such as memory and CPU cores. During examination of GCD

INTRODUCTION

9 | P a g e

workload traces structure (Reiss et al., 2013), additional major complications

were noted. Based on this, two further load balancing strategy goals were added:

• Goal (III) – aside from being able to allocate enough resources, nodes

should also match the constraints of tasks. The four tasks’ constraints

types were defined as in the GCD structure: equal, not equal, greater than

and less than. For example, a task might require a node with an external

IP address. In such cases it will define a constraint which requires the IP

address flag to be equal to true. Subsection 5.5.2 introduces the concept

of Task Constraints.

• Goal (IV) – the solution should handle the occurrences of Resource Usage

Spikes (RUS), where a running program significantly increases its resource

consumption in a short period of time. User-defined required resources

(i.e. resources not currently being used but which are defined in task

specification) from all production tasks allocated to a given node should

never exceed this node capacity. The node, therefore, should always be

able to execute all its production tasks at full capacity. See subsection

7.5.4 for detailed explanation of RUS.

The project’s focus has shifted into creating Accurate Google Cloud Simulator

(AGOCS) framework, a high-fidelity Cloud workload simulator which could

reliably replay month-long GCD workload traces and simulate a Cloud

environment. Given the sheer size of GCD data, the main requirement for AGOCS

was a highly parallel design. Therefore, AGOCS was built upon functional

programming concepts with a Scala and Akka Actors/Streams framework

(Roestenburg et al., 2015). AGOCS inherited many beneficial features from this

technology stack, such as native support for objects immutability, lock-free

collections and components, native agents’ supervision strategies for recovery

from data corruption errors, thread-safe TrieMap (Prokopec et al., 2012), and a

INTRODUCTION

10 | P a g e

mature test-kit. In order to guarantee a reasonably bug-free code, an extensive

suite of test units was created.

During the research, AGOCS was deployed at the University of Westminster’s HPC

cluster (see Appendix C), where most of further experiments took place. AGOCS

allowed the running of simulations where a given solution could be tested if and

how well, it satisfies D-RSOP goals.

1.6. LOAD BALANCER DESIGNS

Finally, with a solid simulation environment up and running, the project reached

a state where it could progress further with the design of load balancing solutions.

The next steps, as presented in Chapter 6 and 7, involved designing and

implementing two main load balancer prototypes:

• Centralised load balancing strategy with the use of metaheuristic

algorithms – this approach has been already examined by previous

researchers (Józefowska et al., 2002; Leung, 2004), yielding a satisfactory

quality of results. However, it was found out the given algorithms could

be slightly improved. Chapter 6 covers details of this solution.

• Decentralised load balancing with the use of an agent-based network –

this approach is based on utilising the technology of software agents,

cooperating to find allocations for a number of tasks on a set of machines

(Kim et al., 2004; Leung et al., 2010). This work is presented in Chapter 7.

The preliminary analysis focused on the pros and cons of the above solutions. The

findings are summarised in Tables 1 and 2:

INTRODUCTION

11 | P a g e

Advantages Disadvantages

• Well-studied approach;
• Better control over job execution

and centralised management of
failover and restarting controls;

• Predicable behaviour;
• Supports complex scheduling

policies and fairness.

• Single point of failure – prone to
‘head-of-line’ blocking job;

• Complex strategies imply scheduler’s
high overheads;

• Metaheuristic algorithms might not
scale well enough to support huge
systems.

Table 1: Advantages of Metaheuristic Load Balancer

Advantages Disadvantages

• Very scalable – scheduling decision
computations are distributed over
several independent nodes;

• Possibility of deploying advanced
scheduling strategies (for example
artificial intelligence and autonomy
of an agent);

• No single point of failure.

• Unpredictable and difficult to control
– difficult to enforce scheduling
policies and fairness;

• Communication overhead of an
agent-based system;

• Overall performance might be lower
than using a centralised approach.

Table 2: Advantages of Decentralised Agent-based Load Balancer

The design of the centralised load balancing strategy assumed that metaheuristic

algorithms would be able to dynamically balance the Cloud workload – an

approach known as ‘monolithic’ scheduling (Schwarzkopf et al., 2013). A variety

of metaheuristic algorithms were tested, such as Greedy, Genetic Algorithms

(GA), Tabu Search (TS) and Simulated Annealing (SA). A novel variant of the

Seeded Genetic Algorithms (SGA) which seeded the initial GA population with

results from Greedy, TS and SA performed substantially better than their

counterparts.

However, after extensive experiments, it was noted that this approach did not

scale well because of the high computation overhead of metaheuristic algorithms.

The centralised metaheuristic load balancer could efficiently support around sixty

tasks executed on twelve nodes; however, as more tasks and nodes were added,

and the solution search space grew, the quality of returned allocations rapidly

INTRODUCTION

12 | P a g e

decreased. None of the tested designs could scale to reliably schedule ca. 140k

tasks on 12.5k nodes, as required in the data from GCD workload traces.

Therefore, further research was focused on designing a decentralised load

balancing strategy, where nodes represented by software agents could negotiate

task allocations between themselves and Service Allocation Negotiation (SAN)

protocol was created. In the prototype implementation of the Multi-Agent

System Balancer (MASB) system, each node is represented by Node Agent (NA)

which monitors its node’s resources allocations levels and makes sure that the

node is not overloaded. When the allocated tasks exceed the node’s resources,

NA will communicate with other NAs and attempt to offload overloading tasks.

The MASB could support scheduling 140k tasks on 12.5k nodes. However, the

decentralisation of scheduling logic also removed the centrally available store

object with the state of the system. Each scheduling decision had to be made only

on the partial information of the computing cell state. Therefore, another

software agent component was introduced – Broker Agents (BA). BA’s task was

to gather information about the state of the nodes and to provide a quoting

mechanism to initially retrieve the best available candidates for a given task. The

SAN protocol was extended accordingly, and the capability of forced-migrations

was added to better support restrictive constraints on some of the tasks.

In brief, the SAN protocol could be seen as the process of narrowing down the

selection of candidate nodes. At first, randomly selected BA provides a quote with

a number of candidate node recommendations, and since BA uses its own cache

of node states, the recommendations most likely do not represent the current

state of the node. After this, the source NA messages all the NAs of those

candidate nodes, receiving information as to whether NA would accept task

migration. Having collected all the replies, the source NA decides which of the

candidate nodes is the best fit for a given task and attempts to migrate task there.

INTRODUCTION

13 | P a g e

This step might be repeated if a selected candidate node is no longer accepting a

task – in such a case, the second-best candidate node is selected.

Moving away from the concept of the centralised load balancing and offloading

the actual scheduling logic to the nodes themselves resulted in more time

available for the execution of allocation routines. As such, more sophisticated

algorithms could be deployed, such as metaheuristic methods. Both BA and NA

use Service Allocation Score (SAS) functions to calculate their Allocation Score (AS)

value. This determines how well the nodes’ resources are utilised, with more

proportional allocations given a higher value. Both BAs and NAs, when making

task allocation recommendations and decisions, tend to gravitate towards more

desirable allocations. It was found that using different functions for Service Initial

Allocation Score (SIAS) and Service Re-allocation Score (SRAS) was beneficial. This

pattern improved the tightness of task allocations, which resulted in lower

resource waste. NAs were given more autonomy in deciding which tasks to

accept and which to offload in order to preserve their node’s stable state.

Ultimately, a working solution was found, and the remaining part of this project

was focused on testing the suitability and scalability of the MASB prototype and

on introducing enhancements to improve the performance of the proposed

solution. At peak times, almost all nodes of HPC Cluster at the University of

Westminster was running experimental simulations which allowed the MASB to

be rapidly reiterated and improved.

INTRODUCTION

14 | P a g e

1.7. CONTRIBUTIONS TO KNOWLEDGE

This research added the following new contributions to the knowledge:

i. A novel taxonomy and categorisation of three classes of schedulers,

namely OS-level, Cluster and Big Data, which highlight their unique

evolution and underline their different objectives (Chapter 2);

ii. An abstract model of cloud resources utilisation is specified, including

multiple types of resources and consideration of task migration costs

(Chapter 3);

iii. A virtual machine live migration was experimented with in order to create

a formula which estimates the network traffic generated by this process

(Chapter 4);

iv. A high-fidelity Cloud workload simulator, based on a month-long

workload traces from Google’s computing cells, was created (Chapter 5);

v. Two possible approaches to resource management were proposed and

examined in the practical part of the manuscript: the centralised

metaheuristic load balancer (Chapter 6) and the decentralised agent-

based system (Chapter 7);

In addition, the practices of running a Scala-based computation-intensive

application on HPC machines are summarised and presented in Sliwko (2018a)

and Sliwko (2018b).

TAXONOMY OF SCHEDULERS

15 | P a g e

2. TAXONOMY OF SCHEDULERS

Although managing workload in a Cloud system is a modern challenge, scheduling

strategies are a well-researched field as well as being an area where there has

been considerable practical implementation. This background review started by

analysing deployed and actively used solutions, and presents a taxonomy in

which schedulers are divided into several hierarchical groups based on their

architecture and design. While other taxonomies do exist (e.g. Krauter et al., 2002;

Yu and Buyya, 2005; Pop et al., 2006; Smanchat and Viriyapant, 2015; Rodriguez

and Buyya, 2017; Zakarya and Gillam, 2017; Tyagi and Gupta, 2018), this review

has focused on the key design factors that affect the throughput and scalability

of a given solution, as well as the incremental improvements which bettered such

an architecture.

Figure 3 visualises how the schedulers’ groups are split. Each of these groups is

separately discussed in the sections which follow.

Figure 3: Schedulers taxonomy

It should be noted that this chapter is based partially on work already published

in Sliwko and Getov (2015b).

TAXONOMY OF SCHEDULERS

16 | P a g e

2.1. METACOMPUTING

The concept of connecting computing resources has been an active area of

research for a considerable period of time. The term ‘metacomputing’ was

established as early as 1987 (Smarr and Catlett, 2003) and since then the topic of

scheduling has been one of the key subjects in many research projects, such as (i)

service localising idle workstations and utilising their spare CPU cycles –

HTCondor (Litzkow et al., 1988); (ii) the Mentat – a parallel run-time system

developed at the University of Virginia (Grimshaw, 1990); (iii) blueprints for a

national supercomputer (Grimshaw et al., 1994), and (iv) the Globus

metacomputing infrastructure toolkit (Foster and Kesselman, 1997).

Prior to the work of Foster et al. (2001), there was no clear definition of what

‘grid’ systems referred to. Following this publication, the principle that grid

systems should allow a set of participants to share a number of connected

computer machines and their resources became established. These shared

system policies are defined by a list of rules, for example the resources which are

shared, who (and the extent to which) they can use those resources, and the kind

of quality of service that might be expected.

As shown in the following sections, the requirements of a load balancer in a

decentralised system varies significantly compared to scheduling jobs on a single

machine (Hamscher et al., 2000). One important difference are network

resources, in that the machines are usually geographically distributed and

transferring data from one machine to another is costly. In addition to the

effective spreading of tasks across networked machines, the load balancer in

Clusters generally provides a mechanism for fault-tolerance and user session

management. The sections below also explain the workings of several selected

current and past schedulers and distributed frameworks. Understanding these

will help to develop our knowledge about how scheduling algorithms were

TAXONOMY OF SCHEDULERS

17 | P a g e

developed over time, and how they have been conceptualised in different ways.

This is by no means a complete taxonomy of all available designs, but rather an

analysis of some of the landmark features and ideas in the history of schedulers.

2.2. OS SCHEDULERS

The Operating System (OS) Scheduler, also known as a ‘short-term scheduler’ or

‘CPU scheduler’, works within very short time frames, i.e. time-slices. During

scheduling events, an algorithm must examine planned tasks and assign them

appropriate CPU times (Bulpin, 2005; Arpaci-Dusseau and Arpaci-Dusseau, 2015).

This requires schedulers to use highly optimised algorithms with very small

overheads. Process schedulers have the difficult task of maintaining a delicate

balance between responsiveness (minimum latency) and throughput. This is

generally achieved by prioritising the execution of processes with a higher

sleep/processing ratio (Pabla, 2009).

At the time of writing, the most advanced strategies also take into consideration

the latest CPU core where the process ran the previous time. This is known as

‘Non-Uniform Memory Access (NUMA) awareness’, where the aim is to reuse the

same CPU cache memory wherever possible (Blagodurov et al., 2010). The

memory access latency differences can be very substantial, for example ca. 3-4

cycles for L1 cache, ca. 6-10 cycles for L2 cache and ca. 40-100 cycles for L3 cache

(Drepper, 2007). NUMA awareness also involves prioritising the act of choosing a

real idle core which must occur prior to its logical SMT sibling, also known as

‘Hyper-Threading (HT) awareness’. Given this, NUMA awareness is a crucial

element in the design of modern OS schedulers. With a relatively high data load

to examine in a short period of time, implementation needs to be strongly

optimised to ensure faster execution.

TAXONOMY OF SCHEDULERS

18 | P a g e

OS Schedulers tend to provide only a very limited set of tuneable parameters,

wherein the access to modify them is not straightforward. Some of the

parameters can change only during the kernel compilation process and require

rebooting, such as compile-time options CONFIG_FAIR_USER_SCHED and

CONFIG_FAIR_CGROUP_SCHED, or on the fly using the low-level Linux kernel’s

tool ‘sysctl’.

2.2.1. COOPERATIVE MULTITASKING

Early multitasking Operating Systems, such as Windows 3.1x, Windows 95, 96 and

Me, Mac OS prior to X, adopted a concept known as Cooperative Multitasking or

Cooperative Scheduling (CS). In early implementations of CS, applications

voluntarily ceded CPU time to one another. This was later supported natively by

the OS, although Windows 3.1x used a non-pre-emptive scheduler which did not

interrupt the program, wherein the program needed to explicitly tell the system

that it no longer required the processor time. Windows 95 introduced a

rudimentary pre-emptive scheduler, although this was for 32-bit applications

only (Hart, 1997). The main issue in CS is the hazard caused by the poorly

designed program. CS relies on processes regularly giving up control to other

processes in the system, meaning that if one process consumes all the available

CPU power, it causes all the systems to hang.

2.2.2. SINGLE QUEUE

Prior to Linux kernel version 2.4, the simple Circular Queue (CQ) algorithm was

used to support the execution of multiple processes on the available CPUs. The

selection of the next process to run was based on a Round Robin policy

(Shreedhar, 1995). In kernel version 2.2, processes were further split into non-

real/real-time categories, and scheduling classes were introduced. This algorithm

was replaced by O(n) scheduler in Linux kernel versions 2.4-2.6. In O(n), processor

TAXONOMY OF SCHEDULERS

19 | P a g e

time is divided into epochs, and within each epoch every task can execute up to

its allocated time slice before being pre-emptied. The time slice is given to each

task at the start of each epoch, and is based on the task's static priority added to

half of any remaining time-slices from the previous epoch (Bulpin, 2005). Thus, if

a task does not use its entire time slice in the current epoch, it can execute for

longer in the next epoch. O(n) scheduler requires iteration through all currently

planned processes during a scheduling event (Jones, 2009) – this can be seen as

a weakness, especially for multi-core processors.

Between Linux kernel versions 2.6-2.6.23 came the implementation of the O(1)

scheduler. O(1) further splits the processes list into active and expired arrays.

Here, the arrays are switched once all the processes from the active array have

exhausted their allocated time and have been moved to the expired array. The

O(1) algorithm analyses the average sleep time of the process, with more

interactive tasks being given higher priority in order to boost system

responsiveness. The calculations required are complex and subject to potential

errors, where O(1) may cause non-interactive behaviour from an interactive

process (Wong et al., 2008; Pabla, 2009).

2.2.3. MULTILEVEL QUEUE

With Q(n) and O(1) algorithms failing to efficiently support the interactivity of

applications, the design of OS Scheduler evolved into a multilevel queue in which

repeatedly sleeping (interactive) processes are pushed to the top of queue and

executed more frequently. At the same time, background processes are pushed

down and run less frequently, although for longer periods.

Perhaps the most widespread scheduler algorithm is Multilevel Feedback Queue

(MLFQ), which is implemented in all modern versions of Windows NT (2000, XP,

Vista, 7 and Server), Mac OS X, NetBSD and Solaris kernels (up to version 2.6,

TAXONOMY OF SCHEDULERS

20 | P a g e

when it was replaced with Q(n) scheduler). MLFQ was first described in 1962 in a

system known as the Compatible Time-Sharing System (Corbató et al., 1962).

Fernando Corbató was awarded the Turing Award by the ACM in 1990 ‘for his

pioneering work organizing the concepts and leading the development of the

general-purpose, large-scale, time-sharing and resource-sharing computer

systems, CTSS and Multics’. In MLFQ, jobs are organised into a set of queues Q0,

Q1, …, Qi wherein a job is promoted to a higher queue if it does not finish within

2i time units. The algorithm processes the job from the front of the lowest queue

at all times, meaning that short processes are given preference. While having a

very poor worst-case scenario, MLFQ turns out to be very efficient in practice

(Becchetti et al., 2006).

Staircase Scheduler (Corbet, 2004), Staircase Deadline Scheduler (Corbet, 2007),

Brain F. Scheduler (Groves et al., 2009) and Multiple Queue Skiplist Scheduler

(Kolivas, 2016) constitute a line of successive schedulers developed by Con

Kolivas since 2004 which are based on a design of Fair Share Scheduler from Kay

and Lauder (1988). None of these schedulers have been merged into the source

code of mainstream kernels and they are available only as experimental ‘-ck’

patches. Although the concept behind those schedulers is similar to MLFQ, the

implementation details differ significantly. The central element is a single, ranked

array of processes for each CPU (‘staircase’). Initially, each process (P1, P2, …) is

inserted at the rank determined by its base priority; the scheduler then picks up

the highest ranked process (P) and runs it. When P has used up its time slice, it is

reinserted into the array but at a lower rank, where it will continue to run but at

a lower priority. When P exhausts its next time-slice, its rank is lowered again. P

then continues until it reaches the bottom of the staircase, at which point it is

moved up to one rank below its previous maximum, and is assigned two time-

slices. When P exhausts these two time-slices, it is reinserted once again in the

staircase at a lower rank. When P once again reaches the bottom of the staircase,

it is assigned another time-slice and the cycle repeats. P is also pushed back up

TAXONOMY OF SCHEDULERS

21 | P a g e

the staircase if it sleeps for a predefined period. This means that interactive tasks

which tend to sleep more often should remain at the top of the staircase, while

CPU-intensive processes should continuously expend more time-slices but at a

lower frequency. Additionally, each rank level in the staircase has its own quota,

and once the quota is expired all processes on that rank are pushed down.

Most importantly, Kolivas’ work introduced the concept of ‘fairness’, in which

each process gets a comparable share of CPU time to run, proportional to the

priority. If the process spends much of its time waiting for I/O events, then its

spent CPU time value is low, meaning that it is automatically prioritised for

execution. This means that interactive tasks which spend most of their time

waiting for user input get execution time when they need it. This represents the

notion of ‘sleeper fairness’. This design also prevents a situation in which the

process is ‘starved’, i.e. never executed.

2.2.4. TREE-BASED QUEUE

While the work of Con Kolivas has never been merged into the mainstream Linux

kernel, it has introduced the key concept of ‘fairness’, which is the crucial feature

of the design of most current OS schedulers. At the time of writing, Linux kernel

implements Completely Fair Scheduler (CFS), which was developed by Ingo

Molnár and introduced in kernel version 2.6.23. A central element in this

algorithm is a self-balancing red-black tree structure in which processes are

indexed by spent processor time. CFS implements the Weighted Fair Queueing

(WFQ) algorithm, in which the available CPU time-slices are split between

processes in proportion to their priority weights (‘niceness’). WFQ is based on the

idea of the ‘ideal processor’, meaning that each process should have an equal

share of CPU time adjusted for their priority and total CPU load (Jones, 2009;

Pabla, 2009).

TAXONOMY OF SCHEDULERS

22 | P a g e

Lozi et al. (2016) offers an in-depth explanation of the algorithm’s workings,

noting potential issues regarding the CFS approach. The main criticism revolves

around the four problematic areas:

• Group Imbalance – the authors’ experiments have shown that not every

core of their 64-core machine is equally loaded: some cores run either

only one process or no processes at all while the rest of the cores were

overloaded. It was found that the scheduler was not balancing the load

because of the hierarchical design and complexity of the load tracking

metric. To limit the complexity of the scheduling algorithm, the CPU cores

are grouped into scheduling groups, i.e. nodes. When an idle core

attempts to steal work from another node, it compares only the average

load of its node with that of its victim’s node. It will steal work only if the

average load of its victim’s group is higher than its own. This creates

inefficiency since idle cores will be concealed by their nodes' average load.

• Scheduling Group Construction – this concern relates to the way

scheduling groups are constructed which is not adapted to modern NUMA

machines. Applications in Linux can be pinned to a subset of available

cores. CFS might assign the same cores to multiple scheduling groups with

those groups then being ranked by distance, for example nodes one hop

apart, nodes two hops apart and so on. This feature was designed to

increase the probability that processes would remain close to their

original NUMA node. However, this could result in the application being

pinned to particular cores which are separated by more than one hop,

with work never being migrated outside the initial core. This might mean

that an application uses only one core.

• Overload-on-Wakeup – this problem occurs when a process goes to sleep

on a particular node and is then awoken by a process on the same node.

In such a scenario, only cores in this scheduling group will be considered

to run this process. The aim of this optimisation is to improve cache

TAXONOMY OF SCHEDULERS

23 | P a g e

utilisation by running a process close to the waker process, meaning that

there is the possibility of them sharing the last-level memory cache.

However, the might be the scheduling of a process on a busy core when

there are idle cores in alternative nodes, resulting in the severe under-

utilisation of the machine.

• Missing Scheduling Domains – this is the result of a line of code omission

while refactoring the Linux kernel source code. The number of scheduling

domains is incorrectly updated when a particular code is disabled and

then enabled, and a loop exits early. As a result, processes can be run only

on the same scheduling group as their parent process.

Lozi et al. (2016) have provided a set of patches for the above issues, and have

presented experimental results after applying fixes. They have also provided a set

of tools on their site which could be used to detect those glitches early in the

Linux kernel lifecycle. Moreover, it has been argued (Lozi et al., 2016) that the

sheer number of optimisations and modifications implemented into CFS

scheduler changed the initially simple scheduling policy into one which was very

complex and bug-prone – as of 26th June 2018, there were 742 commits to CFS

source code (‘fair.c’ file in github.com) since November 2011. As such, an

alternative approach is perhaps required, such as a scheduler architecture based

on pluggable components. This work clearly demonstrates the immerse

complexity of scheduling solutions catering to the complexities of modern

hardware.

2.3. CLUSTER SCHEDULERS

Distributed computing differs from traditional computing in many ways. The

sheer physical size of the system itself means that thousands of machines may be

involved, with thousands of users being served and millions of API calls or other

requests needing processed. While responsiveness and low overheads tend to be

TAXONOMY OF SCHEDULERS

24 | P a g e

the focus of process schedulers, the focus of cluster schedulers is to focus upon

high throughput, fault-tolerance and scalability. Cluster schedulers usually work

with queues of jobs spanning to hundreds of thousands, and indeed sometimes

even millions of jobs. They also seem to be more customised and tailored to the

needs of organisation which is using them.

Cluster schedulers usually provide complex administration tools with a wide

spectrum of tuneable parameters and flexible workload policies. All configurable

parameters can usually be accessed through configuration files or via the GUI

interface. However, it has been documented that site administrators only rarely

stray from a default configuration (Etsion and Tsafrir, 2005). The most used

scheduling algorithm is simply a First-Come-First-Serve (FCFS) strategy with

backfilling optimisation.

The most common issues which cluster schedulers must deal with are:

• Unpredictable and varying load (Moreno et al., 2013);

• Mixed batch jobs and services (ibid.);

• Complex policies and constraints (Adaptive Computing, 2002);

• Fairness (ibid.);

• A rapidly increasing workload and cluster size (Isard et al., 2007);

• Legacy software (ibid.);

• Heterogeneous nodes with a varying level of resources and availability

(Thain et al., 2005);

• The detection of underperforming nodes (Zhang et al., 2014b);

• Issues related to fault-tolerance (ibid.) and hardware malfunctions

(Gabriel et al., 2004).

Another interesting challenge, although one which is rarely tackled by

commercial schedulers, is minimising total power consumption. Typically, idle

TAXONOMY OF SCHEDULERS

25 | P a g e

machines consume around half of their peak power (McCullough et al., 2011).

Therefore, the total power consumed by a Data Centre can be lowered by

concentrating tasks on a reduced number of machines and powering down the

remaining nodes (Pinheiro et al., 2001; Lang and Patel, 2010).

The proposed grouping of Cluster schedulers loosely follows the taxonomy

presented in Schwarzkopf et al. (2013).

2.3.1. MONOLITHIC SCHEDULER

The earliest Cluster schedulers were built with a centralised architecture in which

a single scheduling policy allocated all incoming jobs. The tasks would be picked

from the head of the queue and scheduled on system nodes in a serial manner

by an allocation loop. Examples of centralised schedulers include Maui (Jackson

et al., 2001) and its successor Moab (Adaptive Computing, 2015), Univa Grid

Engine (Gentzsch, 2001), Load Leveler (Kannan et al., 2001), Load Sharing Facility

(Etsion and Tsafrir, 2005), Portable Batch System (Bode et al., 2000) and its

successor TORQUE (Klusáček et al., 2013), Alibaba’s Fuxi (Zhang et al., 2014b),

Docker Swarm (Naik, 2016), Kubernetes (Vohra, 2017) and several others.

Monolithic schedulers implement a wide array of policies and algorithms, such as

FCFS, FCFS with backfilling and gang scheduling, Shortest Job First (SJF), and

several others. The Kubernetes (Greek: ‘κυβερνήτης’) scheduler implements a

range of scoring functions such as node or pod affinity/anti-affinity, resources

best-fit and worst-fit, required images locality, etc. which can be additionally

weighted and combined into node’s score values (Lewis and Oppenheimer, 2017).

As an interesting note – one of the functions (BalancedResourceAllocation

routine) implemented in Kubernetes evaluates the balance of utilised resources

(CPU and memory) on a scored node.

TAXONOMY OF SCHEDULERS

26 | P a g e

Monolithic schedulers are often plagued with a ‘head-of-queue’ blocking

problem in which as a long job is awaiting a free node, the shorter jobs which

follow are held. To partially counter this problem, the schedulers often

implement ‘backfilling’ optimisation, where shorter jobs are allowed to execute

while the long job is waiting. Perhaps the most widespread scheduler is Simple

Linux Utility for Resource Management (SLURM) (Yoo et al., 2003). SLURM uses

a best-fit algorithm which is based on either Hilbert curve scheduling or fat tree

network topology; it can scale to thousands of CPU cores (Pascual, 2009). At the

time of writing, the fastest supercomputer in the world is Sunway TaihuLight

(Chinese: ‘神威·太湖之光’), which uses over 40k CPU processors, each of which

contains 256 cores. Sunway TaihuLight’s workload in managed by SLURM

(TOP500 Project, 2017).

The Fuxi (Chinese: ‘伏羲’) scheduler presents a unique strategy in that it matches

newly-available resources against the backlog of tasks rather than matching tasks

to available resources on nodes. This technique allowed Fuxi to achieve a very

high utilisation of Cluster resources, namely 95% utilisation of memory and 91%

utilisation of CPU. Fuxi has been supporting Alibaba’s workload since 2009, and

it scales to ca. 5k nodes (Zhang et al., 2014b).

While Cluster scheduler designs have generally moved towards more parallelised

solutions, as demonstrated in the next subsection, centralised architecture is still

the most common approach in High-Performance Computing. Approximately half

the world’s supercomputers use SLURM as their workload manager, while Moab

is currently deployed on about 40% of the top 10, top 25 and top 100 on the

TOP500 list (TOP500 Project, 2017).

The research presented in Chapter 6 attempted to improve a centralised

scheduler’s design by introducing metaheuristic algorithms as a fundamental

TAXONOMY OF SCHEDULERS

27 | P a g e

component of scheduling logic. The resulting metaheuristic load balancer

prototype is presented together with the experimental results and discussion.

2.3.2. CONCURRENT SCHEDULING

Historically, monolithic schedulers were frequently built on the premise of

supporting a single ‘killer-application’ (Barroso et al., 2003). However, the

workload of the data centre has become more heterogeneous as systems and a

modern Cluster system runs hundreds of unique programs with distinctive

resource requirements and constraints. A single code base of centralised

workload manager means that it is not easy to add a variety of specialised

scheduling policies. Furthermore, as workload size is increased, the time to reach

a scheduling decision is progressively limited. The result of this is a restriction in

the selection of scheduling algorithms to less sophisticated ones, which affects

the quality of allocations. To tackle those challenges, the Cluster schedulers

evolved into more parallelised designs.

2.3.2.1. STATICALLY PARTITIONED

The solution to the numerous policies and the lack of parallelism in central

schedulers was to split Cluster into specialised partitions and manage them

separately. Quincy (Isard et al., 2009), a scheduler managing workload of

Microsoft’s Dryad, follows this approach.

The development of an application for Dryad is modelled as a Directed Acyclic

Graph (DAG) model in which the developer defines an application dataflow

model and supplies subroutines to be executed at specified graph vertices. The

scheduling policies and tuning parameters are specified by adjusting weights and

capacities on a graph data structure. The Quincy implements a Greedy strategy.

In this approach, the scheduler assumes that the currently scheduled job is the

TAXONOMY OF SCHEDULERS

28 | P a g e

only job running on a cluster and so always selects the best node available. Tasks

are run by remote daemon services which periodically update the job manager

about the vertex’s execution status. A vertex might be re-executed in case of

failure. If any task has failed more than a configured number of times, the entire

job is marked as failed (Isard et al., 2007).

Microsoft has built several frameworks on top of Dryad, such as COSMOS

(Helland and Harris, 2011) which provided SQL-like language optimised for

parallel execution. COSMOS was designed to support data-driven search and

advertising within the Windows Live services owned by Microsoft, such as Bing,

MSN and Hotmail. It analysed user behaviours in multiple contexts, such as what

people searched for, what links they clicked, what sites they visited, the browsing

order, and the ads they clicked on (ibid.). Although the Dryad project had several

preview releases, it was ultimately dropped when Microsoft shifted its focus to

the development of Hadoop.

The main criticism of the static partitioning is inflexibility – the exclusive sets of

machines in a Cluster are dedicated to certain types of workload. That might

result in a part of scheduler being relatively idle, while other nodes are very active.

This leads to the Cluster’s fragmentation and the suboptimal utilisation of

available nodes since no machine sharing is allowed.

2.3.2.2. TWO-LEVEL HIERARCHY

The solution to the inflexibility of static partitioning was to introduce two-level

architecture in which a Cluster is partitioned dynamically by a central coordinator.

The actual task allocations take place at the second level of architecture in one of

the specialised schedulers. The first two-level scheduler was Mesos (Hindman et

al., 2011), developed at the University of California (Berkeley), and is now hosted

in the Apache Software Foundation. Mesos was a foundation base for other

TAXONOMY OF SCHEDULERS

29 | P a g e

Cluster systems such as Twitter’s Aurora (Aurora, 2018) and Marathon

(Mesosphere, 2018).

Mesos introduces a two-level scheduling mechanism in which a centralised

Mesos Master acts as a resource manager that dynamically allocates resources

to different scheduler frameworks, for example Hadoop, Spark and Kafka, via

Mesos Agents. Mesos Agents are deployed on cluster nodes and use Linux’s

cgroups or Docker container (depending upon the environment) for resource

isolation. Resources are distributed to the frameworks in the form of ‘offers’

which contain currently unused resources. Scheduling frameworks have

autonomy in deciding which resources to accept and which tasks to run on them.

Mesos works most effectively when tasks are relatively small, short-lived and

have a high resource ‘churn rate’, i.e. they relinquish resources more frequently.

In the current version 1.4.1, only one scheduling framework can examine a

resource offer at any given time. This resource is effectively locked for the

duration of a scheduling decision, meaning that concurrency control is pessimistic.

Several practical considerations for using Mesos in the production environment

as well as best practices advice are presented in Campbell (2017).

Two-level schedulers offered a working solution to the lack of parallelisation

found in central schedulers and the low efficiency of statically partitioned

Clusters. Nevertheless, the mechanism used causes resources to remain locked

while the resources offer is being examined by a specialised scheduler. This

means the benefits from parallelisation are limited due to pessimistic locking. In

addition, the schedulers do not coordinate between each other and must rely on

a centralised coordinator to make them offers, which further restricts their

visibility of the resources in a Cluster.

TAXONOMY OF SCHEDULERS

30 | P a g e

2.3.2.3. SHARED STATE

To address the limited parallelism of the two-level scheduling design, the

alternative approach taken by some organisations was to redesign schedulers’

architecture into several schedulers, all working concurrently. The schedulers

work on a shared Cluster’s state information and manage their resources’

reservations using an optimistic concurrency control method. A sample of such

systems includes: Microsoft’s Apollo (Boutin et al., 2014), Omega – the Google

Borg’s spinoff (Schwarzkopf et al., 2013), HashiCorp’s Nomad (HashiCorp, 2018),

and also Borg (Burns et al., 2016) itself which has been refactored from

monolithic into parallel architecture after the experimentations with Omega.

By default, Nomad runs one scheduling worker per CPU core. Scheduling workers

pick job submissions from the broker queue and then submit it to one of the three

schedulers: a long-lived services scheduler, a short-lived batch jobs scheduler and

a system scheduler, which is used to run internal maintenance routines.

Additionally, Nomad can be extended to support custom schedulers. Schedulers

process and generate an action plan, which constitutes a set of operations to

create new allocations, or to evict and update existing ones (HashiCorp, 2018).

Microsoft’s Apollo design seems to be primarily tuned for high tasks churn, and

at peak times is capable of handling more than 100k of scheduling requests per

second on a ca. 20k nodes cluster. Apollo uses a set of per-job schedulers called

Job Managers (JM) wherein a single job entity contains a multiplicity of tasks

which are then scheduled and executed on computing nodes. Tasks are generally

short-lived batch jobs (Boutin et al., 2014). Apollo has a centralised Resource

Monitor (RM), while each node runs its own Process Node (PN) with its own

queue of tasks. Each PN is responsible for local scheduling decisions and can

independently reorder its job queue to allow smaller tasks to be executed

immediately, while larger tasks wait for resources to become available.

TAXONOMY OF SCHEDULERS

31 | P a g e

Additionally, PN computes a wait-time matrix based on its queue which publicises

the future availability of the node’s resources. Scheduling decisions are made

optimistically by JMs based on the shared cluster’s resource state, which is

continuously retrieved and aggregated by RM. This design helps to avoid

decisions which are suboptimal and conflicting were the architecture to be

completely decentralised (ibid.).

Furthermore, Apollo splits tasks into those which are regular and those which are

opportunistic. Opportunistic tasks are used to fill resource gaps left by regular

tasks. The system also prevents overloading the cluster by limiting the total

number of regular tasks that can be run on a cluster. Apollo implements locality

optimisation by taking into consideration the location of data for a given task. For

example, the system will score nodes higher if the required files are already on

the local drive as opposed to machines needing to download data (ibid.).

Historically, Omega was a spinoff from Google’s Borg scheduler. Despite the

various optimisations acquired by Borg over the years, including internal

parallelism and multi-threading, in order to address the issues of head-of-line

blocking and scalability problems, Google decided to create an Omega scheduler

from the ground up (Schwarzkopf et al., 2013). Omega introduced several

innovations, such as storing the state of the cluster in a centralised Paxos-based

store that was accessed by multiple components simultaneously. The eventual

conflicts were resolved by optimistic locking concurrency control. This feature

allowed Omega to run several schedulers at the same time and improve the

scheduling throughput. Many of Omega’s innovations have since been folded

into Borg (Burns et al., 2016).

Omega’s authors highlight the disadvantages of the shared state and parallel

reservation of resources, namely: (i) the state of a node could have changed

considerably when the allocation decision was being made, and it is no longer

TAXONOMY OF SCHEDULERS

32 | P a g e

possible for this node to accept a job; (ii) two or more allocations to the same

node could have conflicted and both scheduling decisions are nullified; and (iii)

this strategy introduces significant difficulties when gang-scheduling a batch of

jobs as (i) or (ii) are happening (Schwarzkopf et al., 2013).

In this research, special attention was given to Google’s Borg, one of the most

advanced and published schedulers. Moreover, while other schedulers are

designed to support either a high churn of short-term jobs, for example

Microsoft’s Apollo (Boutin et al., 2014), Alibaba’s Fuxi (Zhang et al., 2014b), or

else a limited number of long-term services, such as Twitter’s Aurora (Aurora,

2018), Google’s engineers have created a system which supports a mixed

workload. Borg has replaced two previous systems, Babysitter and the Global

Work Queue, which were used to manage long-running services and batch jobs

separately (Burns et al., 2016). Given the significance of Borg’s design for this

research, it is discussed separately in section 2.4.

2.3.3. DECENTRALISED LOAD BALANCER

This research proposes a new type of Cluster’s workload orchestration model in

which the actual scheduling logic is processed on nodes themselves, which is a

significant step towards completely decentralised Cluster orchestration. The

cluster state is retrieved from a subnetwork of BAs, although this system does

not rely on the accuracy of this information and uses it exclusively to retrieve an

initial set of candidate nodes where a task could potentially run. The actual task

to machine matching is performed between the nodes themselves. As such, this

design avoids the pitfalls of the concurrent resource locking, which includes

conflicting scheduling decisions and the non-current state of nodes’ information.

Moreover, the decentralisation of the scheduling logic also lifts complexity

restrictions on scheduling logic, meaning that a wider range of scheduling

algorithms can be used, such as metaheuristic methods.

TAXONOMY OF SCHEDULERS

33 | P a g e

Chapter 7 presents MASB – a decentralised agent-based load balancer prototype

– in which the TS algorithm supports making scheduling decisions separately on

each node. Furthermore, MASB breaks with the concept that the execution of a

task is immovable or unstoppable. As a result of the advances of the virtualisation

technology and the introduction of the VM-LM feature, a running program can

now be offloaded to an alternative node without stopping its execution.

Therefore, MASB is not only scheduling the coming tasks, it is also actively moving

the currently existing tasks so that they can fit better on the available resources

of the Cluster, hence the name ‘load balancer’.

2.3.4. BIG DATA SCHEDULERS

In taxonomy presented in this chapter, Big Data schedulers are visualised as a

separate branch from Cluster Schedulers. Although it could be argued that Big

Data Schedulers belong to one of the Cluster schedulers designs discussed

previously, this separation signifies their over-specialisation, and that only a very

restricted set of operations is supported (Isard et al., 2007; Zaharia et al., 2010).

The scheduling mechanisms are often intertwined with the programming

language features, with Big Data frameworks often providing their own API

(Zaharia et al., 2009; White, 2012) and indeed sometimes even their own custom

programming language, as seen with Skywriting in CIEL (Murray et al., 2011).

Generally speaking, Big Data frameworks provide very fine-grained control over

how data is accessed and processed over the cluster, such as Spark RDD objects

persist operations or partitioners (Zaharia et al., 2012). Such a deep integration

of scheduling logic with applications is a distinctive feature of Big Data technology.

At the time of writing, Big Data is also the most active distributed computing

research area, with new technologies, frameworks and algorithms being released

on a regular basis.

TAXONOMY OF SCHEDULERS

34 | P a g e

Big Data is the term given to the storage and processing of any data sets so large

and complex that they become unrealistic to process using traditional data

processing applications based on relational database management systems. It

depends on the individual organisation as to how much data is described as Big

Data, but the following examples may be considered to get an idea of scale:

• The NYSE (The New York Stock Exchange) produces about 15 TB of new

trade data per day (Singh, 2017);

• Facebook warehouse stores upwards of 300 PB of data, with an incoming

daily rate of about 600 TB (Vagata and Wilfong, 2014);

• The Large Hadron Collider (Geneva, Switzerland) produces about fifteen

petabytes of data per year (White, 2012).

As a result of a massive size of the stored and processed data, the central element

of a Big Data framework is its distributed file system, such as Hadoop Distributed

File System (Gog, 2012), Google File System (Ghemawat et al., 2003) and its

successor Colossus (Corbett et al., 2013). The nodes in a Big Data cluster fulfil the

dual purposes of storing the distributed file system parts, usually in a few replicas

for fault-tolerance means, and also providing a parallel execution environment

for system tasks. The speed difference between locally-accessed and remotely

stored input data is very substantial, meaning that Big Data schedulers are very

focused on providing ‘data locality’ which means running a given task on a node

where input data are stored or are in the closest proximity to it.

The origins of the Big Data technology are in the ‘MapReduce’ programming

model, which implements the concept of Google’s inverted search index.

Developed in 2003 (Dean and Ghemawat, 2010) and later patented in 2010 (U.S.

Patent 7,650,331), the Big Data design has evolved significantly since, and is

presented in the subsections below.

TAXONOMY OF SCHEDULERS

35 | P a g e

2.3.4.1. MAPREDUCE

MapReduce is the most widespread principle which has been adopted for

processing large sets of data in parallel. The name MapReduce originally referred

only to the Google’s proprietary technology, but the term is now broadly used to

describe a wide range of software, such as Hadoop, CouchDB, Infinispan and

MongoDB. The key features of MapReduce are its scalability and fine-grained

fault-tolerance. The original thinking behind MapReduce was inspired by the

‘map’ and ‘reduce’ operations present in Lisp and other functional programming

languages (Dean and Ghemawat, 2010):

• ‘Map’ is an operation used in the first step of computation and is applied

to all available data that performs the filtering and transforming of all key-

value pairs from the input data set. The ‘map’ operation is executed in

parallel on multiple machines on a distributed file system. Each ‘map’ task

can be restarted individually and a failure in the middle of a multi-hour

execution does not require restarting the whole job from scratch.

• The ‘Reduce’ operation is executed after ‘map’ operations complete. It

performs finalising operations, such as counting the number of rows

matching specified conditions and yielding fields frequencies. The

‘Reduce’ operation is fed using a stream iterator, thereby allowing the

framework to process list of items one at the time, thus ensuring that the

machine memory is not overloaded (Dean and Ghemawat, 2010; Gog,

2012).

Following the development of the MapReduce concept, Yahoo! engineers began

the Open Source project Hadoop. In February 2008, Yahoo! announced that its

production search index was being generated by a 10k-core Hadoop cluster

(White, 2012). Subsequently, many other major Internet companies, including

Facebook, LinkedIn, Amazon and Last.fm, joined the project and deployed it

TAXONOMY OF SCHEDULERS

36 | P a g e

within their architectures. Hadoop is currently hosted in the Apache Software

Foundation as an Open Source project.

As in Google’s original MapReduce, Hadoop’s users submit jobs which consist of

‘map’ and ‘reduce’ operation implementations. Hadoop splits each job into

multiple ‘map’ and ‘reduce’ tasks, which subsequently process each block of

input data, typically 64MB or 128MB (Gog, 2012). Hadoop’s scheduler allocates

a ‘map’ task to the closest possible node to the input data required – so-called

‘data locality’ optimisation. In so doing, the following allocation order is used: the

same node, the same rack and finally a remote rack (Zaharia et al., 2009). To

further improve performance, the Hadoop framework uses ‘backup tasks’ in

which a speculative copy of a task is run on a separate machine in order to finish

the computation faster. If the first node is available but behaving poorly, it is

known as a ‘straggler’, with the result that the job is as slow as the misbehaving

task. This behaviour can occur for many reasons, such as faulty hardware or

misconfiguration. Google estimated that using ‘backup tasks’ could improve job

response times by 44% (Dean and Ghemawat, 2010).

At the time of writing, Hadoop comes with a selection of schedulers, as outlined

below:

• ‘FIFO Scheduler’ is a default scheduling system in which the user jobs are

scheduled using a queue with five priority levels. Typically, jobs use the

whole cluster, so they must wait their turn. When another job scheduler

chooses the next job to run, it selects jobs with the highest priority,

resulting in low-priority jobs being endlessly delayed (Zaharia et al., 2009;

White, 2012).

• ‘Fair Scheduler’ is part of the cluster management technology Yet Another

Resource Negotiator (YARN) (Vavilapalli et al., 2013), which replaced the

original Hadoop engine in 2012. In Fair Scheduler, each user has their own

TAXONOMY OF SCHEDULERS

37 | P a g e

pool of jobs and the system focuses on giving each user a proportional

share of cluster resources over time. The scheduler uses a version of ‘max-

min fairness’ (Bonald et al., 2006) with minimum capacity guarantees that

are specified as the number of ‘map’ and ‘reduce’ task slots to allocate

tasks across users’ job pools. When one pool is idle, and the minimum

share of the tasks slots is not being used, other pools can use its available

task slots.

• ‘Capacity Scheduler’ is the second scheduler introduced within the YARN

framework. In essence, this can be seen as a number of separate

MapReduce engines with FCFS scheduling for each user or organisation.

Those queues can be hierarchical, with a queue having children queues,

and with each queue being allocated task slots capacity which can be

divided into ‘map’ and ‘reduce’ tasks. Task slots allocation between

queues is similar to the sharing mechanism between pools found in Fair

Scheduler (White, 2012).

The main criticism of MapReduce is the acyclic dataflow programming model. The

stateless ‘map’ task must be followed by a stateless ‘reduce’ task, which is then

executed by the MapReduce engine. This model makes it challenging to

repeatedly access the same dataset, a common action during the execution of

iterative algorithms (Zaharia et al., 2009).

2.3.4.2. ITERATIVE COMPUTATIONS

Following the success of Apache Hadoop, a number of alternative designs were

created to address Hadoop’s suboptimal performance when running iterative

MapReduce jobs. Examples of such systems include HaLoop (Bu et al., 2010) and

Spark (Zaharia et al., 2010).

TAXONOMY OF SCHEDULERS

38 | P a g e

HaLoop has been developed on top of Hadoop, with various caching mechanisms

and optimisations added, and making the framework loop-aware, for example by

adding programming support for iterative application and storing the output data

on the local disk. Additionally, HaLoop’s scheduler keeps a record of every data

block processed by each task on physical machines, and tries to schedule

subsequent tasks taking inter-iteration locality into account. This feature helps to

minimise costly remote data retrieval, meaning that tasks can use data cached

on a local machine (Bu et al., 2010; Gog, 2012).

Similar to HaLoop, Spark’s authors noted a suboptimal performance of iterative

MapReduce jobs in the Hadoop framework. In certain kinds of application, such

as iterative Machine Learning algorithms and interactive data analysis tools, the

same data are repeatedly accessed in multiple steps and then discarded;

therefore, it does not make sense to send it back and forward to central node. In

such scenarios Spark will outperform Hadoop (Zaharia et al., 2012).

Spark is built on top of HDSF, but it does not follow the two-stage model of

Hadoop. Instead, it introduces resilient distributed datasets (RDD) and parallel

operations on these datasets (Gog, 2012):

• ‘reduce’ - combines dataset elements using a provided function;

• ‘collect’ - sends all the elements of the dataset to the user program;

• ‘foreach’ - applies a provided function onto every element of a dataset.

Spark provides two types of shared variables:

• ‘accumulators’ - variables onto each worker can apply associative

operations, meaning that they are efficiently supported in parallel;

• ‘broadcast variables’ - sent once to every node, with nodes then keeping

a read-only copy of those variables (Zecevic, 2016).

TAXONOMY OF SCHEDULERS

39 | P a g e

The Spark job scheduler implementation is conceptually similar to that of Dryad’s

Quincy. However, it considers which partitions of RDD are available in the

memory. The framework then re-computes missing partitions, and tasks are sent

to the closest possible node to the input data required (Zaharia et al., 2012).

Another interesting feature implemented in Spark is the concept of ‘delayed

scheduling’. In situations when a head-of-line job that should be scheduled next

cannot launch a local task, Spark’s scheduler delays the task execution, and lets

other jobs start their tasks instead. However, if the job has been skipped long

enough, typically up to ten seconds, it launches a non-local task. Since a typical

Spark workload consists of short tasks, meaning that it has a high task slots churn,

tasks have a higher chance of being executed locally. This feature helps to achieve

almost optimal ‘data locality’ with a minimal impact on fairness, and the cluster

throughput can be almost doubled, as shown in an analysis performed on

Facebook’s workload traces (Zaharia et al., 2010).

2.3.4.3. DISTRIBUTED STREAM PROCESSING

The core concept behind distributed stream processing engines is the processing

of incoming data items in real time by modelling a data flow in which there are

several stages which can be processed in parallel. Other techniques include

splitting the data stream into multiple sub-streams, and redirecting them into a

set of networked nodes (Liu and Buyya, 2017).

Inspired by Microsoft’s research into DAG models (Isard et al., 2009), Apache

Storm (Storm) is a distributed stream processing engine used by Twitter following

extensive development (Toshniwal et al., 2014). Its initial release was 17

September 2011, and by September 2014 it had become open-source and an

Apache Top-Level Project.

TAXONOMY OF SCHEDULERS

40 | P a g e

The defined topology acts as a distributed data transformation pipeline. The

programs in Storm are designed as a topology in the shape of DAG, consisting of

‘spouts’ and ‘bolts’:

• ‘Spouts’ read the data from external sources and emit them into the

topology as a stream of ‘tuples’. This structure is accompanied by a

schema which defines the names of the tuples’ fields. Tuples can contain

primitive values such as integers, longs, shorts, bytes, strings, doubles,

floats, booleans, and byte arrays. Additionally, custom serialisers can be

defined to interpret this data.

• The processing stages of a stream are defined in ‘bolts’ which can perform

data manipulation, filtering, aggregations, joins, and so on. Bolts can also

constitute more complex transforming structures that require multiple

steps (thus, multiple bolts). The bolts can communicate with external

applications such as databases and Kafka queues (Toshniwal et al., 2014).

In comparison to MapReduce and iterative algorithms introduced in the

subsections above, Storm topologies, once created, run indefinitely until killed.

Given this, the inefficient scattering of application’s tasks among Cluster nodes

has a lasting impact on performance. Storm’s default scheduler implements a

Round Robin strategy and for resource allocation purposes, Storm assumes that

every worker is homogenous. This design results in frequent resource over-

allocation and inefficient use of inter-system communications (Kulkarni et al,

2018). To remedy this phenomenon, more complex solutions are proposed such

as D-Storm (Liu and Buyya, 2017). D-Storm’s scheduling strategy is based on a

metaheuristic algorithm Greedy, which also monitors the volume of the incoming

workload and is resource-aware.

Typical examples of Storm’s usage include:

TAXONOMY OF SCHEDULERS

41 | P a g e

• processing a stream of new data and updating databases in real time, e.g.

in trading systems wherein data accuracy is crucial;

• continuously querying and forwarding the results to clients in real time,

e.g. streaming trending topics on Twitter into browsers, and

• a parallelisation of computing-intensive query on the fly, i.e. a distributed

Remote Procedure Call (RPC) wherein a large number of sets are being

probed (Marz, 2011).

Storm has gained widespread popularity and is being used by companies such as

Groupon, Yahoo!, Spotify, Verisign, Alibaba, Baidu, Yelp, and many more. A

comprehensive list of users is available at the storm.apache.org website.

At the time of writing, Storm is being replaced at Twitter by newer distributed

stream processing engine – Heron (Kulkarni et al, 2018) which continues the DAG

model approach, but focuses on various architectural improvements such as

reduced overhead, testability and easier access to debug data.

2.4. GOOGLE’S BORG

To support its operations, Google utilises a high number of data centres around

the world, which at the time of writing number sixteen. Borg admits, schedules,

starts, restarts and monitors the full range of applications run by Google. Borg

users are Google developers and system administrators, and users submit their

workload in the form of jobs. A job may consist of one of more tasks that all run

the same program (Burns et al., 2016).

2.4.1. DESIGN CONCEPTS

The central module of the Borg architecture is BorgMaster, which maintains an

in-memory copy of most of the state of the cell. This state is also saved in a

distributed Paxos-based store (Lamport, 1998). While BorgMaster is logically a

TAXONOMY OF SCHEDULERS

42 | P a g e

single process, it is replicated five times in order to improve fault-tolerance. The

main design priority of Borg was resilience rather than performance. Google

services are seen as very durable and reliable, the result of multi-tier architecture,

where no component is a single point of failure exists. Current allocations of tasks

are saved to Paxos-based storage, and the system can recover even if all five

BorgMaster instances fail. Each cell in the Google Cluster in managed by a single

BorgMaster controller. Each machine in a cell runs BorgLet, an agent process

responsible for starting and stopping tasks and also restarting them should they

fail. BorgLet manages local resources by adjusting local OS kernel settings and

reporting the state of its node to the BorgMaster and other monitoring systems.

The Borg system offers extensive options to control and shape its workload,

including priority bands for tasks (i.e. monitoring, production, batch, and best

effort), resources quota and admission control. Higher priority tasks can pre-

empt locally-running tasks in order to obtain required resources. The exception

is made for production tasks which cannot be pre-empted. Resource quotas are

part of admission control and are expressed as a resource vector at a given

priority, for a period of time (usually months). Jobs with insufficient quotas are

rejected immediately upon submission. Production jobs are limited to actual

resources available to BorgMaster in a given cell. The Borg system also exposes a

web-based interface called Sigma, which displays the state of all users’ jobs,

shows details of their execution history and, if the job has not been scheduled,

also provides a ‘why pending?’ annotation where there is guidance about how to

modify the job’s resource requests to better fit the cell (Verma et al., 2015).

The dynamic nature of the Borg system means that tasks might be started,

stopped and then rescheduled on an alternative node. Google engineers have

created the concept of a static Borg Name Service (BNS) which is used to identify

a task run within a cell and to retrieve its endpoint address. The BNS address is

predominantly used by load balancers to transparently redirect RPC calls to a

TAXONOMY OF SCHEDULERS

43 | P a g e

given task's endpoints. Meanwhile, the Borg's resource reclamation mechanisms

help to reclaim under-utilised resources from cell nodes for non-production tasks.

Whilst in theory users may request high resource quotas for their tasks, in

practice they are rarely fully utilised in a continuous manner; rather, they have

peak times of day or are used in this way when coping with a denial-of-service

attack. BorgMaster has routines that estimate resource usage levels for a task

and reclaim the rest for low-priority jobs from the batch or the best effort bands

(Verma et al., 2015).

2.4.2. JOBS SCHEDULERS

Early versions of Borg had a simple, synchronous loop that accepted jobs requests

and evaluated on which node to execute them. The current design of Borg

deploys several schedulers working in parallel – the scheduler instances use a

share state of the available resources, but the resource offers are not locked

during scheduling decisions (optimistic concurrency control). In case of conflict,

when two or more schedulers allocate jobs to the same resources, all the jobs

involved are returned to the jobs queue (Schwarzkopf et al., 2013).

When allocating a task, Borg’s scheduler scores a set of available nodes and

selects the most feasible machine for this task. Initially, Borg implemented a

variation of Enhanced Parallel Virtual Machine algorithm (E-PVM) (Amir et al.,

2000) for calculating the task allocation score. Although this resulted in the fair

distribution of tasks across nodes, it also resulted in increased fragmentation and

later difficulties when fitting large jobs which required the most of the node’s

resources or even the whole node itself. An opposite to the E-PVM approach is a

best-fit strategy, which, in turn, packs tasks very tightly. The best-fit approach

may result in the excessive pre-empting of other tasks running on the same node,

especially when the resources required are miscalculated by the user, or when

the application has frequent load spikes. The current model used by Borg’s

TAXONOMY OF SCHEDULERS

44 | P a g e

scheduler is a hybrid approach that tries to reduce resource usage gaps (Verma

et al., 2015).

Borg also takes advantage of resources pre-allocation using 'allocs' (short for

allocation). Allocs can be used to pre-allocate resources for future tasks in order

to retain resources between restarting a task or to gather class-equivalent or

related tasks, such as web applications and associated log-saver tasks, onto the

same machine. If an alloc is moved to another machine, its tasks are also

rescheduled.

One point to note is that, similar to MetaCentrum users (Klusáček and Rudová,

2010), Google’s users tend to overestimate the memory resources needed to

complete their jobs, in order to prevent jobs being killed due to exceeding the

allocated memory. In over 90% of cases, users tend to overestimate the amount

of resources required, wasting in some cases close to 98% of the requested

resource (Moreno et al., 2013; Ray et al., 2017).

2.4.3. OPTIMISATIONS

Over the years, Borg design has acquired a number of optimisations, namely:

• Score caching – checking the node’s feasibility and scoring it is a

computation-expensive process. Therefore, scores for nodes are cached

and small differences in the required resources are ignored;

• Equivalence classes – submitted jobs often consist of a number of tasks

which use the same binary and which have identical requirements. Borg’s

scheduler considers such a group of tasks to be in the same equivalence

class. It evaluates only one task per equivalence class against a set of

nodes, and later reuses this score for each task from this group;

TAXONOMY OF SCHEDULERS

45 | P a g e

• Relaxed randomisation – instead of evaluating a task against all available

nodes, Borg examines machines in random order until it finds enough

feasible nodes. It then selects the highest scoring node in this set.

While the Borg architecture remains heavily centralised, this approach does seem

to be successful. Whilst this eliminates head-of-line job blocking problems and

offers better scalability, it also generates additional overheads for solving

resource collisions. Nevertheless, the benefits from better scalability often

outweigh the incurred additional computation costs which arise when scalability

targets are achieved (Schwarzkopf et al., 2013).

2.5. SUMMARY AND CONCLUSIONS

This chapter has presented a taxonomy of available schedulers, ranging from

early implementations to modern versions. Aside from optimising throughput,

different class schedulers have evolved to solve different problems. For example,

while OS schedulers maximise responsiveness, Cluster schedulers focus on

scalability, provide support a wide range of unique (often legacy) applications,

and maintain fairness. Big Data schedulers are specialised to solve issues

accompanying operations on large datasets and their scheduling mechanisms are

often extensively intertwined with programming language features.

Table 3 presents a comparison of the presented schedulers with their main

features and deployed scheduling algorithms:

TAXONOMY OF SCHEDULERS

46 | P a g e

Sc
he

du
le

r
cl

as
s

Re
qu

ire
m

en
ts

 k
no

w
n

 p
re

- e
xe

cu
tio

n

Fa
ul

t-
to

le
ra

nc
e

m
ec

ha
ni

sm
s

Co
nf

ig
ur

at
io

n

Co
m

m
on

 a
lg

or
ith

m
s

Sc
he

du
lin

g
de

ci
si

on

ov
er

he
ad

D
es

ig
n

fo
cu

s
(a

si
de

 th
ro

ug
hp

ut
)

OS
Schedulers No No

Simple
(compile-time
and runtime
parameters)

CS, CQ, MLFQ, O(n),
O(1), Staircase,

WFQ

very low -
low

• single machine
• NUMA awareness
• responsiveness
• simple configuration

Cluster
Schedulers

Yes1 Yes
Complex

(configuration
files and GUI)

FCFS (backfilling and
gang-scheduling),

SJF, Best-Fit, Scoring
Functions

low - high

• distributed nodes
• fairness
• complex sharing policy
• power consumption
• fault-tolerance

Big Data
Schedulers

Yes2 Yes
Complex

(configuration
files and GUI)

Best-Fit, FCFS
(locality and gang-

scheduling), Greedy,
Fair Scheduler,
Round Robin

low -
medium

• specialised frameworks
• parallelism
• distributed data storage
• massive data

1. Cluster users are notorious in overestimating resources needed for the completion of their tasks, which results in
cluster system job schedulers often over-allocating resources (Klusáček and Rudová, 2010; Moreno et al., 2013).

2. MapReduce jobs tend to have consistent resource requirements, i.e. in majority of cases, every ‘map’ task
processes roughly the same amount of data (input data block size is constant), while ‘reduce’ task requirements
shall be directly correlated to the size of returned data.

Table 3: Schedulers comparison

OS schedulers have evolved in such a way that their focus is on maximising

responsiveness while still providing good performance. Interactive processes

which sleep more often should be allocated time-slices more frequently, while

background processes should be allocated longer, but less frequent execution

times. CPU switches between processes extremely rapidly which is why modern

OS scheduling algorithms were designed with a very low overhead (Wong et al.,

2008; Pinel et al., 2011). The majority of end-users for this class of schedulers are

non-technical. As such, those schedulers usually have a minimum set of

configuration parameters (Groves et al., 2009).

OS scheduling was previously deemed to be a solved problem (Torvalds, 2001),

but the introduction and popularisation of multi-core processors by Intel (Intel

Core™2 Duo) and AMD (AMD Phenom™ II) in the early 2000s enabled

applications to execute in parallel. This mean that scheduling algorithms needed

TAXONOMY OF SCHEDULERS

47 | P a g e

to be re-implemented in order to once again be efficient. Modern OS schedulers

also consider NUMA properties when deciding which CPU core the task will be

allocated to. Furthermore, the most recent research explores the potential

application of dynamic voltage and frequency scaling technology in scheduling to

minimise power consumption by CPU cores (Sarood et al., 2012; Padoin et al.,

2014). It is not a trivial matter to build a good universal solution which caters to

the complexities of modern hardware; therefore, it would be reasonable to

develop the modular scheduler architecture suggested in (Lozi et al., 2016).

Cluster schedulers have a difficult mission in ensuring ‘fairness’, that is, sharing

cluster resources proportionally to every user while maintaining stable

throughput in a very dynamic environment consisting of variety of applications.

Cluster systems tend to allow administrators to implement complex resource

sharing policies with multiple input parameters (Adaptive Computing, 2002).

Cluster systems implement extensive fault-tolerance strategies and sometimes

also focus on minimising power consumption (Lang and Patel, 2010). Surprisingly,

the most popular approach to scheduling is a simple FCFS strategy with variants

of backfilling. However, due to the rapidly increasing cluster size, the current

research focuses on parallelisation, as seen with systems such as Google’s Borg

and Microsoft‘s Apollo.

Big Data systems are still rapidly developing. Nodes in Big Data systems fulfil the

dual purposes of storing distributed file system parts and providing a parallel

execution environment for system tasks. Big Data schedulers inherit their general

design from cluster system’s jobs schedulers. However, they are usually much

more specialised for the purpose of the framework and are also intertwined with

the programming language features. Big Data schedulers are often focused on

‘locality optimisation’ or running a given task on a node where input data is

stored or in the closest proximity to it.

TAXONOMY OF SCHEDULERS

48 | P a g e

The design of modern scheduling strategies and algorithms is a challenging and

evolving field of study. While early implementations were often based on

simplistic approaches, such as a CS, it is the case that modern solutions use

complex scheduling schemas. Moreover, the literature frequently mentions the

need for a modular scheduler architecture (Vavilapalli et al., 2013; Lozi et al.,

2016) which could customise scheduling strategies to hardware configuration or

applications.

This project’s key research question was to investigate possible advances to the

designs of Cloud load balancers. Two discrete research tracks emerged during

this background review, namely: (i) further improvements to the existing

monolithic scheduler design and (ii) a novel decentralised architecture based on

agent system. These approaches are subsequently detailed in Chapters 6 and 7

respectively. However, before those load balancer designs could be

experimented with, the research had to complete other crucial steps, such as

formally defining the research problem as presented in the following chapter.

CLOUD RESOURCES UTILISATION MODEL

49 | P a g e

3. CLOUD RESOURCES UTILISATION MODEL

The examination of existing schemas in Chapter 2 provided a clear outlook of how

a scheduler should work and what its main design goals should be, insofar as the

workload model could be defined. Of all the solutions researched, the most

similar was the orchestration software used in Clusters. However, while Cluster

schedulers are predominantly focused on the fair use of available resources, the

main purpose of commercial Cloud systems is to keep third party operations

working continuously and with minimal disturbance. Grid or Cluster systems have

the capacity to queue jobs when requested resources are not immediately

available and to process them when they become available, while Cloud systems

must provide or deny resources with the minimum possible delay to compute the

decision (Hacker, 2010).

Therefore, in the majority of problem instances, it may be assumed that the

system already has the capacity to process all current jobs, although the system

should be able to detect and handle situations where existing resources are

insufficient. The main challenge is to allocate those jobs properly so that no single

node is overloaded and the system is stable, as understood in (2) in section 3.3.

In recent years, services provided by Cloud data centres have become gradually

more diversified (Kanev et al., 2015) as well as bigger (Verma et al., 2015, Burns

et al., 2016). Given this, the scheduler system should be able to cope with such

an effect. This research will focus mainly on providing system stability combined

with optimal minimal cost. Other features, such as fairness and data locality, will

be considered only as secondary objectives.

This chapter introduces the Cloud Resource Utilisation Model (CRUM), and is

based on work published in Sliwko (2008), Sliwko and Getov (2015a) and Sliwko

et al. (2015).

CLOUD RESOURCES UTILISATION MODEL

50 | P a g e

3.1. NODES AND TASKS

The CRUM consists of nodes and tasks where the purpose of the load balancer is

to keep a good load balance through resource vector comparisons. The Cloud

Computing definition recognises four distinctive service models (Mell and Grance,

2011; Burnett et al., 2011; Limoncelli et al., 2014):

• Software as a Service (SAAS), where the consumer uses a provider’s

applications running on a Cloud infrastructure. The applications might be

accessed directly by consumers, such as through web-based email and

web services, or via a specialised program, as with most mobile

applications. The cloud infrastructure is completely transparent for the

end-user.

• Platform as a Service (PAAS), where the consumer is provided with the

ability to deploy and run its applications within a Cloud system. However,

the consumer does not control the underlying cloud infrastructure, but

has control over the deployed applications and limited control over the

hosting environment’s configuration and settings.

• Infrastructure as a Service (IAAS), where the consumer is provided with a

variety of fundamental computing resources – usually network-based – as

with DNS, routing, storage, databases and firewalls.

• Unified Communication as a Service (UCAAS), where the service provider

packages multi-platform communications channels. These services might

include physical devices including mobile devices, IP telephony or video

conferencing modules.

This research will focus on the PAAS model. In considering what is actually

constituted as a ‘task’ in a Cloud environment, an example may be seen in a

popular Cloud environment such as Amazon’s EC2, where applications are

deployed within the Virtual Machine (VM). Those VM instances often carry much

CLOUD RESOURCES UTILISATION MODEL

51 | P a g e

more than they need in order to support different hardware configurations,

execution environments, and varying user tasks (Younge et al., 2010). Depending

on the design, some long-lived tasks might come also with preinstalled local

database such as PostgreSQL. This schema has many benefits, such as the almost

complete separation of the execution contexts and OS environment parameters,

although the tasks might still share the same hardware if deployed on the same

node. Depending on the type of contract signed, tasks might have guaranteed

execution environment parameters, which would generally be for a fixed price,

or share resources with other VM, which would generally be pay-as-you-go (e.g.

Amazon EC2 Spot Instances).

Tasks require resources which are provided by the nodes. Every node has a

certain quantity of variable resources available, referred to in this manuscript as

the available resources. All resources on nodes are considered renewable and

continuous, meaning that these resources do not expire and cannot be depleted:

assigning a task to a node only lowers the available resource levels temporarily.

To simplify the definition, both the resources needed by the task and the

resources available on the node are described by the vector of non-negative real

numbers. Several types of resources exist which can be utilised by the task, such

as memory, CPU cycles and disk I/O operations. The model also supports artificial

resources, called ‘virtual resources’. Given this, the number of defined resources

is potentially unlimited.

Tasks may have their resource needs shaped differently. There will be tasks

experiencing hourly, daily or weekly variability in usage (Mao and Humphrey,

2011). Some Cloud systems introduce features that ensure an application will be

able to cope with increasing traffic to maintain performance (Namjoshi and

Gupte, 2009). One such example of this is the Amazon EC2 AutoScale, which can

automatically start and stop additional application instances during demand

spikes and lulls in order to minimise costs. AutoScale is part of Amazon’s

CLOUD RESOURCES UTILISATION MODEL

52 | P a g e

CloudWatch package, which can monitor a range of basic system values such as

CPU utilisation, data transfer and disk usage activity. Additionally, in can handle

several complex metrics including DynamoDB tables, EBS volumes, Elastic Load

Balancers and Amazon SQS queues.

3.2. SYSTEM TRANSFORMATION COST

A Cloud system environment is characterised by very dynamic changes in

resource availability. To name just a few possible scenarios during its operation,

some nodes might become idle or overloaded, additional resources might

become available, new nodes might be added to the network, the demand for

particular service may decrease, or part of a cloud network could go offline.

Therefore, it is critical to provide a mechanism to proactively migrate tasks to

alternative nodes.

Distributed systems often store or process large amounts of ‘state’. State consists

of data such as databases, files, relations, session data and identifiers which are

frequently updated (Qiao et al., 2013). On the other hand, ‘corpus’ is a body of

data that is rarely updated and relatively static, as with a library index which may

be updated once per month, as opposed to an email system, which is constantly

updated as new messages arrive continuously. The system might store all state

on one machine, although this strategy quickly reaches its limit as one machine

might be able to store only a limited amount of state, and may be unable to serve

data requests fast enough. Distributed computing system designers have created

several strategies to deal with this issue. Most use replication, sharing and

sharding, which brings problems of consistency, availability and partitioning of

data (Limoncelli et al., 2014).

In modern virtualised Cloud environments, programs are usually deployed in VMs

(Limoncelli et al., 2014). VM state transfer is performed via VM-LM where VM

CLOUD RESOURCES UTILISATION MODEL

53 | P a g e

instance is transferred on the fly to another machine. This process, known as

‘teleporting’ in VirtualBox (Oracle, 2018) and ‘vMotion’ in VMware (Marshall,

2015), transfers CPU, registry, memory, network connections and mappings to

the persistent storage of another machine without stopping the execution of the

original instance. In addition to the saved task’s state, the cloud system might

also need to copy huge VM system image files, such as custom Linux VM images

in Amazon EC2 cloud, wherein the size varies according to which system image is

used. The size of VM image might significantly impact on the migration cost,

meaning that image trimming is always advised. Younge et al. (2010) identified

one case in which the system image was significantly decreased from 4GB to

636MB without any loss in the functionality provided.

In this research, it is assumed that every virtualised application deployed on the

Cloud is available to be migrated live. In this model, every task has a cost value

assigned, which can be seen as an abstract representation of the impact the task

migration will have. The model considers the task migration cost to be the total

data transferred over a network such that it can move the already running

application to an alternative node. Chapter 4 discusses this approach and details

the LMDT formula which can be used to estimate the total size of the transferred

data during VM-LM.

The task migration cost value is considered to be constant in a given time window

since the migration of a certain task to any node will cause the same impact

throughout the whole system. Furthermore, the deployment process is

standardised and automated regardless of the vendor – in most cases it is just

enough to start VM instance in listening mode on the target node, and then to

point the currently running VM instance to this location. The VM manager will

take care of the proper allocation itself. In other words, the amount of work

required to initiate the same program in different environments is either the

same, or there is very little variation.

CLOUD RESOURCES UTILISATION MODEL

54 | P a g e

Figure 4 visualises the system transformation process, and highlights the

migration costs incurred by re-allocating tasks.

Figure 4: System Transformation Cost

Here, the left side of the figure presents the initial state of the system in which

tasks 1, 2 and 3 are being executed on Node A, and tasks 4 and 5 are run on Node

B. The system undergoes transformation, with the nodes exchanging tasks 2 and

5 (on the right side of the figure). Tasks are being migrated via VM-LM and this

process incurs the following migration costs: 105MB for the migration of Task 2

and 240MB for the migration of Task 5. The total size of data transferred while

re-allocating tasks to alternative nodes is called System Transformation Cost

(STC). In this sample, STC is 345MB. STC is formally defined as (4) in the following

section.

3.3. PROBLEM FORMULATION

To better introduce the D-Resource System Optimisation Problem (D-RSOP),

Figure 5 visualises how the node’s resources are utilised by tasks and shows how

the node’s state is evaluated as being stable or overloaded. Both Figures 4 and 5

present the same scenario; however, the former highlights the resources

utilisation changes as the system is transformed (i.e. tasks are re-allocated):

CLOUD RESOURCES UTILISATION MODEL

55 | P a g e

Figure 5: Sample system transformation

Here, two resource types are defined in the system. For example, Task 1 requires

(5,3) of resources, which could be CPU and memory. Again, the left side of the

figure presents the initial state of the system in which Node A is overloaded due

to the available resource levels being negative, i.e. Node A available resources

equal (11,-2) with the second value in pair being negative. In such a setup, Node

B is stable, but since Node A is overloaded, the system state is overloaded.

After the system transformation (the right side of the figure), which consists of

migrations Task 2 to Node B and Task 5 to Node A, both system nodes are stable.

As such, the system state is stable. It should be also noted that this system

transformation incurs STC – a total of all migrations costs of re-allocated tasks

(see Figure 4 for a relevant sample).

In the D-RSOP, let us define:

• 𝜂 = {𝑛%, 𝑛', … , 𝑛)} as a set of all nodes in the system;

• 𝜏 = ,𝑡%, 𝑡', … , 𝑡./	as a set of all tasks in the system;

CLOUD RESOURCES UTILISATION MODEL

56 | P a g e

• 𝜓 = {𝑖%, 𝑖',… , 𝑖3} as a set of all kinds of resource types defined in the

system such as CPU, memory, network bandwidth, and so on. Please note

that the below definitions are subscripted with ‘𝑖’ as a function for a

resource type 𝑖 . The model also supports ‘virtual resources’ (see

discussion in section 3.1).

E.g. for a system with three resource types we could define 𝑖 ∈

{𝐶𝑃𝑈,𝑚𝑒𝑚𝑜𝑟𝑦, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘};

• 𝑎: 𝜓 × 𝜂 → ℝFG as a node’s total resources function and
	
𝑎H(𝑛) as a total

level (non-negative real number) of a resource 𝑖 on the node 𝑛.

E.g. 𝑎KLM(𝑛%) = 2 specifies node 𝑛% as having two CPU cores installed

and dedicated to use by tasks;

• 𝑟:𝜓 × 𝜏 → ℝFG as a task’s required resources function and 𝑟H(𝑡) as a

required level (non-negative real number) of a resource 𝑖 of task	𝑡.

E.g. 𝑟KLM(𝑡%) = 0.5 specfies task 𝑡% as requiring half of CPU core’s time to

run;

• 𝑐: 𝜏 → ℝG	as a task migration cost function and 𝑐(𝑡)	as a task migration

cost (the size of data in MB) for a task 𝑡 , namely the cost incurred

migrating task’s executable and its state.

E.g. 𝑐(𝑡%) = 210 specifies task 𝑡% as needing to transfer 210MB of data

during task migration process (see Chapter 4 for details of LMDT formula);

• 𝜇: 𝜏 → 𝜂 as a task assignment function where a task has to be assigned to

a node, i.e. 𝜇	is defined for each 𝑡 ∈ 𝜏. Each task 𝑡 is initially assigned by

task assignment function 𝜇F to some node 𝑛 ∈ 𝜂 . During the system

transformation, any number of tasks can be re-allocated to different

nodes and a new task assignment function 𝜇% is created. Such a system

transformation is referred to as (𝜇F → 𝜇%).

E.g. 𝜇(𝑡%) = 𝑛% specifies that task 𝑡%	is assigned to node 𝑛%. It is assumed

that task 𝑡% consumes the resources available on node 𝑛%;

CLOUD RESOURCES UTILISATION MODEL

57 | P a g e

• 𝛬 = (𝜏, 𝜂, 𝜓, 𝑎, 𝑟, 𝑐) is considered as a problem space and pair (𝛬, 𝜇) as a

system. Please note that when computing the system transformation, 𝛬

remains unchanged while 𝜇 is modified;

• For every node 𝑛 ∈ 𝜂 we define a set 𝜏V = {𝑡 ∈ 𝜏:	𝜇(𝑡) = 𝑛}	of all tasks

assigned to the node	𝑛.

E.g. if the system consists of node 𝑛% and tasks 𝜏 = {𝑡%, 𝑡'}, and 𝜇(𝑡%) =

𝑛% and 𝜇(𝑡') = 𝑛% (meaning that tasks 𝑡%	and 𝑡' are assigned to node 𝑛%),

then 𝜏VW = {𝑡%, 𝑡'};

• 𝑓:𝜓 × 𝜂 → ℝ as the available resources levels function on the nodes

𝑓H(𝑛) = 𝑎H(𝑛) − Z 𝑟H(𝑡)
[∈\]

 (1)

E.g. if the system consists of node 𝑛% and tasks 𝜏 = {𝑡%, 𝑡'}, and 𝜏VW =

{𝑡%, 𝑡'}, 𝑎KLM(𝑛%) = 2, 𝑟KLM(𝑡%) = 0.5 and 𝑟KLM(𝑡') = 0.2, then

𝑓KLM(𝑛%) = 𝑎KLM(𝑛%) − ^𝑟KLM(𝑡%) + 𝑟KLM(𝑡')` = 2 − (0.5 + 0.2) = 1.3,

meaning that node 𝑛% has 1.3 CPU core available (as a CPU idle time).

We consider system (𝛬, 𝜇) as stable, if:

𝑓H(𝑛) ≥ 0, i.e. ∑ 𝑟H(𝑡)[∈\] ≤ 𝑎H(𝑛) for every 𝑛 ∈ 𝜂, 𝑖 ∈ 𝜓 (2)

Meaning, that every node in the system is stable (has no overloaded resources).

Otherwise, the system (𝛬, 𝜇) is overloaded. This consideration is referred to as

Goal (I).

During the system transformation (𝜇F → 𝜇%), a task may be re-allocated to a

different node. This process is referred to as task migration. Definition (3)

specifies the cost of migration for task 𝑡 within the system transformation

(𝜇F → 𝜇%):

CLOUD RESOURCES UTILISATION MODEL

58 | P a g e

𝑐(ef→eW)(𝑡) = g 0,
𝑐(𝑡),

			𝜇F(𝑡) = 𝜇%(𝑡)
			𝜇F(𝑡) ≠ 𝜇%(𝑡)

 (3)

This denotes that task migration cost is incurred only if the task changes the node

it is assigned to. E.g. if within (𝜇F → 𝜇%) we re-allocate task 𝑡% and 𝑡', but don’t

re-allocate task 𝑡i , then 𝑐(ef→eW)(𝑡i) = 0, meaning only migrated tasks incur

migration costs.

Every system transformation process (𝜇F → 𝜇%) has STC defined as a sum of all

incurred migration costs (unmigrated tasks have zero migration cost):

𝑠(ef→eW) =Z𝑐(ef→eW)(𝑡)
[∈\

 (4)

Considering the initial task assignment µF, the task assignment 𝜇∗ is optimal for

𝜇F, if 𝜇∗ renders system (𝛬, 𝜇∗) stable and:

𝑠(ef→e∗) ≤ 𝑠(ef→e), for every stable system (𝛬, 𝜇) (5)

N.b. when (𝛬, 𝜇F) is stable for initial task assignment 𝜇F, the STC equals zero as it

is considered optimal. Minimising the STC is referred to as Goal (II).

We also consider two task assignment functions 𝜇F and 𝜇%	to be neighbours if:

|{𝑡 ∈ 𝜏: 𝜇F(𝑡) ≠ 𝜇%(𝑡)}| = 1 (6)

This means that, only a single task has changed node within the system

transformation (𝜇F → 𝜇%). Definition (6) has been introduced in order to better

support a design based on selected metaheuristic algorithms in which a single

step evaluates a set of neighbour solutions (algorithms are listed in subsections

6.1.1 to 6.1.5).

CLOUD RESOURCES UTILISATION MODEL

59 | P a g e

3.4. PROBLEM ANALYSIS

The class of problems for which an algorithm can provide an answer in polynomial

time is called ‘class P’. For some problems, there is no known way to find an

answer ‘fast’ in polynomial time; nevertheless, the answer can be verified in

polynomial time, for example the subset sum problem ‘given a set of integers,

does some nonempty subset of them sum to zero?’ (Frieze, 1986). A class of

problems for which an answer cannot be verified in polynomial time is called NP.

NP-Hard class problems are those which are ‘at least as difficult as problems in

NP’ (Schirmer, 1995); all NP problems can be reduced in polynomial time to NP-

Hard class. NP-Hard problems need not be in NP since they need not have

solutions verifiable in polynomial time.

NP-Complete problems (Karp, 1972) can be solved through an exhaustive search,

although the time to wait for the solution grows unacceptably with the problem

size as the number of iterations needed to solve the problem becomes enormous

(Schirmer, 1995). In such cases, the best scenario is to use super-polynomial time

algorithms. The ‘P versus NP’ problem (Levin, 1973; Cook, 1975) is one of the

seven open Millennium Prize Problems of the Clay Mathematics Institute, and is

considered by many to be the most important open problem in the field (Fortnow,

2009). It is now commonly believed that P ≠ NP, and that it is rather unlikely that

any efficient (Polynomial Time) exact algorithms will be able to solve NP-hard

problems. NP-hard problems may be of any type, ranging from search, decision,

or optimisation problems to feasibility problems (Schirmer, 1995), although

discrete optimisation problems are generally NP-hard problems.

The D-RSOP is a variant of a classical Resource-Constrained Project Scheduling

Problem (RCPSP), meaning that D-RSOP also belongs to the NP-hard

(Nondeterministic Polynomial-time hard) problems class. Since its advent, RCPSP

CLOUD RESOURCES UTILISATION MODEL

60 | P a g e

has been examined numerous times by researchers, with numerous solutions

having been proposed, implemented and tested (Boctor, 1990; Demeulemeester

and Herroelen, 1992; Józefowska et al., 2002; Bouleimen and Lecocq, 2003;

Brucker et al., 2003; Lim et al., 2013).

RCPSP can be solved using simple heuristics, such as the algorithms H1m and

HCRA (Józefowska et al., 2002), but the result quality is low. Although exact

methods have been explored, either they have a limitation of problem size such

as Branch and Bound (Bouleimen and Lecocq, 2003) and Constraint-Propagation-

Based Cutting Planes (Demassey et al., 2005), or focus only on deriving new lower

bounds. The reason for this is that the optimal solution can be found and verified

only in small problem instances (Józefowska et al., 1998; Lim et al., 2013).

Interesting examples include X-Pass methods (Davis and Patterson, 1975; Cooper,

1976), Scatter Search (Debels et al., 2006; Mobini et al., 2009) and Filter-and-Fan

(Ranjbar, 2008). An exhaustive survey on the various methods employed to solve

RCPSP problems can be found in Boctor (1990) and Kolisch and Hartmann (2006),

where the standard benchmark data (Kolisch and Sprecher, 1997) is used for

performance evaluation.

3.5. NP-HARDNESS PROOF

The defined D-RSOP can be compared to the so-called bin-packing problem in

Computational Complexity Theory. The bin-packing relates to the questions of

packing a number of objects of different volumes into a finite number of bins of

a known capacity in a way that minimises the number of bins used. Finding a

solution for 𝑘 bins is known as an NP-complete problem (Coffman et al., 1996).

Let us define it as a 𝑃n_pHV problem.

Let us define the 𝑃q.[_pHV problem as the problem of minimising the number of

bins which can contain a specified set of objects. We can find a solution of 𝑃n_pHV

CLOUD RESOURCES UTILISATION MODEL

61 | P a g e

by solving the 𝑃q.[_pHV problem: it is enough to compute an optimal number of

bins 𝑘q.[and compare it with 𝑘 . Thus, 𝑃q.[_pHV is NP-hard as 𝑃n_pHV can be

reduced to 𝑃q.[_pHV by a polynomial-time many-one reduction.

Let us define the problem 𝑃3_q.[_pHV	as an instance of a D-RSOP with the following

re-definitions:

• 𝑎:𝜓 × 𝜂 → {𝑣}, where 𝑣 ∈ ℝFG is the known bin capacity (7)

• 𝑐: 𝜏 → {0}, i.e. there is no task migration cost (8)

The above assumptions imply the STC is zero (as every task 𝑡 ∈ 𝜏 can be freely re-

allocated). In such a definition, (5) is always satisfied, and thus the task

assignment optimality is subject only to (2).

If we add the additional consideration:

• |𝜓| = 1, i.e. we consider only one kind of a resource (9)

we can see that 𝑃q.[_pHV ≤ 𝑃3_q.[_pHV, i.e. 𝑃3_q.[_pHV is at least as hard as 𝑃q.[_pHV .

Then 𝑃3_q.[_pHV is NP-hard; consequently, D-RSOP is NP-Hard ■	

3.6. SUMMARY AND CONCLUSIONS

Modelling the workings of a Cloud system is a non-trivial task. The CRUM

presented here is the outcome of a review of the scheduling mechanisms which

currently exist, and the related literature as presented in Chapter 2.

Based on this analysis, the D-RSOP was defined together with Goals (I) and (II),

which are then used to evaluate the designed load balancer solution. Two crucial

challenges were identified, which subsequently became the focal areas of the

following research:

CLOUD RESOURCES UTILISATION MODEL

62 | P a g e

• Firstly, this chapter highlighted the key problem of calculating the STC, i.e.

the impact of reassigning consecutive tasks to alternate nodes. Chapter 4

will focus on examining the dimensions of this problem, directly

estimating the task migration cost via experimental work.

• Secondly, this analysis also highlighted the vast complexity of the load

balancing in distributed systems, especially when considering the overall

dynamicity of Cloud environments. It became apparent that, by itself,

static modelling does not yield satisfactory results, and therefore that a

more practical approach is required for the research. The resulting high-

fidelity Cloud workload simulator is presented in Chapter 5.

Although very stimulating, the formal analysis presented in this chapter did not

provide a definitive answer to the researched problem of large-scale load

balancing. This said, it did yield a substantial stepping-stone, which was useful in

research.

VIRTUAL MACHINE LIVE MIGRATION

63 | P a g e

4. VIRTUAL MACHINE LIVE MIGRATION

Having identified the main challenges and requirements of a comprehensive load

balancing strategy for a Cloud, the next area of study was to determine how to

practically re-allocate running programs between nodes. CRUM, introduced in

Chapter 3, requires that tasks can move across Cloud nodes without losing their

execution state. Therefore, an additional study was needed in order to become

more familiar with Cloud virtualisation layers.

Cloud systems are unique in their elasticity, that is, their ability to dynamically

allocate available resources to applications is unprecedented in computer science

history. This elasticity is backed up by large-scale virtualisation, where every

aspect of an application runs in a dedicated VM environment. Applications are

executed in VM instances and are no longer bounded to a physical node. This

means it is possible to move the VM instances around and to place them easily

within another node if the target node meets the requisite task constraints. VM

instances can be migrated ‘cold’, whereby an instance is suspended, transferred

to an alternative node and resumed, although it should be noted that during the

migration progress services rendered by tasks are unavailable (Sapuntzakis et al.,

2002). Modern VMs such as XenServer (Barham et al., 2003), VirtualBox, and

VMware also support VM-LM, where VM instances are migrated on the fly. In this

case there is no offline period, except for a short final synchronisation pause of

around 60 to 300ms (Clark et al., 2005).

Historically, VM-LM technology was debuted by VMware with the introduction

of vMotion and GSX Server in 2003. Soon, other vendors attempted to develop

VM-LM features of their own, for example Microsoft added Quick Migration in its

Windows Server 2008 Hyper-V (later renamed to Live Migration) (Savill, 2016)

and Citrix released XenMotion for XenServer in the same year. There have been

VIRTUAL MACHINE LIVE MIGRATION

64 | P a g e

several studies modelling various aspects of the transfer cost for VM-LM since

then. The most notable examples of related work include:

• The impact of allocated VM memory size on migration time (Zhao and

Figueiredo, 2007; Salfner et al., 2011; Dargie, 2014);

• The impact of memory page dirtying rate on migration time (Verma et al.,

2011, Rybina et al., 2015) and the downtime length (Salfner et al., 2011;

Liu et al., 2013);

• The effect of available network bandwidth on migration time (Akoush et

al., 2010; Zhang et al., 2016; Deshpande and Keahey, 2017);

• The energy overhead required to perform VM-LM (Huang et al., 2011; Liu

et al., 2013; Callau-Zori et al., 2017);

• Determining the Quality of Service specifications for migrated VMs and

applying resource control mechanisms during VM-LM (Abali et al., 2017);

• A strategy for parallel migrations of multiple VMs (Sun et al., 2016);

• Various memory transfer optimisations as presented in Noel and Tsirkin

(2016), Noel and Tsirkin (2016), Ramasubramanian and Ahmed (2017).

While these approaches are valid in general, they focus solely on the impact for

a particular VM instance and consider only factors such as loss of performance or

network packages, length of downtime or impact on users. However, the

migration of VM instances also causes disruptions on the infrastructure level,

especially when non-trivial volumes of data need to be transferred and clutter

network bandwidth, which could be allocated to alternative processes. Therefore,

the research work presented in this article focuses on VM-LM and evaluates the

total volume of information to be migrated. The main contributions of this

chapter are the experiments and the Live Migration Data Transfer (LMDT)

formula which helps to estimate the total size of data transferred over a network

during the VM-LM process.

VIRTUAL MACHINE LIVE MIGRATION

65 | P a g e

4.1. VIRTUAL MACHINES IN CLOUD COMPUTING

While a range of tools and virtualisation technologies for building Clouds exist (Jin

et al., 2010; Luo et al., 2011), the virtualisation solutions currently deployed

across service providers are unfortunately not standardised, and differ

significantly in many aspects. In particular, larger and highly specialised solutions

such as Google Cluster (Hellerstein, 2010) tend to be vastly customised in order

to support their core operations. Based on the initial classification (Shirinbab et

al., 2014), the existing virtualisation approaches can be divided into the following

five categories:

• Full virtualisation relies upon an on the fly in-kernel translation of

privileged instructions to user-level instructions. This results in significant

performance drop since binaries of applications and their libraries must

be analysed and transformed during the execution.

• Paravirtualisation requires modification to the source code of the Guest

OS. All privileged instructions are replaced with function calls to the

hypervisor services, i.e. ‘hypercalls’. The biggest drawback of this method

is the necessity to have access to the source code of the Guest OS, which

is not always possible and may interfere with the intellectual property

rights of commercial OS-es.

• Hybrid virtualisation generally offers superior performance in comparison

to the types above. In this model the Guest OS uses paravirtualisation for

certain hardware drivers and full virtualisation for other features. For

example, the Guest OS can take advantage of hardware support for

nested page tables, thereby reducing the number of hypercalls required

for virtual memory operations. At the same time the Guest OS can benefit

from fast I/O operations via lightweight access to paravirtualised devices

as there is no need to rely on emulated hardware (Chisnall, 2008).

VIRTUAL MACHINE LIVE MIGRATION

66 | P a g e

• Hardware-assisted virtualisation has the advantage of hardware-level

support. Recent additions to hardware have introduced several

processor-level and memory-level mechanisms which directly support

virtualisation as part of the microarchitecture. Typical examples include

Intel’s VT-x and the AMD-V architectures at processor-level, while

memory-level support is usually achieved within a memory management

unit. This approach eliminates the need to hook and emulate privileged

instructions by hypervisors, meaning the guest OS can run at its native

privilege levels.

• Virtual containers (VC) is an OS level virtualisation methodology in which

a specially patched kernel allows multiple isolated user-space instances.

This solution is not a true hypervisor, but rather should be considered as

an advanced implementation of the chroot operation. Nevertheless, from

the users' point of view it is perceived as a real server (Dua et al., 2014).

VCs impose almost none of virtualisation overhead costs since they

operate inside a single kernel and require no hardware support to run

efficiently. VCs are generally locked to a single kernel version such as

Docker, LXC or OpenVZ, which makes this technology more suitable for

running multiple instances of a single application (Tang et al., 2014; Smith,

2017). User-space instances are separated only by a container abstraction

layer, and the VC security is considerably lower than in other virtualisation

techniques.

For the purposes of this research work, six widespread VMs that support VM-LM

have been shortlisted. Our main selection criterion was to include only mature

and optimised implementations of the VM-LM technology. While VM-LM was

first introduced as far back as 2009, this feature is still being added and is

available only as an experimental feature in many VMs. Therefore, we have given

preference to VMs supported by established corporations or a vast open-source

community. Additionally, all selected VMs support a variety of platforms and

VIRTUAL MACHINE LIVE MIGRATION

67 | P a g e

generally have good compatibility with commonly available hardware, with the

exception of XenServer, which requires certain hardware features to be available.

The shortlisted VMs are as follows:

• XenServer (Barham et al., 2003) has become a very popular choice for

Cloud systems, and is currently being used as a primary VM hypervisor in

several Cloud providers including Amazon EC2, IBM SoftLayer, Liquid Web,

GoGrid, Fujitsu Global Cloud Platform, Rackspace Cloud, and CloudEx (Jin

et al., 2010).

• VirtualBox supports a wide set of Host OS-es, namely Linux, Mac OS X,

Windows XP and in its later versions, Solaris, and OpenSolaris. In addition,

there are ports to FreeBSD and Genode. Natively supported Guest OS-es

are almost all versions of Windows, Linux, BSD, OS/2, Solaris, and so on.

To achieve the best possible integration, VirtualBox comes with a set of

native drivers and system applications called ‘Guest Additions’ that

optimise the Guest OS for better performance and usability.

• The WMware product is a line of hypervisors. Type 1 runs directly on

hardware while Type 2 runs on OS such as Windows, Linux and Mac OS X.

VMware supports VM-LM, but it does not emulate instruction sets for

hardware components that are not physically present. Instead, it focuses

on running CPU instructions directly on the machine. However, this

feature might cause problems when a VM instance is migrated to a

machine which has a different hardware setup, such as using different

instruction sets or having a different number of CPU cores (Mashtizadeh

et al., 2011; Marshall, 2015).

• A KVM (Kernel-based VM) component was merged into Linux mainline

kernel version 2.6.20. For KVM to work, the CPU must offer hardware-

assisted virtualisation support: Intel’s VT-x for the x86 architecture and

VT-i for Itanium architecture or AMD-V for AMD processors. KVM

currently supports saving/restoring the VM state and offline/online

VIRTUAL MACHINE LIVE MIGRATION

68 | P a g e

migrations. In addition, the VM-LM can be performed between AMD and

Intel hosts.

• Hyper-V is also known as Windows Server Virtualisation services. It

provides virtualisation services in Windows 8 or newer versions. Hyper-V

is capable of running several unique instances, called ‘partitions’, each

with its own kernel. Although VM-LM is supported, it is quite restricted

and has several limitations, chief of which is that a VM instance can be

migrated only between identical versions of Windows Server 2008.

Furthermore, only x64 or Itanium architectures are supported, and all

cluster nodes must be on the same TCP/IP sub-net.

• Docker works on the principles of VCs and relies on the resource isolation

features of the Linux kernel, such as cgroups and kernel namespaces.

Docker enables the creation of multiple independent VCs to run within a

single Linux instance (Merkel, 2014), in which each is seen as a full OS

capable of running services, handling logging, and so on. At the time of

writing, Docker did not support Live Migration; the integration with the

Checkpoint/Restore In Userspace (CRIU) tool does not allow the migration

of a running application to the alternative container on the fly. However,

recent publications (Yu and Huan, 2015) describe early experiments with

Live Migration feature, while a working prototype was also demonstrated

in 2016 (Estes and Murakami, 2016).

Table 4 presents a comparison of the selected VMs based on their core

characteristics. It should be noted that the Host OS and the Guest OS lists are not

exhaustive; other OS-es may work without modifications. XenServer and

WMware are implemented as type-1 (bare-metal) hypervisors which can work

directly on hardware without the need for a Host OS. Unfortunately, further

information, including more details about design decisions and operational

principles, tend to be proprietary, and as such not publicly available.

VIRTUAL MACHINE LIVE MIGRATION

69 | P a g e

Virtual
Machine

Virtualisation
approach

Guest OS
performance

Live Migration
technology Host OS Guest OS License

XenServer Paravirtualisation Native XenMotion,
Storage

XenMotion
Windows, OS X
x86, Linux

Windows 2008/7/8/10,
CentOS, Red Hat/SUSE/
Oracle/Scientific/Debian
Linux, Ubuntu, CoreOS

Open Source,
Commercial

VirtualBox Full virtualisation,
Paravirtualisation Close to native,

Native Teleporting Windows, OS X
x86, Linux, Solaris,
FreeBSD

Windows 98/NT/XP/2000/
Vista/2008/7/8/10, DOS,
OS/2, FreeBSD, Mac OS,
Solaris, Linux, Syllable,
Ubuntu

Open Source

WMware Full virtualisation Close to native vMotion Windows, OS X
x86, Linux

Windows, Linux, Solaris,
FreeBSD, Netware, Mac OS,
OS/2, DOS, CoreOS, BeOS,
Darwin, Ubuntu, SUSE/Oracle
Linux

Commercial

KVM Full virtualisation

(requires AMD-V
or Intel-VT-x) Close to native Live Block

Migration Linux, FreeBSD,
illumos

Windows Vista/2008/7/8/
2012, CentOS, Red Hat,
SUSE/Oracle Linux, Solaris

Open Source

Hyper-V Full virtualisation Close to native Live Migration
(formerly: Quick

Migration)
Windows 8/Server
2012 (R2),
Microsoft Hyper-V
Server

Windows Vista/7/8/10/2008/
2012/2016, Red Hat, Oracle/
SUSE/Debian Linux, Cent/OS,
FreeBSD

Commercial

Docker Virtual Containers Native working prototype
(but not Open

Source yet)

Windows Server
2016 (only worker
node), CentOS,
Red Hat/SUSE/
Oracle Linux

(same as Host OS) Open Source,
Commercial

Table 4: Virtual Machines comparison

In this research VirtualBox is considered as a representative VM in VM-LM

research for the following reasons:

• VirtualBox does not require any dedicated hardware while XenServer

Type 1, for example, runs only on a limited set of hardware.

• VM-LM has been supported since version 3.1, meaning it should be

considered as a mature solution. Upon detailed inspection of VirtualBox’s

source code (see detailed discussion in subsection 4.2.2), it was

established that this feature’s design does not differ substantially from

other VM implementations.

• During VM-LM, VirtualBox transfers only what is currently allocated and

being used by the VM memory, i.e. not the total memory configured for

the VM. The difference in transferred data might be substantial if

VIRTUAL MACHINE LIVE MIGRATION

70 | P a g e

applications within the VM instance do not fully utilise the available VM

memory (Hu et al., 2013).

• VirtualBox is widely used. There are a number of freely available ports for

all major operating systems such as Windows, Linux, Mac OS X, Solaris and

FreeBSD in existence. There are many publicly available guides and

resolutions to issues available on the Internet, as well as many free out-

of-the-box and preinstalled VirtualBox images, such as

VirtualBoxImages.com and VirtualBoxes.org websites.

• One of the biggest strengths of VirtualBox is its ability to virtualise nearly

any type of platform, including Linux, Windows, OS X, Solaris, Android and

Chromium OS. The VirtualBox community is very active and continuously

improves compatibility with currently supported platforms as well as

adding new ones. Furthermore, VirtualBox has universally good

compatibility with hardware due to Guest Additions package.

• VirtualBox is used as a foundation for VC systems such as Docker. For

example, on Mac OS X, docker-machine tool provisions a specialised

VirtualBox VM instance to run its kernel.

• In comparison to other listed VMs, VirtualBox instances generally have

fewer problems being migrated to nodes with a different Host OS and

different processor architecture. As an example of the opposite, Hyper-V

and WMware require the same type of CPU architecture between the

source and target hosts.

In addition, VirtualBox is also easy to set up since binaries are provided directly

from the Oracle site. VirtualBox provides a GUI management console and is

generally easy to use even for inexperienced users, which makes experiments

much easier. Since version 4, VirtualBox has been released as an Open Source

project, leading to many fixes, improved stability and optimised performance

patches being added to its source code.

VIRTUAL MACHINE LIVE MIGRATION

71 | P a g e

4.2. LIVE MIGRATION

Both cold migration and VM-LM are techniques for moving one VM instance from

one node to another, usually of the same type. Depending on the vendor, various

restrictions might apply, although in general the same CPU architecture is

required and the VM will also perform a check of available features and

extensions. A number of VMs also support open formats, such as the Open

Virtualisation Format, which allows the distribution of virtual appliances in a

manner not tied to any particular hypervisor or processor architecture (Bernstein

et al., 2009).

Cold migration requires stopping a VM and saving its state to snapshot files,

moving these files to the destination and then restoring the VM instance from a

previously saved state. An obvious disadvantage of this approach is the

unavoidable downtime required to stop the VM, transfer the state files and start

the VM on the target node during which the service is not accepting requests.

Furthermore, Shirinbab et al. (2014) distinguish between cold migration, where

the VM instance is actually shutdown, and hot migration, where the VM instance

is only suspended, whereby the application preserves most of its state.

However, modern VMs support a more advanced on the fly migration. The VM-

LM feature – called ‘teleporting’ in VirtualBox (Oracle, 2016) or ‘vMotion’ in

VMware (Marshall, 2015) – is a powerful functionality of modern VMs. The VM-

LM dramatically reduces the downtime needed for virtualised applications and is

the most suitable approach to achieving high-availability services. In essence, a

continuously running VM instance is transferred to another VM running on a

different physical machine without stopping its execution. This is done by

transferring all VM memory and CPU registers on the fly, switching network

devices to a new network address, and then either transferring the whole local

disk storage content or reopening interfaces used in the Network Attached

VIRTUAL MACHINE LIVE MIGRATION

72 | P a g e

Storage (NAS). Therefore, the transfer cost of VM-LM depends on the specific

application workload for the major areas of the migration process – CPU registers,

memory, permanent storage, and network switching. In the following

subsections, key VM-LM challenges, as well as a performance analysis of their

impact on the total migration cost for those four major categories of application

workload, are discussed.

4.2.1. COMPUTATION-INTENSIVE APPLICATIONS

Wu and Zhao (2011) have shown that the amount of available CPU cycles on a

machine has a substantial impact on the migration time. One of their tests

demonstrates that assigning more CPU cycles to the VM-LM process often results

in an exponential reduction in the total migration time, but only to a point of

around 50% CPU utilisation. In our research, assigning more than 50% of CPU

utilisation did not shorten the migration time any further. Furthermore, our

experiments have also shown that changes between 40% and 80% in the CPU

utilisation for different applications did not noticeably affect the migration time.

This can be explained by the relatively small size of the CPU registers and the

L1/L2/L3/L4 caches that need to be copied over.

4.2.2. MEMORY-INTENSIVE APPLICATIONS

Memory usage intensity has a huge impact on migration time. Memory migration

can be achieved by directly copying memory to a target node. This process

consists of copying all memory pages one by one onto a target node. If the

content of a memory page is altered during migration, this memory page is

marked as dirty, which will result in another attempt to copy it again in the future.

Generally speaking, during every migration the majority of pages which are not

modified frequently will be copied either once, or a small number of times.

VIRTUAL MACHINE LIVE MIGRATION

73 | P a g e

However, a subset of memory pages, commonly referred to as a Writable

Working Set (WWS), will be altered in a very rapid manner – much faster than the

speed at which network adapters can exchange information. These pages are

often used for the stack and the local variables of the running processes as well

as for network and disk buffers.

The usual solution in this scenario is for the VM-LM mechanisms to detect and

mark hot pages by counting how many times a memory page has been dirtied

during migration (Jin et al., 2009), and then to synchronise those remaining

memory pages at the final stage while both VMs are paused. In the first migration

round all memory pages are copied to the target VM while the source VM

continues to run. During that round, some of the pages will have their content

modified and will be marked as dirty. In the next round there will be a further

attempt to copy them. The next few rounds, i.e. round 2 and round 3 as shown

in Figure 6, will attempt to copy previously dirtied pages, thereby hopefully

decreasing the number of dirtied memory pages.

Figure 6: Memory migration rounds

However, some memory pages are dirtied so rapidly that network adapters

cannot transfer them over the network fast enough. Therefore, the final round

pauses the source VM and all remaining pages are copied onto the target VM,

which subsequently starts while the source VM stops and shuts down. Clarke et

VIRTUAL MACHINE LIVE MIGRATION

74 | P a g e

al. (2005) provide an analysis and estimation of the size of WWS. Furthermore,

specific research in Wu and Zhao (2011) has substantively examined what kinds

of memory operations have an impact on WWS size. One of their testing

scenarios has been split into two variants, that is, memory-read-intensive

applications and memory-write-intensive applications.

The memory size initially allocated to an application had a linear impact on the

migration time which is expected since more data had to be copied and there was

no additional impact on the migration time when the memory-read-intensity

increased. However, increases in memory-write-intensity did significantly slow

down the migration process, albeit not linearly. When enough CPU cycles had

been assigned to benchmark and the memory page dirtying ratio was high

enough, the XenServer momentarily entered its final synchronisation, and the

migration time was not increased any further. It is difficult to provide actual

numbers as to where the memory writing rate reaches a critical point. The

existing research results in Liu et al. (2013) show that the memory writing rate

started to significantly impact upon the migration time at around 800Mbit/s,

although these results are isolated to the specific research testing machine.

In practice, however, WWS is usually relatively small and VM downtime is barely

noticeable for most applications. VM-LM usually requires a minimum stoppage

before the next VM continues its execution at its final destination, providing a

practically seamless migration of a running VM. For example, the XenServer

requires only 60-300ms to perform final memory synchronisation when

migrating the Quake 3 server (Clark et al., 2005).

The same research shows, that during the VM-LM of the VM running SPECweb99

benchmark, only 18.2MB out of a total 676.8MB allocated memory was

transferred in the final synchronisation phase. The Quake 3 server needed to

suspend the VM to transfer only 148KB of a total of 56.3MB allocated memory.

VIRTUAL MACHINE LIVE MIGRATION

75 | P a g e

Nevertheless, it is possible to design extreme scenarios where the VM is writing

to a certain region of the memory faster than the network can transfer it, for

example the custom program ‘MMuncher’ resulted in the transfer of a huge

222.5MB out of a total of 255.4MB allocated memory in the final synchronisation

phase. It should be noted that the VM migration process itself generally does not

consume much memory. In the worst-case scenario, recent research has shown

that one of the tested VMs required just a little over 200MB to migrate 2GB of

virtual memory (Hu et al., 2013).

There is a further significant difference depending on the implemented memory

transfer method. More specifically, VMs such as KVM, VMware and VirtualBox

transfer only the currently allocated and used by the VM memory, while other

VMs such as Hyper-V and XenServer transfer the total configured memory. This

difference in transferred data might be substantial, potentially even one order of

magnitude (247-354MB vs. 2255-2266MB) of the total transferred migration data

(Hu et al., 2013).

In VirtualBox, the number of VM-LM rounds is explicitly controlled by the VM

downtime. VirtualBox implements a voting mechanism, where all defined

modules – 'units' in VirtualBox’s source code – vote in each VM-LM round for the

completion of the live data transferring stage and the suspension of VM. From

VM-LM’s point of view, the most interesting modules in VirtualBox are ‘Saved

State Manager’ and ‘Page Manager and Monitor’ in files ‘SSM.cpp’ and

‘PGMSavedState.cpp’ respectively, which contain decision logic for triggering the

VM suspension and for entering the final round of VM-LM. The decision is based

on the estimated remaining dirty pages migration time, separately for the short-

term average over the last four rounds and the long-term average based on all

previous rounds. This algorithm then computes if the migration of all currently

dirty pages exceeds the hardcoded 250ms maximum downtime. It should be

noted that the mentioned source code has not been updated since its initial

VIRTUAL MACHINE LIVE MIGRATION

76 | P a g e

implementation in 2010, and could be improved further, potentially reducing the

VM-LM overhead.

Researchers have also proposed certain optimisation techniques which could

reduce memory migration time. Two such techniques are identified below:

• Jin et al. (2009) propose the adaptive compression of migrated memory

pages based on word similarity. Experiments show that most memory

pages fall into either low or high word similarity, with the former usually

a good candidate for fast compression algorithm.

• Du et al. (2010) suggest an ordered transfer of memory pages based on

their dirtying rates as well as factoring in the available network bandwidth.

The next migration iteration starts as soon as the accumulated dirtying

rate exceeds the available bandwidth.

4.2.3. DISK I/O-INTENSIVE APPLICATIONS

Storage migration either involve transferring the whole storage over the network

or only reopening the connection to a configured NAS device. Modern Cloud

systems typically implement NAS as a preferable storage option since it has many

advantages such as centralised administration, a variety of standardised solutions

across many different vendors and reduced failure rate features.

If any virtual devices are mapped on local storage media, they also need to be

migrated together with the VM instance. The VM is generally not aware of higher

level data structures from the Guest OS, such as files or memory segments. The

VM only reads and/or writes its serialised form as a stream of bytes. Therefore,

the VM does not recognise which data is left over from previous operations but

which is now marked as clean, meaning that the process saves everything as

shown in Figure 7:

VIRTUAL MACHINE LIVE MIGRATION

77 | P a g e

Figure 7: Virtual disk read/write operations

Following the write/delete operation, the Guest OS keeps only sectors 1-5 and 7-

8 as allocated, even though the VM/Host OS does not know that dirty sectors 6,

9 and 10 are unused and saves them as valid data in its state file. Therefore, upon

migration, more data than indicated by the Guest OS might need to be migrated

since it involves copying the unused/dirty sectors.

Disk I/O operations are not easy to measure correctly since any modern OS

successfully caches files in its memory. In addition, modern persistent storage

drives may have substantial caches (‘disk buffers’) built-in. At the time of writing,

hard drives come with 128MB of such memory such as Seagate STBD6000100

6TB SATA, while solid-state drives come with up to 1GB cache memory such as

Samsung SSD 850 PRO.

Previous research has shown that it is possible to significantly exceed the

available disk cache memory in order to force the VM to save data to actual

persistent storage (Wu and Zhao, 2011). In this test, a sequential read pattern

VIRTUAL MACHINE LIVE MIGRATION

78 | P a g e

was used as it can generate more consistent I/O Operations Per Second (IOPS)

compared to either sequential write or random read or write patterns. As with

memory, an increase in IOPS caused an exponential increase in migration time,

but the authors did not notice the existence of a ‘break point’, after which time

further increases do not occur. This could be explained by a lack of monitoring of

the disk sectors dirtying ratio implemented in VM. Generally speaking, memory

operations have a bandwidth a several orders of magnitude wider than

respective I/O operations, especially for random access transfers.

When migrating local storage data, it should be noted that generally storage data

is less dynamically modified than memory. As such, the time needed to migrate

storage media is more linear. Hu et al. (2013) advise Cloud administrators to

ensure their virtualisation system supports delta migration, where the target

node has a snapshot or a recent state image, and there is a need to migrate and

then merge only delta of the new data.

4.2.4. NETWORK-INTENSIVE APPLICATIONS

For network resources, VM-LM relies on maintaining all open connections

without the involvement of any kind of network traffic forwarding mechanism on

the original node, since this may go offline and slow down responses from the

host. VM-LM also copies the TCP stack state and, in addition, will carry IP

addresses.

One suggested method to resolve these challenges is to keep all network

interfaces on a single switched LAN (Clark et al. 2005). This would allow the target

node to generate an unsolicited ARP reply, broadcasting that the IP has moved

to a new location and has a new Ethernet MAC Address. This would cause all

routers to update their ARP cache and direct all network packages to the new

host. An alternative solution is to migrate the Ethernet MAC Address together

VIRTUAL MACHINE LIVE MIGRATION

79 | P a g e

with other resources, relying on the network switch to detect the port change,

although this may result in lost packages.

The impact of network utilisation intensity on migration time has also been

studied (Liu et al., 2013). Migrating the VM’s state between different physical

nodes requires transferring a significant amount of data, and therefore the

available network bandwidth is a valid concern. It can be noted that increases in

network bandwidth utilisation exponentially decreases migration time.

Additional complexity which is not tackled in this research, comes from the

physical placement of Cloud servers. The transfer rate between two servers from

the same rack which would tend to be connected by high-speed fibre optic cables

isolated from Cloud network noise, will generally be faster than servers from two

different racks. This would also be much faster than the connection between

server racks in two geographically different data centres. Faster connections

could significantly reduce the time as well as reduce the number of rounds

needed to perform VM-LM.

4.2.5. CODE STRUCTURE AND DYNAMICS

The discussion in subsection 4.2.2 reveals that the number of VM-LM rounds and

the amount of data transferred in each of those rounds is directly related to the

size of WWS. Previous research (Clark et al., 2005; Wu and Zhao, 2011; Hu et al.,

2013) suggests that the memory write operations are the core cause of the

repeated migrations of memory pages forming WWS. However, those

investigations do not specify which applications are more prone to migrate

harder and how the VM-LM is actually impacted.

The WWS is heavily impacted by the exact instruction composition of the

application’s compiled native code, or, as in the case of Java Virtual Machine

(JVM), the interpreted byte code which is then compiled to the executable code.

VIRTUAL MACHINE LIVE MIGRATION

80 | P a g e

Frameworks equipped with Automatic Memory Management (AMM) such as

Java’s Garbage Collector (GC) (Urma et al., 2014) frequently move memory pages

as new objects are created and are then released, which is a very common

pattern within object-oriented programming. Furthermore, the frequency and

the distribution of modified memory addresses strongly depend on the code's

design and its style of programming. For example, the frequent use of immutable

objects and singletons results in somewhat more static memory, while the

common use of mutable objects and dynamically growing collections, such as

linked lists, lead to bigger WWS, which means that the application will be

migrated harder. The reuse of existing objects from object pools (‘flyweight’

pattern) has the potential to lower the WWS size. Nevertheless, it is extremely

challenging to predict what kind of behaviour VM-LM will demonstrate without

knowledge of the technology stack and a detailed analysis of the application code.

While experimenting with the VM-LM process of various applications, a non-

linear relation of the size of WWS to LMDT was noted. However, as shown below

in the details of the experiments, this phenomenon is quite specific to an

application. For some programs it is barely noticeable, while for others is clearly

visible. As demonstrated in sections below, rapid exponential increases in LMDT

are especially visible for the busy backend application running in VMs which use

AMM, such as JVM’s GC. This is the result of massive memory movements during

the memory reclamation phases of GC and, therefore, higher amount of dirtied

memory pages which need to be copied in the next VM-LM round.

4.3. EXPERIMENTS

This research focuses on finding which parameters would significantly impact the

size of the LMDT. Therefore, based on the above analysis, several experiment

scenarios were designed. These are presented below.

VIRTUAL MACHINE LIVE MIGRATION

81 | P a g e

4.3.1. CONFIGURATION

The scope of this experiment has been necessarily limited to hardware which is

accessible in the laboratory and the available network infrastructure as described

below. The tests were designed with a focus on Open Source solutions, which

gave the option to examine the source code and better understand the inner

workings of migrated applications. Experiments were performed on a 100BASE-T

network consisting of two servers (Intel Celeron 1.8 GHz with 2GB memory), a

router and a NAS device exposing a shared folder via Samba server (CIFS). As such,

the testing network was fully isolated, and the network noise was minimised. The

testing machines had Kubuntu 15.04 installed as the Host OS, using the default

configuration. The experiments used VectorLinux 6.0 Standard ‘Voyager’ as the

Guest OS, this being a lightweight and slimmed down Linux distribution designed

to avoid resources overhead on existing system services and daemons.

VectorLinux 6.0 uses a Linux 2.6.27 kernel which proved to be most stable during

teleportations.

In order to perform the experiments, it was necessary to define VM instances in

VirtualBox. Each instance consists of two objects, the VM instance configuration

and the virtual disk image (VDI) file. The VDI is usually stored on NAS device and

is available to every node in this system as a remote share. Here, the VDI file is

mapped via the Common Internet File System (CIFS), shared via the Samba server.

VirtualBox requires the identical definition of a particular VM so as to exist on

both source and target hosts.

The example below shows the creation of ‘VM_VectorLinux_512’, prepared for a

Linux 32-bit host system with 512MB memory and one virtual CPU core:

VIRTUAL MACHINE LIVE MIGRATION

82 | P a g e

VBoxManage createvm --name VM_VectorLinux_512 --ostype Linux_32 --
register
VBoxManage modifyvm VM_VectorLinux_512 --memory 512
VBoxManage modifyvm VM_VectorLinux_512 --cpus 1
VBoxManage storageattach VM_VectorLinux_512 --storagectl
"IDE Controller" --port 0 --device 0 --type hdd --medium
/mnt/VM_Shares/VM_VectorLinux_512.vdi

The VM-LM process itself is seemingly effortless from a user’s perspective – it is

sufficient to start the target VM instance in listening mode:

VBoxManage modifyvm VM_VectorLinux_512 --teleporter on --
teleporterport 6000

The next step is to execute the teleportation command from the source VM

hypervisor's command prompt, providing the target host’s IP address:

VBoxManage controlvm VM_VectorLinux_512 teleport --host 192.168.1.210
--port 6000

VirtualBox will take care of the migration by itself and report any errors.

VirtualBox performs a strict comparison between CPU models and types and it

was necessary to disable strict CPU id checks so as to complete VM-LM.

Nevertheless, regardless of whether a strict CPU identification check was enabled

or disabled, the CPU on the target machine still had to support the same set of

architectural features and extensions such as SSE, SSE2 and MMX, as the CPU on

the source machine.

Data transfer measurements were taken with the help of the iptraf tool. Used

bandwidth was measured separately for sent and received data and then totalled.

The measurement error of iptraf was only 1.96%; when exactly 100MB of random

traffic was sent, the iptraf recorded transferred data averaged 84790KB (n=20,

s=1654KB). Figure 8 demonstrates a sample measurement in which the VM-LM

was performed on port 6000, showing that the source host sent 85216593 bytes

and the target host sent 1455690 bytes (the last pair of TCP Connections).

VIRTUAL MACHINE LIVE MIGRATION

83 | P a g e

Figure 8: Measuring transferred data with the iptraf tool

4.3.2. EXPERIMENTAL SCENARIOS

Cloud systems allow users to deploy a very wide range of applications and

services. In order to have a wide variety of applications this experiment was

performed with the following configurations:

• An idle VM with only basic kernel canonical services running and a simple

Xfce-4.4.3 Window Manager. During VM-LM, a whole environment is

migrated – the OS and the running service itself. Therefore, this

configuration was used as a reference point and it was possible to

measure the impact of only Guest OS on migration.

• SPECjvm2008 is a benchmark program suite, released by the Standard

Performance Evaluation Corporation in 2008, for measuring the Java

runtime environments. It consists of 38 benchmark routines focusing on

VIRTUAL MACHINE LIVE MIGRATION

84 | P a g e

core java functionality, and is grouped into eleven categories. It has a wide

variety of workloads, from computation-intensive calculations to XML file

processors (Oi, 2009). The SPECjvm2008 workload mimics a variety of

common general-purpose application computations. For a more detailed

study of SPECjvm2008 performance, see Shiv et al. (2009). In the

experiment, SPECjvm2008 benchmark ran on Java 1.6.0_06-b20.

SPECjvm2008 is free to use, while newer suites such as SPECjbb2015,

require a license.

• It is estimated that the Apache HTTP Server (Apache) serves about half of

all active websites and is still the most widely deployed Internet web

server. As of November 2017, Apache is running 44.55% of all active

websites (Netcraft, 2017). Apache is often used with a range of

technologies such as PHP, Perl, Python and frameworks such as

WordPress. Apache is available as open-source software released under

the Apache License for a wide number of Operating Systems such as UNIX-

based, Microsoft Windows, NetWare and OS/2. In this experiment, static

content was deployed and an external machine with a JMeter (v2.13)

used to simulate user traffic.

• In a typical online system, the data are stored in a persistent storage

component, usually a database. This experiment examined the impact of

the VM-LM process performed while PostgreSQL version 9.2.24 database

(Obe and Hsu, 2017) was running ‘select’ and ‘update’ queries on a large

database table. PostgreSQL is a popular database, with a market share of

26.5% of all actively used databases worldwide (Stack Overflow, 2017).

• VM Allocator is a custom application used to simulate a running

application with a static read only memory area and sizeable WWS

memory. Such an approach enabled the configuration of an exact set of

dirtying pages and their ratio to total memory; therefore, experiments

VIRTUAL MACHINE LIVE MIGRATION

85 | P a g e

could be conducted with higher confidence. To make the simulation more

realistic, the VM Allocator ran several threads in parallel.

4.3.3. IDLE VIRTUAL MACHINE

To analyse the impact of allocated/used memory in VM-LM, the first experiment

was the migration of the same Guest OS and running applications in three

different VM configurations: 256MB, 512MB and 1024MB. No other parameters,

such as the number of CPU cores, the enabled CPU features (PAE/NX, VT-s/AMD-

V), and the configured peripherals, were altered.

Figure 9 presents the VM-LM of an idle VM. In this test, it was possible to observe

a slight increase in the allocated kernel memory as well as an increase in the

memory allocated to the VM. This is the effect of the Linux kernel requiring about

2MB of memory for managing every additional 256MB of memory. In this setup

the memory stack size was set to 8192 bytes.

Figure 9: Idle VM Live Migration (256/512/1024MB)

VIRTUAL MACHINE LIVE MIGRATION

86 | P a g e

It can also be noted that there was a minor increase in the total data transferred

during the VM-LM. However, adding additional memory to idle the VM instance

has only a minimal impact on the total transferred data: migrating an idle VM

with 256MB memory transferred about 80MB and increasing the size of the

configured VM memory from 256MB to 1024MB resulted in only around 10MB

more data being transferred.

4.3.4. APACHE HTTP SERVER

In this experiment we deployed the Apache HTTP Server (v2.4.18 compiled with

APR 1.5.2) in the Guest OS. The Apache server was configured to serve static

content (10MB of images) over the HTTP channel. To have a reference point, an

idle Apache HTTP Server instance was measured initially.

Transferring a VM instance using an idle Apache HTTP Server instance required

ca. 170MB of network traffic. To simulate increasing user traffic, multiple

continuous requests were generated with JMeter (v2.13) deployed on the

external machine. JMeter is software designed to load test functional behaviour

and measure performance of Web Applications such as web servers or services.

In this research, JMeter simulated from 50 to 250 concurrent users, ca. 65 to 220

requests per second. It should be noted that the requested content was static,

meaning that the additional allocated memory was mainly to support the

increasing number of simultaneously open connections.

Figure 10 demonstrates the almost linear correlation between the total

transferred data and memory utilisation. It should be noted that opening and

handling additional TCP connections is processed in the system’s TCP/IP stack,

which could impact the size of the canonical memory allocated by the Linux

kernel.

VIRTUAL MACHINE LIVE MIGRATION

87 | P a g e

Figure 10: 50-250 users Apache HTTP Server Live Migration

This test scenario produces a near-linear correlation, as the migrated webserver

is light on computations and the writable memory set size is rather constant.

Therefore, an additional SPECjvm2008 experiment was used to examine how

CPU-intensive applications behave during VM-LM.

4.3.5. SPECJVM2008 SUITE

The experiments with CPU-intensive applications involved the SPECjvm2008

benchmark suite executed on Java 1.6.0_06-b20 OpenJDK. SPECjvm2008

evaluates the performance of encryption and decryption implementations,

various compression methods, floating point operations, objects

serialisation/deserialisation, graphics visualisation, XML transformations and

others. Therefore, this suite performs a set of backend-heavy operations.

Similar to the previous test with the Apache HTTP Server, it was necessary to

firstly examine the impact of the VM memory size on data transfer. In order to

force the loading and caching system libraries, a single SPECjvm2008 process was

VIRTUAL MACHINE LIVE MIGRATION

88 | P a g e

run initially. It should be noted that SPECjvm2008 batch files were configured

with a 96MB maximum heap space. Java, by default, allocates a quarter of the

available physical memory upon starting, which might interfere with the running

of as many as eight benchmark processes in parallel.

The test deployed an increasing number of SPECjvm2008 instances which were

executed on a single VM machine. The main reason for this test was that those

processes are separated; therefore, each of them will increase the WWS by a

comparable size. Figure 11 demonstrates the test results, which are visibly

clustered in groups denouncing from 1 to 8 instances executed in parallel. Aside

from the first SPECjvm2008 process which loads up about 32MB of libraries, each

additional SPECjvm2008 process allocates additional ca. 15.5MB of memory. The

increase in transferred data is visibly exponential.

Figure 11: SPECjvm2008 Live Migration (1-8x processes)

This test also highlights a relative inefficiency when the active Java applications

within a VM instance are being migrated. Good results are hard to achieve due

to the increased memory movements caused by Java's GC. A solution to remedy

VIRTUAL MACHINE LIVE MIGRATION

89 | P a g e

such scenarios has been proposed by Hou et al. (2015), namely a custom kernel

module which pauses JVM and invokes the GC just before each VM-LM round,

then only objects from the tenured generation are being copied. In the final VM-

LM round with the VM entirely paused, all objects from both the young and the

tenured generation of the heap are being copied. Presented results show

significant reduction of the total VM-LM time by over 90%, compared to the

vanilla VM migration.

4.3.6. POSTGRESQL DATABASE

A typical online system consists of a frontend application, its backend services

provider and a persistent storage component, usually in the form of a database.

Having examined a popular frontend application (Apache HTTP Server) and a

simulated backend application (SPECjvm2008), the persistent storage

component now needs to be examined. While the current IT universe offers a

wide range of specialised database solutions, such as graph-databases, NoSQL-

databases, object and document-oriented databases which are suited to

different data models, the most commonly used are still relational databases,

such as Oracle, MySQL, Microsoft SQL Server and PostgreSQL, among others.

In this research, a PostgreSQL version 9.2.24 database (Obe and Hsu, 2017) was

selected due to its popularity, ease of use, reliability, stability, wide range of

supported platforms, and design fit for a high-volume environment, while also

being an Open-source project. At the time of writing, the PostgreSQL is often

rated as third or fourth in the popularity index, with a market share of 26.5% of

all actively used databases worldwide (Stack Overflow, 2017). Given this, it is a

representative choice for experimentation.

VIRTUAL MACHINE LIVE MIGRATION

90 | P a g e

The following SQL commands were used to generate a test data table with one

million rows of randomly generated strings, and then to apply an index to one of

the columns:

SELECT

 generate_series(1,1000000) AS id,

 md5(random()::text) AS dataRaw,

 md5(random()::text) AS dataIndexed INTO TestData;

CREATE INDEX TestData_idx ON TestData(dataIndexed);

The test data came in two types: unindexed and indexed using default

PostgreSQL B-tree. The SQL query optimiser can use database indexes when

filtering and retrieving data from database tables, meaning a reduction in

response time. B-tree indexes support general comparison operations such as >,

<, =, etc., and also partially 'like' clauses. B-tree indexes can also be used to

retrieve data in a sorted order. The test database which was generated allocated

2.11GB of disk space. It was stored remotely to the NAS device and mapped

locally.

The next trials were designed to measure changes in the data transferred during

VM-LM as PostgreSQL was running an SQL query. Those experiments were the

most challenging to register consecutive results since the PostgreSQL database

relies on multi-level caching to speed up its operations. It should be also noted

that those tests did access files outside their VM as PostgreSQL was configured

to store the bulk of its data on a remotely accessed NAS device and its cache

buffers were cleaned between tests by restarting the server daemon service. OS

was also forced to first synchronise and then drop disk caches within the same

commands flow:

sync; /etc/init.d/postgresql-9.0 stop; echo 1 >

/proc/sys/vm/drop_caches; /etc/init.d/postgresql-9.0 start

VIRTUAL MACHINE LIVE MIGRATION

91 | P a g e

The subsequent experiments were split into two groups, presenting different

scenarios:

• Where ‘select’ queries were run first on an indexed data and then on

unindexed data, with the ‘like’ clause appended in both scenarios. In the

first scenario, the query engine used a previously created index and

loaded only data for matching rows. In the second scenario, the query

engine was forced to iterate through each of the table’s rows to collect

results. The main assumption for this group was that the additional

memory activity from loading all the data would significantly increase the

size of WWS and, as such, the first scenario would result in a smaller LMDT.

• Where an ‘update’ query modified parts of a test table. Five separate

scenarios were designed, updating 20%, 40%, 60%, 80% and 100% of

consecutive table rows respectively. Updating larger data sets involves

building larger database transactions logs and requires more intensive

memory operations which results in the expansion of the WWS.

Furthermore, the ‘update’ operations require the modification of remote

database files which are accessed over the network, and changes must be

additionally committed via the CIFS protocol, the mechanism which is the

additional source of memory activity.

During experiments using the ‘select’ query, the PostgreSQL processes allocated

ca. 229MB in addition to the memory allocated by Guest OS. Predictably, queries

involving the indexed data were executed much faster than queries executed on

unindexed data, taking three and eight minutes respectively. Interestingly, there

was no noticeable LMDT difference when executing ‘select’ queries on indexed

and unindexed data columns, meaning that the size of the WWS remained

roughly the same. The explanation for this behaviour is the extensive reuse of the

memory cache buffers by PostgreSQL. Until buffers are not dirtied by data

modifications, they can be rapidly released and reused. The PostgreSQL exposes

VIRTUAL MACHINE LIVE MIGRATION

92 | P a g e

‘pg_buffercache’ view, which is useful for examining the inner workings of the

buffering. The first noticeable aspect during the scenarios with ‘update’

operations was the considerable slowdown during the VM-LM process. Normally,

the update of one million rows would take two minutes outside VM-LM, and five

minutes while VM was being migrated.

Figure 12 presents the results of the experiments. Processing ‘update’ operations,

which altered 20% of rows, resulted in ca. 310MB being allocated by PostgreSQL.

Increasing the range of updated rows resulted in ca. 40-55MB memory being

further allocated by database processes for each additional 20% of all the data

rows processed. The allocated memory size changed very rapidly, and so only the

range of memory changes is given. There was no noticeable difference between

when an indexed or unindexed data was updated.

Figure 12: PostgreSQL Live Migration (20%-100% updated rows)

This test emphasised the exponential nature of LMDT while migrating rapidly

changing data. However, it also highlighted the difficulties of measuring the exact

size of allocated memory and isolating WWS. Considering those difficulties, the

VIRTUAL MACHINE LIVE MIGRATION

93 | P a g e

next series of tests has focused on creating a custom program generating an

artificial WWS.

4.3.7. CUSTOM VM-ALLOCATOR

The above scenarios test real-world scenarios, but it is difficult to measure the

exact parameters of the running applications, such as the WWS size. It was

decided to implement a simple custom program (see Appendix D), VM-Allocator,

to help with the experiment. VM-Allocator used the following parameters:

• Total Allocated Memory size – this memory is allocated and randomised

upon the program’s start. It should be noted that the setting of the VM-

Allocator’s memory pages remain fixed for the duration of test;

• WWS Size – this memory is part of the Total Allocated Memory and is

continuously overwritten with random data. Several continuously

working threads are used to write to WWS memory area;

• WWS Overwrite Interval – this parameter controls the speed of writing to

the WWS memory area. In experiments the interval was set at one second;

• WWS Overwrite Threads Count – this parameter sets the number of

concurrently memory overwriting threads. In test implementation, a

single thread writes to the memory sequentially, thus in our experiments

four threads were used to keep dirtying memory pages more randomly.

There was a preference to avoid overwriting memory faster than the network

could transfer it. This would result in very linear VM-LM data transferred increase.

Since the WWS memory area would be transferred every VM-LM round, the

memory could only be finally synchronised in the final round.

VIRTUAL MACHINE LIVE MIGRATION

94 | P a g e

Figure 13: VM-Allocator Live Migration Cost (WWS 10%-30%)

Figure 13 presents our WWS test results. In this assessment, the aim was to

measure the impact of the WWS size on the transferred data. Therefore, it was

necessary to test several different ratios of WWS vs. Total Allocated Memory –

10%, 20% and 30%. The increase in WWS size (without an increase of the memory

overwriting speed) exponentially increases the LMDT size. The VM Allocator

initialises all memory only once upon starting. Therefore, the measured used

memory varies only marginally. As in previous examinations, the increase in

transferred data is exponential.

4.4. LIVE MIGRATION DATA TRANSFER FORMULA

Designing a method to accurately estimate live program migration time is not a

trivial task. Nevertheless, a considerable amount of research has been done on

the issue and several approximation models have been proposed (Clark et al.,

2005; Jin et al., 2009; Akoush et al., 2010; Liu et al., 2013) with very good results.

In Shirinbab et al. (2014), a large real-time telecommunication application was

migrated in several scenarios and the results compared. In Zhang et al. (2016) the

VIRTUAL MACHINE LIVE MIGRATION

95 | P a g e

authors determined the network bandwidth required to guarantee a particular

VM migration time.

It has been noted that the most feasible approach is to rely on historical data of

memory dirtying rate for that particular program (Liu et al., 2013). In larger data

centres, most of the workload is heterogeneous and service-oriented. The

memory access pattern of each application may vary depending on the actual

utilisation of the provided functionality. In such cases actual cost estimation may

cause deviations if a model uses only previously sampled data. Experimental

results have proven that when an adaptive model relies on historical data yields,

the results have a higher than 90% accuracy.

However, historical migration data is not always available due to new

applications, or programs not yet migrated, or where the utilisation of service has

increased significantly, or where it has not been traced. In addition, changes in

the environment may have a high impact on the migration time, for example the

migration process itself consumes CPU cycles and network bandwidth, and a lack

of these will slow down the migration process. Therefore, deriving a reliable VM-

LM cost estimation formula is of utmost importance.

Designing a general use formula for migration time is not feasible in practice.

While total migration time is consistent for the same VM software, experiments

show huge variances when migrating the same applications between different

vendors. For example, the migration of the virtualised Ubuntu instance took

between 7 and 23 seconds depending on the VM used (Hu et al., 2013). This is

also confirmed by further research (Che et al., 2010; Chierici and Veraldi, 2010;

Feng et al., 2011; Huang et al., 2011; Tafa et al., 2011).

One of the less researched factors in VM-LM is the actual size of data transferred.

This has a direct impact on the Cloud infrastructure because every additional

VIRTUAL MACHINE LIVE MIGRATION

96 | P a g e

transferred byte limits the available bandwidth, and introduces noise to Cloud

operations. Other factors such as decreased service performance, downtime, and

increased CPU usage are local and isolated to a single VM instance or a particular

physical machine at most. This experiment resulted in the following observations:

• The total configured VM memory has a small effect on the total

transferred data. The reason for this is that the Guest OS kernel allocates

a small fraction of its memory to manage the total memory. In the test

experiment, the kernel required about 2MB of memory to manage 256MB

memory. Extending the VM memory from 256MB to 1024MB resulted

only in the transference of only 10MB of additional data.

• The number of open network connections has minimal effect on the total

data transferred. This is explained by the fact that current TCP/IP

implementations are very mature, optimised and do not require many

resources to perform network operations.

• Serving static content that does not require processing is economical in

terms of VM-LM. Since data is mostly static, the majority of memory

operations are read only. Therefore, transferring the memory page can

be done only once, and thus the increase in transferred data during VM-

LM is nearly linear.

• The high degree of computation activity by itself has no noticeable impact

on the size of transferred data. However, the computation-intensive

processes and programs that significantly alter the memory state have the

most substantial impact on the VM-LM data transfer size. When a

memory page is repeatedly changed by write operations, the VM would

repeatedly transfer it over the network. When the speed of dirtying those

memory pages exceeds the available network bandwidth, those pages will

be marked and must be transferred in the final round of migration.

VIRTUAL MACHINE LIVE MIGRATION

97 | P a g e

• In experiments, every node has pre-mapped remote storage upon start.

Therefore, there is no additional cost for accessing shared drives. Such

setup is widely used in clusters and Clouds.

From the above observations, the most significant factor in estimating the size of

transferred data during the VM-LM process is the migrated application’s

allocated memory itself. Very rapid (i.e. faster than the network can transfer it)

and fully overwriting WWS will result in this area of memory being fully migrated

over and over again throughout all VM-LM rounds. Therefore, the increase of

transferred data in this rare case is linear since WWS will always be transferred

n-times. However, it is highly unlikely that the application will consistently

overwrite WWS fully. Based on our experiments, the following formula for the

size of the LMDT has been devised:

𝐿𝑀𝐷𝑇 = 	𝐶𝑀𝐷𝑇 + 𝑀𝐹 ∗ 𝑒(xy∗xz) (10)

• AM (Application Memory):

𝐴𝑀 = 𝑇𝑜𝑡𝑎𝑙	𝑈𝑠𝑒𝑑	𝑀𝑒𝑚𝑜𝑟𝑦 − 𝐶𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙	𝑀𝑒𝑚𝑜𝑟𝑦 (11)

Note that in our experiments, the Canonical (Kernel) Memory was

measured together with any libraries loaded. System libraries and

modules are loaded upon request and then are cached in the kernel

memory and are shared by other applications.

• AF (Application Factor) – this parameter varies per application, and

experiments show that the best approach is to estimate it by running

several simulations. This parameter determines how steep the rise of

LMDT is. In general, applications with complex logic modify memory pages

more often and a significantly higher number of memory pages are being

marked as dirty. This is especially true for AMM, which tends to re-

VIRTUAL MACHINE LIVE MIGRATION

98 | P a g e

allocate substantial amounts of data during the memory reclaim phase.

The values presented in Table 5 were estimated from test experiments.

• MF (Migration Factor) – this parameter depends on infrastructure and it

has been constant through all test experiments. In this experiment MF =

9.6MB.

• CMDT (Canonical/Kernel Memory Data Transferred) – each VM and the

contained applications transfer a certain chunk of data every time. This is

measured when both the VM and applications are idle, i.e. no user

requests are served and no data is processed. It should also be noted that

the first instance of the application increases the canonical memory since

the required libraries are loaded and cached in the memory. The

estimated values in the test experiments are summarised in Table 5.

When applied to the experiment data, the above formula closely estimates the

total size of the transferred data. For less computation-intensive applications,

such as the Apache HTTP Server, the average approximation error is about ±4%;

the value is adjusted for iptraf measurement error margin. For computation-

intensive codes like SPECjvm2008, PostgreSQL and VM-Allocator, the average

approximation error is between ±8% and ±11%.

Application (for 1024MB VM configuration) CMDT [MB] AF

Idle VM 90 -
Apache HTTP Server (v2.4.18 compiled with APR 1.5.2) 175 0.00682
SPECjvm2008 115 0.03305
PostgreSQL (v9.2.24) 145 0.01072
VM-Allocator Test I (WWS is 10% of total memory) 213 0.00620
VM-Allocator Test II (WWS is 20% of total memory) 213 0.00676
VM-Allocator Test III (WWS is 30% of total memory) 213 0.00714

Table 5: Application estimated LMDT values

The presented LMDT formula does not consider the cost of switching existing

network connections to a new node. This is usually negligible since it is done in

the hardware layer but depending on the implemented solution this additional

VIRTUAL MACHINE LIVE MIGRATION

99 | P a g e

cost might vary. In addition, network data compression and optimizations like

adaptive memory pages’ compression (Liu et al., 2013) might significantly reduce

the size of the transferred data.

The input parameters in LMDT formula, such as AM, AF, MF and CMDT, were

computed for a particular test configuration. These values will differ depending

on environment, for example VM vendor and version, hardware specifications,

network structure and available bandwidth, type and configuration of Guest OS,

a particular migrated application, and so on. However, an analysis of the code

reveals likeness of algorithms used in other VMs and the implemented network

transfer method (i.e. TCP/IP packages streaming). It has been noted that, given

similar environments, there is little variety in the VM-LM impact, and historical

data can be used to accurately estimate these metrics and parameters.

The most practical way to obtain those values is through experimentation.

Therefore, the working model should be capable of monitoring ongoing VM-LM

and adjusting itself accordingly. Such a solution has been presented in the

literature (Akoush et al., 2010; Verma et al., 2011) with good results. In practice,

the best approach may be to initially benchmark all applications that are

deployed on the Cloud system and then use these data to project the migration

cost for this particular application based on recorded parameters.

4.5. SUMMARY AND CONCLUSIONS

This research demonstrates that while the methodology for estimating the VM-

LM cost should be tailored to a particular environment such as the deployed VM,

network configuration, used storage types, available CPU cycles for migration, it

is possible to find a reliable approach for the purposes of estimation. From the

previous research and our experimental results, several factors have been

identified as having a significant impact on the task migration cost:

VIRTUAL MACHINE LIVE MIGRATION

100 | P a g e

• The size of the allocated application memory and the size of WWS (or

memory dirtying rate) – memory-write-intensive applications are difficult

to migrate since frequently modified memory pages must be migrated

repeatedly over and over again. As presented in experiments in this

chapter, the size of WWS is often related to a specific application design

and utilisation level.

• Frameworks equipped with AMM – this type of solutions, such as Java's

GC, are considerably harder to migrate. This is due to the significant

amounts of data being re-allocated during the memory reclaim phase

which results in larger numbers of memory pages being marked as dirty

in each VM-LM round. As mentioned in section 4.5 there exist efficient

strategies trying to address this weakness, however they require much

tighter coupling with the application deployed within the VM which might

not be always possible.

• The available spare CPU cycles on both the target and the source

machines – migration is an OS process executed on the same physical

machine as a hypervisor. Low CPU cycles can create a bottleneck in the

migration process itself (Wu and Zhao, 2011). It was also noted that

assigning additional CPU cycles to the migration process reduces the total

migration time but only to a certain point.

• The size of the virtual drivers mapped to the local storage media and the

IOPS rate – if data is stored locally and not on a NAS device, it needs to be

transferred together with the VM state. Persistent data size can be

substantial such as several TBs of data and can be a dominant factor in

the migration time (Hu et al., 2013).

• Migrating several VM instances in parallel – multiple concurrent

migrations might interfere with each other. They are also likely to be

slower than the same VM instances migrated sequentially one after

another.

VIRTUAL MACHINE LIVE MIGRATION

101 | P a g e

• The network bandwidth available for migration – the migration process

consists of transferring amounts of serialised data over the network to

another physical node. The more network throughput can be allocated to

migration, the faster it will complete. Additionally, a slow transfer rate

might result in larger WWS, i.e. the memory dirtying rate exceeds network

capabilities (Clark et al., 2005; Liu et al., 2013). Earlier experiments were

performed on a Wi-Fi network, where VM teleportation was very unstable.

Analysing the VM-LM cost is not simplistic and can have many dimensions and

return various results based on the Cloud system. Therefore, it is necessary to

apply appropriate limitations to the cost model and focus exclusively on the most

important factors. As has been demonstrated in our experiments, estimating the

LMDT size is not a trivial task, and many parameters need to be considered.

Nevertheless, the results computed with LMDT formula have an acceptable

approximations level of up to ±11% in the worst-case scenario.

The scope of this research has been necessarily limited to the available software

and hardware. All tested applications were executed on a single VM instance,

while present systems tend to have more complex dependencies, such as

distributed databases and file systems and 3rd party systems. Especially, the

design of modern systems seems to follow the micro-services architecture

principles. In such environments, loss of performance in one system component

could easily propagate to other parts of the system.

The experiments presented and the resulting LMDT formula completed the

CRUM introduced in Chapter 3, meaning that the project could move to the

practical part of research. The following chapters describe, firstly, (i) a simulation

framework based on a real-world workload traces (Chapter 5), and then (ii) the

actual implementation of two Cloud load balancer prototypes (Chapters 6 and 7).

ACCURATE GOOGLE CLOUD SIMULATOR

102 | P a g e

5. ACCURATE GOOGLE CLOUD SIMULATOR

Theoretical investigations into the Cloud's resources model, in addition to

practical experiments on the virtualisation layer (as detailed in Chapter 3 and 4),

have highlighted the immense complexity of the workings of the Cloud

environment. It became obvious that statistical data and a dry analysis by itself

were insufficient for the research to move further, and that a more detailed and

concrete approach was required, such as an analysis of the actually recorded

Cloud workload.

The direct predecessors of Cloud systems were cluster and grid systems. The

difference between a cloud and a cluster is that a cluster is a group of computers

which are interconnected between themselves using high-speed networks, such

as gigabit Ethernet, SCI and Myrinet, whereas Cloud servers can be geographically

distributed. The main difference between the cloud and the grid is the resource

distribution strategy applied. The grid model is decentralised and computation

may occur over many administrative areas, whereas the cloud features a

centralised resource distribution and resources are dynamically provisioned

(Mateescu et al., 2011). In addition, clouds are usually a collection of computers

owned by one party which are open to the public, the available computing power

of which can be rented by anyone. In contrast to this open access, grid computers

are owned by multiple parties and are usually closed to the public (Armbrust et

al., 2009).

Correctly characterising user behaviour is of utmost importance when modelling

Cloud workloads (Sharma et al., 2011; Malhotra and Jain, 2013; Shen et al., 2015).

Cloud workloads have been researched in detail and are reasonably well

understood (Mishra et al., 2010; Wang et al., 2011; Sharma et al., 2011; Zhang et

al., 2011; Moreno et al., 2013; Reiss et al., 2012; Abdul-Rahman, et al., 2014).

There have been limited attempts to accurately simulate Cloud workloads with

ACCURATE GOOGLE CLOUD SIMULATOR

103 | P a g e

consideration of detailed task parameters and constraints (Beitch et al., 2010;

Ganapathi et al., 2010; Kliazovich et al., 2012; Calheiros et al., 2013), especially

with consideration of workload scheduling.

Evaluating the performance of distributed applications and services without

unrestricted access to existing Cloud environments is a very difficult task. The

characteristics of a cloud workload in a data centre differ significantly from

traditional grid computing (Di et al., 2012). There is only a limited number of

publicly available cloud system workload traces in existence, and those are

stripped of useful details (Mishra et al., 2010). The research community relies

predominantly on simulations and models to conduct their experiments. The

quality of input data and its realistic nature is a very important factor since it has

a direct impact on the accuracy of results. Cloud systems are very dynamic,

complex entities, and even the best simulation models must employ

simplifications and are unable to provide realistic user configurations. This

problem is even more visible when the studied area touches deep system-critical

mechanisms such as task scheduling or fault handling and prevention schemes.

Normally, Cloud providers would not allow developers to alter core system

components such as the scheduler or the provisioning services in a working

system. In an ideal scenario, every Cloud system designer would have

unconstrained access to a Cloud system of a considerable size which could be

used as a test bed for developing models and strategies. However, in reality, a

developer has to compete for access to a computing centre with many other

business units.

Therefore, this part of the research has focused on building a flexible Cloud

workload simulation framework which could be deployed in a local environment,

i.e. the researcher’s desktop machine or laptop, while providing at the same time

high-quality, detailed and accurate workload parameters of the simulated Cloud

ACCURATE GOOGLE CLOUD SIMULATOR

104 | P a g e

system. Previous research and analysis of available workload traces show that

Cloud workloads are usually highly variable and non-cyclical. Spread around the

globe, Clouds’ users are not constrained by predefined schedules, meaning that

the workload is not correlated to season or time of day, in contrast to Grid and

Cluster environments. Therefore, to research the proposed problem, a realistic

Cloud workload simulation model is required. In order to setup a realistic scenario,

two approaches can be used:

• Use an artificial Cloud workload generator (Beitch et al., 2010; Ganapathi

et al., 2010; Wang et al., 2011; Malhotra and Jain, 2013).

• Acquire and parse real-world workload traces (Iosup et al., 2008; Kavulya

et al., 2010; Hellerstein et al., 2010; Klusáček, 2014; Feitelson et al., 2014;

El-Sayed et al., 2017) to a format which can be used in further research.

A number of simulators already exist addressing various aspects of the current

Cloud systems such as computations, for example CloudAnalyst (Wickremasinghe,

2009), CloudSim (Garg et al., 2011) or networking/energy use, for example

GreenCloud/NS2 platform (Kliazovich et al., 2012). However, those simulators,

while very flexible, do not provide details about the fine-grained parameters that

might be required in some types of simulation, such as memory page size, cache

size, disk I/O time, cycles and memory access per instruction. Such low-level

parameters can be obtained only from detailed real-world workload logs.

This chapter presents the AGOCS – a novel high-fidelity Cloud workload simulator

which is based on parsing real-world workload traces. According to previous

research and personal computing experience, building a high-fidelity workload

generator is an extremely difficult task. The number of dependencies, constraints

and other details required to capture the overall dynamicity of Cloud systems

(Zhang et al., 2011) forces researchers to simplify models and make assumptions.

ACCURATE GOOGLE CLOUD SIMULATOR

105 | P a g e

Therefore, a decision was made to base the test approach and simulation on real-

world workload giving greater detail.

This chapter is based on previous work published in Sliwko and Getov (2016).

5.1. WORKLOAD TRACES ARCHIVES

The following workload traces are publicly available:

• Google Cluster Data (GCD) project (Hellerstein et al., 2010) – this

repository (available from github.com/google/cluster-data) includes

detailed traces over a month-long period (May 2011) from a 12.5K-node

network. The statistics include CPU usage, memory usage, disk I/O

operations (only for the first two weeks, after that the logs’ configuration

changed), network speed etc.;

• Grid Workload Archive (Iosup et al., 2008) – hosted in Delft University of

Technology in the Netherlands. This repository contains workload traces

from almost a dozen grid systems. The majority include CPU usage,

memory usage and disk I/O operations;

• Parallel Workloads Archive (Feitelson et al., 2014) – this repository

contains over 30 workload logs from around the world. The earliest traces

are from 1993 and the latest from 2012. Those workload traces were

thoughtfully cleaned of anomalies and data errors;

• MetaCentrum Workload Log (Klusáček, 2014) and CERIT-SC Grid

Workload (Klusáček and Parák, 2017) – archive contains data sets

generated from TORQUE workload traces, deployed in the Czech National

Grid Infrastructure (22 clusters having 219 nodes with 1494 CPUs);

• Yahoo! M45 Supercomputing Project (Kavulya et al., 2010) – Yahoo! made

its 4k-node Hadoop cluster’s workload traces freely available to selected

universities for academic research.

ACCURATE GOOGLE CLOUD SIMULATOR

106 | P a g e

All the above repositories, except for the Yahoo! workload logs, can be used

freely for research work since there are no legal restrictions and/or requirements

for presenting these data or derived data in any kind of research work.

For the purposes of this research, real-world workload traces from the GCD

project are used. The main reason for the selection of this repository is the high

quality of workload traces. Traces are complete and contain a low number of

anomalies which are thoughtfully explained including their schema and format

(Reiss et al., 2013). They have been gathered from a large system over a

significant period of time.

Google offers a variety of services, and therefore their backend systems are

diversified and represent a complete spectrum of computation requirements.

Few computing services require as much computation per request as search

engines. On average, a single query requires the examination and processing of

hundreds of megabytes of data, even when elegant optimisations like reverse-

index (Byrne et al., 2001) applied. At the heart of every Google search query

processing lays the PageRank algorithm (Richardson and Domingos, 2001) which

tracks and evaluates the importance of every result, meaning that users can

receive the most significant results at the top of results page. Additionally, every

query is checked by the Spell Checker service and is also processed by the Ads

server, where most of Google revenue comes from. For a detailed description of

how the search query is processed at Google datacentres, please see additional

research findings (Barroso et al., 2003).

Google engineers focused on designing a throughput-oriented framework in

which ca. 80% of the workload consists of a high number of batch jobs, which

have a runtime of 12 to 20 minutes (Schwarzkopf et al., 2013) and a smaller

number of long-lived service jobs. This mixed longevity of submitted jobs creates

very good testing field for the purpose of this research, where the aim is to design

ACCURATE GOOGLE CLOUD SIMULATOR

107 | P a g e

a flexible and scalable scheduler capable of handling very high workload on any

number of nodes. Other designs seem to be focused on processing either the high

churn of short-lived batch tasks (e.g. Microsoft’s Apollo and Alibaba’s Fuxi) or a

smaller number of long-term services (e.g. Twitter’s Aurora). Finally, Google Inc.

is a global company and its data centres are working continuously 24-hours a day.

Its clusters’ workloads are not cyclical, which could be a problem if using traces

from a more local data centre.

Almost all Google Cloud performance profiling is done with help of the Google

Wide Profiling (GWP) framework (Ren et al., 2010). GWP is inspired by systems

such as DCPI (Anderson et al., 1998) and is based on the premise of low overhead

sampling both of the machines within the datacentre and of the execution time

within a machine. Every day, GWP collectors randomly select a limited number

of Cloud nodes to profile and start profiling routines via RPC calls. The profile data

are collected via the ‘perf’ tool and are tagged with corresponding code locations.

They are then aggregated with samples from other machines in the Dermel

database (Melnik et al., 2010) for convenient analysis (Kanev et al., 2015).

The GCD workload traces are stored in the Cloud Storage in the bucket

‘clusterdata-2011-2’, and can be downloaded using the 'gsutil' tool. The

compressed archives are approximately 41GB, while the uncompressed archives

are about 191GB. Unfortunately, no logging system is perfect, and every

workload trace examined has a proportion of anomalies. The GCD logs are of high

quality, although there are a few known inconsistences:

• Disk time data is not logged after the first 14 days due to changes in the

monitoring system;

• Approximately 0.003% of jobs are not listed as they run on nodes not

included in the workload traces;

ACCURATE GOOGLE CLOUD SIMULATOR

108 | P a g e

• Approximately 70 jobs have no task information. The explanation given is

that those jobs run but the tasks were disabled;

• Approximately 0.013% of the task events and 0.0008% of the job events

have missing fields;

• Fewer than 0.05% of job and task scheduling event records are missing

and less than 1% of resource usage measurements are missing.

Some resource statistics data are inaccurate, for example the cycles per

instruction and the memory accesses per instruction parameters have values out

of range for the underlying micro-architecture. The cause of this might be bugs

in the statistic measurement system.

Additionally, GCD traces were obfuscated from user data, operating system and

platform details, job purpose information and special constraints’ names and

values. These characteristics would be a very interesting point of research. It is

also important to point out that GCD workloads are delayed by ten minutes. This

shift has been applied in order to split pre-existing cluster conditions such as

already existing nodes from new incoming requests, for example scheduled tasks

and resource utilisations.

5.2. GOOGLE CLOUD WORKLOAD

There are many ways of splitting the distributed computing system’s workload

into unique categories of tasks. Based on existing Google Cluster workloads

analysis, the 80th percentile of batch jobs finish within 12 to 20 minutes, while

the 80th percentile of tasks finish within 29 days. Most jobs (ca. 80%) are batch

jobs. Batch jobs tend to have a fast turnaround with a short execution time; in

Google Cluster the 80th percentile inter-arrival time is between 4 to 7 seconds.

Therefore, a low-overhead and low-quality allocation algorithm is suitable for this

type of job. Services execute for much longer, and usually involve some type of

ACCURATE GOOGLE CLOUD SIMULATOR

109 | P a g e

interactivity, meaning that high-quality allocation guaranteeing good

performance is critical. In Google Cluster fewer than 20% of all jobs show the 80th

percentile inter-arrival time as between 2 to 15 minutes. However, services tend

to consume a majority of system resources – approximately 55-80% of all

resources in Google Cluster (Schwarzkopf et al., 2013). Those values seem to be

comparable with results from a similar analysis of available cluster workload

traces like Yahoo! (Kavulya et al., 2010), Facebook (Chen et al., 2012) and Google

(Mishra et al., 2010; Sharma et al., 2011; Zhang et al., 2011; Reiss et al., 2012).

The examined workload traces do not specify details about underlying

architecture, although some details about Google Cloud’s architecture and jobs

specifications can be found in Kanev et al. (2015). From examining the workload

logs, it was found that Google Cloud jobs show significant diversity in workload

behaviour, with no single hotspot application. From a software point of view, the

jobs’ executables look sound and Google engineers seem to put a considerable

amount of effort into profiling and optimising them. While a significant number

of Google services are written in a variety of programming languages, such as C++,

Java, Python and Go, it is the C++ code that consumes most of CPU cycles. Code

sharing is frequent, but binaries are generally statistically linked in order to avoid

dynamic dependency issues, as well as to gain a small performance boost at the

expense of executable size, which often reaches 100MB. Almost all Google’s

datacentre software is stored in a single shared repository and is built using a

single build system – Bazel (ibid.).

Google services are deployed on RedHat. Instances are heavily customised, and

many OS-level libraries were modified to boost performance or to provide better

security, for example in the replacement of malloc by tcmalloc (Ghemawat and

Menage, 2005).

ACCURATE GOOGLE CLOUD SIMULATOR

110 | P a g e

Google Cloud has an architecture formed of distributed, multi-tiered services,

where services expose only limited sets of APIs. Such a pattern helps to reduce

necessary testing. Communication between services is performed only via RPC

calls, where requests and responses are serialised in a Protocol Buffers format

optimised for reducing the size of data (Varda, 2008). Protocol Buffers do not

explicitly implement any type of compression, although it supports ‘varint

encoding’ – a variable-length encoding for integer data that means small values

use less space, i.e. values 0-127 take one byte plus the header, even if the field

type is bit-wise wider, for example 64-bit integer. As with many other Cloud

systems, Google Cloud is gradually becoming more and more diversified. Data

centres were initially built with a single ‘killer-application’ in mind (Barroso et al.,

2003), but nowadays the utilisation model of typical Cloud system is to accept a

continuously increasing pool of diverse applications and services.

Kanev et al. (2015) analysed workload traces over a three-year period and noted

that during the earliest period examined (August 2011), the top 50 applications

accounted for 80% of CPU cycles. Three years later (August 2014), the top 50

applications (not necessary the same binaries) consumed only 60% of CPU cycles.

The authors argue that Google Cloud data centres are still more specialised in

their operations than publicly available clouds, which are exposed to much more

varied technology stacks. Jobs executed on Google Cloud nodes include (Reiss et

al., 2013): (i) the processes responsible for content ad targeting which matches

ads with web pages based on page content; (ii) scalable distributed storage

(‘bigtable’) (Chang et al., 2008); (iii) flight search and pricing engine; (iv) gmail

back-end server and front-end server (‘gmail’ and ‘gmail-fe’); (v) the components

of search indexing pipeline; (vi) search engine services (‘search1’, ‘search2’, etc.)

(Meisner et al., 2011), (vi) video processing tasks (‘video’) such as transcoding and

feature extraction, and so on.

ACCURATE GOOGLE CLOUD SIMULATOR

111 | P a g e

The GCD workload traces are stored in Google Storage for Developers in the

bucket ‘clusterdata-2011-2’. Traces can be downloaded by the 'gsutil' tool, and

the compressed archives are approximately 41GB. The uncompressed archives

are about 191GB. The schema and format of available assets of GCD is detailed

in Reiss et al. (2013); a description of the structure is presented in Table 6:

Files Description
Size

(uncompressed)

machine_attributes/
part-00000-of-
00001.csv

Aside from computational capacities (i.e. memory and CPU), each
machine might have a set of machine attributes as key-value pairs.
Those represent machine properties, such as kernel version, CPU
clock speed or presence of an external IP address. Unfortunately,
those values have been obfuscated, and only hashes are available.

1.21GB

machine_events/
part-00000-of-
00001.csv

The majority of nodes existed in the system before the logging
process. However, during the cluster operation a number of nodes
were shut down, upgraded or added. This part of the workload traces
contains a list of events with those actions.

2.9MB

job_events/
part-00000-of-
00500.csv
part-00001-of-
00500.csv
…
part-00499-of-
00500.csv

The jobs queue is the base of all processing. Those files contain a
sequential list of all submitted jobs to the cell. Entries in those files
state which user submitted the task, the priority of the task and the
local scheduling class (i.e. priority of access to local machine’s
resources).

332MB

task_constraints/
part-00000-of-
00500.csv
part-00001-of-
00500.csv
…
part-00499-of-
00500.csv

Tasks can specify constraints on machine attributes (detailed in
subsection 5.5.2). There are four types of constraints:

• EQUAL – checks if attribute exists and has required value
• NOT EQUAL – checks if attribute is not defined or has

different value than specified
• LESS THAN – checks if attribute (specified as integer

number) is strictly less than passed value
• GREATER THAN – checks if attribute (specified as integer

number) is strictly greater than passed value

3.04GB

task_events/
part-00000-of-
00500.csv
part-00001-of-
00500.csv
…
part-00499-of-
00500.csv

Every job contains a number of tasks to be scheduled and executed
on networked computers. Tasks specify requested resources, such as
CPU cores, memory and local disk space, priority and local scheduling
class.

16.55GB

task_usage/
part-00000-of-
00500.csv
part-00001-of-
00500.csv
…
part-00499-of-
00500.csv

Task usage is the biggest (ca. 89% of data size-wise) and the most
interesting piece of data, containing real metrics of resources used by
tasks. This includes mean and maximum memory usage,
mapped/unmapped page cache memory usage, mean and maximum
disk I/O time and cycles per instruction. The usage values were
gathered from each measurement window (usually 300 seconds), and
in some cases were aggregated from several sub-containers.

170.54GB

Table 6: Google Cluster Data archive structure

ACCURATE GOOGLE CLOUD SIMULATOR

112 | P a g e

It is also important to note that GCD workloads are delayed by ten minutes. This

shift has been applied in order to split pre-existing cluster conditions such as

already existing nodes from new incoming requests, e.g. scheduled tasks.

5.3. AGOCS ARCHITECTURE

The presented framework generates and accurately times workload events and

feeds them to the designated scheduler instance (push model). The typical

architecture for testing consists of a single stand-alone AGOCS server and a

number of simultaneously running instances of scheduling algorithms.

Figure 14: AGOCS use case

AGOCS framework was implemented in Scala functional programming language.

Since Scala is based on JVM, it allows access to a wide range of mature Java

libraries such as Google Guava and Apache Commons (see Appendix B for the

specifications of runtime libraries). The detailed simulations of distributed

computing models require a high degree of parallelisation in order to run

effectively. To develop such a highly concurrent program, an Akka

Actors/Streams framework is used because it has a very low overhead per

instance, approximately 300 bytes. Additionally, given that Akka framework can

be deployed in a distributed environment, AGOCS can be deployed on multiple

machines through simple configuration changes. Additionally, Akka library uses

Google’s efficient Protocol Buffers (Varda, 2008) as its default serialisation

mechanism for internal communications, i.e. between Akka cluster nodes.

ACCURATE GOOGLE CLOUD SIMULATOR

113 | P a g e

The development of AGOCS (and also the load balancer prototypes detailed in

Chapters 6 and 7) was done with the help of IntelliJ IDEA using native Scala plugin

(see Appendix A). This is presented in Figure 15, where a part of NA source code

can be seen:

Figure 15: Scala IntelliJ IDEA

An interesting feature of AGOCS is that it can be paused at any time, allowing

users to take a snapshot of current tasks distributions and the state of scheduled

jobs. The snapshot files contain all simulation data in a serialised form, meaning

that they can be stored and examined later. This approach enables researchers

to conveniently and directly compare various scheduling algorithms at any time

while they are running. The native Java’s serialisation mechanism (which can be

used in Scala) was initially used to store the simulation’s state; however, it was

found that it does not support very large context objects generated by

experiments simulating 100k or more nodes, and was replaced by Kryo

framework. While most simulation framework functionalities are enabled in

configuration files or triggered by a command line, AGOCS also offers a graphical

ACCURATE GOOGLE CLOUD SIMULATOR

114 | P a g e

simulation monitor module implemented in JavaFX (the visual layout of nodes is

generated procedurally from Halton sequence):

Figure 16: AGOCS simulation monitor

AGOCS was designed for common desktop machines even though it requires

loading and processing a huge amount of workload traces data (191GB of

uncompressed data). Therefore, running a simulation framework server is disk

I/O-intensive and may interfere with OS’s swap memory operations. Despite this,

it was still possible to work around this issue by attaching an external disk drive

to the test machine.

5.4. RELATED WORK

There currently exist a number of Cloud simulation frameworks such as

CloudAnalyst (Wickremasinghe, 2009), GreenCloud (Kliazovich et al., 2012),

Network CloudSim (Garg et al., 2011; Malhotra and Jain, 2013) and EMUSIM

(Calheiros et al., 2013). Those frameworks were designed to cover a wide range

of Cloud systems simulations, while AGOCS was designed with a focused goal of

simulating a Google Computing Cloud cell environment with consideration of a

very fine-grained and detailed aspect simulation such as tasks resource utilisation,

ACCURATE GOOGLE CLOUD SIMULATOR

115 | P a g e

task constraints, jobs queue simulation, jobs and tasks priority class, node’s local

scheduler simulation, detailed statistic as memory cache hit ratio and so on. A

brief comparison between these frameworks is shown in Table 7:

Framework AGOCS
CloudAnalyst

(Wickremasinghe,
2009)

GreenCloud
(Kliazovich et al.,

2012)

Network
CloudSim

(Garg et al.,
2011)

EMUSIM
(Calheiros et

al., 2013)

Platform Scala/Akka CloudSim NS2 CloudSim AEF

Language Scala Java C++/OTCL Java Java

Simulator Type Event Based Event Based Packet Level Packet Level Event Based

Supported
workload traces

Google Cluster
Data (CSV files)

Custom
(ASCII/XML)

Loadable
configuration
settings (TCL)

Custom
(ASCII/XML)

Custom
(ASCII/XML)

Networking Limited Limited Full Full Limited

Resource
constraints

Yes Yes Yes Yes Yes

Supported and
reported

resource types

- CPU Cores
(Used and
requested)
- Canonical
Memory (Used)
- Assigned
Memory (Used
and requested)
- Page Cache
Memory (Used)
- Disk I/O Time
(Used)
- Local and
Remote Disk
Space (Used)
- Cycles Per
Instruction
(Used)
- Memory Access
Per Instruction
(Used)
- Local Scheduler
(Priority Class)
- Jobs Priority
- Tasks Priority

- CPU Cores
(Requested)
- Bandwidth
(Requested)
- Memory
(Requested)
- Millions of
Instructions Per
Second

- Server Load
factor (Used and
requested)
- Bandwidth (Used
and requested)
- Memory (Used
and requested)
- Energy Used
(split by servers,
switches, etc.)
- Service Timeout

- CPU Cores
(Requested)
- Bandwidth
(Requested)
- RAM size
(Requested)
- Millions of
Instructions
Per Second

- CPU Cores
(Requested)
- Bandwidth
(Requested)
- RAM size
(Requested)
- Millions of
Instructions
Per Second

Attribute
constraints

Yes Limited No Limited Limited

Build-in
scenarios

Google Cluster
(cell A), 12.5K

nodes

Generator and
examples Examples

Generator and
examples

Several
predefined
scenarios

Table 7: Cloud simulators comparison

ACCURATE GOOGLE CLOUD SIMULATOR

116 | P a g e

5.5. SIMULATION FRAMEWORK DESIGN

All workload traces come in similar formats, where a change in the environment

state is reported as an event. In GCD the jobs queue is the base of all processing.

All entries in the jobs queue traces relate to jobs submissions, jobs cancellations,

changes in jobs’ priorities and so on. Listed jobs contain a series of tasks, which

are reported in separate log files, that are subsequently executed on available

nodes. The configuration of available nodes is reported in yet another log file.

Given this, the simulation framework must cope with several independent

sources of system configuration and must process them in a synchronised

manner. All entries in the traces files come with a timestamp or period range.

There are four main sources of configuration state changes in the workload

simulation model, namely:

• Dynamic resource usage of processes – the resources utilisation levels are

not constant through the life on an application, and indeed sometimes

vary greatly from their specified requirements;

• New jobs are scheduled and current jobs complete their processing or are

cancelled – this is the core operation in any scheduled system. When a

job is scheduled, the user specifies the required resources and constraints;

• Changes in jobs resource requirements and/or constraints – during

execution, tasks might have their resource requirements and constraints

altered. This may result in a node no longer being suitable for certain

types of task;

• Changes in nodes’ configurations – during a cluster system lifecycle,

nodes might be taken offline for maintenance or upgraded, with new

nodes being added or old nodes removed. This scenario is rarely visible in

smaller data centres, for example MetaCentrum infrastructure is

relatively infrequently updated (Klusáček, 2014). It is more common to

ACCURATE GOOGLE CLOUD SIMULATOR

117 | P a g e

find frequent alterations to configuration within larger systems such as

Google Cluster.

5.5.1. WORKLOAD EVENTS

To be able to handle this highly concurrent environment, all workload state

updates, such as new tasks, updated constraints, new nodes and removed nodes,

are done via immutable events, as shown in Figure 17.

Figure 17: Workload events class diagram

Every event is marked with a timestamp to sort event batches from several

parsers in the correct execution order. Such a setup enables the simulation

system to maintain consistency of state even under a heavy load. Detailed

descriptions of all workload events are presented below:

• AddTaskWorkloadEvent – generated for each new task. Tasks are always

generated with initial resource requirements and constraints;

• UpdateTaskRequiredResourcesWorkloadEvent – in the majority of cases,

requested resources values do not change after initial value. However, in

several instances tasks get their required resources updated and this

event will be generated;

• UpdateTaskUsedResourcesWorkloadEvent – upon execution, tasks

dynamically allocate various amounts of memory, utilise storage space in

different levels and so on. This event is generated to keep track of

currently allocated resources;

ACCURATE GOOGLE CLOUD SIMULATOR

118 | P a g e

• UpdateTaskConstraintsWorkloadEvent – task constraints are a set of

logical operators set on node attributes and their values enable or disable

execution of that task on certain node;

• RemoveTaskWorkloadEvent – this event is generated when the task

finishes its execution or is killed by the system or user. When examining

Google workload traces it was observed that significant parts of the tasks

were killed by the native system;

• AddNodeWorkloadEvent – this event is generated when a new node is

added to the cluster. The majority of these events are generated upon the

start of the simulation;

• UpdateNodeTotalResourcesWorkloadEvent – during simulation lifecycle,

certain nodes are taken offline and their resources updated (i.e. new

memory banks are added). As with AddNodeWorkloadEvent, the majority

of such events occur at the start of the simulation;

• AddNodeAttributesWorkloadEvent – this event is generated if node

attributes are updated or new attributes are added. The GCD project does

not specify the meaning of attributes as values and names are obfuscated,

but it does suggest features like the existence of external IP address and

the specific version of Linux kernel;

• RemoveNodeAttributesWorkloadEvent – as in the event above, node

attributes can be removed, for example a given node might have lost its

external IP address;

• RemoveNodeWorkloadEvent – during the recorded period certain nodes

were taken down for maintenance, or were completely removed from the

cluster. This event removes the node from the available nodes pool.

GCD traces keep record of all tasks updates and action. A task might have only

two states with a number of transformations between those states: (i) pending

(task is awaiting allocation to a node), or (ii) running (task is running on a node).

ACCURATE GOOGLE CLOUD SIMULATOR

119 | P a g e

Once allocated, the running task cannot go back to pending state. If a task is

evicted or lost a clone task is created added to the queue. Figure 18 presents the

lifecycle of a task and Table 8 demonstrates how those updates are directly

mapped to workload events in the simulator:

Figure 18: Workload events lifecycle diagram

Action Description Workload Event Type

SUBMIT
Task has been submitted to cluster
scheduler

AddTaskWorkloadEvent

(action creates a task in the queue and sends it to
Workload Manager – this is where the initial task resource
requirements are registered in)

SCHEDULE
Task has been scheduled by cluster
scheduler

(actions are the results of the actions of the internal Google
scheduler, therefore the simulator is ignoring them and no
event is generated)

EVICT

Task has been evicted (and killed) from
node. Reasons include: (i) higher
priority task was scheduled on this
node, (ii) node was taken offline, (iii)
hardware malfunctions and (iv) task
used resources exceeded node
capacity. RemoveTaskWorkloadEvent

(actions mark the end of a task and the simulator will
delete task’s definition and remove all references to it)

FAIL Task failed or became unresponsive
(i.e. execution crashed)

FINISH Task finished normally

KILL Task has been killed (by user or system)

LOST Task was terminated, but there is no
record indicating that

UPDATE
PENDING

Task priority, resource levels or
constraints were updated UpdateTaskRequiredResourcesWorkloadEvent

(actions mark changes in task priority, required resources
and constraints; these are often the result of users
changing the requirements of already submitted tasks)

UPDATE
RUNNING

Task priority, resource levels or
constraints were updated during
execution

Table 8: Tasks to workload events mapping

ACCURATE GOOGLE CLOUD SIMULATOR

120 | P a g e

5.5.2. TASK CONSTRAINTS

Changes in task constraints are independently managed via

UpdateTaskConstraintsWorkloadEvent. Aside from the required resources,

incoming tasks provide a set of constraints for the node they can run on. These

data can be found in the task_constraints files and is in the format of triple:

attribute name, attribute value and logical constraint operator. The logical

constraint operator can be:

• Equal (both numeric and text values are allowed) – the attribute has to be

present on the node and have a value equal to the specified constraint

value, or empty if no value has been specified;

• Not Equal (both numeric and text values are allowed) – the attribute has

to be either missing from node attributes list or have a different value

than the specified constraint value;

• Less Than (only numeric values are allowed) – the node’s attribute value

must be strictly less than the specified constraint value;

• Greater Than (only numeric values are allowed) – the node’s attribute

value must be strictly greater than the specified constraint value.

Figure 19 shows the implemented design of Task Constraints:

Figure 19: Task Constraints

ACCURATE GOOGLE CLOUD SIMULATOR

121 | P a g e

It should further be pointed out that task constraints, as well as resource

requirements, can be dynamically updated. Ensuring that tasks are only executed

on nodes with attributes which match Task Constraints is referred to as Goal (III).

5.5.3. EVENT PARSERS

The simulator uses five independent Events Parser, which are implemented as

the Actors from Akka framework, which read and parse workload traces data files

and generate Workload Events. Each Events Parser holds a buffer of events, thirty

minutes ahead of simulation time to avoid synchronous methods’ calls. When a

worker remains idle and the system usage is low, it will fill the events buffer. Table

9 lists Event Parsers:

MachineEventsGoogleClusterDataFileEventParser

Reads /machine_events files and generates nodes configuration events:
• AddNodeWorkloadEvent
• RemoveNodeWorkloadEvent
• UpdateNodeTotalResourcesWorkloadEvent

TaskEventsGoogleClusterDataFileEventParser

Reads /task_events files and generates tasks events:
• AddTaskWorkloadEvent
• RemoveTaskWorkloadEvent
• UpdateTaskRequiredResourcesWorkloadEvent

TaskUsageGoogleClusterDataFileEventParser

Reads /task_usage files and generates task migration cost events:
• UpdateTaskUsedResourcesWorkloadEvent

TaskConstraintsGoogleClusterDataFileEventParser

Reads /task_constraints files and generates task constraints events:
• UpdateTaskConstraintsWorkloadEvent

MachineAttributesGoogleClusterDataFileEventParser

Reads /machine_attributes files and generates machine attributes events:
• AddNodeAttributesWorkloadEvent
• RemoveNodeAttributesWorkloadEvent

Table 9: Workload events parsers

ACCURATE GOOGLE CLOUD SIMULATOR

122 | P a g e

Every five seconds WorkloadGenerator collects events from events parsers and

updates the system state in shared system object ContextData. The ContextData

object is repeatedly read by various system elements, meaning that it has been

designed so that it can support highly concurrent scenarios. All workload state is

stored in TrieMap, which is a set of thread-safe lock-free implementations of a

hash array mapped trie (Odersky et al., 2016). The TrieMap structure is more

detailed as researched (Prokopec et al., 2012). The workload simulator is highly

concurrent, and updating the shared system state is performed with custom non-

blocking operations where the main part of the code is executed in parallel. Such

a design allows the full utilisation of all available testing machine CPU cores.

Due to the size of the archive (191GB) it was not possible to fit it into the memory,

and so it was decided that the best way forward was to continuously keep reading

and parsing trace files on runtime while keeping a set of events in fast-access

memory. The main purpose of these buffers is to minimise blocking operations

while reading and preparing the next set of events. Each events parser keeps a

buffer of events in memory (thirty minutes of events ahead and no more than

one million events) and releases them to the Workload Manager on request

every five seconds. If events parser does not have the requested set events, it will

block the request (synchronous call) until enough events are loaded from the

data files. While idle, each events parser will passively keep reading the data files,

parsing them into buffered events.

Such a lightweight design allows the model to comfortably run a month-long

simulation on the testing machine (see Appendix A for specifications) in ca. nine

hours with 100x speed factor, which is equal to processing ca. 21.22GB of data

per hour. The majority (ca. 89%) of data (170.54GB) comes from resource usage

log files. After the initial loading and buffering of data (ca. 20 seconds), the system

runs with consistent ca. 10-15% CPU usage.

ACCURATE GOOGLE CLOUD SIMULATOR

123 | P a g e

Figure 20: Workload events generation

5.6. ALTERNATIVE DESIGNS

During this experiment, the design of the simulation framework significantly

evolved based on project requirements and experiences. While Scala and other

high-level languages offer a variety of out-of-the-box routines and functions,

especially related to concurrency, it is sometimes better to implement certain

functionalities to maintain better control of data flow. In the case of this workload

simulator the design featured fine-details process for generating and maintaining

workload state, while leaving the task of running processes in parallel to the Akka

framework.

Nevertheless, there are several optimisations and strategies that could be applied

to build an even more efficient workload simulator. The subsections below

discuss alternative designs for a simulator.

5.6.1. PRE-PROCESSING OF DATA FILES

The current implementation of simulator reads directly from GCD work traces

files and parses data on the fly. However, only a fraction of all available data was

actually employed. These data were especially visible when reading and parsing

ACCURATE GOOGLE CLOUD SIMULATOR

124 | P a g e

task resource usage (task_usage) files, where a majority of fields were

disregarded (i.e. mapped/unmapped page cache memory usage, mean and

maximum disk I/O time, cycles per instruction and so on). The simulator flow

could be refactored into two stages:

• First, where all available workload traces data are read, processed and

then stored into a list of events. The result list of events could be persisted

to file or other persistence media in a serialised form which could be

directly read into objects;

• Second, where workload generator reads, and replays stored previously

stored events. This step could be additionally improved by streaming

techniques as explained in the following subsection.

Such an approach would help avoid processing massive amounts of original data

and significantly reduce the overhead from parsing logic. However, the trade-off

would be higher complexity of the code and less flexibility during the experiment.

5.6.2. STREAMING EVENTS GENERATION

Java 8 (and also Scala as it is based on JVM) introduced a number of features and

optimisations for streaming operations. Most implemented transformations,

such as parsing files, filtering bogus events or sorting by timestamp, could be

natively converted into parallel operations. Such a stream would be split into

separate pipelines, with each event created and examined in a separate process

and the OS would execute each pipeline in parallel on multiple CPU cores.

Research literature includes information about Java 8 streams with an

explanation about their processing (Urma et al., 2014). It is difficult to estimate

performance gains from this approach, although it could significantly reduce the

complexity of the existing code base. The trade-off would be less control over a

ACCURATE GOOGLE CLOUD SIMULATOR

125 | P a g e

generation of events – i.e. proper timing and staging would be difficult to achieve

when framework controls the utilisation of pipelines.

The flow of proposed stream operations is presented below. The Workload

Events stream would start with reading and streaming lines from all archive files

in parallel (flatMap operation). Generating a single Workload Event might (i)

require combining several lines from several files, the logic of which is

encapsulated in Event Parsers (map operation). Each Events Parser would (ii)

generate a uniformed Workload Event object which is then (iii) accepted/denied

by Events Filter (filter operation). Filtering events is critical in order to avoid bogus

data. Finally, a collection of those objects (iv) is ordered by timestamp (sortBy

operation) and (v) feed to Workload Generator (collect operation), which then

distributes them to destination services. This kind of flow-based processing is

popular among functional programmers.

Pre-processed data could be stored either in a set of files or a database. Storing

data in a database would provide the additional benefit of a mature query

interface (i.e. SQL or NoSQL APIs) which could be used to directly examine

workload data by external applications.

Figure 21: Stream-based simulator

5.7. DATA CORRUPTION

Reiss et al. (2013) states a number of reported anomalies in GCD traces. However,

during experiments several further irregularities were found. The subsections

ACCURATE GOOGLE CLOUD SIMULATOR

126 | P a g e

below present these findings, detailing the adjustment made to the simulation

framework to mitigate those glitches.

5.7.1. REPORTED RESOURCE USAGE IRREGULARITIES

The AGOCS framework tracked global resource usage ratios, i.e. how much of the

available resource is allocated globally across all nodes. Figure 22 visually

presents global usage ratios in GCD, separately for CPU and memory, over a full-

month simulation period. A single bar corresponds to one minute.

Figure 22: Global CPU and memory usage ratios (per minute)

ACCURATE GOOGLE CLOUD SIMULATOR

127 | P a g e

Occasionally, the total memory allocated by all tasks is higher than the total

available memory on the system nodes, as reported in GCD. During simulations

in this research, five occurrences of this phenomenon were identified:

• The first spike at minute 3118 of the simulation, reporting around 130%

memory usage;

• A seven-hour period between minute 12387 and minute 12799 of the

simulation, reporting ca. 104% of peak memory usage;

• The second spike at minute 26589 of the simulation, reporting ca. 120%

memory usage;

• The third spike at minute 34694 of the simulation, reporting ca. 145%

memory usage;

• A half-hour period between minute 41479 and minute 41516 of the

simulation, reporting ca. 106% peak memory usage.

Following analysis, it was discovered that a large number of non-production tasks

were killed and then immediately restarted. Due to a ten-minute reporting

window in GCD traces, those spikes resulted in abnormal usage reports.

Therefore, the highlighted periods should be treated as examples of data

corruption and are excluded from measurements.

5.7.2. USER-DEFINED RESOURCE REQUIRED IRREGULARITIES

User-defined requirements ratios for production tasks for CPU and memory

create a more flattened pattern compared to the task resource usage in Figure

22, oscillating around 80-90% and 60-70% respectively. The memory spike at

minute 15489 was caused by a glitch in the monitoring system when a wide batch

of production tasks were cancelled and the reported values from two ten-minute

time windows overlapped.

ACCURATE GOOGLE CLOUD SIMULATOR

128 | P a g e

Figure 23 presents CPU and memory as user-defined requirements global ratios

for production tasks:

Figure 23: Global CPU and memory required ratios (per minute)

5.7.3. TASKS’ CONSTRAINTS IRREGULARITIES

GCD workload traces contain a number of internal irregularities in task

constraints events. This point was discussed briefly with Google engineers over

email exchanges, with one possible cause identified as a bug which collapsed

‘greater or equal’ and ‘less or equal’ constraints into ‘greater than’ and ‘less than’

ACCURATE GOOGLE CLOUD SIMULATOR

129 | P a g e

constraints while the data were being obfuscated. As such, it was not possible for

some tasks to be matched to any node at any time. During experiments, a total

of ca. 22.4k unique tasks with unmatchable constraints were found, grouped into

1903 execution batches. Those irregularities represent less than 0.01% of all tasks

and are easy to filter out. In this and in following simulations, those tasks are

reported as an error and ignored.

5.8. SIMULATION ACCURACY

It is virtually impossible to estimate error margins of simulation without knowing

the exact tools used to monitor workload in GCD traces. One major bottleneck in

the examined workload is memory, while CPU cores are relatively unallocated in

comparison to user-defined requirements. The high memory footprint comes

from Borg programs that are statically linked to reduce dependencies on their

runtime environment (Verma et al., 2015). The result of this would be the

allocation of more memory than if they were using shared libraries.

Additionally, GCD traces provide a very comprehensive array of memory usage

parameters, such as canonical (kernel) memory used, page cache memory used,

memory access per instruction and so on. Barring several unusual occurrences in

workload traces (see section 5.7), the traces seem to accurately report true

memory usage. This assumes that memory readings were very accurate and were

drawn directly from the kernel. This is also supported by data, where memory is

often allocated at exactly the maximum level for a given node. In such a scenario,

the error margin for the presented simulations must have been negligible.

The GCD data has been obfuscated, and the size of the requested and used

memory and the CPU are available only in normalised form, with a value of 0.5

being the most frequent for a node. As such, determining the amount of memory

allocated for a program is not trivial. While Google does not disclose the

ACCURATE GOOGLE CLOUD SIMULATOR

130 | P a g e

hardware parameters of its node servers, in 2009 CNET’s reporter captured a rare

photo of Google server mainboard Gigabyte GA-9IVDP (Shankland, 2009),

equipped with eight filled DIMM slots of memory and with the custom-made 12V

battery attached (used to reduce the impacts of power outages):

(Image reproduced with permission of the rights holder, Stephen Shankland/CNET)

Figure 24: Google node server photography (2009)

GCD traces were recorded in May 2011, meaning that it is safe to assume that

the presented server was commonly used as a node in Google data centres over

this period. Using this hardware, a typical fully-equipped GCD node would be able

to support up to 64GB of memory. The assumption about this value is shared in

Zhang et al. (2014a) and is used as an input for calculating the task migration cost.

As an interesting aside, it should be noted that Google’s hardware has advanced

significantly since GCD traces were first recorded. Since 2015, Google has

deployed Tensor Processing Units (TPU) in its data centres. TPUs are used to

support deep learning algorithms, and have very high computing power

requirements, especially for speech recognition services (Jouppi et al., 2017). In

November 2015, Google released TensorFlow, an open source library for

ACCURATE GOOGLE CLOUD SIMULATOR

131 | P a g e

supporting Machine Learning routines such as defining models and training them

(Abadi et al., 2016).

The AGOCS framework itself records minuscule variances in nodes and tasks

counts that are the result of concurrent update operations, while modifying

shared context data objects (see the note in Appendix F). In comparing results

from distinctive simulations, no instance has been identified where node counts

differ by more than one node in one-minute intervals. Regarding task counts, the

highest difference found was nineteen tasks. Considering the insignificance of

this effect, it was therefore accepted as a trade-off for better performance.

5.9. PERFORMANCE EVALUATION

The closest alternative Cloud simulator to AGOCS is CloudSim package (Calheiros

et al., 2011), created by Melbourne ‘Clouds’ Lab. CloudSim. For the purpose of

this experiment the 3.1 version available was used. Both tools are created using

JVM-based technologies and therefore the testing environment is identical – see

Appendix A for detailed hardware and software specification.

CloudSim offers greater flexibility when setting up an environment. Nodes and

tasks, referred to as 'cloudlets' in the CloudSim package, are set up in Java classes

which are then compiled to separate jar package and run together with the main

jar file. This approach is advantageous as compiled classes can be further

automatically optimised by JVM even during execution (HotSpot technology).

On the other hand, AGOCS is not configured statistically, but continuously reads

workload traces files and updates its state. That ensures simulation is very

scalable; however, those parsing operations are quite expensive and might create

bottlenecks on some machines.

ACCURATE GOOGLE CLOUD SIMULATOR

132 | P a g e

In order to realise comparable input data sizes, both frameworks in presented

tests were configured to run the same number of tasks and nodes. During

simulation, on average, GCD schedules ca. 140k tasks on ca. 12.5k nodes. This

means that the experiments tended to preserve this ratio of eleven tasks per one

node in the below performance evaluation, for example 5500 tasks were

submitted to 500 nodes. CloudSim was configured to assign a single VM to a

single host machine. AGOCS was run with the highest possible speed factor that

the testing machine was capable of running. Figure 25 presents the simulation

time results.

Figure 25: Simulator performance comparison

CloudSim performs better in smaller sets of data, although the computation time

increases significantly for more complex sets. AGOCS’s computation time

increase is less rapid, although it requires initial time to preload data to its buffers.

AGOCS was designed with multi-threading in mind and can take advantage of all

available CPU cores. Its main bottleneck is workload traces’ reading speed.

CloudSim is completely memory-driven but implemented as a single-threaded

application and utilises only one CPU core. CloudSim’s code is prone to over-use

ACCURATE GOOGLE CLOUD SIMULATOR

133 | P a g e

of Java’s ArrayList class, while HashSet would work much faster – a significant

amount of CloudSim’s simulation time is spent in Java's ArrayList.removeAll

method. Overall, AGOCS simulates more layers of complexity and it is more

accurate when describing secondary machine parameters:

• AGOCS supports adding and removing nodes during simulation. In smaller

Cloud systems such as MetaCentrum (Klusáček, 2014), this may not be an

issue as machine configuration is very static. However, in a larger

environment, nodes are frequently modified and/or exchanged;

• Tasks being executed have actual values for both requested and actually

used resources. This is very important factor as the task resources

utilisation level is not constant and usually fluctuates depending on

activity tasks currently performed. Therefore, to obtain a realistic and

current view on node machine utilisation a simulation framework needs

to consider actually used resources rather than requested ones. It should

also be noted that the CloudSim framework also supports several

resource utilisation models defined on task: full, stochastic and

predefined (based on PlanetLab datacentre’s traces);

• Tasks and nodes are a representation of real machines and tasks run on

Google Cluster. While CloudSim can generate random parameters based

on statistical analysis, this approach will widen error margins and

uncommon machine configurations might be missed;

• AGOCS simulation provides not only values for defined resources but also

a number of secondary parameters such as disk I/O time, cycles per

instruction and memory access per instruction. This makes the simulation

more realistic and might serve as an input for processes;

• AGOCS's tasks have sets of constraints while nodes have sets of attributes.

While a node may have enough resources to run certain tasks, it might be

missing some features required to successfully complete the task fully, for

example the availability of external IP address.

ACCURATE GOOGLE CLOUD SIMULATOR

134 | P a g e

Therefore, AGOCS provides more complex and accurate simulations than

CloudSim package, albeit at the expense of performance and flexibility. However,

AGOCS has limitations and constraints that the researcher should be aware of,

namely:

• While providing a relatively detailed description of the physical layer and

requested resources as well as rich set of secondary parameters, AGOCS

does not provide values for bandwidth utilisation. Unfortunately, GCD

workload traces do not provide values for network transfer, which could

be a critical missing feature in certain research projects;

• CloudSim package is easily extendable by a third party, and several other

tools have been already built upon this framework (Wickremasinghe,

2009; Garg et al., 2011; Malhotra and Jain, 2013), often adding new

features and new resource types. AGOCS is based on already existing

workload traces and until Google decides to repeat this experiment and

potentially extend set of monitored parameters, new modules are highly

unlikely;

• The main risk of using AGOCS for research is that the generated workload

does not change between interactions. Simulation is replayed the same

way every time, with features such as timings of tasks and changes of

nodes always identical. This may lead to developing over-specialised or

over-trained algorithms that work on a single particular set of data only.

However, the length of provided traces (one-month) is more than enough

to evaluate the researched product in wide variety of situations. This said,

the researcher must be aware of the above limitations in an attempt to

achieve an accurate simulation.

AGOCS and CloudSim share many similarities and features even though they

represent quite different approaches to the same research problem. CloudSim

provides an informative top view of a Cloud system and is strong in testing high-

ACCURATE GOOGLE CLOUD SIMULATOR

135 | P a g e

level algorithms and strategies, while AGOCS is very suitable to fine-tune those

algorithms and running simulations that are as close as possible to real Cloud

systems. Load balancing strategies need to consider very fine-grained details and

effects, often originating from the physical layer of a tested system. Due to

implemented complexity, AGOCS is very appropriate for this class of research.

5.10. SUMMARY AND CONCLUSIONS

There are several notable aspects of the design of the workload simulator which

are identified below:

• Simulating Cloud workloads on a complex network is not simplistic. The

considerable number of parameters and dependencies require a well-

designed domain model. Goals (III) and (IV) were added to the load

balancing solution’s feasibility criteria. This acquired knowledge was

crucial when designing and implementing the load balancer prototypes,

which are presented in the following chapters;

• The system should be able to cope with data anomalies and data

corruption. The available traces are of high quality, but anomalies exist in

the data provided. The system should be able to continue upon receiving

bogus data. Common data errors include: corrupted state of task (i.e. task

is marked as running when job has already finished), corrupted usage logs

(i.e. reporting task resource usage, when task has not been created yet)

and the global usage of any reported resource exceeding cluster

capabilities. . Therefore, a working simulation framework must gracefully

handle those errors without crashing, as highlighted in section 5.7;

• Several sources of workload state updates exist – for example task

required resources and task constraints are provided by two different sets

of files which are not synced time-wise. In experimental simulations, the

ACCURATE GOOGLE CLOUD SIMULATOR

136 | P a g e

GCD workload traces were split into one-minute intervals as detailed in

section 7.6;

• Due to the complexity of data, it is difficult to properly test the created

simulator. The design should allow for simulator ‘testability’ in mind.

Every object and state should have appropriate unit tests during

implementation. A sample test units suite is presented in Appendix E.

AGOCS was designed with usability and performance in mind. As a very

lightweight framework it is capable of being run on typical desktop machine

available in any laboratory. During the experiment it was found that it was

comfortable to operate a month-long simulation test in approximately nine hours

with 100x speedup factor, which is equal to processing ca. 21GB of workload

traces data per hour. As a result of these characteristics, the AGOCS framework

successfully serves as a foundation for both metaheuristic load balancer and

distributed agent-based load balancer prototypes, as detailed in Chapters 6 and

7 respectively.

METAHEURISTIC LOAD BALANCER

137 | P a g e

6. METAHEURISTIC LOAD BALANCER

Having examined the existing scheduling strategies (Chapter 2), defined the

theoretical and practical restrictions concerning load balancing strategies

(Chapter 3 and 4) and, more importantly, developed a robust simulation

framework (Chapter 5), this study can now explore the applicable approaches to

task allocations. Examining real-world workload traces from a working Cloud

provides a valuable outlook into the mechanics of a massively distributed system.

It also highlights additional challenges that were not identified during the

modelling phase, namely tasks’ execution constraints and RUS. It should further

be noted that this chapter is based on work published in Sliwko (2008) and Sliwko

and Getov (2015a).

Initial experiments with metaheuristic algorithms were performed at a very early

stage of this research, helping to shape its general direction, prior to formally

defining CRUM and then D-RSOP and Goals (I) and (II). The original design idea of

this project was to extend existing load balancing strategies, such as FCFS, SJF,

Round Robin and ‘best-fit’, towards more complex algorithms designed to solve

NP-Hard problems. It was assumed that by introducing a holistic approach, where

the scheduler tries to improve tasks’ allocations globally by reducing resource

usage gaps, the overall throughput of the Cluster would increase. At the same

time, the load balancer should ensure that the STC stays within designed

parameters. Given those design goals, the research focused on implementing

those procedures, and the sections below describe this approach in detail.

Although a simple heuristic can be used to solve D-RSOP, their results are of poor

quality (Sliwko, 2008; Sliwko and Zgrzywa, 2009). As such, the general approach

to solve job-scheduling problems is to employ metaheuristic strategies. One can

argue that metaheuristics might not be acceptable as a solution for load

balancing problems given that each scheduling event can be very time consuming

METAHEURISTIC LOAD BALANCER

138 | P a g e

and have high overheads. However, the resources management in a distributed

system has nowhere near the dynamic and robustness level required on

scheduling processes on CPU cores. As long as the load balancer provides viable

configuration changes or changes in tasks assignment within ten minutes, this

strategy may be considered successful.

In the field of approximation algorithms, various strategies have been designed

to find near optimal solutions to NP-Hard problems (Buyya et al., 2009; Ausiello,

2012; Pooranian et al., 2015) including metaheuristic algorithm. The term

‘metaheuristic’ originally derives from the Greek ‘μετá’ (a higher level) and

‘ευρισκειν’ (to discover) and is a scientific method that solves a problem with the

help of iterative stochastic processes. A heuristic algorithm usually sacrifices the

optimality of the solution in order to finish within a satisfactory timeframe.

Generally speaking, it is possible to find a reasonably satisfactory solution, but

there is no proof that the result could not be better or that the solution found by

the heuristic algorithm would be feasible in the first place.

Many different metaheuristic algorithms are present in the literature, and new

variants are continually being proposed. Some of the most significant

contributions to the field are Evolutionary and GA, TS, Ant Colony, SA and

Quantum Annealing (QA), Particle and Swarm Intelligence and Immune Systems.

Metaheuristic strategies tend to avoid iterating through the whole solution space

by testing candidate solutions only in close proximity to a current state (for

example the ‘crossover’ step in GA) with occasional attempts to escape local

optima via a ‘mutation’ step in GA or ‘tunnelling’ in QA, for example. Such

approaches result in reasonably good solutions reasonably quickly.

Based on previous research, including Józefowska et al. (1998), Józefowska et al.

(2001), Sliwko (2008), Sliwko and Zgrzywa (2009), (Kalra and Singh, 2015),

METAHEURISTIC LOAD BALANCER

139 | P a g e

(Pooranian et al., 2015) and (Fanjul-Peyro et al., 2017) not every algorithm will

perform well in the context of the D-RSOP problem. The main issue in this model

is the fact that not every solution is feasible, and that in fact the majority of

candidates are not feasible at all. Such a setup proves to be difficult for the

majority of existing strategies since usually only a small percentage of neighbour

solutions are acceptable. Additionally, there is usually no starting state, with the

strategy having to find this point by itself.

6.1. LOAD BALANCER DESIGN

The load balancer prototype was implemented in the functional programming

language Scala. The core of the load balancer is a decision-making module based

on metaheuristic algorithms which assigns tasks to nodes. The load balancer

sequence was designed as shown in Figure 26 below:

Figure 26: Load balancer sequence

METAHEURISTIC LOAD BALANCER

140 | P a g e

The load balancer must maintain a difficult balance between the speed and

quality of its decisions since badly assigned tasks can cause global system

instability. The selection of the most efficient algorithm is crucial. For the purpose

of the experiment several of the most promising strategies were studied, as

outlined in the following subsections.

6.1.1. GREEDY

Greedy is an algorithm that follows the problem-solving heuristic of making the

locally optimal choice at each stage with the hope of finding a global optimum

(Chvatal, 1979). In many problems, a greedy strategy is effective, although it does

not usually produce a globally-good solution in this research. Nevertheless, a

greedy heuristic will yield locally optimal solutions in a very quick time. Greedy

relies on examining immediate neighbourhood for better solutions (as per

definition (6) in section 3.3).

6.1.2. TABU SEARCH

TS was introduced by Fred W. Glover in 1986 (Glover, 1986) and further

formalised in 1989 (Glover, 1989). This algorithm has been suggested by previous

research pertaining to a similar problem (Józefowska et al., 2002). Like Greedy,

TS searches for an improved solution in its neighbours. TS enhances its

performance by maintaining a list of visited solutions so that the algorithm does

not consider that possibility repeatedly.

6.1.3. SIMULATED ANNEALING

SA is a general method for finding the global optimum via a process inspired from

annealing, a metallurgical process where a material is heated and cooled in a

controlled way so as to increase the size of its crystals and reduce their defects

(Weinberger, 1990). This effect is implemented in the SA algorithm by a slow

METAHEURISTIC LOAD BALANCER

141 | P a g e

decrease in the probability of accepting worse solutions as it explores the

solution space. Previous research concerning the use of this strategy in load

balancing can be found (Józefowska et al., 2001).

6.1.4. GENETIC ALGORITHM

GA is a search heuristic that mimics the process of natural selection. GA belongs

to the larger class of evolutionary algorithms which generate solutions to

optimisation problems using techniques inspired by natural evolution, such as

inheritance, mutation, selection, and crossover. Unmodified GA has been

previously examined with good results (Józefowska et al., 1998). In this research,

a variant of Genetic Drift step was developed (Sliwko, 2008).

6.1.5. SEEDED GENETIC ALGORITHM

SGA is the generation of random solutions that represents the costliest step in

GA strategy, sometimes taking up to 60-70% of a total computation time.

Therefore, a novel approach was implemented, where Genetic Drift step (Sliwko,

2008) is replaced with locally optimal solutions (i.e. solutions seeding) found by

Greedy, TS and SA algorithms. This approach was calculated to allow for a

dramatic lowering of the total size of population since individual genotypes are

of higher quality.

To test this approach, respective strategy variations were created, namely SGA-

Greedy, SGA-TS and SGA-SA.

6.1.6. FULL SCAN

Full Scan (FS) is the strategy which performs a full search over all available

configurations. FS strategy is convergent, meaning that it is able to find the

globally optimal solution in finite time, under appropriate modelling assumptions.

METAHEURISTIC LOAD BALANCER

142 | P a g e

Multiple optimisation techniques have been implemented in this algorithm, such

as shaving and path-cut (Demassey et al., 2005), and task-with-largest-migration-

cost-first, i.e. the algorithm sorts tasks by their migration costs and the tasks with

the highest migration cost are selected to be re-allocated first; the algorithm

returns as soon as current STC is greater or equal to any previously found STC.

6.2. EXPERIMENTS SETUP

This experiment generated test configuration based on previous research (Mishra

et al., 2010; Iosup et al., 2011; Di et al., 2012; Moreno et al., 2013) and also on

personal professional experience while working with Amazon EC2 cloud instances.

Tables 10 and 11 present test configurations.

Three strategies (Greedy, TS and SA) were designed with the end state, i.e. that

no more steps were possible. If a strategy finished before a given time it was

continuously re-run and the best result was selected. The number of runs

significantly varied per strategy, especially in the lower sizes of the solutions

space. Each algorithm creates a number of candidate solutions during their run.

Deciding whether a candidate solution is stable, meaning that no nodes are

overloaded, tends to be the most expensive step in computations: around 50-70%

of CPU time depending on the strategy tested, is spent on the validation of

solution feasibility routines.

As an optimisation, implementations were caching newly created solutions (see

subsection 6.4.2), meaning that the same tasks assignment setup is never tested

twice for being stable since the result is retrieved from memory.

METAHEURISTIC LOAD BALANCER

143 | P a g e

Ta
sk

In
iti

al
 n

od
e

M
ig

ra
tio

n
co

st

Re
so

ur
ce

 I
(C

PU
)

Re
so

ur
ce

 II

(M
em

or
y)

Re
so

ur
ce

 II
I

(N
et

w
or

k)

Re
so

ur
ce

 IV

(I/
O

 sp
ee

d)

Ta

sk

In
iti

al
 n

od
e

M
ig

ra
tio

n
co

st

Re
so

ur
ce

 I
(C

PU
)

Re
so

ur
ce

 II

(M
em

or
y)

Re
so

ur
ce

 II
I

(N
et

w
or

k)

Re
so

ur
ce

 IV

(I/
O

 sp
ee

d)

01 A 4 1 10 4 2 31 J 4 19 18 1 8
02 C 5 1 6 5 2 32 H 10 6 14 3 7
03 G 4 5 2 5 6 33 I 2 3 10 3 2
04 A 17 10 17 1 2 34 E 4 2 8 1 8
05 D 10 14 10 1 1 35 E 9 8 9 9 5
06 C 3 3 12 3 8 36 F 4 8 15 13 1
07 C 6 15 2 18 3 37 G 2 12 8 5 3
08 F 6 1 4 8 4 38 E 2 16 11 1 2
09 D 4 4 3 17 10 39 D 8 13 8 6 4
10 D 4 8 19 19 8 40 G 3 6 9 10 1
11 B 8 5 9 18 4 41 I 6 14 1 11 8
12 I 6 16 14 3 2 42 H 7 8 3 10 3
13 G 4 6 5 17 11 43 F 9 9 9 10 9
14 E 5 18 11 13 4 44 A 8 11 8 12 11
15 F 1 10 9 12 8 45 C 2 5 5 7 18
16 A 9 12 17 14 1 46 G 6 2 7 3 2
17 D 5 3 6 8 6 47 J 5 4 3 10 16
18 B 5 8 12 3 11 48 H 8 5 2 14 8
19 C 7 15 12 8 9 49 B 2 6 7 1 1
20 G 1 4 8 6 12 50 I 1 1 9 6 13
21 F 7 12 10 5 1 51 G 4 4 11 9 6
22 G 2 3 16 16 2 52 L 3 7 2 7 5
23 H 5 6 19 1 4 53 E 12 6 6 10 12
24 D 3 16 11 2 3 54 J 10 3 9 8 10
25 F 4 14 8 15 9 55 K 8 5 5 4 8
26 G 10 4 15 7 8 56 H 7 6 3 5 7
27 B 2 20 19 5 2 57 A 3 8 12 2 6
28 B 8 16 2 3 5 58 F 1 12 17 1 9
29 G 6 16 10 3 1 59 F 6 10 8 6 14
30 F 5 1 1 3 10 60 C 5 9 2 3 8

Table 10: Experiment data – Tasks configuration

Node Resource I
(CPU)

Resource II
(Memory)

Resource III
(Network)

Resource IV
(I/O speed)

A 100 50 100 70
B 70 40 70 50
C 50 80 70 50
D 60 60 50 80
E 50 90 80 40
F 60 100 50 60
G 80 50 50 40
H 80 80 80 90
I 60 60 50 8
J 40 50 80 100
K 50 80 80 40
L 50 50 60 80

Table 11: Experiment data – Nodes configuration

METAHEURISTIC LOAD BALANCER

144 | P a g e

The following chart plots the average number of unique candidate solutions

created in each test scenario:

Figure 27: Runs count (per minute)

Figure 28: Unique candidate solutions created (per minute)

METAHEURISTIC LOAD BALANCER

145 | P a g e

Five testing scenarios were designed to test how each strategy copes with the

increasing complexity of the problem. An assumption was made that new nodes

are added only when new tasks are deployed and the demand for computing

resources increases. This scenario is simulated by enabling additional nodes, and

in each test two additional nodes and ten more tasks are added. It is assumed

that the load balancer will be run periodically, thus the selection of an arbitrary

computation time, after which the best-found solution was selected as the

output result.

Scenario Deployed
tasks

Enabled
nodes

Computation
time

Search space
size

Test I 1-20 A-D 30 seconds 204
Test II 1-30 A-F 1 minute 306
Test III 1-40 A-H 2 minutes 408
Test IV 1-50 A-J 4 minutes 5010
Test V 1-60 A-L 8 minutes 6012

Table 12: Experiment data – Tests I, II, III, IV and V

The Full Scan strategy was used only as a benchmark if a global optimal solution

was found and such a limit was not imposed. The Full Scan strategy was unable

to finish scenarios Test IV and Test V in reasonable time, taking 24 hours and five

days respectively. The results of all other strategies were plotted on the chart

above. It should be noted that lower STCs are preferable.

6.3. EXPERIMENTAL RESULTS

As demonstrated in previous research (Józefowska et al., 2002; Leung, 2004;

Sliwko, 2008), when solving RCPSP and its variants, more complex metaheuristics,

such as TS, SA and GA, perform significantly better than simple algorithms such

as Greedy. This was confirmed in the test results presented in Figure 29, where

more sophisticated algorithms generally had better results, i.e. lower STC. A

discussion of the outcomes of each strategy follows below.

METAHEURISTIC LOAD BALANCER

146 | P a g e

Figure 29: Simulation results

6.3.1. GREEDY

A very short execution time allowed this strategy to be repeatedly run and

therefore a few stable solutions were found in each test. Result solutions were of

average quality; the most time-consuming step was the generation of solution’s

neighbours, for example during the Test V scenario, each step required up to 60

x 12 = 720 solutions to be examined.

6.3.2. TABU SEARCH

The main bottleneck in this approach was the last step where all the same-value

solutions had to be visited and marked as Tabu. Therefore, it was decided to

introduce a maximum limit of dull moves (i.e. without bettering solution) the

strategy will perform before it gives up and returns the actual solution. Overall,

the TS algorithm worked very well in small instances of a problem, which confirms

the results documented in Józefowska et al. (2002).

METAHEURISTIC LOAD BALANCER

147 | P a g e

6.3.3. SIMULATED ANNEALING

SA strategy did require a much larger number of computations, often reaching

only a fraction of runs in the same time as Greedy or TS. However, it did not

require costly generation of all the solution neighbours, therefore the re-runs

count decreased at a much slower pace than when the above strategies were

deployed. This strategy benefited the most from introducing the solution cache.

6.3.4. GENETIC ALGORITHM

GA variant has been previously examined (Sliwko, 2008), where its main

drawback was identified as being the costly generation of random solutions in

the Genetic Drift step, especially when more types of resources are considered,

and a solution space grows in size. Performance was shown to be sufficient when

examining two kinds of resources. However, due to the number of random

generations required in order to create the initial population, the strategy

performed quite poorly when four resources were introduced. As in Józefowska

et al. (1998), the larger the problem size, the lower the quality of the found

solution. However, the performance of simpler algorithms, such as Greedy, TS

and SA, was not impacted that much. Upon detailed examination it was found

that the randomised solutions pool often contained a significant number of poor

quality solutions. They were often eliminated in the next step; however, this

process had a computation cost. This became apparent in instances of a larger

problem, where ten or more nodes were involved.

6.3.5. SEEDED GENETIC ALGORITHM

SGA was the most interesting strategy in the experiment. As mentioned in GA,

the randomised solutions pool contains low quality solutions, and eliminating

those is costly. Therefore, solutions seeding replaced the previously designed

METAHEURISTIC LOAD BALANCER

148 | P a g e

Genetic Drift step in the GA, which allowed for the downsize of the available

genetic pool to 25% of its original size, thereby greatly reducing the computation

time (ca. 50-70%) required to find good solutions without a reduction in quality.

SGA returned the best results within the set time frame. In each case Greedy vs.

SGA-Greedy, TS vs. SGA-TS and SA vs. SGA-SA, the found solution was improved,

and generally less candidate solutions were examined. In Test V ca. 14% less

candidates were visited. In this experiment the variant with TS strategy returned

the best results.

6.3.6. FULL SCAN

Full Scan strategy guarantees that a globally optimum solution is found. Over the

course of the research, this strategy has been heavily optimised. Currently, only

ca. 9% of a solutions tree is traversed; the strategy starts moving tasks with the

highest migration costs first, as the algorithm cuts solution tree’s leaves as soon

as partial solution is deemed unstable. However, this still cannot be considered

an efficient strategy due to a large number of computations required. In this

experiment, Full Scan strategy was used to produce a global optima solution only

in minor instances of a problem.

6.4. SYSTEM OPTIMISATIONS

System wide enhancements and optimisations can dramatically increase the

performance of certain algorithms. However, based on personal professional

experience, hot spots – areas of a program’s code where a high proportion of

CPU-cycles is spent during the program's execution – can be found in very

surprising places, especially in complex real-time systems. Generally speaking,

this makes dry source code analysis pointless. A system developer needs to see a

detailed and full application performance and memory profile before attempting

to improve it.

METAHEURISTIC LOAD BALANCER

149 | P a g e

Therefore, in the course of the research, the experiment routines have been

profiled with YourKit Java Profiler (YKJP), with several bottlenecks being

identified. Aside from programming optimisations, such as refactoring loops into

tail recursive function, marking values and methods for lazy initialisation, and

converting all objects as immutable case classes, there has been the identification

and implementation of several system-wide optimisations. The majority of code

optimisations and refactors were focused on improving the parallelism of the

implemented prototype as to fully use the available HPC cluster machines

(Appendix C) – the detailed explanations of profiling exercises and testability can

be found in subsections 7.6.1 and 7.6.2 respectively.

6.4.1. ENHANCED RANDOM SOLUTION GENERATION

The starting point of many metaheuristic algorithms is the initial random state

(or a pool of states), which the algorithm then revises into a better and improved

result in each step. In this case, generating the initial candidate solution is

expensive since it needs to be verified as stable - i.e. that no nodes are overloaded.

The verification process is computation-intensive since all tasks on each node

need to be iterated and their resource vectors need to be added to check if they

exceed the available resources on this node.

The optimisation generates an initial random solution, which it then attempts to

convert into a stable one through randomly moving tasks only from unstable

nodes. This reduced the routine execution time by an order of magnitude.

Previously, only one task had been randomly moved at a time (see definition of

the neighbour solution (6) in section 3.3); however, further experimentation

showed that an additional half of time could be shaved off by moving several

tasks in each step. The fastest convergence was achieved by moving 10% of all

tasks (but no less than 1) from the unstable nodes in one step. The pseudo-code

is presented below:

METAHEURISTIC LOAD BALANCER

150 | P a g e

ALGORITHM: Find stable random solution via multiple mutations on unstable nodes

INPUT:

A set	of tasks where τ = ,t%, t',… , t�/

A set of nodes where η = {n%, n',… , n�}

A set of resource types ψ (see definition of resource types in section 3.3)

OUTPUT:

𝜇q�[: 𝜏 → 𝜂 as output tasks assignment function

BEGIN

1 Randomly initialise task assignment function 𝜇�[�.: 𝜏 → 𝜂 to random

 (initially all tasks are assigned to random nodes)

2 WHILE 𝜇�[�.
is not stable (as per definition (2) from 3.3)

(repeat until current tasks assignment 𝜇�[�. is not stable)

2.1 Select a set of overloaded nodes

𝜂q��� = ,𝑛 ∈ 𝜂: ∃𝑖 ∈ 𝜓: 𝑓�[�._H(𝑛) < 0/ , where 𝑓�[�._H(𝑛)
is the

available resources levels function for resource 𝑖 on node 𝑛 for task

assignment 𝜇�[�. (see (1) in section 3.3)

2.2 Select a set 𝜏q��� = ,𝑡 ∈ 𝜏: 𝜇�[�.(𝑡) ∈ 𝜂q���/
 (select a set of all tasks on all overloaded nodes)

2.3 Calculate migrations count 𝑥 = 10% ∙ |𝜏q���| (but no less than 1)

(for higher number of overloading tasks, swap multiple nodes)

2.4 Randomly select a set 𝜏q���_� = {𝑡 ∈ 𝜏}, where �𝜏q���_�� = 𝑥

(randomly select a subset of x tasks from 𝜏q���)

2.5 Create a new task assignment function

(re-assign tasks from 𝜏q���_� to random different nodes)

 𝜇V��[(𝑡) = g
𝑟𝑎𝑛𝑑𝑜𝑚^𝜂 − ,𝜇�[�.(𝑡)/`,				𝑡 ∈ 𝜏q���_�
	𝜇�[�.(𝑡),																																				𝑡 ∉ 𝜏q���_�	

2.6 𝜇�[�. = 𝜇V��[

(repeat loop with new task assignment)

3 RETURN 𝜇�[�.

END

METAHEURISTIC LOAD BALANCER

151 | P a g e

Additionally, to take advantage of the multi-core architecture, the candidate

stable solutions were created in parallel. Initially, the implementation used Scala

Future objects running on Executor from default ExecutionContext (Odersky et

al., 2016); however, later Futures were replaced with Akka framework.

As a result of all the optimisations above, the CPU time spent in seeding solutions

step was reduced from ca. 40% to 3% for GA and SGA. For other tested strategies

(Greedy, SA and TS) the total CPU time spent in searching for starting solution

was reduced from ca. 20% to 7%.

6.4.2. SOLUTION CANDIDATES CACHE

During execution, the strategies generated and tested a number of candidate

solutions to compare them with the solution in the current step. Operations on

the solution object, such as verifying whether the solution was stable, iterating

unstable nodes and computing the STC, cost CPU cycles. To remedy this and to

save CPU-cycles, a cache of created solutions was created. This meant that every

newly created solution, from random generation, mutation, crossover and so on,

were added to the cache if a solution was generated before the object in cache

was used. This helps to avoid duplicate computations as solutions in cache might

have had their methods executed once already. For example, unstable nodes may

have been filtered before, and their results stored inside the object’s private

fields (‘lazy’ pattern).

The trade-off of this approach is the cache amount of memory that needs to be

allocated to store all cached objects. Early experiments used default Scala

mutable map implementation, which has been repeatedly cleared upon reaching

a set size limit. However, further experimentation shows much enhanced results

with CacheBuilder from Google Guava library. The base idea behind expiring

cache is to evict entries that have not been used either recently or very often

METAHEURISTIC LOAD BALANCER

152 | P a g e

(‘sinking cache’ pattern). In this implementation, Google’s CacheBuilder starts

evicting items when approaching a size limit of memory, which is specified upon

cache initialisation (here: five hundred thousand).

It is difficult to measure the exact impact that the use of cache made on test

performance, since cache is used in multiple of areas in the test algorithms. Test

implementations of Greedy and plain GA were especially prone to testing a huge

number of duplicate candidate solutions. In the experiments it was estimated

that enabling cache speeds-up executions of tested strategies by around 25-45%,

meaning that more algorithm’s steps were executed in the same amount of time.

6.5. SCALABILITY TESTS

The initial trials on a static dataset were promising, and clearly showed the

potential for improving the quality of tasks' allocations. Given this, the next step

was to test how the designed strategy would perform under a real-world

workload.

Although the prototype centralised load balancer had been designed and

implemented in the early stages of this research, the scalability tests were

delayed until the AGOCS framework was ready. Eventually, the simulation

framework was implemented, with the metaheuristic algorithms back-ported to

it. Initially, only a fraction of the original GCD workload was used to find out how

algorithms would perform on it.

Table 13 details the time required to compute a single load balancing sequence

during simulation. All below test simulations were run on compute nodes from

the University of Westminster HPC Cluster (see Appendix C).

METAHEURISTIC LOAD BALANCER

153 | P a g e

Test and size

Test I Test II Test III

62 nodes and
199 tasks

62 nodes and
326 tasks

62 nodes and
503 tasks

Greedy1 1 hour 9 minutes 16 hours 59 minutes 3 days 22 hours 9
minutes

TS1 4 hours 35 minutes 18 hours 18 minutes 5 days 9 hours 34
minutes

SA1 5 hours 27 minutes 13 hours 20 minutes 2 days 23 hours 51
minutes

GA1,3 3 hours 12 minutes 22 hours 13 minutes 1 day 22 hours 48
minutes

SGA-Greedy2,3 2 hours 48 minutes 19 hours 33 minutes 3 days 1 hour 1
minute

SGA-TS2,3 2 hours 27 minutes 12 hours 6 minutes 1 day 21 hours 23
minutes

SGA-SA2,3 4 hours 49 minutes 14 hours 33 minutes 2 days 16 hours 46
minutes

1. Greedy, TS and SA strategies were constrained to run for a maximum of ten minutes and then restarted.
This process was continued until a stable solution (i.e. no overloaded nodes) was found.

2. GA, SGA-Greedy, SGA-TS and SGA-TA strategies were run continuously until a stable solution was found,
but for no less than ten minutes.

3. Due to high memory demand, the solution candidates’ cache size (as detailed in 6.4.2) was limited to 500k
of items.

Table 13: Time required to compute a single load balancing sequence

The above simulations were run on 62 nodes, which is roughly 0.5% of all GCD

nodes. To test performance of solution, the total number of tasks was set to

0.15%, 0.25% and 0.4% of all GCD tasks in Tests I, II and III respectively.

Although previously presented tests have shown that a proposed strategy can

indeed manage a small cluster with a limited number of running tasks, because

of the lengthy computation time required to load balance a given instance, it

cannot be considered as a feasible solution for tasks orchestration in Cloud. In

the original GCD workload traces, the new tasks were scheduled with an average

frequency of more than ca. 1.1k tasks per minute; this solution could not handle

such a throughput.

METAHEURISTIC LOAD BALANCER

154 | P a g e

Additionally, the proposed design employs VM-LM feature, where running tasks

can be offloaded to alternative nodes and, therefore, a centralised load balancer

must track all tasks existing in Cloud systems. This additional logic needed to

handle running tasks and their migrations multiples the complexity of the load

balancing algorithm, resulting in even higher computation power requirements.

A number of optimisations were implemented during the code iterations which

were focused especially on parallelisation, caching and non-blocking processing.

Even so, the processing speed did not improve to an acceptable level.

6.6. SUMMARY AND CONCLUSIONS

After analysing the performance of the algorithms, the following conclusions

were reached, which might assist in the design of new algorithms in the future

and/or enhance algorithms which already exist:

• Metaheuristic algorithms rely on traversing a search space using small

steps, meaning that the next selected solution is usually similar to the

current one, and is also usually better. It might be beneficial to give higher

priority to moving already-migrated tasks since they have already

increased their migration cost, as well as to prioritise moving tasks with a

smaller migration cost due to the reduced impact on the STC (introduced

in Chapter 3). However, this step requires building problem-specific

knowledge into the algorithms. This conclusion is very important for the

design of the decentralised agent-based load balancer prototype detailed

in Chapter 7, in which the chance of selecting a task to re-allocate is

inversely proportional to its migration cost (see (12) in subsection 7.4.1).

• The initial random generation of candidate solutions is expensive. This

behaviour is clearly visible in the upward trend in the number of candidate

solutions created and tested using the GA strategy. The number of tested

solutions does not correlate with the quality of solutions, and better

METAHEURISTIC LOAD BALANCER

155 | P a g e

results can be achieved if the solutions pool is initially created from an

already precomputed set.

• Whilst a few strategies succeed in reaching a certain solution level, they

face difficulties in moving out from this or in recognising a last state, for

example when only one neighbouring solution is better. The TS algorithm,

in particular, is prone to this and higher numbers of steps didn’t increase

the quality of the solution. However, the further experiments with TS

variants have shown it to be a good candidate for selecting a set of tasks

based on arbitrary criteria (as detailed in subsection 7.4.1).

While the proposed solution was able to efficiently schedule tasks on twelve

nodes, further experiments have shown that the scalability of this approach is

insufficient for supporting huge Clusters, such as 12.5k nodes in GCD traces.

During scalability tests, the metaheuristic algorithm required several hours to

execute a single load balancing sequence. When more nodes and tasks were

added, the search space size grew exponentially. Whilst metaheuristics were still

able to greatly reduce examined search space, the solutions found were either of

decreasing quality or they consumed too much computation time to be viable.

Therefore, under the described Goals (I) and (II) from Chapter 3, and (III) and (IV)

from Chapter 5, this method was recognised as being an inadequate foundation

for the Cloud load balancer, and therefore an alternative approach was needed.

Nevertheless, although it is unlikely that metaheuristic algorithms by themselves

could orchestrate tasks allocation in a large computing cell, metaheuristic

algorithms can still play a supporting role. For example, in the Czech National Grid

Infrastructure MetaCentrum, experimental extensions based on TS are being

used to improve the tasks queue in TORQUE Resource Manager (Klusáček et al.,

2013). The following chapter will demonstrate that metaheuristic algorithms can

indeed be efficiently used to form a local AI, which can locally manage a set of

tasks on a node.

DECENTRALISED AGENT-BASED LOAD BALANCER

156 | P a g e

7. DECENTRALISED AGENT-BASED LOAD BALANCER

With a centralised load balancer prototype failing to scale well enough to yield

satisfactory results (Chapter 6), the project shifted its focus to decentralised

strategies such as agent-based systems.

The experiments in Chapter 6 have shown that improving the tasks’ allocations

quality requires higher computation time, and that a processing scheduling logic

on a single head node machine would be the main holdup in scaling Cloud

systems to larger sizes. The reasons behind this are, firstly, the higher rate of

incoming tasks reduces the time window allowed for making the allocation

decision, and secondly, as was observed, that the larger number of nodes

increases the solution search space of feasible allocations.

In the subsequent design, the core strategy for developing the Cloud load

balancer prototype was to offload the scheduling logic’s processing to nodes

themselves and to execute complex strategies locally. The principle of this

approach is that when new nodes are added, the available processing capacity

simultaneously grows. Early experiments have demonstrated that this strategy is

not only viable, but it also allows the implementation of more sophisticated

decision-making routines in the form of a software agent’s AI. The sections below

introduce a working prototype of a decentralised Cloud load balancer – Multi-

Agent System Balancer (MASB).

It should be noted the solution presented in this chapter is partially based on

work published in Sliwko and Zgrzywa (2009), Sliwko (2010) and Sliwko et al.

(2015).

DECENTRALISED AGENT-BASED LOAD BALANCER

157 | P a g e

7.1. LOAD BALANCING WITH AGENTS

Agent technologies can be dated back to 1992 (Sargent, 1992), at which point it

was predicted that intelligent agent would become the next mainstream

computing paradigm. Agents were described as the most important step in

software engineering, representing a revolution in software (Guilfoyle and

Warner, 1994). Since its inception, the field of multi-agent systems has

experienced an impressive evolution, and today it is an established and vibrant

field in computer studies. The software agents research field spans many

disciplines, including mathematics, logic, game theory, cognitive psychology,

sociology, organisational science, economics, philosophy, and so on (Weiss,

2013). Agents are considered to be a viable solution for large-scale systems, for

example through spam-filtering and traffic light control (Brenner et al., 2012), or

by managing an electricity gird (Brazier et al., 2002).

It is difficult to argue for any precise definition of an agent, with the research

literature seeming to suggest that there are four key properties of an Agent

(Castelfranchi, 1994; Gensereth and Ketchpel, 1994; Wooldridge and Jennings,

1995), namely:

• Autonomy when allowing agents to operate without direct human

intervention;

• Social ability when agents communicate and interact with other agents;

• Reactivity when agents actively perceive their environment (physical or

digital) and act on its changes;

• Proactiveness when agents not only dynamically respond to changes in

environments but are also able to take initiative and exhibit goal-oriented

behaviour as well as real-time communications.

DECENTRALISED AGENT-BASED LOAD BALANCER

158 | P a g e

A software agent it is generally defined as being of acting independently of its

user in order to accomplish tasks on behalf of its user (Nwana, 1996). An agent

can be described as a being which is supposed to act intelligently according to

environmental changes and the user’s input (Goodwin, 1995).

Software agents are found across many computer science disciplines, including

AI, decentralised systems, self-organising systems, load balancing and expert

systems (Guilfoyle and Warner, 1994; Milano and Roli, 2004; Cabri et al. 2006).

Previous research has also shown that by deploying agents it is possible to

achieve good global system performance (Nguyen et al., 2006), improve system

stability and reduce downtime (Corsava and Getov, 2003), attain dynamic

adaptation capability (Kim et al., 2004) and to realise robustness and fault-

tolerance (Xu and Wims, 2000).

Agents were also found to be useful for the performance monitoring of

distributed systems (Brooks et al., 1997). Several additional benefits may also be

achieved, including more cost-effective resource planning (Buyya, 1999), a

reduction of network traffic (Montresor et al., 2002), the autonomous activities

of the agents (Goodwin, 1995), and decentralised network management (Yang et

al., 2005). Multi-agent systems were also successfully used for forecasting

demand and then adapting the charging schedule for electric cars (Xydas et al.,

2016), and also to effectively coordinate emergency services during crisis

(Othman et al., 2017). Reddy et al. (2017) presents an agent-based framework to

model procurement operations in India. The most state-of-art research generally

focuses on negotiation protocols and communications (Wang et al., 2014; Marey

et al., 2015; Monteserin et al., 2017; Wyai et al., 2018).

Agent-based systems generally rely on decentralised architecture (Jones and

Brickell, 1997; Shi et al., 2005; Wang et al., 2014; Monteserin et al., 2017),

considering it to be more reliable. However, those schemas require complex

DECENTRALISED AGENT-BASED LOAD BALANCER

159 | P a g e

communication algorithms, with negotiation protocols often being required for

distributed architecture to attain a good level of performance (Bigham and Du.,

2003; Yang, 2005; Wyai et al., 2018).

The idea of job scheduling with agents is not new; a single-machine multi-agent

scheduling problem was introduced in 2003 (Baker and Smith, 2003; Agnetis et

al., 2004). Since this time, the problem has been extended and exists in several

variations, such as deteriorating jobs (Liu and Tang, 2008), the introduction of

weighted importance (Nong et al., 2011), scheduling with partial information

(Long et al., 2011), global objective functions (Tuong et al., 2012), and adding

jobs' release times and deadlines (Yin et al., 2013). A suitable taxonomy of multi-

agent scheduling problems in presented in Perez-Gonzalez et al. (2014).

The research on workload sharing via agents has a long history, with the papers

below in particular having influenced the design of the MASB:

• Schaerf et al. (1995) presents a study concerning a multi-agent system in

which all decision making is performed by a learning AI. The likeness of

selection of a particular node for the processing of a given task depends

on the past capacity of this node. The Agent’s AI uses only locally-

accessible knowledge, meaning that it does not rely on information

shared by other agents.

• Chavez et al. (1997) introduces Challenger, a multi-agent system, in which

agents communicate with each other to share their available resources in

an attempt to utilise them more fully. In Challenger, agents act as buyers

and sellers in a resources marketplace, always trying to maximise their

own utility. MASB follows a similar pattern, where nodes try to maximise

their utilisation (via score system).

• Bigham and Du (2003) shows that cooperative negotiation between

agents representing base stations in a mobile cellular network can lead to

DECENTRALISED AGENT-BASED LOAD BALANCER

160 | P a g e

a near global optimal coverage agreement within the context of the whole

cellular network. Instead of using a negotiation model of alternating

offers, several possible local hypotheses are created, based on which

parallel negotiations are initiated. The system commits to the best

agreement found within a defined timeline. The cooperative model in

which agents negotiate between themselves is the base of the distributed

scheduling presented in this research.

• Kim et al. (2004) proposes a load-balancing scheme in which a mobile

agent pre-reserves resources on a target machine prior to the occurrence

of the actual migration. The system also prevents excessive centralisation

through the implementation of a mechanism whereby when the workload

processed on a particular machine exceeds a certain threshold, this

machine will attempt to offload its agents to neighbouring machines.

• Cao et al. (2005) describes a solution in which agents representing a local

grid resource uses past application performance data and iterative

heuristic algorithms to predict the application’s resource usage. In order

to achieve a globally-balanced workload, agents cooperate with each

other using a Point-to-Point (P2P) service advertisement and discovery

mechanism. Agents are organised into a hierarchy consisting of agents,

coordinators and brokers, who are at the top of the entire agent hierarchy.

The authors conclude that for local grid load balancing, the iterative

metaheuristic algorithm is more efficient than simple algorithms such as

FCFS.

• Ilie and Bădică (2013) details a solution built on top of the ant colony

algorithm, a solution which takes its inspiration from the metaphor of real

ants searching for food. ‘Ants’ are software objects that can move

between nodes managed by agents. A move between nodes which is

managed by the same agent is less costly. Ants explore paths between

nodes, marking them with different pheromone strength. Whenever an

DECENTRALISED AGENT-BASED LOAD BALANCER

161 | P a g e

Ant visits a node, the agent managing it saves the recorded tour and

updates its own database. Ants who subsequently visit this node read its

current knowledge, meaning they have the potential to exchange

information in this environment, which adds to the predictability of the

whole solution.

• Eddy et al. (2015) presents a prototype in which agents operate an

electricity market. Agents exchange ‘offers’ and ‘bids’ for those offers via

a custom-designed communication protocol based on TCP/IP. Among

other specialised agents, the system implements a short-lived

coordinating agent to facilitate those exchanges, ensuring that the supply

of electricity is managed. A comparable schema is implemented in MASB,

in which the BA initially advises candidate target nodes where an

overloading task can be re-allocated.

7.2. MASB DESIGN PRINCIPLES

The MASB project has been developed over several years, during which time it

has undergone many changes in terms of both the technology used and the

design of the architecture. This has included, for example, migration from Java to

Scala, the change from thread pools to an Akka Actors/Streams framework, and

the introduction and use of concurrency packages and non-locking object

structures. However, the main design principles have not been altered and are

presented below:

• To provide a stable and robust (i.e. no single point of failure) load balancer

and scheduler for a Cloud-class system;

• To efficiently reduce the cost of scaling a Cloud-class system so that it can

perform in an acceptable manner on smaller clusters (where there are

tens of nodes) as well on huge installations (where there are thousands

of nodes);

DECENTRALISED AGENT-BASED LOAD BALANCER

162 | P a g e

• To provide an easy way of tuning the behaviours of a load balancer where

the distribution of tasks across system nodes can be controlled.

Many other Cluster managing systems, such as Google’s Borg (Verma et al., 2015),

Microsoft’s Apollo (Boutin et al., 2014) and Alibaba’s Fuxi (Zhang et al., 2014b),

were built around the concept of the immovability and unstoppability of a task’s

execution. This means that once a task is started it cannot be re-allocated: it can

only be stopped/killed and restarted on an alternative node. This design is

particularly well suited when there is a high task churn, as observed in Apollo or

Fuxi where tasks are generally short-lived, meaning that the system’s scheduling

decisions do not have a lasting impact. However, in order to support a mixed

workload which features both short-lived batch jobs and long-running services,

alternative solutions needed to be developed. One such solution is the resource

recycling routines present in Borg wherein resources allocated to production

tasks but not currently employed are used to run non-production applications

(Verma et al., 2015).

MASB takes advantage of virtualisation technology features, namely VM-LM, to

dynamically re-allocate overloading tasks. VM-LM allows programs which are

running to be moved to an alternative machine without stopping their execution.

As a result, a new type of scheduling strategy can be created which allows for the

continuous re-balancing of the cluster’s load. This feature is especially useful for

long-term services which initially might not be fitted to the most suitable node,

or where their required resources or constraints change.

Nevertheless, this design creates a very dynamic environment in which it is

insufficient to schedule a task only once. Instead, a running task has to be

continuously monitored and re-allocated if the task’s current node cannot

support its execution any longer.

DECENTRALISED AGENT-BASED LOAD BALANCER

163 | P a g e

The design of MASB relies on a number of existing tools and frameworks. The

main technologies used are listed below:

• Decentralised software agents – a network of independent AI entities that

can negotiate between each other and allocate Cloud workload between

them. In MASB, specialised agents control nodes and manage the system

workload. Due to the decentralised nature of MASB, there is no complete

up-to-date system state. Instead, yet another type of agent is responsible

for caching the nodes’ statistics and providing an interface whereby a set

of candidate nodes which a particular task can be migrated to can be

requested.

• Metaheuristic selection algorithms – while the majority of the processing

of load balancing logic is done via negotiation between agents, a few

system processes are handled locally. One such example is that when an

agent discovers its node is overloaded, it will select a subset of its tasks

which it will attempt to migrate out. This selection is performed by TS

algorithm.

• VM-LM which allows the transfer of a running application within the VM

instance to an alternative node without stopping its execution. The

vendors’ strategy is to implement mixed production and low-priority jobs

on a single machine. While production jobs are idler, low-priority jobs

consume the nodes’ resources. However, when production job resources

need to be increased, the low-priority jobs are killed. The non-production

jobs in Google Cluster (Verma et al., 2015) and the spot-instances in

Amazon EC2 (Wang et al., 2018) use such an approach. MASB takes

advantage of VM-LM to offload tasks without stopping their execution,

collecting information about tasks in order to estimate the VM-LM cost of

such a task.

• Functional programming language Scala and accompanying libraries (see

Appendix B) – due to the decentralised design and loose coupling

DECENTRALISED AGENT-BASED LOAD BALANCER

164 | P a g e

between the system’s components, the implementation language is of

secondary importance. However, load balancing algorithms require a

significant amount of tuning, especially if the Cloud is designed to have a

high utilisation of available resources. This would mean that resource

waste is low, and therefore the cost-per-job execution is also low. Due to

the complexity of inner-system relations and dependencies, a high-fidelity

simulation environment is necessary to evaluate the expected

performance of a given configuration and implemented changes before is

deployed to a production system, e.g. the FauxMaster simulator used by

Google Engineers (Verma et al., 2015). In this implementation, Akka

Actors framework was selected as the core parallelisation technology.

7.3. MASB ARCHITECTURE

The experiments in Chapter 6 that used a centralised load balancer based on

metaheuristic algorithms demonstrated that, due to the high overheads of these

algorithms, a scheduling strategy implemented on a single machine is highly

unlikely to efficiently manage a large number of tasks. Therefore, MASB has been

built around the concept of a decentralised load balancing architecture, an

architecture which could scale well beyond the limits of a centralised scheduler.

The prototype has been built on top of an AGOCS framework (detailed in Chapter

5), meaning that the entire research and development process took advantage of

the continuous testing on a real-world workload traces from the GCD project

(Hellerstein et al., 2010).

MASB relies on a network of software agents to organically distribute and

manage the sizeable system load. All communication between the agents is

performed via a specialised stateless P2P protocol which promotes loose

coupling. Figure 30 visualises the communications’ flow within MASB system:

DECENTRALISED AGENT-BASED LOAD BALANCER

165 | P a g e

Figure 30: MASB communications’ flow

Two types of agents are deployed: NA and BA. NAs are supervising system nodes,

are responsible for keeping those nodes stable. NAs actively monitor the used

resources on their nodes (1) and periodically forward this information to the

subnetwork of BAs (2). BAs continuously exchange nodes’ load information

between themselves (3) and, therefore, effectively cache the state of the

computing cell.

NA contains an AI module which is based on a metaheuristic algorithm TS. It

manages a workload on a node. When an NA detects that its node is overloaded,

it will attempt to find an alternative node for overloading tasks with the help of

SAN protocol (the details can be found in section 7.4). The first step of SAN

communication is to retrieve alternative nodes from BA (4). BAs provide a query-

mechanism for NAs, which returns a set of candidate nodes for the migrations of

tasks. However, because the information found in BAs is assumed to be outdated,

once the NA completes this step, it communicates directly with their NAs so as to

re-allocate this task (5).

The following two subsections describe the types of agents noted and detail their

responsibilities. The annotated arrows 2 to 5 in Figure 30 correspond to inter-

agent communications – messages that are exchanged within the system are

detailed in subsection 7.3.3.

DECENTRALISED AGENT-BASED LOAD BALANCER

166 | P a g e

7.3.1. NODE AGENT

Every node in the system has a dedicated instance of NA. NA continuously

monitors the levels of defined resources and periodically reports the state of its

node and levels of utilised resources to BAs. Should any of the monitored

resources be over-allocated, NA will initialise a SAS process. In addition, NA

performs the following functions:

• Accept/deny task migration requests – NA listens to task migration

requests, and accepts or denies them. This routine is simple, with NA

projecting its resource availability with that task as follows: projected

allocation of resources = current allocation of resources (existing tasks

which also includes tasks being migrated out from this node) + all tasks

being migrated to this node + requested task (from request). If the

projected resources do not overflow the node, the task is accepted and

the migration process is initiated. The source node does not relinquish

ownership of the task while it is being re-allocated, meaning that source

node is regarded as a primary supplier of the service until the migration

process successfully completes. It should be noted that during task

migration, its required resources are allocated twice, to both the source

node and the target node.

• Task migration – after accepting the task migration request, NA

immediately starts listening for incoming VM-LM. In order to perform task

migration, NA must have access to the administrative functions of VM and

be able to initiate VM-LM to another node. This functionality can be either

implemented by the calls of the VM manager API or by executing the

command line command. This process may vary considerably per VM

vendor.

DECENTRALISED AGENT-BASED LOAD BALANCER

167 | P a g e

7.3.2. BROKER AGENT

BA is responsible for storing and maintaining information about nodes’ online

status and their available resources. BA is a separate process which can coexist

with NA on the same node since its operations are not computing-intensive. BA

has two main purposes in the system. These are outlined below:

• Nodes resources utilisation database – NA periodically reports to its BA

about the state of its node and available resources. BA stores all this data

and can query them on demand. Every node entry is additionally stored

with its timestamp, showing how long ago the data were updated. It has

additional protection against the node silently going offline, for example

through hardware malfunction or the network becoming unreachable, in

that if this entry is not updated for five minutes, the node is assumed to

be offline and entry is removed. This means that it will not be returned as

the candidate node.

• Evaluating candidate nodes for a task migration – BA listens for

GetCandidateNodesRequest and computes a list of candidate nodes for a

task migration. In order to create a list of candidate nodes, BA retrieves

nodal data from the local cache and then scores them using Allocation

Scoring Function. BA scores the future state of the system as if task

migration were being carried out. After scoring all the cached nodes, BA

selects a configured number of candidate nodes with the highest score

and sends them back to the asking node. In this research this number was

set to fifteen candidate nodes, wherein higher numbers failed to yield

superior results.

DECENTRALISED AGENT-BASED LOAD BALANCER

168 | P a g e

7.3.3. MESSAGE TYPES

In order to avoid costly broadcasts, since broadcast packages need to be rerouted

through a whole network infrastructure consuming the available bandwidth,

both NA and BA always communicate P2P. In the system there are several types

of requests and responses between agents, outlined in Table 15 below:

Request Type Description

GetCandidateNodesRequest Requests a number of candidate nodes for the migration
of a specified tasks set. Send from NA to BA.

GetCandidateNodesResponse Reply with a set of candidate nodes for task migration,
together with their resource statistics.

TaskMigrationRequest Request from source NA to candidate NA as to whether
task migration is accepted.

TaskMigrationAcceptanceResponse

Replay from target candidate NA that task migration will
be accepted.

Note: No resource allocation takes place after this
request.

TaskMigrationRejectionResponse Replay from target node’s NA that task migration will
not be accepted.

TaskMigrationProcessRequest

Request to selected target node’s NA to start task
migration.

Note: this request has an optional forced flag,
requesting the target NA to skip the currently available
resources check. The total node’s resources check and
constraints check will be still performed.

TaskMigrationProcessConfirmationResponse

Confirmation from the target node’s NA that the task
migration process can start.

Note: Resources are allocated for the migrated task and
the live migration process starts.

TaskMigrationProcessErrorResponse Denial of task migration process. This reply is generated
if the NA can no longer accommodate the migrated task.

Table 14: Message types

Agent-to-agent communications follow the ‘request-response’ pattern, in which

each request object has one or more matching response objects. The message

objects carry additional metadata such as fitness value (as explained in (12) in

subsection 7.4.1), forced migration flag, and detailed node and task information.

DECENTRALISED AGENT-BASED LOAD BALANCER

169 | P a g e

Section 7.4 below explains the process in which messages are exchanged, while

the subsections 7.4.1 to 7.4.4 show detailed samples of such objects.

7.4. SERVICE ALLOCATION NEGOTIATION PROTOCOL

When NA detects its node is overloaded, it will select a task (or a set of tasks) and

attempt to migrate them to an alternative node or nodes. Since SAN is

asynchronous, this means a single NA can run several SAN processes in parallel.

In the current implementation, NA selects a number of tasks in the first step –

Select Candidate Services (SCS) – and processes their allocation in parallel. Figure

31 visualises this process – for simplicity, the chart presents the allocation

negotiation of one task only:

Figure 31: Service Allocation Negotiation

DECENTRALISED AGENT-BASED LOAD BALANCER

170 | P a g e

SAN is a five-stage process, involving a single source node (Node Agent S), one of

the system BAs and several of other nodes in the system (Node Agent A, Node

Agent B and Node Agent C).

When migrating-out a given task, NA at first sends a GetCandidateNodesRequest

to BA to get with a set of candidate nodes where the task can potentially be

migrated to. BA scores all its cached nodes and sends back the top fifteen to NA.

Additionally, in order to help to avoid collisions, BA does not directly select only

top candidate nodes, but instead selects them randomly from a node pool, where

candidate node score is a weight, wherein higher scored nodes are selected more

frequently. This design helps to avoid a situation where an identical subset of

candidate nodes is repeatedly selected for a number of tasks with the same

resource requirements.

Upon receiving this list, NA sends task migration requests to all of those candidate

nodes (Step 3), and waits for a given time (in this case for thirty seconds) for all

replies. After this time, NA evaluates all accepted task migration responses (Step

4) and orders them in relevance order (nodes with the highest score first) and

then attempts to migrate a task to a target node with top score (Step 5). If target

node returns an error, the source NA will pick the next target node and attempt

to migrate a task there.

At each of these stages, the target node’s NA might reject task migration or return

an error, for example when task migration is no longer possible because the

current node’s resource utilisation levels have increased or because the node

attributes no longer match the task’s constraints. Depending on a system

utilisation level, such collisions might be more or less frequent. However, they

are resolved at node-to-node communication level and do not impact the system

performance as a whole.

DECENTRALISED AGENT-BASED LOAD BALANCER

171 | P a g e

In a situation where there are insufficient candidate nodes available due to the

lack of free resource levels, the BA will return candidate nodes with the ‘forced

migration’ flag set to true.

The algorithm’s five steps are explained in the following subsections, while the

forced migrations feature is detailed in supplementary subsection 7.4.6 below.

7.4.1. STEP 1: SELECT CANDIDATE SERVICES

SCS routine is executed when the NA detects that the currently existing tasks are

overloading its node. This step is processed on the node wholly locally. The

purpose of this routine is to select the task (or set of tasks) that NA will attempt

to migrate out and become stable (i.e. non-overloaded) during that process. All

tasks currently running on this node are evaluated, taking into consideration

various aspects, namely:

• The cost of running a task on this particular node. NA will aim to have the

highest node score for its own node. If removing this particular task will

cause its AS (calculated by SAS functions – see subsection 7.5 for details)

to be higher, then this task is more likely to be selected.

• The cost of migration of a task – VM migrations cause disruptions on the

Cloud system. In this research, cost is estimated by LMDT formula

(Chapter 4) as the additional network traffic required to migrate the

running VM instance to an alternative node. Additional notes are

provided in subsection 5.8.

• The likeness to find an alternative node – the majority of tasks do not have

major constraints and can be executed on a wide range of nodes.

However, there are a small number of tasks with very restrictive

constraints that significantly limit the number of nodes that the task can

be executed on. If such a task can only be executed locally, i.e. the node

DECENTRALISED AGENT-BASED LOAD BALANCER

172 | P a g e

has enough total resources capacity and task constraints are matched,

then NA is unlikely to migrate out those tasks.

• Any task which cannot be executed on a local node is compulsory selected

as a candidate task. This scenario could occur if the task constraints or

node attributes were updated.

NA first computes a list of compulsory candidate tasks, i.e. tasks that can no

longer be executed on this node. Following this, if the remaining tasks are still

overloading the node, it will select a subset of tasks to be migrated out.

The candidate tasks selection algorithm tries to minimise the total migration cost

of selected tasks, and also to achieve the highest AS for a node, under the

assumption that the selected subset of candidate tasks is successfully migrated

to the alternative node. In order to achieve this, the algorithm defines the Fitness

Function as coded inside SCS:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =	
𝑁𝑜𝑑𝑒	𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒
𝑇𝑜𝑡𝑎𝑙	𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑠𝑡

 (12)

For the above in a NP-Hard problem with a substantial search space, e.g. twenty

tasks on a node, the search space size is over one million combinations. Given

this, the Full Scan approach (as detailed in subsection 6.1.6) will be substantially

computation-intensive. Therefore, the use of metaheuristic algorithms is justified.

In previously researched scheduling concept, a variant of TS has been successfully

applied to solve a similar class of problems (subsection 6.3.2). The TS algorithm

has the following properties:

• It has a small memory imprint since only the list of visited solutions is

maintained thorough execution;

• It can be easily parallelised as a variant which is restarted multiple times;

DECENTRALISED AGENT-BASED LOAD BALANCER

173 | P a g e

• It is very controllable through setting up a limited number of steps and

number of runs;

• It is stoppable, and the best-found result can be retrieved immediately;

• It generally returns good results.

It was found that multiple restarts (herein a twenty five re-run limit) with a

shallow limit of steps (herein five) yield very good results, with only about 2-7%

of solutions in the whole search space (i.e. selecting a subset of tasks being run

on a node) being examined in each invocation. Additionally, instead of restarting

the algorithm an arbitrary number of times, a stop condition for this algorithm

has been implemented when the best-found solution has not been improved in

a certain number of the last steps (herein six).

A sample log entry is presented below, wherein the subset of candidate tasks is

being computed:

12:44:22.016 NodeAgentActor (node=2274790707) INFO
SAMPLE:
 Selected overloading tasks for node [2274790707]
 Node total resources = [0.5000000000,0.2493000000]
 Node used resources (all tasks) = [0.5598619000,0.2060380000]
 Node used prod resources (all tasks) = [0.4812960000,0.2190280000]
 All tasks (* Selected):
 Task [2902878580-1081] (PROD) Priority=11 Required resources=[0.0062480000,0.0014570000]
 Used resources=[0.0149800000,0.0269200000] Migration cost = 6876.02 [MB]
 Task [2902878580-3147] (PROD) Priority=11 Required resources=[0.0062480000,0.0014570000]
 Used resources=[0.0105300000,0.0250900000] Migration cost = 3820.05 [MB]
 Task [3998352223-38] (PROD) Priority=9 Required resources=[0.3125000000,0.1592000000]
 Used resources=[0.1680000000,0.0761700000] Migration cost = 69139054863.11 [MB]
 Task [5726057648-7] (PROD) Priority=9 Required resources=[0.0625000000,0.0077670000]
 Used resources=[0.0168200000,0.0058140000] Migration cost = 106.72 [MB]
* Task [6218406404-243] (PROD) Priority=0 Required resources=[0.0406500000,0.0206900000]
 Used resources=[0.0056840000,0.0057980000] Migration cost = 106.69 [MB]
 Task [6218406404-959] (PROD) Priority=0 Required resources=[0.0406500000,0.0206900000]
 Used resources=[0.0082550000,0.0057910000] Migration cost = 106.67 [MB]
* Task [6251414911-1447] Priority=1 Required resources=[0.0625000000,0.0318000000]
 Used resources=[0.0007629000,0.0076750000] Migration cost = 112.37 [MB]
 Task [6251664479-137] (PROD) Priority=2 Required resources=[0.0125000000,0.0077670000]
 Used resources=[0.0422400000,0.0055920000] Migration cost = 106.25 [MB]
 Task [6251784940-1615] Priority=2 Required resources=[0.0249900000,0.0254500000]
 Used resources=[0.0291700000,0.0135000000] Migration cost = 183.40 [MB]
 Task [6251787910-686] Priority=2 Required resources=[0.0249900000,0.0333900000]
 Used resources=[0.0321000000,0.0150100000] Migration cost = 236.79 [MB]
* Task [6251803864-88] Priority=2 Required resources=[0.0249900000,0.0254500000]
 Used resources=[0.1665000000,0.0102700000] Migration cost = 128.94 [MB]
* Task [6251812952-159] Priority=2 Required resources=[0.0249900000,0.0795900000]
 Used resources=[0.0648200000,0.0084080000] Migration cost = 115.72 [MB]
 Task [6251812952-2072] (unstarted) Priority=2 Required resources=[0.0249900000,0.0795900000]
 Used resources=[0.0000000000,0.0000000000] Migration cost = 101.00 [MB]
 Node used resources (remaining tasks) = [0.3220950000,0.1738870000]
 Node used prod resources (remaining tasks) = [0.4406460000,0.1983380000]
 Total migration cost (selected tasks) = 463.71561966381125 [MB]

Here, the thirteen tasks are being executed on node ‘2274790707’. However, the

used resources exceed the node’s total resources, i.e. all tasks are utilising

DECENTRALISED AGENT-BASED LOAD BALANCER

174 | P a g e

0.5598619 CPU, while the node can provide only 0.5 CPU (values are normalised).

The node’s NA detects the node is overloaded and triggers the SCS routine. The

SCS routine selects four tasks (here: the production task ‘6218406404-243’ and

non-production tasks: ‘6251414911-1447’, ‘6251803864-88’ and ‘6251812952-

159’; marked with *) which are then added to candidate tasks, and NA will

attempt to migrate out this set in the next step. The potential reduction of used

resources is an effect of removing a subset of tasks from this node: (i) CPU

reserved for production tasks is potentially reduced from 0.481296 to 0.440646

which is ca. 88% utilisation of total 0.5 CPU available on this node, and (ii)

memory reserved for production tasks is potentially reduced from 0.219028 to

0.198338 which is ca. 80% utilisation of the total 0.2493 memory available on this

node. The total migration cost for this set of migrations is ca. 463.72MB.

7.4.2. STEP 2: SELECT CANDIDATE NODES

After selecting candidate nodes, NA sends a GetCandidateNodes request to BA.

A part of this request, task information data, such as currently used resources

and constraints, are sent. BA also itself caches a list of all nodes in system with

their available resources and attributes. Based on this information, BA prepares

a list of alternative candidate nodes for a task in request. The main objective of

this process is to find alternative nodes which have the potentially highest node

AS, under the assumption that the task will be migrated to a scored node. The

size of this list is limited to an arbitrary value to avoid network congestion when

NA will send actual migration requests query in the next step. In this

implementation, it is set to fifteen candidate nodes returned in each response.

This step is the most computing intensive of all, and represents a potential

bottleneck for negotiating logic processing. BA needs to examine all system nodes,

check their availability for a given task and score them accordingly. The request

processing is self-contained and highly concurrent, meaning that the node

DECENTRALISED AGENT-BASED LOAD BALANCER

175 | P a g e

scoring can be run in parallel and the final selection of top candidate nodes is run

in sequence. Originally, this code was extensively profiled and improved, and

designed BA to be able to run in a multi-instance mode if needed and to handle

heavy usage. However, in experiments, the quoting mechanism proved to be very

lightweight and the demand not that high, meaning that a single BA was sufficient

to handle 12.5k nodes in the system. Below, a sample log entry is presented when

such a list is computed and returned to a NA:

17:53:28.516 NodeAgentActor (node=97967489) INFO
SAMPLE:
 Candidate nodes recommendations for migration-out of task:
 Task [6251414911-740] Priority=1 Required resources=[0.0625000000,0.0318000000]
 Used resources=[0.0476100000,0.0097350000] Migration cost = 124.29 [MB]
 Source node: Node [97967489] [0.5000000000,0.4995000000]:
 CandidateNodeRecommendation[nodeId=2110696959,nodeAvailableResources=[0.1167000800,0.0578920000],
 fitnessValue=5.027797352070,forceMigration=false]
 CandidateNodeRecommendation[nodeId=2274669582,nodeAvailableResources=[0.0846342000,0.1311130000],
 fitnessValue=4.351440488446,forceMigration=false]
 CandidateNodeRecommendation[nodeId=294847211,nodeAvailableResources=[0.2073230300,0.0232970000],
 fitnessValue=3.990484728735,forceMigration=false]
 CandidateNodeRecommendation[nodeId=1302354,nodeAvailableResources=[0.2147855300,0.0715080000],
 fitnessValue=3.368267142480,forceMigration=false]
 CandidateNodeRecommendation[nodeId=7246234,nodeAvailableResources=[0.3283863000,0.0205610000],
 fitnessValue=2.444197290198,forceMigration=false]
 CandidateNodeRecommendation[nodeId=2887932822,nodeAvailableResources=[0.3051645700,0.1098830000],
 fitnessValue=2.147161970183,forceMigration=false]
 CandidateNodeRecommendation[nodeId=38743543,nodeAvailableResources=[0.3583948000,0.1018340000],
 fitnessValue=1.769829840087,forceMigration=false]
 CandidateNodeRecommendation[nodeId=6568110,nodeAvailableResources=[0.2394051100,0.2629800000],
 fitnessValue=1.711800790297,forceMigration=false]
 CandidateNodeRecommendation[nodeId=38709566,nodeAvailableResources=[0.3584505000,0.1189080000],
 fitnessValue=1.697701710745,forceMigration=false]
 CandidateNodeRecommendation[nodeId=3739348304,nodeAvailableResources=[0.2367339800,0.2681720000],
 fitnessValue=1.696017579836,forceMigration=false]
 CandidateNodeRecommendation[nodeId=1093461,nodeAvailableResources=[0.3801150000,0.0841200000],
 fitnessValue=1.681960083254,forceMigration=false]
 CandidateNodeRecommendation[nodeId=4217347623,nodeAvailableResources=[0.3635202600,0.1467840000],
 fitnessValue=1.553194840995,forceMigration=false]
 CandidateNodeRecommendation[nodeId=16918689,nodeAvailableResources=[0.3916948000,0.1250880000],
 fitnessValue=1.456396783346,forceMigration=false]
 CandidateNodeRecommendation[nodeId=257495090,nodeAvailableResources=[0.0367722000,0.0736920000],
 fitnessValue=0.000000000001,forceMigration=true]
 CandidateNodeRecommendation[nodeId=38679534,nodeAvailableResources=[0.3811526500,0.0066530000],
 fitnessValue=0.000000000001,forceMigration=true]

Here, NA on node ‘97967489’ requested candidate nodes for the migration of the

task ‘6251414911-740’. BA returned top candidate nodes for a given task ordered

by their suitability score, i.e. fitness value. Here values returned are:

5.02779735207 for node ‘2110696959’, 4.351440488446 for node ‘2274669582’,

3.990484728735 for node ‘294847211’, 3.36826714248 for node ‘1302354’, and

so on. Additionally, the last recommendations for nodes ‘257495090’ and

‘38679534’ are forced-migrations (forceMigration is set to true).

Within the node recommendation there is additional information, such as node

available resources and other metadata (not shown in listing). It is not necessary

DECENTRALISED AGENT-BASED LOAD BALANCER

176 | P a g e

to return this extra information, but it was found to be very useful for logging and

sampling purposes, and then efficient tuning of the system (for details see

subsection 7.6.3).

7.4.3. STEP 3: SEND MIGRATION REQUESTS

Forced migration candidates will be always added to the list of accepted

candidate nodes in the next step but with minimal scores. Each NA analyses its

own node availability for a given task, i.e. both the available resources and the

node’s attributes, and responds with TaskMigrationAcceptanceResponse or

TaskMigrationRejectionResponse.

Acceptance response only implies the readiness to accept a task with NA not yet

allocating any resources. Additionally, TaskMigrationAcceptanceResponse

message contains this node’s current resources usage levels, which are used in

the next step to rescore this node, since the data from BA are less recent.

7.4.4. STEP 4: SELECT TARGET NODE

NA waits for a defined time, or until all candidate nodes have responded by either

the acceptance or rejection of a migrated task, and computes a list of nodes that

accepted this task. NA evaluates each of the accepting nodes using the SRAS

function, with the assumption that the task will be re-allocated to a scored node.

From this pool, a target node is then selected. The selection is weighted with

node scores but still randomised, which helps to avoid conflicts when many task

migrations compete for the same node.

As noted above, all forced migration candidate nodes will be added to this list but

will be selected only in last place, once all other alternative migrations attempts

fail. This strategy ensures that NA always has an alternative node to offload the

task. A scenario in which only one node is capable of running a given task is

DECENTRALISED AGENT-BASED LOAD BALANCER

177 | P a g e

considered to be an error, and is reported to the system administrator. For fault-

tolerance reasons, the system should always have multiple nodes able to run any

given task.

A sample log entry is presented below:

17:48:51.541 NodeAgentActor (node=30790115) INFO
SAMPLE:
 Accepted recommendations for migration-out of task:
 Task [4844000327-3] (PROD) Priority=10 Required resources=[0.0625000000,0.0031090000] Used
resources=[0.0037420000,0.0018860000] Migration cost = 101.86 [MB]
 Source node: Node [30790115] [0.5000000000,0.2493000000]
 All non-expired recommendations (* selected):
 CandidateNodeRecommendation[nodeId=72,nodeAvailableResources=[0.2409250200,0.0802350000],
 fitnessValue=2.737788312063,forceMigration=false]
 CandidateNodeRecommendation[nodeId=4995304750,nodeAvailableResources=[0.2017312000,0.1336360000],
 fitnessValue=2.704122369764,forceMigration=false]
 CandidateNodeRecommendation[nodeId=6608641,nodeAvailableResources=[0.1552938500,0.1871200000],
 fitnessValue=2.657728011619,forceMigration=false]
 CandidateNodeRecommendation[nodeId=336053478,nodeAvailableResources=[0.2798536000,0.0479556000],
 fitnessValue=2.558664832112,forceMigration=false]
 CandidateNodeRecommendation[nodeId=351638129,nodeAvailableResources=[0.2121407240,0.1468220000],
 fitnessValue=2.505822852307,forceMigration=false]
 CandidateNodeRecommendation[nodeId=431038304,nodeAvailableResources=[0.3267638000,0.0397480000],
 fitnessValue=2.142784872639,forceMigration=false]
* CandidateNodeRecommendation[nodeId=3650320528,nodeAvailableResources=[0.3118476200,0.0739690000],
 fitnessValue=2.101080438228,forceMigration=false]
 CandidateNodeRecommendation[nodeId=351664198,nodeAvailableResources=[0.3099791000,0.1114180000],
 fitnessValue=1.926755718413,forceMigration=false]
 CandidateNodeRecommendation[nodeId=6565510,nodeAvailableResources=[0.3613202000,0.1106346000],
 fitnessValue=1.564594925411,forceMigration=false]
 CandidateNodeRecommendation[nodeId=1273895,nodeAvailableResources=[0.3402396000,0.1485660000],
 fitnessValue=1.556209187067,forceMigration=false]
 CandidateNodeRecommendation[nodeId=662212,nodeAvailableResources=[0.4032697100,0.0658030000],
 fitnessValue=1.431851646113,forceMigration=false]
 CandidateNodeRecommendation[nodeId=1272936,nodeAvailableResources=[0.3443891900,0.2676010000],
 fitnessValue=1.119583713082,forceMigration=false]
 CandidateNodeRecommendation[nodeId=2594787,nodeAvailableResources=[0.3313337000,0.3637160000],
 fitnessValue=0.874210901828,forceMigration=false]
 CandidateNodeRecommendation[nodeId=2098371268,nodeAvailableResources=[0.3326411500,0.0528420000],
 fitnessValue=0.000000000001,forceMigration=true]
 CandidateNodeRecommendation[nodeId=1332336,nodeAvailableResources=[0.2588359500,0.3254990000],
 fitnessValue=0.000000000001,forceMigration=true]

Here, NA on a node ‘30790115’ is selecting a target node for the migration of task

‘4844000327-3’ (with the migration cost of 101.86MB). All accepted

recommendations from previous step (within thirty seconds) or forced

recommendations (forceMigration is set to true) are re-scored and a single node

is selected (here: node ‘3650320528’; marked with *). Then, NA sends

TaskMigrationProcessRequest to initiate a task migration process itself. NA stores

received candidate node recommendations in its memory in case the task

migration fails, and the next target node has to be selected.

Once the task is removed from a node, meaning it is re-allocated, and has finished

its execution, is killed or crashes, all its candidate node recommendations are

automatically invalidated and deleted. Additionally, candidate node

DECENTRALISED AGENT-BASED LOAD BALANCER

178 | P a g e

recommendations expire after an arbitrary defined time, in this case three

minutes. This mechanism exists in order to remove recommendations with out-

dated node data. If no candidate node recommendations are left (or expire), and

the node is still overloaded, the SAN process restarts from Step 1.

7.4.5. STEP 5: MIGRATION PROCESS

When NA receives TaskMigrationProcessRequest, it performs a final suitability

check, wherein both node’s available resources and task constraints are validated.

If the forced-migration flag is set, NA ignores the existing tasks and validates the

required resources against total node resources. Occasionally, the target NA can

reject task migration process or migration fails. In such a scenario the algorithm

returns to Step 4 and selects the next candidate node (via weighted randomised

selection).

In practice, this happens only for 6-8% of all task migration attempts (in simulated

GCD workload), the majority being the result of task migration collisions where

two or more tasks are being migrated to the same node. The first-to-arrive

TaskMigrationProcessRequest is generally successful, meaning that Steps 4 and

5 are repeated only for the rejected migrations. There have been no observations

of an increase in collisions when the larger Cloud system is simulated (up to 100k

nodes, as detailed in section 7.6.10). This is because a single NA communicates

with only a limited set of other agents, and the P2P communication model is used

exclusively. This means that the communication overhead does not go up when

the system size is increased.

7.4.6. FORCED MIGRATION

In rare circumstances, approximately 10-15 out of 10k tasks present constraints

which restrict the execution of a task to a very limited number of nodes.

DECENTRALISED AGENT-BASED LOAD BALANCER

179 | P a g e

Considering this, there is a scenario in which NA wants to migrate out a given task

but is unable to find an alternative node because all suitable nodes have already

been allocated to other tasks, and the majority of their resources have been

utilised. In such a scenario, BA returns candidate node recommendations with a

forced-migration flag set. In response, the BA can also mix non-forced migrations

and forced migrations. In a worst-case scenario, all returned recommendations

would be forced, but this approach ensures there is always an acceptable node

to run a given task on. This prevents a starvation of the task resources, where the

task is never executed.

A forced migration flag signals that a node is capable of executing a task but that

its current resources utilisation levels do not allow it to allocate additional tasks,

since this will cause the node to be overloaded. Forced migration forces the node

to accept the task migration request while skipping the available resources check.

However, task constraints are still validated, including the check if the node’s

total resources are sufficient to run the task. This design helps to avoid a situation

where a task has very limiting constraints and only a few nodes in the system can

execute it. If those nodes have no available resources then it will not be possible

to allocate a task to them, and therefore tasks will not run. As such, the nodes

are forced to accept this task, which then many trigger the target node’s NA to

migrate out some of its existing tasks to alternative nodes.

7.5. SERVICE ALLOCATION SCORE FUNCTIONS

SAS functions are a crucial part of the system, which greatly impacts global

resource usage level. That is, they determine how well nodes' resources are

utilised. They are used when a new task is allocated or when a system needs to

re-allocate an existing task to an alternative node.

DECENTRALISED AGENT-BASED LOAD BALANCER

180 | P a g e

SAS functions evaluate how well a given task will fit a scored node system-wise

by returning AS value. In this implementation, SAS input is constructed from the

total node resources, the currently available node resources and the currently

required resources for a given task. SAS function returns a value when a task fits

the available resources on a node, and also when a node is overloaded by a task.

If a node cannot fulfil a task's constraints, the node is deemed non-suitable and

the scoring function is undefined.

This research concludes that node AS are failing in six separate areas:

• Idle Node – a completely idle node is a special case of allocation, in which

no task has been allocated to this node. Such a node could be completely

shut down, resulting in lower power usage for a cluster. In this research,

idle nodes are scored most highly when determining a suitable node for

initial task allocation.

• Super Tight Allocation (STA) – where some of the node's resources are

utilised in the 90%-100% range. STA is regarded as stable allocation;

however, due to the dynamic resource usage, this is actually not a

desirable scenario. Complete, or almost complete, resource usage can

frequently lead to resource over-allocation, whereby one or more tasks

increase their resource utilisation. This experimentation has determined

that leaving 10% of any given resource unutilised gives the best results

since it reduces task migration but still ensures the efficient use of the

system resources (see discussion in subsection 7.5.4).

• Tight Allocation (TA) – where all node resources are utilised in the 70-90%

range. This is the most desirable outcome as it promotes the best fitting

allocation of tasks and, therefore, low resource wastage.

• Proportional Allocation (PA) – while tight-fit is the most desirable

outcome, the majority of tasks in this research consumed a small amount

of each resource. Most scheduled tasks are short batch jobs which have a

DECENTRALISED AGENT-BASED LOAD BALANCER

181 | P a g e

very short execution time. In such a scenario, it is desirable to keep

proportional resources' usage ratios on all nodes which would, therefore,

generally enable nodes to fit more tasks with ease.

• Disproportional Allocation (DA) – where the node's resources are not

proportionally utilised, thereby making it difficult to allocate additional

tasks if required. For example, a setup where tasks on a node allocate 75%

of CPU but only 20% of memory is not desirable.

• Overloaded Node – when allocated resources overload the total available

resources on the node. Naturally, this is an unwanted situation, and such

a node is given a score of zero.

Figure 32 visualises AS types for the two resources (CPU and memory):

Figure 32: Allocation Score types (two resources)

SAS function should never allow overloading allocations to take place in order to

prevent a scored node to become overloaded and unstable. Additionally, during

the research it was determined that STAs are very prone to over-allocate nodes

and are damaging to overall system stability. Therefore, they are also accorded a

score of zero. DAs increase global resource wastage and should be avoided;

DECENTRALISED AGENT-BASED LOAD BALANCER

182 | P a g e

nevertheless, they are acceptable if none of the more desired types of AS are

possible. The desirability order varies and depends on the task’s state, as

discussed in subsections 7.5.2 and 7.5.3 below, while the following subsection

introduces the concept of Service Allocation Lifecycle (SAL).

7.5.1. SERVICE ALLOCATION LIFECYCLE

Tightly fitting tasks on as few nodes as possible are beneficial for global system

throughput. However, during this research the following facts were observed:

• Initially, a Cloud user specifies the task’s required resources. Users tend

to overestimate the amount of resources required, wasting in some cases

close to 98% of the requested resource (Moreno et al., 2013). Therefore,

only after the task is executed could realistic resource utilisation values

be expected. Allocating new tasks in a tight-fit way (i.e. TA and STA areas

in Figure 32) does result in turmoil when the task is actually executed and

the exact resource usages levels are logged. Therefore, the initial

allocation should rather aim to distribute tasks across nodes and keep the

resource utilisation levels on individual nodes low (i.e. PA area in Figure

32), than pile them on the lowest possible number of nodes.

• In GCD, only about 20-40% of tasks qualify as long-running tasks, meaning

that they run for longer than twenty minutes (Schwarzkopf et al., 2013).

The remaining scheduled tasks consisted of short-term jobs which

generally have much lower resource requirements than long-running

tasks. The majority of tasks are short and will not exist for long at all in the

system. Therefore, it is important for an initial allocation not to spend too

much time in trying to tightly fit them into available nodes.

• While the majority of tasks are short-lived (up to twenty minutes), there

exists a number of long-running tasks that have more demanding

resource requirements, meaning that the majority of resources (55–80%)

DECENTRALISED AGENT-BASED LOAD BALANCER

183 | P a g e

are allocated to long-lived services (ibid.). Therefore, it is more difficult to

fit them into nodes, and these allocations should be much tighter to

minimise global system resource waste. More nodes need to be scored

which therefore consumes more CPU time when allocating a single task.

Given the above reasons, the ideal scenario for a task is to be initially allocated

on a lowly-utilised node, before it is gradually migrated towards more tightly-

fitted allocations with other tasks. Figure 33 represents resulting SAL:

Figure 33: Service Allocation Lifecycle

Originally, the MASB framework did not have distinct scoring functions for SIAS

and SRAS; a single SAS function, with the same scoring model as SRAS, was used

DECENTRALISED AGENT-BASED LOAD BALANCER

184 | P a g e

for all allocations which resulted in lowered performance. The design was

ultimately altered, and SAS function was split.

During Initial Allocation, a randomly selected BA is responsible for allocating a

newly arrived task to a worker node. BA uses SIAS function (detailed in subsection

7.5.2) to score nodes. Only a limited number of candidate node

recommendations are calculated (here: 200) before selecting the top

recommendations. This is to prevent scoring routine calculations from processing

for too long. The limit of 200 applies only to non-forced recommendations for

matching nodes.

MASB uses a network of BAs to provide a set of the best candidate nodes (nodes

with the highest AS) to allocate the task. However, some applications such as Big

Data frameworks often send multiples of an identical task in a batch. Those tasks

execute the same program and have the same (or very similar) resource

requirements. As such, a limited set of nodes will be highly scored and may result

in a multiple repeated allocations requests to the same node over a very short

period of time. To prevent this phenomenon, the pool of candidate nodes is

randomly shuffled each time BA receives a request.

A once allocated (and running) task can be re-allocated to an alternative node if

necessary. In such a scenario NA of a node which the task is being executed is

responsible for finding a candidate node. Both NA and BA use SRAS function

(detailed in subsection 7.5.3) to score candidate nodes. Similar to calculating

recommendations for new tasks, as an additional optimisation, only a limited

number of candidate node recommendations are calculated before selecting the

top recommendations. However, because this routine is invoked much less

frequently, two thousand nodes are analysed. The two thousand limit applies

only to non-forced recommendations for matching nodes.

DECENTRALISED AGENT-BASED LOAD BALANCER

185 | P a g e

7.5.2. SERVICE INITIAL ALLOCATION SCORE

As explained in the subsection above, in order to minimise the impact of Cluster

user’s overestimating resource requirements, the initial allocation should

attempt to spread tasks widely across all system nodes. Therefore, when initially

allocating existing tasks, candidate nodes should be scored in the following order:

PA, TA and finally DA.

In this implementation, the SIAS function for two resource types (CPU and

memory) was used. Figure 34 is a graphical representation of SIAS function:

Figure 34: Service Initial Allocation Score (two resources)

Three separate areas can be noticed:

• Lower-left (the highest score) – this promotes PA, which will leave

resource utilisation at a low level or proportionately used.

• Upper-right corner (the medium score) – this promotes TA, where tasks

on this node will closely utilise all its resources.

• The upper-left and lower-right corners (the lowest score) – these DAs will

leave one resource utilised almost fully and the other resource wasted.

DECENTRALISED AGENT-BASED LOAD BALANCER

186 | P a g e

It should be noted that the maximum resource usage is 90%, and that values

above this level are in an undesired STA’s area (and have zero AS). The following

SIAS function was used:

𝑆𝐶𝑂𝑅𝐸 = 𝐹_𝑆𝑇𝐸𝐸𝑃^�����y_��x�∙����_ ¡¢`∙^� £ �y_��x�∙� £ _ ¡¢` − 𝐹_𝐹𝐿𝑂𝑂𝑅 (13)

• 𝑟KLM,	𝑟z¤z – current resources utilisation levels on a node (values are normalised to

between 0 and 1);

• 𝑟KLM_zx¥,	𝑟z¤z_zx¥ – total resources available on a node (values are normalised to

between 0 and 1);

• 𝐹_𝐵𝐼𝐴𝑆 – score factor which sets the bias towards low (i.e. SIAS function) or high (i.e.

SRAS function) utilisation of resources on a node. Here, a value of 0.3 was used;

• 𝐹_𝑆𝑇𝐸𝐸𝑃 – parameter describing how aggressively the system should increase scores

of the more desired AS-es (which impacts the probability of a node selection). Here, a

value of 350 was used;

• 𝐹_𝐹𝐿𝑂𝑂𝑅	– parameter describing how aggressively the system should reduce scores

of less desired AS-es (which impacts the probability of skipping a node). Here, a value

of 0.8 was used;

• Additionally, negative score values are adjusted to zero (to prevent the selection of a

node).

It should be noted that the SIAS is calculated exclusively from user-defined

resource requirements since the actually-used resource requirements are

unknown before the task execution actually starts.

7.5.3. SERVICE RE-ALLOCATION SCORE

This research has found that the best throughput results are achieved when tasks

are packed tightly into available nodes, i.e. where global resource utilisation is

the highest. The best fit scenario, where the task fully utilises 90% of all available

resources on a node, is scored the highest. Therefore, when migrating existing

tasks, candidate nodes should be scored in the following order: TA, PA, then DA.

DECENTRALISED AGENT-BASED LOAD BALANCER

187 | P a g e

Like the SIAS function presented in 7.5.2, the SRAS function for two resource

types (CPU and memory) was used. Figure 35 is a graphical representation of

SRAS function:

Figure 35: Service Re-allocation Score (two resources)

Three separate areas can be noticed:

• Upper-right corner (the highest score) – this promotes TA, where tasks on

this node will closely utilise all its resources.

• Lower-left (the medium score) – this promotes PA that will leave resource

utilisation at a low level or proportionately used.

• The upper-left and lower-right corners (the lowest score) – these DAs will

leave one resource utilised almost fully and the other resource wasted.

In this implementation, the following SRAS was used:

𝑆𝐶𝑂𝑅𝐸 = 𝐹_𝑆𝑇𝐸𝐸𝑃^�����y_��x�∙����_ ¡¢`∙^� £ �y_��x�∙� £ _ ¡¢` − 𝐹_𝐹𝐿𝑂𝑂𝑅 (14)

(with the exceptions of 𝐹_𝑆𝑇𝐸𝐸𝑃	where a value of 500 was used and 𝐹_𝐵𝐼𝐴𝑆 where a value

of 0.6 was used; the parameter definitions are the same as in (13) in subsection 7.5.2)

DECENTRALISED AGENT-BASED LOAD BALANCER

188 | P a g e

As can be observed visually, SRAS is a mirror image to the SIAS function

(presented in Figure 34). The main difference is changing the score bias (i.e.

𝐹_𝐵𝐼𝐴𝑆 parameter) which shifts the peak score point from (0,0) to (90,90)

(percentage of utilised resources), and which relates to the change in the most

desirable AS from PA to TA.

It should be noted that the SRAS is calculated exclusively from actually-allocated

resource requirements. User-defined resource requirements are evaluated as

part of the RUS routine, explained in detail below.

7.5.4. RESOURCE USAGE SPIKES

Occasionally, a task might instantly increase its resource usage as the result of

sudden increase of a demand for a task; at such times, a node should have the

capacity to immediately accommodate this request, without needing to migrate

the task to an alternative node (since this takes time). In such a situation, other

VMs running on this machine can be paused or killed to let the VM instance

executing this task instantly allocate more resources.

As such, an additional feature was implemented in MASB to handle RUS. Aside

from checking the actually-used resources for tasks and ensuring that the node

has the capacity to support it, the system also calculates the maximum possible

resource usage of all production tasks based on user-defined resource

requirements, as well as making sure that the node has the capacity to support

all production tasks at their full resource utilisation. This constraint is limited only

to production jobs since VMs running non-production jobs can be suspended

without disturbing business operations. The continuously fulfilment of this

constraint is referred to as Goal (IV).

DECENTRALISED AGENT-BASED LOAD BALANCER

189 | P a g e

The introduction of RUS constraint adds another dimension to the tasks

allocations’ logic. Figure 36 visualises how user-defined resource requirements

for production tasks and actually-used resources for all tasks are integrated:

Figure 36: Production vs. non-production allocated resources

In this 60 node sample (a single bar represents one node), approximately half the

nodes have a very high CPU user-defined allocation for production tasks, while

the real usage is much lower. It should be noted that while memory usage stays

proportionally high thorough the GCD workload, the gaps between the requested

and the actually-used memory are much smaller. This is a relatively common

pattern for GCD workload. Additionally, the chart marks the allocation type (STA,

TA, DA, PA) for each node in this sample on the horizontal axis.

DECENTRALISED AGENT-BASED LOAD BALANCER

190 | P a g e

Whilst RUS do not occur frequently, they do have the significant potential to

destabilise an affected node. Table 15 represents the average frequency of RUS

in examined GCD workload traces with ca. 12.5k nodes and ca. 140k tasks being

continuously executed by them (with different RUS thresholds examined):

RUS threshold Average RUS
(count per minute)

Peak RUS
(count per minute)

5% 659 7538

10% 212 4362

15% 66 2390

20% 47 1925

25% 26 1135

Table 15: Resource Usage Spike frequencies (GCD)

Here, while running a simulation based on replaying the original Borg’s allocation

decisions (as detailed in 7.6.7), the RUS threshold of 10%, i.e. whenever there

was a greater than 10% increase in the overall node resource utilisations levels in

any of the monitored resources, was breached 212 times per minute on average,

with a peak of 4362 breaches.

In this research, a threshold of 10% was selected for the experimental simulations

as an overall good balance between efficiently allocating nodes’ resources and,

at the same time, leaving the running tasks enough headroom for occasional

activity spikes. Generally, lower thresholds resulted in many task migrations (and

thus incurred additional task migration costs), and the thresholds above 10%

were not utilising resources effectively (the system throughput was lowered).

Consequently, the SAS functions were tuned to allocate up to 90% of all available

resources on the node (as seen in Figure 32) which seem to give the best overall

results.

DECENTRALISED AGENT-BASED LOAD BALANCER

191 | P a g e

RUS are a significant design consideration, and a misconfiguration might lead to

multiple premature terminations of the tasks and suboptimal performance of the

system. Google’s engineers implemented a custom resource reservation strategy

using a variant of step moving average, as detailed by John Wilkes in a

presentation during the GOTO 2016 conference in Berlin (Wilkes, 2016). To cite

an alternative solution to handle RUS, El-Sayed et al. (2017) proposes a Machine

Learning framework for predicting task terminations, with the resulting task-

cloning policy mitigating the effect.

7.6. EXPERIMENTAL RESULTS

The previously developed AGOCS framework (Chapter 5) was used as the base of

the experimental simulation. AGOCS is a very detailed simulator which provides

a multiple of parameters and logical constraints for simulated jobs. The scope of

the available variables is very broad, including memory page cache hit and

instructions per CPU cycle; however, in this project simulations were based on

the following assumptions:

• Requested (by user) and realistic (monitored) resources’ utilisation levels

for memory and CPU;

• Detailed timing of incoming tasks and any changes in available nodes

(within one-minute cycles);

• Nodes attributes and attributes’ constraints defined for tasks (as specified

in GCD workload traces).

This level of detail comes at the price of extensive computing power

requirements. While dry simulation itself can run on a typical desktop machine

(see Appendix A) in ca. nine hours, adding layers of scheduling logic, agents’

states and inter-system communication requires a significant increase in

DECENTRALISED AGENT-BASED LOAD BALANCER

192 | P a g e

processing time. In order to realistically and correctly simulate scheduling

processes on a Cloud system, the Westminster University HPC Cluster was used.

7.6.1. TEST ENVIRONMENT AND CODE PROFILING

The MASB prototype was initially developed on a personal desktop, but as the

size and level of detail of the simulations grew, it was necessary to move to a

Cluster environment where more computing power was available. All the

experiments were executed on the Westminster University HPC Cluster,

regarding which more details concerning the software and hardware

specifications can be found in Appendix C.

While this cluster offered a sizable array of GPUs, the simulations did not take

advantage of that computing power, and instead all processing took place on

CPUs. Although it would have been possible to achieve higher throughput when

using GPU with frameworks such as ScalaCL or Rootbeer, JVM does not natively

support GPU processing. Having as few external dependencies as possible was

therefore preferred, since they make maintaining the project more time-

consuming. Interestingly, Google’s BorgMaster process, which manages a single

cell in the production environment for one computing cell, uses 10–14 CPU cores

and up to 50GB of memory. The statistics presented are valid for an intensely

utilised computing cell, for example one which completes more than 10k tasks

per minute on average (Verma et al., 2015).

In experiments, MASB allocated all available 40 CPU cores (20 cores + HT siblings)

and used them continuously at 60% to 80%. The MASB process allocated ca. 7GB

of memory. It is difficult to measure exactly how much computing power was

spent on supporting activities such as simulating messaging interactions between

agents, i.e. enqueuing and dequeuing messages to and from Akka actors.

However, after tuning exercises of the default configuration, the Akka Actors

DECENTRALISED AGENT-BASED LOAD BALANCER

193 | P a g e

framework proved to be quite resilient. It is estimated that the framework’s

processing did not take up more than 10-15% of the total CPU time, with the

relatively lightweight AGOCS simulator framework consuming about 15-25% of

all CPU time. As an interesting note, Akka’s optional Thread-pool executor

performed noticeably better on the test HPC machines (Appendix C) than on the

default Fork-join-pool executor, which is based on a work-stealing pattern. This

phenomenon, as well as other experiences of running computation-intensive

applications on HPC machines, were discussed during in two presentations

(Sliwko, 2018a; Sliwko, 2018b). All the profiling and the above estimation were

completed with help of YKJP, similar to the profiling exercises detailed in section

6.4. Figure 37 presents a sample screenshot from the code profiling exercises:

Figure 37: YourKit Java Profiler exercise

YKJP was an excellent tool which helped to optimise the code execution time.

However, in a truly multi-core environment, a different approach was required –

one which focused on minimising context switches frequency and average CPU

idle time across all available cores. Once the MASB framework was moved into

the Cluster environment, the ‘pidstat’ command tool was used to gather statistics,

before the refactor and fine-tune framework so as to achieve better parallelism.

DECENTRALISED AGENT-BASED LOAD BALANCER

194 | P a g e

During MASB simulations, the typical observed context switches frequency was

ca. 500-700 per second per thread, which is comparable with a fully loaded

webserver (Mechalas, 2012).

7.6.2. TESTABLE DESIGN

Building a framework which fully simulates the Google computing cell from GCD

traces has been previously recognised as a challenging task, where there are

many aspects to consider (Sharma et al., 2011; Abdul-Rahman, et al., 2014; Zhu

et al., 2015). GCD traces contain details of nodes, including their resources,

attributes and historical changes in their values. Traces also contain

corresponding parameters for tasks, such as user-defined and actually-used

resources, as well as attributes’ constraints. This has created a multi-dimensional

domain with a range of relations which has resulted in complex error-prone

implementation. In order to mitigate the risk of coding errors, especially during

rapid iterations, a number of programming practices were used:

• A comprehensive test units suite was developed (see Appendix E), along

with prototype code. Test units were executed upon every build to catch

errors before being deployed to production. This software engineering

pattern allowed for a rapid development of prototype and helped to

maintain the high code quality;

• A number of sanity checks were built into the runtime logic, such as

checking whether the task’s constraints could be matched to any node’s

attributes within the system and checking whether the total of all

scheduled tasks’ resources exceeded the computing cell compatibilities;

• Recoverable logic flow was implemented for both NA and BA. In the case

of various errors such as division by zero or null pointer exceptions, the

error is logged but the agent continues to run;

DECENTRALISED AGENT-BASED LOAD BALANCER

195 | P a g e

• Keeping a separate error log file with the output of all warnings and errors

was a considerable help in terms of resolving bugs.

The implementation of the above features gave high confidence in terms of

realising a good quality and reasonably bug-free code.

7.6.3. PLATFORM OUTPUTS

Adding detailed logging features to MASB has proved surprisingly difficult. Due

to the highly parallel nature of the simulated Cloud environment, an enormous

number of log messages were generated upon each simulation, making it difficult

to analyse the behaviour of tested algorithms. In addition, writing and flushing

log streams caused pauses in simulation. Switching to a Logback framework

designed with a focus on concurrent writes provided a solution to this problem,

although it was necessary to split the data into distinct log files in order to

improve readability, e.g. separate errors from algorithms’ output data.

7.6.3.1. LOGGING

In order to fine-tune MASB, excessive logging routines were implemented. All

messages, counters and errors are logged to four types of log-files:

• /logs/*.log files – standard log outputs containing all logs messages and

also samples;

• /logs/*-error.log – errors and corrupted data exceptions are written to

separate files to help with debugging and troubleshooting;

• /logs/*-ticks.csv – CSV files with periodically generated overall system

stats, such as the number of idle and overloaded nodes, number of

migration attempts, global resources-allocation ratio, and so on;

• /usage/*.csv – detailed node usage stats and task allocations are written

periodically to a file, that is, every hundred minutes of simulation time.

DECENTRALISED AGENT-BASED LOAD BALANCER

196 | P a g e

7.6.3.2. SAMPLING

Sampling proved to be one of the most important logging features implemented.

While examining every decision process in MASB simulation is virtually

impossible, frequent and recurrent analysis of the details and values was useful

for fine-tuning the system and the scoring functions. Not all the details of every

single decision process were logged, rather just a small percentage of all

invocations. In the current implementation, the following items are sampled:

• The selection of overloading tasks by the NA, ca. 1 sample per 50

invocations (a sample is presented in 7.4.1);

• The scoring and selection of candidate nodes by the BA, ca. 1 sample per

5k invocations (see log entry in 7.4.2);

• The selection of the target node from the candidate node list, ca. 1 sample

per 5k invocations (as listed in subsection 7.4.4).

7.6.4. SYSTEM EVOLUTIONS AND OPTIMISATIONS

In order to achieve high resources utilisation and low resources waste, several

enhancements were implemented and then fine-tuned, including:

• Limiting the number of candidate nodes returned from BA to fifteen, and

introducing the forced migrations feature (subsection 7.4.6);

• Fine-tuning SCS routine to maintain the balance between migration cost

and the node allocation score as specified in subsection 7.4.1, which

refers to finding the right combination of steps of the TS algorithm, as well

as its termination depth;

• Splitting the SAS function into SIAS and SRAS and then limiting the number

of candidate nodes examined in those functions (200 and 2k respectively);

DECENTRALISED AGENT-BASED LOAD BALANCER

197 | P a g e

• Adjusting input parameters for SIAS and SRAS functions, namely values

for 𝐹_𝐵𝐼𝐴𝑆, 𝐹_𝑆𝑇𝐸𝐸𝑃 and 𝐹_𝐹𝐿𝑂𝑂𝑅 for the best results based on samples

logged (subsections 7.5.2 and 7.5.3);

• Adding the timestamp parameter to the candidate node

recommendations, and regularly removing those which have expired. In

scenarios where the task migration request is repeatedly refused, this

mechanism forces NA to disregard the results of old calculations and

request newly scored recommendations from BAs. In this implementation,

the recommendation’s age threshold was set to three minutes

(simulation time) with lower values not yielding better results (see

subsection 7.4.4).

7.6.5. TEST SIMULATIONS SETUP

During the later stages of the development of the MASB prototype, several

simulations were continuously run. They were frequently paused, tuned and then

resumed to see whether a given tweak would improves the results. This

methodology allowed the research to progress at a good speed while

simultaneously iterating a number of ideas and tweaks. Therefore, the testing

process did not have noticeable stages, but instead the stages blended into each

other. This said, it is possible to logically split the testing into four main areas:

• Benchmarking – GCD workload traces also contain actual Google’s Borg

scheduler task allocations. In the Borg’s simulation, MASB will replay all

recorded events, mirroring tasks allocations as per the Google scheduler,

i.e. not using its own scheduling logic. This simulation was used as a

controlling run in order to test the system, and also as a benchmark to

compare results with the original allocations.

• Throughput – secondly, MASB was tested to identify whether it was

capable of allocating the same workload as Borg system. The size of the

DECENTRALISED AGENT-BASED LOAD BALANCER

198 | P a g e

workload was then increased gradually in 2% steps while preserving the

configuration of the system nodes. To ensure the correctness of results,

another technique, called ‘cell compaction’ (Verma et al., 2015) was used

in which, instead of adding additional tasks, the system nodes were

removed. The results were then compared to the original GCD workload.

• Migration Cost – thirdly, this batch of experiments focused on migration

costs incurred via use of VM-LM. A collection of different SAS functions

and their variants were tried in order to research their impact on total

migration cost while allocating the given workload.

• Scalability – finally, the MASB simulation was run with multiplies of GCD

workload in order to test the scalability limits of the designed solution.

Although this step was the least work-intensive, it took the longest time

to perform.

As noted in Zhu et al. (2015), simulating GCD workload is not a trivial task. The

main challenge when running such large and complex simulations is the demand

for computation power and the continuous processing. During this experiment,

the AGOCS framework was modified to also allow the testing of computing cells

larger than 12.5k. This was achieved by duplicating randomly selected existing

tasks and their events, for example ‘Create Task A event from GCD workload trace

files’ will create events AddTaskWorkloadEvent events for task A and A’. This

feature is based on the hashcode of object’s ID, which is a constant value.

The largest experiments simulated a single Cloud computing cell with 100k nodes

and required nine months of uninterrupted processing on one of the University

of Westminster HPC cluster’s nodes. At this juncture, it should be noted that early

simulations often fail due to unforeseen circumstances, such as NAS detachment

or network failure. One solution to this was to frequently save snapshots of the

state of the simulation and to keep a number of previous snapshots in case of

write file failure.

DECENTRALISED AGENT-BASED LOAD BALANCER

199 | P a g e

Figure 38: University of Westminster HPC Cluster utilisation

At the peak of the experiment, eighteen out of twenty computing nodes were

committed to running MASB simulations, as can be seen in Figure 38.

7.6.6. ALLOCATION SCORE RATIOS

Clearly, when examining the suitability of load balancing, the key parameter is

the number of overloaded nodes, which should be kept to minimum. It was found

that replaying GCD traces using Google’s original Borg’s allocation decisions

results in up to 0.5% of nodes being overloaded in a simulated one-minute period.

It was assumed that this phenomenon was the result of delayed and compacted

resource usage statistics, which were recorded and averaged over ten-minute

periods. As such, in further experiments this ratio was used as an acceptable error

margin.

The second researched property was how nodes were distributed amongst

allocation score types during simulations. Therefore, each experiment recorded

a number of nodes with each allocation score type, and averaged them out over

the simulation period. The set of normalised values for STA, TA, PA and DA are

referred to as Allocation Score Ratios (ASR). Idle Nodes and Overloaded Nodes

are discussed separately, and they are excluded from the ASR. The ASR values

DECENTRALISED AGENT-BASED LOAD BALANCER

200 | P a g e

describe how well the Cluster is balanced, that is, how well nodes are balanced

as a whole group.

The ASR values are used to describe the experimental results presented in the

subsections below to highlight the differences in how various load balancing

strategies perform under a GCD workload. Figure 39 chart visualises the AS

distribution during a month-long simulation. The horizontal axis is the measure

of time and the vertical axis represents the number of nodes having a particular

allocation type (as per coloured legend):

Figure 39: MASB – Allocation Scores distribution (12.5k nodes)

The most dominant AS was PA, meaning that each of the node’s resources is

utilised between 0% and 70%. Ca. 68% of all the cluster’s nodes are found within

these parameters, which is the direct result of their initial allocation using SIAS

function. The second biggest group, ca. 22% of all servers, are nodes allocated

disproportionally in which one or more resources are highly used but the other

DECENTRALISED AGENT-BASED LOAD BALANCER

201 | P a g e

resources are relatively idle. The remainder of the nodes have either an STA or

TA allocation score type. The PA to DA ratio of roughly 3:1 is characteristic for a

typical workload as recorded in GCD traces and processed by MASB.

The chart also highlights two periods of low and elevated workload, marked A

and B respectively:

• During the low workload period (A), SIAS function can schedule most

newly-arriving tasks to relatively unused nodes, thereby successfully

preserving their resource usage proportions. As such, the number of PAs

increases while the number of DAs decreases. Existing long-running

services continue to run uninterrupted on their nodes, and so the ratio of

STA to TA remains flat.

• During an elevated workload period (B), SIAS function is unable to find

relatively unused nodes anymore. It thus selects lower quality allocations,

resulting in a decrease in PAs. Due to the scarcity of resources, tasks are

also re-allocated more frequently by SRAS function. This results in tighter

fit allocations, which is seen as an increase in STAs and TAs counts.

This cycle is repeated thorough cluster activity, wherein MASB balances the

workload. The subsections which follow describe several implemented

optimisations and their rationales, as well as the experimental results and a

commentary on them.

7.6.7. BENCHMARK

Given that GCD traces have a complicated structure and contain a vast amount

of data, only rarely are they analysed to the full extent of their complexity. MASB

design shares similarities with BorgMaster in areas such as constraining tasks,

defining memory and CPU cores as resources, using scoring functions for

candidate node selection, and handling RUS. It also closely follows the lifecycle of

DECENTRALISED AGENT-BASED LOAD BALANCER

202 | P a g e

tasks as presented in subsection 5.5.1. As things stand, there is no publicly

available literature which contains descriptions of similar experiments which

could be compared with the simulation results of MASB. Therefore, the closest

comparable results are the original Borg’s allocation decisions that were

recorded in GCD traces. For the purposes of this research, it was decided that

they be used as a benchmark for the results from MASB’s experiments.

Both simulations processed full month-long GCD traces. The average values were

used because MASB simulation works in one-minute intervals whilst GCD traces

provide usage statistics in ten-minute windows that occasionally overlap. Given

this, peak or median values were not accurate. To highlight differences in

workings between the MASB and Google Borg algorithms, Figure 40 presents the

AS distribution during the period recorded in GCD (replayed Google’s Borg

allocation events):

Figure 40: Borg – Allocation Scores distribution (12.5k nodes)

DECENTRALISED AGENT-BASED LOAD BALANCER

203 | P a g e

In comparison to the experimental data presented in Figure 39, MASB behaves

more organically during periods of low and elevated workload. This is especially

visible during the period of elevated workload (B) where MASB managed to

preserve a better ratio of PA to DA Nodes than Google’s Borg. This behaviour is

the result of allowing a given task to be re-allocated during its execution, meaning

that MASB can dynamically shape its workload and improve the health of its

allocations. This feature also allows greater flexibility in altering the requirements

of running tasks, in which the load balancer attempts to offload an alternative

node.

Table 16 directly compares ASR parameters of both pre-recorded Google’s Borg

and MASB simulations.

Parameter
(average, one-minute

interval)

Framework

Borg
(Figure 40)

MASB
(Figure 39)

Idle Nodes
1.01

(0.01%2)

78.10

(0.63%2)

STA1 Nodes
820.49

(6.58%2)

487.01

(3.91%2)

TA1 Nodes
459.57

(3.69%2)

564.18

(4.53%2)

PA1 Nodes
6597.14

(52.94%2)

8508.08

(68.28%2)

DA1 Nodes
4578.49

(36.74%2)

2810.69

(22.56%2)

Overloaded Nodes
4.04

(0.03%2)

12.62

(0.10%2)

1. STA, TA, PA and DA as defined in section 7.5.

2. Totals do not sum to 100 percent due to rounding.

Table 16: Benchmark results – Borg and MASB

The listed ASR values highlight the differences in Borg and MASB workings:

DECENTRALISED AGENT-BASED LOAD BALANCER

204 | P a g e

• Idle Nodes – Borg’s design has a definite advantage over MASB because

Borg’s schedulers can access the shared cluster’s state and iterate over

the complete set of system nodes. MASB relies on a network of BAs, each

of which has only partial information about the cluster’s state. Therefore,

a subset of idle nodes might never be scored, even if they represent the

best allocation for a given task.

• STA and TA Nodes – in both systems, under normal workload conditions,

incoming tasks are reasonably well distributed between the nodes. Only

ca. 10% of all system nodes register higher resource usage scores, when

at least one of resource utilisation levels crosses 90%. The exact scoring

algorithm of Google’s Borg has not been disclosed, but the results suggest

a degree of similarity to the SIAS function.

• PA and DA Nodes – the ratio of PAs to DAs is visibly different in Borg and

MASB. Borg’s original scheduling decisions had a ratio of roughly 3:2,

meaning that for every three proportionally allocated nodes in the system,

there were two nodes that were disproportionately allocated. MASB

managed to achieve a better ratio of 3:1, suggesting that the use of SIAS

and SRAS scoring functions together with VM-LM feature can potentially

create a more balanced scheduling system.

Given the superior ratio of PA to DA nodes as measured, and the possibility of

increased throughput, the next experiment focused on processing increased

workload.

7.6.8. THROUGHPUT TESTS

The MASB framework has been designed as a general solution for balancing

workload in a decentralised computing system. After numerous iterations, MASB

was eventually able to schedule the entire GCD workload, with additional tasks

also added. Table 17 presents a comparison of the results:

DECENTRALISED AGENT-BASED LOAD BALANCER

205 | P a g e

Parameter
(average per

minute)

Workload Size (tasks)

100% (original) 102% 104% 106%

Nodes Count 12460.391 12460.361 12460.681 12460.351

Tasks Count 132061.151 134738.921 137399.931 142936.051

Global CPU
Usage Ratio 43.64% 44.54% 45.42% 46.89%

Global Memory
Usage Ratio 62.05% 63.33% 64.58% 66.57%

Idle Nodes
76.41

(0.61%)

73.08

(0.59%)

72.75

(0.58%)

52.18

(0.42%)

STA Nodes
479.91

(3.85%)

480.22

(3.85%)

423.51

(3.40%)

447.73

(3.59%)

TA Nodes
566.20

(4.54%)

545.74

(4.38%)

447.75

(3.59%)

355.88

(2.86%)

PA Nodes
8507.49

(68.28%)

8718.76

(69.97%)

9316.35

(74.77%)

9576.67

(76.86%)

DA Nodes
2818.11

(22.62%)

2610.04

(20.95%)

2084.06

(16.73%)

1718.08

(13.79%)

Overloaded
Nodes

12.28

(0.10%)

32.53

(0.26%)

116.25

(0.93%)

309.79

(2.49%)

1. The AGOCS framework itself records minuscule variances in node and task counts that are the
result of concurrent update operations, while modifying shared context data objects. See
section 5.8 for details.

Table 17: Throughput results (100%-106% workload size)

As demonstrated above, MASB was able to schedule, on average, an additional

ca. 2.6k tasks per minute (ca. 2% more tasks). Further tuning was unable to

improve those results, with workload sizes greater than 102% increasing the

number of overloaded nodes above the defined threshold of 0.5%.

To further ensure the correctness of the attained results, another set of

experiments was run in parallel. Here, instead of multiplying the original GCD

DECENTRALISED AGENT-BASED LOAD BALANCER

206 | P a g e

workload, the random machines were removed from the cluster until the

workload could no longer be fitted. This method, known as ‘cell compaction’, is

suggested in Verma et al. (2015) for simulations with GCD traces.

Similar to the previously detailed experiments which had augmented workload,

even when the cluster size was reduced to ca. 98% of its original size (242 nodes

being removed), the original GCD workload could still be fitted without breaching

the 0.5% limit of overloaded nodes. Table 18 details the experimental results:

Parameter
(average per

minute)

Cluster Size (nodes)

100% (original) 99% 98% 97%

Nodes Count 12460.39 12332.92 12218.61 12081.30

Tasks Count 132061.15 132057.96 132057.54 132055.86

Global CPU
Usage Ratio 43.64% 44.09% 44.52% 45.05%

Global Memory
Usage Ratio 62.05% 62.72% 63.39% 64.08%

Idle Nodes
76.41

(0.61%)

53.29

(0.43%)

58.96

(0.48%)

75.87

(0.63%)

STA Nodes
479.91

(3.85%)

480.28

(3.89%)

404.13

(3.31%)

448.67

(3.71%)

TA Nodes
566.20

(4.54%)

572.24

(4.64%)

485.55

(3.97%)

500.75

(4.14%)

PA Nodes
8507.49

(68.28%)

8412.71

(68.21%)

8866.13

(72.56%)

8663.88

(71.66%)

DA Nodes
2818.11

(22.62%)

2800.30

(22.71%)

2361.64

(19.33%)

2339.31

(19.35%)

Overloaded
Nodes

12.28

(0.10%)

14.11

(0.11%)

42.20

(0.35%)

62.07

(0.51%)

Table 18: Throughput results (97%-100% cluster size)

DECENTRALISED AGENT-BASED LOAD BALANCER

207 | P a g e

On average, GCD traces utilise ca. 40-50% of the globally available CPUs and ca.

60-70% of globally available memory while continuously guaranteeing ca. 85% of

CPUs and ca. 70% of memory to production tasks to handle RUS. It should be

noted that Borg’s scheduling routines have been perfected following decades of

work by a team of brilliant Google engineers. The conclusion of this research is

that, it is hard to substantially improve this impressive result given those

constraints.

Although the throughput of the original Google Scheduler could not be

significantly improved, the results from both methods of evaluation show the

benefits of using VM-LM to fit additional tasks in an already very tightly-fitted

cluster.

7.6.9. MIGRATION COST

The MASB framework relies on a VM-LM feature to balance workload by moving

running tasks across Cloud nodes. While the VM-LM process is reasonably cheap

in terms of the computing power, it does incur a non-trivial cost on the Cloud’s

infrastructure. In order to avoid excessive networks transfers, NAs carefully

decide which tasks will be migrated out from a given node. To score candidate

tasks, the SCS function is used which takes the task’s estimated migration cost

into consideration as well as released resources (see 7.4.1 for more details).

Unexpectedly, when searching for ways to lower the total migration cost,

although modifications of SCS function seemed to be the most palpable place to

start, significantly better results were not obtained. Based on experience from

previous experiments, it was discovered that the biggest reduction in task

migrations was achieved by improving the quality of the initial task allocation.

Therefore, further experimentation focused on testing variants and combinations

of the score functions.

DECENTRALISED AGENT-BASED LOAD BALANCER

208 | P a g e

Figure 41 presents the evolutions of scoring functions:

Figure 41: Scoring functions evolution

As previously mentioned, initially MASB implemented a single SAS function which

prioritised the scattering of tasks amongst nodes. With introduction of SAL

(detailed in subsection 7.5.1), the SAS function was split into SIAS and SRAS

functions biased towards opposite allocation types, namely PA and TA. However,

during the study of the impact of frequent re-allocations on STC, it was found that

those scoring functions can be further improved by introducing GAIN variants.

The GAIN variants of SIAS and SRAS functions are defined here as SIAS_GAIN and

SRAS_GAIN respectively:

• 𝑆𝐼𝐴𝑆_𝐺𝐴𝐼𝑁 = 𝑆𝐼𝐴𝑆(𝑇′) − 𝑆𝐼𝐴𝑆(𝑇)

• 𝑆𝑅𝐴𝑆_𝐺𝐴𝐼𝑁 = 𝑆𝑅𝐴𝑆(𝑇′) − 𝑆𝑅𝐴𝑆(𝑇)
(15)

where 𝑇 is the current set of allocated tasks, and 𝑇′ is the candidate set of

allocated tasks on a given node. Additionally, cases when a node would lower its

AS as a result of migrations have a zero score.

In the GAIN variants of scoring functions, the relative AS gains are prioritised over

the absolute AS values for an individual node. For example, given the scenario in

which the task migration to node A would change its AS from 0.1 to 0.4 (a 300%

gain), while the same task could also be migrated to node B, changing its AS from

0.4 to 0.6 (a 50% gain), the former option will be selected as yielding a higher gain

DECENTRALISED AGENT-BASED LOAD BALANCER

209 | P a g e

(since 300% is greater than 50%) regardless of the potentially higher absolute

score value of node B.

Table 19 presents the results under the variants of the scoring functions:

Parameter
(average per

minute)

Scoring Functions

SIAS

SRAS

SIAS

SRAS_GAIN

SIAS_GAIN

SRAS

SIAS_GAIN

SRAS_GAIN

Total Migration
Cost [GB] 1490.65 7008.30 1252.50 5925.41

Cost per Task
Migration [MB] 338.09 795.90 339.02 954.21

Idle Nodes
83.54

(0.67%)

105.80

(0.85%)

76.14

(0.61%)

79.33

(0.64%)

STA Nodes
495.09

(3.97%)

687.77

(5.52%)

490.42

(3.94%)

654.18

(5.25%)

TA Nodes
656.67

(4.54%)

560.65

(4.50%)

558.57

(4.48%)

547.38

(4.39%)

PA Nodes
8515.95

(68.34%)

8492.21

(68.15%)

8511.61

(68.31%)

8451.12

(67.82%)

DA Nodes
2785.23

(22.35%)

2586.43

(20.76%)

2810.95

(22.56%)

2707.73

(21.73%)

Overloaded
Nodes

14.88

(0.12%)

27.54

(0.22%)

12.67

(0.10%)

20.61

(0.17%)

Table 19: Results comparison of SAS, SIAS and SRAS (migration cost)

The combination of SIAS_GAIN and SRAS functions was most efficient, i.e. the

total average migration cost as well as the average cost per task migration were

lowest, while ASR remained virtually unchanged. Nonetheless, the good results

were also yielded with the combination of SIAS and SRAS.

The experiment showed that focusing on the node AS’s absolute value as well as

value gain are both viable strategies during the initial task allocation (with the

DECENTRALISED AGENT-BASED LOAD BALANCER

210 | P a g e

former being relatively better). However, it is the selection of the task re-

allocation strategy that is crucial and should be dedicated to maximising the

absolute value of the node’s allocation score. As mentioned previously, the

majority of tasks scheduled on the GCD cluster are short-lived batch jobs which

tend not to have high resource requirements (see section 5.2). As such, there is

no need to carefully fit them to a node. As a result of their limited time on the

cluster, the chance of re-allocation is low. Long-running services, however,

should be fitted tightly onto available nodes and continue to run there due to the

additional cost of further re-allocations because of the typically large amounts of

used memory.

7.6.10. SCALABILITY STUDY

The final step in the experiments was to examine the scalability of the MASB

framework. Due to the simulation’s high computational requirements, its one-

minute time slices were split into ‘rounds’, in which every NA could both respond

to migration requests as well as send its own requests, although sent requests

would be unanswered until the next ‘round’. This meant that the simulated

scenarios were as realistic as possible whilst also emulating massive Cloud

installations. The typical time required to run a single full simulation with 100k

nodes cluster, with both nodes and tasks proportionally multiplied, was around

nine months on a compute node from University of Westminster HPC cluster

(Appendix C).

Such a long simulation was necessary in order to achieve reliable and quality

results. The month-long GCD workload traces were produced by an actual Cluster

system and contain many real-world scenarios which would not be possible to

synthesise in any other way. Special thanks are due to University of Westminster

IT staff which provided a massive help and support during those experiments.

DECENTRALISED AGENT-BASED LOAD BALANCER

211 | P a g e

Table 20 demonstrates the results achieved through the multiplication (here: two,

four and eight times) of the original GCD workload; it also highlights the lack of

changes in ASR values:

Parameter
(average per

minute)

Cluster Size (nodes)

12.5k (original) 25k (2x) 50k (4x) 100k (8x)

Nodes Count 12460.70 24921.49 49842.99 99685.97

Tasks Count 132061.35 264155.80 528336.38 1056645.92

Idle Nodes
71.61

(0.57%)

95.82

(0.38%)

226.42

(0.45%)

413.03

(0.41%)

STA Nodes
492.67

(3.95%)

805.60

(3.23%)

1920.99

(3.85%)

3868.22

(3.88%)

TA Nodes
570.37

(4.58%)

962.14

(3.86%)

2232.10

(4.48%)

4300.70

(4.31%)

PA Nodes
8502.06

(68.24%)

18118.11

(72.71%)

34102.21

(68.42%)

68999.49

(69.22%)

DA Nodes
2812.74

(22.57%)

4914.55

(19.72%)

11324.77

(22.72%)

22031.79

(22.10%)

Overloaded
Nodes

11.26

(0.09%)

25.25

(0.10%)

36.49

(0.07%)

71.83

(0.07%)

Table 20: Scalability tests – 12.5k, 25k, 50k and 100k nodes

MASB was able to orchestrate a cell size of 100k without a noticeable scalability

cost and without crossing the limit of 0.5% overloaded nodes. With the current

MASB framework implementation, the simulation of this size took around nine

months on a single node of the University of Westminster HPC (see Appendix C

for specifications).

Google has never disclosed the size of their largest cluster, but it has been noted

in Verma et al. (2015) that Borg computing cells are similarly sized to the clusters

DECENTRALISED AGENT-BASED LOAD BALANCER

212 | P a g e

managed by Microsoft’s Apollo system, which have in excess of 20k nodes (Boutin

et al., 2014). A 12.5k node cells in GCD traces have been described as ‘average’

or ‘median’, cells with fewer than 5k nodes have been called ‘small’ or ‘test’

(Verma et al., 2015). Additionally, (ibid.) gives an example of a larger cell C, which

is 150% the size of cell A and therefore also approximately 20k nodes. As such, in

this research it is assumed that the computing cell of the large Borg is around 20-

25k nodes.

Therefore, as demonstrated, the designed multi-agent load balancing strategy

scaled beyond the original GCD workload without incurring noticeable scalability

costs. The paradigm of offloading the scheduling logic onto nodes themselves has

the following benefits: (i) it enables the implementation of more complex

scheduling schemas as the nodes resources can be used for that purpose; (ii) the

computing power dedicated to cluster orchestration increases together with the

Cluster size (so allowing for greater scalability); and, (iii) limits the amount of

communications required to maintain up-to-date Cluster state information. The

result of such a schema is the ability to enlarge the computing cells to the sizes

of 100k nodes while preserving a good throughput and performance.

7.7. COMPETITIVE SOLUTIONS

During work on the Cloud load balancer prototype, a number of publications

were examined and later compared with the proposed MASB design. Aside from

the solutions presented in section 7.1, the following three systems listed in the

subsections below have been found to share a degree of similarity with MASB.

7.7.1. ANGEL SYSTEM

The ANGEL system (Zhu et al., 2015) is based on a concept wherein a multi-agent

system manages its workload in a virtualised Cloud environment. This solution

DECENTRALISED AGENT-BASED LOAD BALANCER

213 | P a g e

also takes advantage of the VM-LM feature to re-allocate running tasks to an

alternative node if necessary. While the basic concept of ANGEL and the MASB

system is similar, the design of the architecture and features differ substantially:

• Within ANGEL each task is represented by Task Agent created upon task

arrival and destroyed when the task is complete. VM Agent represents a

VM hypervisor running on a physical node and accepting/rejecting tasks.

In comparison, during the development of MASB, it was found that the

sheer number of tasks made it impractical to create an entity for each task

responsible for its allocation; given this, the responsibility was assigned to

NAs. In MASB, NAs themselves are responsible for keeping their node

stable and offloading overloading tasks to alternative nodes. Therefore,

MASB can potentially support very larger number of tasks. Indeed, during

simulations one million tasks were continuously managed.

• In ANGEL, Manager Agent acts as a leader for this computing cell and

stores the complete system state in a ‘VM Information Board’. VM Agents

are constantly updating Manager Agent as to changes in their state, such

as available resource (CPU and memory) changes, VM creations and

cancellations. The ANGEL system assumes that the stored system state is

always current, and Manager Agent this information to match Task Agents

with VM Agents. In MASB a subnetwork of BAs has responsibility of

caching the global system; however, this information is accepted as

outdated by design, and so system uses it only for building initial

candidate nodes list which is then sent to NAs. Therefore, MASB doesn’t

rely on accurate and timed updates from system nodes and the actual

task allocation is resolved later between NAs themselves.

• MASB is focused on a Cluster throughput and scalability whereby resource

usages gaps are reduced, and tasks are fitted into available nodes. The

focus of the project was to achieve tightness of task allocations no worse

than in the GCD traces while improving scalability. The aim of ANGEL is to

DECENTRALISED AGENT-BASED LOAD BALANCER

214 | P a g e

guarantee the ratio of tasks guaranteed to meet their deadlines which are

also priority-adjusted. Therefore, ANGEL seems to be more aimed at high

churn of short-term tasks, while MASB is designed to support mixed-

workload consisting of batch jobs as well as long-lived services.

The authors of ANGEL also tested their solution on GCD traces. In so doing, they

acknowledged the difficulty of conducting experiments on the whole month-long

traces because of the enormous count of tasks in the trace logs. As such, they

performed their experiments exclusively on the 18th day of traces, which has

been recognised as being the most representative time period in GCD traces

(Moreno et al., 2013). However, the results presented use different metrics and

do not specify further details of the experiments, such as whether authors also

matched task constraints and whether tasks were allocated with regards to

handing RUS.

7.7.2. US PATENT 5,031,089

Liu and Silvester (1991) filed a patent which described a set of routines that could

be deployed on nodes in order to balance system-wide workload. The first

routine periodically examines a number of jobs on the node's queue and

computes the 'workload value', which is then provided on request to other nodes

by the second routine. The third routine, meanwhile, is triggered periodically

when the node is idle, and at the end of each job completion. This routine

contains the main bulk of load balancing logic and evaluates whether the node's

'workload value' is below a pre-established value that would indicate that the

node is relatively idle. If the node is recognised as being under-utilised and

available for more jobs, then the routine will poll all the other nodes for their

'workload value', and transfer jobs from the node with the highest 'workload

value' to its own queue.

DECENTRALISED AGENT-BASED LOAD BALANCER

215 | P a g e

The feasibility of this invention was validated via several simulations, although

those results are not shared in the cited patent. The authors list several

assumptions made during the performance testing of this study, such as the

homogeneity of all the tasks and their resource requirements, as well as the

assumption that the job's transfer cost is negligible. The main criticism of this

solution is that it oversimplifies the Cluster workload's model, and it omits the

continuous changes of resources used by jobs. Only the job’s queue length was

used as 'workload value'. Furthermore, only non-started jobs can be transferred

to alternative nodes. The solution relies on polling all nodes in the cluster for their

utilisation levels, which in a large cluster might be not feasible and may create a

bottleneck.

7.7.3. US PATENT 8,645,745

Barsness et al. (2014) notes that there is a problem when a centralised job

scheduler needs to pass through a large number of nodes in order to find one

which can be used to run the task, and proposed a solution whereby each node

is continuously scanning a shared-file to determine which job could be executed

on this node. When a job requires multiple nodes, the one on the nodes becomes

a primary node, which then assigns and monitors the job execution on the

multiple nodes.

In comparison to MASB, the main similarity is that there is no centralised

manager to assign tasks to nodes. This means that nodes are themselves

responsible for selecting and then running the accepted tasks. However, the main

difference is that proposed patented strategy doesn’t examine all nodes, and the

task is allocated to the first (quickest) scheduler that picks the task. In MASB a

task allocation is a multi-step process in which each node tries to increase its AS

by selecting the best-matching tasks. Moreover, MASB dynamically manages

workload by offloading currently running tasks to the best candidate nodes (with

DECENTRALISED AGENT-BASED LOAD BALANCER

216 | P a g e

the highest AS score), and, by doing that, the overall system efficiency is

increased.

Given that the patent paper provides no results from experiments, it is difficult

to directly compare systems’ performances.

7.8. SUMMARY AND CONCLUSIONS

The primary challenge when sequencing a queue of tasks on a cluster is to fit

them tightly so as to reduce resource usage gaps. The scheduling algorithm

attempts to reduce the situations where a resource on a given node is overly un-

utilised at the same time that other resources on that node are mostly allocated.

It is extremely important to shrink the gaps in resource utilisation and to allocate

them proportionally, especially when initially scheduling new tasks which tend to

have balanced resource requirements.

Fitting objects of different volumes into a finite number of containers is known

as a ‘bin-packing’ problem, and belongs to class of NP-Hard problems. The

traditional way of solving NP-Hard problems are metaheuristic algorithms.

However, experiments in Chapter 6 demonstrated that although metaheuristic

algorithms yield good solutions, they do not scale well to the required number of

nodes in a Cloud system.

Alternative solutions and a large number of optimisations can be devised, such

as caching computed solutions and then retrieving them based on task similarity,

multiple concurrent schedulers working on a single data store, and pre-allocating

resources for the whole task batches (Verma et al., 2015). However, these

solutions and optimisations still incur substantial computational costs, and it is

inevitable that any model where the head node processes all scheduling logic by

DECENTRALISED AGENT-BASED LOAD BALANCER

217 | P a g e

itself will eventually work less effectively when the cluster size grows and the

frequency of incoming tasks increases.

The MASB framework offers an alternative approach to task allocations in that all

the actual processing of scheduling logic is offloaded to nodes themselves. This

framework uses loose coupling at every stage of its scheduling flow, meaning that

scheduling decisions are made only on locally-cached knowledge and all

communication between nodes is kept to minimum. Each node tries to increase

its AS by selecting and offloading tasks, with the assumption being that by

bettering individual ASs, the global system performance will be improved. This

design also takes advantage of the VM-LM feature, where a running program

within a VM instance can be migrated on the fly to an alternative node without

stopping a program execution.

Design of this schema created a set of new challenges, such as selecting

alternative nodes with limited and non-current knowledge about the state of

other nodes, estimating the VM-LM cost of migrating a running program,

understanding the classifying and scoring functions of the allocation type of a

node, and designing the stateless node-to-node communication protocol, to

identify just a few.

In this research, realistic (i.e. pre-recorded) workload traces from GCD were used

and were run on the AGOCS framework described above as a very detailed

simulation. The costs involved were the substantial computing power required to

run experiments as well as time, in that a single simulation run took about a

month on a forty-core (twenty physical cores + HT siblings) machine. In order to

benchmark the research results, original scheduling decisions made by Google’s

Borg scheduler are examined which are also part of GCD traces. This generated

statistics such as total resource usage, the number of idle nodes and production-

allocated resources.

DECENTRALISED AGENT-BASED LOAD BALANCER

218 | P a g e

When examining GCD traces, it is important to note that Google’s engineers did

a phenomenal job in first designing and then iteratively improving the Borg

system. Incoming tasks are packed very tightly and, although production jobs

always have additional resources available to them within defined requirements’

limits, the spare resources are efficiently recycled for low priority jobs. Google

Cluster has been built upon hardware without direct support for virtualisation,

meaning that its orchestrating software design had to accommodate this

limitation. This research should be considered an as-if scenario and assumes the

availability of the VM-LM feature to shuffle running tasks within a Cluster.

In this research, there was only limited success in terms of improving the

throughput of executed tasks on a simulated computing cell. This was mainly due

to the constraints arising from handling RUS. During throughput tests, the MASB

achieved a similar level as Google’s Borg, understood here as the total number of

executed tasks. During the progressively more intensive workload, ASR values

indicated a degradation in the quality of allocations so that eventually the

throughput could be improved by a margin of 2%. However, MASB could achieve

higher scalability and run multiple sizes of examined computing cell without

noticeable scalability costs. Simulations up to 100k nodes from GCD were tested,

yielding relatively comparable results when run with smaller instances of

simulations.

Although the experimental results prove that it is feasible to deploy the

presented decentralised architecture in a live environment, there are several

possible other improvements, as listed below:

• During experimentations, several nodes remained idle. This effect was a

result of iterating only a limited number of nodes while computing a

candidate node’s set for a given task migration. A potential solution to

this issue is a separate size-limited list of relatively under-utilised nodes

DECENTRALISED AGENT-BASED LOAD BALANCER

219 | P a g e

which would be compulsorily scored each time a BA is issued a

GetCandidateNodesRequest request. Such a list could be exchanged

separately between BAs;

• The SCS routine (Step 1 in the SAN protocol) is triggered only when the

NA detects that its node is overloaded. However, the system could

employ a more proactive approach in which the NA would periodically try

to offload its tasks in order to improve its AS, even if the node is stable.

This would create a secondary mechanism to distribute the load, which

would potentially reduce resource utilisation gaps even further. However,

this feature would also place additional pressure on BAs and, as such,

needs to be carefully balanced;

• In a real-world system it is expected that a number of nodes will

experience failure. NA’s AI module could maintain a set of blacklisted

nodes which repeatedly did not respond to requests. Such a set could be

shared with BAs, similar to the way it is implemented in Fuxi (Zhang et al.,

2014b), and presented to system administrators.

These suggestions deal with algorithm- and protocol-level details. A list of high-

level propositions is presented in the research summary in Chapter 8.

SUMMARY AND CONCLUSIONS

220 | P a g e

8. SUMMARY AND CONCLUSIONS

The chapters above detail a journey from an initial concept, through the research

process, the multiple iterations of implementations and experiments and, finally,

to achieving a working prototype for the Cloud load balancer. The initial

assumption of the project was that existing Cloud management software could

be improved by deploying intelligent load balancing routines such as dynamic re-

allocations of running tasks, and that task allocation quality could be bettered by

adding more refined strategies, such as metaheuristic algorithms. The research

began with a presentation in Chapter 2 of a review of existing scheduling software

and strategies which helped to define the CRUM in Chapter 3.

CRUM assumed the mobility of tasks being executed on nodes. It also defined the

cost incurred on Cloud’s infrastructure when a task is re-allocated to an

alternative node. There are limitless potential scenarios as to how such

procedures could be performed, ranging from simple stop-copy-restart, to

snapshotting processes’ memory and then restoring it on another machine, or

indeed moving the program state using custom routines, to name but a few. This

research assumes that Cloud environments are substantially virtualised and that

its applications are run within VM instances and, thus, can be migrated by VM-

LM process.

Chapter 4 investigated a VM-LM feature which allows the migration of a running

VM instance to an alternative machine on the fly, without stopping its execution.

The chapter also presents the LMDT formula which can be used to estimate VM-

LM migration cost. Since Public Cloud companies are selling their platforms to a

range of business customers, they must prioritise the availability of applications

run on their platform. The VM-LM feature, although incurring additional costs,

ensures the continuous and uninterrupted execution of tasks. The VM-LM

process cost definition could be interpreted in many ways, such as performance

SUMMARY AND CONCLUSIONS

221 | P a g e

drop, the extra resources needed for the migration process itself, or the

additional expense of energy. In this research, the task migration cost is a direct

cost inflicted by VM-LM on a global Cloud network infrastructure that is the size

of the data transferred over the network during VM-LM.

Chapter 5 details the design of AGOCS, a high-fidelity Cloud workload simulator

that has been developed to test load balancer prototypes using a realistic

workload. AGOCS is based on the notion of replaying the workload data available

from month-long GCD traces. GCD traces are very rich because they contain many

monitored parameters such as the number of CPU cores requested and used,

canonical (kernel) and assigned (application) memory requested and used, page

cache memory stats, disk I/O time, average cycles per instruction, average

memory access per instruction, task priority and local scheduler process priority,

to name a few. Additionally, GCD traces provide task constraints and matching

attributes on nodes. Those qualities make GCD traces a remarkable source for

real-world Cloud computing workload.

8.1. RESEARCH SUMMARY

Chapters 2 to 5 discussed research in order to establish a theoretical as well as a

practical base for further experimentations. AGOCS provided a solid base for

further experiments and simulations with the load balancing prototype. Chapters

6 and 7 described the proposed load balancing designs and the way in which they

have evolved during the project. The main consideration of this project was to

research the possible improvements to load balancing strategies whilst also

maintaining scalability. The main novelty has been the use of the VM-LM feature

on a large scale to re-allocate running applications on a Cloud to alternative

nodes without stopping their execution.

SUMMARY AND CONCLUSIONS

222 | P a g e

Orchestrating workload on thousands of machines is a surprisingly complex

challenge which has many different dimensions, including:

• the cluster’s operations need to be continuous, and applications and

programs must be able to recover in the case of failure;

• the cluster's resources should be utilised to their highest extent because

every resource utilisation gap potentially blocks a number of tasks from

being run, and lowers the overall cluster throughput;

• tasks scheduled on the cluster should be run with minimum delay, and

the fairness of cluster utilisation should be maintained;

• the load balancer should be able to handle a variety of tasks, each with

unique requirements and rapidly changing resource utilisation levels;

• the load balancer should also be able to proactively adapt to the cluster’s

configuration changes as new nodes are added, or when existing nodes

are taken offline for maintenance or removed.

Those considerations lead to an interesting challenge in which all the parameters

identified above needed to be balanced against each other and where, based on

business requirements, it was necessary for the Cloud architecture to be able to

adapt to variable workloads.

The first prototype of a centralised metaheuristic load balancer was developed

as a proof of concept very early in this research. A number of metaheuristic

algorithms and their variants were implemented and experimented with, their

results being subsequently discussed. Although early trials were promising, the

subsequent full-scale experiments using the AGOCS framework demonstrated

that while there are scenarios (i.e. small-size clusters) that could benefit from the

above approach, it is not a solution that is likely to scale well enough to support

large distributed environments with thousands of nodes, such as 12.5k-nodes

computing cell from GCD traces.

SUMMARY AND CONCLUSIONS

223 | P a g e

Given this, an alternative approach was required. Experiences from the first

design suggested that metaheuristic algorithms could indeed improve allocation

decisions when compared to traditional methods such as Round Robin, FCFS, JSF,

‘best-fit’ and so on; however, those results are isolated to smaller sets of

examined entries. Nonetheless, the literature suggested that a network of

software agents could be deployed to offload heavy logic processing to remote

machines whilst simultaneously communicating with each other via P2P protocol.

Hence, the focus of the research shifted to a decentralised agent-based scheduler

in which an agent represents each node and communicates with other agents,

trying to keep its node stable.

Subsequently, AGOCS was refactored into a multi-agent system based on the

Akka Actors/Streams framework. A new scheduling logic layer was added in the

form of a SAN protocol, together with NA’s AI module. The resulting system was

named MASB, which has been iterated multiple times with many optimisations

having been progressively folded into its source code. These include: (i) a

subnetwork of BAs, caching the global system state; (ii) original SAS functions

were split into SIAS and SRAS functions, with GAIN variants of scoring functions

then created; (iii) planning for RUS was introduced; and (iv) NA’s AI module was

refactored into using metaheuristic algorithms, namely TS variant.

While replaying GCD traces via the AGOCS framework is a reasonably un-

obstructing process which consumes little CPU time, the scheduling logic added

in MASB extension proved to be a process with excessive computational

demands, especially during the development of NA’s AI module. As such, MASB

instances were deployed on University of Westminster’s HPC Cluster (see

Appendix C for software and hardware specifications). During peak periods,

eighteen out of the twenty available computing nodes were committed to

running simulations.

SUMMARY AND CONCLUSIONS

224 | P a g e

As a benchmark, the project utilised the workload traces of Google’s Borg

scheduler as recorded in May 2011. These are freely available from the GCD

repository. Comparing the results between the original Borg allocations and the

MASB simulations suggested a degree of similarity between implemented

algorithms, albeit with a few noteworthy differences:

• The centrally managed scheduling mechanism which relied on shared

Cluster state information (as implemented in Google’s Borg) provided a

better overall view concerning the state of all Cluster nodes. The idle

nodes were swiftly identified and used, while the decentralised solution

had a larger ratio of unutilised nodes.

• The VM-LM feature, together with different scoring schemas for initial

and secondary task migrations (i.e. SIAS and SRAS functions), improved

the load balance of the cluster by keeping the nodes’ resources more

proportionally utilised. The ASR vectors, derived from the counts of nodes

with a given AS type, were used to monitor the health state of the Cluster.

In comparison to Borg, MASB behaved more organically, fluently moving

between the higher concentration of tasks under elevated workload and

the wider distribution of allocations during low workload periods.

• The experiments resulted in the Cluster performing comparably, with

MASB having a small edge and being able to additionally schedule ca. 2.6k

tasks per minute in comparison to original GCD worktraces. However, this

was at the expense of the increased infrastructure utilisation required to

perform task migrations. Additional experiments were performed where

the focus was on lowering the total cost of task migrations, and the

resulting combination of scoring function variants could reduce this

property to a fraction of its original value.

• Most importantly, although throughput could not be substantially

improved in this research, the final version of the system could scale

multiple times of the original GCD size without a noticeable scalability cost.

SUMMARY AND CONCLUSIONS

225 | P a g e

The MASB was able to execute its role well even when the experiments

simulated massive 100k nodes computing cells. As in throughput testing,

the key indicator of the health of a Cluster workload balance was the ASR

vectors. Despite increases in the simulated Cluster size, the ASR values

remained the same, which demonstrates the greater scalability of

proposed solution.

The following sections will: (i) summarise the key findings made during this

research; (ii) list the potential applications of the developed technology; and (iii)

conclude the project with recommendations for future directions.

8.2. KEY FINDINGS

In this section, the most important achievements and key findings of this research

are detailed:

• Running a detailed simulation of a Cloud environment is no simple

challenge. The sheer number of tasks, the complexity and dynamicity of

the requirements, the split between production and non-production

applications, the dependencies on other tasks and timings are some of

the factors which create a very multifaceted system. AGOCS, a custom

fine-grained Cloud workload simulation framework created within this

research, is a unique creation on its own;

• VM-LM technology can seamlessly migrate a running task within the VM

instance. This technology can be efficiently used to dynamically load

balance a Cloud system whilst not inflicting a cost on Cloud network

infrastructure. This research provided a LMDT formula which can be used

to closely estimate this cost as an alternative to historical data;

• Whilst metaheuristic algorithms can indeed improve task allocation

quality, their scalability is insufficient for managing workload on the larger

SUMMARY AND CONCLUSIONS

226 | P a g e

clusters, such as 12.5k-nodes cell from GCD traces. Metaheuristic

algorithms can efficiently manage workload on smaller scale and are a

good candidate for managing workload on a single node. In the presented

solution, metaheuristic algorithms are part of NA’s AI routines;

• Decentralised load balancing is a viable approach and, while allocation

quality could not be substantially improved in this research, the prototype

load balancer was able to manage multiplies of the original GCD workload

without a noticeable scalability cost. Under this approach, nodes are

represented by NAs, continuously negotiating tasks’ allocations between

themselves using P2P communications model. This design is supported by

a subnetwork of BAs caching the global state of cluster;

• The proposed approach did not eliminate the centralised cluster’s state

knowledge store; instead, a network of BAs was created which was able

to cache the cluster’s state knowledge and provide an interface to query

it. By design, this knowledge is expected to be outdated, and so is required

only during the initial step of the SAN protocol. During the subsequent

steps, however, NAs exchange load information between themselves.

8.3. APPLICATIONS OF TECHNOLOGY

In late 2017, a team of marketing experts from IBM estimated that the world

generates roughly 2.5 million TBs of data per day, with 90% of all data having

been created in the past few years alone (IBM, 2017). With novel technologies

emerging, new devices and sensors being connected, the data growth rate will

accelerate even more. To process such vast data streams, new distributed

computing models are being designed. In recent years, the trend for software

development has been towards Big Data systems and Machine Learning

algorithms, specifically:

SUMMARY AND CONCLUSIONS

227 | P a g e

• Big Data systems are characterised by a high degree of parallelism. A

typical Big Data system design is based on a distributed file system, where

nodes have the dual function of storing data as well as processing it. One

program in such a system might need to crunch tens of TBs of data split

across thousands of nodes. Even with the ideal allocation of Big Data tasks,

where every node is processing data from local storage, a single machine

would still need to process GBs of data. In order to speed up this time-

consuming process, the partial datasets can be split even further and

processed on more nodes;

• Machine Learning is yet another rapidly developing area where there is

high demand for computing power. The training algorithms for deep

neural networks require multiple iterations over datasets, and the recent

research is shifting towards greater parallelism (Chung et al., 2017; Sun

and Liu, 2018). However, important algorithms such as k-means clustering,

alternating least squares, and logistic regression are already very suited

to run in parallel (Abadi et al., 2016). Open Source libraries such as

Google’s TensorFlow and Spark’s MLlib, and the affordability of

specialised clusters (e.g. Google’s Cloud TPU) makes it easy for businesses

as well as researchers to utilise those technologies to enhance their

offerings. It can certainly be argued that industries will be adopting

Machine Learning in order to increase competitiveness.

Therefore, the organisations which employ those modern technologies are highly

likely to build computing cells with even more inter-connected nodes in the near

future. To manage larger computing cells, more scalable workload orchestration

technologies are required, such as the presented MASB prototype. Experiments

have shown that MASB design can run a workload on a large Cloud system (100k

nodes) with a throughput comparable to Google’s Borg system. It should be

noted that larger computing cells are also more economical – Google’s Borg

demonstrated (Verma et al., 2015) that running a mixed-workload consisting of

SUMMARY AND CONCLUSIONS

228 | P a g e

short-lived batch jobs and long-running services as well as production and non-

production jobs on the same cluster is not only possible, but allows to utilise of

available resources more efficiently. Essentially, resource usage gaps are reduced.

Therefore, industries such as financials, health or even government, could make

monetary savings if their processing centres were joined and more heterogenous

workload was introduced in those clusters. MASB is a good candidate for such an

integration.

8.4. FUTURE DIRECTIONS

The project was challenging as well as very satisfying. However, no research is

ever complete, and this document is by no means a final blueprint for a Cloud

load balancer. This research has tackled the problem of load balancing within

large Cloud systems, proving that the presented decentralised load balancing

solution is feasible and can improve certain aspects of currently used strategies.

The prototype has been experimented with on real-world data from GCD traces,

and the experimental results demonstrate that the selected strategy is feasible.

It has given a strong indication that it would be a viable approach were it

implemented on a real Cloud system.

Nevertheless, the list below provides a series of possible next directions and

areas that could be further developed in order of perceived importance:

• The MASB prototype does not address fault-tolerance, which is an

important aspect of Cloud design. This feature could be realised in

multiple ways, such as running cloned instances of tasks, periodically

saving process checkpoints, and ensuring the applications’ state is

synchronised across all its instances. The fault tolerance could also be

improved by implementing service/node anti-affinity scheduling

strategies where a scheduler tries to allocate replicas of a given service to

SUMMARY AND CONCLUSIONS

229 | P a g e

possibly distanced nodes. In critical failure scenarios, such programs have

a greater chance to survive and continue operations. For example, the

Kubernetes scheduler implements anti-affinity scoring functions, which

gives higher priority to nodes not running services from the same

application (Lewis and Oppenheimer, 2017);

• Resource usage quotas per user, group or other entity, would make

another welcome feature. This is something which is often present in

commercial Cluster schedulers. However, it would also require adding an

accountancy module with a decentralised dataset in order to maintain

scalability. The same mechanism could be used to throttle the

submissions of new tasks so as to not extend the Cluster’s capabilities;

• The proposed design does not account for task priorities, meaning that

tasks are only split into production and non-production groups.

Production tasks have committed resources which, under normal

circumstances, are guaranteed to be available. However, during critical

system-wide failures, such as a power failure or network infrastructure

collapse, the system should degrade gracefully (as opposed to an

uncontrolled crash). In scenarios where the current workload cannot be

sustained, the system should shut down lower priority tasks first and use

the remaining available nodes to offload high-priority tasks;

• In this project, it is assumed that NAs and BAs agents are continuously

running without breakdowns. Nevertheless, agents are also a piece of

software, meaning that they are prone to bugs and errors. As a possible

improvement to detect and restore hung agents, a hierarchy model could

be introduced in which an agent supervises a number of other agents and

restarts them if necessary. This concept is similar to the Akka Actors

implementation (Roestenburg et al., 2015) in which a parent actor

manages the failures of its children. Additionally, a hierarchy of BAs could

SUMMARY AND CONCLUSIONS

230 | P a g e

be used to propagate the cluster’s state knowledge in a more efficient

manner;

• MASB does not attempt to implement locality optimisation when the

task’s part of a distributed file is processed faster if accessed locally.

Currently, GCD task descriptions contain only restrictions which disallow

nodes that the task could be executed on. However, adding optional

metadata, such as the ID of the distributed file’s part, could prioritise a

set of nodes and improve the overall cluster performance. This

functionality is featured in some of the Big Data frameworks;

• Even though the experimental results presented are of good quality, they

suggest a number of potential improvements, especially in locating and

then scheduling tasks to idle nodes. One possible improvement could be

sharing vector idle nodes between all BAs, and then compulsory

prioritising them over utilised nodes;

• The LMDT formula presented in Chapter 4 specifically addresses VM-LM

impact on Cloud network infrastructure. Other migration costs of tasks

were considered marginal since they impacted only individual nodes

rather than the Cloud system as a whole. However, given advances in

virtualisation technology, such as common VDI standard in addition to

progressively better hardware support for virtualisation, more

comprehensive future research in that area might be advantageous. It

should be noted that presented input parameters are for a particular test

configuration, and so might need to be re-adjusted for the configuration

of a specific Cluster, i.e. hardware, network infrastructure, VM vendor and

version, and deployed applications;

• The Cloud architectures’ design is moving towards greater use of VCs such

as Docker. At the time of writing, Docker does not fully support LM – the

integration with CRIU does not allow the migration of a running

application to the alternative container on the fly. Instead, the user must

SUMMARY AND CONCLUSIONS

231 | P a g e

copy checkpoint files and restore them on an alternative node (cold

migration). However, the available literature describes early experiments

with LM feature (Yu and Huan, 2015) and the working prototype was

demonstrated in a presentation during the OpenStack Summit 2016

conference in Barcelona (Estes and Murakami, 2016). Once LM becomes

the part of mainstream technology, the load balancing strategy presented

in this research could be adapted to use VCs;

• MASB estimates the task migration cost, and considers this value when

selecting which tasks to migrate out from a node. However, it does not

calculate the fact that neighbouring nodes (e.g. those in the same server

rack) might offer much faster transfer rates than more remote nodes.

Therefore, adjusting the task migration cost by the nodes’ distances could

improve the overall cluster performance;

• Energy efficiency is the next possible area to expand. In its current design,

MASB focuses on reducing the cost of task re-allocations necessary to

keep the Cloud system stable. However, this approach could be shifted to

focus on completely offloading idle nodes, at which point the system

would be able to power down those nodes in order to save energy;

The suggested directions of future study and possible expansions as listed above

have the potential to improve the results of this research. Nevertheless, the

ultimate aim of this work was to advance our ability to design a feasible strategy

for managing and proactively balancing a workload within a virtualised Cloud

system – an objective which has been achieved.

APPENDICES

232 | P a g e

APPENDICES

A. DEVELOPMENT ENVIRONMENT

Model MacBook Pro11,1
Operating System OS X 10.13.5 (High Sierra)
CPU 2.4GHz dual-core Intel Core i5
Memory 8GB 1600 MHz memory
Storage 256GB PCIe-based flash storage
Java Virtual Machine 1.8.0_111-b14 Oracle (previously Sun Microsystems)
Scala IDE IntelliJ IDEA 2017.1.4 (Community Edition)
YourKit Java Profiler 2017.02 build 75

Table A1: Development environment specifications

B. SYSTEM DEPENDENCIES

JVM OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode)
Scala Scala 2.12.4
Akka akka-actors (2.5.6), akka-streams (2.5.6)
Google’s Guava guava 23.0
Apache Commons commons-math3 (3.6.1), commons-lang3 (3.5), commons-csv (1.4)
Logback logback-classic (1.2.3)
Kyro kyro-shaded (4.0.1), chill (0.9.2)

Table B1: Runtime libraries specifications

C. UNIVERSITY OF WESTMINSTER HPC CLUSTER

Model Dell R730xd
Operating System CentOS Linux release 7.2.1511 (Core)
CPU 16x Intel E5-2630 v3
Memory 32GB memory
Storage 11TB
Networking 10Gb Ethernet
Java Virtual Machine OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode)

Table C1: Head node (March 2016)

Model Dell R630
Operating System CentOS Linux release 7.2.1511 (Core)
CPU 20x 2.3GHz Intel E5-2650 v3
Memory 96GB memory
Storage 1TB
Networking 10Gb Ethernet
Java Virtual Machine OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode)

Table C2: Nodes compute01-20 (March 2016)

APPENDICES

233 | P a g e

D. VM ALLOCATOR SOURCE CODE

The code below is an application used to measure the impact of WWS size on

data size transferred over the network during VM-LM.

#include <stdio.h>
#include <stdlib.h>
#include <ctime>

void writeRandomMemory(char* buffer, int memSizeBytes) {
 for (size_t i = 0; i < memSizeBytes; i++) {
 buffer[i] = rand() % 256;
 }
}

int main(int argc, char **argv) {
 printf("VM-Allocation Tester\n");

 if (argc != 4) {
 printf("Usage" \
 "[memory size MB] " \
 "[writable working set size MB] "\
 "[writable working set over-write interval ms] " \
 "[over-writing threads count]\n");
 exit(EXIT_SUCCESS);
 }

 //read arguments
 int memSize = atoi(argv[1]);
 int wwsSize = atoi(argv[2]);
 int wwsInterval = atoi(argv[3]);
 int wwsThreadsCount = atoi(argv[4]);

 if (memSize<=0) {
 printf("Memory Size must be positive!\n");
 exit(EXIT_FAILURE);
 }

 if (wwsSize<=0) {
 printf("Writable Working Set Size must be positive!\n");
 exit(EXIT_FAILURE);
 }

 if (wwsInterval<=0) {
 printf("Writable Working Set Over-Write Interval must be positive!\n");
 exit(EXIT_FAILURE);
 }

 if (wwsThreadsCount<=0) {
 printf("Over-Write Threads Count must be positive!\n");
 exit(EXIT_FAILURE);
 }

 printf("Allocating %i MB memory\n", memSize);
 printf("Writable Working Set Size is %i MB\n", wwsSize);
 printf("Writable Working Set Over-Write Interval %i ms\n", wwsInterval);

 int memSizeBytes = memSize * 1024 * 1024 / sizeof(char);
 int wwsSizeBytes = wwsSize * 1024 * 1024 / sizeof(char);

 char* buffer = (char*) malloc(memSizeBytes);

 if (buffer == 0) {
 printf("Cannot allocate memory!\n");
 exit(EXIT_FAILURE);
 }

 //write all memory
 printf("Over-Writting all memory (%i bytes)\n", memSizeBytes);
 writeRandomMemory(buffer, memSizeBytes);
 printf("Done\n");

 for (int i=0; i<wwsThreadsCount; i++) {
 int uid = fork();

APPENDICES

234 | P a g e

 if (uid<0) {
 printf("Cannot fork!\n");
 exit(EXIT_FAILURE);
 }

 //create timespec structure for nanosleep
 struct timespec tim;
 tim.tv_sec = rand() % 10;
 tim.tv_nsec = 0;

 if (uid>0) {
 //random delay (threads won't start on the same memory)
 nanosleep(&tim, NULL);

 printf("%i: Over-writing Thread started\n", i);
 tim.tv_sec = wwsInterval / 1000;
 tim.tv_nsec = wwsInterval % 1000 * 1000000;

 //keep writing random values to wws buffer
 for (;;) {
 printf("%i: Over-writing Writable Working Set (%i bytes)\n", i, wwsSizeBytes);
 writeRandomMemory(buffer, wwsSizeBytes);

 //sleep
 nanosleep(&tim, NULL);
 }
 }
 }

 //endlessly wait for kill signal
 while (wait(1)>0) {
 /* no-op */;
 }

 return EXIT_SUCCESS;
}

E. TEST UNITS SAMPLE

The code below is a sample of the MASB unit tests package which is used to

ensure the correctness of the implemented solution.

package com.masb.domain

import org.scalatest.{FlatSpec,Matchers}

class TaskConstraintsTest extends FlatSpec with Matchers {
 "EqualAttributeConstraint" should "be implemented correctly" in {

 EqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes(Map(("attribute 1", "value A")))) should be(true)

 EqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes(Map(("attribute 1", "value B")))) should be(false)

 EqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes(Map(("attribute 1", "")))) should be(false)

 EqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes.NONE) should be(false)

 EqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes(Map(("attribute 1", "")))) should be(false)

 EqualAttributeConstraint("attribute 1", "").checkConstraint(
 NodeAttributes.NONE) should be(true)

 EqualAttributeConstraint("attribute 1", "").checkConstraint(
 NodeAttributes(Map(("attribute 1", "")))) should be(true)

 EqualAttributeConstraint("attribute 1", "").checkConstraint(
 NodeAttributes(Map(("attribute 2", "value A")))) should be(true)
 }

APPENDICES

235 | P a g e

 "NotEqualAttributeConstraint" should "be implemented correctly" in {

 NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes(Map(("attribute 1", "value A")))) should be(false)

 NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes(Map(("attribute 1", "value B")))) should be(true)

 NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes(Map(("attribute 1", "")))) should be(true)

 NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes.NONE) should be(true)

 NotEqualAttributeConstraint("attribute 1", "value A").checkConstraint(
 NodeAttributes(Map(("attribute 1", "")))) should be(true)

 NotEqualAttributeConstraint("attribute 1", "").checkConstraint(
 NodeAttributes.NONE) should be(false)

 NotEqualAttributeConstraint("attribute 1", "").checkConstraint(
 NodeAttributes(Map(("attribute 1", "")))) should be(false)
 }

 "LessThanAttributeConstraint" should "be implemented correctly" in {

 LessThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "10")))) should be(false)

 LessThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "9")))) should be(true)

 LessThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "99")))) should be(false)

 LessThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "11")))) should be(false)

 LessThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes.NONE) should be(true)
 }

 "GreaterThanOrEqualAttributeConstraint" should "be implemented correctly" in {

 GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "10")))) should be(false)

 GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "9")))) should be(false)

 GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "99")))) should be(true)

 GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "11")))) should be(true)

 GreaterThanAttributeConstraint("attribute 1", 10).checkConstraint(
 NodeAttributes.NONE) should be(false)
 }

 "BetweenAttributeConstraint" should "be implemented correctly" in {

 BetweenAttributeConstraint("attribute 1", 0, 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "10")))) should be(false)

 BetweenAttributeConstraint("attribute 1", 5, 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "9")))) should be(true)

 BetweenAttributeConstraint("attribute 1", 0, 10).checkConstraint(
 NodeAttributes(Map(("attribute 1", "99")))) should be(false)
 }
}

APPENDICES

236 | P a g e

F. CONCURRENT MAP UPDATE OPERATIONS

The code below is an implementation of concurrent map update operations in

the MASB package. Although the operations are asynchronously executed and

updates are non-blocking, there is no strict guarantee of the order of consecutive

modifications on the same value object. In practice, during MASB simulations,

less than 0.02% of all ‘replaceWith’ operations weren’t immediately executed.

package com.masb.helper

import java.util.concurrent.ThreadLocalRandom

object ConcurrentMapOps {
 implicit class ConcurrentMapOpsImpl[A,B](val map: collection.concurrent.Map[A, B]) {

 @inline
 def replaceWith(key: A, function: B => B): Option[B] = {
 //repeat till replace is successful
 while (true) map.get(key) match {
 case None => return None
 case Some(value) =>
 if (map.replace(key, value, function(value))) {
 return Some(value) //replace success - return value (exit)
 } else {
 Thread.`yield`() //replace failure – yield control
 }
 }
 None
 }
 }
}

GLOSSARY

237 | P a g e

GLOSSARY

• AS – Allocation Score
• AGOCS – Accurate Google Cloud Simulator
• AMM – Automatic Memory Management
• ASR – Allocation Score Ratios
• BA – Broker Agent
• BNS – Borg Name Service
• CFS – Completely Fair Scheduler
• CIFS – Common Internet File System
• CQ – Circular Queue
• CRIU – Checkpoint/Restore In Userspace tool
• CRUM – Cloud Resource Utilisation Model
• CS – Cooperative Scheduling
• D-RSOP – D-Resource System Optimisation Problem
• DA – Disproportional Allocation
• DAG – Directed Acyclic Graph
• E-PVM – Enhanced Parallel Virtual Machine algorithm
• FCFS – First-Come-First-Serve
• GA – Genetic Algorithm
• GC – Java’s Garbage Collector
• GCD – Google Cluster Data project
• GFS – Google File System
• GWP – Google Wide Profiling framework
• HT – Hyper-Threading
• IAAS – Infrastructure As A Service
• IOPS – I/O Operations Per Second
• JVM – Java Virtual Machine
• LMDT – Live Migration Data Transfer formula
• MASB – Multi-Agent System Balancer
• MLFQ – Multilevel Feedback Queue
• NA – Node Agent
• NAS – Network Attached Storage device
• NUMA – Non-Uniform Memory Access
• OS – Operating System
• P2P – Point-to-point communication
• PA – Proportional Allocation

GLOSSARY

238 | P a g e

• PAAS – Platform As A Service
• QA – Quantum Annealing
• RCPSP – Resource-Constrained Project Scheduling Problem
• RDD – Resilient Distributed Datasets
• RPC – Remote Procedure Call
• RUS – Resource Usage Spike
• SA – Simulated Annealing
• SAAS – Software As A Service
• SAL – Service Allocation Lifecycle
• SAN – Service Allocation Negotiation protocol
• SAS – Service Allocation Score function
• SCS – Select Candidate Services routine
• SGA – Seeded Genetic Algorithm
• SGA-Greedy – Genetic Algorithm seeded by Greedy
• SGA-SA – Genetic Algorithm seeded by Simulated Annealing
• SGA-TS – Genetic Algorithm seeded by Tabu Search
• SIAS – Service Initial Allocation Score function
• SJF – Shortest Job First
• SLURM – Simple Linux Utility for Resource Management
• SRAS – Service Re-allocation Score function
• STA – Super Tight Allocation
• STC – System Transformation Cost
• TA – Tight Allocation
• TPU – Tensor Processing Unit
• TS – Tabu Search
• UCAAS - Unified Communication as a Service
• VC – Virtual Container
• VDI – Virtual Disk Image
• VM – Virtual Machine
• VM-LM – Virtual Machine Live Migration
• WFQ – Weighted Fair Queueing
• WWS – Writable Working Set memory
• YARN – Yet Another Resource Negotiator
• YKJP – YourKit Java Profiler tool

LIST OF REFERENCES

239 | P a g e

LIST OF REFERENCES

"10 Key Marketing Trends for 2017 and Ideas for Exceeding Customer
Expectations." IBM Marketing Cloud. November 29, 2017. Available from:
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345USEN
Retrieved June 22, 2018.

"Apache Aurora." Aurora. Available from: http://aurora.apache.org/ Retrieved
December 5, 2018. Version 0.19.0.

"Developer Survey Results 2017." Stack Overflow. May 13, 2017. Available from:
https://news.netcraft.com/archives/2017/11/21/november-2017-web-server-
survey.html Retrieved November 11, 2017.

"Marathon: A container orchestration platform for Mesos and DC/OS."
Mesosphere, Inc. January 10, 2018. Available from:
https://mesosphere.github.io/marathon/ Retrieved February 7, 2018.

"Maui Administrator's Guide." Adaptive Computing Enterprises, Inc. May 16,
2002. Available from:
http://docs.adaptivecomputing.com/maui/pdf/mauiadmin.pdf Retrieved
November 5, 2014. Version 3.2.

"Nomad - Easily Deploy Applications at Any Scale", HashiCorp. Available from:
https://www.nomadproject.io Retrieved March 19, 2018. Version 0.7.1.

"November 2017 Web Server Survey." Netcraft, Web Server Survey. November
21, 2017. Available from:
https://news.netcraft.com/archives/2017/11/21/november-2017-web-server-
survey.html Retrieved November 24, 2017.

"Top500 List - November 2017". TOP500 Project. November, 2017. Available from:
https://www.top500.org/lists/2017/11/ Retrieved November 17, 2017.

"TORQUE Resource Manager. Administration Guide 5.1.2." Adaptive Computing
Enterprises, Inc. November 2015. Available from:
http://docs.adaptivecomputing.com/torque/5-1-2/torqueAdminGuide-5.1.2.pdf
Retrieved November 15, 2016.

LIST OF REFERENCES

240 | P a g e

"VirtualBox User Manual." Oracle Corporation. Available from:
http://download.virtualbox.org/virtualbox/UserManual.pdf Retrieved April 30,
2018. Version 5.2.12.

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin et al. "TensorFlow: A System for Large-Scale Machine
Learning." In 12th USENIX Symposium on Operating Systems Design and
Implementation, vol. 16, pp. 265-283. 2016.

Abali, Bulent, Canturk Isci, Jeffrey O. Kephart, Suzanne K. McIntosh, and Dipankar
Sarma. "Live virtual machine migration quality of service." U.S. Patent 9,619,258,
issued April 11, 2017.

Abdul-Rahman, Omar Arif, and Kento Aida. "Towards understanding the usage
behavior of Google cloud users: the mice and elephants phenomenon." In Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on, pp. 272-277. IEEE, 2014.

Agnetis, Allesandro, Pitu B. Mirchandani, Dario Pacciarelli, and Andrea Pacifici.
"Scheduling problems with two competing agents." Operations research 52, no.
2 (2004): 229-242.

Akoush, Sherif, Ripduman Sohan, Andrew Rice, Andrew W. Moore, and Andy
Hopper. "Predicting the performance of virtual machine migration." In Modeling,
Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS),
2010 IEEE International Symposium on, pp. 37-46. IEEE, 2010.

Amir, Yair, Baruch Awerbuch, Amnon Barak, R. Sean Borgstrom, and Arie Keren.
"An opportunity cost approach for job assignment in a scalable computing
cluster." IEEE Transactions on parallel and distributed Systems 11, no. 7 (2000):
760-768.

Anderson, Jennifer, Lance Berc, George Chrysos, Jeffrey Dean, Sanjay Ghemawat,
Jamey Hicks, Shun-Tak Leung et al. "Transparent, Low-Overhead Profiling on
Modern Processors." In Proceedings of the Workshop on Profile and Feedback-
Directed Compilation. 1998.

Armbrust, Michael, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee et al. Above the clouds: A berkeley view of cloud

LIST OF REFERENCES

241 | P a g e

computing. Vol. 17. Technical Report UCB/EECS-2009-28, Department of
Electrical Engineering and Computer Sciences, University of California, Berkeley,
2009.

Arpaci-Dusseau, Remzi H., and Andrea C. Arpaci-Dusseau. "Operating systems:
Three easy pieces." Arpaci-Dusseau Books, 2015.

Ausiello, Giorgio, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and approximation:
Combinatorial optimization problems and their approximability properties.
Springer Science & Business Media, 2012.

Baker, Kenneth R., and J. Cole Smith. "A multiple-criterion model for machine
scheduling." Journal of scheduling 6, no. 1 (2003): 7-16.

Barham, Paul, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. "Xen and the art of virtualization."
In ACM SIGOPS operating systems review, vol. 37, no. 5, pp. 164-177. ACM, 2003.

Barroso, Luiz André, Jeffrey Dean, and Urs Hölzle. "Web search for a planet: The
Google cluster architecture." Micro, IEEE 23, no. 2 (2003): 22-28.

Barsness, Eric L., David L. Darrington, Ray L. Lucas, and John M. Santosuosso.
"Distributed job scheduling in a multi-nodal environment." U.S. Patent 8,645,745,
issued February 4, 2014.

Becchetti, L, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido Schäfer,
and Tjark Vredeveld. (2006) "Average-case and smoothed competitive analysis of
the multilevel feedback algorithm." Mathematics of Operations Research 31, no.
1: 85-108.

Bedra, Aaron. "Getting started with google app engine and clojure." IEEE Internet
Computing 14, no. 4 (2010): 85.

Beitch, Aaron, Brandon Liu, Timothy Yung, Rean Griffith, Armando Fox, and David
A. Patterson. "Rain: A workload generation toolkit for cloud computing
applications." University of California, Tech. Rep. UCB/EECS-2010-14 (2010).

LIST OF REFERENCES

242 | P a g e

Bernstein, David, Erik Ludvigson, Krishna Sankar, Steve Diamond, and Monique
Morrow. "Blueprint for the intercloud-protocols and formats for cloud computing
interoperability." In Internet and Web Applications and Services, 2009. ICIW'09.
Fourth International Conference on, pp. 328-336. IEEE, 2009.

Bigham, John, and Lin Du. "Cooperative negotiation in a multi-agent system for
real-time load balancing of a mobile cellular network." In Proceedings of the
second international joint conference on Autonomous agents and multiagent
systems, pp. 568-575. ACM, 2003.

Blagodurov, Sergey, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. "A
case for NUMA-aware contention management on multicore systems." In
Proceedings of the 19th international conference on Parallel architectures and
compilation techniques, pp. 557-558. ACM, 2010.

Boctor, Fayer F. "Some efficient multi-heuristic procedures for resource-
constrained project scheduling." European journal of operational research 49, no.
1 (1990): 3-13.

Bode, Brett, David M. Halstead, Ricky Kendall, Zhou Lei, and David Jackson. "The
Portable Batch Scheduler and the Maui Scheduler on Linux Clusters." In Annual
Linux Showcase & Conference. 2000.

Bonald, Thomas, Laurent Massoulié, Alexandre Proutiere, and Jorma Virtamo. "A
queueing analysis of max-min fairness, proportional fairness and balanced
fairness." Queueing systems 53, no. 1 (2006): 65-84.

Bouleimen, K. and Lecocq, H. "A new efficient simulated annealing algorithm for
the resource-constrained project scheduling problem and its multiple mode
version." European Journal of Operational Research 149, no. 2 (2003): 268-281.

Boutin, Eric, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. "Apollo: Scalable and Coordinated Scheduling for
Cloud-Scale Computing." In OSDI, vol. 14, pp. 285-300. 2014.

Brazier, Frances MT, Frank Cornelissen, Rune Gustavsson, Catholijn M. Jonker,
Olle Lindeberg, Bianca Polak, and Jan Treur. "A multi-agent system performing
one-to-many negotiation for load balancing of electricity use." Electronic
Commerce Research and Applications 1, no. 2 (2002): 208-224.

LIST OF REFERENCES

243 | P a g e

Brenner, Walter, Rüdiger Zarnekow, and Hartmut Wittig. "Intelligent software
agents: foundations and applications." Springer Science & Business Media, 2012.

Brooks, Chris, Brian Tierney, and William Johnston. "JAVA agents for distributed
system management." LBNL Report (1997).

Brucker, Peter, and Sigrid Knust. "Lower bounds for resource-constrained project
scheduling problems." European Journal of Operational Research 149, no. 2
(2003): 302-313.

Bu, Yingyi, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. "HaLoop:
Efficient iterative data processing on large clusters." Proceedings of the VLDB
Endowment 3, no. 1-2 (2010): 285-296.

Bulpin, James R. "Operating system support for simultaneous multithreaded
processors." No. UCAM-CL-TR-619. University of Cambridge, Computer
Laboratory, 2005.

Burnett, R. Michael Haines, Calvin Pettiecord, Bryan DiGiorgio, Darren Molz, and
Scott Koerner. "Supporting domain variation within a cloud provided multitenant
unified communications environment." U.S. Patent Application 13/180,773, filed
July 12, 2011.

Burns, Brendan, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
"Borg, Omega, and Kubernetes." Communications of the ACM 59, no. 5 (2016):
50-57.

Buyya, Rajkumar. "High Performance Cluster Computing: Architectures and
Systems, Volume I." Prentice Hall, Upper SaddleRiver, NJ, USA 1 (1999): 999.

Buyya, Rajkumar, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. "Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility." Future Generation computer systems
25, no. 6 (2009): 599-616.

Byrne, Debora Jean, John Mark McConaughy, Shaw-Ben Shi, Chin-Long Shu, and
Trung Minh Tran. "Reverse string indexing in a relational database for wildcard
searching." U.S. Patent 6,199,062, issued March 6, 2001.

LIST OF REFERENCES

244 | P a g e

Cabri, Giacomo, Luca Ferrari, Letizia Leonardi, and Raffaele Quitadamo. "Strong
agent mobility for aglets based on the ibm jikesrvm." In Proceedings of the 2006
ACM symposium on Applied computing, pp. 90-95. ACM, 2006.

Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. "CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms."
Software: Practice and experience 41, no. 1 (2011): 23-50.

Calheiros, Rodrigo N., Marco AS Netto, César AF De Rose, and Rajkumar Buyya.
"EMUSIM: an integrated emulation and simulation environment for modeling,
evaluation, and validation of performance of cloud computing applications."
Software: Practice and Experience 43, no. 5 (2013): 595-612.

Callau-Zori, Mar, Lavinia Samoila, Anne-Cécile Orgerie, and Guillaume Pierre. "An
experiment-driven energy consumption model for virtual machine management
systems." Sustainable Computing: Informatics and Systems (2017).

Campbell, Matthew. "Distributed Scheduler Hell." DigitalOcean. SREcon17
Asia/Australia. May 24, 2017.

Cao, Junwei, Daniel P. Spooner, Stephen A. Jarvis, and Graham R. Nudd. "Grid
load balancing using intelligent agents." Future generation computer systems 21,
no. 1 (2005): 135-149.

Castelfranchi, Cristiano. "Guarantees for autonomy in cognitive agent
architecture." In International Workshop on Agent Theories, Architectures, and
Languages, pp. 56-70. Springer, Berlin, Heidelberg, 1994.

Chang, Fay, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. "Bigtable: A
distributed storage system for structured data." ACM Transactions on Computer
Systems (TOCS) 26, no. 2 (2008): 4.

Chavez, Anthony, Alexandros Moukas, and Pattie Maes. "Challenger: A multi-
agent system for distributed resource allocation." In Proceedings of the first
international conference on Autonomous agents, pp. 323-331. ACM, 1997.

LIST OF REFERENCES

245 | P a g e

Che, Jianhua, Yong Yu, Congcong Shi, and Weimin Lin. "A synthetical performance
evaluation of openVZ, Xen and KVM." In Services Computing Conference (APSCC),
2010 IEEE Asia-Pacific, pp. 587-594. IEEE, 2010.

Chen, Yanpei, Sara Alspaugh, and Randy H. Katz. Design insights for MapReduce
from diverse production workloads. No. UCB/EECS-2012-17. California Unversity
Berkley, Department of Electrical Engineering and Computer Science, 2012.

Chierici, Andrea, and Riccardo Veraldi. "A quantitative comparison between Xen
and KVM." In Journal of Physics: Conference Series, vol. 219, no. 4, p. 042005. IOP
Publishing, 2010.

Chisnall, David. "The definitive guide to the Xen hypervisor." Pearson Education,
2008.

Chung, I-Hsin, Tara N. Sainath, Bhuvana Ramabhadran, Michael Picheny, John
Gunnels, Vernon Austel, Upendra Chauhari, and Brian Kingsbury. "Parallel deep
neural network training for big data on blue gene/q." IEEE Transactions on
Parallel and Distributed Systems 28, no. 6 (2017): 1703-1714.

Chvatal, Vasek. "A greedy heuristic for the set-covering problem." Mathematics
of operations research 4, no. 3 (1979): 233-235.

Clark, Christopher, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. "Live migration of virtual
machines." In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pp. 273-286. USENIX Association,
2005.

Clark, Jack "5 Numbers That Illustrate the Mind-Bending Size of Amazon's Cloud."
Bloomberg Technology. November 14, 2014.

Coffman Jr, Edward G., Michael R. Garey, and David S. Johnson. "Approximation
algorithms for bin packing: A survey." In Approximation algorithms for NP-hard
problems, pp. 46-93. PWS Publishing Co., 1996.

Cook, Stephen A. "The complexity of theorem-proving procedures." In
Proceedings of the third annual ACM symposium on Theory of computing, pp.
151-158. ACM, 1971.

LIST OF REFERENCES

246 | P a g e

Cooper, Dale F. "Heuristics for scheduling resource-constrained projects: An
experimental investigation." Management Science 22, no. 11 (1976): 1186-1194.

Corbató, Fernando J., Marjorie Merwin-Daggett, and Robert C. Daley. "An
experimental time-sharing system." In Proceedings of the May 1-3, 1962, spring
joint computer conference, pp. 335-344. ACM, 1962.

Corbet, Jonathan. "The staircase scheduler." LWN.net. June 2, 2004. Available
from: https://lwn.net/Articles/87729/ Retrieved September 25, 2017.

Corbet, Jonathan. "The Rotating Staircase Deadline Scheduler." LWN.net. March
6, 2007. Available from: https://lwn.net/Articles/224865/ Retrieved September
25, 2017.

Corbett, James C., Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat et al. "Spanner: Google’s globally
distributed database." ACM Transactions on Computer Systems (TOCS) 31, no. 3
(2013): 8.

Corsava, Sophia, and Vladimir Getov. "Intelligent architecture for automatic
resource allocation in computer clusters." In Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, pp. 8-pp. IEEE, 2003.

Dargie, Waltenegus. "Estimation of the cost of vm migration." In Computer
Communication and Networks (ICCCN), 2014 23rd International Conference on,
pp. 1-8. IEEE, 2014.

Davis, Edward W., and James H. Patterson. "A comparison of heuristic and
optimum solutions in resource-constrained project scheduling." Management
science 21, no. 8 (1975): 944-955.

Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: a flexible data processing
tool." Communications of the ACM 53, no. 1 (2010): 72-77.

Debels, Dieter, Bert De Reyck, Roel Leus, and Mario Vanhoucke. "A hybrid scatter
search/electromagnetism meta-heuristic for project scheduling." European
Journal of Operational Research 169, no. 2 (2006): 638-653.

LIST OF REFERENCES

247 | P a g e

Demassey, Sophie, Christian Artigues, and Philippe Michelon. "Constraint-
propagation-based cutting planes: An application to the resource-constrained
project scheduling problem." INFORMS Journal on computing 17, no. 1 (2005):
52-65.

Demeulemeester, Erik, and Willy Herroelen. "A branch-and-bound procedure for
the multiple resource-constrained project scheduling problem." Management
science 38, no. 12 (1992): 1803-1818.

Deshpande, Umesh, and Kate Keahey. "Traffic-sensitive live migration of virtual
machines." Future Generation Computer Systems 72 (2017): 118-128.

Di, Sheng, Derrick Kondo, and Walfredo Cirne. "Characterization and comparison
of cloud versus grid workloads." In Cluster Computing (CLUSTER), 2012 IEEE
International Conference on, pp. 230-238. IEEE, 2012.

Drepper, Ulrich. "What every programmer should know about memory." Red Hat,
Inc. 11 (2007): 2007.

Du, Yuyang, Hongliang Yu, Guangyu Shi, Jian Chen, and Weimin Zheng.
"Microwiper: efficient memory propagation in live migration of virtual
machines." In Parallel Processing (ICPP), 2010 39th International Conference on,
pp. 141-149. IEEE, 2010.

Dua, Rajdeep, A. Reddy Raja, and Dharmesh Kakadia. "Virtualization vs
Containerization to Support PaaS." In Cloud Engineering (IC2E), 2014 IEEE
International Conference on, pp. 610-614. IEEE, 2014.

Eddy, YS Foo, Hoay Beng Gooi, and Shuai Xun Chen. "Multi-agent system for
distributed management of microgrids." IEEE Transactions on power systems 30,
no. 1 (2015): 24-34.

El-Sayed, Nosayba, Hongyu Zhu, and Bianca Schroeder. "Learning from Failure
Across Multiple Clusters: A Trace-Driven Approach to Understanding, Predicting,
and Mitigating Job Terminations." In Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on, pp. 1333-1344. IEEE, 2017.

Estes, Phil, and Shaun Murakami. "Live Container Migration on OpenStack."
OpenStack Summit Barcelona 2016. October 25, 2016.

LIST OF REFERENCES

248 | P a g e

Etsion, Yoav, and Dan Tsafrir. "A short survey of commercial cluster batch
schedulers." School of Computer Science and Engineering, The Hebrew University
of Jerusalem 44221 (2005): 2005-13.

Fanjul-Peyro, Luis, Federico Perea, and Rubén Ruiz. "Models and matheuristics
for the unrelated parallel machine scheduling problem with additional
resources." European Journal of Operational Research 260, no. 2 (2017): 482-493.

Feitelson, Dror G., Dan Tsafrir, and David Krakov. "Experience with using the
parallel workloads archive." Journal of Parallel and Distributed Computing 74, no.
10 (2014): 2967-2982.

Feng, Xiujie, Jianxiong Tang, Xuan Luo, and Yaohui Jin. "A performance study of
live VM migration technologies: VMotion vs XenMotion." In Asia
Communications and Photonics Conference and Exhibition, p. 83101B. Optical
Society of America, 2011.

Fortnow, Lance. "The status of the P versus NP problem." Communications of the
ACM 52, no. 9 (2009): 78-86.

Foster, Ian, and Carl Kesselman. "Globus: A metacomputing infrastructure
toolkit." The International Journal of Supercomputer Applications and High
Performance Computing 11, no. 2 (1997): 115-128.

Foster, Ian, Carl Kesselman, and Steven Tuecke. "The anatomy of the grid:
Enabling scalable virtual organizations." The International Journal of High
Performance Computing Applications 15, no. 3 (2001): 200-222.

Frieze, Alan M. "On the Lagarias-Odlyzko algorithm for the subset sum problem."
SIAM Journal on Computing 15, no. 2 (1986): 536-539.

Gabriel, Edgar, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay et al. "Open MPI: Goals, concept, and design of
a next generation MPI implementation." In European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting, pp. 97-104. Springer
Berlin Heidelberg, 2004.

Ganapathi, Archana, Yanpei Chen, Armando Fox, Randy Katz, and David Patterson.
"Statistics-driven workload modeling for the cloud." In Data Engineering

LIST OF REFERENCES

249 | P a g e

Workshops (ICDEW), 2010 IEEE 26th International Conference on, pp. 87-92. IEEE,
2010.

Garg, Saurabh Kumar, and Rajkumar Buyya. "Networkcloudsim: Modelling
parallel applications in cloud simulations." In Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on, pp. 105-113. IEEE, 2011.

Gensereth, Michael R., and Steven P. Ketchpel. "Software agents."
Communications of the ACM 37, no. 7 (1994): 48.

Gentzsch, Wolfgang. "Sun grid engine: Towards creating a compute power grid."
In Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on, pp. 35-36. IEEE, 2001.

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file
system." In ACM SIGOPS operating systems review, vol. 37, no. 5, pp. 29-43. ACM,
2003.

Ghemawat, Sanjay, and Paul Menage. "Tcmalloc: Thread-caching malloc." Google
performance tools. November 15, 2005.

Glover, Fred. "Future paths for integer programming and links to artificial
intelligence." Computers & operations research 13, no. 5 (1986): 533-549.

Glover, Fred. "Tabu search—part I." ORSA Journal on computing 1, no. 3 (1989):
190-206.

Gog, I. "Dron: An Integration Job Scheduler." Imperial College London (2012).

Goodwin, Richard. "Formalizing properties of agents." Journal of Logic and
Computation 5, no. 6 (1995): 763-781.

Grimshaw, Andrew S. "The Mentat run-time system: support for medium grain
parallel computation." In Distributed Memory Computing Conference, 1990.,
Proceedings of the Fifth, vol. 2, pp. 1064-1073. IEEE, 1990.

Grimshaw, Andrew S., William A. Wulf, James C. French, Alfred C. Weaver, and
Paul Reynolds Jr. "Legion: The next logical step toward a nationwide virtual
computer. " Technical Report CS-94-21, University of Virginia, 1994.

LIST OF REFERENCES

250 | P a g e

Groves, Taylor, Jeff Knockel, and Eric Schulte. "BFS vs. CFS - Scheduler
Comparison." The University of New Mexico, 11 December 2009.

Guilfoyle, Christine, and Ellie Warner. "Intelligent agents: The new revolution in
software." Ovum, 1994.

Hacker, T. "Toward a reliable cloud computing service." Cloud Computing and
software services: Theory and Techniques 139 (2010).

Hamscher, Volker, Uwe Schwiegelshohn, Achim Streit, and Ramin Yahyapour.
"Evaluation of job-scheduling strategies for grid computing." Grid Computing—
GRID 2000 (2000): 191-202.

Hart, Johnson M. "Win32 systems programming." Addison-Wesley Longman
Publishing Co., Inc., 1997.

Helland, Pat, and Harris Ed "Cosmos: Big Data and Big Challenges." Stanford
University, October 26, 2011.

Hellerstein, Joseph L., W. Cirne, and J. Wilkes. "Google Cluster Data." Google
Research Blog. January 7, 2010.

Hindman, Benjamin, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica. "Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center." In NSDI, vol. 11, no. 2011, pp. 22-
22. 2011.

Hou, Kai-Yuan, Kang G. Shin, and Jan-Lung Sung. "Application-assisted live
migration of virtual machines with Java applications." In Proceedings of the Tenth
European Conference on Computer Systems, p. 15. ACM, 2015.

Hu, Wenjin, Andrew Hicks, Long Zhang, Eli M. Dow, Vinay Soni, Hao Jiang, Ronny
Bull, and Jeanna N. Matthews. "A quantitative study of virtual machine live
migration." In Proceedings of the 2013 ACM cloud and autonomic computing
conference, p. 11. ACM, 2013.

Huang, Qiang, Fengqian Gao, Rui Wang, and Zhengwei Qi. "Power consumption
of virtual machine live migration in clouds." In Communications and Mobile

LIST OF REFERENCES

251 | P a g e

Computing (CMC), 2011 Third International Conference on, pp. 122-125. IEEE,
2011.

Ilie, Sorin, and Costin Bădică. "Multi-agent approach to distributed ant colony
optimization." Science of Computer Programming 78, no. 6 (2013): 762-774.

Iosup, Alexandru, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Dumitrescu, Lex
Wolters, and Dick HJ Epema. "The grid workloads archive." Future Generation
Computer Systems 24, no. 7 (2008): 672-686.

Iosup, Alexandru, Simon Ostermann, M. Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. "Performance analysis of cloud computing services
for many-tasks scientific computing." IEEE Transactions on Parallel and
Distributed systems 22, no. 6 (2011): 931-945.

Isard, Michael, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. "Dryad:
distributed data-parallel programs from sequential building blocks." In ACM
SIGOPS operating systems review, vol. 41, no. 3, pp. 59-72. ACM, 2007.

Isard, Michael, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. "Quincy: fair scheduling for distributed computing clusters."
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pp. 261-276. ACM, 2009.

Jackson, David, Quinn Snell, and Mark Clement. "Core algorithms of the Maui
scheduler." In Workshop on Job Scheduling Strategies for Parallel Processing, pp.
87-102. Springer, Berlin, Heidelberg, 2001.

Jackson, Keith R., Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas
Cholia, John Shalf, Harvey J. Wasserman, and Nicholas J. Wright. "Performance
analysis of high performance computing applications on the amazon web services
cloud." In Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, pp. 159-168. IEEE, 2010.

Jain, Abhinivesh, and Niraj Mahajan. "Introduction to Cloud Computing." In The
Cloud DBA-Oracle, pp. 3-10. Apress, Berkeley, CA, 2017.

Jin, Hai, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. "Live virtual machine
migration with adaptive, memory compression." In Cluster Computing and

LIST OF REFERENCES

252 | P a g e

Workshops, 2009. CLUSTER'09. IEEE International Conference on, pp. 1-10. IEEE,
2009.

Jin, Hai, Shadi Ibrahim, Tim Bell, Li Qi, Haijun Cao, Song Wu, and Xuanhua Shi.
"Tools and technologies for building clouds." In Cloud Computing, pp. 3-20.
Springer London, 2010.

Jones, James Patton, and Cristy Brickell. "Second evaluation of job
queuing/scheduling software: Phase 1 report." Technical Report NAS-97-013,
NASA Ames Research Center, 1997.

Jones, M. Tim. "Inside the Linux 2.6 Completely Fair Scheduler - Providing fair
access to CPUs since 2.6.23" In IBM DeveloperWorks. December 15, 2009.

Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates et al. "In-datacenter performance analysis of a
tensor processing unit." In Proceedings of the 44th Annual International
Symposium on Computer Architecture, pp. 1-12. ACM, 2017.

Józefowska, Joanna, Marek Mika, Rafał Różycki, Grzegorz Waligóra, and Jan
Węglarz. "Local search metaheuristics for discrete–continuous scheduling
problems." European Journal of Operational Research 107, no. 2: 354-370, 1998.

Józefowska, Joanna, Marek Mika, Rafał Różycki, Grzegorz Waligóra, and Jan
Węglarz. "Simulated annealing for multi-mode resource-constrained project
scheduling." Annals of Operations Research 102, no. 1-4: 137-155, 2001.

Józefowska, Joanna, Marek Mika, Rafał Różycki, Grzegorz Waligóra, and Jan
Węglarz. "A heuristic approach to allocating the continuous resource in discrete–
continuous scheduling problems to minimize the makespan." Journal of
Scheduling 5, no. 6: 487-499, 2002.

Kalra, Mala, and Sarbjeet Singh. "A review of metaheuristic scheduling
techniques in cloud computing." Egyptian informatics journal 16, no. 3 (2015):
275-295.

Kanev, Svilen, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. "Profiling a warehouse-scale

LIST OF REFERENCES

253 | P a g e

computer." In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual
International Symposium on, pp. 158-169. IEEE, 2015.

Kannan, Subramanian, Mark Roberts, Peter Mayes, Dave Brelsford, and Joseph F.
Skovira. "Workload management with loadleveler." IBM Redbooks 2, no. 2 (2001).

Karp, Richard M. "Reducibility among combinatorial problems." In Complexity of
computer computations, pp. 85-103. Springer, Boston, MA, 1972.

Kavulya, Soila, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. "An analysis of
traces from a production mapreduce cluster." In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp.
94-103. IEEE Computer Society, 2010.

Kay, Judy, and Piers Lauder. "A fair share scheduler." Communications of the ACM
31, no. 1 (1988): 44-55.

Kim, Gu Su, Kyoung-in Kim, and Young Ik Eom. "Dynamic load balancing scheme
based on Resource reservation for migration of agent in the pure P2P network
environment." In International Conference on AI, Simulation, and Planning in
High Autonomy Systems, pp. 538-546. Springer, Berlin, Heidelberg, 2004.

Kliazovich, Dzmitry, Pascal Bouvry, and Samee Ullah Khan. "GreenCloud: a
packet-level simulator of energy-aware cloud computing data centers." The
Journal of Supercomputing 62, no. 3 (2012): 1263-1283.

Klusáček, Dalibor, and Hana Rudová. "The Use of Incremental Schedule-based
Approach for Efficient Job Scheduling." In Sixth Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science, 2010.

Klusáček, Dalibor, Václav Chlumský, and Hana Rudová. "Optimizing user oriented
job scheduling within TORQUE." In SuperComputing The 25th International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC’13). 2013.

Klusáček, Dalibor. "MetaCentrum Workload Log." Czech National Infrastructure
Grid MetaCentrum. Available from:
http://www.fi.muni.cz/~xklusac/index.php?page=meta2009 Retrieved
November 15, 2014.

LIST OF REFERENCES

254 | P a g e

Klusáček, Dalibor, and Boris Parák. "Analysis of Mixed Workloads from Shared
Cloud Infrastructure." In Workshop on Job Scheduling Strategies for Parallel
Processing, pp. 25-42. Springer, Cham, 2017.

Kochut, Andrzej, Yu Deng, Michael R. Head, Jonathan Munson, Anca Sailer,
Hidayatullah Shaikh, Chunqiang Tang et al. "Evolution of the IBM Cloud: Enabling
an enterprise cloud services ecosystem." IBM Journal of Research and
Development 55, no. 6 (2011): 7-1.

Kolisch, Rainer, and Arno Sprecher. "PSPLIB-a project scheduling problem library:
OR software-ORSEP operations research software exchange program." European
journal of operational research 96, no. 1 (1997): 205-216.

Kolisch, Rainer, and Sönke Hartmann. "Experimental investigation of heuristics
for resource-constrained project scheduling: An update." European journal of
operational research 174, no. 1 (2006): 23-37.

Kolivas, Con. "linux-4.8-ck2, MuQSS version 0.114." -ck hacking. October 21, 2016.
Available from: https://ck-hack.blogspot.co.uk/2016/10/linux-48-ck2-muqss-
version-0114.html Retrieved December 8, 2016.

Krauter, Klaus, Rajkumar Buyya, and Muthucumaru Maheswaran. "A taxonomy
and survey of grid resource management systems for distributed computing."
Software: Practice and Experience 32, no. 2 (2002): 135-164.

Kulkarni, Sanjeev, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
"Twitter Heron: Stream processing at scale." In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp. 239-250. ACM,
2015.

Lamport, Leslie. "The part-time parliament." ACM Transactions on Computer
Systems (TOCS) 16, no. 2 (1998): 133-169.

Lang, Willis, and Jignesh M. Patel. (2010) "Energy management for mapreduce
clusters." Proceedings of the VLDB Endowment 3, no. 1-2: 129-139.

Lewis, Ian, and David Oppenheimer. "Advanced Scheduling in Kubernetes".
Kubernetes.io. Google, Inc. March 31, 2017. Available

LIST OF REFERENCES

255 | P a g e

https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes
Retrieved January 4, 2018.

Leung, Joseph Y-T. "Handbook of scheduling: algorithms, models, and
performance analysis." CRC Press, 2004.

Leung, Joseph Y-T., Michael Pinedo, and Guohua Wan. "Competitive two-agent
scheduling and its applications." Operations Research 58, no. 2 (2010): 458-469.

Levin, Leonid A. "Универсальные задачи перебора." Problems of Information
Transmission 9, no. 3 (1973): 115-116.

Li, Ang, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. "CloudCmp: comparing
public cloud providers." In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pp. 1-14. ACM, 2010.

Lim, Andrew, Hong Ma, Brian Rodrigues, Sun Teck Tan, and Fei Xiao. "New meta-
heuristics for the resource-constrained project scheduling problem." Flexible
Services and Manufacturing Journal 25, no. 1-2 (2013): 48-73.

Limoncelli, Tom, Strata R. Chalup, and Christina J. Hogan. The Practice of Cloud
System Administration: Designing and Operating Large Distributed Systems. Vol.
2. Pearson Education, 2014.

Litzkow, Michael J., Miron Livny, and Matt W. Mutka. "Condor-a hunter of idle
workstations." In Distributed Computing Systems, 1988., 8th International
Conference on, pp. 104-111. IEEE, 1988.

Liu, Haikun, Hai Jin, Cheng-Zhong Xu, and Xiaofei Liao. "Performance and energy
modeling for live migration of virtual machines." Cluster computing 16, no. 2
(2013): 249-264.

Liu, Howard T., and John A. Silvester. "Dynamic resource allocation scheme for
distributed heterogeneous computer systems." U.S. Patent 5,031,089, issued July
9, 1991.

Liu, Peng, and Lixin Tang. "Two-agent scheduling with linear deteriorating jobs on
a single machine." In International Computing and Combinatorics Conference, pp.
642-650. Springer Berlin Heidelberg, 2008.

LIST OF REFERENCES

256 | P a g e

Liu, Xunyun, and Rajkumar Buyya. "D-Storm: Dynamic Resource-Efficient
Scheduling of Stream Processing Applications." In Parallel and Distributed
Systems (ICPADS), 2017 IEEE 23rd International Conference on, pp. 485-492. IEEE,
2017.

Long, Qingqi, Jie Lin, and Zhixun Sun. "Agent scheduling model for adaptive
dynamic load balancing in agent-based distributed simulations." Simulation
Modelling Practice and Theory 19, no. 4 (2011): 1021-1034.

Lozi, Jean-Pierre, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma,
and Alexandra Fedorova. "The Linux scheduler: a decade of wasted cores." In
Proceedings of the Eleventh European Conference on Computer Systems, p. 1.
ACM, 2016.

Luo, Jun-Zhou, Jia-Hui Jin, Ai-Bo Song, and Fang Dong. "Cloud computing:
architecture and key technologies." Journal of China Institute of Communications
32, no. 7 (2011): 3-21.

Malhotra, Rahul, and Prince Jain. "Study and Comparison of CloudSim simulators
in the cloud computing." The SIJ Transactions on Computer Science Engineering
& its Applications (2013).

Mao, Ming, and Marty Humphrey. "Auto-scaling to minimize cost and meet
application deadlines in cloud workflows." In High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Conference for, pp. 1-
12. IEEE, 2011.

Marey, Omar, Jamal Bentahar, Ehsan Khosrowshahi-Asl, Khalid Sultan, and
Rachida Dssouli. "Decision making under subjective uncertainty in
argumentation-based agent negotiation." Journal of Ambient Intelligence and
Humanized Computing 6, no. 3 (2015): 307-323.

Marshall, Nick. "Mastering VMware VSphere 6." John Wiley & Sons, 2015.

Marz, Nathan. "A Storm is coming: more details and plans for release."
Engineering Blog. Twitter, Inc. August 4, 2011. Available from:
https://blog.twitter.com/engineering/en_us/a/2011/a-storm-is-coming-more-
details-and-plans-for-release.html Retrieved July 16, 2018.

LIST OF REFERENCES

257 | P a g e

Mashtizadeh, Ali, Emré Celebi, Tal Garfinkel, and Min Cai. "The design and
evolution of live storage migration in VMware ESX." In USENIX ATC, vol. 11, pp.
1-14. 2011.

Mateescu, Gabriel, Wolfgang Gentzsch, and Calvin J. Ribbens. "Hybrid
computing—where HPC meets grid and cloud computing." Future Generation
Computer Systems 27, no. 5 (2011): 440-453.

McCullough, John C., Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan
Kuppuswamy, Alex C. Snoeren, and Rajesh K. Gupta. "Evaluating the effectiveness
of model-based power characterization." In USENIX Annual Technical Conf, vol.
20. 2011.

Mechalas, John. "Performance Impact of Intel® Secure Key on OpenSSL." Intel
Corporation. July 24, 2012. Available from: https://software.intel.com/en-
us/articles/performance-impact-of-intel-secure-key-on-openssl Retrieved
December 22, 2017.

Meisner, David, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber,
and Thomas F. Wenisch. "Power management of online data-intensive services."
In Computer Architecture (ISCA), 2011 38th Annual International Symposium on,
pp. 319-330. IEEE, 2011.

Mell, Peter, and Tim Grance. "The NIST definition of cloud computing." National
Institute of Standards and Technology. September 2011. NIST Special Publication
800-145.

Melnik, Sergey, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. "Dremel: interactive analysis of
web-scale datasets." Proceedings of the VLDB Endowment 3, no. 1-2 (2010): 330-
339.

Merkel, Dirk. "Docker: lightweight linux containers for consistent development
and deployment." Linux Journal 2014, no. 239 (2014): 2.

Milano, Michela, and Andrea Roli. "MAGMA: a multiagent architecture for
metaheuristics." IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 34, no. 2 (2004): 925-941.

LIST OF REFERENCES

258 | P a g e

Mishra, Asit K., Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. "Towards
characterizing cloud backend workloads: insights from Google compute clusters."
ACM SIGMETRICS Performance Evaluation Review 37, no. 4 (2010): 34-41.

Mobini, MD Mahdi, Masoud Rabbani, M. S. Amalnik, Jafar Razmi, and A. R.
Rahimi-Vahed. "Using an enhanced scatter search algorithm for a resource-
constrained project scheduling problem." Soft Computing 13, no. 6 (2009): 597-
610.

Monteserin, Ariel, J. Andrés Díaz-Pace, Ignacio Gatti, and Silvia Schiaffino. "Agent
Negotiation Techniques for Improving Quality-Attribute Architectural Tradeoffs."
Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The
PAAMS Collection, vol. 10349 (2017): 183-195.

Montresor, Alberto, Hein Meling, and Ozalp Babaoglu. "Messor: Load-balancing
through a swarm of autonomous agents." In AP2PC, vol. 2, pp. 125-137. 2002.

Moreno, Ismael Solis, Peter Garraghan, Paul Townend, and Jie Xu. "An approach
for characterizing workloads in google cloud to derive realistic resource
utilization models." In Service Oriented System Engineering (SOSE), 2013 IEEE 7th
International Symposium on, pp. 49-60. IEEE, 2013.

Murray, Derek G., Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil
Madhavapeddy, and Steven Hand. "CIEL: a universal execution engine for
distributed data-flow computing." In Proc. 8th ACM/USENIX Symposium on
Networked Systems Design and Implementation, pp. 113-126. 2011.

Naik, Nitin. "Building a virtual system of systems using Docker Swarm in multiple
clouds." In Systems Engineering (ISSE), 2016 IEEE International Symposium on, pp.
1-3. IEEE, 2016.

Namjoshi, Jyoti, and Archana Gupte. "Service oriented architecture for cloud
based travel reservation software as a service." In Cloud Computing, 2009.
CLOUD'09. IEEE International Conference on, pp. 147-150. IEEE, 2009.

Nguyen, Ngoc Thanh, Maria Ganzha, and Marcin Paprzycki. "A consensus-based
multi-agent approach for information retrieval in internet." In International
Conference on Computational Science, pp. 208-215. Springer, Berlin, Heidelberg,
2006.

LIST OF REFERENCES

259 | P a g e

Noel, Karen, and Michael Tsirkin. "Memory duplication by destination host in
virtual machine live migration." U.S. Patent 9,459,902, issued October 4, 2016.

Nong, Q. Q., T. C. E. Cheng, and C. T. Ng. "Two-agent scheduling to minimize the
total cost." European Journal of Operational Research 215, no. 1 (2011): 39-44.

Nwana, Hyacinth S. "Software agents: An overview." The knowledge engineering
review 11, no. 3 (1996): 205-244.

Obe, Regina, and Leo Hsu. "PostgreSQL: Up and Running: a Practical Guide to the
Advanced Open Source Database." O'Reilly Media, Inc. 2017.

Odersky, Martin, Lex Spoon, and Bill Venners. "Programming in Scala: Updated
for Scala 2.12." Artima, Inc. 2016.

Oi, Hitoshi. "A preliminary workload analysis of specjvm2008." In Computer
Engineering and Technology, 2009. ICCET'09. International Conference on, vol. 2,
pp. 13-19. IEEE, 2009.

Othman, Sarah Ben, Hayfa Zgaya, Mariagrazia Dotoli, and Slim Hammadi. "An
agent-based Decision Support System for resources' scheduling in Emergency
Supply Chains." Control Engineering Practice 59 (2017): 27-43.

Pabla, Chandandeep Singh. "Completely fair scheduler." Linux Journal 2009, no.
184 (2009): 4.

Padoin, Edson L., Márcio Castro, Laércio L. Pilla, Philippe OA Navaux, and Jean-
François Méhaut. "Saving energy by exploiting residual imbalances on iterative
applications." In High Performance Computing (HiPC), 2014 21st International
Conference on, pp. 1-10. IEEE, 2014.

Pascual, Jose, Javier Navaridas, and Jose Miguel-Alonso. "Effects of topology-
aware allocation policies on scheduling performance." In Job Scheduling
Strategies for Parallel Processing, pp. 138-156. Springer Berlin/Heidelberg, 2009.

Perez-Gonzalez, Paz, and Jose M. Framinan. "A common framework and
taxonomy for multicriteria scheduling problems with interfering and competing
jobs: Multi-agent scheduling problems." European Journal of Operational
Research 235, no. 1 (2014): 1-16.

LIST OF REFERENCES

260 | P a g e

Pinel, Frédéric, Johnatan E. Pecero, Pascal Bouvry, and Samee U. Khan. "A review
on task performance prediction in multi-core based systems." In Computer and
Information Technology (CIT), 2011 IEEE 11th International Conference on, pp.
615-620. IEEE, 2011.

Pinheiro, Eduardo, Ricardo Bianchini, Enrique V. Carrera, and Taliver Heath. "Load
balancing and unbalancing for power and performance in cluster-based systems."
In Workshop on compilers and operating systems for low power, vol. 180, pp.
182-195. 2001.

Pop, Florin, Ciprian Dobre, Gavril Godza, and Valentin Cristea. "A simulation
model for grid scheduling analysis and optimization." In Parallel Computing in
Electrical Engineering, 2006. PAR ELEC 2006. International Symposium on, pp.
133-138. IEEE, 2006.

Pooranian, Zahra, Mohammad Shojafar, Jemal H. Abawajy, and Ajith Abraham.
"An efficient meta-heuristic algorithm for grid computing." Journal of
Combinatorial Optimization 30, no. 3 (2015): 413-434.

Prokopec, Aleksandar, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky.
"Concurrent tries with efficient non-blocking snapshots." In Acm Sigplan Notices,
vol. 47, no. 8, pp. 151-160. ACM, 2012.

Qiao, Lin, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob Schulman, Bhaskar
Ghosh, Antony Curtis et al. "On brewing fresh espresso: Linkedin's distributed
data serving platform." In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pp. 1135-1146. ACM, 2013.

Ramasubramanian, Manikandan, and Mukheem Ahmed. "Remote-direct-
memory-access-based virtual machine live migration." U.S. Patent 9,619,270,
issued April 11, 2017.

Ranjbar, Mohammad. "Solving the resource-constrained project scheduling
problem using filter-and-fan approach." Applied mathematics and computation
201, no. 1 (2008): 313-318.

Ray, Biplob R., Morshed Chowdhury, and Usman Atif. "Is High Performance
Computing (HPC) Ready to Handle Big Data?" In International Conference on
Future Network Systems and Security, pp. 97-112. Springer, Cham, 2017.

LIST OF REFERENCES

261 | P a g e

Reddy, Reddivari Himadeep, Sri Krishna Kumar, Kiran Jude Fernandes, and Manoj
Kumar Tiwari. "A Multi-Agent System based simulation approach for planning
procurement operations and scheduling with multiple cross-docks." Computers
& Industrial Engineering 107 (2017): 289-300.

Reiss, Charles, John Wilkes, and Joseph L. Hellerstein. "Obfuscatory obscanturism:
making workload traces of commercially-sensitive systems safe to release." In
Network Operations and Management Symposium (NOMS), 2012 IEEE, pp. 1279-
1286. IEEE, 2012.

Reiss, Charles, John Wilkes, and Joseph L. Hellerstein. "Google cluster-usage
traces: format+ schema." Google, Inc. Version of 2013.05.06, for trace version 2,
2013.

Ren, Gang, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.
"Google-wide profiling: A continuous profiling infrastructure for data centers."
IEEE micro 30, no. 4 (2010): 65-79.

Richardson, Matthew, and Pedro Domingos. "The Intelligent surfer: Probabilistic
Combination of Link and Content Information in PageRank." In NIPS, pp. 1441-
1448. 2001.

Rodriguez, Maria Alejandra, and Rajkumar Buyya. "A taxonomy and survey on
scheduling algorithms for scientific workflows in IaaS cloud computing
environments." Concurrency and Computation: Practice and Experience 29, no.
8 (2017).

Roestenburg, Raymond, Rob Bakker, and Rob Williams. "Akka in action." Manning
Publications Co., 2015.

Rybina, Kateryna, Waltenegus Dargie, Subramanya Umashankar, and Alexander
Schill. "Modelling the live migration time of virtual machines." In OTM
Confederated International Conferences" On the Move to Meaningful Internet
Systems", pp. 575-593. Springer, Cham, 2015.

Salfner, Felix, Peter Tröger, and Andreas Polze. "Downtime analysis of virtual
machine live migration." In The Fourth International Conference on
Dependability (DEPEND 2011). IARIA, pp. 100-105. 2011.

LIST OF REFERENCES

262 | P a g e

Sapuntzakis, Constantine P., Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S.
Lam, and Mendel Rosenblum. "Optimizing the migration of virtual computers."
ACM SIGOPS Operating Systems Review 36, no. SI (2002): 377-390.

Sargent, P. "Back to school for a brand new ABC." The Guardian (March, 12), no.
3 (1992): 12-28.

Sarood, Osman, Phil Miller, Ehsan Totoni, and Laxmikant V. Kale. "“Cool” Load
Balancing for High Performance Computing Data Centers." IEEE Transactions on
Computers 61, no. 12 (2012): 1752-1764.

Savill, John. "Mastering Windows Server 2016 Hyper-V." (2016).

Schaerf, Andrea, Yoav Shoham, and Moshe Tennenholtz. "Adaptive load
balancing: A study in multi-agent learning." Journal of artificial intelligence
research 2 (1995): 475-500.

Schirmer, Andreas. "A guide to complexity theory in operations research." No.
381. Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität
Kiel, 1995.

Schwarzkopf, Malte, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
"Omega: flexible, scalable schedulers for large compute clusters." In Proceedings
of the 8th ACM European Conference on Computer Systems, pp. 351-364. ACM,
2013.

Shankland, Stephen. "Google uncloaks once-secret server." CNET News,
December 11, 2009. Available from: https://www.cnet.com/news/google-
uncloaks-once-secret-server-10209580/ Retrieved December 17, 2016.

Sharma, Bikash, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh Rifaat, and
Chita R. Das. "Modeling and synthesizing task placement constraints in Google
compute clusters." In Proceedings of the 2nd ACM Symposium on Cloud
Computing, p. 3. ACM, 2011.

Shen, Siqi, Vincent van Beek, and Alexandru Iosup. "Statistical characterization of
business-critical workloads hosted in cloud datacenters." In Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on, pp.
465-474. IEEE, 2015.

LIST OF REFERENCES

263 | P a g e

Shi, Dongcai, Jianwei Yin, Wenyu Zhang, Jinxiang Dong, and Dandan Xiong. "A
distributed collaborative design framework for multidisciplinary design
optimization." In International Conference on Computer Supported Cooperative
Work in Design, pp. 294-303. Springer, Berlin, Heidelberg, 2005.

Shirinbab, Sogand, Lars Lundberg, and Dragos Ilie. "Performance comparison of
KVM, VMware and XenServer using a large telecommunication application." In
Cloud Computing. IARIA XPS Press, 2014.

Shiv, Kumar, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko.
"SPECjvm2008 performance characterization." Computer Performance
Evaluation and Benchmarking (2009): 17-35.

Shreedhar, Madhavapeddi, and George Varghese. "Efficient fair queueing using
deficit round robin." In ACM SIGCOMM Computer Communication Review, vol.
25, no. 4, pp. 231-242. ACM, 1995.

Singh, Ajit. "New York Stock Exchange Oracle Exadata – Our Journey." Oracle, Inc.
November 17, 2017. Available from:
http://www.oracle.com/technetwork/database/availability/con8821-nyse-
2773005.pdf Retrieved June 28, 2018.

Smanchat, Sucha, and Kanchana Viriyapant. "Taxonomies of workflow scheduling
problem and techniques in the cloud." Future Generation Computer Systems 52
(2015): 1-12.

Smarr, Larry, and Charles E. Catlett. "Metacomputing." Grid Computing: Making
the Global Infrastructure a Reality (2003): 825-835.

Smith, Randall. "Docker Orchestration." Packt Publishing Ltd, 2017.

Sun, Gang, Dan Liao, Vishal Anand, Dongcheng Zhao, and Hongfang Yu. "A new
technique for efficient live migration of multiple virtual machines." Future
Generation Computer Systems 55 (2016): 74-86.

Sun, Shizhao, and Xiaoguang Liu. "EC-DNN: A new method for parallel training of
deep neural networks." Neurocomputing 287 (2018): 118-127.

LIST OF REFERENCES

264 | P a g e

Tafa, Igli, Elinda Kajo, Ariana Bejleri, Olimpjon Shurdi, and Aleksandër Xhuvani.
"The Performance between XEN-HVM, XEN-PV and OPEN-VZ During Live
Migration." International Journal of Advanced Computer Science and
Applications (2011): 126-132.

Tang, Xuehai, Zhang Zhang, Min Wang, Yifang Wang, Qingqing Feng, and Jizhong
Han. "Performance evaluation of light-weighted virtualization for paas in clouds."
In International Conference on Algorithms and Architectures for Parallel
Processing, pp. 415-428. Springer, Cham, 2014.

Thain, Douglas, Todd Tannenbaum, and Miron Livny. "Distributed computing in
practice: the Condor experience." Concurrency and computation: practice and
experience 17, no. 2-4 (2005): 323-356.

Torvalds, Linus "Re: Just a second …" The Linux Kernel Mailing List. December 15,
2001. Available from http://tech-insider.org/linux/research/2001/1215.html
Retrieved September 27, 2017.

Toshniwal, Ankit, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson et al. "Storm @Twitter." In Proceedings of
the 2014 ACM SIGMOD international conference on Management of data, pp.
147-156. ACM, 2014.

Tsirkin, Michael, and Karen Noel. "Ordered memory pages transmission in virtual
machine live migration." U.S. Patent 9,483,414, issued November 1, 2016.

Tuong, N. Huynh, Ameur Soukhal, and J-C. Billaut. "Single-machine multi-agent
scheduling problems with a global objective function." Journal of Scheduling 15,
no. 3 (2012): 311-321.

Tyagi, Rinki, and Santosh Kumar Gupta. "A Survey on Scheduling Algorithms for
Parallel and Distributed Systems." In Silicon Photonics & High Performance
Computing, pp. 51-64. Springer, Singapore, 2018.

Urma, Raoul-Gabriel, Mario Fusco, and Alan Mycroft. "Java 8 in Action: Lambdas,
Streams, and functional-style programming." Manning Publications, 2014.

Varda, Kenton. "Protocol buffers: Google’s data interchange format." Google
Open Source Blog, July 7, 2008.

LIST OF REFERENCES

265 | P a g e

Vavilapalli, Vinod Kumar, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves et al. "Apache hadoop yarn: Yet
another resource negotiator." In Proceedings of the 4th annual Symposium on
Cloud Computing, p. 5. ACM, 2013.

Verma, Akshat, Gautam Kumar, Ricardo Koller, and Aritra Sen. "Cosmig: Modeling
the impact of reconfiguration in a cloud." In Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), 2011 IEEE 19th
International Symposium on, pp. 3-11. IEEE, 2011.

Verma, Abhishek, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. "Large-scale cluster management at Google with Borg."
In Proceedings of the Tenth European Conference on Computer Systems, p. 18.
ACM, 2015.

Wang, Cheng, Qianlin Liang, and Bhuvan Urgaonkar. "An empirical analysis of
amazon ec2 spot instance features affecting cost-effective resource
procurement." ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS) 3, no. 2 (2018): 6.

Wang, Guanying, Ali R. Butt, Henry Monti, and Karan Gupta. "Towards
synthesizing realistic workload traces for studying the hadoop ecosystem." In
Modeling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2011 IEEE 19th International Symposium on, pp. 400-408. IEEE, 2011.

Wang, Gong, T. N. Wong, and Xiaohuan Wang. "A hybrid multi-agent negotiation
protocol supporting agent mobility in virtual enterprises." Information Sciences
282 (2014): 1-14.

Weinberger, Edward. "Correlated and uncorrelated fitness landscapes and how
to tell the difference." Biological cybernetics63, no. 5 (1990): 325-336.

Weiss, Gerhard. "Multiagent Systems. 2nd edition." MIT Press. 2013

White, Tom. "Hadoop: The definitive guide." O'Reilly Media, Inc. 2012.

Wickremasinghe, Bhathiya, and Rajkumar Buyya. "CloudAnalyst: A CloudSim-
based tool for modelling and analysis of large scale cloud computing
environments." MEDC project report 22, no. 6 (2009): 433-659.

LIST OF REFERENCES

266 | P a g e

Wilkes, John. "Cluster Management at Google with Borg." GOTO Berlin 2016.
November 15, 2016.

Wong, C. S., I. K. T. Tan, R. D. Kumari, J. W. Lam, and W. Fun. "Fairness and
interactive performance of O(1) and cfs linux kernel schedulers." In Information
Technology, 2008. International Symposium on, vol. 4, pp. 1-8. IEEE, 2008.

Wooldridge, Michael, and Nicholas R. Jennings. "Intelligent agents: Theory and
practice." The knowledge engineering review 10, no. 2 (1995): 115-152.

Wu, Yangyang, and Ming Zhao. "Performance modelling of virtual machine live
migration." In Cloud Computing (CLOUD), 2011 IEEE International Conference on,
pp. 492-499. IEEE, 2011

Wyai, Loh Chee, Cheah WaiShiang, and Marlene Valerie AiSiok Lu. "Agent
Negotiation Patterns for Multi Agent Negotiation System." Advanced Science
Letters 24, no. 2 (2018): 1464-1469.

Van der Meulen, Rob and Christy Pettey "Gartner Forecasts Worldwide Public
Cloud Services Revenue to Reach $260 Billion in 2017." October 12, 2017.
Available from: https://www.gartner.com/newsroom/id/3815165 Retrieved
February 28, 2018.

Vohra, Deepak. "Scheduling pods on nodes. " In Kubernetes Management Design
Patterns, pp. 199-236. Apress, Berkeley, CA. 2017.

Xu, Cheng-Zhong, and Brian Wims. "A mobile agent based push methodology for
global parallel computing." Concurrency - Practice and Experience 12, no. 8
(2000): 705-726.

Xydas, Erotokritos, Charalampos Marmaras, and Liana M. Cipcigan. "A multi-
agent based scheduling algorithm for adaptive electric vehicles charging."
Applied energy 177 (2016): 354-365.

Vagata, Pamela, and Kevin Wilfong. "Scaling the Facebook data warehouse to 300
PB." Facebook, Inc. April 10, 2014. Available from: https://code.fb.com/core-
data/scaling-the-facebook-data-warehouse-to-300-pb/ Retrieved June 28, 2018.

LIST OF REFERENCES

267 | P a g e

Yang, Yongjian, Yajun Chen, Xiaodong Cao, and Jiubin Ju. "Load balancing using
mobile agent and a novel algorithm for updating load information partially." In
Lecture Notes in Computer Science 3619, pp. 1243-1252. 2005.

Yin, Yunqiang, Shuenn-Ren Cheng, T. C. E. Cheng, Wen-Hung Wu, and Chin-Chia
Wu. "Two-agent single-machine scheduling with release times and deadlines."
International Journal of Shipping and Transport Logistics 5, no. 1 (2013): 75-94.

Yoo, Andy B., Morris A. Jette, and Mark Grondona. "Slurm: Simple linux utility for
resource management." In Workshop on Job Scheduling Strategies for Parallel
Processing, pp. 44-60. Springer, Berlin, Heidelberg, 2003.

Younge, Andrew J., Gregor Von Laszewski, Lizhe Wang, Sonia Lopez-Alarcon, and
Warren Carithers. "Efficient resource management for cloud computing
environments." In Green Computing Conference, 2010 International, pp. 357-364.
IEEE, 2010.

Yu, Chenying, and Fei Huan. "Live migration of docker containers through logging
and replay." In Advances in Computer Science Research, 3rd International
Conference on Mechatronics and Industrial Informatics, pp. 623-626. Atlantis
Press, 2015.

Yu, Jia, and Rajkumar Buyya. "A taxonomy of scientific workflow systems for grid
computing." ACM Sigmod Record 34, no. 3 (2005): 44-49.

Zaharia, Matei, Dhruba Borthakur, J. Sen Sarma, Khaled Elmeleegy, Scott Shenker,
and Ion Stoica. Job scheduling for multi-user mapreduce clusters. Vol. 47.
Technical Report UCB/EECS-2009-55, EECS Department, University of California,
Berkeley, 2009.

Zaharia, Matei, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. "Spark: Cluster computing with working sets." HotCloud 10, no. 10-10
(2010): 95.

Zaharia, Matei, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. "Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing." In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pp. 2-2. USENIX Association, 2012.

LIST OF REFERENCES

268 | P a g e

Zakarya, Muhammad, and Lee Gillam. "Energy efficient computing, clusters, grids
and clouds: A taxonomy and survey." Sustainable Computing: Informatics and
Systems 14 (2017): 13-33.

Zecevic, Petar, and Marko Bonaci. "Spark in Action." (2016).

Zhang, Dongli, Moussa Ehsan, Michael Ferdman, and Radu Sion. "DIMMer: A case
for turning off DIMMs in clouds." In Proceedings of the ACM Symposium on Cloud
Computing, pp. 1-8. ACM, 2014.

Zhang, Jiao, Fengyuan Ren, Ran Shu, Tao Huang, and Yunjie Liu. "Guaranteeing
delay of live virtual machine migration by determining and provisioning
appropriate bandwidth." IEEE Transactions on Computers 65, no. 9 (2016): 2910-
2917.

Zhang, Qi, Joseph L. Hellerstein, and Raouf Boutaba. "Characterizing task usage
shapes in Google’s compute clusters." In Proceedings of the 5th international
workshop on large scale distributed systems and middleware, pp. 1-6. sn, 2011.

Zhang, Zhuo, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. "Fuxi: a
fault-tolerant resource management and job scheduling system at internet
scale." Proceedings of the VLDB Endowment 7, no. 13 (2014): 1393-1404.

Zhao, Ming, and Renato J. Figueiredo. "Experimental study of virtual machine
migration in support of reservation of cluster resources." In Proceedings of the
2nd international workshop on Virtualization technology in distributed
computing, p. 5. ACM, 2007.

Zhou, Jingren. "Big data analytics and intelligence at alibaba cloud." In
Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 1-1. ACM, 2017.

Zhu, Xiaomin, Chao Chen, Laurence T. Yang, and Yang Xiang. "ANGEL: Agent-
based scheduling for real-time tasks in virtualized clouds." IEEE Transactions on
Computers 64, no. 12 (2015): 3389-3403.

