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ABSTRACT

The development of highly accurate, quantitative automatic medical image segmenta-
tion techniques, in comparison to manual techniques, remains a constant challenge for
medical image analysis. In particular, segmenting the pancreas from an abdominal scan
presents additional difficulties: this particular organ has very high anatomical varia-
bility, and a full inspection is problematic due to the location of the pancreas behind
the stomach. Therefore, accurate, automatic pancreas segmentation can consequently
yield quantitative morphological measures such as volume and curvature, supporting
biomedical research to establish the severity and progression of a condition, such as
type 2 diabetes mellitus. Furthermore, it can also guide subject stratification after dia-
gnosis or before clinical trials, and help shed additional light on detecting early signs of
pancreatic cancer. This PhD thesis delivers a novel approach for automatic, accurate
quantitative pancreas segmentation in mostly but not exclusively Magnetic Resonance
Imaging (MRI), by harnessing the advantages of machine learning and classical ima-
ge processing in computer vision. The proposed approach is evaluated on two MRI
datasets containing 216 and 132 image volumes, achieving a mean Dice similarity co-
efficient (DSC) of 84.1 &+ 4.6% and 85.7 £ 2.3% respectively. In order to demonstrate
the universality of the approach, a dataset containing 82 Computer Tomography (CT)
image volumes is also evaluated and achieves mean DSC of 83.1 + 5.3%. The proposed
approach delivers a contribution to computer science (computer vision) in medical ima-
ge analysis, reporting better quantitative pancreas segmentation results in comparison
to other state-of-the-art techniques, and also captures detailed pancreas boundaries as
verified by two independent experts in radiology and radiography. The contributions’
impact can support the usage of computational methods in biomedical research with
a clinical translation; for example, the pancreas volume provides a prognostic biomar-
ker about the severity of type 2 diabetes mellitus. Furthermore, a generalisation of the
proposed segmentation approach successfully extends to other anatomical structures,
including the kidneys, liver and iliopsoas muscles using different MRI sequences. Thus,
the proposed approach can incorporate into the development of a computational tool
to support radiological interpretations of MRI scans obtained using different sequences
by providing a “second opinion”, help reduce possible misdiagnosis, and consequently,

provide enhanced guidance towards targeted treatment planning.
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displays 3D reconstruction of entire liver (green) segmentation against
its ground-truth (red) with computed DSC. . . . .. .. ... ... ..
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8.8
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8.12

Liver organ segmentation results in six different MRI image scans (volu-
mes) using Method 2 and 3D-Method 2. Every row of two 3D liver recon-
structions highlights the segmentation results and DSC in the same MRI
volume using Method 2 and 3D-Method 2 respectively. The segmentation
outcome (green) overlaps the ground-truth (red) with computed DSC. .

Segmentation results in six different MRI image scans (volumes) using
Method 2. Every column corresponds to a single MRI volume. From
left, first two rows display sample MRI axial slices with segmentation
outcome (green) against ground-truth (red) and computed DSC; third
row displays 3D reconstruction of the entire iliopsoas muscles (green)

segmentation against its ground-truth (red) with DSC. . . . .. .. ..

[liopsoas muscles segmentation results in four different MRI image scans
(volumes) using Method 2 and 3D-Method 2. Every column of two 3D
iliopsoas muscles reconstructions highlights the segmentation results and
DSC in the same MRI volume using Method 2 (top row) and 3D-Method
2 (bottom row). The segmentation outcome (green) overlaps the ground-
truth (red). . . . . .

Dice Score coefficient (DSC) and Jaccard index (JI) box plots for “ab-

normal” and “normal” kidneys segmentation in MRI using 3D-Method

Dice Score coefficient (DSC) and Jaccard index (JI) box plots for “ab-
normal” and “normal” kidneys segmentation combined in MRI using 3D-
Method 2. . . . . . . . .

Using 3D-Method 2, a first sample batch of segmentation results in three
different DCE-MRI scans (4D volumes) depicting clinically “normal” kid-
neys. Every column corresponds to a single DCE-MRI 4D volume. Top
row displays sample slices with segmentation outcome (green) that over-
lap the ground-truth (red) and DSC; bottom row displays 3D reconstruc-

tion of whole kidneys segmentation that overlaps the ground-truth and

Using 3D-Method 2, a second sample batch of segmentation results in
three different DCE-MRI scans (4D volumes) depicting clinically “nor-
mal” kidneys. Every column corresponds to a single DCE-MRI 4D volu-
me. Top row displays sample slices with segmentation outcome (green)
that overlap the ground-truth (red) and DSC; bottom row displays 3D
reconstruction of whole kidneys segmentation that overlaps the ground-
truth and DSC. . . . . . .. .o

133

135

135

137

137

138



8.13

8.14

Using 3D-Method 2, a first sample batch of segmentation results in three
different DCE-MRI scans (4D volumes) depicting clinically “abnormal”
kidneys. Every column corresponds to a single DCE-MRI 4D volume.
Top row displays sample slices with segmentation outcome (green) that
overlap the ground-truth (red) and DSC; bottom row displays 3D recon-
struction of whole kidneys segmentation that overlaps the ground-truth
and DSC. . . . . .

Using 3D-Method 2, a second sample batch of segmentation results in
three different DCE-MRI scans (4D volumes) depicting clinically “abnor-
mal” kidneys. Every column corresponds to a single DCE-MRI 4D volu-
me. Top row displays sample slices with segmentation outcome (green)
that overlap the ground-truth (red) and DSC; bottom row displays 3D
reconstruction of whole kidneys segmentation that overlaps the ground-

truth and DSC. . . . . . . . .
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Glossary

e Axial: An axial view refers to a two-dimensional (2D) image taken parallel to the

horizontal ground, from top to bottom (zy-plane).

e Computer-aided diagnosis: A computer-aided diagnosis (CADx) system proces-
ses digitised medical images of radiological scans, in order to highlight areas of or-
gan impairment and disease. Consequently, CADx can provide additional guidance

for medical image analysis.

e Computer tomography: Computer tomography (CT) is a medical imaging
technique that employs a sequence of X-ray images taken from different angles
to generate cross-sectional images of the human anatomy. A pre-requisite iodine-
based contrast is required, which is injected into the vein of the subject or patient

30 minutes to 1 hour before the scanning procedure.

e Coronal: A coronal view refers to a two-dimensional (2D) image taken perpen-

dicular to the horizontal ground, from back to front (xz-plane).

e Image artefact: An image artefact is a feature that appears in a radiological scan
which is not present inside the original scanned or imaged part of the human body.
Artefacts, such as noise, streaks, distortion and blurring, remain problematic in
Magnetic Resonance Imaging (MRI) due to magnetic field disturbances, patient

motion and signal processing.

e Image segmentation: Image segmentation is the process of partitioning a digital
image into multiple segments based on a given set of criteria. For example, a target
object (e.g., the pancreas) is segmented in a 2D medical image. Each pixel in the
image relating to the pancreas is labelled as ‘foreground’ or 1 and each pixel

relating to non-pancreas is labelled as ‘background’ or 0.

e Label: A label refers to the representation assigned to a single or group of pixels

or voxels in a digital image, e.g. a “pancreas” label versus a “non-pancreas” label.

e Magnetic resonance imaging: Magnetic resonance imaging (MRI) is a medical

imaging technique used to generate radiological images of the human anatomy.
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MRI does not involve exposure to ionising radiation. An MRI scanner is a de-
vice that employs strong magnetic fields and magnetic field gradient to generate

radiological images of the human anatomy.

Modality: Modality describes the type of medical imaging technique that utilises
a scanning device to produce images of internal physiological and anatomical
structures of a patient. Examples of medical imaging modalities include MRI, CT

and ultrasound.

MRI sequence: An MRI sequence corresponds to a scanner imaging protocol,
where a particular setting of pulse sequences and field gradients are chosen to

emphasise a particular appearance in the resultant image.

Pixel: A pixel or “picture element” refers to the smallest value or referable element

in a two-dimensional (2D) digital image.

Sagittal: A sagittal view refers to a two-dimensional (2D) image taken perpen-

dicular to the horizontal ground, from left side to right side (yz-plane).

Scanner imaging protocols: Scanner imaging protocols describe the way in
which medical images are acquired, including the choice of scanner modality (e.g.,
MRI, CT, ultrasound), in addition to how the images are processed for evalua-
tion. Protocols are also dependent on the scanner’s hardware and software, time

constraints, patient factors and the radiologist’s preference.

T1-weighted: A T1-weighted image corresponds to an MRI sequence where scan-
ned areas with high fat content appear bright and areas filled with water appear
dark.

T2-weighted: A T2-weighted image corresponds to an MRI sequence where scan-
ned areas filled with water appear bright and tissues with high fat content (e.g.

white matter) appear dark.

Tissue: A tissue can be described as the grouping of human cells that lie in close

proximity and form organs, skin, bone and other parts of the human body.

Voxel: A voxel represents the smallest value or referable element in a three-

dimensional (3D) digital image.
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Chapter 1

Introduction

1.1 Introduction

The accurate, computer-aided quantitative segmentation and classification of organs
can produce valuable information towards analysing organ-related disorders!, and pro-
vide additional guidance towards stratifying subjects after diagnosis or before clinical
trials. Research studies highlight that automatic segmentation and computer-aided in-
vestigation of significant organ volume variations in patients with conditions? such as
polycystic liver disease (PLD)? [17], renal (kidney) disease [18], and type 1 and 2 diabe-
tes mellitus [12, 13|, has played a vital role in raising the quality of biomedical research
[19]. For example, an enlarged liver is correlated with PLD subjects, and a larger liver
volume is more likely to cause a higher symptom burden [42]. Furthermore, increased
kidney volume correlates with early Autosomal dominant polycystic kidney disease
(ADPKD) [43]. Last, and certainly more appropriate to the main context of this thesis,
the pancreas volume is reduced in patients at the onset of type 1 diabetes [26], and the
mean pancreas volume is reportedly 33% less in subjects with type 2 diabetes than in
patients who have clinically “normal” glucose tolerance [44]. On a different note, the

pancreas volume is restored to near clinically “normal” once type 2 diabetes is reversed
[45].

Computer-aided diagnosis (CADx) systems can, therefore, support radiological inter-
pretations of medical scans by providing a “second opinion”, help to reduce possible
misdiagnosis, and consequently guide better therapy planning [20]. Recent research
literature reports segmentation accuracy scores of 90% or above for the automatic seg-

mentation of organs such as the liver [21], kidneys [22] and spleen [23|. The pancreas,

LA disorder is a disruption to regular organ structure and function.

2A condition is a state of health that disrupts feelings of regular wellbeing. A disease or disorder
can be medical condition.

3A disease describes a condition that impairs regular organ structure and function, characterised
by specific signs and symptoms.
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(a) (b) (©)

Figure 1.1: Overview of sequence of steps towards automatic pancreas segmentation in
Magnetic resonance imaging (MRI) volumes, and 3D rotational reconstruction of the
segmented organ: (a) Sequence of original 2D axial image ‘slices’ from an MRI volume;
(b) Sequence of segmented (red) 2D image ‘slices’ from the MRI volume; (c) 360-degree
3D digital reconstruction visualisation of the segmented pancreas.

however, presents more significant challenges due to size, structure and location within
the abdomen. The pancreas has high structural variability and a full inspection from a
scan is problematic since this particular organ lies just behind the stomach: the head of
the pancreas touches the small intestine and often overlaps with surrounding abdomi-
nal fat, artery and veins. In general, the greyscale (image) intensity of the pancreatic
region in a radiological scan, as shown in Figure 1.1(a), is very similar to nearby tis-
sue and consequently increases the challenge of accurate segmentation. Still, despite
the presence of different medical image segmentation approaches, a significant number
of state-of-the-art methods are restricted to a single modality* or scanner protocol®.
Furthermore, several methods in research literature produce a relatively high standard
deviation for a given number of segmented image volumes, reflecting poor stability
[21, 23, 25, 27, 28, 32, 33, 36, 70|.

Taking on board the above challenges, the remainder of this chapter introduces the
main problem to solve in this thesis and presents the original contributions to knowled-
ge in computer vision that addresses and solves this problem, delivering an extensive
application to biomedical research that can be translated to a clinical setting. Section
1.2 delivers the main objective of the research including key highlights of the methods
proposed in the PhD project described in this thesis. Section 1.3 introduces the original
contributions to computer science (computer vision) in medical image analysis, high-
lighting the impact of these contributions as elaborated in Chapter 3. Section 1.4 details

a list of conference and journal publications, both achieved and under review, within

4Modality describes the type of medical imaging technique that utilises a scanning device to produce
images of internal physiological and anatomical structures of a patient. Examples of medical imaging
modalities include MRI, CT and ultrasound.

5Scanner imaging protocols describe the way in which medical images are acquired, including the
choice of scanner modality (e.g., MRI, CT, ultrasound), in addition to how the images are processed
for evaluation. Protocols are also dependent on the scanner’s hardware and software, time constraints,
patient factors and the radiologist’s preference.
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the lifecycle of this PhD project. Section 1.5 provides a brief description of remaining
chapters. Section 1.6 summarises the objective of research and published methods that

are going to be explored, examined and discussed in the following chapters.

1.2 Objective of Research

The technical objective of the PhD project is the development of a computing techni-
que for automatic, quantitative pancreas segmentation in 3D radiological scans (image
volumes) that were obtained using different scanner protocols and exhibit high levels of
noise diversity. The upcoming Chapters 4 and 5 present two main, principal methods
and one method that is an extension of a principal method. The first method is known
as Method 1; the second method is known as Method 2, and the extended method is
known as 3D-Method 2. The proposed methodologies of Method 1, 2 and 3D-Method 2
are optimised for generalisability and can therefore be applied to other organs, muscular
tissue and tumour® segmentation tasks. Moreover, the methodological novelties produce
very detailed organ boundary tracing or contouring, which is an essential determinant

of morphological features, including organ surface characterisation.

While several reported state-of-the-art methods are limited to a single modality or
scanner protocol, and demonstrate poor statistical stability, the proposed methodologies
of Method 1 and 2 produce quantitative segmentation accuracies that yield a relatively
low standard deviation and reflect robustness to diverse image quality. Accurate and
robust automatic quantitative pancreas segmentation, as highlighted in Figure 1.1(b),
can produce morphological measures such as volume and curvature’, which can support
biomedical research establish the severity and progression of a condition, e.g. type 2
diabetes; it can also provide guidance towards stratification of subjects after diagnosis
or prior to clinical trials; and help shed additional light on detecting early signs of
pancreatic cancer. The impact of accurate quantitative pancreas segmentation, which
will be elaborated in Chapter 2, can support radiological interpretations of magnetic
resonance imaging (MRI) scans through a 360-degree, 3D digital reconstructed model

of the segmented pancreas as shown in Figure 1.1(c).

The project detailed in this thesis aims to harness the advantages of pre-existing clas-
sical image processing techniques in computer vision, including graph theory, image
intensity thresholding and distribution normalisation, and 3D reconstruction rendering.

Furthermore, existing machine learning® algorithms are employed, including structured

6 A tumour refers to swelling or abnormal tissue growth that forms a mass or lump-like shape.

"The curvature of the pancreas as a 3D surface describes the local shape of that surface, which
could be interpreted with respect to the curvature range for a clinically ‘normal’ pancreas.

8A machine learning algorithm utilises “training data”, in which the algorithm is optimised over
time given a finite number of iterations. The “trained” algorithm performs predictions on non-training
“test data” without being explicitly programmed.
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forest learning (edge detection), random forests (image patch prediction) and artificial
neural networks (image contrast parameter prediction). Furthermore, deep learning’
architectures are utilised to address the problems caused by (1) high levels of artefacts
and noise in MRI; (2) inter-patient variability of the pancreas; and (3) vague organ
boundaries in MRI. Combined with popular deep learning architectures for medical
image segmentation, a novel training loss function tackles organ boundary detection,
and useful data augmentation generates information diversity for improved training of
the deep learning model. It is the ambition to rigorously optimise the proposed algo-
rithms to (1) limit computational costs relative to other methodologies in the research
literature; (2) expand application and generalisability to image volumes of different
spatial dimensions, diverse levels of noise and artefacts, and acquisition using different
scanner imaging protocols; (3) produce detailed organ contouring as opposed to an
approximate tracing; (4) raise the mean segmentation accuracies relative to the state-
of-the-art using diverse evaluation methods that examine the (a) true-positive pancreas
predictions versus true-negative pancreas; and (b) the surface or contouring deviation

between the resultant segmentation and desired outcome.

1.3 Introducing Original Contributions to Knowledge

Taking into account the growing necessity to accurately delineate or segment organs of
high inter-variability, such as the pancreas, from but not exclusively 3D MRI radiological
scans, this thesis presents a number of contributions in the field of computer vision
with an impact to biomedical research, addressing the growing demand of accurate,
quantitative pancreas segmentation. It should be noted that Chapter 3, Section 3.4 will

further explain the contributions and respective attributes:

e (a) a learned intensity model enhances the contrast in 3D radiological scans (image

volumes) to highlight the pancreas from surrounding non-pancreas tissue;

e (b) a hybrid energy-minimisation segmentation approach exploits edge detection

to yield detailed, optimal contouring (delineation) of the pancreas;

e (c) a post-processing stage integrates principal geometric descriptors that charac-
terises pancreas tissue and employs radiological expert-knowledge about anato-

mical structure for refined tissue classification;

e (d) a deep learning novel loss (error) function based on the modified Hausdorff
metric and a sinusoidal component improves true-positive pancreas tissue predic-

tion.

9Deep learning is a class of machine learning that employs algorithms, known as neural networks,
which are inspired by the functioning of the human brain. A deep learning architecture consists of
several layers of neural networks.
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A range of attributes using (a)-(d) include:

1.4

enhanced automated pancreas boundary preservation and delineation from an

image volume;

improved application to modalities that extend beyond MR imaging;
robustness to noise-artefacts in medical image volumes;
computational efficiency in comparison to reported state-of-the-art;

and the generalisability of the contributions extends to image volumes acquired
using MRI scanner protocols that are not optimised for any particular organ, and
thus delivers quantitative segmentation results for other abdominal anatomical

structures.

List of Publications

Summarised below is a brief description of all current publications and a submission

under-reivew.

1.

Villarini, B., Asaturyan, H., Thomas, E.L., Mould, R. and Bell, J.D. (2017). A
Framework for Morphological Feature Extraction of Organs from MR
Images for Detection and Classification of Abnormalities, 30th IEEE
International Symposium on Computer-Based Medical Systems (CBMS 2017).

e This conference paper describes a computational framework for morpholo-
gical feature extraction in 3D radiological abdominal scans following expert-
led manual organ segmentation. A correlative statistical analysis is performed
between organ volume and global 3D curvature using 115 manual pancreas

segmentations in abdominal MRI scans.

. Asaturyan, H. and Villarini, B. (2018). Hierarchical Framework for Auto-

matic Pancreas Segmentation in MRI Using Continuous Max-flow and
Min-Cuts Approach, 15th International Conference on Image Analysis and
Recognition (ICIAR 2018).

e This conference paper details a methodology for automatic pancreas segmen-
tation in MRI. A dataset, containing 130 MRI scans of adult volunteers, is
employed for evaluating the efficiency of the proposed approach. An award

was achieved for Springer Best Paper.
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3. Asaturyan, H., Villarini, B., Gligorievski, A. (2019). Morphological and multi-
level geometrical descriptor analysis in CT and MRI volumes for auto-
matic pancreas segmentation. International Journal of Computerized Medical

Imaging and Graphics, Elsevier. Journal impact factor: 3.750.

e This journal paper details the methodology for automatic pancreas segmen-
tation in two diverse MRI datasets containing 132 and 216 scans, and a
publicly available CT dataset containing 82 scans. This approach is statis-
tically stable, reflected by lower metrics in standard deviation compared to

state-of-the-art approaches.

4. Asaturyan, H., Thomas, L. E., Bell, D. J., Villarini, B. (2019). A Framework for
Automatic Morphological Feature Extraction and Analysis of Abdomi-
nal Organs in MRI Volumes. Journal of Medical Systems, Springer. Journal

impact factor: 3.058.

e This journal paper presents a framework for automatic morphological featu-
re extraction in computer-aided 3D organ reconstructions following organ
segmentation in 3D radiological scans. Two different Magnetic Resonance
Imaging (MRI) datasets are evaluated to segment the pancreas and liver.
Both experiments highlight a negative correlation between 3D curvature and
volume with a statistical difference (p < 0.0001). Such a tool can support the
investigation into organ related conditions such as obesity, type 2 diabetes

mellitus and liver disease.

5. Asaturyan, H., Thomas, L. E., Fitzpatrick, J., Bell, D. J. and Villarini, B. (2019).
Advancing Pancreas Segmentation in Multi-protocol MRI Volumes Using
Hausdorff-Sine Loss Function. International Workshop on Machine Learning
in Medical Imaging (MLMI) in conjunction with International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI) 2019,
Springer.

e This conference paper proposes a dual-stage automatic segmentation method
to address the problem of vague organ boundaries in high class-imbalanced
data, by integrating a deep learning-based novel loss function to rigorous-
ly optimise boundary delineation. This approach is statistically stable and

outperforms state-of-the-art methods on MRI.
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6. Asaturyan, H., Villarini, B., Sarao, K., Chow S. K., Afacan, O. and Kurugol, S.
(Under review). Improving Automatic Renal Segmentation in Clinically
Normal and Abnormal Paediatric DCE-MRI via Contrast Maximisa-
tion and Convolutional Networks for Computing Markers of Kidney

Function. Journal of Magnetic Resonance Imaging, Elsevier. Journal impact
factor: 2.053.

e This paper presents a fully modular framework for automatic renal paren-
chyma segmentation, including medulla and cortex, in 4D Dynamic Contrast
Enhanced (DCE) Magnetic Resonance Imaging (MRI) volumes. The propo-
sed framework is evaluated on a paediatric dataset containing 60 diagnosed
4D DCE-MRI volumes that show varying conditions affecting kidney func-
tion; and it achieves quantitative segmentation results that outperform a

state-of-the-art approach and demonstrates statistical stability.

1.5 Organisation of Remaining Chapters

This section provides a summary of each remaining chapter throughout this PhD thesis.
Chapter 2 provides the background, rationale, motivation and challenges that drives the
development of this project. Chapter 3 provides a summary of current state-of-the-art
approaches that produce promising segmentation results in medical image scans. Furt-
hermore, this chapter references baseline architectures that are built upon in proceeding
methodology-based chapters. Chapter 4 (Method 1) presents the first of two methodo-
logies for automatic pancreas segmentation: this chapter introduces a novel intensity
model for digital image contrast enhancement in volumes that aid the segmentation con-
touring outcome at a later processing stage. Furthermore, this chapter presents a novel
refinement stage that integrates both expert radiological knowledge with computer-
aided analysis of distinct segmentations for tissue classification, i.e. “pancreas” versus
“non-pancreas”’. Chapter 5 (Method 2) delivers the second of two principal, proposed
methods for automatic pancreas segmentation: this method exploits the advantages of
current deep learning architectures and integrates a novel loss function for advancing
the accuracy prediction rate in comparison to a readily used conventional loss function.
Combined with novelties described in Chapter 4, the second proposed method ensures
generalisability to other organ and muscular tissue segmentation tasks. This chapter
also investigates and compares the potential advantages and disadvantages of a 3D deep
learning architecture (3D-Method 2) to Method 2. Chapter 6 presents, discusses and
compares the segmentation evaluation results obtained in Method 1 (Chapter 4) and
Method 2 (Chapter 5) using two MRI datasets and one CT dataset. This chapter also
details the numerical implementation for Methods 1 and 2, and 3D-Method 2, in ad-
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dition to key technical tools and libraries. Chapter 7 critically compares and discusses
the quantitative segmentation results obtained using Methods 1 and 2, and 3D-Method
2 with reported state-of-the-art methodologies in terms of quantitative and qualitative
accuracy. This chapter also explores potential method optimisations in Method 2 and
3D-Method 2 to boost segmentation performance. Chapter 8 discusses the generalisa-
bility of Method 2 highlighting the impact to biomedical research and clinical studies,
including significant correlative analysis between computed morphological features and
identification of important prognostic biomarkers in 3D radiological scans. This chapter
also explores an extended application, in which the input of interest consists of image
volumes from multiple imaging protocols (sequences) from the same type of scanner or
multiple scanner modalities. Last, but certainly not least, Chapter 9 delivers a summary
of key challenges, motivations and achievements accomplished using the proposed met-
hods in this PhD research project. This chapter also reexamines the various drawbacks
of the reported state-of-the-art and presents outperforming quantitative results using
the methods that are proposed in this thesis, and reveals the significance of employing

the original contributions to knowledge into future work.

1.6 Conclusion

There is a significant need for accurate organ segmentation with a growing dependency
on computer-aided systems as support-tools for detection and diagnosis from 3D radio-
logical scans. The accurate organ boundary delineation in a scan can provide important
clinical information when presented as a 360-degree, 3D digital reconstruction, or when
evaluating the scan on a 2D-by-2D (slice-by-slice) basis. The progression of research
objectives in the lifecycle of this PhD project is reflected in published conference and
journal papers, highlighting the investigation of classical image progressing methods
through to deep learning technologies that optimise the contribution to knowledge in
the field of medical image analysis, and the application of computer science in biome-

dical research with a clinical translation.
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Chapter 2

Background and Rationale

2.1 Introduction

In recent decades the global prevalence of diabetes among adults has risen from 4.7% in
1980 to 8.8% in 2017 [185]. Diabetes, which is a major cause of blindness, heart attacks
and stroke, is on the rise and projected to reach 642 million adults by 2040 [209].
Furthermore, pancreatic cancer is one of the leading causes of cancer mortality and one
of the most dangerous tumours across the world. Although certain risk factors have been
identified such as type 2 diabetes and obesity, the causes are still insufficiently known
despite growing research in biomedicine [187|. For this reason, insight into the relevant
organ of interest (i.e. the pancreas) is vital, and one way is to extract or segment the
pancreas from 3D radiological scans. With that said, there are a number of challenges
and limitations that need to be addressed, tackled and minimised in order to ensure an

accurate, clinically acceptable segmentation.

Automatic pancreas segmentation in 3D radiological scans is an essential, yet challen-
ging task. As a prerequisite for computer-aided diagnosis (CADx) systems, accurate
pancreas segmentation could generate both quantitative and qualitative information
towards establishing the severity of a condition and thus provide additional guidance for
therapy planning. This chapter discusses the medical conditions affecting the pancreas,
and the challenges that limit as well as drive the development of accurate pancreas
segmentation methodologies, particularly in multiple modalities including Computer
tomography (CT) and Magnetic resonance imaging (MRI) scans. Section 2.2 discusses
the significance of pancreas segmentation with focus on improved detection, diagnosis
and stratification of patients with diabetes and pancreatic cancer. Section 2.3 presents
key challenges involved in producing large-scale accurate segmented pancreas volumes
in radiological scans. Section 2.4 summarises this chapter with key highlights regar-
ding medical pancreas conditions and respective MR imaging, and the challenges to

interpretation that will be necessary to consider in proceeding chapters.
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2.2 Significance of Pancreas Segmentation in CADx

The computation of pancreas measurements, such as volume and curvature, can provide
insight into the progression of type 2 diabetes mellitus [12, 13] and assist in detecting
pancreatic neoplasms® [14]. Tt is noted that the curvature characterises the surface of
the pancreas in terms of its level of “smoothness” or “raggedness”, providing an indi-
cation about the potential deformity of the organ from a clinically “normal” pancreas.
Indeed, studies have reported that variations in the pancreas contour can be linked to
ductal adenocarcinoma [10], and enhanced contour analysis can facilitate stratification
of clinically “normal” variations against pancreatic tumours [15]. Obtaining such infor-
mation firstly requires segmenting the pancreas in radiological image volumes, such as
Computer tomography (CT) and Magnetic resonance imaging (MRI). Although ma-
nual segmentation can produce very accurate results, it is time-consuming, sometimes
prone to inter-observer variability, but above all, it is challenging to replicate given the
growing number of available medical image volumes. On the other hand, CADx systems
that generate automatic, accurate pancreas segmentation on a scale of thousands of ab-
dominal medical scans could support clinical studies to establish essential correlations

between organ volume, curvature and anthropometric? measures [16].

As the upcoming sub-sections detail the essential task of imaging the pancreas for
disease detection and diagnosis using both MRI and CT scanning, the paragraph below
provides an introductory description about the differences between CT and MRI in

terms of organ visibility and image artefacts.
How does MRI and CT Quality Differ?

Despite CT scanning taking less time and costing less than MRI scanning, some types
of cancers or lesions can be harder to identify in a CT scan where otherwise detailed
in an MRI scan. MR imaging delivers sharp views of organs within the abdomen and
soft tissues, joints, and bones of the body. In fact, MRI scanning is often used when
CT has failed to deliver sufficient information for disease detection or diagnosis purpo-
ses. With that said, MR imaging may not always differentiate between excessive fluid
edema (swelling) and cancerous tissue due to similar greyscale intensity and structure
[71]. Also, during the MR imaging acquisition stage, signal processing can cause streak
artefacts that resemble multiple visible lines across the resulting image. Furthermore,
both MRI and CT scanning can produce blurring motion-based artefacts resulting from
breathing, cardiac movement and blood flow. Please refer to Appendix A to view a set

of 2D images (slices) taken from MRI and CT volumes.

1A neoplasm refers to abnormal excessive growth of tissue, commonly known as a tumour.
2 Anthropometric measures refers to dimensions of the human body such as height, weight, and the
size and shape of bone, muscle, and fat tissue.
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Often, the first choice of scanner is heavily dependent on the patient’s health history and
symptoms. For example, it is often reported that patients with artificial metal joints and
a pacemaker avoid MRI as the scanning procedure employs powerful magnetic fields
that could cause problems for the patient [214, 215]. In contrast, since CT scanning
requires a small dosage of ionising radiation, it has been reported that pregnant women
in need of abdominal imaging may risk exposing their unborn baby to radiation during

the scanning procedure [216, 217].

2.2.1 Monitoring Diabetes

Diabetes mellitus (DM) or diabetes is a condition that affects the body’s ability to use
sugar (glucose) from carbohydrates in the food that is consumed. There are three major
types of diabetes, including type 1 diabetes, type 2 diabetes and gestational diabetes
[62]. With type 1 diabetes, the pancreas produces very little or no insulin® due to the
body’s immune system destroying the cells that generate insulin in the pancreas. This
type of diabetes is most commonly diagnosed from infancy to the late 30s. With type
2 diabetes, the body rejects the effects of insulin or does not produce sufficient insulin
that the body can use to support healthy glucose levels. In this case, the cells become
resistant to insulin, triggering the release of more insulin to keep blood glucose levels
within a normal range. Eventually, the pancreas can deteriorate from producing extra
insulin. Type 2 diabetes is, by far the most common type of diabetes amongst adults.
Gestational diabetes is a type of diabetes that is triggered by pregnancy. Pregnancy can,
to some point, lead to insulin resistance, and this type of diabetes is often diagnosed
in middle or late pregnancy. Since high blood sugar levels in an expectant mother are
circulated through the placenta to the baby, gestational diabetes must be controlled to
safeguard the growth and development of the baby [63].

Both CT and MRI scanning, amongst other imaging modalities, provide significant in-
formation about the progress of diabetes and the correlation between other anatomical
and physiological factors. For example, the CT and MRI studies described in [60] de-
monstrate a correlation between diabetes, cerebral atrophy* and lacunar infarcts® but

no consistent relation with white matter lesions®. The magnetic resonance spectroscopy

3Insulin is a hormone made by the pancreas that allows the body to use sugar (glucose) from
carbohydrates in food that is consumed. Insulin helps to keep the body’s blood sugar level from
getting too high or too low.

4Cerebral atrophy describes the loss of neurons (cells) in the brain.

®Lacuna infarcts, also known as Small vessel disease, are small infarcts (2 to 20 mm in diameter
of area of dead tissue) in brain matter, resulting from the blockage of a small artery that burst while
providing bloody supply to the subcortical areas of the brain.

6 A lesion refers to damaged or abnormal change in organ tissue. White matter lesions are areas of
damaged nerve cells found in the white matter of the brain.
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Pancreatic Cyst

Figure 2.1: A pancreatic cyst, marked by an arrow, as shown on an MRI. Only a small
percentage of such cysts lead to cancer [188§].

(MRS) studies report raised the ratio of myo-inositol” to creatine® and reduced the
ratio of N-acetylaspartate® to creatine in patients with diabetes (of either type 1 or
type 2). Another CT scanning study demonstrated that diabetic patients had increased
lobulation'® of the pancreas [61]. All parts of the pancreas were inclined to be smaller
in patients with diabetes, but the degree of decline was mixed; the decline was ‘modest’
for patients who were not treated with insulin and the decline was more ‘pronounced’
in patients who were dependent on insulin. In general, the size of the pancreas’ body
was significantly reduced in all three groups, whereas the size of the pancreatic head
was preserved in patients who were not treated with insulin. CT scanning reveals that
although the pancreas density in diabetic patients is clinically “normal”, there is in-
creased lobulation. Reduction in size involves the body of the pancreas more than other
parts of the gland and is greater in diabetic patients treated with insulin. Therefore,
CT scanning of the pancreas might be useful in predicting which diabetic patients will

require insulin treatment.

In various other studies, MRI has demonstrated to be a reliable method for measuring
pancreatic volume and levels of fat surrounding the pancreas. In a study reported in [64]
effective MRI scanning was performed to monitor pancreatic atrophy!'! in type 1 dia-

betes. Four different sequences'? were employed, including conventional T1-weighted!3,

"Myo-inositol is a carbocyclic sugar that is abundant in the brain. It is a sugar alcohol with half
the sweetness of table sugar.

8Creatine is an organic acid that occurs naturally and primarily in the liver and kidneys. Its main
role is to assist in recycling the energy of cells in mainly muscle and brain tissue.

9 N-acetylaspartate (NAA) is the second-most-concentrated molecule in the brain and is detected
in the adult brain in neurons.

10 A Jobulation is an appearance resembling lobules. A lobe is a clear anatomical division or extension
of an organ.

HPancreatic atrophy is the permanent deterioration of the pancreas.

12An MRI sequence corresponds to a scanner imaging protocol, where a particular setting of pulse
sequences and field gradients are chosen to emphasise a particular appearance in the resultant image.

13T1-weighted image: tissues with high fat content appear bright and areas filled with water appear
dark.
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Figure 2.2: MRI scans of tumour lesions. A (T2 axial view) and B (T2 coronal view)
highlight a primary tumour lesion 2 months before the initial diagnosis, which identifies
a cystic lesion at the location between body and tail of the pancreas with a size of 43
mm X 38 mm X 30 mm (A) and dilatation of the pancreatic duct of 13 mm (B). C (T1
axial) and D (T1 coronal) highlight a relapsed hepatic lesion 20 months after an after
initial diagnosis [189].

conventional T2-weighted!?, volumetric interpolated breath-hold examination (VIBE)!®
and T1-weighted breath-hold with fat suppression (T1BHFS). From here, the pancreas
organ was recognised on coded images by an observer and volumes were estimated
by interpolation. Consequently, these experiments showed that MRI could be used to
determine the natural history of pancreatic atrophy in diabetes. In another study, fat
levels in patients with type 2 diabetes (pancreatic triglyceride) were measured using
a targeted MRI scanning method. This pancreas-specific method led to the following
conclusion: for a person with type 2 diabetes that has a pancreas volume of 50 ml, this
is the equivalent to around 0.6 grams of fat. On a different note, the patients who had
never had diabetes saw no change in the level of fat in their pancreas, demonstrating
that increases in pancreatic fat are specific to people who develop type 2 diabetes [65].
On the topic of pancreas volume measurements, another study compared pancreas vo-
lume (PV) measurement using MRI-based planimetry in patients with type 2 diabetes,
to PV in normoglycemic'® individuals [12]. The pancreas contours of 32 type 2 diabetics
and 50 normoglycemic individuals were outlined on non-gadolinium!” (T1-weighted) 3D
fat suppressed gradient-echo images. Afterwards, the PV index (PVI) was calculated as
PV /weight to adjust PV for each patient’s weight. PVs and PVIs in both groups were

compared using t-tests and regression models corrected for weight, age and sex. The

14T2-weighted image: scanned areas filled with water appear bright and tissues with high fat content
(e.g. white matter) appear dark. This is good for demonstrating pathology since many lesions are
associated with an increase in water content.

15Volumetric interpolated breath-hold examination (VIBE) sequence produces T1-weighted ima-
ges using interpolation. VIBE is a modified form of fast low angle shot Magnetic resonance imaging
(FLASH) sequence allowing high-resolution imaging in less than 30 seconds breath-hold.

6 Normoglycemic implies having a clinically “normal” amount of glucose in the blood.

17Gadolinium-based contrast agents, given by intravenous injection, are a widely used for MRI
scanning.
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study concluded that PV is reduced in type 2 diabetes compared to normoglycemic in-
dividuals and can be measured using MRI without contrast injection. Expanding on the
ability of MRI to provide detailed information about a pancreatic condition, a study
[66] has reviewed magnetic resonance cholangiopancreatography (MRCP) findings in
patients with diabetes, pancreatic exocrine insufficiency, and with combined pancreatic
exocrine insufficiency and diabetes. This particular report showed that chronic pan-
creatitis MRCP findings were present with increasing frequency in groups of diabetes

and insufficient pancreatic exocrine.

2.2.2 Pancreatic Cancer and Pancreatitis

Pancreatic cancer is caused by the abnormal and uncontrolled growth of cells in the
pancreas. In fact, during the early stages, a pancreatic tumour or neoplasm does not
usually cause any symptoms, which can make it difficult to diagnose. Pancreatic neo-
plasms can originate in the exocrine-based!® or endocrine-based!® functioning period;
such tumours that stem in the pancreas can be malignant epithelial?® or otherwise,
and can resemble cystic lesions. One such neoplasm, ductal pancreatic adenocarcino-
ma, constitutes roughly 90% of all malignant neoplasms [210, 211] in which the tumour
is located within the pancreas in up to 70% of cases. Approximately 80% of the tumours
occur in patients aged 60 to 80 years old, in which men are twice as likely affected than
women [212]. Furthermore, being able to differentiate between primary cystic neoplasms
from pancreatic ductal adenocarcinomas and other pancreatic malignancies is essenti-
al for therapy planning. Interestingly, a study described in [51] reported that CT was
insensitive towards differentiating cystic tumours whereas MRI displays a well-defined

boundary of such tumours.

Early detection of pancreatic cancer is paramount to improving patient survival. More
often than not, patients who undergo abdominal scanning are diagnosed as having a
pancreatic cyst?! (see Figure 2.1), and yet not all pancreatic cysts will progress to pan-
creatic cancer. For this reason, effective computational tools to detect or differentiate
a pancreatic cancer arising within a pancreatic cyst early would be a valuable asset to
the clinical community. For example, Figure 2.2 shows a follow-up case study MRI scan
about one year after initial symptoms were detected in a CT scan, in which multiple
lesions were seen in the tail of the pancreas (Figure 2.2 A and B). A splenopancreatec-
tomy was performed (removing the spleen and the pancreas) and a tumour of 7 cm %

5 cm x 3.5 cm on the pancreatic tail was surgically removed.

8Functioning as an exocrine gland, the pancreas excretes enzymes to break down the proteins, fats
and carbohydrates in food.

Functioning as an endocrine gland, the pancreas secretes the hormones insulin and glucagon to
control blood sugar levels.

20Malignant epithelial means in relation to thin tissue forming the outer layer of an organ surface.

2LA cyst is a sac of tissue filled with air, fluid or other substances.
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Figure 2.3: Pancreatic pseudocyst (Ps) in a man in his early 40s known with gallstones
[190, 193|. (a) CT axial (b) T1-weighted (c) and T2-weighted MRI, obtained 6 weeks
after the beginning of an acute pancreatitis condition, highlights a homogenous-kind
fluid collection (Ps) with a fibrous capsule pancreas (P).

Acute Pancreatitis

Acute pancreatitis is an acute inflammatory process of the pancreas; in cases where
acute pancreatitis is severe, imaging is performed to examine the presence of peripan-
creatic?? fluid collections and assess the pumping of blood in pancreatic parenchyma?.
The standard imaging modality of choice in acute pancreatitis is CT due to its accuracy
and availability [53, 54]. That said, it has been reported that MRI scanning can also
fulfill these objectives and have recently been suggested as an substitute to C'T for the
initial examination of acute pancreatitis [40]. For example, Figure 2.3 compares a CT,
T1-weighted and T2-weighted MRI scan on the same abdominal region in the same
patient. In the evaluation of acute pancreatitis, MRI can accurately show the presence
and extent of necrosis?* and peripancreatic fluid collections, and is a better alternative

to CT in detecting mild acute pancreatitis [55].

A routine pancreas protocol including MRI fat-suppressed T1-weighted sequences and
a series of T1-weighted gradient recalled echo (GRE) sequences prior to and post-
gadolinium is a suitable arrangement for examining acute pancreatitis and reaching
an informed opinion [54]. In the case of severe acute pancreatitis, gadolinium-enhanced
MRI is helpful for evaluating pancreatic parenchymal blood circulation. Moreover, mag-
netic resonance pancreatography (MRP), which is a technique that focuses on evaluating
of the pancreatic duct? alone, or magnetic resonance angiogram (MRA), opens the way

for accurate diagnosis of complications affecting surrounding blood vessels.

22Peripancreatic means tissue occurring in or surrounding the pancreas.

23Pancreatic parenchyma is the functional part of the pancreas in the body.

Z4Necrosis is the death of majority (or all) the cells in an organ (or tissue) due to disease or failure
of the blood supply.

25 A duct refers to a constrained passage or channel leading from an exocrine gland or organ.
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Chronic Pancreatitis

Chronic pancreatitis can be described as fibrosis?® and cellular infiltration®” [56] of the
pancreas. Chronic pancreatitis is an irreversible disorder where pancreatic exocrine and
endocrine cease to function. An MRI examination that screens for chronic pancreatitis
will generally include MRP, as well as T1-weighted and T2-weighted images. The signal
intensity of T1 and T2-weighted images tends to decrease with the presence of what is

considered chronic pancreatitis.

Secretin-administered?® MRCP imaging presents the ductal anatomy, highlighting the
severity of pancreatic duct obstruction, and possible exocrine damage, all of which may
provide useful guidance prior to treatment planning. On a different note, a downside of
MRI scanning may include poor sensitivity towards detecting scattered calcifications®”
within the pancreas or in the distal®® portion of the pancreatic duct, and thus MRI

scanning might not help to detect the cause of non-calcified3! defects.

The ability to detect mild chronic pancreatitis and differentiate from pancreatic ade-
nocarcinoma remains challenging for non-invasive imaging methods. At present, en-
doscopic retrograde cholangiopancreatography (ERCP) is the most sensitive imaging
procedure for detecting the influence of pancreatic duct side branch in the early stages
of chronic pancreatitis [58]. CT imaging is the first choice for screening for advan-
ced or severe chronic pancreatitis. In some cases, non-enhanced CT is combined with
MRCP in order to examine disease before treatment planning effectively. Due to the
non-invasiveness of the imaging technology, MRI is suitable for follow-up screenings in
patients with chronic pancreatitis after cure from ductal obstruction is obtained with

endoscopic treatment [57].

2.3 Challenges

This section explores the various challenges surrounding accurate pancreas segmenta-
tion in medical image scans, not least the interobserver variability in pancreas contou-
ring (boundary tracing) and tumour volume measurement. The differences in imaging
modalities (e.g. CT vs MRI), image quality and limitations of shared data are also
addressed.

26Fibrosis is the formation of excess fibrous connective tissue in an organ in a reactive process.

27Cellular infiltration is the movement of cells from their origin (or the direct extension of cells) into
organs or tissues as a consequence of unusual cell growth.

28Gecretin is a hormone produced by the digestive tract, and often used as a medicine.

2 Calcification is the accumulation of calcium salts in a body tissue.

39Distal refers to part of an anatomy situated farthest from point of attachment or origin.

31Non-calcified nodules (swelling or aggregation of cells in body) are classified as ground-glass
opacities (image findings that indicate a partial filling of air spaces)
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Figure 2.4: Location of pancreas in abdominal cavity [158]. The pancreas lies on the
posterior abdominal wall. Notice that the pancreas is located just behind the stomach in
the back of the upper left abdomen. The head of the pancreas lies within the duodenum
curve, which is the first section of the small intestine. The tip of the pancreas extends
across the abdominal cavity.

2.3.1 Structural Variability

Pancreas segmentation, compared to other abdominal organs, presents more significant
challenges due to size, structure and location. Firstly, the pancreas has high structural
and inter-patient variability [94], and the location within the abdominal cavity shifts
from patient to patient. Secondly, a full inspection from a scan is problematic since
the organ lies just behind the stomach, as shown in Figure 2.4. The head of the pan-
creas touches the first part of the small intestine (duodenum) and often overlaps with
surrounding abdominal fat and vessels. The high structural variability of the pancreas
and respective abnormal cell growth has led to considerable interobserver variation in
delineation of tumours in CT volumes amongst expert radiation oncologists [95]. The
mean overall observer variation (root-mean-square) was 0.63 cm for pancreatic gross
tumour volume (GTV) and 0.80 c¢m for internal GTV (accounting for the respiratory
motion). Another study has highlighted over 40 variations in the lateral contour of the
clinically “normal” head and neck of the pancreas in CT image volumes for 119 patients
[96]. For example, approximately 35% of patients had discrete lobulations of pancreatic

tissue greater than 1 cm lateral to the superior pancreaticoduodenal artery??.

32The superior pancreaticoduodenal artery is an artery that supplies blood to the duodenum and
pancreas.
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2.3.2 MRI vs CT Modality

For an initial pancreas examination, a patient normally undergoes CT scanning [39]. If
results are inconclusive and further information is required, they are often referred to
an MRI examination or an ERCP evaluation. Unlike a CT procedure that requires an
ionising contrast media, a commonly known advantage of MRI includes the non-ionising
radiation feature®. Conventional contrast-enhanced CT scanning does, however, pro-
duce images of high spatial resolution compared to MRI. Furthermore, a CT is more
favourable compared to MRI for patients who are extremely ill. The strong magnetic
field of an MRI scanner means that patients must notify their physicians of any form
of medical implant before a scan. Also, an MRI scanner creates a low, drumming noise,
more commonly referred to as “clicking and beeping” and thus patients often require
special ear protection. Furthermore, nerve stimulation is created, which is a twitching

sensation resulting from the quickly switched magnetic fields in the MRI machine [40].

In some cases, non-contrast CT can be used to evaluate the pancreas in patients with
renal failure or patients who exhibit allergic reactions to the (iodinated) conventional
contrast agent. As the pancreatic tumours or lesions can only be visualised with con-
trast imaging, non-contrast CT scans exhibit poor quality for pancreatic tumours and
therefore cannot be relied upon to make an accurate diagnosis [38]. Similarly, although
conventional MRI does not require contrast agents, there are cases where administra-
tion of gadolinium is required. When a tumour is not identifiable on a CT scan, an MRI
examination of the pancreas is performed with intravenous administration of contrast,
with gadolinium being the most commonly used agent. Identification of pancreatic tu-
mours is hypersentitive** on gadolinium-enhanced (T1-weighted) because it is lacking

sufficient blood vessels.

Imaging Quality

Studies reported in [93| shows that statistical differences were found between pancreatic
gross tumour volume (GTV) from different imaging modalities, including MRI fusion
and CT. The study reports that the volumes of “at-risk” pancreata based on MRI are
generally smaller than those based on CT, and therefore further studies are required
to identify the optimal imaging modality or sequence to define GTV. Differing from
CT imaging, the low resolution and slower imaging speed of MRI presents additional
edge-based artefacts [24]. Figure 2.5(a) displays a single axial slice from an abdominal
CT scan. The top image shows the original slice, and the bottom image highlights the
ground-truth of the pancreas contoured in red. Figures 2.5(b)(c) display axial MRI slices

33Non-ionising radiation is a type of electromagnetic radiation that does not carry enough energy
to damage human tissue.

34A hyperintensity is an area in an MRI scan that appears lighter in colour than the surrounding
tissues, and thus a hypointensity would be darker in colour.
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(b) \ ©

Figure 2.5: The expert-led manual (ground-truth) segmentation of the pancreas is con-
toured in red. Column (a) displays an axial slice in a CT scan. Columns (b) and (c)
display two axial slices from two different MRI scans. Notice the finer image quality of
CT in comparison to MRI that is significantly coarse and suffers from greater blurred
boundaries between the pancreas, and duodenum.

from two different scans for two different subjects. Notice the similarity in the greyscale
intensity of the surrounding tissue. Notice that in column (c), the slices appear “zoomed-
in” to emphasise the variation in the visibility of pancreatic features in a slice-by-slice

inspection.

2.3.3 Dataset Limitations

In recent years, medical data - and in particular imaging data - has become available for
academic research purposes [87, 88, 89, 90, 91, 92]. A number of different organisations
provide a platform where researchers can obtain image data to advance their work in
medical image computing and validate the effectiveness of their algorithms. That said,
there are still many limitations including imaging modality restriction, dataset size
and the scanned region of anatomy. For example, the Cancer Imaging Archive (TCIA)
provides a publicly available resource of abdominal CT scans [81] but the same cannot
be said about MRI modality.

Despite a growing number of “Biobanks” currently provide a platform [85, 86] of medical
imaging data for research purposes, a shared platform is yet to be available where
researchers can access the same data (especially MRI) and make direct comparison
with other methodologies. Also, with increasing scrutiny about “data protection and
distribution”, Biobanks that choose to resell data to third parties can generate tensions
very similar to those that social networking platforms have faced in recent years [84].
The authors of many publications, with the exception of a publicly available CT data
provided by TCIA, rely on data provided by their internal departments or hospitals

that collaborate with their department. Also, the data utilised for research purposes
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lies in multiples of 10 as opposed to multiples of 100s (or 1000s) as in the case of publicly
available natural images databases ImageNet [82] or Pascal VOC [83].

One approach to addressing dataset limitations — and a very popular approach for
medical image segmentation tasks — is to create artificial data or “data augmentation”
by performing geometrical transformations or warps on the limited data that is available
for developing an algorithm. The significance of data augmentation is elaborated in
Chapter 5 (Section 5.2.2).

2.4 Conclusion

The severity of pancreatic conditions has propelled researchers to evaluate a medical
image scan using different modalities and different scanner imaging protocol sequences,
in view to minimise the human inter-observer error and maximise a correct detection
or diagnosis. Such motivations are limited by imaging quality, and also, by the high
variation of the pancreas’ anatomical structure and positioning. For this reason, there
is growing interest in the advancement of computational tools that segment the pan-
creas from 3D radiological scans and compute morphological features. However, the
development of these computational algorithms for medical image analysis is hindered
by limitations to open-source datasets in order to compare the effectiveness of diffe-
rent algorithms. It is therefore essential to explore, investigate and develop effective
computational methods that exploit the pancreatic anatomical information present in

available medical image scans.
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Chapter 3

Related Work and Contributions

3.1 Introduction

This chapter provides an overview of state-of-the-art methodologies that drive pan-
creas segmentation tasks, and moreover, the novel contributions delivered in this PhD
project. Section 3.2 highlights current automatic methods in the research literature for
pancreas or multiple-organ segmentation, including methods that utilise multi-atlas ap-
proaches and convolutional neural networks (CNNs). This section also introduces three
baseline CNN architectures that serve as a guide for the methods proposed in Chapters
4 and 5. Section 3.3 builds upon the previous section, discussing a selection of diverse,
state-of-the-art methods that predominantly involve CNNs for medical image pancreas
segmentation. Section 3.4 provides an overview of the contributions to computer science
(computer vision) in medical image analysis as detailed in Chapters 4 and 5, in which
the attributes and impact of the contribution applies to other abdominal organs and

muscular tissue and can affect the usage of computational methods in a clinical setting.

3.1.1 Quantitative Measure of Accuracy

The resultant segmentation accuracies described in this section are based on two popu-
lar statistical metrics that are readily employed in medical image segmentation tasks:
Sorensen—Dice coefficient or Dice similarity coefficient (DSC) and the Jaccard index
(JI). Both metrics can be described as the quotient of similarity between 0 and 1 (or
0 to 100%), and the formula for each metric is defined in Chapter, 6 Section 6.4. Mo-
reover, it is noted that a true-positive and false-positive label refers to the correct and
incorrect predicted segmentation label representing the pancreas in an image volume,
respectively. Similarly, a true-negative and false-negative label refers to the correct and
incorrect predicted segmentation label representing the background (i.e. non-pancreas)

in an image volume, respectively.
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DSC: ~60% DSC: ~60% DSC: ~90%

(a) (b) (c)

Figure 3.1: Three different segmentation outcomes (green) overlapping the same ground-
truth (red) representing a 3D pancreas reconstructed model. Column (a) suffers from
excess false-positive segmentation labels; column (b) suffers from false-negative labels;
column (c) has significantly less both false-positive and false-negative labels segmenta-

tion labels than (a) and (b).

It is noted that the JI measures the overlap between the segmentation outcome and
desired outcome (i.e. the ground-truth or expert-led manual annotation of the organ),
often referred as the size of the intersection between two sets (i.e. the segmentation
and ground-truth) divided by the size of the union between these two sets. The DSC,
which is similar to JI, describes twice the number of elements common to both sets (i.e.
segmentation and ground-truth) divided by the sum of the number of elements in each
of these sets. This particular metric function retains sensitivity in more dissimilar data
and assigns less weight to outliers [175]. The DSC is different from the JI which only
counts true-positives once in both the numerator and denominator. Essentially, unlike

the JI, the DSC function does not possess the property of triangle inequality?.

To illustrate how segmentation accuracies can differ, Figure 3.1 displays three different
segmentation outcomes (green) overlapping the same ground-truth (red) representing a
3D pancreas reconstructed model. The segmentations in Figures 3.1 (a) and (b) achieve
~ 60% in DSC with the former suffering heavily from false-positive and the latter
suffers from false-negative labels. Figure 3.1 (c), in contrast, delivers a more accurate

DSC score of ~ 90% while minimising both false-positive and false-negative labels.

3.2 State-of-the-art Methods

In recent research literature, various organ segmentation methods have been proposed in
the scheme of multi-atlas label propagation approaches [21, 23, 25, 27, 28, 32, 33, 36, 70|
and convolutional neural networks [1, 14, 24, 30, 130, 133, 134, 136, 141, 171, 178,
180]. The common factor amongst all of these methods is a reliance upon expert-led
manually annotated organs in medical image volumes. Also, most segmentation methods
have been performed on CT modality as opposed to MRI, which presents additional

difficulties of image artefacts and greater blurred boundaries between organs.

!Triangle inequality: for any triangle, the sum of the lengths of any two sides must be greater than
or equal to the length of the remaining side.

43



3.2.1 Multi-atlas Label Propagation
and Statistical Shape Modelling

Multi-atlas label propagation (MALP) segmentation methods employ “atlases”, which
are labelled regions of interest (e.g. organs) and corresponding intensities in multiple
radiological image volumes. Such methods usually employ image registration® to align
the atlases to an (unseen) test image volume [34]. Label fusion strategies are then
used to combine labels from multiple atlases to determine the overall segmentation
[35]. Another set of approaches that are often, but not always, coupled with MALP
is statistical shape modelling [36]. Such methods define a template shape for a given
structure representing the organ of interest, with reliance upon control points along the

boundary, after which the entire shape is deformed to match the test image volume.

For example, the approach reported in [33] performs multi-organ segmentation by com-
bining spatial interrelations with probabilistic atlases and incorporating prior knowledge
into the model using shape representations of multiple organs. This approach achieves
a mean Dice similarity coefficient (DSC) of 46.6% with a standard deviation of 8.7% in

a dataset containing 28 CT volumes.

The approach described in [32] firstly registers triple-phase® CT image volumes together
for a particular subject and then performs registration to a reference subject by a
landmark-based deformable model. The abdominal cavity is isolated by minimising the
liver, spleen, splenic and superior mesenteric veins that lie very close to the pancreas,
as shown in Figure 3.2. From here, segmentation is performed via a generated patient-
specific probabilistic atlas-guided approach followed by intensity-based classification
and post-processing. The proposed method yields a Jaccard index (JI) of 57.9% using
98 triple-phase CT datasets.

The authors of [27] present a patch-based label propagation that uses relative geodesic
distances to define patient-specific coordinate systems as spatial context. This approach
is said to overcome the problem of incorrect patch selection, which arises from regist-
ration errors after image alignment. Using a dataset of 100 CT image volumes, a mean
DSC of 65.5% is achieved with a standard deviation of 18.6%.

As discussed in [25] the proposed approach describes an automatic multi-organ segmen-
tation methodology that is based on spatially-divided probabilistic atlases and performs
Markov random field (MRF)-based registration. Experimental results for pancreas seg-
mentation achieve a mean DSC of 69.1% and a standard deviation of 15.3% using 100

CT volumes.

2Image registration is a process that aims to correctly align a target image with a reference image.
3A triple-phase CT scan is a CT technique acquires images at 3 different time points, or phases,
following the administration of a contrast.
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Figure 3.2: Anatomical relationships of the pancreas with surrounding organs and struc-
tures. The head of the pancreas lies in the loop of the duodenum as it leaves the stomach;
the tail of the pancreas lies near the spleen; and the body of the pancreas lies posterior
(nearer the rear) to the outer region of the stomach between the tail [176].

The methodology presented in [21] employs locally weighted atlas selection and a patch-
based segmentation scheme to perform multiple abdominal organ segmentation. After
a post-processing stage of graph-cuts using a learned intensity model, experimental
results achieve a mean DSC of 69.6% and a standard deviation of 16.7% in a dataset

containing 150 CT volumes.

The method described in [23] employs voxel-wise local atlas selection, dictionary lear-
ning and sparse coding techniques to produce target-specific priors for segmentation.
This approach achieves a mean DSC of 71.1% with a standard deviation of 14.7% in a

dataset containing 150 CT image volumes.

In the approach reported in [28], statistical shape modelling is performed using con-
ditional shape-location and unsupervised intensity priors. This methodology is applied
to abdominal multi-organ segmentation in a dataset containing 134 CT volumes, and
for the pancreas alone achieves a mean DSC of 73.4% with a standard deviation of
15.1%. The single-organ segmentation method consists of three main stages including
(1) probabilistic atlas-based maximum a posteriori segmentation; (2) statistical shape

model-based refinement; and (3) graph-cut refinement.

All of the above methods utilise datasets containing CT image volumes, and although
they produce promising segmentation results, these methods suffer from poor statistical
stability with high standard deviation (>14%) and require 2 to 4 hours in computation
time to process a single image volume [21, 25]. The standard experimental setup in

the described atlas-based approaches are performed under the “leave-one-patient-out”
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(LOO) cross-validation scheme* for up to P = 150 patients or subjects. In a clinical
setting, the LOO volume registration from all other patients (P-1) as atlas templates (in
addition to label fusion) can be computationally inefficient when employing large-scale

datasets (containing multiples of 100 image volumes).

The publication described in [70] proposes an atlas selection strategy based on vessel
structure around the pancreatic tissue. Pancreas recognition and location is an impor-
tant building block in the methodology. This method selects atlases with high pancreatic
resemblance to the original (unlabelled) image volume. This proposed method employs
150 abdominal contrast-enhanced CT volumes and achieves mean DSC of 78.5% with
standard deviation 14.0%.

Although MALP methods have achieved high accuracies (> 70% in mean DSC), inter-
patient registration is computationally expensive and extremely poor to imaged organs
that possess high variability. Therefore, such methods are best suited for organs that
possess relatively lower structural variation in shape and size, such as the liver. For
organs, muscular tissue and tumours of high variability, deep learning methods such as

convolutional neural networks (CNNs) have rapidly grown in popularity.

3.2.2 Integrating Convolutional Neural Networks

In the last decade, especially since graphics processing units (GPUs)%led the way for a
revival of machine learning technologies that were initially introduced in the early 1980s
[213], the rise of convolutional neural networks (CNNs) have boosted the performance
of many imaging tasks using large-scale data for semantic segmentation [174]. In fact,
recent advances in CNNs have been successfully woven into medical image segmenta-
tion methods, especially for abdominal organs that are highly deformable and possess
vague edge boundaries. Unlike MALP-based algorithms, CNNs do not require selecting
a specific atlas nor require deformable registration from training datasets to a target
image. A CNN is one of the architectures of deep learning, which in itself is a branch of
machine learning. A CNN allows computational models composed of multiple proces-
sing layers to ‘learn’ representations of radiological image volumes, and then make a
prediction based on that radiological training data in a new, unseen test image volume

[37|. Please refer to Appendix B for a brief description about the objective of each layer

4“Leave-one-patient-out” (LOO) cross validation: the performance of the algorithm is performed on
P-1 of the P images and then performance of the modified algorithm is tested on the P-th image.
Therefore, in this step, the P-th image is the test image volume and the other P-1 images are the
training data for optimising the algorithm. Afterwards, this process is repeated P times, each time
leaving out a different image to use as the single test image volume. This will result in test performance
for all P images.

5A Graphics Processing Unit (GPU) is an electronic device designed for handling heavy graphical
software applications, well-suited for processing large-scale image data in parallel rather than sequenti-
ally.
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in a CNN. This ‘learning’ or network training phase optimises the model to predict the

location or organ tissue (i.e. greyscale pixel or voxel intensity) in the test image volume.

For example, the approach described in [1]| describes a bottom-up method by firstly
classifying image patches at different resolutions and cascading superpixels. Next, dense
image patch labelling is performed using two methods: forest classification on image
histogram and texture features; and deep CNN classification on image patches of greater
spatial contexts. The proposed method is evaluated on a dataset of 80 CT image volumes
and achieves a mean DSC of 70.7%.

The authors of [14] present an approach that uses dense labelling of local superpixel
image patches via probability-based CNN and nearest neighbour fusion. Next, a regional
CNN samples a set of bounding boxes around each image superpixel at different scales
of contexts. The CNN models are trained to assign class probabilities for each superpixel
region as either “pancreas” or “non-pancreas”. The methodology proceeds by employing
another regional CNN that influences the joint space of CT image pixel intensities and
the initial CNN outcome probability maps. Post-processing follows an application of
3D Gaussian smoothing and 2D conditional random fields (CRFs) in order to produce
the final segmentation. This updated approach achieves a mean DSC of 71.8% with a

standard deviation of 10.7% in a dataset containing 82 CT image volumes.

The use of CNN models is extended in the approach reported in [24] where pancreatic
detection and boundary segmentation of MRI volumes is performed using two types
of CNN methods. Firstly, a region detection stage separates local image regions as
“pancreas” or “non-pancreas’ with spatial intensity context; secondly, the boundary
detection stage extracts the semantic boundaries of the pancreas. Resulting outcomes
from these two networks are merged as the input to a CRF, which provides the final
segmentation result. This approach achieves a mean DSC of 76.1% with a standard

deviation of 8.7% in a dataset containing 78 MRI volumes.

3.2.3 Baseline Architectures: U-Net, DenseNets and Residual

One of the main motivations of the CNN architecture is optimising the extraction of
“useful” features of significance into a vector for an image classification problem. The
progression of image classification to segmentation implies having to “classify” every
pixel or voxel within an image, which in itself is a computational expensive task com-
pared to classification. The U-Net architecture, which by default is 2D based, attempts
to address this challenge, and in doing so has inspired many new architectures in compa-
rison to previous CNN models. In the U-Net architecture, the same features that are
used for downsampling (or pooling) can be used to expand a vector of information
to the segmented image, and thus preserve the structural and boundary contextual

information.
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Figure 3.3: U-Net architecture as originally described in [171]. Every blue block repre-
sents a multi-channel feature map, in which the number of channels is denoted on top
of the block. All white blocks represent copied feature maps and the arrows represent
the different operations.

The U-Net architecture [171] consists of three main sections: encoder (downsampling),
bottleneck and decoder (upsampling) as illustrated in Figure 3.3, where every blue block
represents a multi-channel feature map. In the encoder section, every downsampling
step (see red arrows in Figure 3.3) downsamples the previous feature mapping using
the output from the previous block. Every level in the encoder receives an input and
applies two 3 x 3 convolutions, each followed by a rectified linear unit (ReLU), and then
a 2 X 2 max pooling. The number of feature maps proceeding each level in the encoder
increases twice, enabling the network to recognise different contextual structure and
information. The bottleneck layer bridges the encoder and the decoder section through

two 3 x 3 convolutions, each followed by a ReL.U.

Next, every level in the decoder section receives an input and applies two 3 X 3 convo-
lutions, each followed by a ReLU, and then by a 2 x 2 upsampling (see green arrows
in Figure 3.3). In order to maintain symmetry with the encoder section, the number of
feature maps after each upsampling step is halved. Furthermore, the input is appended
by the cropped feature maps of the corresponding encoder block, ensuring that the
features ‘learned’ while encoding the image will be used to reconstruct the image at the
segmentation output stage. The number of upsampling steps matches the number of
downsampling steps. The final feature mapping is processed through a 1 x 1 convolution

with the number of feature maps equivalent to the defined number of image segments
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Figure 3.4: DenseNets architectures for image classification of ImageNet [180]. The
growth rate for all the networks is k = 32. Each “conv” layer corresponds the sequence
of layers: Batch Normalisation, rectified linear units (ReLU) and convolution.

in the output.

Another popular CNN architecture that has inspired recent state-of-the-art approaches
is Dense Convolutional Networks (DenseNets) [180]. In this architecture (Figure 3.4)
each layer connects to every other layer in a feed-forward manner, and unlike traditio-
nal CNNs that have the same number of layers and connections, DenseNets possesses
N layers and N(N + 1)/2 direct connections. For each layer, the feature-maps of all
previous layers are used as inputs, and the feature maps produced as outputs are used
as inputs into all successive layers. Furthermore, concatenating feature maps ‘learned’
by different layers increases variation in the input of successive layers and improves
network training optimisation. Since each layer receives feature maps from all prece-
ding layers, the network has a fewer number of channels, enabling higher computational
and memory efficiency. The advantages of DenseNets include alleviating the vanishing

gradient problem® and significantly reducing the number of parameters.

Residual learning blocks [178| uses a skip connection in which an original input is also
added to the output of a convolution block (see third network from the left on Figu-
re 3.5). Consequently, this add-on alleviates the problem of the vanishing gradient by
permitting an alternative path for the gradient to flow through. The shortcut connec-
tions perform identity mapping (Figure 3.6) and their outputs are added to the outputs

of the stacked layers. An entire network can be trained by stochastic gradient descent

6The vanishing gradient problem is a fault found in training artificial neural networks with gradient-
based learning methods and backpropagation, where each of the neural network’s weights receives an
update proportional to the partial derivative of the error function with respect to the current weight in
each iteration of training. In some cases during the backpropagation, the gradient will be vanishingly
small and thus prevent the weight from changing its value.
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Figure 3.5: The residual architecture implemented for ImageNet [178]|. From left to
right, the VGG-19 model [97] serves as a reference; a plain network with 34 parameter
layers; and a residual network with 34 parameter layers. The dotted shortcuts represent
an increase in the dimensions from input to output.
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Figure 3.6: A building block for residual learning. Whereas in traditional neural
networks, each layer feeds into the next layer, each layer in a network with residual
blocks feeds into the next layer and directly into the layers about some “‘jumps” away

[178].

(SGD)™ with backpropagation®.

3.3 Deep Learning for Medical Image Segmentation

This section delivers a selection of diverse, state-of-the-art deep learning based met-
hods that incorporate key aspects of the baseline architectures as described above, in
particular using the encoder-decoder architecture. Section 3.3.1 examines DenseVNet
[133]| as a method that utilises the advantages of a fully convolutional neural network
(FCN)? and 3D volume input deep learning. This method aims to lower the memory
and computational costs of the dropout layer'®. Section 3.3.2 proposes the Recurrent
Saliency Transformation Network [134], in which a saliency transformation module
repeatedly converts the segmentation probability map from the previous iteration as
spatial weights in the training stage and applies these weights to the current iteration.
This method aims to address the problem of missing contextual information for coarse
and fine-stage segmentation. Section 3.3.3 describes a method that reports a reduction
in false-positive predictions, using weighted FCNs and multi-atlas spatial atlas priors.
Section 3.3.4 explores two different methods that aim to optimise the Jaccard index
metric directly through a novel loss function during the training process. Last but cer-
tainly not least, Section 3.3.5 highlights various limitations of reported MALP and deep

learning-based methods, especially for pancreas segmentation in MRI.

"Stochastic gradient descent (SGD) is an iterative method for objective function optimisation.

8Backpropagation is an algorithm for supervised learning of artificial neural networks, in which the
method updates the artificial neural network’s weights.

9A Fully Convolutional Neural Network (FCN) is a variation of a CNN, where the last fully con-
nected layer is substituted by another convolution layer with a large “receptive field”. Therefore, a FCN
indicates that the neural network is composed of convolutional layers without any fully-connected layers
usually found at the end of a conventional CNN.

10The dropout layer (using the DropOut method) greatly improves CNN performance, especially in
the case where there is limited training data. The DropOut method aims to prevent overfitting; this
method reduces the complex interactions between neurons, enabling the ‘learning’ of more ‘defined’
features, which will improve generalisation.
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3.3.1 DenseVNet

The publication [133| presents a deep learning segmentation algorithm for eight different
organs that are relevant for navigation in endoscopic pancreatic and biliary procedures,
including the pancreas. The DenseVNet segmentation network is presented to enable
high-resolution activation maps through (memory-efficient) dropout layers and the reu-
se of feature maps. Two abdominal CT datasets containing a total of 90 image volumes
were employed to evaluate this approach, achieving a mean DSC of 78.0% for pancreas
segmentation alone. In this approach, a batch-wise spatial dropout scheme is described,
which consequently lowers memory and computational costs of dropout. The proposed
segmentation method uses a fully convolutional neural network (FCN), in which the
architecture design can be understood in terms of 5 key features including batch-wise
spatial dropout, dense feature stacks, V-network!! downsampling and upsampling, di-
lated convolutions!?, and an explicit spatial prior. More specifically, in this network
architecture, the DenseVNet has a downsampling sub-network consisting of three dense
feature stacks connected by downsampling stride convolutions; each skip connection
is a single convolution of the corresponding dense feature stack output, and the up-
sampling network consists of bilinear upsampling to the resulting (final) segmentation
resolution. The memory efficiencies of dense feature stacks and a proposed batch-wise
spatial dropout allow deeper networks at higher resolutions, which is advantageous for

segmentation of smaller structures such as the pancreas.

The loss function that is used for training DenseVNet is the weighted sum of a L2
regularisation loss with label-smoothed probabilistic Dice similarity coefficient (DSC)
scores for each organ (denoted as z) averaged across subjects in each mini-batch, as

described below:

" in(L”,0.9) R,
pDices(Ll Ry) — ( min(L;,0.9) )

I Ra [l2 + || min(Lg, 0.9) ||

where vectors L. = softmaxz(L’), and R, are the algorithm’s probabilistic segmen-
tation and the binary reference standard segmentation for organ z for each subject,
respectively. In order to further reduce the extreme class imbalance, DSC scores that
hinge losses heavily penalising DSC scores below 0.01 and 0.10 were introduced after
periods of 25 and 100 iterations, respectively. Thus, the loss function at iteration ¢ can

be described as below:

A V-network architecture employs 3D input volumes, and comprises of downsampling and up-
sampling subnetworks with skip connections to propagate higher resolution information to the final
segmentation.

12Dilated convolution is the process of applying a filter to a larger receptive field compared to
standard convolution.
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where w € W are filter values, [ is the DSC loss, v is the hinge loss threshold, and ¢ is

the delay in iterations.

For computational and memory efficiency, the new batch-wise spatial dropout is intro-

duced by modifying the convolution filters denoted by:

Xi = c(X;_1,0(W, B", B9), s,7)

where ¢ is a convolutional unit, W is a convolutional filter, B is a stochastic binary
mask, B! is a dropout mask, and 6(W, BY, B?) is a new filter without input and output
channels masked by B’ and B°. X;_; is the output of the previous network layer after
batch-wise spatial dropout, and s is the stride and ¥ is the scale parameter of non-
dropped channels. Note that X; is identical to the non-dropped channels of X; but
does not compute or store the dropped channels, and that subsequent convolutions are
unaffected if their filter is similarly modified. The proposed batch-wise spatial dropout
for regularisation does not use 1 x 1 bottleneck layers. Specifically, the output of an
m-layer dense feature stack f,,(Xo) = ([Xo; X1;...; X;n]) where, as described below,

X = fz ([X0§ D CHI Xi—l])

and

filX) = ¢ (X,0(Wan,a,B!, BY),1.7)

where [A; B] denotes channel-wise concatenation; W, ,, r4, is an a X a X a convolution fil-
ter with ny output channels, and dilation rate, d;. Furthermore, B = [B; BY; ...; B2 |]
selects all previously computed channels, BS selects all channels from X and other-
wise BE is sampled stochastically, such that [pn;] channels are selected (p = 0.5 and
ny scales the convolutional unit outputs). In this proposed scheme, the feature stacks
inherently encode identity functions as the final output channels include the inputs;

secondly, the feature stacks combine multiple network depths within a single network,
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allowing effective propagation of gradients through the network; and third, when me-
mory constraints limit the number of activation maps, information from earlier layers

is stored only once in memory, but can be accessed by successive layers.

3.3.2 Recurrent Saliency Transformation Network

The approach reported in [134]| proposes an intuitive approach to finding pancreatic
ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, by exa-
mining abdominal CT scans. A two-stage framework is proposed: the first stage which
segments the pancreas into a binary mask, and the second stage compresses (or re-
structures) the mask into a shape vector and performs abnormality classification. In
this approach, shape representation and classification are performed to exploit expert
knowledge that PDAC often changes the shape of the pancreas, and to prevent overfit-
ting. Experiments are evaluated on a dataset containing 136 (diagnosed with PDAC)
and achieve mean DSC of 71.45%. The overall framework in this approach can be foun-
ded as follows. A CT image volume, X, is a W x H x L matrix, where W, H and D
are the width, height and length of the cube, respectively. Each element in the cube
represents the Hounsfield unit (HU) at the specified position. Each volume is anno-
tated with a binary pancreas mask S* which shares the same dimensionality with X. A
discriminative function is described as p(X) € {0, 1}, with 1 indicating that this person
suffers PDAC and 0 otherwise. The goal is to decompose this discriminative function
into two stages: the first stage is a segmentation model f(-) for voxel-wise pancreas seg-
mentation, where S = f(X); and the second stage is a mask classifier ¢(-) which assigns
a binary label to the mask, S. In order to incorporate the shape information, ¢(-) is
further decomposed into a shape encoder, g(-) which produces (1) vector v = g(S) to
depict the shape properties of the binary mask S, and (2) a shape classifier h(-) which
predicts whether the shape vector v corresponds to a PDAC-pancreas. Therefore, the

overall framework can be described as below:

p(X) =cof(X)=hogof(X)

The pancreas segmentation approach starts with an encoder-decoder network known
as 2D recurrent saliency transformation network'® (STN), for which it trains three
models from the coronal, sagittal and axial planes. Based on a pancreas segmenta-
tion function, S = f(X), it is important to determine the classification of abnormality
of this pancreas, which is achieved by first compressing the segmentation mask into
a low-dimensional vector, v = g(S), and then applying a classifier h(-) on top of v.

The shape representation network g(-) includes the gradual down-sampling of the seg-

13 A saliency transformation module repeatedly converts the segmentation probability map from the
previous iteration as spatial weights and applies these weights to the current iteration.
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mentation mask. Following generative and discriminative voxel modelling with CNNs
[135], this network is implemented by a series of 3D convolutional layers. Regarding
the dimensionality of the shape vectors (i.e., the number of output neurons), a high-
dimensional representation carries more information, but also risks over-fitting under
limited training data. The segmentation and shape representation networks perform
image down-sampling, with the segmentation network starting with the raw input ima-
ge and is therefore computationally expensive. The shape representation network is
much simpler in comparison with the segmentation network, which processes the entire
volume at once. Consequently, this allows the network to be optimised, together with
the classifier. In the final step, a h(-) with 2-layer fully-connected network is imple-
mented. The simplicity of A(-) means that the vector v carries discriminative shape
information, which is easy to classify. Being a differentiable module, it can be optimi-
sed with a joint shape representation network, which brings about accuracy gain that

18 consistent.

3.3.3 Multi-atlas Combined FCN Approach

The authors of [136] extend organ segmentation in MRI to present a methodology that
combines an atlas-based approach with CNN implementation. This approach builds on
previous work described in [30, 139, 140] by incorporating (a) weighting schemes to
support class imbalance; and (b) a specialised organ region-of-interest (ROI) selection.
Later, spatial information from atlases and CNNs are optimised jointly and applied for
organ segmentation. A dataset containing 48 whole MRI body volumes is evaluated to
achieve a mean DSC of 61.2% for the pancreas alone. In this approach, a coarse-scale
stage is firstly employed to locate the organ of interest or ROI for a subsequent fine-scale
organ segmentation; this stage effectively reduces the complexity of the background whi-
le enhancing the discriminative information of a small organ (such as the pancreas).
Later, at the fine-scale segmentation stage, the ROI selection from the previous stage
is considered for coarse organ segmentation. On each stage, two different networks are
trained respectively. Similar to the training stage, the testing stage follows an initial
coarse-scale network to obtain the rough position of the small organ of interest; and
later, fine-scale networks are employed for binary segmentation of this small organ. In
order to handle the problem of class imbalance, a weighted-FCN is utilised for both
coarse-scale and fine-scale segmentations. In the former segmentation, a weighted-FCN
performs multi-class segmentation with different weights set for each class, where rela-
tively large weights are applied for a smaller organ (compared to bigger organs such as
the liver), according to the relative size to the whole body volumes. In this approach,
ROI selection is important in order to locate the organ of interest in a specific region.

Following organ localisation from the coarse-scale segmentation, experiments showed
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that in a number of cases, the FCN fails to locate small organs, leading to a much
wider ROI for the fine-scale segmentation. Therefore, it is essential to incorporate con-
text and spatial information, including spatial priors in order to guide the second stage
network with a better ROI.

Multi-atlas Technique for Producing Spatial Priors

In addition to the weighted-FCN in [136], a multi-atlas technique was chosen for pro-
ducing spatial priors, because although multi-atlas segmentation accuracy is lower than
CNN-based accuracy, this technique generates good organ localisation. In this approa-
ch, each atlas image is registered to the target image and then fused; the patch-based
segmentation with augmented features method is chosen for the label fusion techni-
que. Unlike [137] that uses a multi-atlas approach for organ localisation at first step
before binary segmentation via CNNs, this approach incorporates it (only) after the
coarse-scale segmentation. Here, the probability maps of coarse-segmentation are mul-
tiplied with the one from the multi-atlas approach to produce the 3D bounding box for

fine-scale segmentation.

3.3.4 Optimising the Jaccard Index Directly

The approach in [30] describes a convolutional-recurrent neural network that performs
segmentation on image volumes by incorporating neighbouring slice segmentation pre-
dictions. Furthermore, a loss function is developed and additional neural networks are
trained to optimise the Jaccard index directly. Using a dataset containing 82 CT image
volumes, a mean DSC of 82.4% with standard deviation 6.7% is achieved; a second
dataset containing 79 MRI volumes is evaluated, achieving a mean DSC of 80.5% with
standard deviation 6.7%.

The publication reported in [130] initially trains a 2D CNN sub-network with deep-
supervision and multi-scale feature map aggregation, so that it can be trained from
scratch with small-sized training data. Afterwards, the successive CNN outputs are
processed by a recurrent neural network (RNN) sub-network, which refines the sta-
bility of segmented objects in a given image (slice). The RNN sub-network contains
convolutional long short-term memory (CLSTM), thus regularising the segmentation of
an image by incorporating predictions of its neighbouring slices. The arranged CNN-
RNN model is trained end-to-end and evaluated on both MRI and CT image volumes.
Using a CT dataset containing 82 image volumes, this approach achieves a mean DSC
of 83.3% with standard deviation 5.6%, and achieves mean DSC of 80.7% with standard

deviation 7.4% using a dataset containing 79 MRI volumes.
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The long short-term memory (LSTM) strategy treats the context information of the
pancreas as a sequence, and this context information is assigned to different nodes in
LSTM, which can optimise segmentation results with spatial information. The disad-
vantage of this method is that the variable curvature of the pancreas shape may lead to
incorrect guidance; for example, the segmentation result can vary drastically if the head
of the pancreas is used to guide the tail of the pancreas. Furthermore, an LSTM-based
model serves as a connected but separate module behind other segmentation networks,
which has little contribution to the result but adds to the computational costs of the

entire network and increases the overall time for that network to converge.

In both [30] and [130], a loss function known as Jaccard (JAC) loss is proposed to
train the CNN image segmentation model. This error function aims to optimise the
Jaccard index directly during network training. The approximated definition of JAC

loss is defined below:
T 1 > ey, min(l, 7y)
e Vil + > ey max(0,3p)

_ Zf€Y+ y/‘\f
Yil+ 2 ey U

=1

where Y, and Y_ is defined as the foreground and background pixel set, respectively,
and |Yy| is the cardinality of Y, . From here, y; and g, € {0,1} are indexed pixel
values in Y, and Y_ . Theoretically, Lj,. and Ejac share the same optimal solution for
predicting a segmentation outcome. The model is then updated by gradient flows as

described below:

-1 ;
Yi|+> ey O’ fOI‘j € Y+

OLjse
9y

Yfev, U5
R 2
(\Y+|+Zbey_ yb)

forj € Y_

where y; € {0,1} is indexed pixel value in the network’s prediction outcome, V. It
should be noted that g; is the probability number in the range of [0, 1]. In knowledge
that the inequality >y 77 < (|Y+| +D bev gﬁ) is true by definition, the JACLoss
assigns larger gradients to foreground pixels that inherently equalises the foreground
and background classes. This loss function has reported to empirically work better than
the cross-entropy loss when segmenting small objects (e.g., the pancreas) in MRI and

CT volumes.
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3.3.5 Limitations

In recent years, multi-atlas or MALP methods have achieved high accuracies (> 70%
in mean DSC). However, inter-patient registration is computationally expensive and
extremely poor on imaged organs that possess high variability such as the pancreas.
With the exception of [28] and [136], the CNN methods described in the above yield
DSC results that outperform the reported MALP approaches and produce a lower
standard deviation (i.e. exhibit statistical stability). However, such convolutional neural
networks are prone to suffer from an imbalance between classes (e.g., “pancreas” versus
“non-pancreas”’) and overfitting during the network training stage [31], and thus ignore
features that are related to the organ of interest during the testing stage. Furthermore,
the majority of segmentation methods have been performed on CT modality as opposed
to the additional difficulties of image artefacts and higher blurred boundaries between

organs in MRI.

3.4 Original Contributions to Knowledge

Considering the limitations and challenges of automated medical image segmentation
in MRI, this section provides an overview of key technical methodological novelties,
covering the contributions to the field of automated object segmentation in medical

image analysis. The following list presents the technical and methodological novelties:

(a) a learned intensity model for digital contrast enhancement in image volumes;

(b) a hybrid energy-minimisation segmentation approach exploits edge detection to

yield detailed, optimal contouring of the pancreas;

(c) apost-processing stage integrates principal geometric descriptors that characterises

tissue and employs radiological expert-knowledge for refined tissue classification;

(d) a deep learning novel loss (error) function based on the Hausdorff metric and a

sinusoidal component.

3.4.1 (a) Digital Contrast Enhancement

Although multi-atlas based approaches |21, 23, 28| have achieved high quantitative
accuracy scores (> 90%) on organs such as the liver and kidneys, segmentation of pan-
creas is far lower in quantitative accuracy. Not only does the pancreas account for less
than 1% in a given scan, the selection of atlases with high similarity in the pancreas
region is not successful because surrounding tissue, such as the duodenum, have similar

greyscale intensity. In Method 1, described in Chapter 4 (Section 4.2), a pre-processing
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stage improves the distributional characterisation of intensities between pancreatic and
surrounding tissue boundaries. A digital contrast intensity model is proposed to increase
greyscale differences in an image volume, particularly in pancreatic contouring. Opti-
mum parameters for tissue enhancement are achieved through analysing intensities in
a corresponding training imaging dataset. The motivation is to differentiate the nearby
splenic vein, superior mesenteric artery and surrounding tissue that are often overlap-
ping, or in close proximity to the pancreas. Consequently, this stage reduces the number

of “non-pancreas” image pixel predictions in later processing.

3.4.2 (b) Hybrid Energy-minimising Segmentation

A 3D based algorithm is employed at a stage in the pancreas segmentation process,
as described in Chapters 4 and 5. Consequently, this produces greater consistency in
spatial smoothness and prediction among successive slices. In order to further overcome
problems caused by the low contrast between organ boundaries, a pre-trained edge de-
tection model is utilised to “strengthen” the boundaries of distinct pancreas contours
and reduce edges that appear within these closed contours, consequently improving
tissue classification at a post-processing stage. Thus, the major pancreas region and
surrounding tissue are extracted using a hybrid segmentation approach that integrates
random forest probability-wise predictions of superpixels; structured forest edge detec-
tion for local regions; and energy-minimising 3D continuous max-flow and min-cuts,
together which produces very detailed boundary preservation. Section 4.3 (Chapter 4)
further details this proposed stage.

3.4.3 (c) Multi-level Geometrical Descriptor Analysis

and Tissue Classification

Unlike previous approaches [1, 14, 23, 27| that label fixed image patches as “pancreas” or
“non-pancreas” towards or during the final methodology stage, the approach presented
in Chapter 4 demonstrates the effectiveness of classifying distinct contours with diverse
size and structure. A multi-level stage of post-processing is proposed for refined tissue
classification: morphological operations are performed to obtain geometrical descriptors
in an image volume and positioning of distinct contours are analysed to determine
the likelihood of being pancreatic tissue. A combinations-based method of elimination
ailms to remove non-pancreatic contours that are likely to represent a fraction of the
inferior vena cava, common hepatic artery, splenic artery and vein, superior mesenteric,
stomach, left kidney or spleen. This detail of analysis, which combines expert-knowledge
of radiology and anatomical structure, preserves the original contouring of the pancreas

while eliminating surrounding tissue separated by a small pixel range of [1, 5].
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3.4.4 (d) Loss Function

The approach proposed in Chapter 5 incorporates a deep learning network that is
trained according to a novel loss or error function. The motivation for this new loss
function is to (a) accelerate the training (reduce computational costs), and (b) enhance
final segmentation results in comparison to the expert-led ground-truth (annotation)
of the pancreas organ. Empirically, this function performs better than the conventional
cross-entropy loss [68] when segmenting the pancreas in CT and MRI volumes. Section
5.2.2 (Chapter 5) mathematically describes this novel loss function and Section 6.4.2
(Chapter 6) discusses and demonstrates its effective performance against cross-entropy

loss.

3.4.5 Attributes of Contributions
Boundary Preservation and Contouring

The final quantitative pancreas segmentation results are better than or close to state-
of-the-art approaches [1, 14, 21, 23, 24, 25, 27, 28, 30, 32, 33| for both CT and MRI
modality, and report higher statistical stability with lower standard deviation metrics.
Furthermore, the feedback received by an expert radiographer and an expert radiologist,
reveals that the proposed method produces detailed contouring of the pancreas for every

protrusion and indentation as opposed to an approximate or mean tracing of the organ.

Multimodality

The proposed methods in Chapters 4 and 5 deliver segmentation accuracy results with
comparable consistency and robust statistical stability across multiple modalities and
datasets. In contrast to several reported strategies that employ only CT [1, 14, 21, 23,
25, 27, 28, 32, 33| or two modalities but one dataset [24, 30|, the proposed methods are
evaluated on two imaging modalities including a CT dataset, and two MRI datasets
that were obtained using two different MRI machines and two different scanner imaging

protocols.

Robustness to Noise Variation

The proposed methods in Chapters 4 and 5 are shown to be effective across image
volumes with varying noise and distortion. Unlike other publications that focus on one
modality or one dataset for every modality, this method is robust to variations in noise,
distortion, sharpness and changes in greyscale intensity distribution within multiple
MRI datasets and a CT dataset. Section 7.2.2 (Chapter 7) provides further detail and

and includes three different visual examples.
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Computational Efficiency

Unlike previous non-deep learning-based publications that require 2 to 4 hours to eva-
luate a single image volume [21, 25] the approach described in Chapter 4 evaluates an
image volume within 10 to 35 minutes via a workstation with i7-5930k-CPU at 3.50
GHz. This run-time can be potentially reduced by a factor of 10 by using a GeForce
Titan X GPU. Furthermore, the improved deep learning approach of Method 2, that
is described in Chapter 5, trains the main network in significantly less time of approxi-
mately 11 hours versus approximate times of state-of-the-arts: 2 - 3 days [14, 173], 1
day [171, 174] and 21 hours [133].

Generalisability

The proposed methodologies in Chapters 4 and 5 can be further optimised and ap-
plicable to other abdominal MRI and CT sequences and also, generalisable to other
organ, tumour or muscular tissue segmentation tasks. For every organ of interest, it is
essential to incorporate corresponding ground-truth annotation and expert radiological
knowledge about the organ’s shape, size, curvature and location. Chapter 8 presents
and discusses the significance for a generalised segmentation framework and details

exemplar results for MRI liver, iliopsoas muscles and kidneys segmentation.

3.5 Conclusion

Automatic segmentation of the pancreas remains challenging compared to the automatic
segmentation of other major organs such as the heart, liver, kidneys or spleen. The high
structural variability and location of the pancreas creates further challenges for accurate
extraction in medical image scans. Nevertheless, pancreas segmentation is a prerequisite
for computer-aided diagnosis systems (CADx) in order to support the identification of
tumour differences, determine the progression of type 2 diabetes, or provide a “second
opinion” that can help to reduce possible misdiagnosis. This chapter addresses the
challenges and motivation for automatic pancreas segmentation and visualisation in
3D radiological scans of multiple modalities. Furthermore, this chapter presents an
overview of recent work developed in this field of scope and also, the contributions of
novel approaches for pancreas segmentation that will be further detailed in proceeding

chapters.
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Chapter 4

Method 1: Morphological and
Multi-level Geometrical Descriptor

Analysis

4.1 Introduction

This chapter presents a novel approach (Method 1) for automatic pancreas segmenta-
tion in Magnetic resonance imaging (MRI) and Computer tomography (CT) scans. This
method exploits 3D segmentation that, when coupled with geometrical and morpholo-
gical characteristics of abdominal tissue, classifies distinct contours in close pixel-range
proximity as “pancreas” or “non-pancreas’. The term ‘contour’ in this context refers to a
distinct binarised shape or segment that is extracted from the image volume during the
automatic segmentation process. Although “pancreas” or “pancreas tissue” refers to the
medical terminology representing the grouping of pancreas’ cells, these terms describe
the contour that is classified by the algorithm in the proposed method to represent ac-
tual, pancreas tissue. There are three main stages of this approach: (1) identify a major
pancreas region and apply contrast enhancement to differentiate between pancreatic
and surrounding tissue; (2) perform 3D segmentation by employing continuous max-
flow and min-cuts approach, structured forest edge detection, and a training dataset of
annotated pancreata; (3) eliminate non-pancreatic contours from resultant segmenta-
tion via morphological operations on area, structure and connectivity between distinct
contours. This section provides an overview of the first proposed approach (Method 1),
accompanied by an illustration for additional guidance. Section 4.2 discusses the motiva-
tion and describes an intensity model that enhances the distinction between pancreatic
tissue and the surrounding tissue in a 3D radiological scan (image volume). This sec-
tion also addresses the need for isolating a major pancreas region that discards the

liver and major sections of the kidneys. Section 4.3 presents the primary segmentation
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Figure 4.1: Overview of methodology: three main stages are proposed for automatic
pancreas segmentation in abdominal CT and MRI scans (volumes).

approach that produces distinct tissue for further classification. Section 4.4 discusses
three main levels of refinement that progressively target segmented tissue that lies in
close proximity to the pancreas but are identified as false “pancreas” predictions and
discarded from the final pancreas segmentation. Section 4.5 concludes with a summary

of this chapter.

The methodology of the proposed approach, as illustrated in Figure 4.1, progresses
through three main stages, each one of which is discussed in proceeding sections. This
approach follows a sequential process of applying a digital contrast enhancement to an
image volume, which aims to improve intensity differentiation between pancreatic and
non-pancreatic tissue. An artificial neural network is used to achieve optimum parame-
ters for enhancement. Next, a major pancreas region is identified using a trained random
forest and probability-wise predictions of superpixels in each 2D image (slice) within the
image volume. An initial 3D segmentation is performed via continuous max-flow and
min-cuts approach, and structured forest edge detection. Afterwards, a stage of post-
processing eliminates remaining non-pancreatic tissue via morphological operations on
area, curvature, position and gradient between distinct contours in the segmented image

volume.
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Figure 4.2: Visualisation of results for a slice from image volume. (a) Original MRI
slice, (b) MRI slice after contrast enhancement, (c) Closed red outline encapsulates
major pancreas region, (d) Segmentation following max-flow and min-cuts approach,
(e) Boundary detection using structured forest learning, (f) Final contour segmentation
after refinement.

4.2 Tissue Enhancement and Elimination

An effective application of contrast enhancement in CT or MRI can differentiate pan-
creatic tissue and boundaries against background classes of blood vessels, stomach fun-
dus and the first section of the small intestine (duodenum). Figure 4.2(a)(b) depicts a
slice from an image volume before and after contrast enhancement, respectively. Next,
a major pancreas region is identified using a random forest based method reported in
[1]. Figure 4.2(c) displays a red outline over a sample slice that represents the predicted

major pancreas region for that particular slice in an image volume.

4.2.1 Digital Contrast Enhancement

A sigmoid function is applied to a test image volume by incorporating a gain, g, which
controls the actual contrast, and a cut-off value, ¢, which represents the normalised
greyscale value about which contrast level is changed. Every i-th slice, s;, in the image

volume undergoes contrast enhancement, C(s;), as described in Equation 4.1:

B 1
1 +explg(c—s;)]

C(si) (4.1)

Empirically tested, the values for gain and cut-off were assigned to image volumes in the

training dataset by taking into consideration their respective mean greyscale intensity
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value. From here, an artificial neural network® (consisting of two hidden layers, the
former with 20 and the latter with 10 hidden neurons) is developed to predict the gain
and cut-off value for a test image volume. The network training is optimised using the
“mean squared error” loss over 100 epochs. In general, the value of the gain and cut-off

increases with respect to an increasing mean intensity value of the whole image volume.

4.2.2 Identify Major Region of Interest

Next, a major pancreas region is identified using the method reported in [1]. A random
forest is trained on a selection of extracted features in the training data; afterwards, the
trained forest predicts the likelihood of a region in the test image volume as “pancreas”
given a probability threshold. To elaborate, every image volume in the training dataset
is initially converted to superpixels [104] of 32 pixel region size. From here, feature
information is extracted from image patches of 25 x 25 pixels, describing texture and
the probability of a patch as “pancreas” based on voxel intensity analysis in the training
data and in accordance to corresponding ground-truth pancreas annotation. Equation

4.2 describes this probability as:

L)
PSR+ () 2

where fT(M*) and f~(M~) are filter density estimators representing the intensity
distributions of the positive {M*} and negative { M~} “pancreas” and “non-pancreas”

voxels from an image volume, respectively.

Two further features for each axial slice are the normalised relative z-axis and y-axis
positions in the range [0, 1], which are calculated at each image patch centre. From
here, a total of 46 image patch-level features per superpixel are employed to train the
random forest classifier. The image patch labels are acquired by extracting informa-
tion from their patch centre pixels, again, in accordance to their ground-truth pancreas
annotation. The trained random forest classifier distinguishes the “non-pancreas” class
patches such as the liver and greater outer region. Figure 4.2(c) displays a red outline
over a sample slice that embodies the area predicting “pancreas” at a probability thres-
hold (0.85) per superpixel - this represents the major pancreas region for that particular

slice in a test image volume.

! Artificial neural network consists of elements called artificial neurons, which receive input(s), chan-
ge their hidden state (or activation) according to those input(s), and produce output(s) depending on
the input(s) and activation(s).
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4.3 Rough Segmentation of Pancreas

Following tissue enhancement and elimination, the identified major pancreas region of
interest as a volume is processed through an unsupervised 3D segmentation algorithm
described in 2], which uses maximal-flow and minimum graph-cuts approach constrai-
ned by predefined key parameters that are described in Chapter 6, Section 6.4.1. Figure

4.2(d) displays the resulting segmentation of a single slice in a test image volume.

The basis of this algorithm relies on graph theory, where an image is represented as
a graph; each pixel is viewed as a node in the graph and edges are formed between
nodes. Nodes are interconnected to neighbouring nodes. A graph can be represented
as G = {V, E} where V is the set of vertices or nodes and E is the set of edges, and
E Cc V x V. The vertex set of nodes are positioned in a 2D or 3D nested grid, linked
with two terminal nodes of source, s, and sink, ¢, which do not correspond to any pixels
directly. The set of edges can be divided into two groups: the terminal edge, e, or ¢
connects the corresponding terminal node to each grid node respectively; the spatial
edge, e;, follows the path of the given grid and connects two neighbouring grid stencils
(with the exception of s and ). A non-negative cost or loss denoted by L(e) is assigned
to each edge, e. The algorithm discussed as follows concerns graphs represented in 2D
domain denoted by {2 but this can be extended to a 3D context. A graph-cut partitions
the spatial nodes of {2 into two disjoint segment sets, one concerns the source, s, and
the other to the sink, ¢, as described below:

V=V W (4.3)

and
V.nV, =0 (4.4)

The total cost or loss of edges e € E; C E can also be described as the energy of each
graph-cut, whose terminal points are assigned to two different and distinct partitions.
The minimum graph-cut approach aims to find the two partitions of vertices where the

corresponding graph-cut energy is minimised, such that:
min L(e) (4.5)

If each edge, e € FE is represented as a tube-like channel, then the edge loss L(e), can
represent the maximum limit of the tube restricted by the following conditions described

below.

For an undirected grid edge, e; € F, the spatial flow, p(e;) is limited to:

Ip(ei)| < Lie;) (4.6)
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If a source edge, es(v) , connects s to v € V \ {s,t}, then the source flow, ps(v) is

directed from s to v. The maximum limit, L¢(v) shows that:

0 < ps(v) < Ls(v) (4.7)

For a sink edge, e;(v) that connects v € V' \ {s,t} to t, the sink flow p;(v) is directed

from v to t. The maximum limit, L;(v), shows that:

0 S pt(v) S Ls(v) (48)

If I(v) C E is the set of edges connecting v € V'\ {s,t} to its neighbouring nodes, then

the energy flows passing v are constrained by:

> ple) | =ps(v)—pu(v) (4.9)

e;€I(v)

By taking into account the conditions of 4.6, 4.7, 4.8 and 4.9, the maximal flow approach

aims to find the greatest amount of energy allowed to flow from the source, s, so that:

ma; s 4.1
rax > i) (4.10)
veV\{s,t}

Indeed, it has been shown that the maximal-flow problem in 4.10 is equivalent to that

of the minimum-cut problem described in 4.5.

The maximal flow approach is now extended to a continuous domain. Thus, {2 can be
used to represent a closed and continuous 2D or 3D domain with terminals source, s
and sink, t. At every position, x € 2, the spatial flow passing x can be written as
q(x). Additionally, the directed source flow from s to z can be denoted by ¢s(x) and
the directed sink flow from x to t by ¢;(z). The continuous max-flow approach can be
developed in the same manner as discussed above for discrete max-flow. Taking into
consideration 4.6, 4.7, 4.8 and 4.9 over graph G, the flow functions ¢(z), ¢s(x) and ¢:(x)

can have similar constraints imposed over the spatial domain, {2, such that:

lq(z)| < C(x) (4.11)
gs(x) < Cs() (4.12)
a(z) < Cy(z) (4.13)
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V- q(z) = qs(x)—q(x) (4.14)

where C(z), Cs(x) and Cy(x) are the given capacity functions and V - ¢ calculates the
total spatial flow nearby z, in comparison with the summation operator stated in 4.9.

Similar to the discrete max-flow problem in 4.10, the continuous max-flow model can

be described as:

max / q(z)dx (4.15)
qs,9t,q
2

by taking into account the constraints of 4.11, 4.12, 4.13 and 4.14. The model in 4.15 is
described as the “primal model” in [2| and all flow functions ¢,, ¢; and ¢ are known as
“primal variables”. Through the introduction of a multiplier known as the “dual variable”
and denoted by p to the flow conservation of 4.14, the continuous maximal flow model

4.15 can be written as its corresponding “primal-dual” model:

maxmin/qsdx + //L(V -q—qs + q)dx (4.16)

qs,9t,9 K
2 n

such that, ¢s(z) < Cs(z), ¢:(z) < Ci(z) and |g(z) <| C(x). The model in 4.16 can also
be described as the lagrangian function of 4.15. It is possible to define its respective

augmented lagrangian function, F,, as:

C
Fo(qs, a1, q, 1) := /qsd:c’ + /M(V - q—qs + q)dx — 5 IV - q—qs + @) (4.17)
(9] 2

where ¢ > 0. From here, an algorithm is developed for the continuous max-flow problem
based on the augmented lagrangian method [3| where p is updated as the multiplier at

each iteration.

The segmentation of an image in an unsupervised manner begins by taking two grey

values, ¢g; and ¢o, which are selected in order to generate the following data terms:

Cs(r) = D(g(x)—g1(x)) (4.18)

Ci(z) = D(g(x)—g2(x)) (4.19)
where D(-) is some penalty function.

Next, initial values are assigned to ¢! , ¢! , ¢* and p! and let the current iteration value,
k = 1. For every k-th iteration the following steps are taken as described in Algorithm

4.1 until convergence.
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Algorithm 4.1 Multiplier-Based Maximal-Flow Algorithm
e Update and optimise ¢:

k+1
= ar max F.(q., q/,
q g o(qs, af 4 1®)
= ar max —— ||V - —H* 2
& llgll oo <C () ” ale H

resulting in a projection approach, where H” is a fixed variable.

e Update and optimise ¢,:

k+1 . k+1 k
qs = ar max  F.(gs, qf, ¢,
g nax | (gs, G ©")
C 2
= ar max dr—- |lqgs — I*
gqs(w)<Cs(x)/q 2||q H
2

where I* is a fixed variable and optimising ¢, can be computed at each point

xe .
e Update and optimise ¢;:
k1 k41 k+1  k
= ar max F, s Gt ,
4 g max (e an a7 )
k
‘= ar max ——|l¢;—J
® @0 Ht I

where J* is a fixed variable and optimising ¢; can be solved by:

¢ (r) = min(J*(z), Cy(x))

e Update p :
I )

Pt =k —e(V - q

e Let k =k + 1 return to the (k + 1)-th iteration until convergence.
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4.3.1 Edge Detection and Boundary Matching

The segmented image volume undergoes a transformation via structured forest learning
[4] where the boundaries or edges of pancreatic issue and surroundings are detected.
The edges of segments in each slice are measured against the boundaries of equally sized
pancreas segments provided in the training dataset. The measures of similarity between
these edges are performed via modified Hausdorff distance (MHD) [5] and structural
similarity (SSIM) index [6].

An MHD measure provides a relatively local comparison between two pancreatic boun-
dary points in comparison to SSIM, which tends to capture a much more global si-
milarity between two image patches. For example, an MHD captures small circular
patterns or strokes of pancreatic contours, whereas SSIM provides an overall morpholo-
gy “appearance”’ similarity between contours being compared. Hence, combining these

two metrics provides the advantages of both global and local measures of similarity.

Whenever the error between a region in the training data and its corresponding region in
the segmentation slice falls below empirically identified threshold values of 0.15 (MHD)
and 0.29 (SSIM), a boundary match is assigned to a compilation of pancreas contour
similarities, otherwise the contour is discarded. Figure 4.2(e) depicts the boundaries of
different tissue in a segmented slice after max-flow and min-cuts segmentation. Notice
the variation in contour intensity against the background: the greater outline of the
pancreas has been heavily detected whereas the edges inside are less enhanced, thus

preventing unnecessary segment division in later processing.

Structured Forest Edge Detection Algorithm

Edge detection via structured forests (SE) employs structured learning to address pro-
blems of edge patterns in the pancreas region that display localised characteristics
resembling straight lines and curves. In any given 2D image, the edges in a local image
patch are highly co-dependent. A set of learning approaches called structured learning
are employed, in which a random decision forest approach is utilised to extract the
structured information in edge patches. Consider a decision tree, d;(x) that organises a
sample z € X by iteratively branching left or right down the tree until reaching a leaf
node. If a node is denoted as 7, then every 7 in the tree is associated with a binary split

function, parameterised by 6; and denoted by:

h(z,0;) € {0,1} (4.20)

Should A(z,6;) = 0, then node, i pushes x to the left, otherwise to the right, with the

operation ending at a leaf node. The output of the tree on an input x is the prediction
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stored at the leaf reached by x, which could represent a target label, y € Y. A decision
forest is an ensemble of T" independent trees d;. For a given sample z, the predictions
di(x) from the set of trees are merged using an ensemble model into a single output.
It should be noted that random, unusual information may be stored at the leaves of a
decision tree. The leaf node reached by the tree is dependent only upon the input =z,
and although predictions of multiple trees must be combined using an ensemble model,
any type of output y can be stored at each leaf. This, consequently, permits the use of
complex output spaces, Y, including structured outputs. Next, the training of random
decision forests with structured Y is discussed. Each tree is trained independently and
recursively. For a given node i and training set S; C X x Y, the objective is to find
parameters 6; of the split function h(x, 6;) that yield a split that groups similar segments.

This, consequently, requires an information gain defined as:

;= 1(S;, SF, S (4.21)

where S = {(z,y) € S; | h(z,0;) = 0} and SF* = S;\ SF. Choosing to split parameters
0; maximises the information gain and then training proceeds iteratively on the left node
with data, SF, and similarly for the right node with data, SZ. The training terminates

when the value of the depth reaches maximum or when the information gain drops
below a fixed threshold.

The main objective of edge detection is to predict local segmentation masks for a local
image patch. The SE approach to learning random decision trees uses structured labels
to determine the splitting function at each branch in the tree. Afterwards, the structured
labels are mapped to a discrete space, from which information gain is evaluated. Every
forest makes a prediction of patches relating to edge pixel labels that are combined
across the image to yield the final edge map. The purpose of structured learning is to
tackle the problem of optimising or “learning” a mapping where the input or output
space may be indiscriminately complex, such as the interdependence of edges in an

image.

In testing a trained SE model, a 2D image is processed and a label is assigned to each
pixel with a binary variable, denoting whether the pixel contains an edge or otherwise.
There is the assumption that a set of segmented training images is provided, in which
the boundaries between the segments relate to contours. The method described in this
chapter integrates a pretrained SE model based on the BSDS500 natural image dataset

[208], and successfully produces detailed edge detection as shown in Figure 4.2.
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Boundary Matching Algorithms

After a 2D image (slice) from the current 3D segmentation has been converted to edges,
a small image region from that slice is measured against equally sized image regions
containing closed pancreatic contours from multiple slices in the training image volumes.
Firstly, the modified Hausdorff distance (MHD) is computed. Consider two 2D images
of the same spatial size, Ag and By, where the former refers to a local slice region in
the 3D segmentation outcome and the latter refers to a corresponding slice region of
an image volume in the training dataset. Both images can be represented as point sets,
Ag = {ai,...,an,} and By = {by,...,bn, }, respectively, where Ay, By C R" such
that |Ag|, |Bm| < co. From here, the distance between a point a and set of points,
By, is defined as:

d(a, Bg) = min lla — b (4.22)

and similarly, the distance between a point b and set of points, A, is defined as:

d(b, Apr) = min [ —af (4.23)

The MHD, D/, can be described as:

Dari(Ag, Brr) = max {ﬁ S d(a, Bu), ﬁ S d(, AH)} (4.24)

a€EAl beBgy

Empirically investigated, it is noted that when Dy (A, Bg) = 0, this often but not
exclusively implies that Ay = Bpg; nevertheless, this metric has more discriminatory

power than the generalised Hausdorff distances |[§].

Secondly, for the structural similarity (SSIM) index measure of similarity, consider two
separate and distinct edge-based 2D images, Ag and Bg, where the former refers to
a local slice region in the 3D segmentation outcome and the latter refers to a corre-
sponding slice region of an image volume in the training dataset. The SSIM index is
defined:

SSIM(As, Bs) = [Ul(As, Bs)]a[UC(As, Bs)]B[US(As, .Bs)]’y (425)

where the metric lies in the range —1 < SSIM(Ag, Bs) < 1and where SSIM(Ag, Bg) =
SSIM(Bg, Ag). It should be noted that in most cases, a score is calculated in the inter-
val [0, 1], where values closer to 0 represent lower levels of image similarity and values

closer to 1 indicate higher levels of image similarity. The terms o > 0, 3 > 0and v > 0
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influence the relative significance of each of the three terms of the SSIM index. The

luminance, v;, contrast, v., and structural component, v, of the index are defined as:

22\, + K
v(Ag, Bg) = —=4 ~ —— 4.26
(As, Bs) X2+ A2+ K, (4.26)
2:“1# +K2
(Ag,Bg) = —/——Y%—— 4.27
ve(As, Bs) pa + pg + Ko (4.27)
sz"‘KB
vs(Ag, Bg) = —2 = 4.98
( s S) /vbm,U/y‘i_Kii ( )

where A, and ), represent the mean values of the original images, Ag and Bg, respec-
tively; y1, and pi, represent the standard deviations, respectively; p2 and g denote the
variances, respectively; and i, is the co-variance of the two images. In order to cope
with the situations in which the denominators are close to zero, the constants K, K,
and Kj are introduced, in which Ky = (Z1G)?, Ky = (Z,G1)? and K3 = £2. Here, an
8-bit image has a dynamic range of pixel values, G = 255 and Z; = 0.01 and Z5 = 0.03
[7].

4.4 Refinement

Once a rough segmentation has been extracted, a stage of post-processing elimina-
tes surrounding contours identified as “non-pancreas”. Figure 4.2(f) displays the final
segmentation outcome for a single slice in a test image volume following three levels
of refinement. Each level progressively targets surrounding tissue that are located in
greater proximity to the pancreas. The first level performs a shallow-based removal
of distinct non-pancreatic contours such as whole or remaining fractions of the aorta,
portal vein, duodenum, stomach, and the ascending and descending colon. The second
level tackles non-pancreatic tissue that does not lie within the radiologically described
embodiment of a pancreas shape [9, 10]. Last, but certainly not least, the third level
of refinement analyses the positioning of distinct contours that are very close to but
are not part of the pancreas’ head and body, such as the inferior vena cava, common
hepatic artery, splenic artery and vein, superior mesenteric, a fraction of the stomach;
and close to but not part of the pancreas’ tail including a fraction of the left kidney and
spleen. Depending on the slice position in the segmented image volume, such tissue can
be separated by just a few pixels (in the range of [1, 5|) from pancreatic tissue and thus
requires further analysis to increase the likelihood of correct tissue classification. In or-
der to emphasise the importance of this post-processing stage, Figure 4.3 highlights the
major pancreas region in three slices (from three different image volumes) that progress
through three consecutive levels of refinement. Notice that close-range non-pancreatic

contours are effectively removed in the third level.
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~ Level 1 Processing ‘Level 2 Processing

Level 3 Processing

Figure 4.3: Visualisation of three levels for fine pancreas extraction in three different
slices from three different image volumes. Column (a) displays the original slice after
initial segmentation. Column(b) displays the resultant slice after first level of refinement,
now contained in a bounding box against a “trail map”. Column (c¢) displays the resultant
slice after second level of refinement, now contained in a bounding box that identifies
gradient between combinational distinct contours. Column (d) displays final, resultant
slice after third level of refinement.

(b) ©

Figure 4.4: Visualisation of three refinement levels in three different slices (in three
different image volumes). Top row and bottom row display distinct contours before and
after processing. Column (a) displays first level of morphological operations on distinct
contours, highlighting measurements of area, spatial aspect ratio and triangularity. Co-
lumn (b) displays second level of positioning contours on “trail map” within bounding
box containing all contours. Column (c) displays combinational connectivity between
centre landmark points and respective gradients between all distinct contours.
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4.4.1 Level 1: Morphological Operations on Distinct Contours

Analysing a given set of annotated training image volumes, the following is deduced:
the mean of ranges (where the pancreas is visible throughout successive slices in a
volume), with careful consideration to heavy outliers; the mean slice number where the
pancreas features become visible for the first time, Sy 4.+, reach maximum area, S,,qz,
and the last slice after which pancreas features are not visible any longer, s.,q. By
considering the total number of slices in each image volume, t,, a discrete set of four
slice ranges are established: 71 : [1, Ssart—1], 72 [Sstarts Smaz—1], 73 * [Smaz, Sena—1] and
T4 ¢ [Sends ts], where r1, 7o, 73 and 74 € Z. A k-medoids cluster approach is employed in
order to generate N, , N,,, N,, and N,, number of groups of constraints for every slice
range. Every group of constraints includes a measure of area, triangularity and ratio of
spatial dimensions. Let N,,(«), N,,(5) and N, () represent individual constraints of
area, triangularity and ratio of spatial dimensions. Thus, for an observed segmentation

contour that corresponds to N,,, the following operation can be defined in 4.29 as:

1 if0<EY ES EY <t,
pC g * * ¢ (429)
0 otherwise

where a value of 1 corresponds to “pancreas” and a value of 0 corresponds to “non-
pancreas”. E¢, Ef and E) represent the error between N, (), N,,(8) and N,,(v) and
an observed segmentation contour’s similar measures, respectively. If the error is greater

than t,,, then this contour is removed from the segmentation result.

Another morphological operation involves computation of mean curvature [11] of dis-
tinct contours in each segmentation slice. Suppose that C), represents a contour. Let
the angle between the tangents to C), at points ¢; and ¢z be 8(q1, ¢2), and let the length
of the segment of the curve between ¢; and ¢2 be s(qi1,¢2). The curvature, k,, of the

curve C), to ¢ is defined in Equation 4.30 as:

0
kp = lim —(ql’QQ)

4.30
2—a $(q1, q2) ( )

If the curvature value, k,, of an observed contour falls below a threshold, ¢., which is
based on the curvature analysis of unique contours in the training dataset, then it is
discarded from the resultant segmentation. The top image in Figure 4.4(a) illustrates
an example where several distinct contours in a slice are labelled with area, ratio and
triangularity; the bottom image displays the resultant slice after removal of contours

deemed as “non-pancreas”.
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4.4.2 Level 2: Localisation and Positioning of Contours

The slice-by-slice inspection of pancreatic regions in the training dataset reveals that
whole or distinct pancreatic contours are embodied in a shape resembling a horseshoe,
an inverted-V, transverse, sigmoidal [9] but more commonly, oblique or L-shaped [10].
Therefore, consider a localisation bounding box to contain all the contours in each

segmentation slice, as described in 4.31:

Fs = [xmina Ymin, (xmax - mmin)a (ymax - ymm>] (431)

where (Zin, Ymin) represents the top left-vertex of the bounding box, (Zimer — Tmin)
is the width and (Ymaez — Ymin) is the height that follows from this point of reference.
From here, it is possible to generate an L-shaped template that behaves like a “trail-
map” for identifying contours deemed as “pancreas”’ or otherwise. This trail-map can
be viewed as a collection of neighbouring paths that begin from a set of points, Bxy =
{(x1, Ymaz)s ---» (Tns Ymaz) }, on the bottom horizontal of the bounding box and rise by
corresponding angles, 8 = {61, ..., 0, }, to respective points on the top horizontal of the
bounding box. From here, the trail descends by angles, ¢ = {¢1, ..., ¢, }, to respective
terminating points (on the bounding box). It is noted that Bx = {1, ..., x,} are values
that refer to a set of n distances measured from the bottom right-hand vertex, i.e.
(Tmaz, Ymaz ), hence, Bx € R | 2 <Bx < Zja.. Values of 6 and ¢ are co-dependent
on the width and height of the bounding box.

Taking into consideration the variation in pancreatic contours, a further trail resembling
an inverted-V is added: the trail begins at a point that lies mid-way on the right
vertical of the bounding box, (a:max, %(ymax + ymm)), meets the point mid-way on the
top horizontal line, (%(xmaw + Tonin), ymm) and then descends to a point that lies mid-
way on the left vertical line of the bounding box, (Zmin, %(Ymaz + Ymin))- The top image
in Figure 4.4(b) illustrates an example where several oblique trails run across distinct
segments. If an observed contour from a segmentation slice does not lie on the trail-
map, it is removed from the image volume as displayed in the bottom image of Figure

4.4(b), otherwise it is retained to progress to the next post-processing level.

4.4.3 Level 3: Centre Landmarks of Distinct Contours

A final level of refinement examines the gradient between pairs of contours. For example,
in any given slice in the training dataset, it is unusual, if not uncommon to observe two
pancreatic contours where the gradient between their landmark centre points is infinity.
Therefore, if the centre points of two pancreatic contours in a segmentation slice lie on
the same imaginary vertical line, then it is safe to suggest that one of two is likely “non-

pancreas” and opt for removal. The top image in Figure 4.4(c) illustrates an example
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where a pair of contours with gradient infinity have been identified; the bottom image

displays the resultant slice after removal of the contour deemed “non-pancreas”.

In order to identify which contour to eliminate from the resultant segmentation, a
number of computations are performed to generate multiple groups of “segmentation
characteristics”. These groups are analysed against multiple groups of similar measure-

ments in the training data, otherwise known as “ground-truth characteristics”.

Generate groups of “ground-truth characteristics”

Firstly, for every image volume in a training dataset, the slices that contain two, three
or four distinct pancreas contours are analysed. For each slice, it is possible to generate
its respective “ground-truth characteristics” that contain: the areas of individual con-
tours; and the gradient, Euclidean distance and ratio-of-areas between pairs of distinct

contours, all computed in a combinational manner.

For example, as highlighted in Figure 4.5(a), if an image slice has three distinct con-
tours with areas, A, B and C, then three combination gradients, gag, gac and ggc are
computed, as well as corresponding Euclidean distances, dag, dac and dpc. Further-
more, the ratios of the former area to the latter, i.e., 4/B, 4/c, and B/c, are important

descriptors, providing an indication of overall contour shape as opposed to area alone.

Four groups, Ry to Ry, describing “ground-truth characteristics” of different combina-
tions of contours, are generated. Each group is confined to its respective slice range, r;
to r4. As highlighted in Figure 4.5(b), Ry describes a set containing groups of “ground-
truth characteristics” from a combination of two contours. Ry describes two sets, one set
has groups of “ground-truth characteristics” from a combination of two contours, and
another set has groups of “ground-truth characteristics” from a combination of three
contours. R3 describes three sets, each set contains groups of “ground-truth characteri-

stics” from a combination of two, three and four distinct contours separately.

Each set of groups of “ground-truth characteristics” can be represented by f;, where ¢
refers to the i-th slice range group, R;, and p refers to the number of contours. Figure

4.5(b) provides a visual summary of all sets and defined below is an example of f2:

f% = {(Aa B> 07 9AB, 9BC, GAC, dA37 dAC7 dBC) A/37 A/Ca B/C)l
(Aa B> Ca 9AB, 9BC, JAC, dABa dAC: dBC'7 A/37 A/Ca B/C)Z
(A7 B7 C7 9gAB, 9BC, JAC, dAB; dAC7 dBC? A/B7 A/C7 B/C)3

(A7 Ba C7 9AB, 9BC, GAC, dA37 dAC> d307 A/Bv A/Cv B/C)n} (432>

where n is a chosen number of groups in a set that is based on k-medoids clustering of

these measurements in the training dataset.
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£ | ; Slice range, ry i

: b Combination of 2 contours Rl
2 || ; Slice range, r,

f2 Combination of 2 contours

— R‘)
f2 ‘ Slice range, r, -
= Combination of 3 contours
- Slice range, r B
7 n— OO
Generating a “ground-truth characteristics” Combination of 2 contours
from a slice in the training data: I ' Slice range, r;
Areas: 4, B, C Combination of 3 contours | [~ R3

Gradients between area centres: 9ag » dac »9sc B ‘ Slice range, ry

. A7 A/ B Combination of 4 contours

Area ratios: /B ] /C ; /C =
. , -4 Slice range, ry

Euclidean distances: dag , dac , dsc % n— Combination of 2 contours R4

() (b)

Figure 4.5: Column (a) provides a visual example of a slice from an image volume in a
training dataset. Computations include the gradient and distance between combinatio-
nal area centres and the respective ratios of combinational areas. Column (b) provides
a summarised visual representation of “ground-truth characteristics” generated for sets

Rl, RQ, Rg and R4.

Generate groups of “segmentation characteristics”

It should be noted that the focus lies on analysing two, and only two contours in each
segmentation slice whose centres lie on the same imaginary vertical line. This limits
computational time, but the general technique can be extended to a greater number of
contours. Thus, in each segmentation slice, let M represent the total number of separate
contours and let N represent the total number of vertical lines that have two contours,
i.e., where the gradient between respective centre points is infinity. Therefore, it is of
interest to retain T'= (M — N) contours in the slice. Next, the total number of possible
combinations of T" from M contours is computed, as denoted by Cr,s and defined in

Equation 4.33 as:

M!
Cry=—o 4.33
M T(M =) (4:33)
For every C'rp(j)-th combination of contours, where j € Z : j € [1, Crpy], the gradients
of all possible paired contours are calculated, in addition to respective distances and

ratios.

For example, given a slice range group Rs, it M = 5 and T' = 3, then C5 5 = 10 different
combinations of three contours from five contours (where two are presumed invalid). Tt
is important to note that a number of combinations will be irrelevant since the gradient
between two centres is infinity, and thus can be discarded (see Appendix E for further

information). Hence, for every remaining (relevant) three contour combination, e.g. let
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Slice example exists within R; range group:
s M=5N=2,T=3.

* 3 outof 5 contours are “pancreas”.

* All applicable combinations to examine include:
ACD, ACE, BCD, BCE.

Diagram example:
* G5 5(7)-th combination involves BCD.

* f3 setis used to measure error between 7 groups of
“ground-truth characteristics” and “segmentation
characteristics” of BCD.

¢ Final score, 53,5(7)mm/ > S3’5(4)t0tal, S},s(s)wmla53,5(8)t0ml
and therefore C; 5(7)-th combination is “pancreas”.

Figure 4.6: Visual example of three contour combination, BC' D, which represents the
7th in 10 different combinations from five distinct contours. Three out of five contours
are presumed valid, i.e. “pancreas” and the other two otherwise.

Cs5(7) involve areas, B, C, D, a “segmentation characteristics” group is generated,
consisting of three gradients, areas, Euclidean distances and ratios-of-areas. This group
is simultaneously evaluated against a set of “ground-truth characteristics” from the same
slice range group and 7' contours of interest. Figure 4.6 provides a visual representation
of this example, where set f3 would be utilised (see Appendix F for further detail

regarding this example).

A method of elimination follows: if the mean error between the Cry/(j)-th “segmenta-
tion characteristics” group and a “ground-truth characteristics” group is equal or falls
below threshold, t,, then this combination is assigned a point score of 1, otherwise
0. Once all measures of error have been exhausted, the combination with the highest
score is retained as “pancreas”’, and the others discarded. Equation 4.34 mathematical-

ly describes the process of assigning a score to the j-th combination, s7p;(j)*, where

keZ:kellnl.

o 1 if0<Ep <t
stm(g)" = ! (4.34)
0 otherwise

where E]’f is the mean error between the Cry/(j)-th combination “segmentation cha-
p .
racteristics” and (f ) which is the k-th “ground-truth characteristics”. The final score,

total

st (7) can be described in Equation 4.35 as:

n

s (f) = Z st (5)" (4.35)

k=1

In the case where two or more combinations have attained the same score, the combi-

nation that encapsulates these two contours scoring the least mean error is retained.
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4.5 Conclusion

In this chapter, an automatic approach is presented for pancreas segmentation in 3D
abdominal computed tomography (CT) and Magnetic resonance imaging (MRI) scans.
The proposed method is based on a hierarchical pooling of information by classifying
extracted image patches, superpixels and intensity distributions as pancreatic tissue
or otherwise. A sequential process firstly improves the difference between pancreatic
and background classes using optimised parameters from a learned intensity model.
With focus on differentiating the nearby splenic vein, superior mesenteric artery and
surrounding tissue that are often in close proximity to the pancreas, the proposed digi-
tal contrast intensity model improves the distributional characterisation of intensities
between pancreatic and surrounding tissue boundaries. Next, the major pancreas region
and surrounding tissue are extracted using a hybrid segmentation approach: the major
pancreas region is identified using a trained random forest that makes probability-wise
predictions of superpixels in each slice of the image volume. This technique, follow-
ed by 3D max-flow and min-cuts segmentation and structured forest edge detection,
produces very detailed contouring of the pancreas and heavy boundary-preservation.
This voxel-based algorithm addresses the intensity consistency problem that is often
the case when segmenting image volumes on a slice-by-slice basis. Furthermore, a no-
vel post-processing stage optimises tissue classification using morphological, anatomical
and radiological knowledge about connectivity between pancreatic contours in an image

volume.
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Chapter 5

Method 2: Integrating Deep Learning

5.1 Introduction

The success of deep learning or convolutional neural networks (CNNs) for object classifi-
cation has motivated researchers to take advantage of their feature learning capabilities
for pixel and voxel-wise prediction problems such as organ segmentation, and in par-
ticular organs with high structural variability. This chapter presents a novel approach
(Method 2) for automatic pancreas segmentation in Magnetic resonance imaging (MRI)
and Computer tomography (CT) scans. Building on a significant part of Method 1 in
Chapter 4, this alternative approach exploits the advantages of deep learning to deli-
ver pixel-wise predictions of scanned abdominal tissue as “pancreas” or “non-pancreas”.
This section provides an overview of the second proposed approach (Method 2), in which
there are two main phases: training and testing. The training phase firstly identifies a
major pancreas, after which a deep learning network is trained to recognise pancreatic
features and boundaries. The testing phase integrates the fully trained deep learning
model, that, when coupled with 3D segmentation and post-processing, produces the
final pancreas segmented volume. Section 5.2 addresses the motivation for firstly iso-
lating a major pancreas region. This section also discusses the primary segmentation
approach that incorporates a deep learning model for enhanced pixel-wise classification,
and presents a novel loss function for improved network training. Section 5.3 discusses
the advantage of performing 3D segmentation on the predicted pancreas region in an
(unseen) test image volume. The motivation, here, is to separate pancreatic contours
from surrounding tissue that is close to but does not touch the pancreas. Section 5.4
discusses the shift from a 2D-based deep learning architecture to a 3D-based network
(known as 3D-Method 2), and the likely implications on computational efficiency and
segmentation performance. Section 5.5 concludes this chapter including a summary of
Method 2 and 3D-Method 2, and key outcomes that will be discussed in the procee-
ding chapter. In fact, Chapter 6, Section 6.4.3 and Chapter 7, Section 7.2 will compare
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and discuss the results obtained in Method 1 and Method 2 and highlight that, inde-
ed, Method 2 surpasses segmentation accuracy scores in DSC and is statistically more

robust.

The methodology of the proposed approach, as illustrated in Figure 5.1, consists of a
training phase and a testing phase, each one of which is discussed in proceeding sec-
tions. The training phase consists of two main parts. The first part identifies a major
pancreas region in all training image volumes. Here, a trained random forest performs
probability-wise predictions of superpixels in each 2D image (slice) to recognise the
major pancreatic area of interest. In the second part, a deep learning model trains for
semantic segmentation using the training data containing the major regions of inte-
rest, for pancreas feature and boundary recognition. For network training, a novel loss
function integrates the modified Hausdorff distance metric and a sinusoidal component.
Afterwards, the testing phase consists of three main stages. (1) the fully trained deep
learning model predicts the likelihood of every pixel in a test image volume as “pan-
creas” or “non-pancreas’. (2) an application of digital contrast enhancement follows 3D
segmentation on this predicted pancreas volume via continuous max-flow and min-cuts
approach. This stage separates possible nearby vessels and tissue that lie close to this
organ of interest. (3) non-pancreatic contours (false-positive pancreas contours) are
identified and eliminated from the resultant segmented volume via increasing levels of
refinement including morphological operations on area, curvature, position and gradient

between distinct contours in the segmented volume.

5.2 Training Phase

This section details the training phase, which develops a deep learning model for pre-
dicting pixels that represent true-positive pancreas in a given image volume. For every

! or modality?) a separa-

separate dataset (that corresponds to a different MRI sequence
te deep learning model is generated. During project development, the datasets of diverse
sequences (i.e. different scanner imaging protocols) and modalities were not mixed. The
main motivation for this decision is to maintain a degree of consistency in the structural
spatial dimension of the image volumes, and limit the variation of greyscale intensity

distribution to each dataset.

1An MRI sequence corresponds to a scanner imaging protocol, where a particular setting of pulse
sequences and field gradients are chosen to emphasise a particular appearance in the resultant image.

2Modality: a type of medical imaging technique that utilises a scanning device to produce images of
internal physiological and anatomical structures of a patient. Examples of medical imaging modalities
include MRI, CT and ultrasound.
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Figure 5.1: Overview of Method 2. Top diagram highlights the training phase consisting
of two main parts, (A) train a random forest to identify major pancreas regions in
all training image volumes; (B) train a deep learning model to recognise pancreatic
features within an image volume, and later perform pixel-wise classification on a test
image volume as “pancreas” or “non-pancreas”’. The bottom image highlights the testing
phase and consists of three main stages, (1) detect targeted pancreas region using the
trained deep learning model using pixel-wise classification; (2) perform 3D segmentation
of predicted pancreas region to extract distinct contours that may lie near but are not
part of the pancreas; (3) perform refinement to identify non-pancreatic contours for
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5.2.1 Random Forests: Identify Major Pancreas Region

The methodology described in Section 4.2.2 is implemented to firstly identify the greater
pancreas region in a test image volume. A random forest is trained on a selection of
extracted features in a training dataset of image volumes; afterwards, the trained forest
predicts the likelihood of a 32-pixel (region size) superpixel in every slice (2D image) of
each image volume as “pancreas” given a probability threshold (0.85). This major region
of interest, as a series of slices, feeds into a trained deep learning network (Section 5.2.2)

which performs pixel-wise predictions of “pancreas” and “non-pancreas”.

5.2.2 Detect Targeted Pancreas Region

The deep learning architecture of SegNet [100] has proven very useful for semantic seg-
mentation in images that include high-class imbalance (i.e., where the majority of the
pixels belong to large classes) and vague boundaries between objects of interest (e.g.,
road and sidewalk, or, more applicably the pancreas’ head and the duodenum). Thus,
SegNet is chosen as a suitable deep learning model to fine-tune and incorporate into the
segmentation methodology. This particular CNN has a U-shaped architecture that is
associated with an encoder-decoder topology as illustrated in Figure 5.2. The architec-
ture of the encoder network matches the 13 convolutional layers in the VGG16 network
[97], whereas the decoder network maps the low-resolution encoder feature maps to full
input resolution feature maps for pixel-wise classification. One of the advantages of this
deep learning model is the process in which the decoder network upsamples the lower
resolution input feature maps. Consequently, this mapping produces features that are

useful for defining the minimal rectangle surrounding the pancreas.

Architecture

As highlighted in Figure 5.4, every convolutional layer is achieved using a 3 x 3 filter
(stride of 1 and padding of 1) with initialised training weights [99]. The fully connected
layers in VGG16 are discarded to retain higher resolution feature maps at the last
encoder output layer. With the encoder network accounting for approximately 14.7
million parameters, each encoder layer has a corresponding decoder layer of 13 layers.
The final decoder output is the input to a two-class soft-max classifier to produce

probabilities for each pixel, i.e. “pancreas” or “non-pancreas”.

Each encoder in the encoder network performs convolution using a filter (i.e., a set of
weights) to generate a set of feature maps, which are then batch normalised [98|. From
here, an element-wise rectified-linear non-linearity (ReLU) maxz(0,z) is applied [37].
Since the information in an image is a highly non-linear mapping of pixel values in the
input, it is important that the mapping from CNN input to its output is also highly

non-linear.
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Figure 5.2: Overview of the deep learning model that has been incorporated into Method
2. An encoder downsamples the CT/MRI input through convolution, batch normalisa-
tion and ReLU, producing feature maps that represent unique pancreatic features (e.g.
texture, boundaries, etc). A decoder upsamples its input using the transferred pooling
indices from its corresponding encoder to generate sparse feature maps. From here,
convolution is performed with a trainable filter of weights to density the feature map.
The resulting decoder output feature maps are fed to a soft-max classifier for 2-channel
pixel-wise classification of the input image as “pancreas *“ or “non-pancreas”.
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Figure 5.3: A 2 x 2 max-pooling is applied in the Encoder stage. The maximum value
and pooling index inside this 2 x 2 region is retained and propagated to the next layer.
In upsampling, in the Decoder stage, the max-pooled 1 x 1 feature is placed into to the
exact location of its corresponding pooling index.
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Figure 5.4: Detailed overview of the deep learning architecture. Each round rectangle is
a layer, with the number on the right side indicating the number of channels (or feature
maps in the case of convolutional layers). Each convolution (Conv) layer contains a set
of 3 x 3 filters, stride 1, padding 1. Each max-pooling (Pooling) layer uses 2 x 2 window
with stride 2. Batch N. + ReLu refers to a batch normalization layer followed by ReLu
activation. During max-pooling, the index of the maximum feature in each 2 x 2 area is
saved. For each Upsampling layer, the 1 x 1 feature is placed in the exact location where
the corresponding max-pooling index is located. The last layer is a soft-max classifier
with 2-channels, one relating to “pancreas” and the other “non-pancreas”. The predicted
segmentation relates to the class with maximum probability at each pixel.



Afterwards, a max-pooling layer extracts the maximum value in the output from the

3 over small spatial shifts in the input

previous layer and achieves translation invariance
image. The max-pooling is performed with a 2 x 2 window and stride 2 (non-overlapping
window). While several layers of max-pooling can achieve more translation invariance
for accurate classification, there also exists a loss of spatial resolution of the feature
maps. Clearly, this loss of boundary detail is not helpful for segmentation where object
boundary delineation is essential. Thus, this deep learning model ensures that boundary
information is stored in the encoder feature maps prior to any sub-sampling. It involves
storing only the max-pooling indices; these are the locations of the maximum feature

value in each pooling window, which are “memorised” for each encoder feature map.

The decoder network upsamples its input feature maps using the memorised max-
pooling indices from the corresponding encoder feature maps, resulting in thinly dis-
persed or spare feature maps as illustrated in Figure 5.3. These feature maps are then
convolved with a decoder filter to generate dense feature maps. From here, a batch
normalisation layer is applied to each of these feature maps. It is important to note
that the decoder relating to the first encoder in the network produces a multi-channel
feature map, despite its encoder input having 3 channels (RGB). The high dimensional
feature representation at the output of the final decoder becomes the input to a trainab-
le soft-max classifier [101]. The output of the soft-max classifier is a 2-channel image
of probabilities with 2 being the number of classes relating to “pancreas” and ‘“non-
pancreas”. The predicted segmentation relates to the class with maximum probability

at each pixel.

Training the Original (SegNet) Deep Learning Network

As discussed above, the use of max-pooling indices in the decoder stage can perform
upsampling of low-resolution feature maps; this has the important advantage of re-
taining high-frequency details (i.e., improved pancreatic boundary delineation) in the
segmented images, and also, to reduce the total number of trainable parameters in the
decoders. In training the network, a distinct set of training data depicting the major
pancreas region (for each separate dataset) is “fed” into the deep learning model as
described above in mini-batches of a defined size. For clarification, the mini-batch is a
subset of the training dataset that is used to evaluate the gradient of the loss function
and update the weights. By default, the encoder and decoder weights were all initialised
using the technique described in [102], and the network was trained using stochastic
gradient descent (SGD) with a fixed learning rate of 0.1 and momentum of 0.9. The
cross-entropy loss function [68] is used for training and optimising the network, and can

be defined as:

3Translation invariance means that an object of interest can still be recognised even when it is
translated in some way.

87



1 &
Closs - Z [ti log 0; + (1 - ti) IOg(l - Oz)] (51)

n
ti—1

where n; is total number of pixels in a training image slice; and o; and ¢; is the corre-

sponding neural network prediction and desired output, respectively.

Next, the deep learning network is updated by:

aC’loss . 1 0; —
do;  my (oi(loi)> (5:2)

Improvements using Class Balancing

Whenever there is a large variation in the number of pixels in each class in a training
set, which is the case with the pancreas accounting for approximately 1% in a scan,
there is a need to weight the loss differently based on the true class (ground-truth label).
In order to achieve what is often coined “class balancing”, a method known as “median
frequency balancing” [103] is incorporated, where the weight assigned to a class cin the
loss function is modified, such that each pixel is weighted by NP™/? = NP:/Np. , such
that NP, is the number of pixels of class ¢ divided by the total number of pixels in

training images where c is present.

Backpropagation

Backpropagation is the process where the network is optimised by updating the convo-
lutional filters (with each filter being a set of weights) and minimising the overall loss
between network prediction and target (ground-truth). The learning rate parameter is
not kept constant by incorporating a “learning rate drop period” and a “learning rate
drop factor”. The learning rate drop period is the number of epochs for dropping the
learning rate and the learning rate drop factor is a multiplicative factor that is applied
to the learning rate every time a certain number of epochs passes. An epoch corresponds
to a full pass of the training data, whereas an iteration number corresponds to a full

pass of the mini-batch.

Improvements using Data Augmentation

Computer vision-based classification tasks tend to have insufficient data, and this is
particularly true for medical imaging data, especially where access to data is often pro-
tected due to privacy concerns. Evidence of effective image classification using data
augmentation [108] has supported the development of deep learning techniques that

combine expert domain knowledge with pre-trained models. With data augmentation,
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the aim is to preserve the main image shape to be recognised. Common data aug-
mentation methods include mirroring on the vertical axis (where an image is flipped
horizontally) to produce a new image. Another commonly used technique is random
cropping, where fixed-size images are captured from the main training image at diffe-
rent locations. Affine transformations (translation, shearing, rotation) and local warping
are also employed to create new data. The term warping was firstly described in [109]
by applying both affine transformations and elastic distortions to images in the training
data. Another method is colour shifting; for example, the RGB channels can be changed
to add more colour variations. In the case of greyscale images, pixel intensity can be
reduced or increased within the dark-to-bright range [0, 255|. For example, an image
could undergo gamma transformation where dark pixels, e.g. [0, 85| are made darker,
and brighter pixels are kept the same in intensity. Consequently, colour shifting can

make the deep learning algorithm more robust to intensity changes.

Data augmentation can be viewed as a form of “artificial data” generated by applying
distortions to the original training dataset. It is used during training to provide more
data to the network and help to improve non-linearity and the accuracy of the network.
Using such extra data is one way of overcoming overfitting [107]. In this method, random
left-right reflection and random X-Y translation of +40 pixels (MRI) and £80 pixels

(CT) are used for data augmentation.

Integrated Hausdorff-Sine Loss Function

A novel loss function is proposed for training the deep learning network through op-
timising the modified Hausdorff distance (to reduce the boundary matching error) and

a sinusoidal functionality that serves to enhance local region and boundary prediction.

In order to define the modified Hausdorff distance-based loss, let T and Yy represent
the ground-truth (target) and network boundary (or edge) predictions, respectively;
and where Ty, Yy C R™ such that |Tx|,|Yy| < oco. Furthermore, ¢; and y; € {0,1} are
indexed pixel values in Ty and Yy respectively, which can subsequently, be viewed as
boundary points. From here, it is possible to define the minimum of the Euclidean (2D)

distance between a point ¢; and set of points, Yy as:

s(tj, Yu) = ynéii% t; — vl
J

2
= min Z(tjk — Yj,)?

€Y
Yj<¥u 1

and similarly, the minimum distance between a point y; and set of points, T, can be
defined as:

89



s(yj, Ty) = min |ly; — ]|

tjETH
2
p— 1 . JE— . 2
min ’;(yﬁk i)
The loss, L,,nq, can be described as:
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Thus, computing the gradient (see Appendix G for breakdown of derivation) yields:
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Building on the conventional cross-entropy loss function, an empirically tested radian
sinusoidal component that is integrated with logarithm to base 2, raises the true-positive

predictions. Therefore, a loss L;,. can be defined as:

nC
1
Liine = ¥ > sin(T;) log,(Y7) (5.7)
=1

where nC' = 2, and T and Y denote the ground-truth and network prediction, respec-
tively, such that T; represents the ground-truth and Y; is the network prediction for

each class ¢ in nC'. From here, computing the gradient yields:
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The model is updated by combining the corresponding gradients of L;,. and L,,,q for

optimisation.

5.3 Testing Phase

This section details the testing phase in Method 2 after a deep learning model has been
successfully trained as described in Section 5.2. Every row in Figure 5.5 displays the
sequential strategy where (a) a slice (2D) in a test image volume (3D) is processed
through the trained deep learning model, (b) the predicted pancreas region mask is
obtained, (c¢) max-flow and min-cuts segmentation is achieved, (d) the predicted pan-
creas region undergoes post-processing, and (e) the segmentation contouring (green) is
highlighted against the ground-truth (red).

5.3.1 Predict Main Pancreas Region

As highlighted in the bottom methodology of Figure 5.1, a trained deep learning model
performs pixel-wise prediction on a test image volume, in order to identify which region
is pancreatic and otherwise. Column (a) and (b) in Figure 5.5 display four sample input
slices (from four different image volumes) and their corresponding positive pancreas
region (white mask) as predicted by the deep learning model. The red contouring in

each image in Figure 5.5, column (b) is the ground-truth for that particular slice.

5.3.2 3D Segmentation and Refinement

Next, the predicted targeted-pancreas volume undergoes 3D based max-flow and min-
cuts segmentation, coupled with effective digital contrast enhancement as described in
Section 4.2 (Method 1), to reveal detailed contouring as highlighted in Figure 5.5, co-
lumn (c). In Method 1, the predictions of the trained random forest may have included
non-pancreatic tissue that are carried into the max-flow and min-cuts segmentation
output; however, the reduced false-positive pancreas predictions in Method 2 has elimi-
nated a significant amount of post-processing. In comparison to Method 1 (Section 4.4)
the finer and more accurate prediction of the pancreas region, with less false-positive
results, reduces the level of refinement employed in this method. In fact, the refinement
stage merely removed scattered, false-positive voxels. Figure 5.5, column (d) highlights

the max-flow and min-cuts output after masking the pancreas region and Figure 5.5,
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Figure 5.5: Method 2 testing phase. Column (a) displays four different slices in four
different and distinct image volumes that are fed into the trained deep learning model.
Column (b) reveals the predicted pancreas region mask for each corresponding input
slice. Column (c) achieves max-flow and min-cuts segmentation for each input slice.
Column (d) displays the pancreas region after the mask and post-processing has been
applied. Column (e) reveals the segmentation contouring (green) against the ground-
truth (red).

column (e) reveals the final segmentation contouring (green) against the ground-truth

contouring (red).

5.4 Transitioning from Deep Learning in 2D to 3D

In 2D based deep learning approaches, the 3D radiological scans or image volumes are
processed slice (2D) by slice, whereas in 3D based deep learning methods use volu-
metric information (as opposed to pixel information in 2D). In order to compare the
performance between these two highly popular and yet inter-competitive architectures,
an approach termed 3D-Method 2 is proposed. Similar to Method 2, this particular

approach consists of a training stage and a testing stage as highlighted in Figure 5.6.

The first part of the training stage develops a model, defined as Rb-UNet, which aims
to localise the pancreas. This model is based on the residual blocks [178] described in

Section 3.2.3 (Chapter 3) which has the advantage of alleviating the vanishing gradient
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Figure 5.6: Overview of 3D-Method 2. The training stage simultaneously develops a
network (3D Rb-UNet) for localising the pancreas, and a segmentation network (3D
Tiramisu) to predict the labels that correspond to “pancreas” and “non-pancreas” tissue.
The testing stage processes an original 3D or 4D image volume, performs a coarse
segmentation to generate a bounding box capturing the main pancreas region and then
processes the cropped image volume to predict the labels of that organ.

problem. The residual connections are added at each block of a baseline 3D U-Net
architecture, connecting the input of convolutional layers at each scale to the outputs
of the corresponding layer. Consequently, this bypass with identity connections for
convolutional blocks at each scale improves the optimisation of convergence. Empirically
tested, the 3D Rb-UNet model performed significantly better than the traditional 3D

U-Net for localising the pancreas.

The second part of the training stage develops a 3D Tiramisu model [179] using a
uniformly cropped region where the pancreas is fully present, discarding background
information that is unrelated to this organ. It is important to note that, unlike the
3D Rb-UNet model which employs the full spatial context of an image volume, the
3D Tiramisu model only utilises the main pancreas region captured using a minimal
bounding box generated via corresponding ground-truth labels. The main task of the
3D Tiramisu model is to perform voxel-wise predictions on whether a voxel represents

“pancreas” tissue (positive label) or “non-pancreas” tissue (negative label).

In recent years, the Densely Connected Convolutional Networks (DenseNets) [180] has
demonstrated promising results on image classification tasks for both natural images
[201, 202 and medical scans [197, 198, 199, 200|. As introduced in Section 3.2.3 (Chap-
ter 3), DenseNets is based on the idea of providing features ‘learned’ in earlier blocks as

the inputs to succeeding blocks in the network. At every layer, the feature maps from
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Figure 5.7: Tiramisu architecture blocks of fully convolutional DenseNets include (from
left to right) the layer used in the model, Transition Down (TD) and Transition Up
(TU) [179)].

| Architecture |
Input, m =3
3 x 3 Convolution, m = 48
DB (4 layers) + TD, m = 112
DB (5 layers) + TD, m = 192
DB (7 layers) + TD, m = 304
DB (10 layers) + TD, m = 464
DB (12 layers) + TD, m = 656
DB (15 layers), m = 896
TU + DB (12 layers), m = 1088
TU + DB (10 layers), m = 816
TU + DB (7 layers), m = 578
TU + DB (5 layers), m = 384
TU + DB (4 layers), m = 256
1 x 1 Convolution, m = ¢
Softmax

Figure 5.8: Architecture details of the Tiramisu (FC-DenseNet103) model, which is
built from 103 convolutional layers [179]. The notations are as follows: DB stands for
Dense Block, TD stands for Transition Down, TU stands for Transition Up, BN stands
for Batch Normalisation and m corresponds to the total number of feature maps at the
end of a block. ¢ stands for the number of classes.

preceding layers are used as inputs, together with that layer’s very own feature maps.
The main advantage of DenseNets includes strengthening the feature propagation, sup-
porting the reuse of features, significantly reducing the number of parameters, and last
but not least, alleviating the vanishing gradient problem. The Tiramisu model builds
upon DenseNets to work as FCNs by adding an upsampling path to compensate for
the full resolution of the input. In this architecture, it is only the feature maps created
by the previous dense block that are upsampled. Furthermore, the upsampled dense
block combines the contextual information retained in the other dense blocks of the
same resolution. Here, the higher resolution information is passed by a standard skip
connection between the downsampling and the upsampling paths. Empirically tested,
the advantage of the proposed upsampling path that is built from dense blocks performs

better than an upsampling path with conventional operations in DenseNets or U-Net.

In the testing stage, the fully trained 3D Rb-UNet performs a coarse segmentation

of the pancreas in an (unseen) image volume and then generates a respective mini-
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mum bounding box. This image volume is cropped using the bounding box. Next, this
cropped image volume containing the main pancreas region processes through the fully
trained 3D Tiramisu model, which in return performs finer and more detailed voxel-wise

predictions of “pancreas” or “non-pancreas’.

5.4.1 Training Stage

The first phase of the training stage is the development of an organ detection and
localisation approach using 3D Rb-UNet, to eventually generate a bounding box over

the pancreas and remove redundant contextual information.

Detection and Localisation

At the start of this training phase, the size of the image volume is reduced to 64 x 64 x 64
to limit computational costs and have sufficient resolution necessary for localisation
and near isotropic resolution across z, y and z dimensions. In datasets that contain
4D image volumes, the time or temporal dimension was reduced from 150 seconds
(i.e. 150 image volumes in a 4D scan) to 5 seconds (i.e. 5 image volumes in a 4D
scan) using Principal Component Analysis (PCA) [184]. Moreover, data augmentation
is generated as image scaled translations in the range [1,4] pixels. The weighted cross
entropy loss function is employed to compensate for the class imbalance presented by

diverse pancreas structures:

N
1 . .
Wcross—entropy - _N Z wlc [pi logpi + (1 - pi) log(l - pz)] (59)
=1

where N is the total number of voxels in a training image volume, p; is the probability
of voxel ¢ belonging to the “foreground” class in each output channel and p; represents
the true-positive ground-truth label in the corresponding input channel. The wy is fixed
as inversely proportional to the probability of voxel ¢ belonging to the “foreground”
class. Afterwards, softmax with weighted cross-entropy loss is used for comparing the

output of the network with the desired outcome, that is the ground-truth.

Segmentation

Using the training data, the pancreas is “cropped out” using the bounding boxes ge-
nerated from the ground-truth manual labels and the image volume dimensions are
reduced to 64 x 64 x 64. This input data (with the temporal dimension reduced to 5
if using 4D volume data) is fed into the 3D Tiramisu network for training the main

segmentation model using the same weighted cross-entropy loss as in Equation 5.9.
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5.4.2 Testing Stage

At the detection and localisation stage, the fully trained 3D Rb-UNet performs a coarse
segmentation, i.e. voxel-based prediction using an unseen (test) image volume. As a
side note to the generalisability of this approach, for organs of interest consisting of
two distinct parts (e.g. left and right kidney or left and right iliopsoas muscle) there
are three classes at this stage: “left”, “right” and “background”. Otherwise, there are two
main classes of “foreground” and “background” referencing the positive label prediction
and negative label prediction (i.e. “pancreas” versus “non-pancreas” or “liver” versus
“non-liver”). Afterwards, the image volume resamples to its original size and one or two
bounding boxes are generated to “crop out” the organ of interest throughout the entire
3D or 4D volume.

The cropped test volume is fitted to 64 x 64 x 64 dimensionality and processed through
the fully trained 3D Tiramisu model, which performs detailed voxel-wise predictions
on whether each voxel corresponds to the organ of interest or otherwise. Afterwards,
the predicted organ binary mask is resampled to its original size and inserted into the

corresponding spatial position of the primary input image volume.

It is noted that the identity shortcuts of the residual blocks in 3D Rb-UNet allow
faster training and improved convergence than the 3D Tiramisu, which is excellent for
localisation. In contrast, the 3D Tiramisu provides the advantage of higher capacity
with multi-layer feature concatenation and achieves very detailed boundary-preserving

fine segmentation given a localised organ of interest as the primary input.

In order to compare and discuss the differences between 3D-Method 2 and Method 2,
Chapter 6 provides a sample of visual results depicting the pancreas in Figures 6.14 and
6.15, Section 6.4.4. Moreover, one of the advantages of this approach includes the usage
of 4D data (3D data with a temporal dimension). As a side note to the generalisability
of this approach, Chapter 8 provide a similar set of results for the kidneys in Section
8.6, Figures 8.11, 8.12, 8.13, 8.14. Furthermore, Section 8.4, Figure 8.6 and Section 8.5,

Figure 8.8 provide a similar set of results for the liver and iliopsoas muscles, respectively.

5.5 Conclusion

This chapter has presented a deep learning-based approach for automatic pancreas
segmentation in 3D abdominal computed tomography (CT), and Magnetic resonance
imaging (MRI) scans. The proposed method builds upon Method 1 (Morphological and
Multi-level Geometrical Descriptor) described in Chapter 4. A training phase firstly
identifies the major pancreas region in a training data of image volumes. The major

pancreas region is detected using a trained random forest that makes probability-wise
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predictions of superpixels of each slice in each image volume. From here, this major
region of interest feeds into a deep learning model built upon an encoder-decoder type
architecture. Using a novel Hausdorff metric and sinusoidal-based loss function, the deep
learning model is optimised to recognise and predict pancreatic features in a test image
volume. The test phase begins by making pixel-wise predictions using the trained deep
learning model; it is noted that this phase eliminates the necessity of incorporating
a pancreas recognition model. This stage, followed by digital contrast enhancement
and 3D max-flow and min-cuts segmentation, produces very detailed contouring of
the pancreas and heavy boundary-preservation. The voxel-based algorithm of max-flow
addresses the intensity consistency problem that is often the case when segmenting
image volumes on a slice-by-slice basis. In this chapter, an extension of the idea in
Method 2 is also proposed: 3D-Method 2 is a deep learning-based approach that employs
3D or voxel-based processing as opposed to 2D or pixel-based image processing. This
method serves to demonstrate the segmentation quality of voxel-based versus pixel-
based training. Chapter 6 details the experimental results that interestingly enough,
highlight both the advantages and disadvantages of utilising 3D-Method 2 as opposed

to Method 2 for optimal quantitative accuracy performance.
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Chapter 6

Experimental Tools, Results and

Analysis

6.1 Introduction

One of the most critical evaluations of different approaches includes identifying com-
parable advantages and disadvantages. For example, a segmentation approach that is
universally applicable to different MRI sequences could produce results that surpass the
state-of-the-art in mean quantitative spatial accuracy. On a different note, a segmen-
tation technique tailored to a specific sequence could generate contouring detail that
provides significant guidance towards directly stratifying an organ in terms of clinically

defined normality or abnormality.

This chapter presents, discusses and compares the segmentation evaluation results that
were obtained from Method 1 (Chapter 4), Method 2 and 3D-Method 2 (Chapter 5).
The proposed approaches employ two MRI datasets relating to two different sequences
and a publicly available CT dataset. The motivation for this chapter is to highlight
key attributes of the proposed methods and address areas for potential optimisation.
Section 6.2 details the acquisition and spatial information of three different and dis-
tinct datasets employed for training and testing purposes. Section 6.3 details a list of
key technical tools, libraries and frameworks that are frequently used to implement
deep learning algorithms for medical image segmentation. Section 6.4 details four diffe-
rent evaluation metrics used for computing the quantitative accuracy of the proposed
methods and proceeds to perform an extensive comparison between these methods in
terms of quantitative and qualitative accuracy. This section also highlights numerical
implementation, including key deep learning model parameters. Section 6.5 delivers a

conclusion.
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6.2 Datasets

The performance of all the proposed approaches (Method 1, 2 and 3D-2) is evaluated
on three pancreas datasets, all of which have been manually annotated by a senior,
expert radiographer. The first two datasets contain 216 (MRI-A) and 132 (MRI-B) T2-
weighted (fat suppressed) abdominal 3D MRI scans, obtained using a Philips Intera 1.5
Tesla (T) scanner and a Siemens Trio 3T scanner respectively. The CT-NIH dataset is
publicly available and contains 82 abdominal contrast-enhanced CT 3D scans, acquired
on Philips and Siemens MDCT scanners (120 Peak kilovoltage tube voltage)
http://dx.doi.org/10.7937 /K9/TCIA.2016.tNB1kqBU. Please refer to Appendix A to
view a set of randomly selected 2D images (slices) taken from volumes in MRI-A and
MRI-B, and CT-NIH.

6.2.1 MRI

Every image volume in MRI-A consists of 50 axial slices, with each slice of spatial
size 384 x 384 pixels and 2mm thickness, and 0.9766mm in voxel width and height. In
MRI-B, every image volume consists of 80 axial slices, with each slice of spatial size
320 x 260 pixels and 1.6mm thickness, and 1.1875mm in voxel width and height. The
subjects who underwent the MRI scan were over 18 years of age and displayed early

signs of type 2 diabetes.

6.2.2 CT

The CT-NIH dataset contains image volumes of spatial size 512 x 512 pixels (between
181 and 466 slices) and slice thickness ranging from 1.5 - 2.5mm. The CT scans were
acquired from 53 male and 27 female subjects. A radiologist selected sixty-five subjects
from patients who did not have any major abdominal pathologies nor pancreatic cancer
lesions; the remaining seventeen subjects were healthy kidney donors scanned prior to

nephrectomy. The subjects’ age range is 18 - 76 years with a mean age of 46.8 + 16.7.

6.3 Technical Tools, Libraries and Frameworks

This section provides a summary of key technical tools, libraries and frameworks that
are frequently used to implement deep learning algorithms for medical image processing,
in particular medical image segmentation. Both approaches described in Chapters 4 and
5 are implemented using Matlab (Releases 2016b - 2019b). 3D-Method 2 implemented
in Python 3.0 (Keras).

99



6.3.1 MATLAB

MATLAB is an interactive computing environment and high-level programming lan-
guage developed by MathWorks [143|. MATLAB performs matrix manipulations and
data plotting, and interfacing with programs written in other languages such as C,
C++ and Python. MATLAB provides an Image Processing Toolbox to solve problems
and explore ideas for medical image analysis [144]. This toolbox provides a wide range
of image processing functions for converting, enhancing and analysing digital images.
A number of these functionalities include spatial image transformations, morphological

operations such as edge detection and noise removal, and ROI processing and filtering.

In addition to the Image Processing Toolbox, there are three further essential toolbox-
es that has enabled successful implementation of image segmentation methodologies:
Computer Vision System Toolbox, Statistics and Machine Learning Toolbox and the

Deep Learning Toolbox.

Computer Vision System Toolbox

The Computer Vision System Toolbox provides algorithms and functions for designing
and simulating computer vision, and video processing systems. It is possible to perform
feature detection, extraction and matching, as well as perform object detection and
tracking. For 3D computer vision, the system toolbox supports 3D reconstruction, as
well as 3D point cloud processing. Algorithms for deep learning and machine learning
can enable the programmer to implement face detection algorithms and other everyday

objects using pre-trained detectors.

Statistics and Machine Learning Toolbox

The Statistics and Machine Learning Toolbox provides functionalities to describe, ana-
lyse and model data. It is possible to use descriptive statistics to plot exploratory data
analysis, fit probability distributions to data, generate random numbers for Monte Carlo
simulations, and perform hypothesis tests. This toolbox provides supervised and un-
supervised machine learning algorithms, including support vector machines (SVMs),
boosted and bagged decision trees, k-nearest neighbour, k-means, k-medoids, hierar-
chical clustering, Gaussian mixture models and hidden Markov models. Furthermore,
the Statistics and Machine Learning Toolbox provides tools that perform regression
and classification algorithms in order to draw inferences from data and build predic-
tive models. When using higher-dimensional data analysis, the Statistics and Machine
Learning Toolbox provides feature selection, stepwise regression, principal component
analysis (PCA) and regularisation methods, all of which allows the programmer to

identify variables or features that impact the model being implemented.
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Deep Learning Toolbox

The Deep Learning Toolbox, formerly known as the Neural Network Toolbox, provi-
des a framework for designing and implementing deep neural networks with algorithms
and pre-trained models. It is possible to use convolutional neural networks (ConvNets,
CNNs) and long short-term memory (LSTM) networks to perform classification and
regression on image, time-series, and text data. Furthermore, several apps and plots
enable programmers to visualise activations, fine-tune network architectures and moni-
tor training progress. It is also possible to utilise many pre-trained (popular) networks
to fine-tune including GoogLeNet, VGG-16, VGG-19 and AlexNet. It is also possible
to create, modify and analyse complex CNN architectures using MATLAB visualisa-
tion tools. MATLAB can also bring together multiple domains in a single workflow;
for example, it is possible to implement tools and functions for deep learning, and also
for a variety of domains that feed into deep learning algorithms, e.g., signal processing,
computer vision, and data analytics. Currently, there are three computational met-
hods to train a CNN on MATLAB: CPU-based!, GPU-based?, and cloud-based GPU3.
A CPU-based computation is the simplest and most readily available option but is re-
commended only for simple examples using a pre-trained network. Using a GPU reduces
network training time from days to hours, and multiple GPUs can further accelerate
processing and reduce computational time. In a cloud-based GPU computation, the

MATLAB code can be executed using cloud resources.

The implementation of deep learning architectures, coupled with modular tools and
functions for managing large data sets, makes MATLAB a useful tool for heuristic
network training and evaluation. Not only does MATLAB offer a platform to build
deep learning models from scratch, but it is also possible to import pre-trained models
to visualise and debug intermediate results after adjusting training parameters. This
software application can be used to learn about and implement deep learning architec-
tures in a theoretical, analytical and practical manner. Furthermore, this computing
environment also enables programmers to label objects within images interactively and
can automate ground-truth labelling within image volumes for training and testing deep

learning models.

It is also possible to exchange deep learning models with other popular open-source

software libraries, such as TensorFlow and import models from TensorFlow-Keras.

!The central processing unit (CPU) is the unit which performs most of the processing inside a
computer.

2A graphics processing unit (GPU) is a computer chip that performs rapid mathematical calcula-
tions, mainly rendering images.

3A cloud is network of remote servers hosted on the Internet to store, manage, and process data,
rather than a local server or a personal computer.
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6.3.2 TensorFlow and Keras

TensorFlow [146] is an open source software library for high performance numerical com-
putation; it has a flexible architecture that allows deployment of computation across
CPU, GPU and TPU* platforms. Keras [153], on the other hand, is a high-level neu-
ral networks application programming interface (API), written in Python and capable
of running on top of TensorFlow. It was developed to enable fast experimentation.
Keras offers a deep learning library that allows easy and fast prototyping that is user-
friendly; supports both CNNs and recurrent networks, and runs on CPU and GPU.
The user-friendliness offers consistent and simple APIs, and thus minimises the num-
ber of user actions required for frequent use, providing clear and actionable feedback
upon user error. Keras also has modularity: fully-configurable modules can be employ-
ed, particularly CNN layers, loss functions, initialisation schemes, activation functions

and regularisation schemes, which can also be combined to create new models.

6.4 Evaluation

The performance of the proposed approaches is evaluated using the Dice similarity co-
efficient (DSC) and Jaccard index (JI) method, in addition to precision (PC) and recall
(RC) [69]. The JI is a measure of the spatial overlap between the segmentation outcome
and desired outcome (i.e. the ground-truth or expert-led manual annotation of the or-
gan). Unlike the JI metric, which only counts true-positives (i.e. positive labels common
to segmentation and ground-truth) once in both the numerator and denominator, the
DSC function does not possess the property of triangle inequality and this particular
metric function retains sensitivity in more dissimilar data, and assigns less weight to
outliers [175].

If G represents the volumetric ground-truth annotation and S represents the correspon-
ding automatic segmentation result, then the DSC accuracy percentage of S relative to

G can be defined as: DSC = (%) x 100. Similarly, the JI accuracy percentage of S
|G|
|GUS|

relative to G can be defined as: JI = ( ) x 100. The precision normalises the correct

segmented region, S N G, against the segmentation, .S: Precision = <‘S|2,|G‘> x 100. The

recall (i.e. sensitivity) normalises SN G against the ground-truth, G and can be defined

as: Recall = (IS@‘GI> x 100.

1A tensor processing unit (TPU) is an Al application-specific integrated circuit (ASIC) for machine
learning implementation.
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6.4.1 Method 1: Morphological and Multi-level Geometrical

Descriptor Analysis

The training and testing image volumes have been randomly split into 196 and 20 for
MRI-A, 112 and 20 for MRI-B, and 62 and 20 for CT-NIH. The defined parameters
for the maximal-flow and minimum graph-cuts approach described in Section 4.3 are
as follows: step-size of the augmented Lagrangian method is 0.25; error bound for con-
vergence is 0.0001; maximum number of iterations is 400; and the step-size for the

gradient-projection step to the total-variation function is 0.03.

For each experiment in Section 4.4.1, the values for N,,, N,,, N,, and N,, are 32, 52, 64
and 16 respectively. The group constraint error threshold, ¢,, = 0.15 and the contour
curvature threshold, ¢, = 0.27. In Section 4.4.2, the value of n (set of distances) is 6,
and in Section 4.4.3, the value of the mean error threshold, ¢, = 0.15 and the chosen
number of groups in a set based on k-medoids clustering, n is set to 16, 48, 36 and 12

for slice groups Ry, Rs, R3 and R, respectively.

6.4.2 Method 2: Integrating Deep Learning

The optimisation algorithm used for training is SGD, with momentum 0.9 and an initial
learning rate of 0.001. The learning rate drop period is 50 and the learning rate drop
factor is 0.5. The maximum number of epochs is 320 and the size of the mini-batch to
use for each training iteration is set to 10. The training and testing image volumes have
been randomly split into 196 and 20 for MRI-A, 112 and 20 for MRI-B, and 62 and 20
for CT-NIH. The experiments conducted using MRI-A, MRI-B and CT-NIH employ
10-fold, 6-fold and 4-fold cross-validation, respectively.

Analysis of Hausdorff-Sine Loss:

Figures 6.1 and 6.2 compares the quantitative segmentation results for MRI (in DSC)
using loss functions Hausdorff-Sine, Hausdorff, Cross-entropy, Dice [207] and Jaccard
[206] across thresholds in range [0.05, 0.95]. The loss Hausdorff-Sine achieves the highest
mean DSC, irrespective of the segmentation threshold; in fact, the accuracy in DSC
increases with a higher threshold. Across differing threshold probabilities, the Cross-
entropy has a drawback on predicting true-positive (“pancreas”) pixels, and therefore
forces the resulting “optimum” probability to remain at approximately 0.5. Although
the Dice loss minimises the class distribution distance, squaring the weights in the
backpropagation stage causes instability and a higher rate of false-negative predictions.
Similarly, the Jaccard loss suffers from low true-positive predictions. Empirically tested,
the Hausdorff loss minimises the maximum deviation between a prediction and desired

outcome; however, the addition of a sinusoidal component increases non-linearity during
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MRI-A and MRI-B
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Figure 6.1: Overview of MRI segmentation accuracy results (in DSC) of models that are
trained with different loss functions. The proposed Hausdorff-Sine Loss performs better
across thresholds in range [0.05, 0.95] in comparison to the conventional cross-entropy

and other loss functions.
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Figure 6.2: Overview of CT-NIH segmentation accuracy results (in DSC) of models that
are trained with different loss functions. The proposed Hausdorff-Sine Loss performs
better across thresholds in range [0.05, 0.95] in comparison to the conventional cross-

entropy and other loss functions.
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training, and thus Hausdorff-Sine achieves a better prediction of true-positive pixels
across differing probability thresholds, whilst delivering strong discrimination of “non-

pancreas” pixels.

The mean DSC and standard deviation using Cross-entropy is 83.0% + 8.0% (MRI-A),
83.9% £ 3.1% (MRI-B) and 78.2% + 8.8% (CT-NIH). However, employing Hausdorft-
Sine raises the mean DSC by approximately 1% (MRI-A), 2% (MRI-B) and 5% (CT-
NIH) and improves statistical stability by reducing the mean standard deviation by
approximately 3% (MRI-A), 1% (MRI-B) and 4% (CT-NIH). The Hausdorff distan-
ce (HSD) metric, presented as mean + standard deviation, represents the maximum
deviation between two surfaces and is very sensitive to outliers. In contrast to Cross-
entropy that delivers 12.71 £8.62mm for MRI-A, the novel loss function Hausdorff-Sine
achieves less deviation from the ground-truth contouring with 10.55 4= 3.72mm. Simi-
larly, Cross-entropy delivers 22.41 + 6.59mm for MRI-B whereas Hausdorff-Sine achie-
ves a significantly more robust 9.08 + 1.98mm. Using CT-NIH, Cross-entropy delivers
13.30 £ 5.93mm whereas Hausdorff-Sine achieves 10.34 £ 3.39mm. The corresponding
ROC curves are illustrated in Figures 6.3 and 6.4, from where the area under the ROC
curve and true-positive rate can be used as performance metrics. The inferior perfor-
mance of conventional loss functions demonstrate that these loss functions cannot be
optimal in extremely unbalanced segmentation for small anatomical structures, whereas

Hausdorff-Sine generally improves the true-positive accuracy results.

6.4.3 Comparison between Method 1 and 2

Table 6.1 displays the DSC, JI, PC, RC and Hausdorft distance [80] results using Met-
hod 1 and Method 2 for datasets, MRI-A, MRI-B and CT-NIH as mean + standard
deviation [lowest, highest|. Figures 6.7 and 6.8 displays the final segmentation results
for Method 1 and 2 in six MRI scans, equally split between MRI-A and MRI-B. Despite
columns (a), (b) and (c) being part of MRI-A, notice the variation between intensity
and image contrast in the original axial MRI slices. Columns (d), (e) and (f) corre-
sponds to exemplars from dataset MRI-B. In particular, the contouring of the pancreas
can appear less well-defined with blurred boundaries between the organ and surround-
ing tissue, and therefore affect the overall segmentation accuracy. Similarly, Figures 6.5
and 6.6 displays the visualisations of four different pancreas segmentation results in the
CT-NIH dataset. There are apparent, evident differences in the shape and structure of

slice-by-slice pancreatic contours as well as the overall 3D reconstruction.

105



ROC for MRI-A and MRI-B
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Figure 6.3: ROC curves averaged on MRI-A and MRI-B using the deep learning model
in Method 2 trained via the proposed Hausdorff-Sine loss, and other loss functions
including Hausdorff (alone), Cross-entropy, Dice and Jaccard.
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Figure 6.4: ROC curves averaged on CT-NIH using the deep learning model in Met-
hod 2 trained via the proposed Hausdorff-Sine loss, and other loss functions including
Hausdorff (alone), Cross-entropy, Dice and Jaccard.
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] Data \ Method \ DSC (%) \ JI (%) \ PC (%) \ RC (%) \ Haus. (mm) \

1 79.6 £5.7 | 66.50 7.9 | 8.7 £11.5 | 94.7 £10.7 | 13.59 £+ 4.34

MRI-A (68.6, 87.5] | [52.4, 77.8] | [71.5, 98.9] | [50.5, 99.7] | [6.12, 20.36]
2 84.1 + 4.6 729 £ 6.5 | 95.5 £ 6.3 97.6 £ 3.0 10.55 £+ 3.72

[72.1, 89.6] | [56.4, 81.1] | [71.7, 99.7] | [89.9, 100.0] | [6.06, 17.81]

3D-2 89.9 &£ 3.4 | 81.87 £5.6 | 87.5 £ 3.8 | 92.5 &+ 3.6 10.23 £ 5.98

82.4, 94.2] | [73.8,89.1] | [78.9, 91.7] | [84.1,9.7] | [3.18, 20.62|

1 81.6 £ 5.1 692 71 | 822 +58 | 84.8 £ 8.3 14.28 £ 4.02

MRI-B 71.3, 83.0] | [55.5, 78.6] | [73.1, 93.5] | [69.4, 96.0] | [8.14, 22.51]
2 8.7+ 23 | 75.1 =35 | 96.1 &£ 3.6 99.3 £ 0.7 9.08 £ 1.98

79.9, 90.3] | [66.5, 82.4] | [86.7, 100.0] | [99.9, 100.0] | [4.91,14.80]

3D-2 90.2 £ 5.1 826 £ 78 | 8.0+£69 | 929 4.2 7.43 £+ 5.26

72,2, 95.8] | [56.4, 91.9] | [58.4, 95.7] | [81.7, 97.1] | [2.77, 20.22]

1 79.3 £ 4.4 66.1 £ 6.2 88.6 £ 6.9 97.6 £ 1.9 12.52 £ 1.98

CT-NIH [72.8,86.0] | [58.2, 75.5] | [74.5,99.5] | [94.7,99.8] | [9.15,15.45]
2 83.1 £ 5.3 714+ 74 97.6 = 5.3 97.1 + 3.7 10.34 £+ 3.39

69.3,80.6] | [53.1, 81.1] | [75.2,99.9] | [84.9, 100.0] | [6.26, 19.44]

3D-2 84.7 £ 7.9 742 £ 114 87.2 + 5.6 82.6 £+ 10.3 9.56 £ 5.67

[65.4,95.1] | [48.7,86.1] | [71.7,95.3] | [60.2,94.9] | [3.30, 19.91]

Table 6.1: Comparative summary of DSC, JI, PC, RC and Hausdorff (Haus.) results
shown as mean + standard deviation [lowest, highest| in MRI-A, MRI-B and CT-NIH
using Methods 1, 2 and 3D-2.

Pancreas Boundary Accuracy

In Method 1, the Hausdorff distance (HSD) metric is presented as mean + standard
deviation in CT-NIH, MRI-A and MRI-B as 12.52 + 1.98mm, 13.59 + 4.34mm and
14.28 £+ 4.02mm, respectively. This metric, which represents the maximum deviation
between two surfaces and is very sensitive to outliers, indicates that the approach
is slightly more consistent for CT data. The relatively lower HSD in CT implies that
slices have greater co-dependency, and therefore the proposed approach delivers a stable
performance in predicting between successive slices. In contrast, the higher HSD value in
MRI reflects less co-dependency between successive slices and higher shape variability.
In such cases, the major pancreas region included excess background tissue that formed
part of the final segmentation result, or that pancreas tissue (mostly comprising part

of the tail or body) was eliminated.

In contrast to Method 1, the mean HSD in MRI-A and MRI-B using Method 2 is re-
latively lower as in 10.55 & 3.72mm and 9.08 & 1.98mm, respectively. The significant
drop in mean value of approximately 5mm in MRI-B demonstrates the effectiveness of
the deep learning model; the pixel-wise predictions of “non-pancreatic” tissue is compa-

rably less than Method 1, which solely relies on the superpixel (size 32) predictions of
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a trained random forest. MRI-A achieves a relatively modest reduction in mean HSD
of approximately 2mm, mostly reflective of the greyscale intensity distribution diver-
sity in this particular dataset. Interestingly, Method 2 also improves the mean HSD
achieved in CT by reducing the value by approximately 2mm. A slight increase in stan-
dard deviation indicates that, although the overall contouring accuracy has improved,
some instances of under-segmentation can be addressed through network optimisation
(discussed in Chapter 7, Section 7.3).

Statistical Graph Comparison

In Method 1, a box and whisker plot representation for all three datasets is displayed in
Figure 6.9. The standard deviation is a reflection of intensity variation of surrounding
tissue coming into contact with the final, resultant pancreas segmentation. In CT-NTH
and MRI-B, 60% of all segmentation results score 80% or above in DSC, compared to
45% of all segmentation results in MRI-A. This difference in accuracy scores highlights
the performance of the approach concerning image quality and distribution of greyscale
intensity. The broader range between the median and upper quartile for MRI-A, in
comparison to MRI-B, suggests a higher degree of variation in the test volumes’ shape,
size and level of coarse image noise. Thus, a smaller interquartile range for MRI-B
indicates a similar degree of error within that dataset affects all resultant segmentations.
The relatively lower standard deviation in CT-NIH reflects the lesser degree of variation
between image volumes as opposed to MRI-A and MRI-B that suffer from higher image

noise and artefacts.

Method 2 raises the overall accuracy scores in DSC, such that 85% of all segmentations
score above 80% in MRI-A (versus 45% using Method 1), 95% of all segmentations score
above 80% in MRI-B (versus 60% using Method 1) and 75% of all segmentations score
above 80% in CT-NIH (versus 45% using Method 1). Although there are relatively more
outliers present in comparison to Method 1, as highlighted in Figure 6.10, the mean
DSC standard deviation is almost halved for MRI-B using Method 2 and reduced for
MRI-A. The significantly different range between the median and maximum score in
MRI-A highlights that 75% of all results (ranging from 84.39% — 89.56%) are closer
to the mean DSC using Method 2, as opposed to 55% of all results (ranging from
79.14% — 87.53%) using Method 1. Similarly, 65% of MRI-B DSC results (ranging from
85.16% — 90.33%) are closer to the mean score in Method 2, as opposed to 55% of all
results (ranging from 82.51% — 88.03%) using Method 1. Using the CT-NIH dataset,
70% of all DSC results (ranging from 82.59% — 89.56%) are closer to the mean score
in Method 2, as opposed to 65% of all results (ranging from 78.14% — 86.03%) using
Method 1.
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Figure 6.5: Segmentation results in four different CT image scans (volumes) using Met-
hod 1. Every column corresponds to a single CT volume. From left, first row displays
sample CT axial slices with segmentation outcome (green) against ground-truth (red),
and computed DSC; second row displays 3D reconstruction of entire pancreas (green)
segmentation against its ground-truth (red) with computed DSC.
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Figure 6.6: Segmentation results in four different CT image scans (volumes) using Met-
hod 2. Every column corresponds to a single CT volume. From left, first row displays
sample CT axial slices with segmentation outcome (green) against ground-truth (red),
and computed DSC; second row displays 3D reconstruction of entire pancreas (green)
segmentation against its ground-truth (red) with computed DSC.
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Figure 6.7: Segmentation results in six different MRI scans (volumes) for Method 1
(Morphological and Multi-level Geometrical Descriptor Analysis). Every column corre-
sponds to a single MRI volume. From left, first row displays sample MRI axial slices
with segmentation outcome (green) against ground-truth (red), and computed DSC;
second row displays 3D reconstruction of entire pancreas (green) segmentation against
its ground-truth (red) with computed DSC.

Precision and Recall

In Method 1, the precision and recall results in CT-NIH significantly outperform state-
of-the-art approaches reported in [1, 21, 29, 78|. Therefore, comparatively high precision
and high recall scores reflect a high true-positive rate and a low false-negative rate. As
shown in Figure 6.11, MRI-A and MRI-B report strong precision and recall results, but
the differences in standard deviation reflect higher variations of correct and incorrect
“pancreas” pixel classification. In general, the initial detection of the major pancreas re-
gion guarantees that the pancreas will be segmented (albeit with varying DSC accuracy)

while maintaining higher mean precision and recall scores.

Using Method 2, the results obtained for MRI-A and MRI-B boast an increase in
precision and recall, as highlighted in Table 6.1. Using CT-NIH, the mean precision
is raised by approximately 9% in comparison to Method 1, and a slight reduction in
false-negative pixels (mean recall) is a reflection of under-segmentation for particular
cases against a higher maximum recall of 100%. The reduced non-pancreatic tissue
prediction achieved in Method 2 raises the mean precision and recall scores for MRI-
B by approximately 12% and 15%, respectively. Similarly, Method 2 raises the mean
precision score for MRI-A by approximately 10%, reflecting the significantly lower false-
positive rate. Interestingly, an approximate 3% increase in mean recall demonstrates

the effectiveness of Method 1 in delivering a low false-negative rate.
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Figure 6.8: Segmentation results in six different MRI scans (volumes) for Method 2 (De-
ep Fusion). Every column corresponds to a single MRI volume. From left, first row dis-
plays sample MRI axial slices with segmentation outcome (green) against ground-truth
(red), and computed DSC; second row displays 3D reconstruction of entire pancreas
(green) segmentation against its ground-truth (red) with computed DSC.
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Figure 6.9: Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for data-
sets CT-NIH, MRI-A and MRI-B using Method 1.
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Figure 6.10: Dice similarity coefficient (DSC) and Jaccard index

datasets CT-NIH, MRI-A and MRI-B using Method 2.
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Figure 6.11: Recall against precision plots for datasets CT-NIH, MRI-A and MRI-B

using Method 1.
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Figure 6.12: Recall against precision plots for datasets CT-NIH, MRI-A and MRI-B

using Method 2.
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Figure 6.13: Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for
datasets CT-NIH, MRI-A and MRI-B using 3D-Method 2.

6.4.4 3D-Method 2

The optimisation algorithm used for training is Adam® [203] with an initial learning
rate of 0.0001. The hyperparameters include a reduction rate (0.8), growth rate (12),
momentum (0.9), weight decay (107®) and a drop-out rate (0.2). The learning rate drop
period is 50 and the learning rate drop factor is 0.5. The maximum number of epochs

is 400 and the size of the mini-batch to use for each training iteration is set to 4.

6.4.5 Comparison between Method 2 and 3D-Method 2

The addition of 3D-Method 2 aims to compare and contrast the effectiveness of Method
2 in terms of quantitative accuracy and statistical stability. Table 6.1 displays the DSC,
JI, PC, RC and Hausdorff (Haus.) results using Method 2 and 3D-Method 2 for all
three datasets as mean + standard deviation [lowest, highest]. Figure 6.14 compares
the visualisations of three different pancreas segmentation results in MRI-A and MRI-B
with the results obtained using Method 2, and Figure 6.13 displays the corresponding

box and whisker plot representation of the segmentation results using 3D-Method 2.

Interestingly, the mean DSC in CT-NIH raises from 83.1+5.3% to 84.74+7.9% using the
3D deep learning approach. With that said, the increase in standard deviation demon-
strates that replacing 2D operations with corresponding 3D counterparts to optimise
learning voxelised contextual information results in higher quantitative accuracy varia-
tion. In fact, while Method 2 boasts a strong mean precision and recall as in 97.6+5.3%

and 97.1+3.7% respectively, 3D-Method 2 suffers from false-positive and false-negative

5Adam is an adaptive learning rate optimisation algorithm designed for training deep neural
networks.
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Figure 6.14: Pancreas segmentation results in six different MRI image scans (volumes)
using Method 2 and 3D-Method 2. Every column of two 3D pancreas reconstructions
highlights the segmentation results and DSC in the same MRI volume using Method 2
(top row) with 3D-Method 2 (bottom row). The segmentation outcome (green) overlaps
the ground-truth (red) with computed DSC.
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Figure 6.15: Pancreas segmentation results in four different CT image scans (volumes)
using Method 2 and 3D-Method 2. Every column of two 3D pancreas reconstructions
highlights the segmentation results and DSC in the same CT volume using Method 2
(top row) with 3D-Method 2 (bottom row). The segmentation outcome (green) overlaps
the ground-truth (red) with computed DSC.
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predictions as in 87.24+5.6% and 82.64+10.3%. This stark contrast in recall indicates
that the volumetric nature of the pancreas (object of interest) cannot be used to dicta-
te the best architecture as 3D based. It can be argued that the 2D (slice-by-slice) image
processing supports the network to learn detailed contextual information that is other-
wise missed in 3D feature extraction. Figure 6.15 compares the visualisations of four
different pancreas segmentation results in CT-NITH with the results obtained using Met-
hod 2, and Figure 6.13 displays the corresponding box and whisker plot representation
of the segmentation results using 3D-Method 2.

The evaluation of the MRI datasets presents a similar finding in comparison to the CT
dataset. Whereas Method 2 delivers a mean DSC of 84.1 4+ 4.6% and 85.7 + 2.3% for
MRI-A and MRI-B respectively, 3D-Method 2 achieves significantly improved results
as in 89.9+3.4% and 90.2+5.1%. However, the mean precision differs with 3D-Method
2 achieving 87.5 + 3.8% and 88.0 = 6.9% for MRI-A and MRI-B respectively, whereas
Method 2 delivers a better true-positive rate with a mean precision of 95.5 4+ 6.3% and
96.1 4 3.6%. Using Method 2, the mean recall for MRI-A is evidently better, achieving
97.6 +3.0% versus 92.5 £ 3.6% using 3D-Method 2, and similarly using MRI-B achieves
99.3 £ 0.7% versus 92.9 + 4.2%.

Using CT-NIH, the approach 3D-Method 2 provides significantly better contouring com-
pared to Method 2 by reducing the mean Hausdorff distance by approximately 2mm
(9.56mm) but a higher standard deviation by approximately 2mm (5.67mm) reflects
an area to improve consistency of outcome. The MRI datasets follow a similar pattern
of performance. MRI-A achieves an improved mean Hausdorff distance of 10.23mm (a
reduction by 0.32mm compared to Method 2) whereas MRI-B delivers a significantly
better mean Hausdorff distance of 7.43mm (a reduction by approximately 2mm com-
pared to Method 2). However, this improved mean metric can be contrasted with a
higher standard deviation using 3D-Method 2 versus Method 2 as in 5.98mm (versus
3.72mm) and 5.26mm (versus 1.98mm) for MRI-A and MRI-B respectively.

6.5 Conclusion

In this chapter, the methods presented in Chapters 4 and 5 are evaluated and compared
with one another. Method 1 and Method 2 address the intensity consistency problem
that is often the case when segmenting image volumes on a slice-by-slice basis. In Met-
hod 1, a novel post-processing stage optimises tissue classification using morphological,
anatomical and radiological knowledge about the connectivity between pancreatic con-
tours. Method 2 integrates a novel loss function using the Hausdorff-distance metric
to train a deep learning model that eventually predicts pancreatic features in a test

image volume. 3D-Method 2 employs a 3D-based deep learning approach by combining
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an organ localisation model and a segmentation model, which performs better in terms
of mean quantitative accuracy but demonstrates less statistical stability than Method
2. Moving forward, the segmentation results obtained in this chapter are compared to

reported state-of-the-art methods in the following chapter.
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Chapter 7

Discussion and Improvements

7.1 Introduction

This chapter discusses the qualitative and quantitative pancreas segmentation accuracy
scores achieved using Method 1, Method 2 and 3D-Method 2 as evaluated in Chapter
6 in comparison with reported state-of-the-art approaches. This chapter also discusses
potential improvements to the proposed segmentation approaches, including develop-
ments to the deep learning architecture in Method 2 and 3D-Method 2. Section 7.2
explores the significance of the proposed methods in comparison with state-of-the-art
methodologies, and proceeds to identify potential areas for optimisation, particularly
concerning multiple datasets of differing modalities. Next, Section 7.3 delivers a list
of optimisations in pre-processing and post-processing stages, and utilising additional
deep learning blocks to focus the network on the anatomical object of interest. Section
7.4 summarises the advantages of the proposed methods, Method 1, Method 2 and 3D-
Method 2 including potential improvements that could also integrate into and improve

the methodology applicable to multiple organs and muscular tissue.

7.2 Discussion

With the exception of the publicly available CT dataset that has been utilised in pub-
lications [14, 30, 72, 73, 76, 77| direct comparison with other methods in literature is
difficult due to differences in modality, scanner imaging protocols and spatial resolution.
It should be noted that the evaluated MRI data was obtained using a scanner imaging
protocol (sequence) that was not optimised for any particular organ, thus adding to the
challenge of detecting the pancreas. That said, the approaches presented in Chapter
4 (Method 1) and Chapter 5 (Method 2 and 3D-Method 2) report better quantitative
pancreas segmentation results in comparison to other state-of- the-art techniques such
as [1, 14, 21, 23, 24, 28, 70, 133, 171, 173, 174].
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Table 7.1 displays the DSC, JI, PC and RC for the CT-NIH dataset as mean + standard
deviation [lowest, highest|, in comparison to other automatic approaches reported in re-
search literature that involve CT modality. Similarly, Table 7.2 displays the quantitative
accuracy scores for datasets MRI-A and MRI-B.

7.2.1 Quantitative Assessment
Method 1: Morphological and Multi-level Geometrical Descriptor Analysis

Method 1 delivers better quantitative accuracy, comparing DSC standard deviation of
5.7% for MRI-A and 5.1% for MRI-B versus 8.7% reported in [24]. Although the mean
DSC result for MRI in [30] is relatively higher, Method 1 delivers a smaller standard
deviation versus 6.7% in the reported publication. By employing 3D max-flow and min-
cuts approach, in combination with meticulous geometrical descriptor analysis, the
proposed approach advances the quantitative performance to a mean DSC of 79.30%
in testing CT-NIH and reveals statistical significance (t-test, p < 0.0001). This method
is close to the state-of-the-arts [30, 72, 73| with approximate differences in mean DSC
of 2%, 3% and 3% respectively. The mean of listed CT data standard deviations in
DSC from other reported publications in Table 7.1 is 13.1%, whereas the proposed
method achieves approximately one-third the value in standard deviation. In fact, the
proposed method also delivers better statistical stability, comparing 4.40% versus 6.27%
[72], 6.70% [30] and 5.68% [73| in the standard deviation of DSC scores. Moreover, the
minimum DSC score is approximately 73% for CT-NIH, whereas [72, 73] report cases
that are less than 63% in DSC and [14, 21, 25, 27, 28| report cases with DSC that are
less than 10%.

Method 2: Integrating Deep Learning

Method 2 outperforms the state-of-the-art work on MRI, both in terms of accuracy
in DSC and statistical stability. In comparison to Method 1, this deep learning-based
approach raises the mean DSC score by 4.53% for MRI-A and 4.13% for MRI-B. Furt-
hermore, the standard deviation drops by 0.96% for MRI-A and 2.65% for MRI-B in
comparison to Method 1. The minimum DSC scores are approximately 72% for MRI-A
(versus 70% in Method 1) and approximately 80% for MRI-B (versus 71% in Method
1), whereas the methods described in [24, 30| report cases with DSC that are less than
60%. The mean of listed MRI data standard deviations in DSC from other reported
publications in Table 7.2 is 7.7%, whereas the proposed method achieves approximately

two times lower value in standard deviation.
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Method | DSC (%) | II (%) | PC (%) | RC (%) | N
Okada, et al., 2011 [33] | - 46.6 - - 28
Ham., et al., 2013 [79] | - 61.2 £9.08 | - - 40
Farag, et al., 2014 [78] | 68.8 £ 25.6 | 57.2 £254 | 71.5 £ 30.0 | 72.5 £ 27.2 80
Farag, et al., 2016 [1] 70.7 £ 13.0 | 579 £ 136 | 71.6 £ 10.5 | 744 +£15.1 80
Roth, et al., 2015 [14] 71.8 £ 10.7 | - - - 82
[25.0, 86.9]
Roth, et al., 2015 [76] | 68.0 = 10.0 | - - - 82
[43.0, 80.0]
Roth, et al., 2018 |72] 81.3 £ 6.3 - - - 82
Zhou, et al., 2016 [73] | 82.4 £ 5.7 - - - 82
[62.4, 90.9|
Cai, et al., 2017 [30] 82.4 £ 6.7 70.6 £ 9.0 - - 82
[60.0, 90.1] [42.9, 81.9]
Cai, et al., 2018 [130] | 83.3 £5.6 71.8 £ 7.7 84.5 £ 6.2 82.8 + 8.4 82
[59.0, 91.0] [41.8, 83.5] [60.7, 96.7] [56.4, 94.6]
Roth, et al., 2016 |77] 78.0 £ 8.2 - - - 82
Xia, et al., 2018 [131] | 84.6 & 5.1 - - - 82
Shim., et al., 2010 [32] | - 97.9 - - 98
Wang, et al., 2014 [27] | 65.5 & 18.6 | - - - 100
[2.4, 90.2]
Wolz, et al., 2012 [29] | 65.5 49.6 70.7 62.9 100
Chu, et al., 2013 [25] 69.1 £ 15.3 | 54.6 £ 159 |- - 100
Okada, et al., 2015 [28] | 73.4 £ 15.1 | 60.4 + 16.7 | - - 134
Liu, et al., 2019 [134] 71.45 - - - 136
Saito, et al., 2016 [75] | 74.4 £20.2 | 62.3 £ 19.5 | - - 140
Oda, et al., 2016 [74] 75.1 £ 154 | 62.1 £16.6 |- - 147
Kar., et al., 2017 70] 785+ 14.0 | 66.3 £155 |- - 150
Tong, et al., 2015 |71] 71.1 £14.7 | 569 £ 152 | - - 150
Wolz, et al.,, 2013 [21] | 69.6 £ 16.7 | 55.50 £ 17.1 | 67.9 £ 18.2 | 74.1 £ 17.1 | 150
CT-NIH 79.3 £+ 44 |66.1 6.2 |88.6 6.9 |97.6+ 1.9 | 82
(Method 1) [72.8, 86.0] | [58.2, 75.5] | [74.5, 99.5] | [94.7, 99.8]
CT-NIH 83.1+£53 |[7T14+74 |97.6 £5.3 |97.1 + 3.7 | 82
(Method 2) [69.3, 89.6] | [53.1, 81.1] | [75.2, 99.9] | [84.9,100.0]
CT-NIH 84.7 £ 79 |74.2+11.4|87.2 £5.6 |82.6 £ 10.3 | 82
(3D-Method 2) | [65.4, 95.1] | [48.7, 86.1] | [71.7, 95.3] | [60.2, 94.9]

Table 7.1: Overall DSC, JI, PC and RC shown as mean =+ standard deviation [lowest,
highest| for automatic pancreas segmentation methods in CT modality image volumes.
The value of N represents the dataset size.
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| Method | DSC (%) | JI (%) | PC (%) | RC (%) | N |
Cai, J., et al., 76.1 £ 87 - - - 78
2017 [24] [47.4, 87.1]
Cai, J., et al., 80.5 £6.7 |67.9+89 |- - 79
2017 [30] [59.1, 89.4] | [41.9, 80.9)
Cai, J., et al., 80.7 74 |682+96 [84.3+£76 |783+102 79
2018 [130] [48.8, 90.5] | [32.3,82.7 [55.8, 95.8] | [38.6, 95.0]
Asaturyan, H., 75.5 + 7.0 61.2 + 9.2 - - 130
et al., 2018 [13] [65.0, 86.9] | [48.1, 76.9
MRI-A 79.6 + 5.7 | 66.5 = 7.9 | 85.7 + 11.5 | 94.7 & 10.7 | 216
(Method 1) [68.6, 87.5] | [52.4, 77.8] | [71.5, 98.9] | [50.5, 99.7]
MRI-A 84.1 + 4.6 729 £6.5 | 955+ 6.3 |97.6 = 3.0 | 216
(Method 2) [72.1, 89.6] | [56.4, 81.1] | [71.7, 99.7] | [89.9,100.0]
MRI-A 89.9 + 3.4 | 81.87 +5.6 | 87.5 £ 3.8 | 92.5 + 3.6 | 216
(3D-Method 2) | [82.4, 94.2] | [73.8, 89.1] | [78.9, 91.7] | [84.1, 9.7]
MRI-B 81.6 + 5.1 [69.2 7.1 |[82.2+5.8 |84.8+ 83 |132
(Method 1) [71.3, 88.0] | [55.5, 78.6] | [73.1, 93.5] | [69.4, 96.0]
MRI-B 85.7 £23 |75.1+3.5 [96.1+3.6 |99.3+0.7 | 132
(Method 2) [79.9, 90.3] | [66.5, 82.4] | [86.7,100.0] | [99.9,100.0]
MRI-B 90.2 + 5.1 [82.6 7.8 [88.0+6.9 929+ 4.2 |132
(3D-Method 2) | [72.2, 95.8] | [56.4, 91.9] | [58.4, 95.7] | [81.7, 97.1]

Table 7.2: Overall DSC, JI, PC and RC shown as mean + standard deviation [lowest,
highest| for automatic pancreas segmentation methods in MRI modality image volumes.
The value of N represents the dataset size.
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[ Method using CT-NIH | DSC (%) [JI (%) |
Farag, A., et al., 2014 78] 68.8 +25.6 | 57.2 + 254
Roth, H.R., et al., 2015 [76] | 68.0 + 10.0 | 51.5 + 5.1
Ronneberger, O., et al., 2015: | 79.7 + 7.6 66.8 + 9.60
2D UNet Model [171]

Long, J., et al., 2015: 80.3 £ 9.0 67.1 + 4.7
2D FCN Model [174]

Roth, H.R., et al., 2016 [14] | 71.8 £ 10.7 | 56.0 &+ 5.7
Roth, H.R., et al., 2016 [77] | 78.0 £ 8.2 63.9 + 4.3
Gibson, E., et al., 2018 [133] | 75.4 £ 9.8 60.5 £ 5.1
Zhou, Y., et al., 2016 [73] 82.4 + 5.7 70.1 £ 2.9
Cai, J., et al., 2017 [30] 82.4 + 6.7 70.6 £ 9.0
Farag, A., et al., 2017 [1] 70.7 £13.0 | 57.9 &£ 13.6
Xia, Y., et al., 2018 [131] 84.6 + 5.1 73.3 £ 2.6
Roth, H.R., et al., 2018 [72] | 81.3 £ 6.2 68.5 £+ 3.2
Roth, H.R., et al., 2018: 76.8 £ 9.4 62.3 £ 4.9
3D FCN Model [173]

Proposed: Method 1 79.3 + 4.4 | 66.1 + 6.2
Proposed: Method 2 83.1 £53 |714+T74
Proposed: 3D-Method 2 | 84.7 £ 7.9 | 74.2 £ 114

Table 7.3: Overall DSC and JI are shown as mean + standard deviation (%) for auto-
matic pancreas segmentation methods using the publicly available CT dataset.

[ Method using MRI-A [ DSC (%) [JI (%) |
Ronneberger, O., et al., 2015: | 69.1 = 10.2 | 53.8 £+ 14.2
2D UNet Model [171]

Long, J., et al., 2015: 70.2 + 8.5 63.5 £ 13.5
2D FCN Model [174]

Roth, H.R., et al., 2016 [14] | 44.5 £ 25.2 | 32.7 4+ 29.4
Gibson, E., et al., 2018 [133] | 52.6 £ 17.1 | 44.1 4+ 20.7
Roth, H.R., et al., 2018: 65.2 + 10.1 | 52.2 £+ 15.3
3D FCN Model [173]

Proposed: Method 1 79.6 £ 5.7 | 66.5 = 7.9
Proposed: Method 2 84.1 + 4.6 | 72.9 + 6.5
Proposed: 3D-Method 2 | 89.9 + 3.4 | 81.9 + 5.6

Table 7.4: Overall DSC and JI are shown as mean + standard deviation (%) for auto-
matic pancreas segmentation methods using the MRI-A dataset.
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Method using MRI-B [ DSC (%) [JI (%) |
Ronneberger, O., et al., 2015: | 72.8 £ 7.5 67.9 £10.2
2D UNet Model [171]
Long, J., et al., 2015: 709 £ 7.7 65.4 +13.5
2D FCN Model [174]
Roth, H.R., et al., 2016 [14] | 50.1 £ 22.7 | 44.9 £+ 12.0

Gibson, E., et al., 2018 [133] | 55.8 + 18.6 | 49.9 4+ 18.7

Roth, H.R., et al., 2018: 69.6 £11.5 | 61.2 & 15.9
3D FCN Model [173]

Proposed: Method 1 81.6 £5.1 | 69.2 + 7.1
Proposed: Method 2 85.7 + 2.3 | 75.1 + 3.5

Proposed: 3D-Method 2 | 90.2 + 5.1 | 82.6 £ 7.8

Table 7.5: Overall DSC and JI are shown as mean + standard deviation (%) for auto-
matic pancreas segmentation methods using the MRI-B dataset.

Applying Image Data to State-of-the-Art Segmentation Models

The proposed methods are also evaluated against the direct performance of multiple
baseline segmentation models, which have served as the foundation for many other state-
of-the-art segmentation approaches. Table 7.3 displays the quantitative segmentation
results (DSC and JI) using the CT-NIH dataset against other (mostly) deep learning
based methods. Similarly, Table 7.4 and Table 7.5 display the quantitative segmentation
results (DSC and JI) using MRI-A and MRI-B, respectively. As highlighted in bold
across all tables, Method 2 produces mean quantitative accuracy scores that outperform
or are close to the state-of-the-art. Furthermore, Method 1 and Method 2 produce a
relatively lower standard deviation in comparison to other methods, reflecting stability

in the proposed techniques.

One of the drawbacks of U-Net [171] is that network optimisation may be delayed at
the stage containing the middle layers, posing a risk of ‘ignoring’ layers with abstract
features during network optimisation. Furthermore, while several layers of max-pooling
in U-Net achieves more translation invariance, there is also a loss of spatial resolution in
the feature maps, posing a threat for accurate segmentation where pancreas boundary
delineation is essential. In contrast, the architecture of Method 2 ensures that boundary
information is stored in the encoder feature maps before any sub-sampling, retaining
only the max-pooling indices. When the decoder network upsamples its input feature
maps using the memorised max-pooling indices from the corresponding encoder feature
maps, spare feature maps are produced and then convolved with a decoder filter to
generate dense, deep feature maps containing improved contextual information about

the pancreas’ boundary.
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The method in [14] lacks the advantage of encoder-decoder architecture. Furthermore,
while the FCN [174] upsamples only once with one layer in the decoder, the encoder-
decoder architecture in Method 2 has multiple upsampling layers and employs skip
connections and concatenates instead of adding. The FCN suffers from the drawback of
not capturing local information such as the pancreas shape and structural differences.
Moreover, although FCNs offer the advantage of producing detailed feature maps by
capturing pancreatic spatial contextual information, there is the subsequent risk of
network overfitting, often extremely sensitive to alternations in the pancreas’ spatial
context and structure. Also, employing the Cross-entropy loss function using FCN has
a drawback on predicting true-positive pixels, while the proposed Hausdorff-Sine loss
achieves a better prediction of true-positive pixels and delivers strong discrimination of

true-negative pixels.

The loss of image quality due to the extreme downsampling of input image volumes
to spatial sizes 144 x 144 x 144 [133] and 132 x 132 x 116 [173] impact the final seg-
mentation outcome. Moreover, the Dice loss in [133| squares the convolutional weights
in the backpropagation stage, causing instability during network optimisation and a
higher rate of false-negative predictions. In contrast, the Hausdorff-Sine minimises the
maximum deviation between a prediction and desired outcome; and the addition of
a sinusoidal component, inspired by the Cross-entropy loss, increases non-linearity to

reduce over-fitting during network training.

As an extension of the second proposed approach, 3D-Method 2 comparatively out-
performs state-of-the-art approaches in CT-NIH and is relatively comparable to [131]
albeit with a higher standard deviation. This 3D-based deep learning approach sur-
passes both Method 1 and Method 2 in terms of DSC in MRI. With that said, the
evaluation of MRI-B presents high statistical variation among distinct MRI test cases

(volumes), forcing a poorer mean precision and recall accuracy score.

7.2.2 Qualitative Assessment

In Method 1, the primary source of segmentation error relates to the remaining sur-
rounding pancreas tissue, including the superior mesenteric vein, splenic artery and
duodenum. In contrast, some test image volumes have borderline, pancreas boundary
under-segmentation using Method 2. Qualitative feedback from an expert radiographer
and radiologist confirms that Method 2 produces detailed pancreas contouring for every
protrusion and indentation as opposed to an approximate or mean tracing of the organ.

Please refer to Appendix C for further information.
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(a) (b)

Figure 7.1: Columns (a) (b) and (c) highlights sample slice and corresponding segmen-
tation outcome from MRI-A, MRI-B and CT-NIH respectively. Notice the variation in
noise and image distortion between (a) and (b), and the difference in blur and sharpness
between (a) and (c). All segmentation results (green) are mapped over the ground-truth
(red) and have approximately 85% accuracy in DSC.

Robustness to Noise Variation

Unlike other publications that focus on one modality or one dataset per modality, both
proposed methods are robust to variations in noise, distortion, sharpness and changes in
greyscale intensity distribution within multiple MRI datasets and a CT dataset. Figure
7.1 highlights three different slices from exemplar test volumes and their corresponding
segmentation result for Method 1. Notice the difference in levels of original noise and
the comparable, accurate segmentation outcome of approximately 85% in DSC. Since
Method 2 also employs a similar stage of digital contrast enhancement and continuous
max-flow and min-cuts segmentation in a 3D domain, this approach is equally robust

to image quality variation.

7.2.3 Computational Efficiency

Using Method 1, the overall mean runtime per CT and MRI volume is 30 and 22 minutes
respectively, and not 2 to 4 hours as in [21] via an eight Intel Xeon cores clocked at 3
GHz and 32 GB RAM, [25] and [70] via an Intel Xeon Dual or Quad Core 1.86-3.07
GHz CPU. Except for training a random forest for just under 10 minutes to identify
the major pancreas region, the approach described in Chapter 4 evaluates an image
volume in 10 to 35 minutes via a workstation with i7-5930k-CPU at 3.50 Ghz.

In contrast to Method 1, although Method 2 involves training a network for approxi-
mately 11 hours, the testing aspect is reduced to 5 - 10 minutes. The training time for
3D-Method 2 (which employs 3D vectors) is approximately 1.5 times that of Method 2
(which employs 2D vectors). The testing time, however, ranges between 30 seconds and

1 minute, which is a significant advantage in comparison to Method 2. Furthermore,
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the proposed approaches do not involve the computationally expensive costs of training
a network in approximately 2 - 3 days [14, 173], 1 day [171, 174] and 21 hours [133],

before segmenting a test image volume.

Therefore, while Method 1 removes the computational costs of training a network,
Method 2 and 3D-Method 2 reduce the testing time and provide higher quantitati-
ve accuracy in segmentation results. In the future, these runtimes can be potentially

reduced by a factor of 10 by using one or more GeForce Titan X GPUs.

7.3 Potential Optimisation

Throughout the development of the proposed approaches, the qualitative feedback has
focused on boundary delineation and identification of the major region of interest in a
scan. For example, organ segmentation methods that minimise the Hausdorff or average
surface distance are appropriate for extended computation of organ volume and curvatu-
re. However, alternative qualitative feedback has focused on the major region of interest
to highlight the “problem-area” for enhanced analysis. Therefore, novel computational
techniques can be tailored to meet variable criteria that are often dependent on the
primary objective of a biomedical research-based task with a clinical translation. Using
Method 2 or 3D-Method 2 as the baseline reference, the following modifications can be
taken into consideration to improve the boundary delineation, and reduce false-positive

and false-negative “pancreas” results:

e Removal of surrounding splenic artery and vessels prior to the max-flow and
min-cuts segmentation stage. As reported in [124], a number of clinical support
structures are implemented to detect the splenic artery by optimising the spatial
relationship between the vessel path, and local pancreas texture and position.
Although the modality of choice is CT and thus gives a relatively more apparent
distinction between organs and vessels in comparison to MRI, the concept can
still extend to MRI data. Therefore, incorporating further anatomical knowledge
relating to abdominal organs, in combination with radiological information about
the pancreas and surrounding tissue, can potentially raise the overall accuracy

score.

e Incorporate texture descriptors into a statistical model or a deep learning network
that can identify key duodenum landmarks in an image prior to pancreas segmen-
tation. Therefore, such a pre-processing model that is generated using heavy data
augmentation can potentially minimise false-positive predictions, and even reduce
computation time at the central segmentation and post-processing stage. In some
test image volumes, the duodenum, which touches the head of the pancreas, often

‘sticks’ to the resultant segmentation; this occurs whenever a distinction cannot

125



be made between the greyscale intensities of the pancreas and duodenum at the
max-flow and min-cuts segmentation stage. Often, the subtle detail separating the
pancreas head and duodenum are detected by medical experts through analysis of
the image slices in a back-and-forth manner, whereby identifying the features or
slight contours required to establish organ separation. In fact, it can be possible
to ‘strengthen’ the detection of weak boundaries between the duodenum and pan-
creas head in a manner that is similar to the approach in [129] for the renal cortex
and kidneys. Here, a statistical shape model for the area of interest is developed in
order to initialise the outer surface and inner surface automatically. Afterwards,
a graph-cuts algorithm can be introduced to detect the optimal boundary of the

organ.

e [t is also the intention to train a deep learning model combining multiple moda-
lities, including a CT dataset and multiple MRI datasets, each of which relate
to a different MRI sequence. The advantages of producing one deep learning mo-
del that provides relatively accurate predictions are cost-effective and also, on a
developmental level, can allow the programmer to observe the features that the

deep learning model is learning across multiple modalities and MRI sequences.

7.3.1 Improvements to Architecture in Method 2

It is noted that the proposed “targeted-to-fine” segmentation approach in Method 2
can be extended to enhanced targeted location detection as in |72, 73|, and therefore
improved segmentation performance may be achievable with a combination of these

methodologies. This is particularly important for detecting smaller pancreas features in

2D (slice).

One of the motivations for modifying the (SegNet) deep learning model is to reduce
the memory and runtime in the upsampling (decoder) stage while maintaining targe-
ted, quality pancreas segmentation. Such requirements are driven by the need to deliver
accurate and efficient segmentation between the pancreas and surrounding non-pancreas
tissue. To further optimise the deep learning model, one possible strategy reduce the
number of filters in the last two stages of down-sampling (encoder) from 512 to 256.
Such a reduction may achieve a significant drop in classification accuracy. However,
the deep learning model should ideally borderline over-segment the main pancreas re-
gion, after which the continuous max-flow and min-cuts stage ‘carves’ out the finer,
more detailed pancreas boundaries. Increasing the current data augmentation to inclu-
de cropping, spatial augmentation and colour augmentation might increase the accuracy
classification in terms of raising the level of true-positive “pancreas” for relatively smal-

ler pancreatic features on a slice-by-slice basis. Thus, reducing the number of filters and
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increasing the amount of data augmentation might counter-balance the overall network

training time.

It should be noted that one of the disadvantages of ReLU is not being differentiable
at 0. Furthermore, this activation function can, at times, cause “dead neurons” during
training, where the weights in the filters are not updated to different values. In order to
address and overcome these challenges, activation functions such as Leaky ReLU [218],
Exponential Linear Unit (ELU) [219] and Scaled Exponential Linear Unit (SELU) [220]
will be investigated. Furthermore, instead of randomly initialising the weights of filters
in the convolutional layers, it might be a useful practice to employ custom weight
initialisation techniques [220, 221, 222 that take into account the training dataset size

and the nature of the training data’s spatial resolution.

7.4 Conclusion

The comparison to state-of-the-art methodologies reveals significant advantages of the
methods proposed in this thesis, both in terms of quantitative accuracy and qualitative
feedback. The final quantitative pancreas segmentation results (especially using Method
2 and 3D-Method 2) are better than or close to state-of-the-art approaches for both CT
and MRI modality, and report higher statistical stability with lower standard deviation
metrics. The feedback obtained by an expert radiographer and an expert radiologist,
reveals that the proposed methods produce detailed contouring of the pancreas for
every protrusion and indentation. Given the wide variation in datasets, Method 2 or
3D-Method 2 can be further optimised and applicable to other abdominal MRI and CT
image volumes and also, generalisable to other organ or muscular tissue segmentation
tasks.
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Chapter 8

(Generalisation and Future Work

8.1 Introduction

In the past few decades, publications in medical and biomedical science have highlighted
varying correlations between morphological features of organs and tumours, including
volume, curvature and associated medical conditions. However, limitations to such stu-
dies include a small patient dataset, e.g. more commonly multiples of 10 patient cases,
as opposed to multiples of 100 or 1000 that could otherwise generate a more reliab-
le, accurate correlation between morphological features that can serve as a prognostic

biomarker for different medical conditions.

This chapter explores the generalisation of the proposed segmentation methodologies
(Method 2 and 3D-Method 2), with application to other abdominal organs and mus-
cular tissue. Furthermore, this chapter explores potential future work of applying the
proposed segmentation approaches to a broader spectrum of modalities, MRI sequences
and organs. Generalisability is a significant step forward in medical image computing
and biomedical research; this can serve as a tool that potentially identifies key prognos-
tic biomarkers about a medical condition, and reduce the need for manually segmenting
3D radiological scans. A proposed generalisation framework, that is proposed in this
chapter, is fully automatic and employs image volumes obtained from multiple MRI
sequences. Section 8.2 addresses the biomedical and potential healthcare impact of
extracting morphological features in 3D radiological scans, and also the diverse state-
of-the-art publications that draw correlations and prognostic biomarkers from these
morphological features in different organs and muscular tissue. Section 8.3 presents and
discusses the advantages of a generalised segmentation framework that incorporates the
automatic segmentation methodology discussed in Chapter 5. As an extended proof of
generalisability, Sections 8.4, 8.5 and 8.6 present and discuss the experimental results
for the liver, iliopsoas muscles and pediatric kidney segmentation in diverse MRI se-

quences. Section 8.7 proceeds to discuss the extension of the proposed segmentation
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approaches in different MRI sequences, and other organ abnormalities in which com-
bing different MRI sequences may improve the accuracy of detecting (and classifying)

the abnormality of interest. Section 8.8 provides a conclusion for this chapter.

8.2 Impact of Extracting Morphological Features

Extracting accurate morphological features in organs can generate the following positive

contributions to scientific knowledge, clinical research and therapy planning:

(a) Assess and correlate changes in organ shape, volume and curvature. Please refer to

Appendix D for further information.

(b) Foster clinical studies: establish possible correlations between factors such as organ

volume, organ curvature, anthropometric measures and health status!.

(c) Understand the relationship between organ size, structure and cancerous tumours

(e.g. ductal adenocarcinoma).

(d) Establish severity or progression of a condition (e.g. type 2 diabetes) or identifica~

tion of neoplasms (tumours).

(e) Stratification of patients in order to develop targeted treatment plan.

Having discussed the advantages and disadvantages of differing modalities in Chapter
2 (Section 2.3) it is an important reminder that MRI offers significant advantages
concerning soft tissue imaging optimisation. The report published in [110] describes the
importance of using MRI imaging for contouring or delineating a tumour within the
pancreas, especially as it relates to cancer treatment involving 3D conformal radiation
planning. Abdominal MRI sequences are complex and vary, with dependence on the
scanner imaging protocol and the organ of interest, which can be very challenging
for the radiation oncologist. Therefore, an automatic segmentation tool that produces
accurate (detailed) organ and tumour contouring can remove the human-error variation
that often occurs in manual segmentation. Moreover, a computing-based approach for
automatic segmentation can offer a potentially universal standard in defining an organ

or tumour.

Over the past few decades, multiple studies have highlighted the correlation between
liver volume and shape, and higher body weight and alcohol consumption [111, 112].
In fact, [113| reports significant changes in liver and spleen volumes in alcoholic liver

disease. Moreover, the liver volume has served as a useful measure when determining

'Health status refers to a person’s level of physical health and illness, and their sense of well-being
while factoring in the possible presence of biological or physiological impairment and their history of
medical conditions.
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liver transplantation in both children and adults [114]. Liver volume may also correlate
with several metabolic processes, particularly in relation to liver function for patients
with chronic hepatitis B and C [115].

In the past few years, publications in biomedicine have shown a correlation between
kidney volume and polycystic kidney disease, particularly concerning increases in cyst
volume and change in glomerular filtration rate? [116, 117|. Further studies highlighted
that total kidney volume (TKYV) is related to complications of Autosomal Dominant
Polycystic Kidney Disease (ADPKD) as well [117], and that height-adjusted TKV is a
prognostic biomarker in ADPKD [116].

Information about the texture of the spleen can be used as a predictor for stages of
Sickle Cell Disease® [118] and parasitic infections [119]. The spleen is highly variable
and can have a wide range of anomalies in relation to shape, size and location [120)].
Although such anomalies are present from birth (such as lobulations, notches, and
clefts), there are also acquired types: Splenosis? is caused by trauma and an enlarged
spleen can be a symptom of Sickle Cell Disease. Furthermore, [121] reported that an
illness characterised by polyarthritis, fevers, and sweats was associated with spleen

enlargement and fluctuations in size.

In other more recent studies, data about the structure and volume of psoas muscles,
which forms a major composite part of the iliopsoas muscles, can support subject stra-
tification and serve as a predictor of outcome for patients treated for bladder cancer

chemotherapy|[122] and ovarian cancer [123].

8.3 Proposed Generalised Segmentation Framework

The proposed segmentation technique could be extended to other organs or muscles of
high variability. A generalisation of the segmentation framework can serve as a tool for
classification of measures, and therefore provide an indication or prognostic biomarker
about a condition, or progression or severity of a condition. Such classifications would
be, nonetheless, founded on supporting biomedical statistical analysis. Figure 8.1 high-
lights the proposed generalised segmentation framework, starting with a medical image
scan as an input, with the final output as a likely predictor of a condition, disorder or

disease.

2Glomerular filtration rate (GFR) is a test used to check how well the kidneys are working.

3Sickle Cell Disease is the name for a group of inherited conditions that affect the red blood cells.

4Splenosis is the result of spleen tissue breaking off the main organ and implanting at another site
inside the body.
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Figure 8.1: Overview of generalised segmentation framework: the initial input is a 3D
medical image scan that is processed to segment an organ, muscle or tumour. The seg-
mentation result is processed through a biomedical statistical and classification analysis
model, which consequently outputs the final prediction to indicate the likelihood of a
condition or progression of a current condition.
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Figure 8.2: Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for liver
segmentation in MRI using Method 2.

8.3.1 Dataset

The dataset used in the experiments described in Sections 8.4 and 8.5 contain 30 T2-
weighted abdominal 3D MRI scans (image volumes). Every MRI scan has been obtained
using a Siemens Trio 3T scanner. These scans were taken from volunteers aged 18 or
over, who displayed early signs of type 2 diabetes. Every 3D volume consists of 370 axial
slices, with each slice of spatial size 224 x 174 pixels with 3mm thickness, and 2.2321mm
in voxel width and height. In these experiments, the training and testing dataset is split

into 20 and 10 image volumes, respectively with a 3-fold cross-validation.

8.4 Liver

This section details the analysis of the liver in MRI using Method 2 and 3D-Method 2.
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Figure 8.3: Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for
iliopsoas muscles segmentation in MRI using Method 2.
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Figure 8.4: Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for liver
and iliopsoas muscles segmentation in MRI using 3D-Method 2.

8.4.1 Experimental Results and Analysis

A number of state-of-the-art approaches have achieved mean Dice similarity coefficient
(DSC) scores of 94% [168], 94.5% [169], 89% [170], 72.9% [171] and 93.73% [172]. The
methodology proposed in Method 2 both surpasses and achieves close to state-of-the-
arts with a mean DSC of 94.32 + 0.97% and a mean Jaccard index (JI) of 89.26 £
1.75%, and the low standard deviation in DSC implies that the approach is statistically
robust. Figure 8.5 displays the visualisations of six different liver segmentation results
in the MRI dataset, and Figure 8.2 displays the corresponding box and whisker plot
representation of the segmentation results. A mean precision of 94.81 + 3.05% and a
mean recall of 97.10 & 1.97% reflects a high true-positive rate and a low false-negative
rate. Furthermore, the mean HSD is 9.24 4+ 2.84mm, which is relatively low and better

in comparison to the majority of reported organ or tumour HSD results (> 10mm).

132



DSC: 92.98% DSC: 94.60% DSC: 90.43% DSC: 97.49% DSC: 97.41% DSC: 97.22%

DSC: 95.64% DSC: 94.31% DSC: 93.71% DSC: 93.02% DSC: 92.52% DSC: 91.10%

" ()

Figure 8.5: Segmentation results in six different MRI image scans (volumes) using Met-
hod 2. Every column corresponds to a single MRI volume. From left, first two rows
display sample MRI axial slices with segmentation outcome (green) against ground-
truth (red), and computed DSC; third row displays 3D reconstruction of entire liver
(green) segmentation against its ground-truth (red) with computed DSC.
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Figure 8.6: Liver organ segmentation results in six different MRI image scans (volumes)
using Method 2 and 3D-Method 2. Every row of two 3D liver reconstructions highlights
the segmentation results and DSC in the same MRI volume using Method 2 and 3D-
Method 2 respectively. The segmentation outcome (green) overlaps the ground-truth
(red) with computed DSC.
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In contrast to Method 2, the proposed 3D deep learning approach (3D-Method 2) achie-
ves a mean DSC of 95.64 £ 1.31% and mean JI of 91.66 & 2.42%, with this simultaneous
rise in mean DSC (1.32%) and standard deviation (0.34%) reflecting a capability to
better address certain diversity of artefact-prone imaging. Figure 8.6 displays the vi-
sualisations of six different liver segmentation results in the MRI dataset against the
results obtained using Method 2, and Figure 8.4 displays the corresponding box and
whisker plot representation of the segmentation results. Furthermore, the mean HSD is
5.64+£2.48mm, a promising reduction in error of approximately 4mm relative to Method
2. A mean precision of 94.73 4 2.34% is approximately 1% less in standard deviation
compared to Method 2, and a mean recall of 96.60 & 1.18% reflects a maintained high

true-positive rate and a low false-negative rate.

8.5 Iliopsoas Muscles

The iliopsoas muscles are a pair of muscles, each referring to the joining of the psoas
(major) muscle and iliacus muscle located toward the inner hip. This section details

analysis of iliopsoas muscles in MRI using Method 2 and 3D-Method 2.

8.5.1 Experimental Results and Analysis

The approach reported in [142] delivers psoas muscles segmentation results of 72.3% in
mean Jaccard index (JI). In contrast, the approach proposed in Method 2 raises the
state-of-the-art segmentation results for the closely compared anatomical structures
to 87.58 + 2.05% in mean DSC and 77.96 + 3.15% in mean JI. Figure 8.7 displays the
visualisations of six different iliopsoas muscles segmentation results in the MRI dataset.
Very few outliers are highlighted in Figure 8.3, which displays the corresponding box and
whisker plot. The mean HSD is 5.42 4+ 1.18mm, which, similar to the liver, is relatively
low and better in comparison to the majority of reported organ or tumour HSD results.
Furthermore, the mean precision result is an impressive 99.32 + 0.52% and the mean

recall is 96.85 + 1.93% reflecting a high true-positive rate and low false-negative rate.

3D-Method 2 delivers a relatively better performance in mean DSC as in 88.41 4-2.39%
and a mean JI of 78.56 + 3.59%. Figure 8.8 displays the visualisations of four different
iliopsoas muscles segmentation results in the MRI dataset against the results obtai-
ned using Method 2, and Figure 8.4 displays the corresponding box and whisker plot
representation of the segmentation results. Arguably, the liver and iliopsoas muscles
segmentation results using the 3D deep learning approach are not significantly better
than the 2D based approach in Method 2; that said, it is necessary to note the advan-
tages of downsampling the image volumes for computational efficiency and to optimise

for classification between clinically healthy and abnormal morphological features.
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Figure 8.7: Segmentation results in six different MRI image scans (volumes) using Met-
hod 2. Every column corresponds to a single MRI volume. From left, first two rows
display sample MRI axial slices with segmentation outcome (green) against ground-
truth (red) and computed DSC; third row displays 3D reconstruction of the entire
iliopsoas muscles (green) segmentation against its ground-truth (red) with DSC.
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Figure 8.8: Iliopsoas muscles segmentation results in four different MRI image scans
(volumes) using Method 2 and 3D-Method 2. Every column of two 3D iliopsoas muscles
reconstructions highlights the segmentation results and DSC in the same MRI volume
using Method 2 (top row) and 3D-Method 2 (bottom row). The segmentation outcome
(green) overlaps the ground-truth (red).

135



8.6 Kidneys

This section covers the segmentation results and analysis of clinically “normal” and
“abnormal” pediatric kidneys in Dynamic Contrast Enhanced (DCE) MRI using 3D-
Method 2.

8.6.1 Dataset

Thirty-two 4D DCE-MRI scans of pediatric patients were acquired at 3 Tesla (T) for
6 minutes after injecting Gadavist® using a motion-robust, radial stack-of-stars 3D
FLASH sequence as follows: Repetition Time (TR)® of 3.56 milliseconds (ms), Echo
Time (TE)” of 1.39 ms and Flip Angle (FA)® of 12 degrees. A 4D volume can be
viewed as a stack of 3D volumes of the same region of interest captured over a period
of time, and therefore a 4D scan has a temporal dimension. Every 3D volume consists
of 32 coronal slices, with each slice of spatial size 224 x 224 pixels and 3mm thickness,
and 1.25mm in voxel width and height. The dataset includes abdominal scans from a
broad spectrum of ages (2 months through to 17 years) with varying kidney conditions.
Sixteen scans were taken from patients with hydronephrosis?, who had received MRI
scanning as part of their clinical protocol since 2017. This particular group depicted
kidney anatomy that deviates significantly from a clinically healthy shape due to varying
levels of hydronephrosis. The remaining number of scans were taken from patients
recruited under a protocol approved by the Institutional Review Board!®. This group of
patients had already undergone contrast-enhanced MRI clinically, but they also received
6 additional minutes of research-based imaging of their kidneys within the same session
to acquire the DCE-MRI. The acquisition protocol was optimised to achieve a mean
temporal resolution of 3.3 seconds for the arterial phase!! (2 minutes) and 13 seconds
for the remaining phase (4 minutes). The 4D dynamic imaged series were reconstructed

offline using a compressed sensing algorithm to subsequently reduce streaking artefacts
[177].

5Gadavist is a gadolinium-based MRI contrast agent.

6In MRI scanning, the Repetition Time (TR) is the time between consecutive radio frequency (RF)
pulses applied to the same 2D slice.

“In MRI scanning, the Echo Time (TE) is the time between the delivery of the radio frequency
(RF) pulse and the peak of the signal induced in the MRI machine’s coil.

8In MRI scanning, the Flip angle (FA) refers to the degree of rotation the net magnetisation vector
exhibits during the delivery of a radio frequency (RF) pulse.

9Hydronephrosis is a condition that normally occurs when a kidney swells because urine fails to
sufficiently drain from the kidney to the bladder.

10The Institutional Review Board (IRB) is a committee recognised to protect the rights and safety
of human research subjects who participate in research activities at an institution, and to ensure that
methods proposed for research at the affiliated institution are ethical.

"n a medical scanning acquisition, the arterial phase refers to a time range after contrast injec-
tion, in which the acquired image shows full enhancement of hepatic arteries and lacks the antegrade
(forward-moving) enhancement of hepatic veins.
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Figure 8.9: Dice Score coefficient (DSC) and Jaccard index (JI) box plots for “abnormal”
and “normal” kidneys segmentation in MRI using 3D-Method 2.
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Figure 8.10: Dice Score coefficient (DSC) and Jaccard index (JI) box plots for “abnor-
mal” and “normal” kidneys segmentation combined in MRI using 3D-Method 2.
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Figure 8.11: Using 3D-Method 2, a first sample batch of segmentation results in three
different DCE-MRI scans (4D volumes) depicting clinically “normal” kidneys. Every co-
lumn corresponds to a single DCE-MRI 4D volume. Top row displays sample slices with
segmentation outcome (green) that overlap the ground-truth (red) and DSC; bottom

row displays 3D reconstruction of whole kidneys segmentation that overlaps the ground-
truth and DSC.

8.6.2 Experimental Results and Analysis

In the following experiments, the training and testing dataset is split into 24 and 8 image
volumes, respectively. The training dataset combines scans depicting both “normal” and
“abnormal” kidneys. There are two test datasets, the first of which contains 8 DCE-
MRI scans that show healthy kidneys; and the second test dataset contains 8 DCE-MRI
scans depicting diverse abnormalities that result in irregular shape, size and location.
It should be noted that two different networks are trained, with each network omitting

the corresponding test data.

Figures 8.11 and 8.12 show altogether six different 3D reconstructions for “normal”
kidneys, in addition to an accompanying slice that highlights the boundary contouring.
Figures 8.13 and 8.14 provide similar information for six different “abnormal” kidneys
cases. Using 3D-Method 2 and evaluating the “normal” dataset achieves a mean DSC
of 90.48 +1.56% and a mean JI of 82.64 +2.61%. The relatively low standard deviation
indicates robustness towards intensity variation of contextual information. A relatively
high mean precision of 86.62 + 2.26% and a mean recall of 94.74 + 1.98% indicates that
3D-Method 2 minimises the false-negative prediction rate. Despite the high variation in
the age of the patients who underwent the scanning - and thus the shape of the kidneys
- analysing the boundary delineation accuracy achieves a mean HSD of 17.43+4.79mm.

In contrast to the performance of 3D-Method 2, the 3D U-Net performs significantly
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Figure 8.12: Using 3D-Method 2, a second sample batch of segmentation results in
three different DCE-MRI scans (4D volumes) depicting clinically “normal” kidneys.
Every column corresponds to a single DCE-MRI 4D volume. Top row displays sample
slices with segmentation outcome (green) that overlap the ground-truth (red) and DSC;
bottom row displays 3D reconstruction of whole kidneys segmentation that overlaps the
ground-truth and DSC.

poorer in quantitative spatial accuracy. The mean DSC of 82.89 4+ 5.00% demonstrates
high instability, followed by a low true-positive rate as in mean precision of 73.61 £+
7.90% and a relatively stable mean recall of 95.40 + 1.80% respectively. Although using
3D DenseNets delivers better quantitative accuracy than 3D U-Net, the approach is
nonetheless inferior to 3D-Method 2, achieving mean DSC of 85.09 4+ 6.00%, and a
mean precision and a mean recall of 82.26 + 6.20% and 88.97 + 10.20%, respectively.

The segmentation results obtained using the “abnormal” dataset continue to demonst-
rate the statistical stability of 3D-Method 2, achieving a mean DSC of 86.44 + 3.84%
and a mean JI of 76.29 + 5.93%. Similarly, the mean precision and mean recall of
85.04 £+ 5.62% and 88.78 4+ 8.77% indicates the sustained high positive and low false-
negative prediction rate. A mean HSD, albeit higher than the value obtained using
the “normal” dataset, nonetheless maintains statistical stability as in 18.04 4+ 7.70mm.
The comparative baseline 3D U-Net suffers from high instability with a mean DSC of
78.94 4+ 9.10%, followed by an extremely poor mean precision rate that suffers in pre-
dicting true-positive tissue as in 69.55 4+ 13.40%. The false-negative rate is questionable
with a mean quantitative accuracy of 85.084+11.30%. The performance of 3D DenseNets
delivers better spatial overlap accuracy scores but continues to trail behind 3D-Method
2, with a mean DSC of 84.51 £ 3.30%, followed by a mean precision of 82.61 £ 5.40%
and a mean recall of 87.48 +9.00%.

139



DSC: 87.22% |[slice 22] DSC: 87.12% [slice 20] DSC: 87.22% [slice 22]

Figure 8.13: Using 3D-Method 2, a first sample batch of segmentation results in three
different DCE-MRI scans (4D volumes) depicting clinically “abnormal” kidneys. Every
column corresponds to a single DCE-MRI 4D volume. Top row displays sample slices
with segmentation outcome (green) that overlap the ground-truth (red) and DSC; bott-
om row displays 3D reconstruction of whole kidneys segmentation that overlaps the
ground-truth and DSC.

DSC: 97.93% [slice 15] DSC: 90.72% [slice 16] DSC: 84.11% [slice 19]

) .

DSC: 89.46% DSC: 87.41% DSC: 82.58%

200

150

60 o X

Figure 8.14: Using 3D-Method 2, a second sample batch of segmentation results in
three different DCE-MRI scans (4D volumes) depicting clinically “abnormal” kidneys.
Every column corresponds to a single DCE-MRI 4D volume. Top row displays sample
slices with segmentation outcome (green) that overlap the ground-truth (red) and DSC;
bottom row displays 3D reconstruction of whole kidneys segmentation that overlaps the
ground-truth and DSC.
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8.7 Future Work

With a rising need for medical image scanning, there has also been an increasing need to
employ different imaging sequences to highlight particular regions or areas of interest in
a scan. A segmentation model that combines different imaging sequences and modalities
can overcome the limitations of singular-modality scans. For example, a combination
of T1-weighted and T2-weighted sequences are obtained to detect pancreatic lesions
accurately, because such pulse sequences provide necessary complementary information.
In MRI breast cancer screening, contrast-enhanced imaging possesses high sensitivity
in detecting breast lesions, whereas T2-weighted is effective in suppressing false lesion
results [181, 182|. Also, in the case of spondylodiscitis!?, a combination of STIR (Short
Tau Inversion Recovery) and T1-weighted imaging is utilised. STIR is sensitive to water,
and the timing of the pulse sequence serves to minimise the signal arising in fatty tissues,
and therefore only water is brightened. A comparison between conventional T1-weighted
and STIR imaging can be used to evaluate the water or fat concentration within an
anatomical region of interest in a scan. The abnormal signal is evident in the vertebral
bodies and intervertebral disc, and so abnormal low signal on the T'1-weighted sequence
and abnormal high signal on the STIR image is an indication of abnormal fluid [183].
It would be of interest to develop a framework that utilises multiple modalities or
sequences of the same scan. The practicality of obtaining a relevant training dataset
that is sufficient for developing a deep learning model might be consolidated by building
upon pre-trained singular modality models. This idea is further detailed in Chapter 9,
Section 9.5.

8.8 Conclusion

In this chapter, a generalised segmentation technique is proposed with an application
to other abdominal organs and muscular tissue, such as the liver, kidneys and iliopsoas
muscles. A generalisation of the segmentation technique proposed in Method 2 (and 3D-
Method 2) can serve as a tool for classification of anatomical measures, and therefore
provide an indication or prognostic biomarker about a medical condition. Such classi-
fications would, nonetheless, need to be founded on supporting biomedical statistical
analysis. This chapter evaluates the segmentation accuracy results for liver, kidneys and
iliopsoas muscles in MRI volumes, and reports close to or higher quantitative accuracies
and statistical stability in comparison to state-of-the-art approaches. Furthermore, two
primary motivations drive the future work building upon the PhD project detailed in

this thesis: 2D and 3D deep learning method optimisation in terms of architecture and

12Spondylodiscitis is a combination of inflammation of intervertebral disc spaces and the inflamma-
tion of vertebrae.
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computational costs; and second, extending the current or improved methodology to
multiple modalities, e.g. as in MRI and US or MRI and CT. The subject regarding the
scope of project development targeting multiple organs, muscular tissue or tumours,
versus the depth in improving a technique targeting a single organ of high challenging

variation and inter-observer error, is discussed in the next chapter.
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Chapter 9

Conclusions

9.1 Introduction

The development of this PhD project began with a challenging task: segment the pan-
creas from one of the most readily used abdominal imaging modalities and one that is
prone to high artefacts, being MRI. The pancreas is an organ of diverse structure, size
and location that varies drastically from patient to patient, and associated medical con-
ditions of diabetes and cancer is a growing interest (and concern) in the medical research
and clinical community. With that said, the progression of this project has attempted to
balance scope, application and depth. Where scope is concerned, the proposed approa-
ches demonstrate generalisability in terms of application to other abdominal organs and
muscular tissue, including MRI of diverse sequences and dimension (e.g. 4D data with a
temporal dimension). Regarding application, the progression of this thesis has detailed
the necessity to compute useful morphological features and biomarkers for both clini-
cal and research purposes, in which an accurate prior organ segmentation is vital. The
focus on depth has driven method optimisation, in which Method 2 and 3D-Method 2
(detailed in Chapter 5) are applied to two diverse MRI datasets depicting the pancreas

alone.

This chapter aims to provide a summary of key challenges, motivations and achieve-
ments accomplished using the proposed methods in this PhD research project. Section
9.2 delivers a reminder of critical, technical limitations and the driving motivation for
developing a system for organ segmentation in multiple modalities and multiple MRI
sequences, particularly but not exclusively limited to the pancreas organ. This section
examines the various drawbacks of the reported state-of-the-art and presents outperfor-
ming quantitative results using the methods that are proposed in this thesis. Section 9.3
reinstates the technical, original contributions to computer science (computer vision),
and discusses the impact of these contributions to knowledge in medical image analysis.

Section 9.4 compares the findings between the proposed methods in this thesis, with
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a focus on segmentation performance and computational efficiency. Section 9.5 reveals
the significance of employing the original contributions to knowledge into future work.
Section 9.6 summarises this chapter with a conclusion reflecting upon the application

of these original contributions to knowledge, and the impact in biomedical research.

9.2 Challenges and Motivation

Arguably, one of the ongoing challenges that has driven the PhD project development
towards depth as opposed to scope is the high variation in pancreas segmentation accu-
racy in terms of spatial overlap and boundary distance error. The progression of this
project has been guided by the need to develop a method that could be successfully
applied to multiple MRI sequences that depict the pancreas as the object of interest.
To address this first challenge, Method 2 introduces a deep learning-based loss func-
tion that effectively combines the modified Hausdorff distance metric and a sinusoidal
component inspired by the cross-entropy loss function, to optimise boundary detection
and improve the true-positive prediction rate. The second challenge addressed in this
PhD project is the scope or generalisability to other objects of interest, i.e. multiple
organs and muscles. Thus, this thesis has addressed the scope of segmenting the liver,
iliopsoas muscles and kidneys in MRI scans acquired using entirely different sequences.
The digital contrast enhancement, coupled with segmentation in 3D using continuous
maximum-flow and minimum-cuts approach, continues to produce detailed boundary

contouring irrespective of the target object.

As a reminder, this thesis has employed one publicly available CT dataset and two
distinct MRI datasets for pancreas segmentation, from which the latter two datasets,
MRI-A and MRI-B, will be taken into consideration for the purpose of this section.
Moreover, a separate MRI dataset is employed for segmenting the liver and iliopsoas
muscles. Furthermore, a 4D DCE-MRI dataset is split to contain clinically “normal”

and “abnormal” representations of the kidneys organ.

9.2.1 Comparison to Related Work in Literature

It is noted that direct comparison with other methods in literature that utilise MRI
data is difficult due to differences in scanner imaging protocols and spatial resolution.
With that said, Method 2 outperforms the quantitative accuracy performance state-of-
the-art research literature on MRI data. Whereas the mean of MRI-based data standard
deviations in DSC from other reported publications [13, 24, 30, 130] is 7.7%, Method 2
achieves approximately two times lower a value in standard deviation of 4.6% (MRI-A)
and 2.3% (MRI-B).
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Moreover, employing MRI-A and MRI-B in diverse state-of-the-arts [14, 133, 171, 173,
174] demonstrated the robustness of proposed Method 2. For example, one of the draw-
backs of U-Net [171], which achieved a mean Dice similarity coefficient (DSC) of 69.1%
and 72.8% for MRI-A and MR-B respectively, is that network optimisation may be
delayed at the stage containing the middle layers, posing a risk of ‘ignoring’ layers
with abstract features that represent meaningful pancreas information. Furthermore,
there is also a loss of spatial resolution in the feature maps using U-Net, posing a
threat for accurate segmentation where pancreas boundary delineation is essential. In
contrast, Method 2 ensures that boundary information is stored in the encoder featu-
re maps before any sub-sampling, retaining only the max-pooling indices. When the
decoder network upsamples corresponding input feature maps using the memorised
max-pooling, spare feature maps are produced and then convolved with a decoder filter
to generate dense, deep feature maps containing enriched contextual information about
the pancreas’ boundary. Consequently, Method 2 boosts the mean DSC performance to
84.1% and 85.7% for MRI-A and MRI-B respectively. Furthermore, the method in [14],
which achieved a mean DSC 44.5% and 50.1% for MRI-A and MRI-B respectively, lacks
the advantage of encoder-decoder architecture. Moreover, while the FCN [174] upsamp-
les only once with one layer in the decoder, Method 2 has multiple upsampling layers
and employs skip connections and concatenates instead of adding. The FCN, which
achieved a mean DSC of 70.2% and 70.9% of MRI-A and MRI-B respectively, suffers
from the drawback of not capturing local information such as the pancreas shape and
structural differences. Moreover, there is the subsequent risk of network overfitting,
often extremely sensitive to alternations in the pancreas’ spatial context and struc-
ture. Also, employing the Cross-entropy loss function using FCN has a drawback on
predicting true-positive pixels, while the proposed Hausdorff-Sine delivers a stronger

discrimination between true-positive and true-negative pixels.

The success of the generalisability or scope is demonstrated in the comparably high
quantitative accuracies with the of state-of-the-art. For example, while a number of
state-of-the-art approaches for liver segmentation achieve a mean DSC of 94% [168],
94.5% [169], 89% [170], 72.9% [171] and 93.73% [172], Method 2 both raises quantita-
tive performance and achieves close to state-of-the-arts with a mean DSC of 94.32%.
Furthermore, while the approach reported in [142] delivers a mean Jaccard index (JI)
of 72.3% in psoas muscles segmentation, Method 2 boots the state-of-the-art results for
segmentation composed of the psoas-muscles to a mean JI of 77.96%. Last, but certainly
not least, an extension of the approach of Method 2, otherwise known as 3D-Method 2,
achieves a mean DSC of 90.48% using the “normal” dataset. In contrast, the 3D U-Net
performs significantly worse, reaching a mean DSC of 82.89%. While the 3D DenseNets
method delivers better quantitative accuracy than 3D U-Net, the approach is nevert-

heless poorer to 3D-Method 2, reaching a mean DSC of 85.09%. Similarly, evaluating
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the “abnormal” dataset demonstrates the robustness of 3D-Method 2. Whereas 3D U-
Net trails mean DSC of 78.94 % and 3D DenseNets reaches a mean DSC of 84.51%,
3D-Method 2 outperforms with a mean DSC of 86.44%.

9.3 Impact of Original Contributions

Given the challenges that arise with MR imaging and segmenting a challenging organ
such as the pancreas, the proposed technical, original contributions to computer science
(computer vision) in medical image analysis, deliver: (a) a learned intensity model that
enhances the contrast in image volumes to highlight the pancreas from surrounding non-
pancreas tissue; (b) a hybrid energy-minimisation segmentation approach exploits edge
detection to yield detailed, optimal contouring of the pancreas; (c) a post-processing
stage integrates principal geometric descriptors that characterises pancreas tissue and
employs radiological expert-knowledge for refined tissue classification; (d) a deep lear-
ning novel loss (error) function based on the modified Hausdorff metric and a sinusoidal

component improves true-positive pancreas tissue prediction.

Moreover, the impact of the technical, original contributions to knowledge are demon-
strated by:

1. Detailed boundary contouring of the pancreas in an image volume, as opposed to
approximate delineation as verified by an independent senior radiologist and an
independent senior radiographer. Such detailed information allows the computa-
tion of accurate pancreas curvature measures, which could can facilitate stratifica-
tion of clinically “normal” variations against pancreatic tumours [15] and provide
enhanced information about the pancreatic curvature in cases involving ductal

adenocarcinoma [10].

2. Improved application and quantitative segmentation accuracy across extended
modalities such as CT volumes. Indeed, it could be useful to integrate the con-
tributions into a clinical research tool that automatically delineates the pancreas
in both MRI and CT image volumes, and computes corresponding volume and
curvature measurements that serve as a guide for clinical decision-making. For
example, the mean pancreas volume is reportedly 33% less in subjects with type
2 diabetes than in subjects with clinically “normal” glucose tolerance [44], while
the pancreas volume is returned to near clinically “normal” after type 2 diabetes

is reversed [45].

3. Robustness to diverse artefact-ridden image volumes, particularly in MR imaging.
The relatively low standard deviation in DSC achieved using Method 2 with MRI-
A (4.6%) and MRI-B (2.3%) compared to the lower and poor statistical stability of
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[14, 133, 171, 173, 174| with MRI-A (25.2%, 17.1%, 10.2%, 10.1%, 8.5%) and MRI-
B (22.7%, 18.6%, 7.5%, 11.5%, 7.7%) demonstrates the impact of the contribution

to medical image segmentation in computer vision.

4. Computational efficiency in comparison to reported state-of-the-art. Unlike pre-
vious non-deep learning-based publications that require 2 to 4 hours to evaluate a
single image volume [21, 25, 70| the approach described in Chapter 4 (Method 1)
evaluates an image volume within 10 to 35 minutes. Moreover, the deep learning
network proposed in Chapter 5 (Method 2) takes approximately 11 hours of deep
network training as opposed to the approximate times of state-of-the-arts: 2 - 3

days [14, 173|, 1 day [171, 174] and 21 hours [133].

5. Generalisability of the contributions extends to diverse organs and MRI sequen-
ces including the liver, iliopsoas muscles and clinically “normal” and “abnormal”
kidneys. The impact of generalisability can allow the computation of multiple
organ biomarkers in one single image volume, and dramatically reduce the time-
consuming, laborious need for manually segmenting 3D radiological scans. It will,
therefore, permit medical professional and researchers to stratify subject or pati-
ent data where correlations exist between significant changes in liver volume and
curvature, and alcoholic liver disease [113]; or between kidney volume and poly-
cystic kidney disease [117]; or between the volume of psoas muscle and predictive

outcomes of treatment for bladder cancer chemotherapy [122] and ovarian cancer

[123].

9.4 Comparison Between Different
Proposed Methods

The contributions to knowledge as highlighted in Method 1 and 2 aim to tackle the
challenges of computational efficiency and resource limitations, and the overall segmen-
tation efficiency and robustness towards artefacts. Method 1 exploits expert radiological
knowledge at the post-segmentation stage to eliminate false-positive segments identified
as “pancreas”’; and in doing so, provide a multi-level geometrical extraction system that
is scalable and generalisable to other organs or objects of interest. Unlike subsequent
methods that require an initial training stage and invest large computational resources,
Method 1 requires only the training of a computationally inexpensive random forest
and an artificial neural network that predicts the parameters for digital contrast en-
hancement. The training time for each network is comparatively tens of minutes as
opposed to multiples of hours. The remainder of Method 1 can be significantly scaled

at the proposed, novel refinement stage in selecting parameters for geometrical contour
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(or segment) classification. Method 2, and by far 3D-Method 2, demand substantial
computational resource and despite requiring a one-time deep learning training stage
consisting of several hours, the testing stage (albeit minutes as opposed to hours) still
need a computational head to handle the memory of the trained network. The network
is scalable where training data is concerned and generalisable to other organs or target
anatomical structures of interest. Furthermore, 3D-Method 2 delivers individual DSC
and JI quantitative accuracies that surpass both Method 2 and Method 1. However,
Method 2 achieves a higher true-positive and false-negative rate, coupled with smal-
ler spatial overlap standard deviation. This proposed approach also delivers improved

boundary delineation with a lower mean Hausdorff distance.

9.5 Employing Contributions into Future Work

The technical contributions to knowledge can integrate into a medical framework with
greater scope and depth. For example, the learned intensity model for digital contrast
enhancement in radiological volumes can serve as an independent module for a di-
verse range of MRI sequences, and other modalities that possess blurred (intensity)
boundaries between the object of interest and surroundings. This independent module,
combined with the hybrid energy-minimisation and structured forests approach, can
amplify regions of interest in terms of intensity contrast and boundary detection, and
employed into a pre-processing stage or serve as a coarse computationally inexpensi-
ve segmentation block. The modified Hausdorff based loss function can integrate into
different deep learning architectures and incorporate into the formulation of new deep
learning loss functions. In contrast to deep learning, one of the advantages of generating
geometric descriptors per organ or object of interest (e.g. a highly inter-variable lesion)
lies in the ability of the programmer to recognise the precise knowledge that integra-
tes into the methodology. It can be argued that unlike hand-crafted features that are
generated from machine learning algorithms (e.g. random forests) geometrical descrip-
tors provide a concise breakdown of various shapes and structures associated with the
object of interest. This information can serve as an independent source of knowledge

that integrates into different algorithms, including machine or deep learning methods.

9.5.1 Extension to Multiple Modalities

As discussed previously in Chapter 8, the proposed approaches could extend to different
singular modalities, such as CT or ultrasound (US), and can also integrate into met-
hods that “fuse” extracted information from multiple modalities or imaging protocols
of the same scanned region of interest. Recently, multi-sequence fusion networks as in

[204] employ multiple encoders to capture features that are uniquely specific to every
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different MRI sequence, and utilise a decoder to “fuse” these features and obtain high-
level features for segmentation. The “fusion” process initially calibrates the low-level
features again as captured from the sequence-specific encoders to emphasise both con-
textual information and the regions of interest, and then “fuses” the weighted features
to maintain stability between “fused” and high-level features obtained from the deco-
der. Following a similar line of work, [205] employs a supervised image fusion method
to selectively “fuse” the contextual information from multiple MRI sequences and mini-
mise the corresponding noise. An attention block is utilised to extract useful contextual
information, in which one sequence is selected as the master sequence and supervises
the information selection of the remaining assistant sequences. The robustness to noise
variation across differing MRI datasets (as demonstrated in Chapter 6) is an advantage
that can be applied to the pre-processing stage prior to the extraction and “fusion” of

image features from multiple modalities.

9.6 Conclusion

The significant challenges that limit and drive organ segmentation in 3D radiological
scans, particularly MRI, are reflected in the urgency to develop effective computational
tools that exploit available medical image data to its maximum capacity. This chapter
has demonstrated the need to tailor the object of segmentation with an architecture
that will maximise the performance in terms of spatial overlap accuracy and boundary
distance error. The desire for a computational tool that can be universally applied to
different major organs, muscles and tumours, from a diverse cohort of MRI sequences
and other scanner imaging modalities, is of growing interest to both the clinical and
biomedical research community. This thesis delivers original contributions to knowledge
that are modular in the formulation and can inspire the work of upcoming computer-
aided systems in medical image analysis. Furthermore, the impact of performance-
based contributions to knowledge demonstrates the significance of developing systems
that compute clinically useful morphological measures that provide an indication or
prognostic biomarker about the severity of a medical condition, and consequently, offer

enhanced treatment guidance planning for improved health and well-being.
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Appendix A: Exemplars of CT and
MRI Slices from Distinct Image

Volumes

This appendix compares randomly selected axial slices from ten different and distinct
CT abdominal volumes against randomly selected numbered slices from ten different
and distinct MRI abdominal volumes, to highlight the differences in image spatial reso-
lution and quality. Every original slice is accompanied by a duplicate slice with ground-
truth (GT) contouring of the pancreas. The CT volumes are randomly selected from the
publicly available dataset CT-NIH (http://dx.doi.org/10.7937/K9/TCIA.2016.tNB1kqBU)
and the MRI volumes are randomly selected from the datasets MRI-A and MRI-B de-
scribed in Chapter 6.
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Appendix B: Deep Learning Network
Development and Convolutional

Neural Network Architecture

This appendix provides a “bird’s eye view” description about the training and testing
process of a deep learning network as shown in Fig. B1 and Fig. B2 on page 154, and
the main objective of each layer in a general form of a convolutional neural network as

shown in Fig. B3 on page 155.
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A deep learning (DL) network is trained using multiple image volumes and respective

annotated ground-truth of the pancreas.

The aim of the training process, as shown in Fig. B1, is to optimise the DL network

to ‘recognise’ distinguished features and boundaries of the pancreas.

The DL network is optimised by iteratively minimising the error between the output
prediction and the actual desired outcome (ground-truth) using a loss function through

a technique called backpropagation.

Slices in image
volume depicting
main pancreas regions

@mERROR btwn
prediction AND
desired outcome
(ground-truth)

Prediction

Fig B1. DL Training Process

At the testing stage, an image volume is processed through the fully trained DL
network, as shown in Fig. B2, which in turn performs pixel-wise or voxel-wise prediction
to output a binarised sequence of 2D slices or a 3D volume differentiated by “pancreas”

and “non-pancreas” labels.

INPUT OUTPUT

B -

Original slices in Prediction (pixel-wise)
image volume Fig B2. DL Testing Process of pancreas

Backpropagation is the process where the DL network is optimised by updating
the convolutional layers’ filters and minimising the overall loss between the network
prediction and desired outcome (ground-truth). This process employs an initial learning
rate parameter that changes via a “learning rate drop period” and a “learning rate drop
factor”. The learning rate drop period is the number of epochs for dropping the learning
rate and the learning rate drop factor is a multiplicative factor that is applied to the
learning rate every time a certain number of epochs passes. An epoch refers to a full
pass of the entire training data, whereas an iteration number refers to a full pass of the

mini-batch (a subset of the entire training data).
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Fig B3. Overview of layers in Convolutional Neural Network (CNN) architecture

A convolutional layer produces feature maps that possess information or
‘features’ extracted from an input image or previous feature map.

» A n X n local receptive field convolves across a given input, of p X ¢ size
(where p, ¢ > n) using a stride, s (where s 2 1). This receptive field occupies a
set of n X n matrices or shared weights, also known as a filter. The outcome of
this convolution is known as a feature map or activation map.

A non-linearity layer increases non-linearity during DL training.
The ReLU (Rectifed Linear Units) is a popular function of choice for training.

» ReLU layer has no filter and does not change the size of the input feature map.
Taking on board a feature map that possesses positive, negative and zero
values, the ReLLU layer will set all negative values to 0.

A normalisation layer can accelerate optimisation for faster convergence.

» A normalisation layer performs scaling on data in the feature maps to suitable
intervals, consequently removing potential bias. Examples of the normalisation
layer include batch normalisation, brightness normalisation and subtraction
normalisation.

A pooling layer serves to simplify the information in the output from the
previous layer. A pooling operation requires no weights.

» The most common form is a max-pooling layer with a small n X n region,
e.g. 2 X 2 and a stride of 2. The max-pooling operation down-samples by taking
the maximum value from four elements in every 2 X 2 region.

A fully-connected layer represents a Multilayer Perceptron (MLP) network.

> A MLP network is a type of artificial neural network (ANN), which is one-
dimensional and consists of three or more layers: an input and an output layer,
and one or more hidden layers. All the inputs from one layer are connected to
every feature map value of the next (hidden) layer.

A drop-out method prevents overfitting and improves network convergence:
reduces the complex interactions between input values, enabling the network
optimisation of features that are meaningful towards recognising the pancreas.

A soft-max layer is a K-way soft-max function which produces a probability
distribution over K-many classes. This function’s output are class probabilities of
the input image across 2 classes: “pancreas” and “non-pancreas”.
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Appendix C: Qualitative Expert
Review of Pancreas Contouring

Outcomes

This appendix provides the qualitative feedback of an independent senior radiologist
who analysed the pancreas contouring outcome in five different and distinct MRI vo-
lumes from the datasets MRI-A and MRI-B described in Chapter 6 using manual seg-
mentation versus the proposed segmentation approach of Method 2 (Chapter 5).
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Review: Contouring Using Manual Technique vs. Proposed Approach

Please find below the full review by an independent senior radiologist who
compared the pancreas contouring in five different MRI volumes obtained using
a manual technique (referred as red) with the proposed approach of Method 2
(referred as green).

The name of each image volume has been replaced with [Case number (MRI
dataset type)| to correspond to the datasets described in Chapter 6.

“I carefully looked at all the slices you sent to me, and after each group of them, | give you
my opinion. | hope that it will be of benefit to you.

In [Case 1 (MRI-B)] Slice 55 and 56 with green denotes the part of the lining vein, that is, the
green line behind a pancreas exits beyond its outline. On this slice, the pancreas countertops
with the red line are better marked, although in the front of the ophthalmic area is a
shortened part of the pancreas parenchyma.

In [Case 2 (MRI-B)] with green beans, the pancreas contours are best marked, such as
protrusions, as well as dents or incisions. Most of the surface of the pancreas is covered.
While the marked with a red line does not fully follow the contours of the pancreas, it cuts
them and rounds the incisions or dents, rounds it around.

In [Case 3 (MRI-B)] on Slice 39 with a green line is a shortened part of the pancreas contour,
a projection marked with a red line. But it is therefore missed to signify a projection in the
back of the pancreas in the area of the body, marked with a red line. On this slice, the overall
accuracy is almost equal, with a slight advantage for the green line. Slice 45 has a big mistake
in marking the green line, a part that does not belong to the pancreas is indicated. The red
dot mark is more accurate.

In [Case 1 (MRI-A)], the head of the pancreas in Slice 1, 2, 3, 4, 5 and 6 is not marked, either
with the red or green line. On Slices 7 and 8, a small portion of the pancreas head is indicated
only with ared line, and on a Slice 9, 10 and 11, a small part of the pancreas head is indicated
by both lines.

In [Case 2 (MRI-A)] on the Slice 28, 29 and 30 with a green line are marked parts of the back
wall of the stomach. In this series, it is generally better to mark the red line.

Characteristic for all lines and for all series is that the green line, however, better limits the
pancreas to its protrusions and recesses, while the red line tends to level the contours of the
pancreas, that is, it does not fully follow the protrusions and the dentures or the incisions of
the pancreas contour”.

Furthermore, pages 158 — 167 present a table for each of the five analysed MRI
volumes. For every slice in each MRI volume, the following two areas have been
reviewed in terms of (1) overall accuracy and (2) the protrusions and indentations
of the pancreas’ contouring. The senior radiologist has placed an ‘X’ in the
relevant box of each slice that they interpret provides the best overall accuracy
and contouring.
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Image Case (Folder) Name: Case 1 (MRI-B)
Contour visibility: Slices 40 - 66

Slice Number

Overall accuracy

Protrusions and indentations of the
contour(s)

Slices 40 - 66
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Image Case (Folder) Name: Case 2 (MRI-B)
Contour visibility: Slices 30 - 50

Slice Number

Overall accuracy

Protrusions and indentations of the
contour(s)

Slices 30 - 50
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Image Case (Folder) Name: Case 3 (MRI-B)
Contour visibility: Slices 30 - 52

Slice Number Overall accuracy Protrusions and indentations of the

contour(s)
Slices 30 - 52 Green (a) _ Green (a)
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Image Case (Folder) Name: Case 1 (MRI-A)
Contour visibility: Slices 7 - 32

Slice Number Overall accuracy Protrusions and indentations of the

contour(s)
Slices 7 - 32 Green (a) _ Green (a)
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Image Case (Folder) Name: Case 2 (MRI-A)
Contour visibility: Slices 12 - 32

Slice Number Overall accuracy Protrusions and indentations of the

contour(s)
Slices 12 - 32 Green (a) _ Green (a)
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Appendix D: Quantitative
Morphological Features of Pancreas

Volume and Curvature

This appendix lists forty individual DSC and JI scores of pancreas segmentation using
the MRI volumes from datasets MRI-A and MRI-B (Chapter 6) based on Method
2 (Chapter 5). The respective ground-truth (GT) and automatic segmentation (Seg)
results for quantitative morphological features, including volume and curvature, are
also provided. This appendix also provides the MAE (mean absolute error), RMSE
(root mean square error) and MAP (mean absolute percentage error) computations for
both volume and curvature. Furthermore, two figures compare the relationship between

pancreas curvature and volume for both GT (Fig. D1) and Seg (Fig. D2) results.
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Appendix E: Number of Combinations
for Contours with Non-infinity
Gradient

With reference to Section 4.4.3 Level 3: Centre Landmarks of Distinct Contours (Chap-
ter 4), this appendix describes the formulae used to derive the number of combinations
for every two, three and four contour combination where the gradient between two

contour centres is non-infinity.
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Referring to Section 4.4.3 (Chapter 4), the total number of possible combinations of T'
“pancreas” contours from M available contours is computed, as denoted by Crj; and
defined as:

M!

Cry = =

MM =)
where,

M is the total number of separate contours in a slice;

N is the total number of vertical lines that have two contours, i.e., where the gradient

between respective centre points is infinity;

T = (M — N) is the number of “pancreas” contours to be retained after processing.

Analysing two and three contour combinations The number of combinations to
be considered, in which the gradient between two contour centre points is non-infinity,

2,3 . .
Crvr, can be described as:

N(M —2)!
(T —2)I(M —T)

2,3 _
CTM =Crym —

Analysing four-contour combinations The number of combinations to be con-
sidered, in which the gradient between two contour centre points is non-infinity, C4,, ,

can be described as:

. N(M —2)! N(N —1)
CTM_CTM_((T—Q)!(M—T)!+ 2 )

Example For example, considering Fig. E1, if M =5, N = 2, thusT" = 3, then Cs 5 =
10 different combinations of three “pancreas” contours from five available contours in a

slice (2D image) from a test image volume.

Slice example exists within R; range group
(Section 4.3.3, Chapter 4)

* M=5N=2,T=3.
* 3 outof 5 contours are “pancreas”.
¢ There are C; 5= 10 possible combinations.

* There are 4 valid, non-infinity combinations
to examine: ACD, ACE, BCD, BCE.

Fig E1. Visual example of a three-contour combination in a test image slice (2D).
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Therefore,

Hence,

2(5 — 2)!
(3—2)I(5—3)

C55=10— =4

There are 4 valid combinations to examine during processing as shown in Fig. E1.
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Appendix F: Example of Level 3

Refinement

With reference to Section 4.4.3 Level 3: Centre Landmarks of Distinct Contours (Chap-
ter 4), this appendix provides an example of employing the “ground-truth characteris-
tics” set and respective “segmentation characteristics” group relating to R3 to remove

segmented contours identified as “non-pancreas”.
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Let us consider the “ground-truth characteristics” set represented by f; where ¢ refers
to the i-th slice range group, R;, and p refers to the number of contours. Therefore, f3

refers to R3 and a three-contour combination:

f% = {(A7 87 Ca 9gaB, 9BC, GAC, dA37 dAC7 dBC7 A/B7 A/Ca B/C)l
(A7 B7 Ca 9gAB, 9BC, JAC, dABa dACa dBC7 A/37 A/C> B/C)Q
= (A7 B7 Ca 9dAB, 9BC, JAC, dAB7 dA07 dBC7 A/B7 A/C) B/C)?)

= (Aa Ba Ca 9daB, 9BC, YAC, dABa dAC'7 dBCa A/Ba A/Ca B/C)n}

where n (= 36 in this example) is a chosen number of groups in a set that is based on
k-medoids clustering of these measurements in the training dataset. A, B, C refer to
the areas of individual contours, gag, 9sc, gac and dag, dac, dpc refer to the gradient
and Euclidean distance between centre points of paired contours. Last, 4/B, 4/c, B/c

refer to the ratio of areas of paired paired contours.

Next, the total number of possible combinations of 1" “pancreas” contours from M

available contours is computed, as denoted by C7js and defined as:

M!

Crn = TI(M —T)!

For every Crps(j)-th combination of contours, where j € Z : j € [1, Crp], the gradients
of all possible paired contours are calculated, in addition to respective distances and

ratios.

As shown in Figure F1, this example has M = 5 and T' = 3, such that C55 = 10
different combinations of three contours from five contours (where two are presumed

invalid). Therefore:

Cs5(1) = A B,C
C35(2) = A,B,D
C35(3) = ABE
Cs5(4) = A,C,D
C35(5) = ACE
C35(6) = ADE
Cs5(7) = B,C,D
C35(8) = B,C,E
C35(9) = B,D,E

C35(10) = C,D,E
A number of combinations will be irrelevant since the gradient between two centres is

infinity, and thus can be discarded. Hence, for every remaining (relevant) three-contour
combination, a “segmentation characteristics” or “sc” group is generated, consisting
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of three gradients, areas, Fuclidean distances and ratios-of-areas. Therefore, in this
example:

Cs5(4) —“sc” = (A, C, D, gac, 9ap, gcp, dac, dap, dep, 4/c, 4/p, €/D)
Cs5(5) =“sc” = (A, C, E, gac, 9ap, gce, dac, dag, dep, 4/c, 4/E, ©/E)
C55(7) —“sc = (B, C, D, gsc, 98D, 9cp, dc, dpp, dep, B/c, B/p, ¢/D)
C35(8) —“sc” = (B, C, E, ggc, 9BE, 9ok, dpc, dpe, dog, B/c, B/E, ¢/E)

Each group is simultaneously evaluated against a set of “ground-truth characteristics”

from the same slice range group and T contours of interest. Here, set f3 is used.

Slice example exists within R; range group:
* M=5N=2,T=3.

* 3 outof 5 contours are “pancreas”.

» All applicable combinations to examine include:
ACD, ACE, BCD, BCE.

Diagram example:
* G, 5(7)-th combination involves BCD.

*  f3 setis used to measure error between # groups of
“ground-truth characteristics” and “segmentation
characteristics” of BCD.

+ Final score, S3’5(7)tatal > S3~5(4)total’ S3’5(5)tatal’S}ﬁs(g)total
and therefore C; 5(7)-th combination is “pancreas”.

Fig F1. Visual example of a three-contour combination in a test image slice (2D).

A method of elimination follows: if the mean error between the Crj(j)-th “segmentation
characteristics” group and a “ground-truth characteristics” group is equal or falls below
threshold, ¢,, then this combination is assigned a point score of 1, otherwise 0. Once
all measures of error have been exhausted, the combination with the highest score is
retained as “pancreas”’, and the others discarded. The equation below describes the

process of assigning a score to the j-th combination, sya(7)%, where k € Z : k € [1,n].

‘ 1 if0<Ep <t
srm(f)” = ’
0 otherwise

where E}i is the mean error between the Crj/(j)-th combination “segmentation cha-
p .
racteristics” and (f}) which is the k-th “ground-truth characteristics”. The final score,

srar(7) can be described using the equation below:

n

srar(5)" " = Z st (5)"

k=1
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Therefore, in this example:

3375(4)t0tal =10 = A, C, D

s35(0)" =2 = A C,E

s35(7)" =19 = B,C, D

8375(8)toml =2 = B, 07 E

Thus, B, C, D is chosen as the best three-contour combination “pancreas”.
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Appendix G: Derivation of Modified
Hausdorff Loss

This appendix provides extends upon Section 4.5 Integrated Hausdorff-Sine Loss Func-
tion (Chapter 5), providing a breakdown of the derivation of gradients for the first part

(that is L,,ne) in the proposed loss function.
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A brief reminder from Section 4.5. Let T and Yy represent the ground-truth (target)
and network boundary (or edge) predictions, respectively; and where Ty, Yy C R™ such
that |Ty|, |Yr| < co. Furthermore, ¢; and y; € {0, 1} are indexed pixel values in T and
Yy respectively, which can subsequently, be viewed as boundary points. From here, it is
possible to define the minimum of the Euclidean (2D) distance between a point ¢; and
set of points, Yy as: s(t;,Yn) = yiré% |lt; — y;||, and similarly, the minimum distance

between a point y; and set of points, Ty, can be defined as: s(y;, Ty) = trreuTrIlJ lly; — t;]]-
J

Whereas the Hausdorff distance (HSD) is defined as:

HSD = max { max s(y;, Tr), maxs(t;, YH)}
ti€ly

Y; €Y

The modified Hausdorff distance is less sensitive to outliers and thus the loss, L4,

can be described as:

Thus, computing the gradient yields:

A (7.5, 0070 587 % s> 57 5 i
yjeYy yjEYY tj€TH
OLmha
oy — v | Z SWH>> ik X 80 T) < gy 3 sl Vi)
t; €Ty yjEYH t;eTy
undefined ifly_i[' > sy Tu) = ﬁ > s(tj, Ya)
L Y;EYH ti€TH
where,

and




Breakdown of derivation

Check point 1: the chain rule states that, g—g = ZlTZ X Z—Z. Therefore, if y = f(z)" and

u = f(x) we can summarise that,

d n—li

) = @y (@)

Check point 2: the derivation of the summation operator states that,
& i file) = & (A@)+ .+ ful@)
_ df dfn
= $hy  +d

df;
= Z?:l %

A) Let us express the Euclidean norm between point point y; and ¢; in 2D space as:

2
ly; =il = | D (W5 — t5,)?

k=1

Let us consider the partial derivative of ||y; — t;|| with respect to y;. Thus,

o (\/Zi:l(yjk - %)2) =

2
. \/ziﬂ(lyjk—w X 2 2005 ~ 1k

N[

> et 2y —tk
2
2 Zk:l(yjk _tjk)Q

(9.1)

_ S Witk
\/Zizl (yjk _tjk )2

2
D= Witk
lly; =5l

Check point 3: the constant multiple rule states that for any function f and any constant

¢,

—ef(z) = e f(2) (9.2)

Therefore, if the minimum distance between a point y; and set of points, Ty, is defined

as:
T — i Lt
s Tr) = min [ly; — ]
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then,

||yJ - t]”

1 (2 — )
) | = — min k=1179 9 9.3
i |YH|Z it |YH|y§HtjETH( 5 )

B) Let us express the Euclidean norm between point point ¢; and y; in 2D space as:

2
1t — il = (| D (i, — 3,)? (9.4)

k=1

Let us consider the partial derivative of ||¢; — y;|| with respect to y;. Thus,

o (\/Zi:ﬁjk - yjk)Q) =

_ SRt =2t =y
2
Zk:l(tjk _yjk)2

2
% \/Zi*léjk_yjk)Q % Zk:l _2<t] N yj)k

o=

9.5
_ Shoy —(t—yi)k (9:5)
\/Zi:l (tjk _yjk)2

2
— 2k=1 Y=tk
It —y;ll

Therefore, if the minimum distance between a point ¢; and set of points, Yy is defined

as:
sty Yar) = min [t; =y (9.6)
then,
0 1 1 2_ (y — If)k
— | = s(t;, Yu) | = = min b=10) (9.7)
OYn |TH|t;H ! Tl g, wevm \ It =yl
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