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ABSTRACT

The development of highly accurate, quantitative automatic medical image segmenta-
tion techniques, in comparison to manual techniques, remains a constant challenge for
medical image analysis. In particular, segmenting the pancreas from an abdominal scan
presents additional difficulties: this particular organ has very high anatomical varia-
bility, and a full inspection is problematic due to the location of the pancreas behind
the stomach. Therefore, accurate, automatic pancreas segmentation can consequently
yield quantitative morphological measures such as volume and curvature, supporting
biomedical research to establish the severity and progression of a condition, such as
type 2 diabetes mellitus. Furthermore, it can also guide subject stratification after dia-
gnosis or before clinical trials, and help shed additional light on detecting early signs of
pancreatic cancer. This PhD thesis delivers a novel approach for automatic, accurate
quantitative pancreas segmentation in mostly but not exclusively Magnetic Resonance
Imaging (MRI), by harnessing the advantages of machine learning and classical ima-
ge processing in computer vision. The proposed approach is evaluated on two MRI
datasets containing 216 and 132 image volumes, achieving a mean Dice similarity co-
efficient (DSC) of 84.1 ± 4.6% and 85.7 ± 2.3% respectively. In order to demonstrate
the universality of the approach, a dataset containing 82 Computer Tomography (CT)
image volumes is also evaluated and achieves mean DSC of 83.1± 5.3%. The proposed
approach delivers a contribution to computer science (computer vision) in medical ima-
ge analysis, reporting better quantitative pancreas segmentation results in comparison
to other state-of-the-art techniques, and also captures detailed pancreas boundaries as
verified by two independent experts in radiology and radiography. The contributions’
impact can support the usage of computational methods in biomedical research with
a clinical translation; for example, the pancreas volume provides a prognostic biomar-
ker about the severity of type 2 diabetes mellitus. Furthermore, a generalisation of the
proposed segmentation approach successfully extends to other anatomical structures,
including the kidneys, liver and iliopsoas muscles using different MRI sequences. Thus,
the proposed approach can incorporate into the development of a computational tool
to support radiological interpretations of MRI scans obtained using different sequences
by providing a “second opinion”, help reduce possible misdiagnosis, and consequently,
provide enhanced guidance towards targeted treatment planning.

2



Acknowledgments

I would like to express my heartfelt gratitude and deep appreciation to my Director of
Studies, Dr Barbara Villarini, who has offered continuous guidance, support and
dedicated supervision throughout the development of my PhD project detailed in this
thesis.

Moreover, I would like to sincerely thank my other supervisors, Professor Sophie
Triantaphillidou, Dr Alexandra Psarrou and Professor Jimmy D. Bell, for their
guidance throughout my PhD project development and their unique perspectives and
support towards finalising this thesis.

I would also like to express my gratitude to Dr Sila Kurugol for her supervision during
my position at Boston Children’s Hospital in affiliation with Harvard Medical School.

To end, I wish to thank Professor E. Louise Thomas, Dr Julie A. Fitzpatrick and
Professor Antonio Gligorievski for their expert qualitative feedback.

3



Author’s Declaration

I declare that all the material contained in this thesis is my own work, and has not
been submitted, in whole or in part, for any other degree or professional qualification.
The source of images provided in other publications has been appropriately referenced
in this thesis.

By: Hykoush Asaturyan

4



Table of Contents

Abstract 2

Acknowledgments 3

Author’s Declaration 4

Table of Contents 9

List of Tables 10

List of Figures 19

Glossary 21

1 Introduction 22

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Objective of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Introducing Original Contributions to Knowledge . . . . . . . . . . . . 25

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Organisation of Remaining Chapters . . . . . . . . . . . . . . . . . . . 28

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Background and Rationale 30

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Significance of Pancreas Segmentation in CADx . . . . . . . . . . . . . 31

2.2.1 Monitoring Diabetes . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Pancreatic Cancer and Pancreatitis . . . . . . . . . . . . . . . . 35

2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Structural Variability . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 MRI vs CT Modality . . . . . . . . . . . . . . . . . . . . . . . . 39

5



TABLE OF CONTENTS TABLE OF CONTENTS

2.3.3 Dataset Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Related Work and Contributions 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Quantitative Measure of Accuracy . . . . . . . . . . . . . . . . . 42

3.2 State-of-the-art Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Multi-atlas Label Propagation
and Statistical Shape Modelling . . . . . . . . . . . . . . . . . . 44

3.2.2 Integrating Convolutional Neural Networks . . . . . . . . . . . . 46

3.2.3 Baseline Architectures: U-Net, DenseNets and Residual . . . . . 47

3.3 Deep Learning for Medical Image Segmentation . . . . . . . . . . . . . 51

3.3.1 DenseVNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Recurrent Saliency Transformation Network . . . . . . . . . . . 54

3.3.3 Multi-atlas Combined FCN Approach . . . . . . . . . . . . . . 55

3.3.4 Optimising the Jaccard Index Directly . . . . . . . . . . . . . . 56

3.3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Original Contributions to Knowledge . . . . . . . . . . . . . . . . . . . 58

3.4.1 (a) Digital Contrast Enhancement . . . . . . . . . . . . . . . . . 58

3.4.2 (b) Hybrid Energy-minimising Segmentation . . . . . . . . . . . 59

3.4.3 (c) Multi-level Geometrical Descriptor Analysis
and Tissue Classification . . . . . . . . . . . . . . . . . . . . . 59

3.4.4 (d) Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.5 Attributes of Contributions . . . . . . . . . . . . . . . . . . . . 60

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Method 1: Morphological and Multi-level Geometrical Descriptor
Analysis 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Tissue Enhancement and Elimination . . . . . . . . . . . . . . . . . . 64

4.2.1 Digital Contrast Enhancement . . . . . . . . . . . . . . . . . . . 64

4.2.2 Identify Major Region of Interest . . . . . . . . . . . . . . . . . 65

4.3 Rough Segmentation of Pancreas . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Edge Detection and Boundary Matching . . . . . . . . . . . . . 70

4.4 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6



TABLE OF CONTENTS TABLE OF CONTENTS

4.4.1 Level 1: Morphological Operations on Distinct Contours . . . . 75

4.4.2 Level 2: Localisation and Positioning of Contours . . . . . . . . 76

4.4.3 Level 3: Centre Landmarks of Distinct Contours . . . . . . . . . 76

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Method 2: Integrating Deep Learning 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Random Forests: Identify Major Pancreas Region . . . . . . . . 84

5.2.2 Detect Targeted Pancreas Region . . . . . . . . . . . . . . . . . 84

5.3 Testing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Predict Main Pancreas Region . . . . . . . . . . . . . . . . . . . 91

5.3.2 3D Segmentation and Refinement . . . . . . . . . . . . . . . . . 91

5.4 Transitioning from Deep Learning in 2D to 3D . . . . . . . . . . . . . . 92

5.4.1 Training Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 Testing Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Experimental Tools, Results and Analysis 98

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.2 CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Technical Tools, Libraries and Frameworks . . . . . . . . . . . . . . . . 99

6.3.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.2 TensorFlow and Keras . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.1 Method 1: Morphological and Multi-level Geometrical
Descriptor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.2 Method 2: Integrating Deep Learning . . . . . . . . . . . . . . . 103

6.4.3 Comparison between Method 1 and 2 . . . . . . . . . . . . . . . 105

6.4.4 3D-Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.5 Comparison between Method 2 and 3D-Method 2 . . . . . . . . 113

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7



TABLE OF CONTENTS TABLE OF CONTENTS

7 Discussion and Improvements 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.1 Quantitative Assessment . . . . . . . . . . . . . . . . . . . . . . 118

7.2.2 Qualitative Assessment . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.3 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Potential Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 Improvements to Architecture in Method 2 . . . . . . . . . . . . 126

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Generalisation and Future Work 128

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2 Impact of Extracting Morphological Features . . . . . . . . . . . . . . . 129

8.3 Proposed Generalised Segmentation Framework . . . . . . . . . . . . . 130

8.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4 Liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4.1 Experimental Results and Analysis . . . . . . . . . . . . . . . . 132

8.5 Iliopsoas Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.5.1 Experimental Results and Analysis . . . . . . . . . . . . . . . . 134

8.6 Kidneys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.6.2 Experimental Results and Analysis . . . . . . . . . . . . . . . . 138

8.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9 Conclusions 143

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.2 Challenges and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.2.1 Comparison to Related Work in Literature . . . . . . . . . . . . 144

9.3 Impact of Original Contributions . . . . . . . . . . . . . . . . . . . . . 146

9.4 Comparison Between Different
Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.5 Employing Contributions into Future Work . . . . . . . . . . . . . . . 148

9.5.1 Extension to Multiple Modalities . . . . . . . . . . . . . . . . . 148

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8



TABLE OF CONTENTS TABLE OF CONTENTS

Appendix A: Exemplars of CT and MRI Slices from Distinct Image
Volumes 153

Appendix B: Deep Learning Network Development and Convolutional
Neural Network Architecture 156

Appendix C: Qualitative Expert Review of Pancreas Contouring Out-
comes 168

Appendix D: Quantitative Morphological Features of Pancreas Volume
and Curvature 170

Appendix E: Number of Combinations for Contours with Non-infinity
Gradient 172

Appendix F: Example of Level 3 Refinement 176

Appendix G: Derivation of Modified Hausdorff Loss 180

References 203

9



List of Tables

6.1 Comparative summary of DSC, JI, PC, RC and Hausdorff (Haus.) results
shown as mean ± standard deviation [lowest, highest] in MRI-A, MRI-B
and CT-NIH using Methods 1, 2 and 3D-2. . . . . . . . . . . . . . . . . 107

7.1 Overall DSC, JI, PC and RC shown as mean ± standard deviation [low-
est, highest] for automatic pancreas segmentation methods in CT moda-
lity image volumes. The value of N represents the dataset size. . . . . . 119

7.2 Overall DSC, JI, PC and RC shown as mean ± standard deviation [low-
est, highest] for automatic pancreas segmentation methods in MRI mo-
dality image volumes. The value of N represents the dataset size. . . . . 120

7.3 Overall DSC and JI are shown as mean ± standard deviation (%) for
automatic pancreas segmentation methods using the publicly available
CT dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Overall DSC and JI are shown as mean ± standard deviation (%) for
automatic pancreas segmentation methods using the MRI-A dataset. 121

7.5 Overall DSC and JI are shown as mean ± standard deviation (%) for
automatic pancreas segmentation methods using the MRI-B dataset. 122

10



List of Figures

1.1 Overview of sequence of steps towards automatic pancreas segmentation
in Magnetic resonance imaging (MRI) volumes, and 3D rotational recon-
struction of the segmented organ: (a) Sequence of original 2D axial image
‘slices’ from an MRI volume; (b) Sequence of segmented (red) 2D image
‘slices’ from the MRI volume; (c) 360-degree 3D digital reconstruction
visualisation of the segmented pancreas. . . . . . . . . . . . . . . . . . 23

2.1 A pancreatic cyst, marked by an arrow, as shown on an MRI. Only a
small percentage of such cysts lead to cancer [188]. . . . . . . . . . . . 33

2.2 MRI scans of tumour lesions. A (T2 axial view) and B (T2 coronal view)
highlight a primary tumour lesion 2 months before the initial diagnosis,
which identifies a cystic lesion at the location between body and tail
of the pancreas with a size of 43 mm × 38 mm × 30 mm (A) and
dilatation of the pancreatic duct of 13 mm (B). C (T1 axial) and D
(T1 coronal) highlight a relapsed hepatic lesion 20 months after an after
initial diagnosis [189]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Pancreatic pseudocyst (Ps) in a man in his early 40s known with gallsto-
nes [190, 193]. (a) CT axial (b) T1-weighted (c) and T2-weighted MRI,
obtained 6 weeks after the beginning of an acute pancreatitis condition,
highlights a homogenous-kind fluid collection (Ps) with a fibrous capsule
pancreas (P). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Location of pancreas in abdominal cavity [158]. The pancreas lies on
the posterior abdominal wall. Notice that the pancreas is located just
behind the stomach in the back of the upper left abdomen. The head of
the pancreas lies within the duodenum curve, which is the first section of
the small intestine. The tip of the pancreas extends across the abdominal
cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11



LIST OF FIGURES LIST OF FIGURES

2.5 The expert-led manual (ground-truth) segmentation of the pancreas is
contoured in red. Column (a) displays an axial slice in a CT scan. Co-
lumns (b) and (c) display two axial slices from two different MRI scans.
Notice the finer image quality of CT in comparison to MRI that is signi-
ficantly coarse and suffers from greater blurred boundaries between the
pancreas, and duodenum. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Three different segmentation outcomes (green) overlapping the same
ground-truth (red) representing a 3D pancreas reconstructed model. Co-
lumn (a) suffers from excess false-positive segmentation labels; column
(b) suffers from false-negative labels; column (c) has significantly less
both false-positive and false-negative labels segmentation labels than (a)
and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Anatomical relationships of the pancreas with surrounding organs and
structures. The head of the pancreas lies in the loop of the duodenum
as it leaves the stomach; the tail of the pancreas lies near the spleen;
and the body of the pancreas lies posterior (nearer the rear) to the outer
region of the stomach between the tail [176]. . . . . . . . . . . . . . . . 45

3.3 U-Net architecture as originally described in [171]. Every blue block re-
presents a multi-channel feature map, in which the number of channels
is denoted on top of the block. All white blocks represent copied feature
maps and the arrows represent the different operations. . . . . . . . . 48

3.4 DenseNets architectures for image classification of ImageNet [180]. The
growth rate for all the networks is k = 32. Each “conv” layer corresponds
the sequence of layers: Batch Normalisation, rectified linear units (ReLU)
and convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 The residual architecture implemented for ImageNet [178]. From left to
right, the VGG-19 model [97] serves as a reference; a plain network with
34 parameter layers; and a residual network with 34 parameter layers.
The dotted shortcuts represent an increase in the dimensions from input
to output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 A building block for residual learning. Whereas in traditional neural
networks, each layer feeds into the next layer, each layer in a network
with residual blocks feeds into the next layer and directly into the layers
about some “jumps” away [178]. . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Overview of methodology: three main stages are proposed for automatic
pancreas segmentation in abdominal CT and MRI scans (volumes). . . 63

12



LIST OF FIGURES LIST OF FIGURES

4.2 Visualisation of results for a slice from image volume. (a) Original MRI
slice, (b) MRI slice after contrast enhancement, (c) Closed red outline
encapsulates major pancreas region, (d) Segmentation following max-
flow and min-cuts approach, (e) Boundary detection using structured
forest learning, (f) Final contour segmentation after refinement. . . . . 64

4.3 Visualisation of three levels for fine pancreas extraction in three different
slices from three different image volumes. Column (a) displays the origi-
nal slice after initial segmentation. Column(b) displays the resultant slice
after first level of refinement, now contained in a bounding box against
a “trail map”. Column (c) displays the resultant slice after second level
of refinement, now contained in a bounding box that identifies gradi-
ent between combinational distinct contours. Column (d) displays final,
resultant slice after third level of refinement. . . . . . . . . . . . . . . . 74

4.4 Visualisation of three refinement levels in three different slices (in three
different image volumes). Top row and bottom row display distinct con-
tours before and after processing. Column (a) displays first level of morp-
hological operations on distinct contours, highlighting measurements of
area, spatial aspect ratio and triangularity. Column (b) displays second
level of positioning contours on “trail map” within bounding box contai-
ning all contours. Column (c) displays combinational connectivity betwe-
en centre landmark points and respective gradients between all distinct
contours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Column (a) provides a visual example of a slice from an image volume
in a training dataset. Computations include the gradient and distance
between combinational area centres and the respective ratios of combi-
national areas. Column (b) provides a summarised visual representation
of “ground-truth characteristics” generated for sets R1, R2, R3 and R4. 78

4.6 Visual example of three contour combination, BCD, which represents
the 7th in 10 different combinations from five distinct contours. Three
out of five contours are presumed valid, i.e. “pancreas” and the other two
otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

13



LIST OF FIGURES LIST OF FIGURES

5.1 Overview of Method 2. Top diagram highlights the training phase con-
sisting of two main parts, (A) train a random forest to identify major
pancreas regions in all training image volumes; (B) train a deep learning
model to recognise pancreatic features within an image volume, and la-
ter perform pixel-wise classification on a test image volume as “pancreas”
or “non-pancreas”. The bottom image highlights the testing phase and
consists of three main stages, (1) detect targeted pancreas region using
the trained deep learning model using pixel-wise classification; (2) per-
form 3D segmentation of predicted pancreas region to extract distinct
contours that may lie near but are not part of the pancreas; (3) perform
refinement to identify non-pancreatic contours for removal from final seg-
mented pancreas volume. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Overview of the deep learning model that has been incorporated into
Method 2. An encoder downsamples the CT/MRI input through con-
volution, batch normalisation and ReLU, producing feature maps that
represent unique pancreatic features (e.g. texture, boundaries, etc). A
decoder upsamples its input using the transferred pooling indices from
its corresponding encoder to generate sparse feature maps. From here,
convolution is performed with a trainable filter of weights to density the
feature map. The resulting decoder output feature maps are fed to a soft-
max classifier for 2-channel pixel-wise classification of the input image
as “pancreas “ or “non-pancreas”. . . . . . . . . . . . . . . . . . . . . . . 85

5.3 A 2×2 max-pooling is applied in the Encoder stage. The maximum value
and pooling index inside this 2× 2 region is retained and propagated to
the next layer. In upsampling, in the Decoder stage, the max-pooled 1×1

feature is placed into to the exact location of its corresponding pooling
index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Detailed overview of the deep learning architecture. Each round rectang-
le is a layer, with the number on the right side indicating the number
of channels (or feature maps in the case of convolutional layers). Each
convolution (Conv) layer contains a set of 3× 3 filters, stride 1, padding
1. Each max-pooling (Pooling) layer uses 2 × 2 window with stride 2.
Batch N. + ReLu refers to a batch normalization layer followed by ReLu
activation. During max-pooling, the index of the maximum feature in
each 2 × 2 area is saved. For each Upsampling layer, the 1 × 1 featu-
re is placed in the exact location where the corresponding max-pooling
index is located. The last layer is a soft-max classifier with 2-channels,
one relating to “pancreas” and the other “non-pancreas”. The predicted
segmentation relates to the class with maximum probability at each pixel. 86

14



LIST OF FIGURES LIST OF FIGURES

5.5 Method 2 testing phase. Column (a) displays four different slices in four
different and distinct image volumes that are fed into the trained deep
learning model. Column (b) reveals the predicted pancreas region mask
for each corresponding input slice. Column (c) achieves max-flow and
min-cuts segmentation for each input slice. Column (d) displays the pan-
creas region after the mask and post-processing has been applied. Column
(e) reveals the segmentation contouring (green) against the ground-truth
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Overview of 3D-Method 2. The training stage simultaneously develops a
network (3D Rb-UNet) for localising the pancreas, and a segmentation
network (3D Tiramisu) to predict the labels that correspond to “pan-
creas” and “non-pancreas” tissue. The testing stage processes an original
3D or 4D image volume, performs a coarse segmentation to generate a
bounding box capturing the main pancreas region and then processes the
cropped image volume to predict the labels of that organ. . . . . . . . . 93

5.7 Tiramisu architecture blocks of fully convolutional DenseNets include
(from left to right) the layer used in the model, Transition Down (TD)
and Transition Up (TU) [179]. . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Architecture details of the Tiramisu (FC-DenseNet103) model, which is
built from 103 convolutional layers [179]. The notations are as follows:
DB stands for Dense Block, TD stands for Transition Down, TU stands
for Transition Up, BN stands for Batch Normalisation andm corresponds
to the total number of feature maps at the end of a block. c stands for
the number of classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Overview of MRI segmentation accuracy results (in DSC) of models that
are trained with different loss functions. The proposed Hausdorff-Sine
Loss performs better across thresholds in range [0.05, 0.95] in comparison
to the conventional cross-entropy and other loss functions. . . . . . . . 104

6.2 Overview of CT-NIH segmentation accuracy results (in DSC) of models
that are trained with different loss functions. The proposed Hausdorff-
Sine Loss performs better across thresholds in range [0.05, 0.95] in compa-
rison to the conventional cross-entropy and other loss functions. . . . . 104

6.3 ROC curves averaged on MRI-A and MRI-B using the deep learning
model in Method 2 trained via the proposed Hausdorff-Sine loss, and
other loss functions including Hausdorff (alone), Cross-entropy, Dice and
Jaccard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

15



LIST OF FIGURES LIST OF FIGURES

6.4 ROC curves averaged on CT-NIH using the deep learning model in Met-
hod 2 trained via the proposed Hausdorff-Sine loss, and other loss func-
tions including Hausdorff (alone), Cross-entropy, Dice and Jaccard. . . 106

6.5 Segmentation results in four different CT image scans (volumes) using
Method 1. Every column corresponds to a single CT volume. From left,
first row displays sample CT axial slices with segmentation outcome
(green) against ground-truth (red), and computed DSC; second row dis-
plays 3D reconstruction of entire pancreas (green) segmentation against
its ground-truth (red) with computed DSC. . . . . . . . . . . . . . . . 109

6.6 Segmentation results in four different CT image scans (volumes) using
Method 2. Every column corresponds to a single CT volume. From left,
first row displays sample CT axial slices with segmentation outcome
(green) against ground-truth (red), and computed DSC; second row dis-
plays 3D reconstruction of entire pancreas (green) segmentation against
its ground-truth (red) with computed DSC. . . . . . . . . . . . . . . . 109

6.7 Segmentation results in six different MRI scans (volumes) for Method 1
(Morphological and Multi-level Geometrical Descriptor Analysis). Every
column corresponds to a single MRI volume. From left, first row dis-
plays sample MRI axial slices with segmentation outcome (green) against
ground-truth (red), and computed DSC; second row displays 3D recon-
struction of entire pancreas (green) segmentation against its ground-
truth (red) with computed DSC. . . . . . . . . . . . . . . . . . . . . . . 110

6.8 Segmentation results in six different MRI scans (volumes) for Method
2 (Deep Fusion). Every column corresponds to a single MRI volume.
From left, first row displays sample MRI axial slices with segmentation
outcome (green) against ground-truth (red), and computed DSC; second
row displays 3D reconstruction of entire pancreas (green) segmentation
against its ground-truth (red) with computed DSC. . . . . . . . . . . . 111

6.9 Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for
datasets CT-NIH, MRI-A and MRI-B using Method 1. . . . . . . . . . 111

6.10 Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for
datasets CT-NIH, MRI-A and MRI-B using Method 2. . . . . . . . . . 112

6.11 Recall against precision plots for datasets CT-NIH, MRI-A and MRI-B
using Method 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.12 Recall against precision plots for datasets CT-NIH, MRI-A and MRI-B
using Method 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.13 Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for
datasets CT-NIH, MRI-A and MRI-B using 3D-Method 2. . . . . . . . 113

16



LIST OF FIGURES LIST OF FIGURES

6.14 Pancreas segmentation results in six different MRI image scans (volumes)
using Method 2 and 3D-Method 2. Every column of two 3D pancreas
reconstructions highlights the segmentation results and DSC in the same
MRI volume using Method 2 (top row) with 3D-Method 2 (bottom row).
The segmentation outcome (green) overlaps the ground-truth (red) with
computed DSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.15 Pancreas segmentation results in four different CT image scans (volumes)
using Method 2 and 3D-Method 2. Every column of two 3D pancreas
reconstructions highlights the segmentation results and DSC in the same
CT volume using Method 2 (top row) with 3D-Method 2 (bottom row).
The segmentation outcome (green) overlaps the ground-truth (red) with
computed DSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Columns (a) (b) and (c) highlights sample slice and corresponding seg-
mentation outcome from MRI-A, MRI-B and CT-NIH respectively. No-
tice the variation in noise and image distortion between (a) and (b), and
the difference in blur and sharpness between (a) and (c). All segmen-
tation results (green) are mapped over the ground-truth (red) and have
approximately 85% accuracy in DSC. . . . . . . . . . . . . . . . . . . . 124

8.1 Overview of generalised segmentation framework: the initial input is a
3D medical image scan that is processed to segment an organ, muscle
or tumour. The segmentation result is processed through a biomedical
statistical and classification analysis model, which consequently outputs
the final prediction to indicate the likelihood of a condition or progression
of a current condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for
liver segmentation in MRI using Method 2. . . . . . . . . . . . . . . . . 131

8.3 Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for
iliopsoas muscles segmentation in MRI using Method 2. . . . . . . . . . 132

8.4 Dice similarity coefficient (DSC) and Jaccard index (JI) box plots for
liver and iliopsoas muscles segmentation in MRI using 3D-Method 2. . 132

8.5 Segmentation results in six different MRI image scans (volumes) using
Method 2. Every column corresponds to a single MRI volume. From left,
first two rows display sample MRI axial slices with segmentation out-
come (green) against ground-truth (red), and computed DSC; third row
displays 3D reconstruction of entire liver (green) segmentation against
its ground-truth (red) with computed DSC. . . . . . . . . . . . . . . . 133

17



LIST OF FIGURES LIST OF FIGURES

8.6 Liver organ segmentation results in six different MRI image scans (volu-
mes) using Method 2 and 3D-Method 2. Every row of two 3D liver recon-
structions highlights the segmentation results and DSC in the same MRI
volume using Method 2 and 3D-Method 2 respectively. The segmentation
outcome (green) overlaps the ground-truth (red) with computed DSC. . 133

8.7 Segmentation results in six different MRI image scans (volumes) using
Method 2. Every column corresponds to a single MRI volume. From
left, first two rows display sample MRI axial slices with segmentation
outcome (green) against ground-truth (red) and computed DSC; third
row displays 3D reconstruction of the entire iliopsoas muscles (green)
segmentation against its ground-truth (red) with DSC. . . . . . . . . . 135

8.8 Iliopsoas muscles segmentation results in four different MRI image scans
(volumes) using Method 2 and 3D-Method 2. Every column of two 3D
iliopsoas muscles reconstructions highlights the segmentation results and
DSC in the same MRI volume using Method 2 (top row) and 3D-Method
2 (bottom row). The segmentation outcome (green) overlaps the ground-
truth (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.9 Dice Score coefficient (DSC) and Jaccard index (JI) box plots for “ab-
normal” and “normal” kidneys segmentation in MRI using 3D-Method
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.10 Dice Score coefficient (DSC) and Jaccard index (JI) box plots for “ab-
normal” and “normal” kidneys segmentation combined in MRI using 3D-
Method 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.11 Using 3D-Method 2, a first sample batch of segmentation results in three
different DCE-MRI scans (4D volumes) depicting clinically “normal” kid-
neys. Every column corresponds to a single DCE-MRI 4D volume. Top
row displays sample slices with segmentation outcome (green) that over-
lap the ground-truth (red) and DSC; bottom row displays 3D reconstruc-
tion of whole kidneys segmentation that overlaps the ground-truth and
DSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.12 Using 3D-Method 2, a second sample batch of segmentation results in
three different DCE-MRI scans (4D volumes) depicting clinically “nor-
mal” kidneys. Every column corresponds to a single DCE-MRI 4D volu-
me. Top row displays sample slices with segmentation outcome (green)
that overlap the ground-truth (red) and DSC; bottom row displays 3D
reconstruction of whole kidneys segmentation that overlaps the ground-
truth and DSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

18



LIST OF FIGURES LIST OF FIGURES

8.13 Using 3D-Method 2, a first sample batch of segmentation results in three
different DCE-MRI scans (4D volumes) depicting clinically “abnormal”
kidneys. Every column corresponds to a single DCE-MRI 4D volume.
Top row displays sample slices with segmentation outcome (green) that
overlap the ground-truth (red) and DSC; bottom row displays 3D recon-
struction of whole kidneys segmentation that overlaps the ground-truth
and DSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.14 Using 3D-Method 2, a second sample batch of segmentation results in
three different DCE-MRI scans (4D volumes) depicting clinically “abnor-
mal” kidneys. Every column corresponds to a single DCE-MRI 4D volu-
me. Top row displays sample slices with segmentation outcome (green)
that overlap the ground-truth (red) and DSC; bottom row displays 3D
reconstruction of whole kidneys segmentation that overlaps the ground-
truth and DSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

19



Glossary

• Axial: An axial view refers to a two-dimensional (2D) image taken parallel to the
horizontal ground, from top to bottom (xy-plane).

• Computer-aided diagnosis: A computer-aided diagnosis (CADx) system proces-
ses digitised medical images of radiological scans, in order to highlight areas of or-
gan impairment and disease. Consequently, CADx can provide additional guidance
for medical image analysis.

• Computer tomography: Computer tomography (CT) is a medical imaging
technique that employs a sequence of X-ray images taken from different angles
to generate cross-sectional images of the human anatomy. A pre-requisite iodine-
based contrast is required, which is injected into the vein of the subject or patient
30 minutes to 1 hour before the scanning procedure.

• Coronal: A coronal view refers to a two-dimensional (2D) image taken perpen-
dicular to the horizontal ground, from back to front (xz-plane).

• Image artefact: An image artefact is a feature that appears in a radiological scan
which is not present inside the original scanned or imaged part of the human body.
Artefacts, such as noise, streaks, distortion and blurring, remain problematic in
Magnetic Resonance Imaging (MRI) due to magnetic field disturbances, patient
motion and signal processing.

• Image segmentation: Image segmentation is the process of partitioning a digital
image into multiple segments based on a given set of criteria. For example, a target
object (e.g., the pancreas) is segmented in a 2D medical image. Each pixel in the
image relating to the pancreas is labelled as ‘foreground’ or 1 and each pixel
relating to non-pancreas is labelled as ‘background’ or 0.

• Label: A label refers to the representation assigned to a single or group of pixels
or voxels in a digital image, e.g. a “pancreas” label versus a “non-pancreas” label.

• Magnetic resonance imaging: Magnetic resonance imaging (MRI) is a medical
imaging technique used to generate radiological images of the human anatomy.
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MRI does not involve exposure to ionising radiation. An MRI scanner is a de-
vice that employs strong magnetic fields and magnetic field gradient to generate
radiological images of the human anatomy.

• Modality: Modality describes the type of medical imaging technique that utilises
a scanning device to produce images of internal physiological and anatomical
structures of a patient. Examples of medical imaging modalities include MRI, CT
and ultrasound.

• MRI sequence: An MRI sequence corresponds to a scanner imaging protocol,
where a particular setting of pulse sequences and field gradients are chosen to
emphasise a particular appearance in the resultant image.

• Pixel: A pixel or “picture element” refers to the smallest value or referable element
in a two-dimensional (2D) digital image.

• Sagittal: A sagittal view refers to a two-dimensional (2D) image taken perpen-
dicular to the horizontal ground, from left side to right side (yz-plane).

• Scanner imaging protocols: Scanner imaging protocols describe the way in
which medical images are acquired, including the choice of scanner modality (e.g.,
MRI, CT, ultrasound), in addition to how the images are processed for evalua-
tion. Protocols are also dependent on the scanner’s hardware and software, time
constraints, patient factors and the radiologist’s preference.

• T1-weighted: A T1-weighted image corresponds to an MRI sequence where scan-
ned areas with high fat content appear bright and areas filled with water appear
dark.

• T2-weighted: A T2-weighted image corresponds to an MRI sequence where scan-
ned areas filled with water appear bright and tissues with high fat content (e.g.
white matter) appear dark.

• Tissue: A tissue can be described as the grouping of human cells that lie in close
proximity and form organs, skin, bone and other parts of the human body.

• Voxel: A voxel represents the smallest value or referable element in a three-
dimensional (3D) digital image.
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Chapter 1

Introduction

1.1 Introduction

The accurate, computer-aided quantitative segmentation and classification of organs
can produce valuable information towards analysing organ-related disorders1, and pro-
vide additional guidance towards stratifying subjects after diagnosis or before clinical
trials. Research studies highlight that automatic segmentation and computer-aided in-
vestigation of significant organ volume variations in patients with conditions2 such as
polycystic liver disease (PLD)3 [17], renal (kidney) disease [18], and type 1 and 2 diabe-
tes mellitus [12, 13], has played a vital role in raising the quality of biomedical research
[19]. For example, an enlarged liver is correlated with PLD subjects, and a larger liver
volume is more likely to cause a higher symptom burden [42]. Furthermore, increased
kidney volume correlates with early Autosomal dominant polycystic kidney disease
(ADPKD) [43]. Last, and certainly more appropriate to the main context of this thesis,
the pancreas volume is reduced in patients at the onset of type 1 diabetes [26], and the
mean pancreas volume is reportedly 33% less in subjects with type 2 diabetes than in
patients who have clinically “normal” glucose tolerance [44]. On a different note, the
pancreas volume is restored to near clinically “normal” once type 2 diabetes is reversed
[45].

Computer-aided diagnosis (CADx) systems can, therefore, support radiological inter-
pretations of medical scans by providing a “second opinion”, help to reduce possible
misdiagnosis, and consequently guide better therapy planning [20]. Recent research
literature reports segmentation accuracy scores of 90% or above for the automatic seg-
mentation of organs such as the liver [21], kidneys [22] and spleen [23]. The pancreas,

1A disorder is a disruption to regular organ structure and function.
2A condition is a state of health that disrupts feelings of regular wellbeing. A disease or disorder

can be medical condition.
3A disease describes a condition that impairs regular organ structure and function, characterised

by specific signs and symptoms.
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(a) (b) (c)

Figure 1.1: Overview of sequence of steps towards automatic pancreas segmentation in
Magnetic resonance imaging (MRI) volumes, and 3D rotational reconstruction of the
segmented organ: (a) Sequence of original 2D axial image ‘slices’ from an MRI volume;
(b) Sequence of segmented (red) 2D image ‘slices’ from the MRI volume; (c) 360-degree
3D digital reconstruction visualisation of the segmented pancreas.

however, presents more significant challenges due to size, structure and location within
the abdomen. The pancreas has high structural variability and a full inspection from a
scan is problematic since this particular organ lies just behind the stomach: the head of
the pancreas touches the small intestine and often overlaps with surrounding abdomi-
nal fat, artery and veins. In general, the greyscale (image) intensity of the pancreatic
region in a radiological scan, as shown in Figure 1.1(a), is very similar to nearby tis-
sue and consequently increases the challenge of accurate segmentation. Still, despite
the presence of different medical image segmentation approaches, a significant number
of state-of-the-art methods are restricted to a single modality4 or scanner protocol5.
Furthermore, several methods in research literature produce a relatively high standard
deviation for a given number of segmented image volumes, reflecting poor stability
[21, 23, 25, 27, 28, 32, 33, 36, 70].

Taking on board the above challenges, the remainder of this chapter introduces the
main problem to solve in this thesis and presents the original contributions to knowled-
ge in computer vision that addresses and solves this problem, delivering an extensive
application to biomedical research that can be translated to a clinical setting. Section
1.2 delivers the main objective of the research including key highlights of the methods
proposed in the PhD project described in this thesis. Section 1.3 introduces the original
contributions to computer science (computer vision) in medical image analysis, high-
lighting the impact of these contributions as elaborated in Chapter 3. Section 1.4 details
a list of conference and journal publications, both achieved and under review, within

4Modality describes the type of medical imaging technique that utilises a scanning device to produce
images of internal physiological and anatomical structures of a patient. Examples of medical imaging
modalities include MRI, CT and ultrasound.

5Scanner imaging protocols describe the way in which medical images are acquired, including the
choice of scanner modality (e.g., MRI, CT, ultrasound), in addition to how the images are processed
for evaluation. Protocols are also dependent on the scanner’s hardware and software, time constraints,
patient factors and the radiologist’s preference.
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the lifecycle of this PhD project. Section 1.5 provides a brief description of remaining
chapters. Section 1.6 summarises the objective of research and published methods that
are going to be explored, examined and discussed in the following chapters.

1.2 Objective of Research

The technical objective of the PhD project is the development of a computing techni-
que for automatic, quantitative pancreas segmentation in 3D radiological scans (image
volumes) that were obtained using different scanner protocols and exhibit high levels of
noise diversity. The upcoming Chapters 4 and 5 present two main, principal methods
and one method that is an extension of a principal method. The first method is known
as Method 1; the second method is known as Method 2, and the extended method is
known as 3D-Method 2. The proposed methodologies of Method 1, 2 and 3D-Method 2
are optimised for generalisability and can therefore be applied to other organs, muscular
tissue and tumour6 segmentation tasks. Moreover, the methodological novelties produce
very detailed organ boundary tracing or contouring, which is an essential determinant
of morphological features, including organ surface characterisation.

While several reported state-of-the-art methods are limited to a single modality or
scanner protocol, and demonstrate poor statistical stability, the proposed methodologies
of Method 1 and 2 produce quantitative segmentation accuracies that yield a relatively
low standard deviation and reflect robustness to diverse image quality. Accurate and
robust automatic quantitative pancreas segmentation, as highlighted in Figure 1.1(b),
can produce morphological measures such as volume and curvature7, which can support
biomedical research establish the severity and progression of a condition, e.g. type 2
diabetes; it can also provide guidance towards stratification of subjects after diagnosis
or prior to clinical trials; and help shed additional light on detecting early signs of
pancreatic cancer. The impact of accurate quantitative pancreas segmentation, which
will be elaborated in Chapter 2, can support radiological interpretations of magnetic
resonance imaging (MRI) scans through a 360-degree, 3D digital reconstructed model
of the segmented pancreas as shown in Figure 1.1(c).

The project detailed in this thesis aims to harness the advantages of pre-existing clas-
sical image processing techniques in computer vision, including graph theory, image
intensity thresholding and distribution normalisation, and 3D reconstruction rendering.
Furthermore, existing machine learning8 algorithms are employed, including structured

6A tumour refers to swelling or abnormal tissue growth that forms a mass or lump-like shape.
7The curvature of the pancreas as a 3D surface describes the local shape of that surface, which

could be interpreted with respect to the curvature range for a clinically ‘normal’ pancreas.
8A machine learning algorithm utilises “training data”, in which the algorithm is optimised over

time given a finite number of iterations. The “trained” algorithm performs predictions on non-training
“test data” without being explicitly programmed.
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forest learning (edge detection), random forests (image patch prediction) and artificial
neural networks (image contrast parameter prediction). Furthermore, deep learning9

architectures are utilised to address the problems caused by (1) high levels of artefacts
and noise in MRI; (2) inter-patient variability of the pancreas; and (3) vague organ
boundaries in MRI. Combined with popular deep learning architectures for medical
image segmentation, a novel training loss function tackles organ boundary detection,
and useful data augmentation generates information diversity for improved training of
the deep learning model. It is the ambition to rigorously optimise the proposed algo-
rithms to (1) limit computational costs relative to other methodologies in the research
literature; (2) expand application and generalisability to image volumes of different
spatial dimensions, diverse levels of noise and artefacts, and acquisition using different
scanner imaging protocols; (3) produce detailed organ contouring as opposed to an
approximate tracing; (4) raise the mean segmentation accuracies relative to the state-
of-the-art using diverse evaluation methods that examine the (a) true-positive pancreas
predictions versus true-negative pancreas; and (b) the surface or contouring deviation
between the resultant segmentation and desired outcome.

1.3 Introducing Original Contributions to Knowledge

Taking into account the growing necessity to accurately delineate or segment organs of
high inter-variability, such as the pancreas, from but not exclusively 3DMRI radiological
scans, this thesis presents a number of contributions in the field of computer vision
with an impact to biomedical research, addressing the growing demand of accurate,
quantitative pancreas segmentation. It should be noted that Chapter 3, Section 3.4 will
further explain the contributions and respective attributes:

• (a) a learned intensity model enhances the contrast in 3D radiological scans (image
volumes) to highlight the pancreas from surrounding non-pancreas tissue;

• (b) a hybrid energy-minimisation segmentation approach exploits edge detection
to yield detailed, optimal contouring (delineation) of the pancreas;

• (c) a post-processing stage integrates principal geometric descriptors that charac-
terises pancreas tissue and employs radiological expert-knowledge about anato-
mical structure for refined tissue classification;

• (d) a deep learning novel loss (error) function based on the modified Hausdorff
metric and a sinusoidal component improves true-positive pancreas tissue predic-
tion.

9Deep learning is a class of machine learning that employs algorithms, known as neural networks,
which are inspired by the functioning of the human brain. A deep learning architecture consists of
several layers of neural networks.

25



1.4. LIST OF PUBLICATIONS CHAPTER 1. INTRODUCTION

A range of attributes using (a)-(d) include:

• enhanced automated pancreas boundary preservation and delineation from an
image volume;

• improved application to modalities that extend beyond MR imaging;

• robustness to noise-artefacts in medical image volumes;

• computational efficiency in comparison to reported state-of-the-art;

• and the generalisability of the contributions extends to image volumes acquired
using MRI scanner protocols that are not optimised for any particular organ, and
thus delivers quantitative segmentation results for other abdominal anatomical
structures.

1.4 List of Publications

Summarised below is a brief description of all current publications and a submission
under-reivew.

1. Villarini, B., Asaturyan, H., Thomas, E.L., Mould, R. and Bell, J.D. (2017). A
Framework for Morphological Feature Extraction of Organs from MR
Images for Detection and Classification of Abnormalities, 30th IEEE
International Symposium on Computer-Based Medical Systems (CBMS 2017).

• This conference paper describes a computational framework for morpholo-
gical feature extraction in 3D radiological abdominal scans following expert-
led manual organ segmentation. A correlative statistical analysis is performed
between organ volume and global 3D curvature using 115 manual pancreas
segmentations in abdominal MRI scans.

2. Asaturyan, H. and Villarini, B. (2018). Hierarchical Framework for Auto-
matic Pancreas Segmentation in MRI Using Continuous Max-flow and
Min-Cuts Approach, 15th International Conference on Image Analysis and
Recognition (ICIAR 2018).

• This conference paper details a methodology for automatic pancreas segmen-
tation in MRI. A dataset, containing 130 MRI scans of adult volunteers, is
employed for evaluating the efficiency of the proposed approach. An award
was achieved for Springer Best Paper.
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3. Asaturyan, H., Villarini, B., Gligorievski, A. (2019).Morphological and multi-
level geometrical descriptor analysis in CT and MRI volumes for auto-
matic pancreas segmentation. International Journal of Computerized Medical
Imaging and Graphics, Elsevier. Journal impact factor: 3.750.

• This journal paper details the methodology for automatic pancreas segmen-
tation in two diverse MRI datasets containing 132 and 216 scans, and a
publicly available CT dataset containing 82 scans. This approach is statis-
tically stable, reflected by lower metrics in standard deviation compared to
state-of-the-art approaches.

4. Asaturyan, H., Thomas, L. E., Bell, D. J., Villarini, B. (2019).A Framework for
Automatic Morphological Feature Extraction and Analysis of Abdomi-
nal Organs in MRI Volumes. Journal of Medical Systems, Springer. Journal
impact factor: 3.058.

• This journal paper presents a framework for automatic morphological featu-
re extraction in computer-aided 3D organ reconstructions following organ
segmentation in 3D radiological scans. Two different Magnetic Resonance
Imaging (MRI) datasets are evaluated to segment the pancreas and liver.
Both experiments highlight a negative correlation between 3D curvature and
volume with a statistical difference (p < 0.0001). Such a tool can support the
investigation into organ related conditions such as obesity, type 2 diabetes
mellitus and liver disease.

5. Asaturyan, H., Thomas, L. E., Fitzpatrick, J., Bell, D. J. and Villarini, B. (2019).
Advancing Pancreas Segmentation in Multi-protocol MRI Volumes Using
Hausdorff-Sine Loss Function. International Workshop on Machine Learning
in Medical Imaging (MLMI) in conjunction with International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI) 2019,
Springer.

• This conference paper proposes a dual-stage automatic segmentation method
to address the problem of vague organ boundaries in high class-imbalanced
data, by integrating a deep learning-based novel loss function to rigorous-
ly optimise boundary delineation. This approach is statistically stable and
outperforms state-of-the-art methods on MRI.
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6. Asaturyan, H., Villarini, B., Sarao, K., Chow S. K., Afacan, O. and Kurugol, S.
(Under review). Improving Automatic Renal Segmentation in Clinically
Normal and Abnormal Paediatric DCE-MRI via Contrast Maximisa-
tion and Convolutional Networks for Computing Markers of Kidney
Function. Journal of Magnetic Resonance Imaging, Elsevier. Journal impact
factor: 2.053.

• This paper presents a fully modular framework for automatic renal paren-
chyma segmentation, including medulla and cortex, in 4D Dynamic Contrast
Enhanced (DCE) Magnetic Resonance Imaging (MRI) volumes. The propo-
sed framework is evaluated on a paediatric dataset containing 60 diagnosed
4D DCE-MRI volumes that show varying conditions affecting kidney func-
tion; and it achieves quantitative segmentation results that outperform a
state-of-the-art approach and demonstrates statistical stability.

1.5 Organisation of Remaining Chapters

This section provides a summary of each remaining chapter throughout this PhD thesis.
Chapter 2 provides the background, rationale, motivation and challenges that drives the
development of this project. Chapter 3 provides a summary of current state-of-the-art
approaches that produce promising segmentation results in medical image scans. Furt-
hermore, this chapter references baseline architectures that are built upon in proceeding
methodology-based chapters. Chapter 4 (Method 1) presents the first of two methodo-
logies for automatic pancreas segmentation: this chapter introduces a novel intensity
model for digital image contrast enhancement in volumes that aid the segmentation con-
touring outcome at a later processing stage. Furthermore, this chapter presents a novel
refinement stage that integrates both expert radiological knowledge with computer-
aided analysis of distinct segmentations for tissue classification, i.e. “pancreas” versus
“non-pancreas”. Chapter 5 (Method 2) delivers the second of two principal, proposed
methods for automatic pancreas segmentation: this method exploits the advantages of
current deep learning architectures and integrates a novel loss function for advancing
the accuracy prediction rate in comparison to a readily used conventional loss function.
Combined with novelties described in Chapter 4, the second proposed method ensures
generalisability to other organ and muscular tissue segmentation tasks. This chapter
also investigates and compares the potential advantages and disadvantages of a 3D deep
learning architecture (3D-Method 2) to Method 2. Chapter 6 presents, discusses and
compares the segmentation evaluation results obtained in Method 1 (Chapter 4) and
Method 2 (Chapter 5) using two MRI datasets and one CT dataset. This chapter also
details the numerical implementation for Methods 1 and 2, and 3D-Method 2, in ad-
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dition to key technical tools and libraries. Chapter 7 critically compares and discusses
the quantitative segmentation results obtained using Methods 1 and 2, and 3D-Method
2 with reported state-of-the-art methodologies in terms of quantitative and qualitative
accuracy. This chapter also explores potential method optimisations in Method 2 and
3D-Method 2 to boost segmentation performance. Chapter 8 discusses the generalisa-
bility of Method 2 highlighting the impact to biomedical research and clinical studies,
including significant correlative analysis between computed morphological features and
identification of important prognostic biomarkers in 3D radiological scans. This chapter
also explores an extended application, in which the input of interest consists of image
volumes from multiple imaging protocols (sequences) from the same type of scanner or
multiple scanner modalities. Last, but certainly not least, Chapter 9 delivers a summary
of key challenges, motivations and achievements accomplished using the proposed met-
hods in this PhD research project. This chapter also reexamines the various drawbacks
of the reported state-of-the-art and presents outperforming quantitative results using
the methods that are proposed in this thesis, and reveals the significance of employing
the original contributions to knowledge into future work.

1.6 Conclusion

There is a significant need for accurate organ segmentation with a growing dependency
on computer-aided systems as support-tools for detection and diagnosis from 3D radio-
logical scans. The accurate organ boundary delineation in a scan can provide important
clinical information when presented as a 360-degree, 3D digital reconstruction, or when
evaluating the scan on a 2D-by-2D (slice-by-slice) basis. The progression of research
objectives in the lifecycle of this PhD project is reflected in published conference and
journal papers, highlighting the investigation of classical image progressing methods
through to deep learning technologies that optimise the contribution to knowledge in
the field of medical image analysis, and the application of computer science in biome-
dical research with a clinical translation.
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Chapter 2

Background and Rationale

2.1 Introduction

In recent decades the global prevalence of diabetes among adults has risen from 4.7% in
1980 to 8.8% in 2017 [185]. Diabetes, which is a major cause of blindness, heart attacks
and stroke, is on the rise and projected to reach 642 million adults by 2040 [209].
Furthermore, pancreatic cancer is one of the leading causes of cancer mortality and one
of the most dangerous tumours across the world. Although certain risk factors have been
identified such as type 2 diabetes and obesity, the causes are still insufficiently known
despite growing research in biomedicine [187]. For this reason, insight into the relevant
organ of interest (i.e. the pancreas) is vital, and one way is to extract or segment the
pancreas from 3D radiological scans. With that said, there are a number of challenges
and limitations that need to be addressed, tackled and minimised in order to ensure an
accurate, clinically acceptable segmentation.

Automatic pancreas segmentation in 3D radiological scans is an essential, yet challen-
ging task. As a prerequisite for computer-aided diagnosis (CADx) systems, accurate
pancreas segmentation could generate both quantitative and qualitative information
towards establishing the severity of a condition and thus provide additional guidance for
therapy planning. This chapter discusses the medical conditions affecting the pancreas,
and the challenges that limit as well as drive the development of accurate pancreas
segmentation methodologies, particularly in multiple modalities including Computer
tomography (CT) and Magnetic resonance imaging (MRI) scans. Section 2.2 discusses
the significance of pancreas segmentation with focus on improved detection, diagnosis
and stratification of patients with diabetes and pancreatic cancer. Section 2.3 presents
key challenges involved in producing large-scale accurate segmented pancreas volumes
in radiological scans. Section 2.4 summarises this chapter with key highlights regar-
ding medical pancreas conditions and respective MR imaging, and the challenges to
interpretation that will be necessary to consider in proceeding chapters.
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2.2 Significance of Pancreas Segmentation in CADx

The computation of pancreas measurements, such as volume and curvature, can provide
insight into the progression of type 2 diabetes mellitus [12, 13] and assist in detecting
pancreatic neoplasms1 [14]. It is noted that the curvature characterises the surface of
the pancreas in terms of its level of “smoothness” or “raggedness”, providing an indi-
cation about the potential deformity of the organ from a clinically “normal” pancreas.
Indeed, studies have reported that variations in the pancreas contour can be linked to
ductal adenocarcinoma [10], and enhanced contour analysis can facilitate stratification
of clinically “normal” variations against pancreatic tumours [15]. Obtaining such infor-
mation firstly requires segmenting the pancreas in radiological image volumes, such as
Computer tomography (CT) and Magnetic resonance imaging (MRI). Although ma-
nual segmentation can produce very accurate results, it is time-consuming, sometimes
prone to inter-observer variability, but above all, it is challenging to replicate given the
growing number of available medical image volumes. On the other hand, CADx systems
that generate automatic, accurate pancreas segmentation on a scale of thousands of ab-
dominal medical scans could support clinical studies to establish essential correlations
between organ volume, curvature and anthropometric2 measures [16].

As the upcoming sub-sections detail the essential task of imaging the pancreas for
disease detection and diagnosis using both MRI and CT scanning, the paragraph below
provides an introductory description about the differences between CT and MRI in
terms of organ visibility and image artefacts.

How does MRI and CT Quality Differ?

Despite CT scanning taking less time and costing less than MRI scanning, some types
of cancers or lesions can be harder to identify in a CT scan where otherwise detailed
in an MRI scan. MR imaging delivers sharp views of organs within the abdomen and
soft tissues, joints, and bones of the body. In fact, MRI scanning is often used when
CT has failed to deliver sufficient information for disease detection or diagnosis purpo-
ses. With that said, MR imaging may not always differentiate between excessive fluid
edema (swelling) and cancerous tissue due to similar greyscale intensity and structure
[71]. Also, during the MR imaging acquisition stage, signal processing can cause streak
artefacts that resemble multiple visible lines across the resulting image. Furthermore,
both MRI and CT scanning can produce blurring motion-based artefacts resulting from
breathing, cardiac movement and blood flow. Please refer to Appendix A to view a set
of 2D images (slices) taken from MRI and CT volumes.

1A neoplasm refers to abnormal excessive growth of tissue, commonly known as a tumour.
2Anthropometric measures refers to dimensions of the human body such as height, weight, and the

size and shape of bone, muscle, and fat tissue.
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Often, the first choice of scanner is heavily dependent on the patient’s health history and
symptoms. For example, it is often reported that patients with artificial metal joints and
a pacemaker avoid MRI as the scanning procedure employs powerful magnetic fields
that could cause problems for the patient [214, 215]. In contrast, since CT scanning
requires a small dosage of ionising radiation, it has been reported that pregnant women
in need of abdominal imaging may risk exposing their unborn baby to radiation during
the scanning procedure [216, 217].

2.2.1 Monitoring Diabetes

Diabetes mellitus (DM) or diabetes is a condition that affects the body’s ability to use
sugar (glucose) from carbohydrates in the food that is consumed. There are three major
types of diabetes, including type 1 diabetes, type 2 diabetes and gestational diabetes
[62]. With type 1 diabetes, the pancreas produces very little or no insulin3 due to the
body’s immune system destroying the cells that generate insulin in the pancreas. This
type of diabetes is most commonly diagnosed from infancy to the late 30s. With type
2 diabetes, the body rejects the effects of insulin or does not produce sufficient insulin
that the body can use to support healthy glucose levels. In this case, the cells become
resistant to insulin, triggering the release of more insulin to keep blood glucose levels
within a normal range. Eventually, the pancreas can deteriorate from producing extra
insulin. Type 2 diabetes is, by far the most common type of diabetes amongst adults.
Gestational diabetes is a type of diabetes that is triggered by pregnancy. Pregnancy can,
to some point, lead to insulin resistance, and this type of diabetes is often diagnosed
in middle or late pregnancy. Since high blood sugar levels in an expectant mother are
circulated through the placenta to the baby, gestational diabetes must be controlled to
safeguard the growth and development of the baby [63].

Both CT and MRI scanning, amongst other imaging modalities, provide significant in-
formation about the progress of diabetes and the correlation between other anatomical
and physiological factors. For example, the CT and MRI studies described in [60] de-
monstrate a correlation between diabetes, cerebral atrophy4 and lacunar infarcts5 but
no consistent relation with white matter lesions6. The magnetic resonance spectroscopy

3Insulin is a hormone made by the pancreas that allows the body to use sugar (glucose) from
carbohydrates in food that is consumed. Insulin helps to keep the body’s blood sugar level from
getting too high or too low.

4Cerebral atrophy describes the loss of neurons (cells) in the brain.
5Lacuna infarcts, also known as Small vessel disease, are small infarcts (2 to 20 mm in diameter

of area of dead tissue) in brain matter, resulting from the blockage of a small artery that burst while
providing bloody supply to the subcortical areas of the brain.

6A lesion refers to damaged or abnormal change in organ tissue. White matter lesions are areas of
damaged nerve cells found in the white matter of the brain.
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Figure 2.1: A pancreatic cyst, marked by an arrow, as shown on an MRI. Only a small
percentage of such cysts lead to cancer [188].

(MRS) studies report raised the ratio of myo-inositol7 to creatine8 and reduced the
ratio of N -acetylaspartate9 to creatine in patients with diabetes (of either type 1 or
type 2). Another CT scanning study demonstrated that diabetic patients had increased
lobulation10 of the pancreas [61]. All parts of the pancreas were inclined to be smaller
in patients with diabetes, but the degree of decline was mixed; the decline was ‘modest’
for patients who were not treated with insulin and the decline was more ‘pronounced’
in patients who were dependent on insulin. In general, the size of the pancreas’ body
was significantly reduced in all three groups, whereas the size of the pancreatic head
was preserved in patients who were not treated with insulin. CT scanning reveals that
although the pancreas density in diabetic patients is clinically “normal”, there is in-
creased lobulation. Reduction in size involves the body of the pancreas more than other
parts of the gland and is greater in diabetic patients treated with insulin. Therefore,
CT scanning of the pancreas might be useful in predicting which diabetic patients will
require insulin treatment.

In various other studies, MRI has demonstrated to be a reliable method for measuring
pancreatic volume and levels of fat surrounding the pancreas. In a study reported in [64]
effective MRI scanning was performed to monitor pancreatic atrophy11 in type 1 dia-
betes. Four different sequences12 were employed, including conventional T1-weighted13,

7Myo-inositol is a carbocyclic sugar that is abundant in the brain. It is a sugar alcohol with half
the sweetness of table sugar.

8Creatine is an organic acid that occurs naturally and primarily in the liver and kidneys. Its main
role is to assist in recycling the energy of cells in mainly muscle and brain tissue.

9N -acetylaspartate (NAA) is the second-most-concentrated molecule in the brain and is detected
in the adult brain in neurons.

10A lobulation is an appearance resembling lobules. A lobe is a clear anatomical division or extension
of an organ.

11Pancreatic atrophy is the permanent deterioration of the pancreas.
12An MRI sequence corresponds to a scanner imaging protocol, where a particular setting of pulse

sequences and field gradients are chosen to emphasise a particular appearance in the resultant image.
13T1-weighted image: tissues with high fat content appear bright and areas filled with water appear

dark.

33



2.2. SIGNIFICANCE OF PANCREAS SEGMENTATION IN CADXCHAPTER 2. BACKGROUND AND RATIONALE

Figure 2.2: MRI scans of tumour lesions. A (T2 axial view) and B (T2 coronal view)
highlight a primary tumour lesion 2 months before the initial diagnosis, which identifies
a cystic lesion at the location between body and tail of the pancreas with a size of 43
mm × 38 mm × 30 mm (A) and dilatation of the pancreatic duct of 13 mm (B). C (T1
axial) and D (T1 coronal) highlight a relapsed hepatic lesion 20 months after an after
initial diagnosis [189].

conventional T2-weighted14, volumetric interpolated breath-hold examination (VIBE)15

and T1-weighted breath-hold with fat suppression (T1BHFS). From here, the pancreas
organ was recognised on coded images by an observer and volumes were estimated
by interpolation. Consequently, these experiments showed that MRI could be used to
determine the natural history of pancreatic atrophy in diabetes. In another study, fat
levels in patients with type 2 diabetes (pancreatic triglyceride) were measured using
a targeted MRI scanning method. This pancreas-specific method led to the following
conclusion: for a person with type 2 diabetes that has a pancreas volume of 50 ml, this
is the equivalent to around 0.6 grams of fat. On a different note, the patients who had
never had diabetes saw no change in the level of fat in their pancreas, demonstrating
that increases in pancreatic fat are specific to people who develop type 2 diabetes [65].
On the topic of pancreas volume measurements, another study compared pancreas vo-
lume (PV) measurement using MRI-based planimetry in patients with type 2 diabetes,
to PV in normoglycemic16 individuals [12]. The pancreas contours of 32 type 2 diabetics
and 50 normoglycemic individuals were outlined on non-gadolinium17 (T1-weighted) 3D
fat suppressed gradient-echo images. Afterwards, the PV index (PVI) was calculated as
PV/weight to adjust PV for each patient’s weight. PVs and PVIs in both groups were
compared using t-tests and regression models corrected for weight, age and sex. The

14T2-weighted image: scanned areas filled with water appear bright and tissues with high fat content
(e.g. white matter) appear dark. This is good for demonstrating pathology since many lesions are
associated with an increase in water content.

15Volumetric interpolated breath-hold examination (VIBE) sequence produces T1-weighted ima-
ges using interpolation. VIBE is a modified form of fast low angle shot Magnetic resonance imaging
(FLASH) sequence allowing high-resolution imaging in less than 30 seconds breath-hold.

16Normoglycemic implies having a clinically “normal” amount of glucose in the blood.
17Gadolinium-based contrast agents, given by intravenous injection, are a widely used for MRI

scanning.
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study concluded that PV is reduced in type 2 diabetes compared to normoglycemic in-
dividuals and can be measured using MRI without contrast injection. Expanding on the
ability of MRI to provide detailed information about a pancreatic condition, a study
[66] has reviewed magnetic resonance cholangiopancreatography (MRCP) findings in
patients with diabetes, pancreatic exocrine insufficiency, and with combined pancreatic
exocrine insufficiency and diabetes. This particular report showed that chronic pan-
creatitis MRCP findings were present with increasing frequency in groups of diabetes
and insufficient pancreatic exocrine.

2.2.2 Pancreatic Cancer and Pancreatitis

Pancreatic cancer is caused by the abnormal and uncontrolled growth of cells in the
pancreas. In fact, during the early stages, a pancreatic tumour or neoplasm does not
usually cause any symptoms, which can make it difficult to diagnose. Pancreatic neo-
plasms can originate in the exocrine-based18 or endocrine-based19 functioning period;
such tumours that stem in the pancreas can be malignant epithelial20 or otherwise,
and can resemble cystic lesions. One such neoplasm, ductal pancreatic adenocarcino-
ma, constitutes roughly 90% of all malignant neoplasms [210, 211] in which the tumour
is located within the pancreas in up to 70% of cases. Approximately 80% of the tumours
occur in patients aged 60 to 80 years old, in which men are twice as likely affected than
women [212]. Furthermore, being able to differentiate between primary cystic neoplasms
from pancreatic ductal adenocarcinomas and other pancreatic malignancies is essenti-
al for therapy planning. Interestingly, a study described in [51] reported that CT was
insensitive towards differentiating cystic tumours whereas MRI displays a well-defined
boundary of such tumours.

Early detection of pancreatic cancer is paramount to improving patient survival. More
often than not, patients who undergo abdominal scanning are diagnosed as having a
pancreatic cyst21 (see Figure 2.1), and yet not all pancreatic cysts will progress to pan-
creatic cancer. For this reason, effective computational tools to detect or differentiate
a pancreatic cancer arising within a pancreatic cyst early would be a valuable asset to
the clinical community. For example, Figure 2.2 shows a follow-up case study MRI scan
about one year after initial symptoms were detected in a CT scan, in which multiple
lesions were seen in the tail of the pancreas (Figure 2.2 A and B). A splenopancreatec-
tomy was performed (removing the spleen and the pancreas) and a tumour of 7 cm ×
5 cm × 3.5 cm on the pancreatic tail was surgically removed.

18Functioning as an exocrine gland, the pancreas excretes enzymes to break down the proteins, fats
and carbohydrates in food.

19Functioning as an endocrine gland, the pancreas secretes the hormones insulin and glucagon to
control blood sugar levels.

20Malignant epithelial means in relation to thin tissue forming the outer layer of an organ surface.
21A cyst is a sac of tissue filled with air, fluid or other substances.
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Figure 2.3: Pancreatic pseudocyst (Ps) in a man in his early 40s known with gallstones
[190, 193]. (a) CT axial (b) T1-weighted (c) and T2-weighted MRI, obtained 6 weeks
after the beginning of an acute pancreatitis condition, highlights a homogenous-kind
fluid collection (Ps) with a fibrous capsule pancreas (P).

Acute Pancreatitis

Acute pancreatitis is an acute inflammatory process of the pancreas; in cases where
acute pancreatitis is severe, imaging is performed to examine the presence of peripan-
creatic22 fluid collections and assess the pumping of blood in pancreatic parenchyma23.
The standard imaging modality of choice in acute pancreatitis is CT due to its accuracy
and availability [53, 54]. That said, it has been reported that MRI scanning can also
fulfill these objectives and have recently been suggested as an substitute to CT for the
initial examination of acute pancreatitis [40]. For example, Figure 2.3 compares a CT,
T1-weighted and T2-weighted MRI scan on the same abdominal region in the same
patient. In the evaluation of acute pancreatitis, MRI can accurately show the presence
and extent of necrosis24 and peripancreatic fluid collections, and is a better alternative
to CT in detecting mild acute pancreatitis [55].

A routine pancreas protocol including MRI fat-suppressed T1-weighted sequences and
a series of T1-weighted gradient recalled echo (GRE) sequences prior to and post-
gadolinium is a suitable arrangement for examining acute pancreatitis and reaching
an informed opinion [54]. In the case of severe acute pancreatitis, gadolinium-enhanced
MRI is helpful for evaluating pancreatic parenchymal blood circulation. Moreover, mag-
netic resonance pancreatography (MRP), which is a technique that focuses on evaluating
of the pancreatic duct25 alone, or magnetic resonance angiogram (MRA), opens the way
for accurate diagnosis of complications affecting surrounding blood vessels.

22Peripancreatic means tissue occurring in or surrounding the pancreas.
23Pancreatic parenchyma is the functional part of the pancreas in the body.
24Necrosis is the death of majority (or all) the cells in an organ (or tissue) due to disease or failure

of the blood supply.
25A duct refers to a constrained passage or channel leading from an exocrine gland or organ.
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Chronic Pancreatitis

Chronic pancreatitis can be described as fibrosis26 and cellular infiltration27 [56] of the
pancreas. Chronic pancreatitis is an irreversible disorder where pancreatic exocrine and
endocrine cease to function. An MRI examination that screens for chronic pancreatitis
will generally include MRP, as well as T1-weighted and T2-weighted images. The signal
intensity of T1 and T2-weighted images tends to decrease with the presence of what is
considered chronic pancreatitis.

Secretin-administered28 MRCP imaging presents the ductal anatomy, highlighting the
severity of pancreatic duct obstruction, and possible exocrine damage, all of which may
provide useful guidance prior to treatment planning. On a different note, a downside of
MRI scanning may include poor sensitivity towards detecting scattered calcifications29

within the pancreas or in the distal30 portion of the pancreatic duct, and thus MRI
scanning might not help to detect the cause of non-calcified31 defects.

The ability to detect mild chronic pancreatitis and differentiate from pancreatic ade-
nocarcinoma remains challenging for non-invasive imaging methods. At present, en-
doscopic retrograde cholangiopancreatography (ERCP) is the most sensitive imaging
procedure for detecting the influence of pancreatic duct side branch in the early stages
of chronic pancreatitis [58]. CT imaging is the first choice for screening for advan-
ced or severe chronic pancreatitis. In some cases, non-enhanced CT is combined with
MRCP in order to examine disease before treatment planning effectively. Due to the
non-invasiveness of the imaging technology, MRI is suitable for follow-up screenings in
patients with chronic pancreatitis after cure from ductal obstruction is obtained with
endoscopic treatment [57].

2.3 Challenges

This section explores the various challenges surrounding accurate pancreas segmenta-
tion in medical image scans, not least the interobserver variability in pancreas contou-
ring (boundary tracing) and tumour volume measurement. The differences in imaging
modalities (e.g. CT vs MRI), image quality and limitations of shared data are also
addressed.

26Fibrosis is the formation of excess fibrous connective tissue in an organ in a reactive process.
27Cellular infiltration is the movement of cells from their origin (or the direct extension of cells) into

organs or tissues as a consequence of unusual cell growth.
28Secretin is a hormone produced by the digestive tract, and often used as a medicine.
29Calcification is the accumulation of calcium salts in a body tissue.
30Distal refers to part of an anatomy situated farthest from point of attachment or origin.
31Non-calcified nodules (swelling or aggregation of cells in body) are classified as ground-glass

opacities (image findings that indicate a partial filling of air spaces)
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Figure 2.4: Location of pancreas in abdominal cavity [158]. The pancreas lies on the
posterior abdominal wall. Notice that the pancreas is located just behind the stomach in
the back of the upper left abdomen. The head of the pancreas lies within the duodenum
curve, which is the first section of the small intestine. The tip of the pancreas extends
across the abdominal cavity.

2.3.1 Structural Variability
Pancreas segmentation, compared to other abdominal organs, presents more significant
challenges due to size, structure and location. Firstly, the pancreas has high structural
and inter-patient variability [94], and the location within the abdominal cavity shifts
from patient to patient. Secondly, a full inspection from a scan is problematic since
the organ lies just behind the stomach, as shown in Figure 2.4. The head of the pan-
creas touches the first part of the small intestine (duodenum) and often overlaps with
surrounding abdominal fat and vessels. The high structural variability of the pancreas
and respective abnormal cell growth has led to considerable interobserver variation in
delineation of tumours in CT volumes amongst expert radiation oncologists [95]. The
mean overall observer variation (root-mean-square) was 0.63 cm for pancreatic gross
tumour volume (GTV) and 0.80 cm for internal GTV (accounting for the respiratory
motion). Another study has highlighted over 40 variations in the lateral contour of the
clinically “normal” head and neck of the pancreas in CT image volumes for 119 patients
[96]. For example, approximately 35% of patients had discrete lobulations of pancreatic
tissue greater than 1 cm lateral to the superior pancreaticoduodenal artery32.

32The superior pancreaticoduodenal artery is an artery that supplies blood to the duodenum and
pancreas.

38



CHAPTER 2. BACKGROUND AND RATIONALE 2.3. CHALLENGES

2.3.2 MRI vs CT Modality

For an initial pancreas examination, a patient normally undergoes CT scanning [39]. If
results are inconclusive and further information is required, they are often referred to
an MRI examination or an ERCP evaluation. Unlike a CT procedure that requires an
ionising contrast media, a commonly known advantage of MRI includes the non-ionising
radiation feature33. Conventional contrast-enhanced CT scanning does, however, pro-
duce images of high spatial resolution compared to MRI. Furthermore, a CT is more
favourable compared to MRI for patients who are extremely ill. The strong magnetic
field of an MRI scanner means that patients must notify their physicians of any form
of medical implant before a scan. Also, an MRI scanner creates a low, drumming noise,
more commonly referred to as “clicking and beeping” and thus patients often require
special ear protection. Furthermore, nerve stimulation is created, which is a twitching
sensation resulting from the quickly switched magnetic fields in the MRI machine [40].

In some cases, non-contrast CT can be used to evaluate the pancreas in patients with
renal failure or patients who exhibit allergic reactions to the (iodinated) conventional
contrast agent. As the pancreatic tumours or lesions can only be visualised with con-
trast imaging, non-contrast CT scans exhibit poor quality for pancreatic tumours and
therefore cannot be relied upon to make an accurate diagnosis [38]. Similarly, although
conventional MRI does not require contrast agents, there are cases where administra-
tion of gadolinium is required. When a tumour is not identifiable on a CT scan, an MRI
examination of the pancreas is performed with intravenous administration of contrast,
with gadolinium being the most commonly used agent. Identification of pancreatic tu-
mours is hypersentitive34 on gadolinium-enhanced (T1-weighted) because it is lacking
sufficient blood vessels.

Imaging Quality

Studies reported in [93] shows that statistical differences were found between pancreatic
gross tumour volume (GTV) from different imaging modalities, including MRI fusion
and CT. The study reports that the volumes of “at-risk” pancreata based on MRI are
generally smaller than those based on CT, and therefore further studies are required
to identify the optimal imaging modality or sequence to define GTV. Differing from
CT imaging, the low resolution and slower imaging speed of MRI presents additional
edge-based artefacts [24]. Figure 2.5(a) displays a single axial slice from an abdominal
CT scan. The top image shows the original slice, and the bottom image highlights the
ground-truth of the pancreas contoured in red. Figures 2.5(b)(c) display axial MRI slices

33Non-ionising radiation is a type of electromagnetic radiation that does not carry enough energy
to damage human tissue.

34A hyperintensity is an area in an MRI scan that appears lighter in colour than the surrounding
tissues, and thus a hypointensity would be darker in colour.
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Figure 2.5: The expert-led manual (ground-truth) segmentation of the pancreas is con-
toured in red. Column (a) displays an axial slice in a CT scan. Columns (b) and (c)
display two axial slices from two different MRI scans. Notice the finer image quality of
CT in comparison to MRI that is significantly coarse and suffers from greater blurred
boundaries between the pancreas, and duodenum.

from two different scans for two different subjects. Notice the similarity in the greyscale
intensity of the surrounding tissue. Notice that in column (c), the slices appear “zoomed-
in” to emphasise the variation in the visibility of pancreatic features in a slice-by-slice
inspection.

2.3.3 Dataset Limitations

In recent years, medical data - and in particular imaging data - has become available for
academic research purposes [87, 88, 89, 90, 91, 92]. A number of different organisations
provide a platform where researchers can obtain image data to advance their work in
medical image computing and validate the effectiveness of their algorithms. That said,
there are still many limitations including imaging modality restriction, dataset size
and the scanned region of anatomy. For example, the Cancer Imaging Archive (TCIA)
provides a publicly available resource of abdominal CT scans [81] but the same cannot
be said about MRI modality.

Despite a growing number of “Biobanks” currently provide a platform [85, 86] of medical
imaging data for research purposes, a shared platform is yet to be available where
researchers can access the same data (especially MRI) and make direct comparison
with other methodologies. Also, with increasing scrutiny about “data protection and
distribution”, Biobanks that choose to resell data to third parties can generate tensions
very similar to those that social networking platforms have faced in recent years [84].
The authors of many publications, with the exception of a publicly available CT data
provided by TCIA, rely on data provided by their internal departments or hospitals
that collaborate with their department. Also, the data utilised for research purposes
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