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Abstract:

This paper presents a calculus of Socratic proofs for
Propositional Linear-Time Logic (PLTL) and discusses po-
tential automation of its proof search.

1 Introduction

Propositional Linear-Time Logic (PLTL) [6] gained vari-
ous deductive constructions: axiomatic [5], tableau [11],
resolution [4], and natural deduction [1]. In this paper
we present a calculus of Socratic proofs for Propositional
Linear-Time Logic (PLTL) [6], [3], [7] abbreviated as
PLTLsp. The calculus is based upon the hypersequent cal-
culus [2] and it fits into the framework of Socratic proofs
by Wisniewski (cf. [8], [10] and [9]).

2 Logic PLTL

We utilise the language of PLTL which extends the lan-
guage of Classical Propositional Calculus (CPC) by tem-
poral operators: U (until) O) (at the next moment in time),
O (always in the future), and < (at sometime in the future or
eventually). The semantics for the temporal part of the logic
PLTL 7 is defined in the standard way over linear sequence
of states, finite in the past, infinite in the future.

In order to formulate PLTL+ we need to extend the lan-
guage of PLTL with the following signs: -, 7, 1 and 2. Intu-
itively, - stands for derivability relation and 7 is a question-
forming operator. The numerals 1 and 2 will be used to
encode tree-structure of a Socratic transformation.

There are two disjoint categories of wffs: declarative
wifs (d-wffs) and erotetic wifs (e-wffs), or questions. There
are also two types of d-wffs: atomic d-wffs and indexed d-
wifs. Atomic d-wffs are expressions of the form S F A,
where S is a finite sequence (possibly with repetitions) of
PLTL-wffs, and A is a PLTL-wff, and if A is an empty for-
mula, then S is a non-empty sequence. Indexed d-wffs are
expressions of the form S F" A or of the form T" ", where
S F Aand T I+ are atomic d-wffs of and n is a sequence
of 1’s or 2’s, starting with 1. E-wffs, or questions are ex-
pressions of the form ?(®), where ® is a non-empty finite
sequence of indexed atomic d-wffs (constituents of ).

In the formulation of rules we shall use the following
classification of PLTL formulae to v and f3 types:
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If none of the above rules is applicable to a PLTL formula
B, such a formula is called marked. If all PLTL-formulas
within an indexed formula S " A are marked, such a for-
mula is called a state.

The following is a state-prestate rule:

?7(9;8 " A;T)

s-P: ————
7 (®;5° k7 A% W)

where S F" A is a state and S° (resp. A°) results from S
(resp. A) by replacing all the formulas of the form () B with
B and deleting all the remaining formulas. Every formula



of the form S* ™ A*, where n is an initial subsequence of
m or m 1is an initial subsequence of n, is called a pre-state

(cf. [11]).

Definition 1. Letq = (Q1, ..., Q) be a finite sequence of
questions of P*. Let Qg,Qp—1,Qr (1 < g<h—1<7)be
elements of the sequence q. Let S; F™ A; be a constituent
of Qg and let Sy, F™ Ay, be a constituent of Qy, such that
S; = Sk, Aj = Ay, and the sequence n is an initial sub-
sequence of the sequence m. Let S; - A; be a constituent
of Qn_1 such that Sy, F™ Ay, is obtained from S; ' A; by
application of a PT*-rule. Then S; =" A;,..., S F' A,
form a loop (a sequence of atomic d-wffs of P* ... etc.),
and Sy, ™ Ay, is called a loop-generating formula.

Socratic transformations are sequences of questions that
aim at deciding derivability of formuls from sets of formuls.

Definition 2. A finite sequence (Q1,. .., Q) of questions
of P* is a Socratic transformation of S & A iff the following
conditions hold: (i)Q1 =?(S ' A); (ii)Q; (where i =
2,...,r) results from Q;_1 by applying a PT*-rule.

Definition 3. A constituent ¢ of a question Q; is called
successful iff one of the following holds: (a) ¢ is of the form
T'B'U ™ B, or (b) ¢ is of the form T'B'U'-B'W " C,
or (c) ¢ is of the form T'=B'U’' B'W "™ C.

Definition 4. A Socratic transformation (Q1,...,Q.) of
S F A is completed iff the for each constituent ¢ of Q, at
least one of the following conditions hold: (a) no rule is
applicable to PLTL-formulas in ¢, or (b) ¢ is successful, or
(c) ¢ is a loop-generating formula.

Definition 5. A formula B is called an eventuality in S -"
A iff one of the following holds: (i) B is a term of S and
there exists a PLTL-formula C such that B = <C, or (ii)
there exists a PLTL-formula C' such that B= A = QOC.

Definition 6. A completed Socratic transformation q =
(@Q1,...,Q) is a Socratic proof of S &+ A iff: (a) all
the constituents of Q,, are successful, or (b) for each non-
successful constituent ¢ of Qn, ¢ is a loop-generating for-
mula and the loop generated by ¢ contains a pre-state with
an unfulfilled eventuality.

The presented system is sound and complete. Proofs of
these theorems involve construction of a canonical model
with maximal consistent sets of formulae as its states.

3 Examples

In the examples below by highlighting we indicate a for-
mula which is analyzed at the current step. Double under-
lining of a formula reflects that it is a state. The question
following the one containing a state is obtained by state-
prestate rule.

Example 2

Example 1
1. ?2(v*op—Op)
1. ?2(FYgop—p) 2. ?(lap + Op)
2. (@pt+'p) 3. ?(p,Oop ' Op)
3. 2(p,OoptFtp) 4. ?2(op*rtp)
5. ?(p,Oop ' p)
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