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Abstract:

This paper presents a calculus of Socratic proofs for
Propositional Linear-Time Logic (PLTL) and discusses po-
tential automation of its proof search.

1 Introduction

Propositional Linear-Time Logic (PLTL) [6] gained vari-
ous deductive constructions: axiomatic [5], tableau [11],
resolution [4], and natural deduction [1]. In this paper
we present a calculus of Socratic proofs for Propositional
Linear-Time Logic (PLTL) [6], [3], [7] abbreviated as
PLTLSP. The calculus is based upon the hypersequent cal-
culus [2] and it fits into the framework of Socratic proofs
by Wisniewski (cf. [8], [10] and [9]).

2 Logic PLTLT

We utilise the language of PLTL which extends the lan-
guage of Classical Propositional Calculus (CPC) by tem-
poral operators: U (until) ⃝ (at the next moment in time),2 (always in the future), and 3 (at sometime in the future or
eventually). The semantics for the temporal part of the logic
PLTLT is defined in the standard way over linear sequence
of states, finite in the past, infinite in the future.

In order to formulate PLTLT we need to extend the lan-
guage of PLTL with the following signs: ⊢, ?, 1 and 2. Intu-
itively, ⊢ stands for derivability relation and ? is a question-
forming operator. The numerals 1 and 2 will be used to
encode tree-structure of a Socratic transformation.

There are two disjoint categories of wffs: declarative
wffs (d-wffs) and erotetic wffs (e-wffs), or questions. There
are also two types of d-wffs: atomic d-wffs and indexed d-
wffs. Atomic d-wffs are expressions of the form S ⊢ A,
where S is a finite sequence (possibly with repetitions) of
PLTL-wffs, and A is a PLTL-wff, and if A is an empty for-
mula, then S is a non-empty sequence. Indexed d-wffs are
expressions of the form S ⊢n A or of the form T ⊢n, where
S ⊢ A and T ⊢ are atomic d-wffs of and n is a sequence
of 1’s or 2’s, starting with 1. E-wffs, or questions are ex-
pressions of the form ?(Φ), where Φ is a non-empty finite
sequence of indexed atomic d-wffs (constituents of Φ).

In the formulation of rules we shall use the following
classification of PLTL formulae to α and β types:

α α1 α2

A ∧B A B
¬(A ∨B) ¬A ¬B
¬(A → B) A ¬B2A A ⃝2A
¬3A ¬A ⃝2¬A
¬(AUB) ¬B ¬(A ∧⃝(AUB))

β β1 β2 β∗
1

¬(A ∧B) ¬A ¬B A
A ∨B A B ¬A
A → B ¬A B A
¬2A ¬A ⃝3¬A A3A A ⃝3A ¬A
AUB B A ∧⃝(AUB) ¬B

Rules for PLTLT :

Lα :
? (Φ;S ′ α ′ T ⊢n C; Ψ)

? (Φ;S ′ α1
′ α2

′ T ⊢n C; Ψ)

Lβ :
? (Φ;S ′ β ′ T ⊢ C; Ψ)

? (Φ;S ′ β1
′ T ⊢n1 C;S ′ β2

′ T ⊢n2 C; Ψ)

L¬¬ :
? (Φ;S ′ ¬¬A ′ T ⊢n C; Ψ)

? (Φ;S ′ A ′ T ⊢n C; Ψ)

L¬⃝ :
? (Φ;S ′ ¬⃝A ′ T ⊢n C; Ψ)

? (Φ;S ′ ⃝¬A ′ T ⊢n C; Ψ)

Rα :
? (Φ;S ⊢n α; Ψ)

? (Φ;S ⊢n1 α1;S ⊢n2 α2; Ψ)

Rβ :
? (Φ;S ⊢n β; Ψ)

? (Φ;S ′ β∗
1 ⊢n β2; Ψ)

R¬¬ :
? (Φ;S ⊢n ¬¬A; Ψ)

? (Φ;S ⊢n A; Ψ)

R¬⃝ :
? (Φ;S ⊢n ¬⃝A; Ψ)

? (Φ;S ⊢n ⃝¬A; Ψ)

If none of the above rules is applicable to a PLTL formula
B, such a formula is called marked. If all PLTL-formulas
within an indexed formula S ⊢n A are marked, such a for-
mula is called a state.

The following is a state-prestate rule:

S−P :
? (Φ;S ⊢n A; Ψ)

? (Φ;S◦ ⊢n A◦; Ψ)

where S ⊢n A is a state and S◦ (resp. A◦) results from S
(resp. A) by replacing all the formulas of the form ⃝B with
B and deleting all the remaining formulas. Every formula



of the form S∗ ⊢m A∗, where n is an initial subsequence of
m or m is an initial subsequence of n, is called a pre-state
(cf. [11]).

Definition 1. Let q = ⟨Q1, . . . , Qr⟩ be a finite sequence of
questions of P∗. Let Qg, Qh−1, Qh (1 ≤ g < h−1 ≤ r) be
elements of the sequence q. Let Sj ⊢n Aj be a constituent
of Qg and let Sk ⊢m Ak be a constituent of Qh such that
Sj = Sk, Aj = Ak and the sequence n is an initial sub-
sequence of the sequence m. Let Sl ⊢i Al be a constituent
of Qh−1 such that Sk ⊢m Ak is obtained from Sl ⊢i Al by
application of a PT∗-rule. Then Sj ⊢n Aj , . . . , Sl ⊢i Al

form a loop (a sequence of atomic d-wffs of P∗ . . . etc.),
and Sk ⊢m Ak is called a loop-generating formula.

Socratic transformations are sequences of questions that
aim at deciding derivability of formuls from sets of formuls.

Definition 2. A finite sequence ⟨Q1, . . . , Qr⟩ of questions
of P∗ is a Socratic transformation of S ⊢ A iff the following
conditions hold: (i)Q1 =?(S ⊢1 A); (ii)Qi (where i =
2, . . . , r) results from Qi−1 by applying a PT∗-rule.

Definition 3. A constituent ϕ of a question Qi is called
successful iff one of the following holds: (a) ϕ is of the form
T ′B′U ⊢n B, or (b) ϕ is of the form T ′B′U ′¬B′W ⊢n C,
or (c) ϕ is of the form T ′¬B′U ′B′W ⊢n C.

Definition 4. A Socratic transformation ⟨Q1, . . . , Qr⟩ of
S ⊢ A is completed iff the for each constituent ϕ of Qr at
least one of the following conditions hold: (a) no rule is
applicable to PLTL-formulas in ϕ, or (b) ϕ is successful, or
(c) ϕ is a loop-generating formula.

Definition 5. A formula B is called an eventuality in S ⊢n

A iff one of the following holds: (i) B is a term of S and
there exists a PLTL-formula C such that B = 3C, or (ii)
there exists a PLTL-formula C such that B = A = 2C.

Definition 6. A completed Socratic transformation q =
⟨Q1, . . . , Qr⟩ is a Socratic proof of S ⊢ A iff: (a) all
the constituents of Qn are successful, or (b) for each non-
successful constituent ϕ of Qn, ϕ is a loop-generating for-
mula and the loop generated by ϕ contains a pre-state with
an unfulfilled eventuality.

The presented system is sound and complete. Proofs of
these theorems involve construction of a canonical model
with maximal consistent sets of formulae as its states.

3 Examples

In the examples below by highlighting we indicate a for-
mula which is analyzed at the current step. Double under-
lining of a formula reflects that it is a state. The question
following the one containing a state is obtained by state-
prestate rule.

Example 1

1. ?(⊢1 2p → p )

2. ?( 2p ⊢1 p)

3. ?(p,⃝2p ⊢1 p)

Example 2

1. ?(⊢1 2p → ⃝p )

2. ?( 2p ⊢1 ⃝p)

3. ?(p,⃝2p ⊢1 ⃝p)

4. ?( 2p ⊢1 p)

5. ?(p,⃝2p ⊢1 p)
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