

WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

Socratic Proofs for Propositional Linear-Time Logic Urbanski, M., Bolotov, A., Shangin, V. and Grigoriev, O.

This is an electronic version of a paper presented at *the Joint Automated Reasoning Workshop and Deduktionstreffen,* Vienna 23 to 24th July 2014.

The conference proceedings are available online at:

http://arw.csc.liv.ac.uk/year/2014/ARW2014proceedings.pdf

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail <u>repository@westminster.ac.uk</u>

Socratic Proofs for Propositional Linear-Time Logic

Mariusz Urbanski¹

Alexander Bolotov²

Vasilyi Shangin³

Oleg Grigoriev³

¹ Adam Mickiewicz University, Poznań, Poland Mariusz.Urbanski@amu.edu.pl ² University of Westminster, UK A.Bolotov@wmin.ac.uk

³ Moscow State University, Russia

shangin@philos.msu.ru, grigoriev@philos.msu.ru

Abstract:

This paper presents a calculus of Socratic proofs for Propositional Linear-Time Logic (PLTL) and discusses potential automation of its proof search.

1 Introduction

Propositional Linear-Time Logic (PLTL) [6] gained various deductive constructions: axiomatic [5], tableau [11], resolution [4], and natural deduction [1]. In this paper we present a calculus of Socratic proofs for Propositional Linear-Time Logic (PLTL) [6], [3], [7] abbreviated as PLTL_{SP}. The calculus is based upon the hypersequent calculus [2] and it fits into the framework of Socratic proofs by Wisniewski (cf. [8], [10] and [9]).

2 Logic $PLTL_T$

We utilise the language of PLTL which extends the language of Classical Propositional Calculus (CPC) by temporal operators: \mathcal{U} (*until*) \bigcirc (*at the next moment in time*), \Box (*always in the future*), and \diamond (*at sometime in the future* or *eventually*). The semantics for the temporal part of the logic PLTL_T is defined in the standard way over linear sequence of states, finite in the past, infinite in the future.

In order to formulate $PLTL_T$ we need to extend the language of PLTL with the following signs: \vdash , ?, 1 and 2. Intuitively, \vdash stands for derivability relation and ? is a questionforming operator. The numerals 1 and 2 will be used to encode tree-structure of a Socratic transformation.

There are two disjoint categories of wffs: *declarative* wffs (d-wffs) and *erotetic* wffs (e-wffs), or questions. There are also two types of d-wffs: *atomic* d-wffs and *indexed* d-wffs. Atomic d-wffs are expressions of the form $S \vdash A$, where S is a finite sequence (possibly with repetitions) of PLTL-wffs, and A is a PLTL-wff, and if A is an empty formula, then S is a non-empty sequence. Indexed d-wffs are expressions of the form $S \vdash A$ and $T \vdash$ are atomic d-wffs of and n is a sequence of 1's or 2's, starting with 1. E-wffs, or questions are expressions of the form $?(\Phi)$, where Φ is a non-empty finite sequence of indexed atomic d-wffs (*constituents* of Φ).

In the formulation of rules we shall use the following classification of PLTL formulae to α and β types:

α	α_1	$lpha_2$
$A \wedge B$	A	В
$\neg(A \lor B)$	$\neg A$	$\neg B$
$\neg (A \rightarrow B)$	A	$\neg B$
$\Box A$	A	$\bigcirc \Box A$
$\neg \diamondsuit A$	$\neg A$	$\bigcirc \Box \neg A$
$\neg(A\mathcal{U}B)$	$\neg B$	$\neg(A \land \bigcirc(A \mathcal{U}B))$

β	β_1	β_2	β_1^*
$\neg (A \land B)$	$\neg A$	$\neg B$	A
$A \lor B$	A	В	$\neg A$
$A \to B$	$\neg A$	В	A
$\neg \Box A$	$\neg A$	$\bigcirc \diamondsuit \neg A$	A
$\diamond A$	A	$\bigcirc \diamond A$	$\neg A$
AUB	В	$A \land \bigcirc (A \mathcal{U} B)$	$\neg B$

Rules for $PLTL_T$:

\mathbf{L}_{α} :	$\frac{? (\Phi; S' \alpha' T \vdash^{n} C; \Psi)}{? (\Phi; S' \alpha_{1}' \alpha_{2}' T \vdash^{n} C; \Psi)} $
\mathbf{L}_{β} :	$\frac{? (\Phi; S' \beta' T \vdash C; \Psi)}{? (\Phi; S' \beta_1' T \vdash^{n1} C; S' \beta_2' T \vdash^{n2} C; \Psi)}$
$\mathbf{L}_{\neg\neg}:$	$\frac{?(\Phi; S' \neg \neg A' T \vdash^{n} C; \Psi)}{?(\Phi; S' A' T \vdash^{n} C; \Psi)}$
$\mathbf{L}_{\neg\bigcirc}:$	$\frac{? (\Phi; S' \neg \bigcirc A' T \vdash^{n} C; \Psi)}{? (\Phi; S' \bigcirc \neg A' T \vdash^{n} C; \Psi)}$
\mathbf{R}_{lpha} :	$\frac{?\left(\Phi;S\vdash^{n}\alpha;\Psi\right)}{?\left(\Phi;S\vdash^{n1}\alpha_{1};S\vdash^{n2}\alpha_{2};\Psi\right)}$
\mathbf{R}_{β} :	$\frac{? (\Phi; S \vdash^n \beta; \Psi)}{? (\Phi; S' \beta_1^* \vdash^n \beta_2; \Psi)}$
$\mathbf{R}_{\neg \neg}$:	$\frac{?(\Phi; S \vdash^n \neg \neg A; \Psi)}{?(\Phi; S \vdash^n A; \Psi)}$
$\mathbf{R}_{\neg\bigcirc}$:	$\frac{?(\Phi; S \vdash^n \neg \bigcirc A; \Psi)}{?(\Phi; S \vdash^n \neg \bigcirc A; \Psi)}$
	$(\Psi; S \vdash^n \bigcirc \neg A; \Psi)$

If none of the above rules is applicable to a PLTL formula B, such a formula is called *marked*. If all PLTL-formulas within an indexed formula $S \vdash^n A$ are marked, such a formula is called *a state*.

The following is a state-prestate rule:

$$\mathbf{S} - \mathbf{P} := \frac{? (\Phi; S \vdash^n A; \Psi)}{? (\Phi; S^{\circ} \vdash^n A^{\circ}; \Psi)}$$

where $S \vdash^n A$ is a state and S° (resp. A°) results from S (resp. A) by replacing all the formulas of the form $\bigcirc B$ with B and deleting all the remaining formulas. Every formula

of the form $S^* \vdash^m A^*$, where *n* is an initial subsequence of *m* or *m* is an initial subsequence of *n*, is called *a pre-state* (cf. [11]).

Definition 1. Let $\mathbf{q} = \langle Q_1, \ldots, Q_r \rangle$ be a finite sequence of questions of \mathbf{P}^* . Let Q_g, Q_{h-1}, Q_h $(1 \le g < h-1 \le r)$ be elements of the sequence \mathbf{q} . Let $S_j \vdash^n A_j$ be a constituent of Q_g and let $S_k \vdash^m A_k$ be a constituent of Q_h such that $S_j = S_k, A_j = A_k$ and the sequence n is an initial subsequence of the sequence m. Let $S_l \vdash^i A_l$ be a constituent of Q_{h-1} such that $S_k \vdash^m A_k$ is obtained from $S_l \vdash^i A_l$ by application of a PT^* -rule. Then $S_j \vdash^n A_j, \ldots, S_l \vdash^i A_l$ form a loop (a sequence of atomic d-wffs of $\mathbf{P}^* \ldots$ etc.), and $S_k \vdash^m A_k$ is called a loop-generating formula.

Socratic transformations are sequences of questions that aim at deciding derivability of formuls from sets of formuls.

Definition 2. A finite sequence $\langle Q_1, \ldots, Q_r \rangle$ of questions of \mathbf{P}^* is a Socratic transformation of $S \vdash A$ iff the following conditions hold: (i) $Q_1 = ?(S \vdash^1 A)$; (ii) Q_i (where $i = 2, \ldots, r$) results from Q_{i-1} by applying a PT^* -rule.

Definition 3. A constituent ϕ of a question Q_i is called successful iff one of the following holds: (a) ϕ is of the form $T'B'U \vdash^n B$, or (b) ϕ is of the form $T'B'U' \neg B'W \vdash^n C$, or (c) ϕ is of the form $T' \neg B'U'B'W \vdash^n C$.

Definition 4. A Socratic transformation $\langle Q_1, \ldots, Q_r \rangle$ of $S \vdash A$ is completed iff the for each constituent ϕ of Q_r at least one of the following conditions hold: (a) no rule is applicable to PLTL-formulas in ϕ , or (b) ϕ is successful, or (c) ϕ is a loop-generating formula.

Definition 5. A formula B is called an eventuality in $S \vdash^n A$ iff one of the following holds: (i) B is a term of S and there exists a PLTL-formula C such that $B = \diamond C$, or (ii) there exists a PLTL-formula C such that $B = A = \Box C$.

Definition 6. A completed Socratic transformation $\mathbf{q} = \langle Q_1, \ldots, Q_r \rangle$ is a Socratic proof of $S \vdash A$ iff: (a) all the constituents of Q_n are successful, or (b) for each non-successful constituent ϕ of Q_n , ϕ is a loop-generating formula and the loop generated by ϕ contains a pre-state with an unfulfilled eventuality.

The presented system is sound and complete. Proofs of these theorems involve construction of a canonical model with maximal consistent sets of formulae as its states.

3 Examples

In the examples below by highlighting we indicate a formula which is analyzed at the current step. Double underlining of a formula reflects that it is a state. The question following the one containing a state is obtained by stateprestate rule.

Example 1

	1.	$?(\vdash^1 \Box p \to \bigcirc p)$
$?(\vdash^1 \Box p \to p)$	2.	$?(\Box p \vdash^1 \bigcirc p)$
$?(\Box p \vdash^1 p)$	3.	$?(\overline{p,\bigcirc}\Box p\vdash^1\bigcirc p)$
$?(\overline{p,\bigcirc} \Box p \vdash^1 p)$	4.	$?(\Box p \vdash^1 p)$
	5.	$?(\overline{p, \bigcirc} \Box p \vdash^1 p)$

References

1

2

3

- O. Grigoryev A. Basukoski, A. Bolotov and V. Shangin. Natural deduction system for linear time temporal logic . *Logical investigations*, (13):71–95, 2004.
- [2] A. Avron. The Method of Hypersequents in the Proof Theory of Propositional Non-Classical Logics, pages 1–32. Logic: Foundations to Applications. Clarendon Press, 1996.
- [3] M. Finger, D. M. Gabbay, and M. Reynolds. Advanced Tense Logic, volume 7 of Handbook of Philosophical Logic, pages 43–203. Springer, 2002.
- [4] Michael Fisher, Clare Dixon, and Martin Peim. Clausal temporal resolution. ACM Trans. Comput. Log., 2(1):12–56, 2001.
- [5] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In 7th ACM Symposium on Principles of Programming Languages, pages 163–173, 1980.
- [6] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Symposium on Foundations of Computer Science, pages 46–57, 1977.
- [7] A. P. Sistla and E. M. Clarke. The complexity of Propositional Linear Temporal Logic. *Journal of the Association for Computing Machinery*, 32(3):733– 749, 1985.
- [8] A. Wiśniewski. Socratic Proofs. Journal of Philosophical Logic, 33(2):299–326, 2004.
- [9] A. Wiśniewski and V. Shangin. Socratic proofs for quantifiers. *Journal of Philosophical Logic*, 35(2):147–178, 2006.
- [10] A. Wiśniewski, G. Vanackere, and D. Leszczyńska. Socratic Proofs and Paraconsistency. A Case Study. *Studia Logica*, 80:431–466, 2005.
- [11] P. Wolper. The tableau method for temporal logic: An overview. *Logique et Analyse*, 28:119–136, 1985.

Example 2