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Political Risk Modelling and Measurement From
Stochastic Volatility Models

Sovan Mitra ∗

Abstract

The past decades have seen an unprecedented global rise in unforeseen political events,
which have led to social unrest, economic declines and a renewed interest in political risk
modelling. Whilst continuous time financial models have been developed for a range of
risk factors, there is currently no method for political risk modelling. In this paper we
propose a new model for political risk modelling; to the best of our knowledge this is
the first model for continuous time stochastic volatility models. We derive a method for
obtaining political risk states from a continuous time stochastic volatility model, and our
model enables us to derive the evolution of political risk states over time. We derive two
important properties of our political risk model: we find a solution for the characteristic
function and prove weak convergence. Next, we derive a method for calculating standard
risk measures for our political risk, namely Value at Risk, variance, moments, as well
as upside and downside risk measurement. We also provide numerical experiments to
illustrate our results.
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1 Introduction

In the past decade political risk has gained significant attention (see for instance (Bekaert et al.,

2016), (Chen et al., 2016) and (Dimic et al., 2015) to name a few); numerous political events

have caused substantial political, social and economic consequences on societies. In Europe and

in many parts of the West there have been a number of unexpected and widespread political

outcomes, which have caused global concerns (see for instance (Beazer and Blake, 2018) and

(Filippou et al., 2018)). Additionally, unlike other risk factors political risk causes direct impact

on many social problems, such as civil disorder, public protests and crime. Consequently,

political risk modelling has social importance as well as economic significance.

Whilst many risk factors have gained significant attention in mathematical finance (such

as exchange rate risk, inflation risk, interest rate risk to name a few), the research on political

risk modelling in the mathematical finance literature has been relatively sparse. The majority

of studies in political risk have been undertaken by the empirical finance literature, using

financial and economic variables as the basis for observing the impact of political risk. In the

empirical finance literature, political risk has been studied to a greater extent (see for example

(Pantzalis et al., 2000), (Clark, 2017) and (Snowberg et al., 2007)) and has been measured

by asset volatility (see for instance (Bittlingmayer, 1998) and (Kelly et al., 2016)). There has

been significant empirical analysis relating asset volatility and political risk, for example, stock

market volatilities during the Great Depression (Bittlingmayer, 1998) are linked to political

movements, and not just macroeconomic or financial variables. The rationale behind volatility

as a political risk model is that political risk results in greater fluctuations in asset prices,

causing increased volatility.

Whilst asset volatility has been used as a model of political risk, there exists no method for

deriving the political risk model from mathematical finance models. Additionally, the empirical

finance literature does not offer a theoretical framework for analysing or modelling political

risk, rather they rely on response variables from empirical data and regression analyses. In

this paper we propose a method for deriving the political risk model from typical stochastic

volatility, continuous time finance models. We begin with a standard stochastic volatility model

of asset prices (see (Cui et al., 2017b; Kirkby et al., 2017)), which is sufficiently comprehensive

to capture a wide range of stochastic volatility dynamics. We then derive the political risk states

from the stochastic volatility model, and the evolution of political risk states over time. We

derive two important properties of our political risk model: firstly, the characteristic function,

which enables us to fully describe the probability function of our model. Secondly, using a

result from (Mijatovic and Pistorius, 2011), we prove our political risk model weakly converges

to the original stochastic volatility model. This implies our political risk model provides a
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credible model of political risk events and its evolution with respect to time. We then derive a

method for calculating risk measures that can be applied to political risk. We derive equations

for measuring political risk using coherent risk measures (Artzner et al., 2003) such as variance,

downside risk, upside risk, as well as other popular risk measures such as Value at Risk and

moments. To demonstrate our results, we conduct numerical experiments and provide results

on political risk measurement.

This paper makes a number of contributions. Firstly, we devise (to the best of our knowl-

edge) the first political risk model that is directly based on a continuous time finance, stochastic

volatility model. Whilst other empirical literature has modelled the political risk, it does not

use continuous time or stochastic volatility modelling, and the risk is not mathematically de-

rived from the models. Secondly, we provide a method for modelling the evolution of political

risk states over time, so that the political risk can be forecasted over time. Third, we derive

the characteristic function of our political risk model, which enables us to fully describe its

probability function and model other useful properties (such as risk). Fourthly, we show that

our model weakly converges to the original stochastic volatility model and so our political risk

model is a credible model for political risk events. Fifth, we derive a number of coherent and

popular risk measures on political risk, which will allow individuals to measure the political

risk in a quantitative approach. Finally, we provide numerical experiments to demonstrate our

results.

The paper is organised as follows: in the next section we introduce the preliminaries and a

literature review of relevant models. In the next section we introduce our political risk model,

which can be applied to a wide range of generic stochastic volatility models. We describe the

evolution of the political risk, to allow us to model political risk over time. In the next section

we derive the characteristic function for an asset that follows our political risk model, and show

that it weakly converges to the original continuous time model. In the next section we derive

our risk measures and then conduct numerical experiments to calculate political risk. We finally

end with a conclusion.

2 Preliminaries

Let there exist a probability space {Ω,F ,P} where Ω denotes the sample space, F denotes a

collection of events in Ω with probability measure P, and we have a filtered probability space

{Ω,F , {Ft}t≥0,P}. The set {Ft} denote the set of information that is available to the observer

up to time t , so that

Ft1 ⊆ Ft2 ⊆ FT̃ <∞, ∀t1 < t2 < T̃ .

2



The set {Ft}, t ∈ [0, T̃ ], is also known as a filtration. Furthermore, for a given stochastic

process X(t), as more information is revealed to an observer as time t progresses, we introduce

the filtration FXt which denotes the information generated by process X(t) on the interval [0, t].

Finally, assume we have the probability space {Ω,F ,P} then we define a change of measure

from P ∼ Q to be the probability space {Ω,F ,Q}.
By Girsanov’s Theorem with respect to stochastic differential equations and change of prob-

ability measures, let us assume we have a family of information sets Ft over a period [0, T̃ ]. We

define over [0, T̃ ] the random process (also known as the Doleans exponential) κt:

κt = exp

{
−
∫ t

0

γ̂(u)dBP(u)− 1

2

∫ t

0

γ̂2(u)du

}
,

where BP(t) is the Wiener process under probability measure P and γ̂(t) is an Ft-measurable

process that satisfies the Novikov condition

EP
[
exp

{
1

2

∫ t

0

γ̂2(u)du

}]
<∞, t ∈ [0, T̃ ].

We then have BQ(t) is a Wiener process with respect to Ft under probability measure Q, where

BQ(t) is defined by

BQ(t) = BP(t) +

∫ t

0

γ̂(u)du, t ∈ [0, T̃ ].

The Black and Scholes option pricing model (Black and Scholes, 1973) is the benchmark option

pricing model that provides a closed form solution of European call options CBS(X(t)):

CBS(X(0), T̂ , r, σ,K) = X(0)Ψ(d1)−Ke−rT̂Ψ(d2),

where

d1 =
log (X(0)/K) + (r + σ2/2) T̂

σ
√
T̂

, d2 = d1 − σ
√
T̂ ,

where X(t) is the stock price that follows Geometric Brownian motion

dX(t)/X(t) = µdt+ σdB(t).

In the model µ ∈ R denotes the drift and represents the typical long term growth of the firm,

σ denotes volatility, B(t) is a Wiener process, T̂ is the expiration date, Ψ(·) is the standard

normal cumulative distribution function, r is the riskfree rate of interest and K is the strike

price. The price of a European call option is also determined by risk neutral valuation

CRN(X(t), K, T̂ ) = e−r(T̂−t)EQ[X(T̂ )−K]+.

Political risk can be defined as the risk associated with political events, such as political

elections. Whilst political risk has been acknowledged as a significant impact on asset prices, it
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has not been researched as extensively as other risk factors, for example inflation. The literature

on political risk is practically non-existent in the mathematical finance literature, however it has

been more extensively researched in the empirical finance literature. In the empirical finance

literature political risk has been measured by multiple factors, such as abnormal stock market

returns (see for instance (Pantzalis et al., 2000)), stock market indices (such as the S&P 500,

NASDAQ and Dow Jones), interest rates and oil prices (see for instance (Snowberg et al., 2007))

. Such models are not applicable to continuous time mathematical finance models, they do not

provide a theoretical model for political risk, and their risk modelling is confined to measuring

risk only at specific political dates.

As mentioned before, political risk is measured by asset volatility (see for instance (Bit-

tlingmayer, 1998) and (Kelly et al., 2016)), for example, stock market volatilities are linked to

political movements (Bittlingmayer, 1998). This measure of political risk also has conceptual

advantages because larger political risk should create greater fluctuations in asset prices, which

would increase volatility. Moreover, the modelling of asset volatility has a well developed body

of research, with many financial models already available. Hence the political risk modelling

can be modeled to a greater degree of sophistication.

The initial models of volatility considered volatility as a constant (Black and Scholes, 1973),

however empirical evidence (such as the leverage effect) has motivated new volatility models.

The first development of volatility modelling was time dependent volatility modelling (see for

example (Wilmott et al., 1998)):

dX(t)/X(t) = µdt+ σ(t)dB(t).

In this model volatility σ(t) is a deterministic function of time t, and so is no longer constant.

The work of (Merton, 1973) derived the option pricing equation associated with this volatility

model, using the standard Black-Scholes equation and volatility is replaced by σc, where

σc =

√
1

T̂ − t

∫ T̂

t

σ2(τ)dτ ,

so that d1 and d2 in the Black-Scholes equation become:

d1 =

log

(
X(t)

K

)
+ µ(T̂ − t) +

1

2

∫ T̂
t
σ2(τ)dτ√∫ T̂

t
σ2(τ)dτ

,

d2 =

log

(
X(t)

K

)
+ µ(T̂ − t)− 1

2

∫ T̂
t
σ2(τ)dτ√∫ T̂

t
σ2(τ)dτ

.

Another development in volatility modelling has been local volatility modelling. In local

volatility the volatility is a function of stock price and time, that is σ = f(X(t), t). The local
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volatility models retain market completeness in option pricing, hence unique option prices can

be calculated. Examples of local volatility models include the Constant Elasticity of Variance

model (CEV), which is given by (Cox and Ross, 1976)

dX(t)

X(t)
= µdt+ σ(X(t))dB(t),

σ(X(t)) = κ̃X η̃−1(t), for {η̃ ∈ R|0 ≤ η̃ ≤ 1}, κ̃ ∈ R+.

For κ̃ = 0 we obtain Bachelier’s model of stock prices, while κ̃ = 1 gives the Geometric Brownian

Motion model. The CEV model has been developed over the years (for instance (Cox and Ross,

1976), (Cox et al., 1985) and (Schroder, 1989)), and by appropriate choices of η̃ and κ̃ one can

fit CEV to volatility smiles, see (Beckers, 1980).

Dupire’s local volatility model (Dupire, 1994) enables one to derive Dupire’s equation by

application of the Fokker-Planck equation:

∂C(t)

∂T̂
= σ2(X(t), T̂ ).

X2(t)

2
.
∂2C(t)

∂X2(t)
− (r − δ)X(t).

∂C(t)

∂X(t)
− δ.C(t), (1)

where δ is the asset dividend. One can derive from equation (1) that:

σ(X(t), T̂ ) =

√√√√√√√
∂C(t)

∂T̂
+ (r − δ)X(t)

∂C(t)

∂X
+ δ.C(t)

X2(t)

2

∂2C(t)

∂X2(t)

. (2)

The equation (2) therefore implies that local volatility σ(X(t), T̂ ) can be fully described by

option data, however, it can be noticed that calculating σ(·) requires partial differentials with

respect to T̂ and K. Consequently, we require a continuous set of options data in K and T̂ ,

and this is highly unrealistic as quoted option prices tend to suffer from significant illiquidity

(Nordén, 2003).

The most comprehensive development in volatility modelling has been stochastic volatility,

which is a development beyond local volatility models. The stochastic volatility model can take

into account more empirical properties that are not present in local volatility models (Musiela

and Rutkowski, 2005), such as the clustering effect, fatter tail distributions, implied volatility

smiles and time scaling effects. Stochastic volatility models differ from other volatility models

in that volatility is driven by another Wiener process. The generic stochastic volatility model

is given by

dX(t)/X(t) = µ1(X(t), t)dt+ σ(t)dB1(t),

σ(t) = f(dB2(t)),

where volatility is a function of a stochastic process that is driven by another (but possibly

correlated) Wiener process dB2(t), so that

corr(dB1(t), dB2(t)) = ρdt, where {ρ ∈ R| − 1 ≤ ρ ≤ 1}.
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The probability space (Ω,F ,P) is Ω = C([0,∞) : R2), with filtration {Ft}t≥0 to represent

information on two Wiener processes {B1(t), B2(t)}.
One of the first stochastic volatility models is (Johnson and Shanno, 1987), where

dσ(t) = µ2σ(t)dt+ σκ̃(t)η̃dB2(t), for {κ̃, η̃ ∈ R|κ̃, η̃ ≥ 0}.

The option prices in (Johnson and Shanno, 1987) are obtained by Monte Carlo methods due

to analytical intractability. An alternative stochastic volatility is given in (Scott, 1987) where

volatility follows an Ornstein-Uhlenbeck process:

dσ(t) = µ2(κ̃− σ(t))dt+ η̃dB2(t), for {κ̃, η̃ ∈ R|κ̃, η̃ ≥ 0}.

One of the more popular stochastic volatility models is the Hull-White Model (Hull and White,

1987):

dσ2(t)/σ2(t) = µ2dt+ η̃dB2(t), for {κ̃, η̃ ∈ R|κ̃, η̃ ≥ 0},

where

σ̂2 =
1

T̃ − t

∫ T̃

t

σ2(s)ds,

enables one to obtain option prices using the Black-Scholes option pricing equation, with volatil-

ity σ̂2.

The Heston stochastic volatility model (Heston, 1993) stands out from other stochastic

volatility models as it provides an analytic solution for European options, and the volatility

model takes in account correlation between Wiener processes corr(dB1(t), dB2(t)) = ρdt. The

Heston model volatility process is give by

dσ2(t) = µ2(κ̃− σ2(t))dt+ η̃σ(t)dB2(t), for {κ̃, η̃ ∈ R|κ̃, η̃ ≥ 0}.

The model for dσ2(t) originated from (Cox et al., 1985) and an analytical solution for op-

tions is found using Fourier transforms. As one can see, whilst the modelling of volatility has

been substantial in mathematical finance, there has been little development in political risk

modelling.

3 Political Risk Model

In this section we derive our political risk model from a continuous time, stochastic volatility

model. Let us assume that our asset model is defined by

dX(t)/X(t) = αdt+ ζ(σ(t))dB1(t) + (eλ(t) − 1)dκ(t), (3)
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with stochastic volatility process

dσ(t) = v(σ(t))dt+ β(σ(t))dB2(t), (4)

where v(σ(t)) is the drift process for σ(t), β(σ(t)) is the coefficient of the Brownian motion

dB2(t), corr(dB1(t)dB2(t)) = ρdt, such that {ρ ∈ R| − 1 ≤ ρ ≤ 1}. The Poisson process

is κ(t) with a jump rate γ , and λ(t) ∼ λ is the jump amplitude; both are independent of

dB1(t), dB2(t). The risk neutral drift α is given by

α = r − u− γι,

where r ∈ R+ is the riskless rate, ι = E[eλ − 1], u ∈ R+ is the continuous dividend yield. By

application of Ito’s lemma we can re-express our stock price model as

d(log(X(t)) =

(
α− 1

2
ζ2(σ(t))

)
dt+ ζ(σ(t))dB1(t) + d

k=κ(t)∑
k=1

Zk(t)

 . (5)

We now define our political risk model. A political risk model allocates different latent

political states according to the level of political risk (Bodie et al., 2019). Consequently, political

risk is modeled in a similar way to credit risk, where credit ratings (such as AAA, BBB etc.)

denote different levels of credit risk. Credit risk can be modelled using continuous time Markov

chains (Lu, 2009) and similarly political risk is modelled as a finite state, continuous time,

Markov chain stochastic process, on the risk neutral probability space {Ω,F ,Q}. There exists

a finite set of (Markov) states S, where

S := {1, 2, ..., n}, such that {n ∈ N+|n <∞}.

The number n models the number of political states that can occur. Each Markov state

represents a different political state, and is associated with a different level of volatility σ, that

is σ := {σ1, σ2, ..., σn}, such that σj−1 < σj,∀j ∈ {1, 2, ..., n}. If we denote the state at time t

by θ(t) then our political risk model has state transition probabilities

Q(θ(t+ ∆t) = j|θ(t) = k) = Q(θ(t+ ∆t) = j|θ(t) = k, θ(τ)), ∀k, j ∈ S, 0 ≤ τ ≤ t,

that is state transition probabilities are not dependent on state histories for θ(τ), ∀τ , such that

0 ≤ τ ≤ t. This is a non-restrictive assumption given that many social phenomena are modelled

by Markov chains, where past states do not affect state transition probabilities. The continuous

time Markov chain θ(t) is characterized by the transition rate matrix P = [pjk](j,k)∈S×S that

satisfies the following conditions:
pjj ≤ 0, ∀j ∈ S,

pjk ≥ 0, ∀k 6= j ∈ S,∑
k∈S pjk = 0, ∀j ∈ S.

(6)
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We now wish to perform the mapping σ from equation (4) to σ, where σ :→ {σ1, σ2, ..., σn},
to derive the political states from our model of the underlying asset. The number n repre-

sents the number of distinct political states that can occur. Additionally, there is the obvious

difficulty in defining and characterizing the political states, which presents many challenges

from a modelling perspective. Our approach to this problem is to parametrize these states in

terms of a defined CTMC representation of a latent volatility process. As the latent volatil-

ity process evolves, the associated political state transitions accordingly. That is, to each

level of latent volatility σ := {σ1, σ2, ..., σn}, we associate a distinct political state, such that

σj−1 < σj,∀j ∈ {1, 2, ..., n}.
Let η(t) := E[σ(t)|σ(0)], ν(t) =

√
V ar(σ(t)|σ(0)), where V ar(.) denotes variance, and

τ = T/2. The constant T is defined as follows: let us consider the asset price X(t) trading on

the finite trading horizon t ∈ [0, T ] and t ∈ R+. We define M monitoring dates at which times

the process X(t) is observed, such that 0 = t0 < t1 < t2.... < tM = T . Moreover, the associated

realized variance ΛM is given by

ΛM =
L

M

M∑
m=1

(
log

X(tm)

X(tm−1)

)2

,

where L =
M

T
(if T is measured in years), and L is a normalization constant. Hence weekly

monitoring over T=1 year gives L = 52 and M = 52. In particular, the realized variance allows

us to infer knowledge of the underlying latent state by measuring the realized squared-returns

of the observable asset process. It is through this process that we will calculate measures of

political risk.

Let τ = T/2, as previously discussed, many volatility models σ(t) follow a stochastic dif-

ferential equation or a Brownian motion process. Consequently, σ(τ) approximates a Gaussian

distribution, and this is consistent with empirical data. Therefore we apply the mapping

{σ1, σ2, ..., σn} as follows

σk = σ(0) + ν sinh

(
ν̂2

(
k

n

)
+ ν̂1

(
1− k

n

))
, k ∈ {2, ..., n− 1}, (7)

where

ν > |σn − σ1|,

ν̂1 = sinh−1

(
σ1 − σ(0)

ν

)
, ν̂2 = sinh−1

(
σn − σ(0)

ν

)
,

σn = η(τ) + ĉν(τ),

where ĉ ∈ R+ is a specified constant. To determine σ1 we must distinguish between two classes

of stochastic volatility processes. We have

σ1 = max(α, η(τ)− ĉν(τ)), if the state-space of σ(t) is [0,∞),

σ1 = η(τ)− ĉν(τ), if the state-space of σ(t) is (−∞,∞),
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where α ∈ R+ is a specified constant. We note that the constants α, ĉ will vary for each

stochastic volatility model (e.g Heston model, Stein-Stein model, etc.).

We require that our political risk model satisfies local consistency conditions and weak

convergence to σ(t). We therefore impose the condition that the first two moments of σ(t) are

consistent with our model, that is

E[σ(t+ ∆t)− σ(t)] = v(σk)∆t,

E[σ(t+ ∆t)− σ(t)]2 = β2(σk)∆t.

We also require z = {z1, z2, ..., zn−1}, where zk = σk − σk−1, such that

0 < max
1≤k≤n−1

zk ≤ min
1≤k≤n

β2(σk)

|v(σk)|
.

This condition implies that

β2(σk) ≥ zk−1v
−(σk) + zkv

+(σk), (8)

where x± = max(0,±x). With (Lo and Skindilias, 2014) we obtain the transition rate matrix

P and therefore fully specify the political risk model:

pjk =



v−(σk)

zk−1

+
β2(σk)− (zk−1v

−(σk) + zkv
+(σk))

zk−1(zk−1 + zk)
, for k = j − 1,

v+(σk)

zk−1

+
β2(σk)− (zk−1v

−(σk) + zkv
+(σk))

zk(zk−1 + zk)
, for k = j + 1

−pj,j−1 − pj,j+1, for k = j

0 for |k − j| > 1.

(9)

We note that equation (8) will guarantee that pij ≥ 0 for i 6= j. Additionally, from equation

(9), it can be proven that pij satisfies all the conditions specified in (6).

We have now derived our political risk model from the continuous time asset pricing model,

with stochastic volatility dynamics. Hence our model can take into account a range of volatility

modelling dynamics, and one can derive the political risk model. The elements pjk in P tell us

the rate at which there is movement between each political state, hence we can fully describe

the changes between political states. As discussed in Section 4, this model will approach the

original parameterizing stochastic volatility process as the state-space is refined. However,

for any number of political states n, the parametrization results in a valid probability model,

governed by P.

4 Characteristic Function and Weak Convergence Prop-

erties

We now wish to prove in this section that our political risk model is weakly convergent to the

original stochastic volatility model and the characteristic function of our model. The weak
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convergence proof is an important property because it demonstrates that our model is a viable

representation of the original stochastic volatility model. It demonstrates that as we increase

the number of political states, our model will approach a well-behaved (and easily interpretable)

stochastic volatility process.

Theorem 1. The asset pricing model

dX(t)/X(t) = αdt+ ζ(σ(t))dB1(t) + (eλ(t) − 1)dκ(t),

with stochastic volatility

dσ(t) = v(σ(t))dt+ β(σ(t))dB2(t),

is equivalent to

dS(t) =

(
α− ζ2(σ(t))

2
− ρg(σ(t))

)
dt+

√
(1− ρ2)ζ(σ)dB∗(t) + d

κ(t)∑
k=1

Zk(t)

 ,
with

dσ(t) = v(σ(t))dt+ β(σ(t))dB2(t),

where

B∗(t) :=
B1(t)− ρB2(t)√

(1− ρ2)
,

S(t) = log

(
X(t)

X(0)

)
− h̃(σ(t), σ(0)),

h̃(σ(t), σ(0)) = ρ(h(σ(t))− h(σ(0))),

h(x) =

∫ x

c

ζ(z)

β(z)
dz,

g(x) := L(h(x)) = v(σ(x))h′(x) +
1

2
β2(x)h′′(x).

The Markov chain (alternatively called the regime switching) approximation of dS(t) is given

by dS̃(t), where

dS̃(t) = α̃(θ(t))dt+ σ̃(θ(t))dB∗(t) + d

κ(t)∑
k=1

Zk(t)

 ,∀θ(t) ∈ S,
with

α̃(θ(t)) = α−
(
ζ2(σθ(t))

2

)
− ρg(σθ(t)),

σ̃(θ(t)) =
√

(1− ρ2)ζ(σθ(t)).
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Proof. Let

B∗(t) :=
B1(t)− ρB2(t)√

(1− ρ2)
,

then E[dB∗(t)dB2(t)] = 0. Hence B∗(t), B2(t) are two independent Brownian motions. From

the above equation, we have

dB1(t) = ρdB2(t) +
√

(1− ρ2)dB∗(t),

we substitute this into equation (5) and this yields

d(log(X(t))) =

(
α− 1

2
ζ2(σ(t))

)
dt+ ζ(σ(t))(ρdB2(t) +

√
(1− ρ2)dB∗(t))

+ d

κ(t)∑
k=1

Zk(t)

 . (10)

Let h(x), h̃(., .), g(x) be defined as above. If we apply Ito’s Lemma we have

dh̃(σ(t), σ(0)) = ρdh(σ(t)) = ρg(σ(t))dt+ ρv(σ(t))dB2(t),

and so equation (10) becomes

d(log(X(t)) =

(
α− 1

2
ζ2(σ(t))

)
dt+ dh̃(σ(t), σ(0))− ρg(σ(t))dt+ d

κ(t)∑
i=1

Z(t)

 .
Now, define

S(t) := log

(
X(t)

X(0)

)
− h̃(σ(t), σ(0)).

then we can write

dS(t) =

(
α− ζ2(σ(t))

2
− ρg(σ(t))

)
dt+

√
(1− ρ2)dB∗(t) + d

κ(t)∑
i=1

Z(t)

 ,
dσ(t) = v(σ(t))dt+ β(σ(t))dB2(t).

We recall that in our political risk model we have σ(t) :→ σ, that is the stochastic process is

governed by Markov chains, or also known as a regime switching model. We also note that S(t)

and σ(t) are now driven by independent Brownian motions in the previous equations, given

that we have specified dB∗(t) and dB2(t) as independent. We can therefore model dS(t) by an

equivalent regime switching model dS̃(t), that is

dS̃ = α̃(θ(t))dt+ σ̃(θ(t))dB∗(t) + d

κ(t)∑
i=1

Z(t)

 ,∀θ(t) ∈ S,
11



where

α̃(θ(t)) = α− ζ2(σ̃(θ(t)))

2
− ρg(σθ(t)),

σ̃(θ(t)) =
√

(1− ρ2)ζ(σθ(t)).

We now wish to prove the weak convergence results, that is that our political risk model

converges to the original stochastic model.

Theorem 2. For a political risk model where P follows equation (9) then (σθ(t), S̃(t)) converges

weakly (in distribution) to the original model (σ(t), S(t)).

Proof. First let us define the diffusion process S(t) such that it follows S(t) and excludes the

jump process; similarly let us define S
n
(t) as the diffusion process that follows S̃(t), with n po-

litical states, and excludes the jump process. We now prove that (σθ(t), S
n
(t)) converges weakly

to (σθ(t), S(t)). Let us fix σ(t) = σ and S(t) = s. We recall B∗(t) and B2(t) are independent

Brownian motions, and for the function U = U(σ, s) then the infinitesimal generator is given

by

LU(σ, s) =
1

2
(1− ρ2)ζ2(σ)

∂2U

∂σ2
+ Γ(σ)

∂U

∂s
+

1

2
β2(σ)

∂2U

∂σ2
+ v(σ)

∂U

∂σ
,

where Γ(σ) = α − ζ2(σ)

2
− ρg(σ). Without any loss of generality, our political risk model

discretises volatility σ to {σ1, σ2, ..., σn}, and let ∆σ ≡ σi − σi−1. If we now apply our political

risk model equation (9) then our transition rate matrix P=(pjk) becomes

pi,i−1 =
−v(σi)

2(∆σ)
+

β2(σi)

2(∆σ)2
, pi,i+1 =

v(σi)

2(∆σ)
+

β2(σi)

2(∆σ)2
, pi,i = −β

2(σi)

(∆σ)2
,

and pi,j = 0,∀|j − i| > 1. Let us define Ui = U(s, i∆σ) then we have

∂Ui
∂σ
≈


Ui+1 − Ui

∆σ
, if v(σi) ≥ 0

Ui−1 − Ui
∆σ

, if v(σi) < 0,

∂2Ui
∂σ2

≈ Ui+1 − 2Ui + Ui−1

(∆σ)2
. (11)

Let

sup
σ∈[σ1,σn]

|χ| := sup
σ∈[σ1,σn]

∣∣∣∣β(σi)

2

∂2Ui
∂σ2

+ v(σi)
∂Ui
∂σ
− [pi,i−1Ui−1 + pi,iUi + pi,i+1Ui+1]

∣∣∣∣ ,
which can be expressed

sup
σ∈[σ1,σn]

∣∣∣ β2(σi)

2(∆σ)2

[
Ui+1 + Ui−1 − 2Ui −

∂2Ui
∂σ2

(∆σ)2

]
+
v+(σi)

∆σ

[
Ui+1 − Ui −

∂Ui
∂σ

∆σ

]
− v−(σi)

∆σ

[
Ui+1 − Ui −

∂Ui
∂σ

∆σ

] ∣∣∣. (12)

12



Hence we have supσ∈[σ1,σn] |χ| → 0, as ∆σ → 0. The infinitesimal generator of (θ(t), S̄n(t)),

LUi(s), given θ(t) = i, S̄n(t) = s, is given by

LUi(s) =
1

2
(1− ρ2)[ζ(σi)]

2∂
2Ui
∂s2

+ Γ(σi)
∂Ui
∂s

+
n∑
j=1

pijUj.

So by equation (12) we have

LUi(s)→ LUi(s, σi), as ∆σ → 0.

Therefore, by applying Theorem 5.1 of (Mijatovic and Pistorius, 2011) we deduce that (σθ(t), S
n
(t))

converges weakly to (σ(t), S(t)).

We now consider the jump component. The jump component is statistically independent,

so we have

E[exp(iξS̃(t) + iσθ(t)η)] = exp(tγ(Φ(ξ)− 1))E[exp(iS
n
(t)ξ + iσθ(t)η)].

However, from the weak convergence of (σθ(t), S
n
(t)) to (σ(t), S(t)), we have

exp(tγ(Φ(ξ)− 1))E[exp(iS
n
(t)ξ + iσθ(t)η)] → exp(tγ(Φ(ξ)− 1))E[exp(iS(t)ξ + iσ(t)η)]

= E[exp(iS̃(t)ξ + iσ(t)η].

Hence (σθ(t), S̃(t)) weakly converges to (σ(t), S(t)).

The weak convergence is an important result. The result proves that the marginal distribu-

tions of our model converge to the values of the original distribution. Therefore the political risk

states have a direct relation to the original pricing model. If the political risk states diverged

from the original model, then the political risk would differ from the original model and so not

provide an accurate model of the political risk.

The weak convergence result is also important from a risk management and measurement

perspective. As (σθ(t), S̃(t)) weakly converges to (σ(t), S(t)), the marginal distributions of our

model converge to the values of the original distribution. Thus the distributions will not differ,

hence any risk measurements or resultant risk management methods will not differ or give

misleading results. This is particularly important, given that models have increasingly been

scrutinized to ensure that such misleading results do not occur.

The characteristic function provides a full description of the probability function of any

model, hence its calculation is an important property for risk measurement. We now derive a

recursive method for its calculation.

Lemma 1. The characteristic function

E[exp(iξỸ (M,w))], where Ỹ (M,w) :=
M∑
m=1

wmh̃(S̃(m)),

13



where h̃ : R→ R, wm is a set of weight ∀m ∈ {1, 2, ...,M}, and S̃(m) := log(X(m)/X(m−1)),

that is the log return of X(m), is calculated by recursion.

Proof. The sequence is initialised with Ỹ 1 := wM h̃(S̃(M)). If we assign θ(M − 1) = j then we

can initialise the recursion with

Φ(Ỹ 1, j, ξ) = EM−1[exp(iξỸ 1)|θ(M − 1) = j],

= EM−1[exp(iξwM h̃(S̃(M)))|θ(M − 1) = j],

= EM−1[exp(iξwM h̃(S̃(∆t))|θ(0) = j].

This can be approximated by integrating against the density function of S̃(∆t) conditional on

θ(0), defined by the characteristic function in the following Corollary.

Corollary 3. ((Buffington and Elliott, 2002)) The characteristic function of S̃(∆t) with n

states, for ∆t > 0, is given by

E[exp(iS̃(∆t)ξ)|θ(0)] = 1T. exp(∆t(PT + diag(ψ1(ξ)) + diag(ψ2(ξ)) + ....

+ diag(ψn(ξ)))I(0), for 1 ∈ Rn, I(0) ∈ Rn,

where 1 is a unit vector, and I(0) is a vector of zeros except with the value of 1 at the position

of θ(0).

A direct application of the Corollary gives

E[exp(iξS̃(∆t))|θ(0) = j]

=
n∑
k=1

E[exp(iξS̃(∆t))|θ(0) = j, θ(∆t) = k]exp(iξh̃(σk, σj))

To determine sequences m ∈ {2, ..,M}, if we define

p(j, k,∆t) = P(θ(t+ ∆t) = k|θ(t) = j], (13)

H(j, k) = {θ(0) = j, θ(∆t) = k}, (14)

then the remaining sequences can be obtained by

Φ(Ỹ m, j, ξ) = E[exp(iξỸ m)|θ(M −m) = j]

= E[exp(iξwM−m+1h̃(S̃(M −m+ 1))) exp(iξỸm−1|θ(M −m) = j],

=
n∑
k=1

EM−m[exp(iξwM−m+1h̃(S̃(M −m+ 1)))|θ(M −m) = j,

θ(M − (m− 1)) = k] · p(j, k,∆t),

=
n∑
k=1

EM−m[exp(iξwM−m+1h̃(S̃(M −m+ 1)))|H(j, k)]

·EM−m[exp(iξỸm−1|θ(N −m) = j, θ(M − (m− j)) = k] · p(j, k,∆t),

=
n∑
k=1

E[exp(iξwM−m+1h̃(S̃(∆t))|H(j, k)] · p(j, k,∆t).Φ(Ỹ m−1, k, ξ).
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In the last line Φ(Ỹ m−1, k, ξ) is the conditional characteristic function of Ỹ m−1 and this is know

at stage m; note that Φ(Ỹ m−1, k, ξ) = EM−m[exp(iξỸm−1)|θ(M − m) = j, θ(M − (m − 1)) =

k]. To obtain E[exp(iξwM−m+1h̃S̃(∆t))|H(j, k)] in ∀j, k ∈ {1, 2, ..., n} conditional on θ(0)

and θ(∆t), one integrates densities of S̃(∆t) and these are determined by their characteristic

functions

E[exp(iξS̃(∆t)|H(j, k)] =

(
1

p(j, k,∆t)

)
· E[exp(iξS̃(∆t))|θ(0) = j, θ(∆t) = k]

· exp(iξh̃(σk, σj)).

Now we define p(y|s, j, k) as the density of S̃(∆t) conditional on H(j, k) as

p(y|s, j, k) = P(S̃(∆t) ∈ y + dy|S̃(0) = s, θ(0) = j, θ(∆t) = k). (15)

Whilst p(y|s, j, k) = p(y − s, j, k) has no closed form solution, it can be found using

E[exp(iξS̃(∆t)|H(j, k)] and Fourier transform methods. We will use the PROJ method (see

later).

To give an application we derive the discretely sampled variance characteristic function for

wm = 1 and h̃(s) = s2:

ΦỸM
(ξ) := E

[
exp

(
iξ

M∑
m=1

S̃2(m)

)]
= E

[
exp

(
iξỸM

)]
, ỸM :=

M∑
m=1

S̃2(m). (16)

The recursion is derived to be

Ỹ1 := h̃(S̃(m)), Ỹm := h̃(S̃(M − (m− 1))) + Ỹm−1, m = 2, . . . ,M. (17)

Once Φj

Ỹ1
(ξ) = E[eiξh̃(S̃(∆t))|θ(0) = j] =

∑
k=1,..,n Φ̂j,k(ξ) is known, then

Φj

Ỹm
(ξ) =

∑
k=1,..,n

Φ̂j,k(ξ) · Φk
Ỹm−1

(ξ), m = 2, . . . ,M, (18)

and we have

Φ̂j,k(ξ) := p(j, k,∆t) · E[exp(iξh̃(S̃(∆t))|H(j, k)], j, k = 1, . . . , n. (19)

5 Political Risk Measurement

In this section we provide a method to measure political risk, which is achieved using the

biorthogonal projection method (PROJ). The PROJ is applied to risk measures and our political

risk model. This enables us to derive some risk measures for political risk.
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5.1 Biorthogonal Projection

It was previously mentioned that p(y|s, j, k), the density of S̃(∆t) conditional on H(j, k), has

no closed form solution, it can be found using Fourier transform methods. The Biorthogonal

Projection method (PROJ) introduced in (Kirkby, 2015) is a Fourier transform method. The

orthogonal projection onto an appropriately chosen basis provides the probability density of a

random variable.

Let us assume we have a random variable Q with an unknown probability density fQ, and

that its characteristic function ΦQ(ξ) is known, or can be approximated. If we have a compactly

supported generator ϕ(q), a resolution a > 0, and a reference point q1, then we specify the

basis elements set

ϕa,m̂(q) := a1/2ϕ(a(q − qm̂)).

We say that the orthogonal projection PMafQ of fQ ontoMa := span{ϕa,m̂}m̂∈Z is determined

by the dual basis {ϕ̃a,m̂}m̂∈Z, which is given by

PMafQ(q) =
∑
m̂∈Z

〈fQ, ϕ̃a,m̂〉ϕa,m̂(q),

where the dual basis is biorthogonal in that 〈ϕa,k, ϕ̃a,m̂〉 = 1{k=m̂}, as well as the particular case

of an orthogonal basis is self-dual. To determine the projection coefficients, these are derived

in closed-form using the Fourier transform ̂̃ϕ of ϕ̃:

〈fQ, ϕ̃a,m̂〉 =
a−1/2

π
<
[∫ ∞

0

exp(−iqm̂ξ) · ΦQ(ξ)̂̃ϕ(ξ
a

)
dξ

]
, (20)

assuming that ̂̃ϕ(ξ) is known. Additionally, we will use the cubic B-spline generator in our

paper

ϕ(y) =



(y + 2)3/6, y ∈ [−2,−1]

2/3− y3/2− y2, y ∈ [−1, 0]

2/3 + y3/2− y2, y ∈ [0, 1]

(2− y)3/6, y ∈ [1, 2].

(21)

Given that we have fixed a,N and q1, we constrain Ma to a finite set {qm̂}Nm̂=1 and each basis

element ϕa,m̂(q) will be centered over the grid point qm̂ = q1 + (m̂− 1)/a. Accounting for the

Nyquist frequency, we specify an N -point frequency grid

∆ξ = 2πa/N, ξm̂ = (m̂− 1)∆ξ, m̂ = 1, ..., N, (22)

and this is numerically applied to invert the analytical coefficient representation in equation

(20). Therefore our final approximation is defined by

fQ(q) ≈ a1/2Υa,N

∑
1≤k≤N

β̄a,k · ϕa,k(q),
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where we have the constant Υa,N := 32a4/N . Additionally, the coefficients a1/2Υa,N · β̄a,k ≈
β̃a,k = 〈fQ, ϕ̃a,k〉 are determined by the exponentially convergent discretization

{
β̄a,k
}N
k=1

:= <{D {Gj}} , Dn {Gj} =
N∑
j=1

e−i 2π
N

(j−1)(m̂−1)Gj, m̂ = 1, ..., N, (23)

and the discrete Fourier transform (DFT) is denoted by the operator D{.}. The set {Gj}Nj=1,

which is referred to as the DFT input vector, is also specified by

G1 := 1/32a4, Gm̂ := ΦQ(ξm̂) · Bm̂ · exp(−iξm̂ · q1), m̂ ≥ 2, (24)

where

Bm̂ :=
2520(sin(ξm̂/(2a))/ξm̂)4

1208 + 1191 cos(ξm̂/a) + 120 cos(2ξm̂/a) + cos(3ξm̂/a)
, m̂ ≥ 2. (25)

For details on the derivation of ̂̃ϕ (and Bm̂) for B-spline bases, the reader is referred to (Kirkby,

2017).

Remark 1. Using the log return process in the regime-switching model, the truncated density

support parameter Z is derived on generic rules relating to cumulants. For the regime switching

model, the jump and diffusion processes are independent, we have the characteristic exponent

defined by

ψj(ξ) = iξα(j)− ξ2σ̃2(j)

2
+ γ(Φ(ξ)− 1), ∀j ∈ S.

We define the ith cumulant of the jump component as cλi , where the jump types modeled in
this paper are given in Table 1. Specifically, we consider typical jump types with Normal dis-
tributions, double exponential distributions (DE) and mixed Normal distributions. We note in
passing that the jumps have intensity γ, the characteristic exponent of the jump contribution is
γ(Φ(ξ)− 1), also ι := Φ(−i)− 1, and γι is the drift compensator.

Jump Type ν(y) Φ(ξ)

Normal 1√
2πb1

e−(q−a1)2/2b21 eiξa1− 1
2
ξ2b21

DE pη1e
−η1yI{y≥0} + (1− p)η2e

η2yI{y<0} p η1
η1−iξ

+ (1− p) η2
η2+iξ

Mixed Normal p 1√
2πb1

e
− (y−a1)

2

2b21 + (1− p) 1√
2πb2

e
− (y−a2)

2

2b22 peiξa1− 1
2
ξ2b21 + (1− p)eiξa2− 1

2
ξ2b22

Table 1: Jump types specified by Lévy measure ν(y) and characteristic function Φ(ξ) for
common jump distributions

We devise a grid, that is an alternative to the (Fang and Oosterlee, 2009) method, and is

specified by

Z̄ = max
{1

2
, L1 ·

√
c∗2T +

√
c∗4T
}
, c∗2 := cλ2 + ζ2(η̄(T/2)), c∗4 := cλ4 ,

with L1 = 10 ∼ 14. The diffusion component’s second cumulant is specified by ζ(σ) and µ̄(t) = η̄

(as defined earlier).
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Jump Type cλ2 cλ4

Normal γ(a2
1 + b2

1) γ(a4
1 + 6b2

1a
2
1 + 3b4

1γ)

DE 2γ
(
p
η21

+ (1−p)
η22

)
24γ

(
p
η41

+ 1−p
η42

)
Mixed Normal pγ(a2

1 + b2
1) + (1− p)γ(a2

2 + b2
2) pγ(a4

1 + 6b2
1a

2
1 + 3b4

1γ) + (1− p)γ(a4
2 + 6b2

2a
2
2 + 3b4

2γ)

Table 2: Cumulants of common jump distributions (defined in Table 1).

We require an approximation for Ψ and we utilise the Gaussian quadrature, over each

interval Ik = [qk−2∆, qk+2∆], k = 1, . . . , N . By applying a change of variables, this is achieved

by using an Nq-point quadrature for every subinterval in [−2, 2] = [−2,−1]∪[−1, 0]∪[0, 1]∪[1, 2]

as follows. Specifically,

Ψ(m̂, k) := Υa,N · a1/2

∫
Ik

exp(iξm̂h̃(q)) · a1/2ϕ(a(y − qk))dy

= Υa,N

∫
[−2,2]

exp
(

iξm̂h
(
qk +

y

a

))
ϕ(y)dy

≈ Υa,N

4·Nq∑
l=1

ωl · exp (iξm̂h (qk + ω̂l))ϕ(ω̂l),

where {(ω̂l, ωl)}4·Nq
l=1 are the nodes and weights on [−2, 2]. We then specifiy a sample grid

ηj, j = 1, ..., Nη, Nη := ((N − 1) + 4) ·Nq, (26)

where ηj is a refined grid over q1− 2∆, . . . , qN + 2∆, hence subintervals with length ∆ have Nq

points from the group {ηj}Nηj=1. We note in passing that (N − 1) + 4 such intervals exist.For

Ψ(m̂, k), the Gaussian approximation for m̂ = 1, . . . , N and k = 1, . . . , N , is defined by

Ψ̄(m̂, k) :=

4·Nq∑
l=1

θm̂Nq(k−1)+l · el =

2·Nq∑
l=1

(
θm̂Nq(k−1)+l + θm̂Nq(k+3)+1−l

)
· el, (27)

where

el := Υa,N · ϕ(ω̂l) · ωl, l = 1, ..., 2 ·Nq,

and

θnj := exp
(

iξnh̃(ηj)
)
, n = 1, ..., N, j = 1, ..., Nη.

This is applied in Remark 2 with Nq = 5 point Gaussian quadrature, so each basis element

ϕa,k(q) is integrated against exp(iξh̃(q)) using a total of 4 ·Nq = 20 points.

Remark 2. To integration of Ψ(m̂, k) is calculated numerically by using a composite Gaussian

quadrature with a five point rule, and this is applied over each interval [r̃, r̃ + 1], for r̃ ∈
{−2,−1, 0, 1}. If we consider the symmetry of ϕ(y), then it can be deduced that we only require

the nodes {ω̂l} and weights {ωl} for r̃ ∈ {−2,−1} (see equation (27)). For the region [−2,−1],

we have

{ω̂l}5
l=1 =

{
− 3

2
− g3,−

3

2
− g2,−

3

2
,−3

2
+ g2,−

3

2
+ g3

}
, {ωl}5

l=1 =
1

2
{v3, v2, v1, v2, v3},
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and on the region [−1, 0] we have

{ω̂l}10
l=6 =

{
− 1

2
− g3,−

1

2
− g2,−

1

2
,−1

2
+ g2,−

1

2
+ g3

}
, {ωl}10

l=6 =
1

2
{v3, v2, v1, v2, v3},

where the constants are specified by g2 := 1
6
(5 − 2

√
10/7)1/2, g3 := 1

6
(5 + 2

√
10/7)1/2, v1 :=

128/225, v2 := (322 + 13
√

70)/900, v3 := (322 − 13
√

70)/900. Moreover, el = Υa,N · ϕ(ω̂l) · wl
are the final set of weights and are determined by evaluating the cubic generator ϕ(y) defined

in equation (21) at each of {ω̂l}10
l=1. We note that we store el for repeated use.

5.2 Political Risk Model Calculation

The characteristic function was previously defined by recursion, ending with Φj

ỸM
(ξ). We derive

our characteristic function calculation by firstly analysing equations for 2 ≤ m ≤M , where the

fundamental calculation is the characteristic function Φj

Ỹm
(ξ), and determining Φ̂j,k in equation

(19). The conditional transition density in equation (15) is reformulated by its orthogonal

projection onto the cubic basis, that is

p(ν|j, k) ≈
∑
m̂∈Z

(∫ ∞
−∞

p(η|j, k)ϕ̃a,m̂(η)dη

)
ϕa,m̂(ν)

=
a−1/2

π

1

p(j, k,∆t)

∑
m̂∈Z

<
{∫ ∞

0

exp(−iνm̂ξ) · Ẽk,j(ξ) · ̂̃ϕ(ξ/a)dξ

}
ϕa,m̂(ν), (28)

where Ẽ = E[exp(iS̃(∆t)ξ)|θ(0) = j, θ(∆t) = k] as in section 4. The number of basis elements

N is set at a constant (for instance N = 210), the grid width parameter Z̄ ∈ R is determined

as described in Remark 1, we define a common grid for the density projections by

∆ = 2Z̄/(N − 1), s1 = (1−N/2)∆, sm̂ = s1 + (m̂− 1)∆, m̂ = 1, . . . , N,

where a = 1/∆, and the frequency grid {ξm̂}Nm̂=1 is obtained from equation (22). We discretize

the analytical formula in equation (28) by

p(j, k,∆t) · p(ν|j, k) ≈ a1/2Υa,N

∑
1≤l≤N

β̄j,ka,l · ϕa,l(ν) =: p̄(ν|j, k),

where
{
β̄j,ka,l

}N
l=1

:= <
{
D
{
Gj,k
m̂

}}
and is obtained from the DFT input vector

Gj,k
1 := Ẽk,j(ξ1)/32a4, Gj,k

m̂ := Ẽk,j(ξm̂) · ζm̂ · exp(−iξm̂ · s1), m̂ ≥ 2, (29)

with Bm̂ specified by equation (25). If we have a representation of the transition densities

between each state, using {ξm̂}Nm̂=1 the conditional characteristic function of h̃(S̃(∆t)) can be

derived.
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The function Φ̂(ξm̂) for each ξm̂ is approximated by Φ̄(ξm̂) = {Φ̄j,k(ξm̂)}nj,k=1 and this is

derived by

Φ̂j,k(ξm̂) = p(j, k,∆t) · E[exp(iξm̂h̃(S̃(∆t))|Gjk]

= p(j, k,∆t)

∫ ∞
−∞

eiξm̂h̃(s)p(s|j, k)ds

≈ Υa,N

∑
1≤l≤N

β̄j,ka,l · a
1/2

∫ ∞
−∞

eiξm̂h̃(s)ϕa,l(s)ds

= Υa,N

∑
1≤l≤N

β̄j,ka,lΨm̂,l

= Ψ(m̂,·)B
j,k =: Φ̄j,k(ξm̂), (30)

where Bj,k
l := β̄j,ka,l and Ψ represents the matrix of integrals

Ψm̂,l = Υa,N · a1/2

∫ ∞
−∞

eiξm̂h̃(s)ϕa,l(s)ds, m̂, l = 1, . . . , N.

We also have Φ̄j,k = ΨBj,k, and obtaining Φ̄j,k, implies that the sequence of Φj

Ỹm
(ξm̂) for m =

2, . . . ,M satisfies equation (18). We now require Φj

Ỹm
(ξm̂) for m = 1, that is the initialization

or Φj

Ỹ1
(ξ). This derived by

Φj

Ỹ1
(ξ) =

∑
k=1,..,n

E[1{α(∆t)=k} · exp(iξh̃(S̃(∆t)))|θ(0) = j]

=
∑

k=1,..,n

Φ̂j,k(ξ), (31)

which is approximated by replacing Φ̂ with Φ̄ .

Once we have obtained the set {Φj

ỸM
(ξ)}nj=1, we obtain the variance states, indexed by k0

and k0+1 such that σk0 ≤ σ0 < σk0+1, given σ0. Using a grid {ym̂}N/2m̂=1 for ỸM we can then

obtain the density coefficients for Φj

ỸM
(ξ) over j ∈ {k0, k0 + 1}, which we denote by {β̂ja,m̂}Nm̂=1.

They are determined by the FFT as in equation (23), where the input for j ∈ {k0, k0 + 1} is

Gj
1 := 1/32a4, Gj

m̂ := Φj

ỸM
(ξm̂) · Bm̂ · exp(−iξm̂ · y1), m̂ ≥ 2, (32)

with ξm̂ defined in equation (22) and Bm̂ in (25).

The final calculation for risk measurement is dependent on the risk measure function ρ̃(.)

itself, where ρ̃(.) denotes some risk measure (to be explained in more detail later). A risk

measure is commonly a function of expectation E[.], hence our risk measure would be expressed

as

E[f(ỸM)] ≈ Ak0 + (Ak0+1 −Ak0) σ0 − σk0
σk0+1 − σk0

where

Aj := Υa,N

N/2∑
m̂=1

β̂ja,m̂Θα
m̂, j = k0, k0 + 1,
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and

Θα
m̂ := a1/2

∫ ∞
0

ϕa,m̂(y)f(y)dy.

For instance, for upside risk measurement (to be discussed in the proceeding sections) with

respect to threshold K, we have

1
T
E[(ỸM −KT )+].

The grid is defined by y1 = KT −∆, ym̂ = y1 + (n− 1)∆ for m̂ = 1, . . . , N/2, and

Θm̂ =



(ym̂ −KT )/24 + ∆/20 m̂ = 1

(ym̂ −KT )/2 + ∆ · 7/30 m̂ = 2

(ym̂ −KT ) · 23/24 + ∆/20 m̂ = 3

(ym̂ −KT ) m̂ = 4, . . . , N/2,

(33)

where ym̂ −KT = −∆ + (m̂− 1)∆.

5.3 Risk Measurement

The fundamental work of (Artzner et al., 2003) has led to axiomatic definitions in measuring

risk. Risk measurement is defined as some functional on the sample space of losses. Let us

assume we have a real valued random variable X ∈ R within the measurable space {Ω,F},
where X follows a distribution of losses G, then a risk measure ρ̃ is defined by

ρ̃ : G 7→ R.

In particular, we consider a risk measure is capable of measuring risk correctly (or “coherently”)

if the risk measure conforms to the coherency axioms (Artzner et al., 2003), that is translation

invariance, subaddivity, monotonicity and positive homogeneity and are given (respectively) as

ρ̃(X + k) = ρ̃(X) + k, for k ∈ R,

ρ̃(X1 +X2) ≤ ρ̃(X1) + ρ̃(X2),

ρ̃(X1) ≤ ρ̃(X2),∀X1 ≤ X2,

ρ̃(kX) = kρ̃(X),∀k ∈ R≥0.

Whilst it is known that volatility is not directly observable in markets, the realized variance

(a standard measure for volatility) is directly observable for assets and is given by

ΛM =
1

T

M∑
m=1

(
log

X(tm)

X(tm−1)

)2

.

Given that ΛM changes over time t, we will obtain a distribution of values for ΛM . Let us

denote the random variable that generates this distribution as Λ̃M , hence we can empirically

measure political risk using ρ̃(Λ̃M).
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Using our PROJ method and previous theorems, we are now in a position to calculate risk

using risk measures. Once the characteristic function of realized variance has been recovered,

we can calculate various risk measures after inverting to obtain a density. For this purpose, it

is convenient to utilize a lower order B-spline basis, namely the linear B-splines with generator

ϕ(y) = (1 + y)1[−1,0](y) + (1− y)1[0,1](y).

Let ỸM := T · ΛM , for which we will recover the terminal density. To recover the terminal

density, we specify a grid of points yn = (n− 1)∆, n = 1, . . . , N/2, where ∆ := 1/a, and note

that y1 = 0 as the density for realized variance is defined over [0,∞). Define the DFT input

vector {G[1]
j }Nj=1 by

G
[1]
1 := 1/24a2, G[1]

m := ΦYM (ξm) · B[1]
m , m ≥ 2, (34)

where ξm is defined in (22), and

B[1]
m :=

(sin(ξm/(2a))/ξm)2

2 + cos(ξm/a)
, m ≥ 2. (35)

The final density is approximated by

fỸM (y) ≈ a1/2Υ
[1]
a,N

∑
1≤m̂≤N/2

β̄
[1]
a,m̂ · ϕa,m̂(y),

where Υ
[1]
a,N := 24a2/N, and β̄

[1]
a,k are obtained using the DFT defined in (23), but with input

vector {G[1]
m }Nm=1. In general, to avoid boundary effects in the computation of the DFT, we will

only require the density for the grid points {yn}N/2n=1. Once fỸM (y) is recovered over {ym̂}N/2m̂=1, a

range of risk measures can be computed.

The variety of risk measures that currently exist in the literature is diverse, see (Szegö,

2005) for a review of risk measures. A popular risk measure is Value at Risk (VaR) which is

defined as

V aR(X) = inf{x ∈ R : P(X ≤ x) ≥ α̂},

such that {α̂ ∈ R≥0|0 ≤ α̂ ≤ 1}. Essentially, an individual specifies a confidence level

(or risk level) α̂ and the associated threshold value is given by VaR, where typically α̂ ∈
{0.90, 0.95, 0.99}. For our realised variance then VaR measure equates to

V aR(Λ̃M) = inf{k ∈ R : P(Λ̃M ≤ k) ≥ α̂},

for some given k.

Let β̄a,n := β̄
[1]
a,n. To calculate VaR, we take advantage of one of the nice properties of the

linear basis. In particular, define the cumulative distribution approximation, which is calculated

at the grid points calculated at the grid points ym̂ = {(m̂− 1)∆}N/2m̂=1 using using

F̄m̂ := F̄ (ym̂) = a−1/2

m̂−1∑
j=1

β̄a,j +
a−1/2

2
β̄a,m̂, (36)
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and define the boundary coefficients β̄a,0 = β̄a,N/2+1 = 0. We can then calculate the distribution

at any y ∈ [0,∞) using

F̄ (y) = F̄ (ym̂) + a−1/2

[
Bβ̄a,m̂ +

B2

2

(
β̄a,m̂+1 − β̄a,m̂

)]
,

B := a(y − ym̂), and is defined as F (y) = 1 for y > yN/2. For any VaR level, p ∈ (0, 1), let

k ∈ {0 . . . , N/2} be the unique integer satisfying F̄k ≤ U < F̄k+1, and set dk := β̄a,k+1 − β̄a,k.
We then have the closed form expression for VaR,

V aR(p) = T−1 ·


yk +

1

a · dk

(
−β̄a,k +

√
β̄2
a,k + 2a1/2 · dk(p− F̄k)

)
, dk 6= 0;

yk +
p− F̄k

a · (F̄k+1 − F̄k)
, dk = 0.

(37)

Another popular risk measure is taking the moments of a random variable , that is our risk

measure

ρ̃(Λ̃M) = E[Λ̃k
M ],

is the kth moment, for k ∈ N+. The moment measure of risk is a convenient measure, and

moments provide useful information about the distribution of random variables. Hence such

moments enable us to understand the risk of Λ̃M . In particular the second central moment or

variance

ρ̃(Λ̃M) = V ar(Λ̃M),

where V ar(.) is the variance of the random variable, has been in existence as a risk measure for

many decades. It is frequently used in risk optimization of portfolios using Markowitz Portfolio

Theory (Markowitz, 1952), and it is a coherent risk measure, hence measures risk correctly.

To measure risk using moments we first approximate the moments, for k ≥ 1,

E[Λ̃k
M ] = T−k · E[Y k

M ] ≈ Υ
[1]
a,N

∑
1≤m̂≤N/2

β̄
[1]
a,m̂Θ

(k)
m̂ , (38)

where Θ
(k)
m̂ are given by the formula

Θ
(k)
m̂ = T−k ·

{
za(k), m̂ = 1

za(k) ·
(
m̂k+2 − 2(m̂− 1)k+2 + (m̂− 2)k+2

)
, m̂ ≥ 2

(39)

where za(k) := a−k(k + 1)−1 − a−k(k + 2)−1.

One other class of risk measures are the upside and downside risk measures. The upside

risk measure is given by

ρ̃(Λ̃M) = E[(Λ̃M −K)+],

and the downside risk is given by

ρ̃(Λ̃M) = E[(K − Λ̃M)+],
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where K ∈ R+ is some constant. The upside risk measure enables us to gauge the expected gain

of Λ̃M beyond some threshold value K, whereas downside risk enables us to measure the loss

in Λ̃M below some threshold value K. Such upside and downside risk measures are popular in

industry because many firms are interested in determining their expected performance, relative

to some benchmark or constant K. Additionally, unlike other risk measures these risk measures

take into account behavioral finance concepts in measuring risk, such as Prospect Theory. Such

behavioral theories imply that individuals actually gauge risk relative to some benchmark or

”reference point” K, hence these risk measures are more realistic in measuring risk. Moreover,

such upside and downside risk measures are coherent (Szegö, 2005) hence they will measure

risk correctly.

To estimate the upside risk for parameter K ≥ 0, define the shifted grid by yn = KT + (n−
1)∆, n = 1, . . . , N/2, and recover the terminal density fYM (y) using y1 = KT .1 We can then

calculate

E[(Λ̃M −K)+] = T−1 · E[(YM −KT )+] ≈ Υ
[1]
a,N

∑
1≤n≤N/2

β̄[1]
a,n%n(K), (40)

where the coefficients are defined by

%n(K) = T−1a−1 ·

{
1/6, n = 1

n− 1, n ≥ 2.
(41)

6 Numerical Experiments

In this section we calculate political risk using a number of risk measures. We consider the

Heston stochastic volatility model, as described earlier in the paper, because this is one of the

most popular stochastic volatility models but also takes into account a wide range of volatility

dynamics. Whilst the specifications of the model are not important to the method, we include

them here for completeness

dX(t)/X(t) = rdt+ σ(t)dB1(t),

dσ2(t) = µ2(κ̃− σ2(t))dt+ η̃σ(t)dB2(t),

where corr(dB1(t), dB2(t)) = ρ = −0.7, η̃ = 0.15, µ2 = 1, r = 0, κ̃ = 0.02, σ0 = 0.04. Whilst

it is possible to calibrate the Heston model to real world market data, which would provide

risk measurement results related to real market data, we restrict our analysis to the specified

model values. The reader is referred to papers such as (Cui et al., 2017a), or (Escobar and

Gschnaidtner, 2016), for more information on calibrating the Heston model to real world market

data.

1Before we had used y1 = 0.
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Figure 1: CTMC conditional density of volatility process under Heston stochastic volatility

In Figure 1, we illustrate the conditional transition densities of the volatility process for a

model with n = 40 Markov states. Hence we model 40 political states, and so this provides a

wide range of political climates. We also vary the time step between ∆t ∈ {1/100, 1/50, 1/20,

1/10, 1/5}, where densities are progressively decreasing in peakedness for ∆t, starting from

∆t = 1/100. As can be seen in the figure, from the initial state σ0 = 0.04 the densities shift

leftward towards the long run level κ̄ = 0.02 as ∆t increases. When ∆t = 1/100, the transition

density is tightly centered around the σ0, while as ∆t increases, the probability mass is spread

more evenly across the possible states. In this particular example, the starting state is one for

which there is greater political uncertainty, compared to the longer term level of κ̄, and over

time, the volatility has a tendency to revert to κ̄. In this sense, κ̄ allows us to capture the mode

of “long term” political conditions.

In Figure 2 we plot the transition densities of the terminal realized variance (T = 1),

conditioned on the starting state σ0, as σ0 varies along a nonuniform grid over [1e-05, 0.1406]

with n = 40 grid points. The leftmost peaked density corresponds to the initial variance level

σ(0) = 0.0039, and the rightmost density corresponds to σ(0) = 0.1357, with the remaining

densities starting from values of σ(0) between these two boundaries.

Even with a modest number of volatility states, we obtain a relatively smooth distribution for

the realized variance, over [0, T ]. As one can see from the figure, when the initial volatility state

nears zero, the integrated variance becomes tightly concentrated, as the volatility is starting in

a more “dormant” or low risk state. As the initial risk level increases, the distribution spreads
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Figure 2: Realized variance conditional density of CTMC derived from Heston stochastic volatility

its mass more evenly and symmetrically around the starting volatility.

One appealing aspect of the proposed framework is that as the number of political states

increases, the model of political risk converges in distribution to a well understood stochastic

volatility model. In Figure 3 we illustrate the convergence of the expected value of realized

variance under the CTMC model to the Heston model which is used to generate the latent

states. The model “error” err is defined as

err = E[Λn
M ]− E[Λ∗M ],

where E[Λn
M ] is the expected realized variance calculated from the n-state CTMC model using

the PROJ method, and E[Λ∗M ] is the exact expected value under Heston’s model. The exact

values are calculated for the Heston model using the closed-form solution given in (Bernard

and Cui, 2014). As can be observed by the figure, the model error decreases as the number of

states n increases. Hence these results reflect that the finite state political risk model converges

to the volatility process underlying Heston’s model, namely the CIR process.

To test for robustness in our model we determine the deviation in expected realized variance

values from the true values in Heston’s model, in Tables 3 and 4, . In both tables we test different

observation parameters M ∈ {5, 12, 54, 180, 360}, we also test for T = 1 and T = 0.5 in Table

3 and Table 4, respectively. The true values are obtained using the analytical values computed

by the method of (Bernard and Cui, 2014), and are denoted by the column “BC”, the PROJ

method is used to calculate CTMC values for an n = 40 state model. The tables serve to
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Figure 3: Convergence of expected value of realized variance under political risk model derived from
Heston stochastic volatility.

illustrate the closeness of the model to the theoretical stochastic volatility model. To provide

a baseline for the “errors” observed we also provide Monte Carlo (MC) simulation with 105

simulations, we use Euler’s method with a sub-stepping approach of 40 steps per discretization

interval of length ∆t = T/M .Additionally we also apply a control variate to reduce variance,

using the analytically available expected value in this case.

The errors are calculated against the baseline BC method, and are denoted as

EPROJ := |PROJ −BC|, and EMC := |MC −BC|.

ρ = −0.7 ρ = 0

M BC PROJ MC EPROJ EMC Std.Err BC PROJ MC EPROJ EMC Std.Err

5 0.033031 0.033073 0.032839 4.16e-05 1.89e-05 8.00e-05 0.032706 0.032705 0.032557 1.10e-06 1.49e-04 8.00e-05

12 0.032809 0.032851 0.032727 4.20e-05 5.22e-05 5.52e-05 0.032669 0.032669 0.032598 9.72e-08 7.14e-05 5.88e-05

54 0.032680 0.032721 0.032656 4.15e-05 3.30e-05 3.58e-05 0.032648 0.032648 0.032656 8.63e-08 7.70e-06 4.27e-05

180 0.032654 0.032695 0.032658 4.15e-05 2.40e-05 3.08e-05 0.032644 0.032644 0.032673 6.65e-08 2.92e-05 3.85e-05

360 0.032648 0.032690 0.032653 4.16e-05 2.15e-05 2.94e-05 0.032643 0.032643 0.032668 1.15e-07 2.51e-05 3.75e-05

Table 3: Expected value of realized variance (T = 1) for an n = 40 state model, derived from Heston.
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ρ = −0.7 ρ = 0

M BC PROJ MC EPROJ EMC Std.Err BC PROJ MC EPROJ EMC Std.Err

5 0.035957 0.035961 0.035796 3.97e-06 1.61e-04 8.24e-05 0.035774 0.035772 0.035668 2.54e-06 1.07e-04 8.14e-05

12 0.035831 0.035837 0.035724 6.39e-06 1.07e-04 5.62e-05 0.035754 0.035754 0.035705 6.59e-07 4.91e-05 5.79e-05

54 0.035759 0.035764 0.035713 4.95e-06 4.67e-05 3.54e-05 0.035742 0.035741 0.035754 6.66e-07 1.22e-05 3.90e-05

180 0.035745 0.035751 0.035799 5.70e-06 5.43e-05 2.94e-05 0.035740 0.035740 0.035735 1.24e-07 5.04e-06 3.39e-05

360 0.035742 0.035748 0.035724 5.86e-06 1.82e-05 2.79e-05 0.035739 0.035739 0.035709 2.79e-08 3.04e-05 3.27e-05

Table 4: Expected value of realized variance (T = 0.5) for an n = 40 state model, derived from
Heston.

We now wish to calculate risk using the risk measures discussed in Section 5. One common

risk measure is upside risk, which is

E[(ΛM −K)+], K ≥ 0. (42)

In Table 5 we calculate upside risk (defined by equation (42)) for several values of the parameter

K ∈ {0.01, 0.02, ...., 0.05} along each column in the table, with T = 1 for convenience. We do

this for two sets of correlation values ρ = −0.7 and ρ = 0. Additionally, we vary the number of

monitoring dates M ∈ {5, ..., 360} for each row of the table, and M defines the realized variance

in ΛM .

ρ = −0.7 ρ = 0

M / K 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

5 0.023488 0.015973 0.010817 0.007416 0.005170 0.023188 0.015712 0.010457 0.006920 0.004580

12 0.022926 0.014330 0.008452 0.004907 0.002856 0.022784 0.014243 0.008254 0.004585 0.002494

54 0.022727 0.013323 0.006559 0.002875 0.001181 0.022665 0.013318 0.006504 0.002755 0.001062

180 0.022698 0.013141 0.006087 0.002344 0.000794 0.022653 0.013141 0.006072 0.002296 0.000746

360 0.022692 0.013104 0.005980 0.002220 0.000708 0.022651 0.013104 0.005975 0.002191 0.000677

Table 5: Upside Risk Measurement Under Heston Stochastic Volatility Model With n = 40 Latent
States

As can be seen by Table 5, a change in correlation from negative correlation (ρ = −0.7) to

independence (ρ = 0) leads to noticeably different results. The negative correlation ρ = −0.7

reflects the leverage effect that exists in many assets, whilst ρ = 0 implies independence between

volatility and asset price. A negative correlation results in higher political risk (measured in

terms of upside risk) for all equivalent input parameters, compared to zero correlation. This

is a satisfying result because leverage (negative correlation) is typically associated with higher

risk. We can also see from the table the convergence of realized variance, ΛM , as M increases.

However, comparing M = 5 to M = 360, we can see that number of observations points can

also significantly impact the estimated risk.
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We calculate moment based risk measures in the following two tables. The tables demon-

strate the ability of the proposed framework to faithfully estimate moment-based risk mea-

sures of the political risk model. We consider kth moments of realized variance, E[Λk
M ], for

k ∈ {1, 2, 3, 4}, and compare the estimates to Monte Carlo. Table 6 and Table 7 provide esti-

mates for T = 1 and T = 0.5, respectively. As the value of k increases, the moments E[Λk
M ]

quickly diminish, although there is close agreement between PROJ and Monte Carlo at all

levels, with the differences mostly falling within two standard deviations.

ρ = −0.7 ρ = 0

k PROJ MC Std.Err Diff PROJ MC Std.Err Diff

1 0.032851 0.032688 6.20e-05 1.63e-04 0.032669 0.032630 5.89e-05 3.96e-05

2 0.001466 0.001461 6.84e-06 4.92e-06 0.001416 0.001413 5.84e-06 3.40e-06

3 0.000088 0.000087 9.12e-07 3.02e-07 0.000079 0.000078 6.29e-07 6.10e-07

4 0.000007 0.000007 2.51e-07 1.03e-07 0.000005 0.000005 7.51e-08 8.30e-08

Table 6: Moments (k) of realized variance (T = 1), M = 12, for an n = 40 state model.

ρ = −0.7 ρ = 0

k PROJ MC Std.Err Diff PROJ MC Std.Err Diff

1 0.035837 0.035867 6.00e-05 2.99e-05 0.035754 0.035638 5.80e-05 1.15e-04

2 0.001647 0.001645 6.52e-06 2.63e-06 0.001615 0.001609 5.80e-06 5.92e-06

3 0.000096 0.000095 7.41e-07 1.41e-06 0.000090 0.000089 5.66e-07 9.75e-07

4 0.000007 0.000007 1.09e-07 1.58e-07 0.000006 0.000006 7.45e-08 6.20e-08

Table 7: Moments (k) of realized variance (T = 0.5), M = 12, for an n = 40 state model.

ρ = −0.7 ρ = 0

p PROJ MC Std.Err Diff PROJ MC Std.Err Diff

0.50 0.028222 0.028173 6.62e-05 4.93e-05 0.028811 0.028734 6.94e-05 7.68e-05

0.75 0.041197 0.041134 1.08e-04 6.29e-05 0.041706 0.041674 2.89e-05 3.17e-05

0.90 0.057739 0.057726 1.58e-04 1.26e-05 0.057011 0.056937 1.88e-04 7.38e-05

0.95 0.070465 0.070352 1.67e-04 1.13e-04 0.068201 0.068016 3.91e-04 1.84e-04

0.99 0.101492 0.101042 6.54e-04 4.50e-04 0.094159 0.093508 6.05e-04 6.51e-04

Table 8: VaR of realized variance (T = 1), M = 12, for an n = 40 state model.

The final set of experiments illustrate the calculation of Value-at-Risk (VaR) in Tables 8 and

9. One observation to notice is that as the VaR level increases, the standard error of the Monte

Carlo estimation also increase as the difficulty in estimation of rare events (by simulation) also

increases.
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ρ = −0.7 ρ = 0

p PROJ MC Std.Err Diff PROJ MC Std.Err Diff

0.50 0.031839 0.031779 8.09e-05 5.97e-05 0.032314 0.032252 4.94e-05 6.22e-05

0.75 0.044665 0.044580 7.85e-05 8.49e-05 0.045143 0.045123 1.22e-04 2.01e-05

0.90 0.060283 0.060173 1.57e-04 1.10e-04 0.059895 0.059770 9.85e-05 1.25e-04

0.95 0.071972 0.071911 1.12e-04 6.17e-05 0.070438 0.070276 1.12e-04 1.62e-04

0.99 0.099785 0.099014 6.29e-04 7.71e-04 0.094315 0.093928 5.28e-04 3.88e-04

Table 9: VaR of realized variance (T = 0.5), M = 12, for an n = 40 state model.

The ability to measure political risk is useful for risk management purposes. It enables us to

identify, evaluate and prioritise the political risk with respect to different assets and investments.

As a result of political risk measurement, one can determine whether it is more beneficial to

avoid political risk for some investments, or implement strategies to reduce or share some

political risks (for instance purchasing some political risk insurance products). Alternatively, if

political risk is unavoidable, political risk measurement can enable one determine the level of

financial reserves required to budget for such risks.

7 Conclusion

Political risk modelling has gained increasing attention in research literature, and has direct

implications for social risks such as civil disorder. Consequently, the modelling of political risks

are important to social as well as economic reasons. In this paper we have proposed a model

for political risk, which can be applied to mathematical finance models. To the best of our

knowledge this is the first model for continuous time stochastic volatility models. Hence this

paper will be of interest to academics and industry.

We derive a number of important properties in our political risk model, in particular, we

derive a solution for the characteristic function and we prove weak convergence. Both of these

properties are important to ensuring our model is related to the authentic volatility process

of the asset pricing model, and correctly modelling risk. We derive a method for calculating

standard risk measures for our political risk, namely Value at Risk, variance, moments, as well

as upside and downside risk measurements. We also provide numerical experiments to illustrate

our results.

In terms of future work, we would like to investigate contagion risk modelling from political

risk, for instance the cross market linkages of political risk in one country have been empirically

shown to impact the political risk in neighbouring and allied countries. The continuous time

processes of political risk transmission have yet to be investigated. Secondly, we would like

to examine the systemic and idiosyncratic components of political risk for different countries,

particularly with respect to developed and emerging markets. This would potentially lead
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to enabling the formulation of diversified political risk portfolios. Finally, we would like to

investigate the impact of political risk on different asset classes and derivatives. For example,

it is known that some asset classes are affected by particular risk factors more than other asset

classes. Consequently, we need to model the asset classes that have higher exposure to political

risk compared to other asset classes.
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