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1 Introduction

The low performance of many traditional methods for �nancial risk modeling and forecasting

during the recent credit crunch has highlighted the de�ciencies of standard models for

capturing the high-order moments and salient stylized regularities of the asset return

distributions (Cont, 2001). Generalized autoregressive conditional heteroscedasticity

(GARCH) models (Engle (1982) and Bollerslev (1986)), comprehensively reviewed in

Terasvirta (2009), have been extended to account for non-Gaussianities. The alternative

densities that have been proposed in previous studies for that purpose include: (i) parametric

probability density functions (pdfs henceforth), for instance, the standardized Student�s t

(Bollerslev, 1987), the GED (Nelson, 1991), the skewed t (Hansen, 1994), the normal inverse

Gaussian (NIG) (Jensen and Lunde, 2001), mixtures of normals (Alexander and Lazar,

2006), BEGE combination of gammas distribution (Bekaert et al., 2014), Variance-Gamma
(Göncü and Yang, 2016); (ii) non-parametric pdfs (Engle and Gonzalez-Rivera, 1991); and

(iii) semi-nonparametric (SNP) densities based on Gram-Charlier (GC) series expansions

(Charlier, 1905), introduced in econometrics by Sargan (1976) and developed by authors

such as, Gallant and Nychka (1987), Mauleón and Perote (2000), and León et al. (2009),

among others.

The current global �nancial market scenario requires that any assumed density for the

shocks in GARCH-type models is �exible enough to account for the leptokurtosis and

multimodality of the empirical asset return distributions. In this respect, it is well known

that heavy-tailed parametric pdfs overestimate the frequencies for mid-to-lower quantiles,

as they try to capture the accumulation of observations in the distribution tail through

a monotonic decay. On the other hand, non-parametric densities are more �exible to �t

jumps in the distribution tail but they require very large data sets in order to achieve a

reasonable degree of precision. Alternatively, SNP pdfs, characterized by its �exibility to

represent any frequency function at any degree of accuracy (Cramér 1925), are capable

of �tting the wavy shape of the return distributions tail, exacerbated by periods of high

�nancial instability. This fact has awakened a renewed interest for SNP methods and their

applications for measuring �nancial risk�see, e.g., Huang et al. (2014); Lin et al. (2015);

Ñíguez and Perote (2016) or León and Moreno (2017). SNP methods, however, also have

well-known drawbacks:

(i) Truncated SNP functions (i.e. �nite series expansions) are not really pdfs since they

may yield negative values (Barton and Dennis, 1952). This issue has been addressed

through either parametric constraints à la Jondeau and Rockinger (2001), or density

reformulations based on the methodology of Gallant and Nychka (1987) and Gallant
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and Tauchen (1988) (GNT hereafter).

(ii) Complexity: (a) The direct interpretation of moments in terms of the density

parameters is lost when GNT transformations are applied; (b) the characterizations of

the density in terms of either the cumulative distribution function (cdf) or the moments

generating function (mgf) for GNT-GC pdfs are di¢ cult to obtain; and (c) maximum

likelihood (ML) suboptimization is likely to occur.

(iii) SNP pdfs are sensitive to choices in the number of expansion terms.

In this study we present a SNP pdf that, preserving the �exibility typical of GC pdfs,

allows to addressing the aforementioned complexities. To do so, we introduce an original

series expansion, whose terms are de�ned as the di¤erence between the nth power of the

variable and the nth moment of the parametric density used as the basis of the expansion.

Our Moments Expansion density (ME henceforth) presents gains in simplicity that ease

both its theoretically analysis, and practical implementation to model high-order moments

and risk measures. We show that the ME is a general family of distributions that nests

the GC when the Gaussian density is taken as the basis and GNT transformations are not

implemented.

In an empirical application to asset returns, we test the applicability of our model in

terms of its relative performance for multiperiod density forecasting as well as for predicting

overall measures of market risk, such as, volatility and Value-at-Risk (VaR). The alternative

distributions we consider are: Gaussian (used as framework); standardized Student�s t;

symmetric and skewed GC; and NIG.1 The models ability for forecasting the conditional

variance is measured through ranking-robust loss functions for imperfect volatility proxies

(Patton, 2010). VaR forecasting accuracy is assessed through a battery of tests, namely, the

magnitude of exceptions statistic (López, 1999), likelihood ratio (LR) tests (Christo¤ersen,

1998), and the HIT test of Engle and Manganelli (2004). For multiperiod density forecasting

we follow the methodology proposed by Maheu and McCurdy (2011). Our results show

that Gaussian-ME models are capable of outperforming both standard and non-Gaussian

GARCH models for conditional density forecasting, as well as, along several dimensions of

market risk forecasting.

The remainder of the paper is organized as follows. In Section 2, we de�ne the ME pdf

and analyze its statistical properties. Section 3 provides a comparative analysis of the ME

model for forecasting density and �nancial risk. In Section 4, we summarize our conclusions.

All of the proofs are provided in the Appendix.
1Other interesting parametric densities to consider include the skewed Student�s t; see Ergen (2014) for

a recent study of this density for VaR forecasting.
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2 The ME density

In this section, we de�ne the ME pdf and study its characterizations and statistical properties

in relation to the GC, which we use as framework.

Let a random variable x be GC (Type A) distributed with pdf given by,

�(x;dn) =

 
1 +

nX
s=1

dsHs(x)

!
�(x), (1)

where �(�) stands for the standard Normal pdf, Hs(�) denotes the HP of order s, and

dn = (d1; d2; : : : ; dn)
0 2 Rn with n being the truncation order of the expansion. The HPs,

which can be de�ned as in equation (2), form an orthogonal basis with respect to �(x), which

is the grounds for �(x; dn) to integrate up to one.

Hs(x) =
(�1)s
�(x)

ds�(x)

dxs
: (2)

In general, SNP distributions can be de�ned for any continuous and di¤erentiable

parametric pdf. However, GC series expansions of non-Normal pdfs have rarely been

considered as they deliver rather complex speci�cations, in particular for GNT-type of re-

formulations.2 We show that the ME, de�ned below, is an alternative to the GC expansion,

the former exhibiting advantages in simplicity without compromising �exibility and accuracy.

De�nition. A ME of a parametric distribution g(�) has a pdf given by,

f(x;
n) =

 
1 +

nX
s=1


s	s(x)

!
g(x) = �s(x)g(x); (3)

where 
s denotes the sth parameter and f	s(x)g
n
s=1 is a polynomial sequence of the form

	s(x) = x
s � �s; (4)

where �s denotes the sth raw moment of g(x):

By de�nition, the ME pdf requires that the distribution used as the basis of the expansion

has �nite moments up to the truncation order, but no other condition is necessary. By

construction, parameter 
s captures the weight assigned to the deviation of the sth order

moment of f(�) with respect to its counterpart in g(x). Two main di¤erences between GC
and ME expansions are worth mentioning:

2The expansions of the Poisson, Gamma and Beta distributions are known as Gram-Charlier Type B,

Laguerre and Jacobi series, respectively.
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(i) The ME polynomials, 	s(x), unlike the HPs, are not orthogonal with respect to the

distribution g(x), i.e.
Z
	s(x)	j(x)g(x)dx 6= 0; s 6= j. However, this is not an obstacle

to guarantee up to one integration, we shall discuss this property in the next section.

On the contrary, 	s(x) has an important advantage in terms of simplicity compared

to Hs(x); a feature that is of particular interest when GNT transformations are used

to ensure positiveness.

(ii) The ME admits any distribution g(x) as the basis of the expansion, whilst the GC

has only been de�ned for the Gaussian distribution, �(x). Note that although the GC

approach could be applied to other continuous and di¤erentiable pdfs these extensions

would be at the cost of a signi�cant increase in complexity and intractability.3

The ME pdf is symmetric when the g(x) is symmetric and 
s = 0 8s � 3, s odd. The
shape of the ME family of densities with elliptical basis distributions resembles the well-

known "Gaussian bell" for a wide range of the parametric space, but its tails may be thicker

and wavy. When the parameters 
s are all 0, the ME nests the density used as the basis.

Figure 1 illustrates the density of a Gaussian-ME (GME hereafter) distribution. The plot

shows how the GME shape responds to changes in the values of the parameters allowing

for heavy tails and multimodality. It also illustrates the convergence of the GME to the

Gaussian distribution as 
s tend to 0.

[Insert Figure 1]

Figure 2 provides the kurtosis range of GNT GME densities truncated at n = 8. We

represent two- and one-parameter symmetric densities reformulated for positiveness through

the GNT transformation presented in Proposition 5 below.4 The graphs illustrate how

the range of kurtosis expands as the truncation order increases. Note that the maximum

Range=[1.12,5.892] is obtained by the one-parameter GNT GME with 
8 6= 0, and that

adding lower order parameters do not seem to broaden the kurtosis range.

[Insert Figure 2]

3The performance of the ME when non-Gaussian densities are used as the basis (in particular the

expansion of a Student�s t distribution) will be investigated in further research. Whilst in the present

paper, we mainly focus on the analysis of the advantages of the ME for de�ning positive densities when the

Gaussian distribution is used as the basis.
4The ranges of skweness and kurtosis of skewed GME coincide with those of the GC densities in Leon et

al. (2005, 2009).
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2.1 ME statistical properties

In this section we analyze the ME properties (Propositions 1-9). All of the proofs (except

that of Proposition 4 as it provides a straightforward result) are presented in the Appendix.

Without loss of generality in the analysis that follows, we consider a standardized g(x); i.e.

with mean 0 and variance 1.

Proposition 1. The ME distribution de�ned in equation (3) integrates up to one:R
f(x; 
n)dx = 1.

Proposition 2. The ME is positive in a wide range of its parameter space, particularly

f(x; 
n) � 0 8
n 2 Rn such that

0 � 
s �
1

n�s

s = 0

8s even
8s odd

(5)

These constraints are obtained straightforwardly, so the ME positivity issue could be

easily addressed this way, at least for symmetric expansions (i.e. 
s = 0 8s odd).5 Unlike
the non-negativity (NN hereafter) constraints of Jondeau and Rockinger (2001), our NN

conditions are valid for any truncation order, and imply squared, instead of elliptical,

positivity sets. NN constraints and GNT transformations are alternative solutions to ensure

the positivity of SNP pdfs, and both present shortcomings. Namely, NN conditions may

reduce the goodness-of-�t of the density if the feasible (for positivity) parametric space

shrinks too much. Besides, GNT transformations may lead to non-linearities between density

moments and parameters, which hinders the interpretation of the parameter estimates in

terms of moments. This last feature will be discussed later on.

Proposition 3. The raw moments of the ME distribution, f(x; 
n); are given by:

mi = E[x
i] = �i +

nX
s=1


s(�s+i � �s�i); 8i 2 N: (6)

Proposition 3 shows that the non-central moments of the ME pdf are obtained from the

moments of the density used as the basis, and are linearly related to the ME parameters.

Furthermore, the relation in equation (6) reveals that the odd/even moments depend only

on the odd/even parameters. Therefore if g(x) is symmetric and all odd parameters are zero

5Note that, as skewness can be achieved by using a skewed g(x), the use of symmetric expansions does

not represent a serious shortcoming.
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then the ME has zero mean and is symmetric. This is an interesting property that simpli�es

parameter estimation and interpretation. In particular, the even parameters capture the

wavy and thick-tailed behavior of the density, whilst the odd parameters incorporate di¤erent

type of asymmetries.

The ME distribution can alternatively be expressed in terms of its own non-central

moments as

f(x;Mn) =

 
1 +

nX
s=1

(ms � �s)�s(x)
!
g(x); (7)

where Mn = (m1;m2; : : : ;mn)
0 2 Rn with mi satisfying the relation in equation (6) and

�s(x) are the polynomials such that f(x;Mn) = f(x; 
n) �see the example in equation (18).

This type of re-parameterization is useful for easing (i) the interpretation of the estimates

in terms of the distribution�s skewness and kurtosis; and (ii) the comparison with the GC

distribution.

Proposition 4. Let m�
i = E[(x�m1)

i] 8i 2 N; denote the central moments of f(x; 
n), then
a standardized ME distribution, i.e. with zero mean and variance one, denoted as f �(z; 
n),

can be expressed in terms the parameters 
s as:

f �(z;
n) =

 
1 +

nX
s=1


s	s

�
m
�1=2
2 z +m1

�!
g
�
m
�1=2
2 z +m1

�
m
�1=2
2 ; (8)

Note that Proposition 4 is just the result of the linear transformation, z = (x�m1)=m
�1=2
2 :

This expression is useful for introducing GARCH dynamics through ut = h
1
2
t xt; where ht is

the variance of the conditional distribution of ut:

Proposition 5. A positive ME distribution, F (x;
n), can be obtained through a GNT

transformation, for instance, by squaring each element of the weighting sum as:

F (x;
n) =
1

Wn

 
1 +

nX
s=1


2s	s(x)
2

!
g(x); (9)

where Wn is the constant that guarantees that F (x; 
n) integrates up to one,

Wn =

Z  
1 +

nX
s=1


2s	s(x)
2

!
g(x)dx = 1 +

nX
s=1


2s(�2s � �2s): (10)

Proposition 5 shows that the ME pdf admits GNT transformations to ensure positivity.

It is worth noting that the transformation we have presented in this proposition is just

one possibility, among others of GNT-type, that ME densities admit to ensure positivity.
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For example, other GNT reformulations such as the one below, i.e., squaring the whole

weighting polynomial sum, could also be implemented but would produce more complex

density speci�cations,

F(x;
n) =
1

!n
�s(x)

2g(x); (11)

where !n �
R
�s(x)

2g(x)dx.

F (x;
n) yields a symmetric pdf provided that g(x) is symmetric, while the positivity

transformation in F(x;
n) allows for skewness even when g(x) is symmetric, but results
in a more complex speci�cation as the expansion of �s(x) includes squared polynomials,

	s(x)
2; as well as cross products, 	i(x)	j(x) i 6= j. This feature makes easier to relate the

density�s moments to its parameters, which simpli�es its tractability and applicability. For

instance, the variance and kurtosis of a symmetric four-order ME, F (x;
4); depend only on

the squared parameters, 
22 and 

2
4, which saves cross-products, 
2 � 
4; non-linearities in the

moments expressions. In what follows, we restrict our analysis to the GNT transformation

in F (x;
n), denoted as GNT-ME.6

Proposition 6. The raw moments of the positive ME distribution in Proposition 5, F (x;
n),

can be expressed in terms of the moments of the expanded density, g(x); and the squared

density parameters as:

emi = E[x
i] =

1

Wn

"
�i +

nX
s=1


2s
�
�2s+i + �s(�s�i � 2�s+i)

�#
; 8i = 1; 2; :::; (12)

The relation between the GNT-ME moments and parameters provided by Proposition

6, is slightly more complex than that of equation (6), but is still much simpler than the

corresponding one to the GNT-GC case. The property in this proposition is interesting

because several reasons: (i) it eases the interpretation of the GNT-ME�s parameters in

relation to those of the GNT-GC; (ii) it simpli�es estimation; and (iii) it allows for a direct

implementation of dynamics of GARCH-type for high-order moments.

2.2 The Gaussian ME density

In this section we analyze the properties of the GME, i.e. the ME with the Gaussian

pdf, �(x); used as the basis of the expansion. We will show that in the absence of GNT

transformations, the GME inherits the good asymptotic properties of the GC approximation,

thus being a good alternative for modeling and forecasting high-order moments.

6See Ñíguez and Perote (2012) for a comprehensive analysis of these two types of GNT transformations

applied to GC pdfs. Comparisons of multivariate related extensions can be found in Del Brio et al. (2009;

2011).
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Let us denote the GME pdf as

fN(x;
n) =

 
1 +

nX
s=1


s(x
s � �+s )

!
�(x); (13)

where �+s denotes the s-th order raw moment of �(x).

2.2.1 Relation between GME and GC

Proposition 7. The GC can be expressed as the GME pdf for certain restrictions on their

parameters dn and 
n and provided that they both are not GNT transformed.

�(x;dn) =

 
1 +

nX
s=1

dsHs(x)

!
�(x) =

 
1 +

nX
s=1


s	s(x)

!
�(x) = fN(x;
n): (14)

Proposition 7 shows that the GC is a reparameterization of the GME and a particular

case of the ME for g(x) = �(x). As a result, the GME is an asymptotically valid SNP

method to approximate any pdf. An appealing feature of the GME, with respect to the GC,

is its practicality to address the positivity problem, as GNT transformations of the GME

are much simpler than those of the GC. This simplicity arises from the fact that GNT-GME

only involves squares of binomials instead of polynomials whose orders increase with the

expansion terms. This feature is illustrated in the example below, where we review the GME

properties in relation to the GC expansion.

2.2.2 Analytical example

We discuss the properties of the GME presented so far using an example of a GME pdf

truncated at order four (n = 4), which is the most widely used case in empirical applications

of GC densities. Let us consider a GC truncated at n = 4,

�(x;d4) =
�
1 + d1x+ d2(x

2 � 1) + d3(x3 � 3x) + d4(x4 � 6x+ 3)
�
�(x): (15)

By rearranging terms we obtain a four-order GME pdf:

�(x;d4) =
�
1 + (d1 � 3d3)x+ (d2 � 6d4)(x2 � 1) + d3x3 + d4(x4 � 3)

�
�(x)

=
�
1 + 
1x+ 
2(x

2 � 1) + 
3x3 + 
4(x4 � 3)
�
�(x) = fN(x;
4): (16)

The �rst four raw moments of the pdf in (16) are: m1 = 
1 + 3
3; m2 = 2
2 + 12
4;

m3 = 3
1 + 15
3; and m4 = 12
2 + 94
1:
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�(x;d4) can alternatively be re-written in terms of its �rst four moments as,

fN(x;M4) = [1 +m1�1(x) + (m2 � 1)�2(x) +m3�3(x) + (m4 � 3)�4(x)]�(x), (17)

where

�i(x) =

8>>>>><>>>>>:
x(5� x2)=2;
2(x2 � 1)� (x4 � 3)=4;
x(x2 + 3)=6;

(x4 � 3)=24� (x2 � 1)=4;

if i = 1;

if i = 2;

if i = 3;

if i = 4:

(18)

A standardized fN(x;
4) (with m1 = 0 and m2 = 1) can be obtained by imposing the

restrictions: 
1 = �3
3, 
2 = �6
4 (or in terms of d4: d1 = d2 = 0). The resulting

pdf can conveniently be expressed in terms of the skewness (sk = m�
3=m

�3=2
2 ) and kurtosis

(ku = m�
4=m

�2
2 ) as:

7

efN(x;M4) =

�
1 +

sk

3!
(x3 � 3x) + ku� 3

4!
(x4 � 6x2 + 3)

�
�(x). (19)

A symmetric case of fN(x;
4) may be obtained by considering 
1 = 
3 = 0:

bfN(x;
4) = �1 + 
2(x2 � 1) + 
4(x4 � 3)��(x): (20)

For this distribution 0 � 
2 � 0:25 and 0 � 
4 � 0:083 are su¢ cient NN conditions for the
density in equation (20).

Alternatively, a well-de�ned GME can be obtained by a GNT transformation as:

bFN(x;
4) = 1

W �

�
1 + 
22(x

2 � 1)2 + 
24(x4 � 3)2
�
�(x); (21)

where W � = 1+ 2
22+96

2
4: The variance of bFN(x;
4) is m2 = (1 + 10


2
2 + 864


2
4) =W

� and

then the pdf of the standardized, symmetric and positive GME truncated at n = 4 is

bF �N(x;
4) = 1

W �

�
1 + 
22(m2x

2 � 1)2 + 
24(m2
2x
4 � 3)2

�
�(m

1=2
2 x)m

1=2
2 : (22)

7This is the traditional expression for the GC density (e.g. León el al., 2005) used for capturing the

impact of skewness and kurtosis on returns distribution and its applications to option princing.
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2.2.3 GME cumulative distribution functions

In this section we characterize the GME by means of its cdf. We show that the GME�s cdf

can be easily obtained from the cdf of the normal distribution. Propositions 8 and 9 below

present closed forms for the GME�s cdf and GNT positive version.

Proposition 8. The cdf of a random GME distributed variable is given by,

Pr [x � a] =
Z a

�1
fN(x;
n)dx =

Z a

�1
�(x)dx

�
nX
s=1


s
�
as�1 + (s� 1)as�3 + (s� 1)(s� 3)as�5 + : : :+ �ab

�
�(a); (23)

where

� =

8<: (s� 1)(s� 3) � � � 2,
(s� 1)(s� 3) � � � 3,

8s odd,
otherwise,

(24)

and

b =

8<: 1,

0,

8s even,
otherwise.

(25)

Proposition 9. The cdf of a variable distributed as a GNT-GME distribution given by

FN(x; 
n) is,

Pr [x � a] =
Z a

�1
FN(x;
n)dx =

Z a

�1
�(x)dx

+
2

Wn

nX
s=1


2s�
+
s

�
as�1 + (s� 1)as�3 + (s� 1)(s� 3)as�5 + : : :+ �ab

�
�(a)

� 1

Wn

nX
s=1


2s
�
a2s�1 + (2s� 1)as�3 + (2s� 1)(2s� 3)a2s�5 + : : :+ �+2sab

�
�(a);

(26)

where Wn is the constant in equation (10) for the moments of �(x), denoted as �+s , b is the

constant de�ned in equation (25),

� =

8<: (s� 1)(s� 3) � � � 2,
(s� 1)(s� 3) � � � 3a,

8s odd,
otherwise.

(27)
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2.3 Further extensions

The ME represents a very general class of densities, the GME being the only case that has

been analysed so far. The study of other particular cases are out of the scope of the present

article but anyhow we mention two natural extensions of the GME that deserve particular

analyses.

The �rst one is the ME of mixtures of Gaussian densities. Particularly, for the purpose

of identi�cation we concentrate on the mixture of two normal distributions with zero mean

and variance �2i , denoted by ��i(x), i = 1; 2; whose pdf is presented in equation (28).

fMG(x;
n) =

 
1 +

nX
s=1


s(x
s � �s�+s )

!�
p1��1(x) + p2��2(x)

�
(28)

where �s = p1�s1+ p2�
s
2; 0 � pi � 1 and p1+ p2 = 1: It is clear that the GME is a particular

case of this density provided that �2i = 1 and pi = 0:5, and 8i = 1; 2:
The second is the expansion of the Student�s t density with v degrees of freedom, tv(x),

whose pdf is characterized below.

fST (x;
n) =

 
1 +

nX
s=1


s(x
s � 's)

!
tv(x) (29)

where 's = vs
�( v+12 )�(

v�s
2 )

�( 12)�(
v
2)

for s even and 's = 0 for s odd, and � (�) denotes the gamma
function. This density also encompasses the GME as v tends to in�nity.

The in-depth analysis of the properties of such densities is left for further research.

3 Empirical application

3.1 Data, modeling and in-sample performance

This section provides an analysis of the applicability of the ME through an in- and out-

of-sample comparative analysis. We use the data set from a previous study in Ñíguez and

Perote (2012). The data are (daily) log returns in percentage, computed from samples of asset

prices, rt = 100 log(Pt=Pt�1); of Microsoft sampled over the period 1/16/1989 to 1/15/2009

for a total of T = 5; 219 observations; the British Pound(£ )/US Dollar($) exchange rate (FX

£ /$) from 1/16/1989 to 1/13/2009, T = 5; 217; and the S&P 500 index, from 2/15/1988

to 2/16/2004, T = 4; 176. Two time periods are considered (stable and volatile) to avoid
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dependence of results on the sample time span. The series show stylized features of �nancial

returns such as: small �rst-order correlation in the level, volatility clustering, mild skewness

and high excess kurtosis.

We consider alternative speci�cations that have been used in the literature for modeling

the density of asset returns. Let the conditional distribution of rt with respect to the

information set available up to time t � 1 (
t�1) be: Gaussian, utj
t�1 � N(0; ht);

standardized Student�s t with � degrees of freedom, utj
t�1 � t�(0; ht); (symmetric) NIG

with steepness parameter � � 0, utj
t�1 � NIG(0; ht); GNT GC, utj
t�1 � GC(0; ht);

GNT skewed-GC, utj
t�1 � sk-GC(0; ht); GNT (symmetric) GME, utj
t�1 � GME(0; ht),
equation (22).8,9 The conditional mean and variance of rt follow an AR(1) � selected

according to the Akaike Information Criterion (AIC)�and AGARCH(1,1) processes (Glosten

et al., 1993), equations (30) and (31), respectively,

rt = �0 + �1rt�1 + ut; ut = h
1
2
t xt; (30)

ht = '0 + '1 (jut�1j � �ut�1)
2 + '2ht�1; (31)

The estimation procedure is carried out in two steps. We use the �rst T �R observations as
the �rst in-sample window, and compute R = 1; 000 out-of-sample forecasts using a rolling

window that discards old observations. The models are estimated by quasi-ML (QML),

robust covariance estimators are computed using Bollerslev and Wooldridge (BW) (1992)

formula. Table 1 presents the estimation results.10 As a �rst observation, the optimization

of the GME likelihood function was smoothly achieved after starting values were chosen

adequately, those values were obtained using the sample moments and equation (12). The

estimation of the conditional variance is similar for all models and series; it gathers the

typical strong persistence in the second moment of asset returns (b'1 + b'2 close to 1) and
8We specify GNT SNP models (GC and GME) truncated at n = 4. The GNT GME model considers

the more simple and symmetric GNT transformation in Ñíguez and Perote (2012), but the GC densities

incorporate the GNT reformulation in León et al. (2009). In order to analyze the e¤ect on forecasting

performance of capturing the mild skewness of the data empirical distribution, we also consider the GNT

sk-GC density in León et al. (2005).
9A comparison of current alternative approaches for risk prediction, including historical simulation and

variants is provided in Kuester et al. (2006), and Bao et al. (2006).
10The estimation of the conditional mean gathers the small structure in the level of the return series. This

estimation is not a¤ected by the density assumption. The parameter estimates b�0 and b�1 are not presented
in Table 1 for saving space.
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shows that the leverage e¤ect is present in the returns volatility (since H0: � = 0 is rejected).

All parameters �; �, 
2 and 
4 are signi�cant con�rming that the empirical distribution is

leptokurtic. The estimate of 
3 accounts for the skewness of the distribution and yields a

small negative value for all series, that is signi�cant only for the S&P 500 returns. Regarding

the goodness-of-�t, all models provide better results than the Gaussian; this is attributable

to the fact that the Gaussian distribution is not able to capture the existing leptokurtosis.

As a conclusion, our GME model yields an AIC that is lower than the Gaussian and it is in

the range of the AICs obtained from the rest of non-Gaussian models.

Figure 3 provides an illustration of the �t and shapes of the GME distribution in relation

to the Student�s t and Gaussian for the FX £ /S return series. All three distributions �t

reasonably well the probabilistic mass at the center (variance) of the histogram. However, the

plots show that the Gaussian distribution cannot capture the leptokurtosis of the distribution

(i.e. underestimates risk), whilst the Student�s t overestimate the frequency of the whole

tail as it tries to capture the cluster of outliers at the left end of the tail. The GME shows

a �exible �t that captures frequencies between the Gaussian and the Student�s t, and thus

involves more accurate risk measures.

[Insert Table 1 and Figure 3]

3.2 Out-of-sample performance

In-sample goodness-of-�t does not provide enough information to conclude on the relative

performance of a model, even if di¤erent series are considered, as it is based on a single

observation. It is well known that a model may provide a better in-sample �t but not

perform better for out-sample forecasting. In this section we assess the models�ability to

forecast di¤erent measures of market risk associated with the second as well as higher-order

moments of the return distributions.

The forecast accuracy for the conditional variance, ht, is measured with respect to the

out-of-sample squared residuals, fbu2tgTt=T�R+1, by using the mean square forecasting error
(MSFE). The MSFE = �Tt=T�R+1(ht � bu2t )2=R is a robust loss function to models ranking
when using imperfect volatility proxies; see Patton (2010) and Awartani and Corradi (2005).

The signi�cance of the di¤erence between the MSFE from the alternative models is measured

by using the Giacomini and White (GW) (2006) test. Table 2 presents the GW test statistic
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for all pairwise comparisons. The entries are the p-values of the GW test. The results show

that SNP models present a higher MSFE with di¤erences tending to be signi�cant only for

the GC in relation to the rest of the models. Among the parametric models the ranking is:

Student�s t, NIG and Gaussian, although di¤erences are very small. It seems that capturing

skewness helps the sk-GC in the margin to improve volatility forecasts. As a conclusion, our

GME model presents a reasonable performance for forecasting volatility with a MSFE that

is not statistically signi�cant with respect to the rest of models used in the analysis.

[Insert Table 2]

Next, we test the models performance for forecasting rt distribution tails. To do

so, we compute R 1-step-ahead VaR forecasts for coverage levels � = f0:1; 0:05; 0:01g,
[V aR

�

T+1 = brT+1�b�Tbh1=2T+1, where b�T is the �-quantile of the assumed distribution. Following
Engle (2001), the VaR forecasts corresponding to the Gaussian model are computed by

using the percentile of the empirical distribution of the standardized residuals (hereafter we

denote these VaR forecasts as NormalE). The performance of the models is assessed by

using the following criteria: unconditional and conditional LR test (Christo¤ersen, 1998);

unconditional coverage, b�, and magnitude of the exception, M�, (López 1999); and HIT

test (Engle and Manganelli, 2004). Table 3 presents the results of the VaR evaluation

criteria for all models and series. A �rst observation that emerges from this table is that all

models yield similar acceptable results for unconditional coverage, �; the Student�s t model

seeming to systematically underestimate the unconditional probability. The lower values of

the magnitude of the exception statistic is performed by the Student�s, and the GME model

provides a similar performance than the NIG and NormalE which are overall better than

the GC models (except for the FX series). According to the HIT test, all models (except

the GC models for S&P 500 and Microsoft) present acceptable VaR forecasts. Respect

to LR tests, heavy-tailed models (including the GME) tend to perform better (except the

Student�s t in this case) the lower the quantile. As a summary, the GME pdf seems to work

well for forecasting VaR in relation to the wide range of alternative SNP and parametric

pdfs considered in this analysis.

[Insert Table 3]

Finally, GME models are evaluated according to their performance for multiperiod

density forecasting. To do so, we follow the methodology described in Maheu and McCurdy
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(2011), and recently applied in Anatolyev and Petukhov (2016). A model provides better

forecasting performance when its average predictive likelihood is higher. The null hypothesis

of equal density forecasting performance from two alternative models was tested using the

GW test. For our application to FX $/£ returns series, we computed 1000 out-of-sample

forecast for each forecast horizon k = 1; :::; 60 days, with random numbers sample size of

10; 000 for the Monte Carlo simulation of returns.11 We considered two-parameter symmetric

GNT GME truncated at n = 8 with 
4 = 
6 = 0, denoted as GME(2,8); the GME model

used for volatility and VaR forecasting; as well as the Student�s t and Normal as benchmark

models. Figure 4 presents the multiperiod conditional forecast results. Note that all of

the average predictive likelihood decrease with k. This is because the accuracy of the

forecast conditional on time t decreases with k. The GME(2,8) model performs, signi�cantly

better than the Student�s t for short horizons, k = 1; :::; 5; and worse for larger k, although

di¤erences are not signi�cant for the latter. GME(2,8) and Student�s t are better than

GME(2,4) although di¤erences are not signi�cant for shorter horizons. GME and Student�s

t models perform better than the Normal and di¤erences become more signi�cant the longer

the horizon.

[Insert Figure 4]

4 Conclusions

In this study we have proposed a new SNP density that features an original polynomial

structure. This density, which we refer to as Moments Expansion (ME), presents the

following innovations: (i) it is correctly de�ned and nests the GC when the Gaussian is used

as the basis; (ii) non-negativity parametric constraints are very easy to obtain for symmetric

ME densities; (iii) it admits GNT-type transformations to ensure positivity; and (iv) both

ME and GNT-ME pdfs can be straightforwardly characterized in terms of their moments

and cdfs. Our analysis shows that the ME is simpler and more tractable for theoretical and

practical purposes than the GC, o¤ering a feasible way for expanding any parametric pdf �

only requiring that the density used as the basis has �nite moments up to the truncation

11The GME random numbers series where obtained from the inverse of the cdf for 10; 000 random

probabilities drawn from U[0,1]. Thus, solving the equation z(x) = u, where z(�) is the cdf of the GME
(obtained applying equation (A.10)) and u is the generated random number.
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order.

The relative performance of a Gaussian-ME has been tested through an empirical

application for forecasting the density, conditional variance and VaR of asset returns,

considering alternative distributions used in previous studies. Our results show that the

GME works well in sample and provides a reasonable performance for forecasting the asset

returns density, and second and higher-order moments of return distributions. The ME

model is thus a simpler an more accurate alternative to GC densities and other heavy-tailed

parametric densities used for risk management.

Finally, future work may include the extension of the ME to the multivariate context as

well as its development to expand non-Gaussian pdfs. Of particular interest is the case of

the ME for the Student�s t (ME-t) distribution because of the following three preliminary

reasons: (i) ME-t naturally converges to the GC and the GME as � !1; which provides a
solid framework for the theoretical analysis, (ii) ME-t may enlarge the positivity regions in

terms of skewness and kurtosis compared to the GC; and (iii) ME-t entails more �exibility for

goodness-of-�t with lower truncation orders thanks to the extra parameter �. On the other

hand, multivariate ME distributions may be useful to deal with the dimensionality problem

of large portfolios when implementing conditional co-moments and asymmetric dependence.
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Appendix: Proofs of propositions

Proof of Proposition 1. The ME pdf integrates up to one.Z
f(x;
n)dx =

Z
g (x) dx+

nX
s=1


s

Z
(xs � �s)g(x)dx = 1 +

nX
s=1


s(�s � �s) = 1:� (A.1)

Proof of Proposition 2. The conditions in equation (3) are su¢ cient for the ME density to

be positive. We re-write the ME density as,

f(x;
n) =

 
nX
s=1


sx
s + k

!
g(x); (A.2)

where k = 1 �
nP
s=1


s�s. For this expression it is clear that if 0 � 
s � 1
n�s

8s even, and


s = 0 8s odd, then
nP
s=1


sx
s + k � 0 and f(x;
n) � 0:�

Proof of Proposition 3. ME moments are linearly related to the density�s parameters.

E[xi] =

Z
xif(x;
n)dx

=

Z
xig (x) dx+

nX
s=1


s

Z
xi(xs � �s)g(x)dx

= �i +
nX
s=1


s(�s+i � �s�i):� (A.3)

Proof of Proposition 5. The constant Wn that makes the GNT-ME to integrate up to one is

Wn =

Z  
1 +

nX
s=1


2s(x
s � �s)2

!
g(x)dx

=

Z
g(x)dx+

nX
s=1


2s

�Z
x2sg(x)dx+ �2s

Z
g(x)dx� 2�s

Z
xsg(x)dx

�
= 1 +

nX
s=1


2s(�2s + �
2
s � 2�2s) = 1 +

nX
s=1


2s(�2s � �2s): (A.4)

Given Wn it is is clear that
Z
F (x;
n)dx = 1:�
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Proof of Proposition 6. The GNT-ME moments are functions of its squared parameters.

E
�
xi
�
=

1

Wn

Z
xi

 
1 +

nX
s=1


2s(x
s � �s)2

!
g(x)dx

=
1

Wn

Z
xig(x)dx

+
1

Wn

nX
s=1


2s

�Z
x2s+ig(x)dx+ �2s

Z
xig(x)dx� 2�s

Z
xs+ig(x)dx

�

=
1

Wn

"
�i +

nX
s=1


2s(�2s+i + �
2
s�i � 2�s�s+i)

#
:� (A.5)

Proof of Proposition 7. The HPs, Hs(x), can be rewritten in terms of the ME polynomials,

	s(x), as follows:

Hs(x) = s!

[s=2]X
k=0

(�1)k
k!(s� 2k)!2kx

s�2k

= s!

[s=2�1]X
k=0

(�1)k
k!(s� 2k)!2k

�
xs�2k � �+s�2k

�
= s!

[s=2�1]X
k=0

(�1)k
k!(s� 2k)!2k	s�2k(x):(A.6)

Then the GC can be expressed as a ME pdf as:

�(x;dn) =

 
1 +

nX
s=1

dsHs(x)

!
�(x) =

0@1 + nX
s=1

dss!

[s=2�1]X
k=0

(�1)k
k!(s� 2k)!2k	s�2k(x)

1A�(x)
=

 
1 +

nX
s=1


s	s(x)

!
�(x) = fN(x;
n):� (A.7)

Proof of Proposition 8. The GME cdf is given byZ a

�1
fN(x;
n)dx =

Z a

�1

 
1 +

nX
s=1


s(x
s � �+s )

!
�(x)dx

=

Z a

�1

 
1�

nX
s=1


s�
+
s +

nX
s=1


sx
s

!
�(x)dx
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=

Z a

�1
�(x)dx

�
nX
s=1


s�
+
s

Z a

�1
�(x)dx+

nX
s=1
s odd


s

Z a

�1
xs�(x)dx+

nX
s=1
s even


s

Z a

�1
xs�(x)dx

=

Z a

�1
�(x)dx

�
nX
s=1


s
��
xs�1 + (s� 1)xs�3 + (s� 1)(s� 5)xs�5 + : : :+ �xb

�
�(x)ja�1

�
=

Z a

�1
�(x)dx�

nX
s=1


s
�
as�1 + (s� 1)as�3 + (s� 1)(s� 3)as�5 + : : :+ �ab

�
�(a); (A.8)

where,

� =

(
(s� 1)(s� 3) � � � 2,
(s� 1)(s� 3) � � � 3,

8s odd,
otherwise,

b =

(
1,

0,

8s even,
otherwise.

(A.9)

Note that the integrals are solved by parts as detailed below,Z
xsg(x)dx =

Z
xs�1xg(x)dx = �xs�1g(x) + (s� 1)

Z
xs�2�(x)dx (A.10)

since,

u = xs�1 ) du = (s� 1)xs�2dx;

dv = xg(x)dx) v =

Z
x
1p
2�
e�

1
2
x2dx = � 1p

2�
e�

1
2
x2 = ��(x). (A.11)

Therefore, by repeating the same argument recursively,Z
xs�(x)dx =

(
� [xs�1 + (s� 1)xs�3 + (s� 1)(s� 3)xs�5 + : : :+ �]�(x),
�+s
R
�(x)dx- (xs�1 + (s� 1)xs�3 + (s� 1)(s� 3)xs�5 + : : :+ �x)�(x),

8s odd
8s even,
(A.12)

where �+s = �. Furthermore, by applying recursively L�Hôpital�s we obtain,

lim
x!�1

[xs�(x)] = lim
x!�1

1p
2�

xs

e
1
2
x2
= lim

x!�1

1p
2�

sxs�1

xe
1
2
x2

= lim
x!�1

1p
2�

sxs�2

e
1
2
x2
= lim

x!�1

1p
2�

s(s� 2) � � �x
xe

1
2
x2

= lim
x!�1

1p
2�

s(s� 2) � � � 1
e
1
2
x2

= 0:� (A.13)
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Proof of Proposition 9. The cdf of the GNT-GME in equation (9) can be obtained as followsZ a

�1
FN(x;
n)dx =

1

Wn

Z a

�1

 
1 +

nX
s=1


2s(x
s � �+s )2

!
�(x)dx

=
1

Wn

Z a

�1

 
1 +

nX
s=1


2s�
+2
s +

nX
s=1


2sx
2s � 2

nX
s=1


2s�
+
s x

s

!
�(x)dx

=
1

Wn

Z a

�1
�(x)dx+

1

W

nX
s=1


2s�
+2
s

Z a

�1
�(x)dx+

1

W

nX
s=1


2s

Z a

�1
x2s�(x)dx

� 2 1
Wn

nX
s=1
s odd


s�
+
s

Z a

�1
xs�(x)dx� 2 1

W

nX
s=1
s even


s�
+
s

Z a

�1
xs�(x)dx

=
1

Wn

Z a

�1
�(x)dx+

1

W

nX
s=1


2s�
+2
s

Z a

�1
�(x)dx

� 1

Wn

nX
s=1


2s
�
(x2s�1 + (2s� 1)x2s�3 + (2s� 1)(2s� 3)x2s�5 + : : :+ �+2sx)�(x)ja�1

�
+

2

Wn

nX
s=1


2s
�
(xs�1 + (s� 1)xs�3 + (s� 1)(s� 3)xs�5 + : : :+ �xb)�(x)ja�1

�
+

1

Wn

nX
s=1


2s�
+
2s

Z a

�1
�(x)dx� 2 1

W

nX
s=1


2s�
+2
s

Z a

�1
�(x)dx

=

Z a

�1
�(x)dx

+
2

Wn

nX
s=1


2s�
+
s

�
(xs�1 + (s� 1)xs�3 + (s� 1)(s� 3)xs�5 + : : :+ �xb)�(x)ja�1

�
� 1

Wn

nX
s=1


2s
�
(x2s�1 + (2s� 1)x2s�3 + (2s� 1)(2s� 3)x2s�5 + : : :+ �+2sx)�(x)ja�1

�
=

Z a

�1
�(x)dx

+ 2
1

Wn

nX
s=1


2s�
+
s (a

s�1 + (s� 1)as�3 + (s� 1)(s� 3)as�5 + : : :+ �ab)�(a)

� 1

Wn

nX
s=1


2s(a
2s�1 + (2s� 1)a2s�3 + (s� 1)(s� 3)a2s�5 + : : :+ �+2sa)�(a);

(A.14)

where,

� =

(
(s� 1)(s� 3) � � � 2,
(s� 1)(s� 3) � � � 3a,

8s odd,
otherwise,

b =

(
1,

0,

8s even,
otherwise.�

(A.15)

21



References

[1] Alexander, C. & Lazar, E. (2006). Normal mixture GARCH(1,1): applications to exchange

rate modelling. Journal of Applied Econometrics, 21, 307-336.

[2] Anatolyev, S. & Petukhov, A. (2016). Uncovering the skewness news impact curve. Journal of

Financial Econometrics, 14, 746-771.

[3] Awartani, B. M. A. & Corradi, V. (2005). Predicting the volatility of the S&P-500 stock

index via GARCH models: The role of asymmetries. International Journal of Forecasting, 21,

167-183.

[4] Bao, Y., Lee, T. H. & Saltoglu, B. (2006). Evaluating predictive performance of value-at-risk

models in emerging markets: A reality check. Journal of Forecasting, 25, 101-128.

[5] Barton, D. E. & Dennis, K. E. R. (1952). The conditions under which Gram-Charlier and

Edgeworth curves are positive de�nite and unimodal. Biometrika, 39, 425-427.

[6] Bekaert, G., Engstrom, E. & Ermolov, A. (2014). Bad environments, good environments: A

non-Gaussian asymmetric volatility model. Journal of Econometrics, 186, 258-275.

[7] Bollerslev, T. (1986) Generalized autoregressive conditional heteroscedasticity. Journal of

Econometrics, 31, 307-327.

[8] Bollerslev, T. (1987) A conditional heteroskedastic time series model for speculative prices and

rates of return. Review of Economics and Statistics, 69, 542-547.

[9] Bollerslev, T. & Wooldridge, J. M. (1992). Quasi maximum likelihood estimation and inference

in dynamic models with time varying covariances. Econometric Reviews, 11, 143-172.

[10] Charlier, C. V. (1905). Uber die darstellung willkurlicher funktionen. Arvik fur Mathematik

Astronomi och fysik, 9, 1-13.

[11] Christo¤ersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39,

841-862.

[12] Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues.

Quantitative Finance, 1, 223-236.

[13] Cramér, H. (1925). On some classes of series used in mathematical statistics. Proceedings of

the Sixth Scandinavian Congress of Mathematicians, 399-425.

[14] Del Brio, E. B. Ñíguez, T. M. & Perote, J. (2009). Gram-Charlier densities: A multivariate

approach. Quantitative Finance, 9, 855-868.

22



[15] Del Brio, E. B. Ñíguez, T. M. & Perote, J. (2011). Multivariate semi-nonparametric densities

with dynamic conditional correlations. International Journal of Forecasting, 27, 347-364.

[16] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of United Kingdom in�ation. Econometrica, 50, 987-1007.

[17] Engle, R. F. (2001). GARCH 101: The use of ARCH/GARCH models in applied econometrics.

Journal of Economic Perspectives, 15, 157-168.

[18] Engle, R. F. & Gonzalez-Rivera, G. (1991). Semiparametric ARCHmodels. Journal of Business

and Economic Statistics, 9, 345-359.

[19] Engle, R. F. & Manganelli, S. (2004). CAViaR: Conditional value at risk by regression

quantiles. Journal of Business and Economic Statistics, 22, 367-381.

[20] Ergen, I. (2014). Two-step methods in VaR prediction and the importance of fat tails.

Quantitative Finance, 15, 1013-1030.

[21] Gallant, A. R. & Nychka, D. W. (1987). Seminonparametric maximum likelihood estimation.

Econometrica, 55, 363-390.

[22] Gallant, A. R. & Tauchen, G. (1989). Seminonparametric estimation of conditionally

constrained heterogeneous processes: asset pricing applications. Econometrica, 57, 1091-1120.

[23] Giacomini, R. & White, H. (2006). Test of conditional predictive ability. Econometrica, 74,

1545-1578.

[24] Glosten, L. R., Jagannathan, R. & Runkle, D. (1993). On the relation between the expected

value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779-

1801.

[25] Göncü, A. & Yang. H. (2016). Variance-Gamma and Normal-Inverse Gaussian models:

Goodness-of-�t to Chinese high-frequency index returns. The North American Journal of

Economics and Finance, 36, 279-292.

[26] Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic

Review 35, 705-730.

[27] Huang, H. H., Lin, S. H., Wang, C. P. & Chiu, C. Y. (2014). Adjusting MV-e¢ cient

portfolio frontier bias for skewed and non-mesokurtic returns. The North American Journal of

Economics and Finance, 29, 59-83

[28] Jensen, M. B. & Lunde, A. (2001). The NIG-S&ARCH model: A fat-tailed, stochastic and

autoregressive conditional heteroskedastic volatility model. Econometrics Journal, 4, 319-342.

23



[29] Jondeau, E. & Rockinger, M. (2001). Gram-Charlier densities. Journal of Economic Dynamics

and Control, 25, 1457-1483.

[30] Kuester, K., Mittnik, S. & Paolella, M. S. (2006). Value-at-risk prediction: a comparison of

alternative strategies. Journal of Financial Econometrics, 4, 53-89.

[31] León, A., Mencía, J. & Sentana, E. (2009). Parametric properties of semi-nonparametric

distributions, with applications to option valuation. Journal of Business and Economic

Statistics, 27, 176-192.

[32] León, A. & Moreno, M. (2017). One-sided performance measures under Gram-Charlier

distributions. Journal of Banking and Finance, 74, 38-50.

[33] León, A., Rubio, G. & Serna, G. (2005). Autoregressive conditional volatility, skewness and

kurtosis. Quarterly Review of Economics and Finance, 45, 599-618.

[34] Lin, S. H., Huang, H. H. & Li, S. H. (2015). Option pricing under truncated Gram�Charlier

expansion. The North American Journal of Economics and Finance, 32, Pages 77-97.

[35] López, J. A. (1999). Methods for evaluating value-at-risk estimates. FRBSF Economic Review,

2, 3-17.

[36] Maheu, J. M. & McCurdy, T. H. (2011). Do high-frequency measures of volatility improve

forecasts of return distributions? Journal of Econometrics, 160, 69-76.

[37] Mauleón, I. & Perote, J. (2000). Testing densities with �nancial data: An empirical comparison

of the Edgeworth-Sargan density to the Student�s t. European Journal of Finance, 6, 225-239.

[38] Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach.

Econometrica, 59, 347-370.

[39] Ñíguez, T. M. & Perote, J. (2016). Multivariate moments expansion density: Application of

the dynamic equicorrelation model. Journal of Banking and Finance, 72, S216�S232.

[40] Ñíguez, T. M. & Perote, J. (2012). Forecasting heavy-tailed densities with positive Edgeworth

and Gram-Charlier expansions. Oxford Bulletin of Economics and Statistics, 74, 600-627.

[41] Patton, A. (2010). Volatility forecast comparison using imperfect volatility proxies. Journal of

Econometrics, 160, 246-256.

[42] Sargan, J. D. (1976). Econometric estimators and the Edgeworth approximation. Economet-

rica, 44, 421-448.

[43] Terasvirta, T. (2009). An introduction to univariate GARCH models. In Handbook of Financial

Time Series, T. G. Andersen, R. A. Davis, J.-P. Kreiß, and T. Mikosch, (eds.). New York:

Springer.

24



Tables

TABLE 1

Estimation results

Normal GC Sk-GC GME Student�s t NIG

Panel 1: S&P 500

'0 0.0109 (1.82) 0.0102 (1.37) 0.0110 (1.42) 0.0066 (1.26) 0.0106 (1.67) 0.0103 (1.71)

'1 0.0381 (4.24) 0.0491 (3.72) 0.0521 (3.81) 0.0400 (4.35) 0.0381 (3.79) 0.0379 (3.88)

'2 0.9526 (75.7) 0.9554 (80.4) 0.9545 (78.6) 0.9554 (80.5) 0.9536 (67.8) 0.9537 (70.1)

� 0.1839 (2.20) 0.1109 (1.54) 0.1176 (1.69) 0.1331 (1.70) 0.1119 (1.57) 0.1148 (1.61)


2 -0.0641 (-2.05) -0.0731 (-2.56) 0.0388 (0.25)


3 -0.0146 (-3.53)


4 0.0182 (6.60) 0.0177 (-11.45) 0.0157 (8.23)

� 6.1789 (8.53)

� 1.6791 (5.71)

AIC 2.9653 2.9245 2.9209 2.9372 2.9139 2.9137

Panel 2: FX £ /$

'0 0.0034 (2.22) 0.0030 (2.31) 0.0029 (2.32) 0.0041 (2.27) 0.0024 (1.69) 0.0026 (1.84)

'1 0.0390 (5.10) 0.0364 (5.35) 0.0358 (5.30) 0.0437 (5.15) 0.0490 (5.32) 0.0487 (5.40)

'2 0.9498 (82.8) 0.9430 (77.5) 0.9437 (78.1) 0.9431 (72.7) 0.9474 (84.8) 0.9451 (80.8)

� 0.0178 (0.25) 0.0267 (0.38) 0.0264 (0.38) 0.0312 (0.44) 0.0143 (0.23) 0.0194 (0.32)


2 0.0267 (1.54) 0.0267 (1.56) 0.1260 (3.85)


3 -0.0034 (-1.06)


4 0.0238 (12.6) 0.0237 (-12.6) 0.0225 (13.2)

� 1.0790 (8.43)

� 4.6813 (13.3)

AIC 1.5936 1.5353 1.5355 1.5440 1.5320 1.5266
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TABLE 1 (continued)

Normal GC Sk-GC GME Student�s t NIG

Panel 3: Microsoft

'0 0.0728 (3.15) 0.0710 (2.70) 0.0706 (2.73) 0.0801 (2.27) 0.0405 (2.92) 0.0423 (2.96)

'1 0.1000 (4.86) 0.1290 (4.15) 0.1287 (4.21) 0.1173 (5.15) 0.1081 (5.31) 0.1065 (5.30)

'2 0.8772 (40.1) 0.8734 (35.5) 0.8747 (36.7) 0.8613 (72.7) 0.8860 (47.8) 0.8849 (46.8)

� 0.2489 (3.53) 0.2234 (4.38) 0.2225 (4.08) 0.2071 (2.88) 0.2811 (5.69) 0.2754 (5.43)


2 -0.0592 (-2.27) -0.0607 (-2.34) 0.0413 (3.85)


3 -0.0037 (-1.10)


4 0.0205 (9.86) 0.0205 (9.81) 0.0181 (11.3)

� 1.2522 (7.13)

� 5.1164 (11.3)

AIC 3.8418 3.7875 3.7877 3.8044 3.7711 3.7875

Notes: This table presents the estimation results (BW (Q)ML t-statistics in brackets) for the Gaussian,
Student�s t, GC, Sk-GC, GME and NIG AR(1)-AGARCH(1,1) models. AIC denotes the Akaike Information
Criterion statistic. 
s accounts for the weighting parameter of the s� th order Hermite polynomial in
the SNP distributions. � captures the degrees of freedom parameter in the Student�s t distribution, and
� is the steepness parameter in the NIG distribution.
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TABLE 2

Out-of-sample volatility forecasting performance

Normal GC Sk-GC GME Student�s t

Panel 1: S&P500

GC 1.56

Sk-GC 0.02 -1.78*

GME 0.23 -1.82* 0.46

Student�s t -0.23 -1.90* -0.65 -0.77

NIG -0.19 -1.85* -0.522 -0.63 0.45

Panel 2: FX £ /$

GC 1.98**

Sk-GC 0.38 -1.38

GME 0.90 -1.48 0.503

Student�s t -0.28 -1.06 -0.74 -0.70

NIG 0.09 -1.05 -0.58 -0.58 0.99

Panel 3: Microsoft

GC -1.68*

Sk-GC -0.27 -1.81*

GME 0.18 -1.70* 0.65

Student�s t -0.06 -2.16** 0.27 -0.12

NIG -0.19 -2.12** -0.11 -0.27 -0.74

Notes: This table presents the GW test t-statistics for the di¤erence in the MSFE of the model in
the row versus the model in the column. A negative statistic indicates that the model in column
presents a higher MSFE. * denotes rejection of the null hypothesis of no di¤erence in MSFE at
10% level, ** indicates rejection at 5% level. Predictions 1,000.
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TABLE 3

Models evaluation for VaR predictive accuracy

� b� M� HITp�v LRp�vuc LRp�vcc

Panel 1: S&P500

Normal

.01

.05

.1

.018

.057

.115

28.7

96.5

190

.04**

.14

.09

.02**

.32

.29

.04*

.55

.21

NormalE

.01

.05

.1

.010

.057

.120

13.1

98.6

209

.99

.13

.06*

.99

.32

.04*

.90

.55

.06*

GC

.01

.05

.1

.017

.069

.131

26.8

119

238

.13

.02

.00

.04

.00

.00**

.09

.03

.00**

GC-Sk

.01

.05

.1

.018

.074

.146

27,1

129

263

.04

.00

.00

.02**

.00

.00

.06*

.00

.00

GME

.01

.05

.1

.016

.060

.125

20.8

81.7

170

.13

.23

.07*

.07*

.15

.01**

.16

.16

.01**

Student�s t

.01

.05

.1

.003

.034

,082

4.20

59.1

144

.88

.50

.58

.58

.02

.01

.11

.04

.03

NIG

.01

.05

.1

.011

.060

.126

17.0

102

122

.99

.11**

.03**

.75

.15*

.00**

.84

.36**

.02**
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TABLE 3 (continued)

� b� M� HITp�v LRp�vuc LRp�vcc

Panel 2: FX £ /$

Normal

.01

.05

.1

.018

.060

.115

25.7

81.9

155

.02

.22

.31

.02**

.15

.12

.05*

.16

.10

NormalE

.01

.05

.1

.014

.060

.126

18.4

81.8

170

.12

.22

.07*

.23

.15

.00**

.39

.16

.01*

GC

.01

.05

.1

.003

.024

.082

4.47

34.5

109

.89

.08

.29

.00

.00

.05

.03

.11

.01

GC-Sk

.01

.05

.1

.079

.024

.003

4.40

34

105

.89

.08*

.18

.00**

.00**

.02**

.03**

.00**

.01*

GME

.01

.05

.1

.011

.056

.120

16.9

96.8

208

.99

.19

.09*

.75

.39

.04**

.84

.61

.09*

Student�s t

.01

.05

.1

.003

.027

.079

4.36

38

106

.12

.22

.07

.23

.15

.00

.39

.16

.01

NIG

.01

.05

.1

.010

.064

.133

17.8

86.1

180

.55

.03

.08

.23

.05

.00**

.39

.02

.00**
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TABLE 3 (continued)

� b� M� HITp�v LRp�vuc LRp�vcc

Panel 3: Microsoft

Normal

.01

.05

.1

.014

.049

.088

29.9

97.7

179

.13

.47

.76

.23

.88

.19

.39

.95

.41

NormalE

.01

.05

.1

.010

.054

.102

18.4

105

210

.40

.43

.21

.90

.70

.96

.99

.56

.83

GC

.01

.05

.1

.019

.077

.136

38.4

157

282

.03*

.00

.00

.01

.00

.00

.02

.00

.00

GC-Sk

.01

.05

.1

.015

.074

.134

31.5

149

275

.14**

.00**

.00

.26**

.00**

.00

.13**

.01**

.00

GME

.01

.05

.1

.013

.055

.099

23.7

108

202

.11

.25

.32

.36

.47

.91

.55

.62

.95

Student�s t

.01

.05

.1

.003

.027

.068

7.95

62.6

142

.89

.13

.02

.00

.00

.00

.03

.00

.00

NIG

.01

.05

.1

.013

.056

.105

22.5

107

214

.11

.55

.20

.55

.53

.81

.36

.39

.60

Notes: This table gathers the results of statistical tests and loss function values for one-step-
ahead VaR forecast from Normal, NormalE , Student�s t, GC-S, Sk-GC, GME and NIG AGARCH
models. b� denotes the estimated unconditional coverage probability. M� stands for the magnitude
of the exception statistic. HITp�v is the p-value corresponding to the Engle and Manganelli (2004)
test. LRp�vuc and LRp�vcc denote the p-value of the unconditional and conditional coverage LR tests
(Christo¤ersen, 1998). The asterisk represents rejection of the null hypothesis at least at 5% level.
Predictions 1,000.
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Figures
FIGURE 1

ME density shapes

Panel A: Full density

Panel B: Left tail

Notes: This Figure illustrates the allowable shapes of GME densities. GME1 denotes GME for

4= �0:01; 
6= 0:005; 
8= 0:001; GME2 denotes GME for 
4= �0:05; 
6= 0:01; 
8= 0:0005;
GME3 denotes GME for 
4= �0:08; 
6= 0:01, 
8= 0:008; GME4 denotes GME 
4= 0, 
6= 0;

8= 0. All pictured GME densities are symmetric (
s= 0 8s odd) and truncated at n = 8.
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FIGURE 2
Range of kurtosis for symmetric GNT GME densities
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Notes: This Figure provides the kurtosis range allowed by symmetric (
s= 0 8s odd) GNT GME
densities.
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FIGURE 3
Empirical and estimated distributions

Notes: This Figure plots the empirical and estimated Normal, Student�s t and GNT-GME
distributions for the FX £ /$ return series.
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FIGURE 4
Multiperiod density forecast
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Notes: This Figure plots average predictive likelihood and Giacomini-White (GW) test statistic
for daily FX $/£ returns as functions of forecast horizon k = 1; 2; :::; 60 days. Models with better
forecasting performance for every k provide higher average predictive likelihood. The GW test
statistic measures the signi�cance of the di¤erences between the predictive likelihood of two
alternative models. A positive statistic for �i vs j�is evidence in favor of model i against model j.
GME denotes symmetric GNT GNE; (2,8) denotes n = 8; 
4 = 
6 = 0, and (2,4) denotes n = 4.
Dashed horizontal lines correspond to 5% signi�cance levels.
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