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Diastole is not a passive phase of the cardiac cycle, but is a 
complex sequence of inter-related physiological processes 
dependent on myocardial relaxation, stiffness and recoil, 

which are modulated by loading conditions, heart rate and con-
tractile function. Diastolic function therefore plays a central role 
in determining left ventricular filling and stroke volume with dys-
function shown to be a predictor of major adverse cardiovascular 
events and all-cause mortality1. Decline in diastolic function is also 
a hallmark of cardiac aging, which occurs through multiple profi-
brotic and energetic pathways2,3. While several candidate genes have 
been implicated in various systolic function phenotypes through 
genome-wide association studies (GWASs)4,5, the genetic architec-
ture of diastolic function and causal associations with disease are 
largely unknown. Efforts to better define the molecular mechanisms 
of diastolic dysfunction could enable the development of innovative 
therapies for many cardiovascular disease states.

Preclinical models of diastolic dysfunction are associated with 
alterations in left ventricular stiffness on atomic force microscopy 
that occur at the level of the cardiomyocyte sarcomere as well as 
due to extracellular matrix protein expansion6. Such tissue level 
changes can be assessed at macroscopic scale in human populations 
through analysis of diastolic mechanics. Here we use data from par-
ticipants in the UK Biobank with cardiac magnetic resonance imag-
ing (CMR)7 and apply deep-learning computer vision techniques 
for precision motion analysis to derive image-based phenotypes of 
diastolic function8,9. In a GWAS of diastolic traits we identify asso-
ciated loci that map to genes involved in actin assembly, cardiac 
myocyte survival and heart failure phenotypes. We also describe 
the relationship between diastolic function and cardiovascular risk  

factors and identify potential causal relationships with disease 
through Mendelian randomization (MR).

Results
Study overview. We analyzed CMR data from 39,559 participants in 
the UK Biobank using machine-learning segmentation and motion 
tracking to measure three validated parameters of diastolic func-
tion: radial and longitudinal peak early diastolic strain rate (PDSRrr 
and PDSRll, respectively) (Fig. 1) and maximum body surface area-
indexed left atrial volume (LAVmaxi)10. A flow chart of the analysis 
steps is depicted in Extended Data Fig 1. Baseline characteristics of 
the population are shown in Extended Data Fig. 2. For the GWAS, 
the population was partitioned into discovery and validation sets by 
the release of data tranches by UK Biobank. To assess the associa-
tion between these diastolic function traits and other clinical mea-
surements, we further considered a broad selection of 30 imaging 
and 110 non-imaging phenotypes that included biophysical data 
and circulating biomarkers (Supplementary Data 1). Independent 
GWASs were undertaken for each image-derived phenotype and 
heritability was estimated. We used a phenome-wide association 
study (PheWAS) to identify multiple phenotypes associated with a 
polygenic instrumental variable score (PIVS) for diastolic function. 
Potential causal associations were examined using two-sample MR. 
The results are reported in accordance with GWAS reporting guide-
lines and a checklist is provided in Supplementary Information.

Imaging and non-imaging phenotype associations. Strain rates 
declined with age and were lower in men (P < 10−16 for both associa-
tions) (Fig. 2), but no univariable association was observed between 
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age and LAVmaxi (Extended Data Fig. 3). Multiple linear regression 
analysis was used to develop a model for predicting each diastolic 
trait from demographic, hemodynamic and cardiovascular risk fac-
tors (Fig. 3a and Extended Data Fig. 4a). In this multivariable anal-
ysis, strain rate and left atrial volumes were negatively associated 
with age, male sex and pulse rate in the full model (P < 10−16 for all 
associations). Significant associations were also observed for body 
surface area (BSA) and systolic blood pressure (SBP). Diabetes also 
added significantly to the associations with the diastolic function 
traits in the model (PDSRll: P = 2.36 × 10−8; PDSRrr: P = 9.98 × 10−6; 
LAVmaxi: P = 1.04 × 10−3).

We investigated the association between image-derived measures 
of atrial, ventricular and aortic function with a broader range of non-
imaging phenotypes using regularized regression analysis (Fig. 3b  
and Extended Data Figs. 4b and 5) (Supplementary Material).

C-reactive protein (CRP), a circulating biomarker of inflamma-
tion, showed a positive relationship with serum triglycerides, but 
we found no circulating biomarkers independently associated with 
diastolic function. We found that reduced peak diastolic strain rates 
were associated with reduced LAVmaxi. Left atrial function was 
related to indicators of right ventricular function emphasizing their 
functional interdependence11.

Genetic architecture of diastolic function traits. Genome-wide 
common and rare variant association analyses of diastolic function 
traits. The single-nucleotide polymorphism (SNP)-based herita-
bility (proportion of variance per trait explained by all considered 
SNPs) was 12% for PDSRll, 13% for PDSRrr and 21% for LAVmaxi. 

The observed genetic correlation between the diastolic function 
traits was 0.22 (standard error (SE) 0.07) between PDSRll and 
LAVmaxi, 0.12 (SE 0.08) between PDSRrr and LAVmaxi and 0.85  
(SE 0.04) between PDSRll and PDSRrr.

In total, we identified nine independent loci from our GWAS 
analyses, five loci for PDSRrr, four for PDSRll and two for LAVmaxi 
(two loci are shared between PDSRrr and PDSRll). Within the dis-
covery set, we identified five independent loci (one LAVmaxi; 
three PDSRrr; and one PDSRll) reaching genome-wide significance 
(P = 5 × 10−8; Supplementary Fig 3), which were also significant in 
the validation dataset also (P < 0.05/5). Considering the full dataset, 
the number of significant independent loci increased to nine with 
two additional loci associating with PDSRrr, one additional with 
LAVmaxi and one additional with PDSRll (Fig. 4).

Variant annotation. Summary information for the nine loci identi-
fied using the full GWAS dataset and two predicted loss-of-func-
tion (LoF) variants are presented in Table 1 (further information 
is provided in Supplementary Material, Supplementary Fig. 5 and 
Supplementary Table 1). The closest gene to each locus is depicted, 
with further variants to gene mapping presented as the ‘likely gene’ 
given by evidence of a functional effect on a gene (Supplementary 
Material), additional heart-related phenotype associations or a pre-
viously reported mechanism linking the gene to diastolic function. 
Taking lead variants identified from GWAS and the LoF analy-
sis, we were able to highlight several structural genes associated 
with diastolic function that also have a known role in myocardial 
contractility (such as TTN, PLN and GJA1) and in the functional  
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Fig. 1 | Analysis of cardiac motion. Motion analysis of CMR imaging performed on left ventricular short-axis cines. a, An example from one individual 
where deep-learning segmentation and image registration were used to determine the radial components of myocardial deformation. Data from the basal, 
midventricular and apical levels are shown at four representative phases from the 50 acquired. b, Radial strain and strain rate (first derivative of strain) for 
all UK Biobank participants (median and interquartile ranges, n = 39,559 individuals).
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maintenance and stress response of the cytoskeleton (such as FHOD3 
and BAG3)12. Moreover, we were also able to identify a link between 
the NPR3 locus and left atrial volume. The signal colocalizes with 
a previously discovered association with blood pressure traits (sys-
tolic, diastolic and mean arterial blood pressure). The C-allele of 
the lead SNP (rs1173727) at this locus increases NPR3 expression 
and is associated with increased blood pressure and LAVmaxi and 
an increase in risk of heart failure (Supplementary Material). The 
NPR3 gene encodes the C-type natriuretic peptide receptor, which 
has a high drug tractability score (https://platform.opentargets.org/
target/ENSG00000113389), making it a potential therapeutic target.

The relationship between common variants in NPR3 and genes 
encoding other proteins in the natriuretic peptide pathway with traits 
linked to the lead SNP (rs1173727) are shown in Supplementary 
Fig. 6 and an abridged version is provided in Extended Data Fig. 6.

Potential causes and consequences of diastolic function. Creation 
of polygenic instrumental variable scores (PIVS and PheWAS). PIVSs 
for each diastolic function trait consisted of 20 SNPs for PDSRrr, 15 
SNPs for PDSRll and 8 for LAVmaxi. The PIVS explained 1.5% of the 
variability of PDSRrr, 1.1 % of PDSRll and 0.2 % of LAVmaxi. There 
was good agreement between the distribution of the PIVS in the UK 
Biobank participants with and without CMR, indicating no system-
atic bias in genetic architecture (Supplementary Fig. 9). The Pearson 
correlation coefficient for the PIVS for PDSRll and PDSRrr was 0.35, 
whereas the correlation coefficient between LAVmaxi and PDSRll 
or PDSRrr, respectively was much lower (<0.01). PheWAS was  

undertaken and we considered traits that have been previously 
associated with cardiac phenotypes in the literature, but in addi-
tion included an unbiased selection of phenotypes for exploration. 
In total, we considered 71 quantitative phenotypes and 63 (binary) 
disease end points (Supplementary Data 1). Out of these, 31 phe-
notypes were significantly associated (Padj < 0.05) with at least one 
of the diastolic function PIVSs after leave-one-out cross-validation 
(Fig. 5). Some of the identified PheWAS associations are consis-
tent with the phenotype correlation analysis (such as pulse rate and 
blood pressure). We also confirmed associations between diastolic 
function and previously reported biomarkers of heart failure (such 
as sex hormone binding globulin13 and insulin-like growth factor 
1 (ref. 14)). Furthermore, we identified an association of PDSRrr to 
heart failure, cardiomyopathy and dilated cardiomyopathy, impli-
cating diastolic function in cardiovascular end points.

Mendelian randomization. Diastolic dysfunction is a substrate for 
the subsequent development of heart failure and, in observational 
studies, diabetes and hypertension are associated risk factors15. Here 
we used MR to identify potential causal relationships between dia-
stolic function as an exposure and two key clinical outcomes (mixed-
etiology heart failure and atrial fibrillation). We also assessed causal 
effects of biochemical, metabolic and hemodynamic exposures on 
diastolic function. These were chosen on the basis of clinical plausi-
bility and the findings of the phenotype correlation analysis.

We tested a number of MR techniques, each addressing different 
assumptions and excluded potentially confounding instruments. 
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A strong bi-directional causal relationship was observed between 
pulse rate and PDSRrr, PDSRll and LAVmaxi (Extended Data Fig. 7, 
Supplementary Figs. 12–14 and Supplementary Tables 2–4), consis-
tent with findings from preclinical models16. Diastolic blood pres-
sure was causally associated with PDSRrr and had a bi-directional 
association with PDSRll. SBP was causally associated PDSRll, but not 
PDSRrr. In addition, higher total peripheral resistance was strongly 
associated with higher PDSRll, PDSRrr and LAVmaxi, adding to the 
evidence implicating ventriculovascular coupling in the develop-
ment of diastolic dysfunction17.

We also identified a potential causal relationship between 
lower PDSRrr (stiffer ventricle) and increased risk of heart fail-
ure (Supplementary Fig. 11), which was further corroborated 
using GWAS summary results18 from the HERMES consortium 
(Supplementary Table 5), a GWAS meta-analysis from 47,309 cases 
of heart failure and 930,014 controls. The magnitude of the effect 
observed in the MR analysis is consistent with the observational 
epidemiological estimate, derived from correlating PDSRrr with 
incident heart failure (Extended Data Fig. 7). We found no causal 
relationship between longitudinal PDSRll and heart failure and nei-
ther was one observed in our epidemiological analysis (Extended 
Data Fig. 7).

Diastolic dysfunction is frequently present in diabetic patients19; 
however, the effects are mostly mediated by an increased risk of cor-
onary artery disease18. We found parameter estimates that support 
a causal relationship between diabetes as an exposure and diastolic 
function as an outcome, as well as a potential link with instruments 
for lipid profiles.

Last, we found a causal association between LAVmaxi and an 
outcome of atrial fibrillation20, but there was no evidence that ven-
tricular stiffness also has a causal association.

Discussion
Diastole is a complex series of molecular, biophysical and electro-
mechanical processes that initiate contractile deactivation and pro-
mote efficient ventricular filling. Impairment of these coordinated 
mechanisms may lead to diastolic dysfunction, which is associated 
with the presence of multiple cardiovascular risk factors leading 
to reduced quality of life and higher mortality21,22. Here, we used 
deep-learning cardiac motion analysis to perform the first reported 
GWAS of diastolic function traits with the aim of determining trac-
table causative mechanisms. We found that diastolic function was 
a heritable trait with associations in loci related to myofilament 
mechanics, protein synthesis during mechanical stress and regula-
tion of cardiac contractility. Furthermore, we find a role for a gene 
implicated in endothelium-derived signaling in diastolic function 
that is a potential therapeutic target23. Last, through MR we observe 
a causal relationship between genetically determined diastolic func-
tion and heart failure outcomes.

A decline in diastolic function is a feature of the aging heart and 
we found that age was a strong independent predictor of diastolic 
function, with a greater decrease present in males. Outcome studies 
have suggested that this is a prognostically benign feature of healthy 
aging that is not related to adverse effects of cardiac senescence2,24,25. 
Changes in titin protein phosphorylation, myocardial redox state 
and impairment of nitric oxide signaling have been proposed as 
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potential mechanisms26 and clinical studies indicate that age-related 
myocardial fibrosis, cardiomyocyte hypertrophy and reduced 
microvascular density, may be a consequence rather than an initiat-
ing cause of diastolic dysfunction27. Non-invasive imaging biomark-
ers of fibrosis have also shown promise in identifying biologically 
relevant pathways for myocardial fibrosis in adult hearts28.

We found that diabetes was causally associated with impaired 
diastolic function after excluding potentially confounding instru-
ments. In epidemiological analyses this relationship was inde-
pendent of age, BSA and SBP. Increased myocardial stiffness is 
recognized as one of the earliest and potentially reversible, manifes-
tations of myocardial dysfunction in diabetes29. Several underlying 
mechanisms related to insulin resistance have been proposed that 

include altered cardiac energetics and accumulation of advanced 
glycation end products that promote ventricular stiffness30. We also 
observed a unidirectional causal relationship between genetically 
determined diastolic function and an outcome of heart failure, as 
well as associations with cardiovascular end points and circulating 
biomarkers of heart failure through PheWAS. Longitudinal cohort 
studies have suggested that persistence or progression of diastolic 
dysfunction is a risk factor for subsequent heart failure15 and our 
findings suggest that ventricular stiffness is a substrate for the evolu-
tion of mixed-etiology heart failure. We also found a unidirectional 
causal association between left atrial volume and atrial fibrillation, 
suggesting that it is atrial remodeling that drives this arrhythmic 
outcome31. Lipid profiles are associated with adverse changes in  
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cardiac structure and systolic function and our findings extend that 
causal association to diastolic traits32.

Our study provides insights into the biological basis of diastolic 
function with potential implications for therapy development. We 
identified common variants within genes implicated in cardiomyop-
athies (such as BAG3, FHOD3 and PLN), suggesting that sarcomere 
homeostasis during mechanical stress may affect diastolic function 
in both health and disease33. Phospholamban (PLN) is a key regu-
lator of cardiac diastolic function, which modulates sarcoplasmic 
reticulum calcium-ATPase activity34. Common variants in this gene 
are also associated with trabeculation, which has been implicated in 
promoting ventricular filling9. Speckle-tracking echocardiography 
of Pln knockout mice reveals alterations in longitudinal strain but 
not radial strain35, which is concordant with our observed associa-
tions with diastolic function and may relate to associated changes 
in ventricular geometry36. Although there is a genetic correlation 
between strain rate vectors, the majority of SNPs used as polygenic 
instruments were independent of each other for these traits. We also 
identified a potential therapeutic target through the association of 
variants at the locus of NPR3 influencing diastolic function and risk 
of heart failure. Previous studies have highlighted its role in blood 
pressure control37 and in mediating the cardioprotective effects of 
cardiomyocyte and fibroblast-released C-type natriuretic peptide23.

This analysis has some limitations. The UK Biobank is a large-
cross-sectional study that is subject to selection bias and latent pop-
ulation stratification; however, risk factor associations seem to be 
broadly generalizable38. The population is predominantly European 
and further work is required to explore diastolic traits and outcomes 
in people of diverse ancestries. Echocardiography has been the cor-
nerstone of assessing diastolic function by characterizing features 
of ventricular relaxation, stiffness and recoil39. However, feature-
tracking CMR has excellent agreement with speckle-tracking 
echocardiography40 and invasive measures of diastolic function41. 
While analysis of myocardial deformation is performed through-
out the cardiac cycle, the measures of early diastolic strain rate may 
not capture variation in active relaxation before ventricular filling. 
While the relationship between quantitative and dichotomous out-
comes may be nonlinear, such a relationship has not been observed 
between other genetically driven diastolic traits and outcomes42.

In conclusion, we found that diastolic function is a heritable trait 
that is causally upstream of incident heart failure. Associated com-
mon variants are related to genes that maintain functional homeo-
stasis under biomechanical stress. We also identify a gene encoding 
an atrial natriuretic peptide receptor as a potential therapeutic tar-
get for modulating aspects of diastolic function.

Methods
All analyses in this study are on GitHub at https://github.com/
ImperialCollegeLondon/diastolic_genetics/43 and were conducted with R v.>3.6.0.

Participants. For the UK Biobank, approximately 500,000 community-dwelling 
participants aged 40–69 years were recruited across the United Kingdom between 
2006 and 2010 (ref. 44). All participants provided written informed consent for 
participation in the study, which was also approved by the National Research 
Ethics Service (11/NW/0382). Our study was conducted under terms of access 
approval number 28807 and 40616. A range of available data were included in this 
study comprising genotyping arrays and whole-exome sequencing (WES), cardiac 
imaging, health-related diagnoses and biological samples.

There are 488,252 genotyped participants of which 200,640 have whole-exome 
sequencing. We partitioned 39,559 participants with both CMR imaging and 
genotyping array data into two tranches by date of release from the UK Biobank, 
providing a discovery dataset of 26,893 participants and a validation dataset of 
12,666 participants.

Imaging protocol. A standardized CMR protocol was followed to assess cardiac 
structure and function using two-dimensional retrospectively gated cine imaging 
on a 1.5T magnet (Siemens Healthineers). A contiguous stack of images in the left 
ventricular short-axis plane from base to apex was acquired, with long-axis cine 
imaging in the two and four-chamber views. Each cine sequence had 50 cardiac 
phases with an acquired temporal resolution of 31 ms (ref. 7). Transverse cine Ta
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imaging was also performed in the ascending and descending thoracic aorta. All 
imaging phenotypes used for the analysis underwent quality control assessment8. 
Participants also underwent a resting 12-lead electrocardiogram, which was 
automatically analyzed using proprietary software (CardioSoft, GE Healthcare).

Cardiac image analysis. Segmentation of the short-axis and long-axis cine 
images in UK Biobank was made using fully convolutional networks, a type of 

deep-learning neural network, which predict a pixel-wise image segmentation 
by applying a number of convolutional filters onto each input image for feature 
extraction and classification9. The accuracy of image segmentation on the UK 
Biobank dataset is equivalent to expert human readers45. End-diastolic volume, 
end-systolic volume, stroke volume and ejection fraction were determined for both 
ventricles. Left ventricular myocardial mass was calculated from the myocardial 
volume assuming a density of 1.05 g ml−1. Left atrial volume was calculated from 

a Associations with quantitative traits

Alanine aminotransferase (log)

Apolipoprotein b

BMI

CRP (log)

Creatinine (log)

Cystatin C (log)

DBP (adjusted)

eGFR (crea)

Fat-free mass (whole body)

FEV1/FVC

γ-glutamyltransferase (log)

HDL cholesterol

IGF-

Impedance (left arm)

Impedance (whole body)

LDL cholesterol

Leukocytes (count, log)

Mean platelet volumne

Platelet count

Platelet crit

Pulse rate

SBP (adjusted)

SHBG (log)

Standing height

Testosterone

Protein

Triglycerides (log)

Body water mass (whole body)

−0.4 −0.2 0 0.2 0.4
Change in trait per 1 s.d. increase  in diastolic function trait

LAVmaxi
PDSRrr
PDSRll
NS

Associations with binary traits

Cardiomyopathy

Dilated cardiomyopathy

Heart failure

−1 0 1
Log(odds ratio) per 1 s.d. increase in diastolic function trait

b

Fig. 5 | Significant associations of the polygenic instrumental variable scores for diastolic function traits with UK Biobank phenotypes. a, Quantitative 
traits that significantly associated with the PIVSs of diastolic function (beta coefficient point estimates standardized to change per 1 s.d. increase in 
diastolic function trait with 95% CI). b, Binary traits that significantly associated with the PIVSs of diastolic function. Point estimates are log(odds ratio) 
per 1 s.d. increase in diastolic function trait (95% CI). Detailed results, including numerical P values and 95% CI are shown in Supplementary Fig. 10. 
One unit change in the PIVS represents a change of 1 s.d. in the respective diastolic function trait. All dependent variables (traits) were standardized, 
representing the change in dependent variable s.d. for a 1 × s.d. change in the respective measurement. Associations not significant after multiple testing 
correction (conducted per PIVS) are displayed as gray bars. LDL, low-density lipoprotein; HDL. high-density lipoprotein; IGF-1, insulin-like growth factor 
1; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; eGFR, estimated glomerular filtration rate; DBP, diastolic blood pressure; NS, non-
significant. n = 449,263.
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the segmented images using the biplane area–length formula V =
8
3π

×
A2Ch×A4Ch

L
, where A2Ch and A4Ch indicate the atrial area on the two and four-chamber cines, 
respectively and L indicates the longitudinal diameter averaged across two 
views. Measurements were indexed to BSA according to the Du Bois formula: 
0.20247 × (weight0.425) × (height0.725), with weight in kg and height in meters. The 
heart was divided into 16 standardized anatomical segments, excluding the true 
apex, according to American Heart Association nomenclature46.

The aorta was segmented on the cine images using a spatiotemporal neural 
network47. The maximum and minimum cross-sectional areas were derived from 
the segmentation and distensibility calculated using estimates of central blood 
pressure obtained using peripheral pulse-wave analysis (Vicorder)8.

Motion tracking was performed on the cine images using nonrigid image 
registration between successive frames (in GitHub repository ukbb_cardiac)48,49. 
To reduce the accumulation of registration errors, motion tracking was performed 
in both forward and backward directions from the end-diastolic frame and an 
average displacement field calculated8. This motion field was then used to warp 
the segmentation contours from end-diastole onto successive adjacent frames. 
Circumferential (Ecc) and radial (Err) strains were calculated on the short-axis 
cines by the change in length of respective line segments (Fig. 1a) as Edir = ΔLdir

Ldir
, where dir represents the direction, Ldir the length of a line segment along this 
direction and ΔLdir its change over time. Motion tracking was also performed on 
the long-axis four-chamber cines to derive longitudinal (Ell) strain. Peak strain 
for each segment and global peak strain were then calculated (Fig. 1b). Strain 
was measured from slices acquired at basal, midventricular and apical levels. For 
comparison between each component absolute strain values are reported. Strain 
rate was estimated as the first derivative of strain and PDSRrr and PDSRll directions 
was detected using an algorithm to identify local maxima (in GitHub repository 
peak_detection) (Fig. 1c).

Non-imaging phenotypes. In total we consider 110 non-imaging cardiovascular-
related phenotypes in UK Biobank participants for the phenotype regression 
analysis and the genetic analysis. These phenotypes contain information acquired 
by touch-screen questionnaire, interview, biophysical measurement, hospital 
episode statistics, primary care data and biochemical analysis of venous blood. 
Details of how each phenotype was acquired are available on the UK Biobank 
Showcase (http://biobank.ctsu.ox.ac.uk/crystal/). It should be noted that the 
biochemical markers used here were acquired at the initial assessment visit that 
preceded imaging assessment. Also of note, not all phenotypes were used in both 
the phenotype and the genetic analysis (such as due to lack of available data at 
the imaging visit). We refer to the Supplementary Material both for details on the 
definition of the considered phenotypes and for information on the inclusion of 
specific phenotypes for each analysis.

Statistical significance testing and multiplicity control. We considered a P 
value < 0.05 as significant in all phenotype analysis. Where not stated otherwise, 
we controlled the FDR with a Benjamini–Hochberg adjustment. Significance 
thresholds and decision criteria for GWAS significant loci and causality assessment 
(MR) are described in the respective sections and/or in the Supplementary Material.

Phenotype association analysis. Continuous variables are expressed as 
mean ± s.d.). Differences in continuous variables between groups were performed 
using a Student’s t-test. Univariable and multiple linear regression analysis was 
used to explore the phenotype relationship between each diastolic parameter 
and cardiovascular risk factors. To identify relationships between diastolic 
function and a broader range of imaging and non-imaging phenotypes, including 
circulating biomarkers, we used the least absolute shrinkage and selection 
operator (LASSO) with stability selection, to optimize the model coefficients. 
We then ran regression diagnostics on the model with the selected variables, 
to exclude a possible collinearity inappropriately influencing our model 
(Supplementary Material has details on the phenotype analysis and LASSO 
analysis procedure).

Genotyping and sample quality control. Genotyping of UK Biobank participants 
has been described elsewhere in detail50. Briefly, UK Biobank genotyping for 
488,252 participants was performed on the UK BiLEVE or UK Biobank Axiom 
arrays. Imputation was based on the HaplotypeReference Consortium panel and 
the UK10K+1000 Genomes Project panel. In this study, UK Biobank Imputation 
V3 (in GRCh37 coordinates) were used. WES was performed on data released in 
2020 collected from 200,640 UK Biobank participants51. The sequencing methods 
and variant calling procedures have been described in detail52. In the present study, 
genotypes in their released PLINK-format files are utilized and samples were 
restricted to the European population. Quality control of the genetic data was 
performed as recommended by UK Biobank (Supplementary Material provides 
details on the procedure and number of excluded samples).

GWAS analysis. For the genetic analysis, there were 34,242 participants of 
European ancestry (Supplementary Material describes criteria) providing a 
discovery dataset of 23,321 participants and a validation set of 10,924 participants. 
GWAS analyses for the three diastolic function traits and additional quantitative 

traits of interest (as described for the causality assessment) were performed with 
BOLT-LMM (v.2.3.2), which accounts for ancestral heterogeneity, unknown 
population structure and sample relatedness53,54. GWAS analyses were adjusted for 
imaging traits for the first ten genetic principal components, sex, age at time of 
MRI, the genotyping array and the MRI assessment center and for non-imaging 
quantitative traits for the first ten principal components, sex, age at measurement 
of the trait and the genotyping array. GWAS analyses for clinical end points of 
interest (binary end points) were conducted with PLINK2 and adjusted for the 
first ten principal components, sex, age at baseline and the genotyping array. Post-
GWAS filtering removed any SNPs with a Hardy–Weinberg equilibrium P < 0.05 
and MAF < 0.005.

Assessment of shared genetic architecture. For the assessment of shared genetic 
architecture between diastolic function traits, linkage disequilibrium (LD) 
score regression (LDSC (LD SCore) v.1.0.1, ref. 55) was used to obtain a genetic 
correlation score between each pair of traits.

Variant annotations. Lead variants for each locus were assigned causal genes, 
where possible, using a combination of variant annotations and additional 
functional genomic data sources (colocalization). Each lead variant was 
systematically tested for any evidence of functional consequence using variant 
effect predictor. In addition, QTL evidence was extensively searched using Open 
Targets Genetics56. Where eQTL data were available for the locus, the full summary 
statistics were downloaded to assess colocalization (Supplementary Material).

Variant effect predictor57 and LoF transcript effect estimator (LOFTEE)58 
plugins were applied on all genomic variants of WES data. In the present study, we 
considered the genomic variants predicted by LOFTEE with high-confidence label 
‘HC’, non-dubious (no ‘LoF flag’, such as variants that located in poorly conserved 
exons or splice variants that affect NAGNAG sites or non-canonical splice regions) 
and MAF < 0.05, as an LoF mutation.

LoF association analysis. An LoF carrier indicator was created for each WES 
sample and each of the human protein-coding genes based on the collapsed 
information of LoF annotations. An individual was considered as an LoF carrier of 
the gene if there was at least one LoF mutation (based on methods in the variant 
annotation section) and a non-carrier if there was none. We then conducted the 
association test between LoF carrier indicator and the three diastolic function 
imaging phenotypes. Linear regression was performed with the adjustment of sex, 
age at time of MRI and the top ten genetic principal components. The association 
results were further filtered as those with at least two carriers and the end point 
available. The association was considered significant after multiple testing 
correction at α = 0.05 (FDR, calculated for three diastolic function traits). We 
identified 18,660 participants with both WES data and CMR imaging data.

Polygenic instrumental variable scores. Candidate variants for PIVS for the three 
diastolic function traits (LAVmaxi, PDSRll and PDSRrr) were obtained based on the 
respective GWAS (full imaging cohort) results by performing clumping (PLINK 
1.9) using an LD threshold of R2 = 0.1 (in a window of 1,000 kb) and considering 
all SNPs with P < 10−6. Unlike more traditional polygenic risk scores we do not 
use thousands of variants as instruments but aim to identify a set of instrumental 
variables that are minimally correlated. This comes with the price of a relatively 
small set of instruments that explains less variability of a trait, but can be used 
as proper instruments for the MR analysis. Candidate variants were included 
in multivariate linear modeling evaluated on the European subset of the full 
imaging cohort with the first ten genetic principal components, age at MRI, sex, 
genotyping array and the MRI center as additional covariates and the respective 
diastolic function trait as dependent variables. The diastolic function traits were 
scaled to 1 s.d. before the model estimation; therefore, a unit change in the PIVS 
score represents a change of 1 s.d. unit in the respective diastolic function trait. 
PIVS estimates per individual were then calculated by multiplying the observed 
genotype with the estimated beta from the multivariate linear model for each SNP 
and summing these values up. Missing genotypes were imputed using a mean 
imputation. The variance explained for the PIVS is measured by R2, estimated in 
a linear regression with the PIVS as the only variable and the respective diastolic 
function trait as an end point.

Next, we conducted a PheWAS using the obtained PIVS (see above and 
Supplementary Material for a full definition of included phenotypes in the 
PheWAS). Evaluation of the PIVS were performed in the European non-imaging 
cohort (an independent set of individuals compared to the PIVS construction 
set). Only results are shown that are significant after multiple testing correction at 
α = 0.05 (FDR, calculated per diastolic function trait) and, as a sensitivity analysis, 
for which all leave-one-SNP out cross validations analysis led to a significant result 
at α = 0.05 after multiple testing correction (FDR) for the number of considered 
phenotypes. The latter condition is supposed to exclude spurious results that are 
only driven by one single variant. Leave-one-SNP-out cross-validation is performed 
by excluding one SNP from the list of candidate variants, then re-estimating the 
PIVS and performing the PheWAS as described above. For the leave-one-SNP-out 
cross-validation, FDR adjustment is performed per combination of diastolic trait 
and phenotype, considering the number of included SNPs.
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Mendelian randomization. For exploring the causes and consequences of diastolic 
function parameters, we used a bi-directional MR approach (two MR analyses 
are performed): first, an MR analysis using the first chosen trait as exposure is 
conducted and second an MR analysis using the selected second trait is run. By 
considering both results, evidence can be gathered for a one-directional causal 
relationship, a bi-directional causal relationship or no causal relationship at all. We 
performed this analysis taking into account one diastolic and one non-diastolic 
function trait and for that, we selected non-diastolic function traits of interest by 
taking into account the results from the observational correlation analysis and 
clinical expertise. This approach led to the consideration of six dichotomous risk 
factors associated with diastolic dysfunction, arteriosclerosis, atrial fibrillation, 
heart failure, hypertension and diabetes, considering type I and type II separately. 
Further, we considered four physiological variables as potential causes or 
consequences of changes in diastolic function, as well as five quantitative lipid 
traits as surrogate for arteriosclerotic risks as a potential confounder source for 
changes in diastolic function. In total we analyzed 15 nondiastolic phenotypes and 
the 3 diastolic phenotypes in our MR.

We established a workflow for the MR analysis, which is briefly described 
in this section. Full details are provided in the Supplementary Material. Genetic 
instrumental variables were selected from the UK Biobank GWAS results 
generated, as described above, via clumping with PLINK 1.9 as described for 
the PIVS approach. The candidate SNP set before clumping was restricted to the 
intersection between the SNP sets of the pair of GWAS results (hypothesized 
causal trait GWAS and hypothesized consequence trait GWAS). A full list 
of the instrumental variables is contained in the Supplementary Table file 
SupplementaryTable_InstrumentalVariantsMR.xlsx.

We aimed to remove potential confounding instruments by two filtering steps. 
First, we ran phenotype association analysis to identify and remove instruments 
that associate significantly with any of the traits for arteriosclerosis, triglycerides, 
apolipoprotein B and LDL cholesterol. Second, we ran Steiger filtering to remove 
instruments with potential wrongly inferred causal directions.

All MR analysis are based on the point estimates and s.d. obtained from the 
respective GWAS. We follow a similar approach to van Oort et al.59 by using 
inverse-variance weighted method as the main analysis and applying several 
other MR methods for ensuring robustness of the obtained results as sensitivity 
analyses. We used weighted median-based methods, MR-PRESSO and MR-Egger. 
Consistent effect estimates across the different methods improves our confidence 
in a truly causal effect. We consider an association as ‘potentially causal’ if the main 
analysis indicates a causal relationship (P < 0.01), at least two of the sensitivity 
analyses indicate at least a suggestive causal relationship (P < 0.05) and none of 
the sensitivity analyses indicate associations with inconsistent effect directionality 
(none of the methods showed a suggestive association with conflicting 
directionality) (P < 0.05). No explicit multiplicity adjustment is performed 
for MR experiments. For ‘potential causal’ associations, we next conducted a 
supplementary sensitivity analysis using published GWAS results as described in 
the Supplementary Material, if published GWAS data were available.

All analysis, which involved diastolic and non-diastolic function traits, were 
conducted in a two-sample approach (the diastolic function trait GWAS was 
calculated in the full imaging cohort and the non-diastolic function trait GWAS 
was calculated in the non-imaging cohort).

For comparison of the effect estimates from the MR analysis to the observed 
correlation of diastolic function measurement and disease status, we restricted the 
analysis population to individuals who were disease-free at the CMR visit. We then 
fitted a logistic regression model by coding individuals who experienced a first 
event of the selected disease during follow-up time as 1 and event-free individuals 
during follow-up as 0. As covariates, we included age at CMR visit, sex, diabetes 
status, diastolic blood pressure and body mass index. Note that this analysis was 
only performed for relationships judged as potentially causal and involving a 
disease end point (and not a quantitative measurement such as pulse rate).

NPR3 pathway analysis. To increase our understanding of the association of 
NPR3 with LAVmaxi and to further characterize the role of natriuretic peptides, 
we looked for additional genetic associations within genes of the natriuretic 
peptide pathway (so in addition to NPR3–NPR1, NPR2, NPPA, NPPB and NPPC). 
We conducted GWAS using BOLT-LMM for all imaging traits listed in Extended 
Data Fig. 2 as described above, as well as any non-imaging traits associated with 
rs1173727 (the lead variant for NPR3) across the four loci (NPPA and NPPB share 
the same locus). The GWAS summary statistics were filtered to a 1-MB window 
around each gene (for NPPA/B, the gene used for centering was NPPA). Across 
these summary statistics, we performed clumping with a P value threshold of 10−5 
and R2 < 0.1.

For the identified tag SNPs and associated variants in LD from the clumping 
analysis, we then tested which of these variants we could confidently link to the 
natriuretic gene in the locus. If any variant was classified as missense, we selected 
that variant directly. For eQTL variants, we used colocalization analysis to link 
these SNPS to the natriuretic genes in each locus. Relevant eQTL and protein 
QTL data were used (eQTL summary statistics were taken from eQTL catalog60 
and protein QTL data were taken from Sun et al.61) and SNPs with only a clear 
association with the gene of interest and traits of interest were kept (P < 10−4 for 

association with gene or protein expression, P < 10−5 for association with the trait 
and H12 > 0.5 was used as a threshold for the colocalization analysis).

Hierarchical clustering was then performed on the − log(P) × β values with 
the β values aligned to have a negative sign on the DBP. Extended Data Fig. 6 
shows all SNPs and traits with a genome-wide significant association. The SNPs 
and traits with suggestive associations (P < 10−5) are shown in the Supplementary 
Material (Supplementary Fig. 6).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All raw and derived data in this study are available from UK Biobank (http://www.
ukbiobank.ac.uk/). GWAS summary level data are publicly available through 
the GWAS catalog (accession numbers GCST90019012, GCST90019013 and 
GCST90019014 for left atrial volume, longitudinal peak diastolic strain rate and 
radial peak diastolic strain rate, respectively). eQTL data used for variant to gene 
mapping are available through eQTL catalog (https://www.ebi.ac.uk/eqtl/).

Code availability
The analysis code is freely available on GitHub43.
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Extended Data Fig. 1 | A summary of the main steps in our analysis of the genetic and environmental determinants of diastolic heart function. Flow 
chart of study design including image analysis, environmental associations and genetic studies. A summary of the main steps in our analysis of the genetic 
and environmental determinants of diastolic heart function.
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Extended Data Fig. 2 | Baseline characteristics of the UK Biobank participants in the study. AAo, ascending aorta; CMR, cardiac magnetic resonance; 
DAo, descending aorta; eGFR, estimated glomerular filtration rate; LA, left atrium; LDL, low density lipoprotein; LV, left ventricle; RA, right atrium; RV, right 
ventricle.
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Extended Data Fig. 3 | Population left atrial data. a) Scatterplots of indexed left atrial maximum volume (LAVmaxi) against age with density contours, 
linear model fit and marginal density plots. b) Violin plots of LAVmaxi by sex with boxplots showing the median, hinges indicating interquartile ranges 
(IQR) and whiskers 1.5 x IQR (n=38,046). Wilcoxon signed-rank test was not significant (NS).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Association between imaging and non-imaging phenotypes. a) Bubble plot showing beta coefficients and b) negative logarithm of 
the P-values for multiple linear regression analysis between imaging and non-imaging phenotypes. The false discovery rate threshold is shown as a dashed 
line. c) A plot showing the coefficients for predictors in the LASSO regression model (training set, n=21,403; test set, n=10,217). AAo, ascending aorta; 
BSA, body surface area; DAo, descending aorta; Ell, longitudinal strain; Err, radial strain; LA, left atrium; LAVmaxi, indexed maximum left atrial volume; 
LAVmini, indexed minimum left atrial volume; LV, left ventricle; LVCI, left ventricular cardiac index; LVSI, indexed left ventricular stroke volume; PDSRll, 
longitudinal peak diastolic strain rate; PDSRrr, radial peak diastolic strain rate; RA, right atrium; RAEF, right atrial ejection fraction; RV, right ventricle; 
RVSVi, indexed right ventricular stroke volume; SBP, systolic blood pressure.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Predictors of diastolic function. a) Plot showing the covariates selected after stability selection as predictors of peak longitudinal 
strain rate (PDSRll). b) Plot showing the odds ratio of each of the three diastolic function parameters (PDSRll, peak radial diastolic strain rate, PDSRrr 
and indexed left atrial maximum volume, LAVmaxi) with all covariates using LASSO regression and 10-fold cross-validation. Red bars indicate variables 
selected after stability selection.
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Extended Data Fig. 6 | Natriuretic peptide pathway analyses. Heatmap of associations with SNPs in genes of the natriuretic peptide pathway. All cardiac 
imaging traits and traits with a genome-wide significant association with rs1173727 (NPR3) were included. SNPs were included if they have a genome-wide 
significant association with one of these traits except height (height is an extremely polygenic trait with many genome-wide association signals). Values 
indicate -log10(P-value) of the association test (BOLT-LMM, linear mixed-model, 2-sided, not corrected for multiple comparisons), directionality is aligned 
to the beta values of the systolic blood pressure (sbp_adj) associations, and to the height associations if there is no significant blood pressure association. 
AAo, ascending aorta; DAo, descending aorta; DBP, diastolic blood pressure; Ecc, circumferential strain; EDV, end diastolic volume; EF, ejection fraction; Ell, 
longitudinal strain; Err, radial strain; ESV, end-systolic volume; FVC, forced vital capacity; LA, left atrium; LV, left ventricle; LVM, left ventricular mass; PDSR, 
peak diastolic strain rate; RA, right atrium; RV, right ventricle, SBP, systolic blood pressure; SV, stroke volume.
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Extended Data Fig. 7 | Outcome association analysis. (a) Comparison of association estimates for diastolic function traits, radial peak diastolic strain 
rate (PDSRrr), longitudinal peak diastolic strain rate (PDSRll) and indexed left atrial maximum volume (LAVmaxi), vs. heart failure risk across different 
approaches (Mendelian ramdomisation (MR) approach using HERMES for the heart failure risk estimates, incident heart failure based on observational 
data; see Methods for set of considered covariates). Displayed are Log(Odds ratios) with 95% confidence intervals. (b - d) Results of Mendelian 
randomization for PDSRrr, PDSRll and LAVmaxi. For sensitivity analysis several methods are used. We regard a causal relation as significant, if at least two 
of the methods report a suggestive connection (p<=0.05) with non-conflicting direction. P-values are shown without correction for multiple testing. MR-
PRESSO is used to remove potential horizontal pleiotropy. If empty, no outlier variants were detected by MR-PRESSO and the estimate is equal to IVW.
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All raw and derived data in this study is available from UK Biobank (http://www.ukbiobank.ac.uk/). GWAS summary level data are publicly available through the
GWAS catalogue (accession number GCP000170). eQTL data used for variant to gene mapping is available through eQTL Catalogue (https://www.ebi.ac.uk/eqtl/).

The full dataset used contained 39,559 individuals. We used the maximum number of available samples in UK Biobank to ensure sufficient
power for our analysis. Any results reported based on this sample size were replicated in the discovery (26893 samples) and validation
datasets (12666 samples).

We follow the QC procedure proposed by UK Biobank and exclude subjects with:

* Heterozygosity or high missing rate (indicated by field 22027)

* Missmatch between genetic and self-reported sex (indicated by field 22001 and 31)

* Sex chromosome aneuploidy (as indicated by field 22019)

* To exclude subjects which are closely related to others, we use the provided kinship coefficients by UK Biobank generated by the KING
software. For each of the pairs of sample with a kinship coefficient > 0.884 (i.e. second degree relationship or closer), a single sample was
excluded at random.

That leads to 372 subjects from the full genotyped cohort (N=487279) being excluded due to a mismatch between reported and genetically
inferred sex, 651 subjects being excluded due to sex chromosomal aneuploidy, 968 subjects being excluded due to a high percentage of
missing genotypes and/or heterozygosity rate outliers and 36159 subjects being excluded due to suspected relatedness. This leads to 449263
subjects who passed the genetic QC out of which 36541 subjects were part of the first three data releases of the MRI imaging substudy.

Analyses were based on single measurements per individual so technical replicates are not present in the data. Reproducibility in our results
was confirmed through independent datasets (discovery and validation).

Classification into groups was not required as the phenotypes in analyses were quantitative and continuous.

Blinding was not relevant to this study as group allocation was not performed (the analyses were based on quantitative traits in a sample
population). Assignment to the discovery and validation sets for the GWAS analysis was based on date of release from UK Biobank.
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