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A B S T R A C T

Air Traffic Flow Management regulations consist of issuing pre-departure ground delays to deal with demand-
capacity imbalances in the airspace, smoothing out the demand at congested infrastructures. This results in
discrepancies between the initially planned and executed (regulated) flights, negatively impacting operational
efficiency and economic performance. To mitigate downstream effects, airspace users need to assess the severity
and impact of these regulations when defining their operational plan. It is crucial to anticipate these potential
network issues and plan for mitigation measures during the pre-tactical phase (the day before operations
(D−1)). This article presents four independent machine learning models to estimate the impact of Air Traffic
Flow Management regulations for individual flights during this pre-tactical phase. An integrated view is
proposed to combine the results of the different models, displaying the appropriate level of information.
Two models are designed to provide information about the probability of a given flight being affected by Air
Traffic Flow Management regulations and the reason for this regulation (airport or airspace congestion). These
models have reported accuracy levels between 82% and 87%. The remaining models estimate the impact of the
delay (amount of Air Traffic Flow Management delay issued to the flight if regulated), with a Mean Absolute
Error of 9.5 min when predicting this amount of delay. The SHapely Additive exPlanations analysis is used
to identify the most important factors for detecting Air Traffic Flow Management regulations for individual
flights during the pre-tactical phase from a data-driven perspective. An integrated view is proposed to create a
system which combines the results of the four different models, displaying the appropriate level of information
and avoiding an overload of information. Finally, the results are compared against models considering only
static or post-operational data.
1. Introduction

Air Traffic Flow Management (ATFM) measures are implemented by
Air Navigation Service Providers (ANSPs) to deal with demand-capacity
imbalances. The most common approach is to set ATFM regulations
to limit the rate at which aircraft enter congested traffic volumes1

during a given period. Concretely, ATFM delays are issued to flights
that plan to use the congested resources considering a first-planned-
first-served basis calculated by the Computer Assisted Slot Allocation
(CASA) algorithm (EUROCONTROL, 2022a, 2022b). As the name in-
dicates, the system assigns slots to use the congested infrastructure,
which translates into a Calculated Take-Off Time (CTOT) requiring

∗ Corresponding author.
E-mail addresses: sergi.mas.pujol@upc.edu (S. Mas-Pujol), l.delgado@westminster.ac.uk (L. Delgado).

1 A traffic volume is associated with a single geographical entity (e.g. an aerodrome, a set of aerodromes, an airspace sector), considering all or specific traffic
flows crossing it (EUROCONTROL, 2022b).

2 European Civil Aviation Conference (ECAC) composed by 44 member states: all EUROCONTROL members (European Union states plus Albania, Armenia,
Bosnia and Herzegovina, Georgia, Moldova, Monaco, Montenegro, North Macedonia, Norway, Serbia, Switzerland, Turkey, Ukraine and the United Kingdom),
Azerbaijan, Iceland and San Marino.

the flight to take-off at that time with a given tolerance window
(−5, +10 min) (EUROCONTROL, 2022b). Therefore, the regulation
of a flight, assigning a CTOT, generates pre-departure ground delay,
smoothing the rate of arrival of the flows to the congested region.
Rather than airborne delay, ground delay is widely accepted due to
their reduced operational costs and environmental footprint (Delgado,
Gurtner, Cook, Martín, & Cristóbal, 2020).

According to EUROCONTROL (2019), in the European Civil Avia-
tion Conference (ECAC) area,2 the average ATFM delay due to airport
congestion remained stable at around 1.24 min per flight between
2015 and 2018. However, en-route delay showed a different pattern,
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significantly increasing by 104% in 2018, reaching 19M minutes, while
traffic increased by just 3.8% over the same period. Considering an
average ATFM delay cost of 100 e/min (Cook & Tanner, 2015), this
eads to an expected total cost close to 2Be. However, COVID-19 forced
major reduction in air traffic; all forecasts estimate a complete traffic

ecovery in the near future (EUROCONTROL, 2022c, 2023; Gudmunds-
on, Cattaneo, & Redondi, 2021). This demand growth, combined with
he lack of capacity at several European airports, will likely result in
ubstantial future performance degradation, leading to an increase in
TFM delay (EUROCONTROL, 2019).

Significant efforts are being made to include airspace users in
emand–capacity balancing processes through Collaborative Decision
aking (CDM) to minimise these negative impacts on their operations

nd revenue (Andribet, Baumgartner, Garot, & of the Air, 2022). How-
ver, there is still room for improvement. Two main reasons for such
egulations are insufficient information sharing between stakehold-
rs and capacity generally managed during the tactical phase (Bolić,
astelli, Corolli, & Rigonat, 2017). The European Air Traffic Manage-
ent (ATM) Master Plan aims to improve early information sharing

etween stakeholders to improve the system’s predictability (SESAR,
020).

Previous research has focused on optimising, improving, and min-
mising ATFM delays. From a general point of view, Vossen, Hoffman,
nd Mukherjee (2012) provides an extended review of the ATFM
oncept. Kistan, Gardi, Sabatini, Ramasamy, and Batuwangala (2017)
eview the ATFM field trying to determine the ATFM research and
evelopment efforts that hold the best promise for practical technolog-
cal implementations. Dalmau, Zerrouki, Anouraud, Smith, and Cramet
2021) studied whether all issued ATFM regulations were necessary and
ow this affects network congestion. de Arruda Junior, Weigang, and
ilea (2015) presented a new collaborative decision-making process

o improve sharing data between stakeholders, which could reduce the
umber of issued ATFM regulations. García-Heredia, Molina, Laguna,
nd Alonso-Ayuso (2021) proposed an integer programming solution to
olve some ATFM regulations.

Recent studies focus on anticipating ATFM regulations using Ma-
hine Learning (ML) techniques (Bishop & Nasrabadi, 2006), which
enefit from the data availability in aviation and the fast response
o new complex scenarios. Rather than using a complex system to
odel the air transport network, ML can be used to identify the
atterns behind ATFM regulations as they are the result of extensive
lanning procedures by the Network Manager (NM). For instance, Gui
t al. (2019) and Sridhar, Chatterji, and Evans (2020) explore vari-
us factors that might influence these regulations. Schultz, Reitmann,
nd Alam (2021) show that the application of ML is an appropriate
pproach to quantify the correlation between decreased airport per-
ormance and weather events, leading to ATFM regulations. Dalmau,
enestier, Anoraud, Choroba and Peter and Smith (2021) tries to
stimate the evolution of already assigned ATFM delays using em-
edded systems. Sanaei, Pinto, and Gollnick (2021) studied the usage
f Convolutional Neural Networks (CNNs) to predict the total net-
ork delay and the number of regulated flights in the European Air
raffic Management Network (EATMN) area. Garrigó et al. (2016)
xplored the potential of visual analytics and ML to improve the
nderstanding of ATFM regulations. A more general approach was
resented in (Yousefzadeh Aghdam, Kamel Tabbakh, Mahdavi Chabok,

Kheyrabadi, 2021) where the authors proposed to use Long-Short
erm Memorys (LSTMs) to improve accuracy in ATM management
roblems, including all the necessary activities such as handling ATFM
egulations.

Other research has focused on specific types of ATFM regulations
r presented models with a more narrow scope. Jardines et al. (2024),
ardines, Soler, and García-Heras (2021) used ML algorithms to pre-
ict network performance during adverse weather conditions. Many
ifferent algorithms are tested, and the results show that complex
2

odels (e.g. deep neural networks) tend to overfit, while the Random
Forest algorithm reports the best performance. Also related to spe-
cific regulations reasons, Schultz et al. (2021) presented a machine
learning-based approach to assess the strategic flight schedules regard-
ing potential arrival/departure flight delays and cancellations when
facing capacity regulations. Mas-Pujol, Salamí, and Pastor (2022) used
a hybrid model based on combining a time-distributed LSTM and CNN
to predict the regulated period due to capacity en-route regulations for
specific traffic volumes over the Maastricht Upper Area Control Centre
(MUAC) region. Dalmau and Gawinowski (2024) used supervised clus-
tering techniques to identify possible flight diversions due to weather,
highlighting situations where predictions require careful consideration.

From a more flight-centric approach, Gopalakrishnan and Balakr-
ishnan (2017) presented a comparative analysis of models predicting
ATFM delays for specific Origin-Destination (OD). The authors com-
pared linear systems, classical ML techniques like classification and
regression trees, and artificial Neural Network (NN). Results show
that classical ML techniques outperform the rest, and classification
seems to be the best approach. Similarly, Gui et al. (2019) shows how
random forest-based models report higher performance than complex
artificial NN predicting the ATFM delay assigned to flights. Concretely,
it is shown that the best approach is to use a classification algo-
rithm splitting the issued ATFM delay in different classes. Rebollo and
Balakrishnan (2014) used Random Forest models to estimate future
departure delays between 2 and 24 h for the 100 most delayed links
in the USA system, investigating different classification thresholds and
predicting delay values. Wang et al. (2022) provides an alternative tool
for airports and airline managers to estimate flight delays. The results
show how Random Forest and LightGBM provide better results than
MultiLayer Perceptrons (MLPs) (i.e., artificial NN).

As shown, most of the previous research focuses on optimising
ATFM delay and resource allocation across the entire ATM network,
or specific OD pairs, with a particular emphasis on the tactical phase
(day of operation) when more information becomes available. This
often involves addressing specific regulatory issues or introducing new
paradigms of behaviour. However, it is important to note that the
main stakeholders affected by ATFM regulations are the airspace users,
whose fleet management is directly impacted. To address this issue, this
article proposes an approach utilising ML algorithms and techniques
to anticipate all types of ATFM regulations during the day before
operations day prior to operations (D-1). Specifically, a flight-centric
approach is used to predict the likelihood of ATFM events and estimate
the expected final delay. The selected models provide a high level of
explainability to gain trust in their predictions. Moreover, the system
can be used as a what-if tool to identify the less disrupting actions. By
adopting this approach, the proposed system enables better anticipation
of the impact of ATFM regulations on individual flights, allowing
airspace users (tactical planners) to plan their fleet management strate-
gies while designing their operational plan with a longer prediction
horizon and highlighting which flights should be closely monitored
during the day of operations by the duty managers. This expert system
can significantly improve the efficiency and effectiveness of the ATM
network and airline operations.

This article further develops previously conducted research, wherein
the idea was first introduced in (Mas-Pujol, De Falco, & Delgado, 2022),
and preliminary results using post-operation data were subsequently
presented in (Mas-Pujol, De Falco, Salamí, & Delgado, 2022). The work
presented in this article uses data available at the prediction horizon
instead, ensuring that the airlines can use the models operationally.
This work is part of the Dispatcher3 initiative (Dispatcher3 Consortium,
2020), a Clean Sky 2 innovation action which aims at using machine
learning techniques to support the airlines’ processes before departure
(including D-1 preparatory activities). Also, the visualisation of results
has been improved to ensure that the system only displays the level of
information required by the end user.
Our major contributions are summarised as follows:
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• We propose a flight-centric approach to better anticipate the
impact and severity of ATFM regulations the day before the
operation when the levels of uncertainty are higher, and little
information is available on the ATFM regulations that will be
issued. These predictions will help the tactical planners and duty
managers of airlines to figure out the impact of these regulations
on their fleets;

• We have demonstrated that it is possible to anticipate the char-
acteristics of ATFM regulations using simple and well-known ML
algorithms with a high level of explainability. This is crucial due
to the high levels of safety in aviation and the need to trust the
prediction of the models by understanding the reason behind their
outcome;

• The longer prediction horizon improves the airlines’ planning
capabilities, overcoming some of the limitations found in the
state-of-the-art. Previously available tools focus on minimisation
and reduction of delay during the day of operations; the system
developed in this article aims, however, to be used pre-tactically;

• This expert system can also be used as a what-if tool to see the
benefits of possible mitigation actions. This allows the tactical
planner and the duty manager to plan for the actions that are
more beneficial or effective if the delay situation materialises;

• The proposed approach can improve the efficiency and effective-
ness of the ATM network and airline operations. The predictabil-
ity of the operations at a network level could improve, reducing
last-minute actions.

The article is organised as follows: Section 2 shows the rationale
ehind selecting the different ML models developed. Section 3 presents
he features analysis conducted, the modelling approach followed, the
valuation metrics, and the eXplainable Artificial Intelligence (XAI)
echniques applied. Section 4 shows the modelling approach followed
o define the input/outputs of the models, the conducted feature cor-
elation analysis, and the model selection and training. Section 5
escribes the performance of the models and compares them to models
hich use only static information. The section also presents the feature

mportance analysis for the final models and the possible operational
sage. Finally, the article closes with the conclusions in Section 6.

. ATFM modelling rationale

Despite the effort for anticipation and the flexibility provided to the
irlines, mitigating possible downstream effects of ATFM delay can be
omplex. If the ATFM delay assigned is large, some delay might be
nward propagated, as even if the flight is ready to depart, it cannot
ake off until its CTOT window. On the other hand, the reactionary
elay propagated by previous legs could be absorbed by the imposed
elay due to the ATFM regulation, i.e., some ‘buffer’ is generated in the

schedule due to the imposed delayed departing window.
A small delay (or even zero minutes of delay, i.e., Estimated Take-

ff Time (ETOT) within the CTOT window) could still harm airline
perations. If the flight cannot depart within its allocated slot due to
ther delays, e.g. prior reactionary, the ATFM slot will be missed, and
new slot will be required. This reassignment of a CTOT generally is

erformed close to the planned departing time (once the airline realises
he slot will be missed). This tends to lead to significant extra delays
n the flight as early slots might already not be available, and a later
TOT is then imposed. Airlines need to anticipate these situations to
equest a new slot to the NM as early as possible so that a new CTOT
s obtained as close as possible to their ETOT. In this case, the CTOTs
cts as a threshold during flight planning.

Airlines can sometimes respond to the ATFM regulations. For exam-
le, if the regulation issuing the delay is in the airspace, a new flight
lan that avoids the congested airspace, e.g. re-routing, or maintaining
lower altitude (flight level capping) to avoid entering the congested
3

irspace, could reduce (or eliminate) the issued delay. A trade-off a
etween the cost of delay on-ground and extra required fuel and flying
ime to avoid the regulation will then be considered (Cook, Delgado,
anner, & Cristóbal, 2016). Moreover, if the aircraft is ready (crew and
assengers boarded), messages can be exchanged with the NM to try to
enefit from potential new early slots made available due to delays or
ancellations (EUROCONTROL, 2022b).

Accurate identification and prediction of ATFM regulations being
ssued to flights in D-1 – when there is almost no ATFM information

can reduce their impact on airspace users’ operations. They can be
ncorporated into expert systems used by the airlines’ tactical planners
o draw the operational plan for the day of operations.

Four machine learning models to predict different ATFM charac-
eristics 24 h before departure are developed and discussed in this
rticle. These models have been defined considering the input from
he members of the Dispatcher3 project’s advisory board, composed,
mong others, of airlines, dispatchers, pilots, air transport experts and
he network manager:

• Probability of regulated flight: Identification of flights likely
to be regulated, therefore, inferring the flights that may have
a ground delay and a reduced departing window and should be
closely monitored on the day of operation. If the flights compos-
ing the airline’s fleet is 𝐹 . The group of flights 𝐹 can be divided
between expected regulated and non-regulates flights, where 𝑅 =
{𝑓 ∈ 𝐹 | 𝑓 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑} and 𝑁 = {𝑓 ∈ 𝐹 | 𝑓 𝑖𝑠 𝑛𝑜𝑡 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑};

• Protected ATFM location: For regulated flights, whether the
regulation imposing the delay is due to aerodrome or airspace
restriction. Anticipating the congestion entity/region can aid in
defining and implementing preventive measures to minimise dis-
ruptions. For example, if the regulation impacting the flight is
in the airspace, the dispatcher could consider modifying the tra-
jectory, i.e., flight plan, e.g. applying level-capping or alternative
routes; however, if the regulation imposing the delay is located
at the airport, these approaches are not applicable, and other
measures could be considered, e.g. flight swapping or even can-
cellations. Using set notation, for aerodrome ATFM regulations
𝐴 = {𝑓 ∈ 𝑅 | 𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑏𝑦 𝑎𝑒𝑟𝑜𝑑𝑟𝑜𝑚𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠}. For airspace
regulations 𝑆 = {𝑓 ∈ 𝑅 | 𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑏𝑦 𝑎𝑖𝑟𝑠𝑝𝑎𝑐𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠};

• Zero VS Non-zero ATFM delay: If the flight is regulated, the
probability that the delay assigned is zero, i.e., ETOT within
CTOT. These flights should be closely monitored during the day
of operations to avoid large unplanned delays due to missed slots,
e.g. due to prior reactionary delays. The analysis of historical
data indicates that around 1/3 of regulated flights received a
delay equal to zero (see Section 4.1 for further details); this
highlights the importance of these types of flights and the need
for this classifier. Operational considerations, therefore, drive the
development of this model. In this case, zero ATFM regulations
corresponds to 𝑍 = {𝑓 ∈ 𝑅 | 𝑓 ℎ𝑎𝑠 𝑑𝑒𝑙𝑎𝑦 = 𝑧𝑒𝑟𝑜}. Non-zero
regulations belong to 𝐷 = {𝑓 ∈ 𝑅 | 𝑓 ℎ𝑎𝑠 𝑑𝑒𝑙𝑎𝑦 > 𝑧𝑒𝑟𝑜}.;

• Distribution ATFM delay: Expected value and distribution of
ATFM delay, if regulated and non-zero delay. Similar to the
previous model, it allows a better estimation of the potential
impact and severity of regulation on current and future rotations
by estimating the CTOT. To plan for the disruption due to ATFM,
not only an accurate prediction of the expected delay is required,
but an estimation of the uncertainty associated, as, for example,
low probabilities of high delay could lead to significantly high
expected costs for the airline (Delgado et al., 2020). For this last
model, the delay that is predicted is for flights belonging to 𝐷.

Fig. 1 shows the interaction between models and which models
rigger the subsequent ones for predicting the ATFM characteristics of
particular flight. Therefore, the figure represents the functionalities

rovided by the proposed system.
Positive or uncertain predictions decide if the downstream models
re triggered. For example, if the ATFM delay prediction model indicates
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Fig. 1. Interaction between the proposed models. In orange, the ML models, and in green, their outcome.
that the flight is likely to be regulated or the model is uncertain,
the model deciding where the regulation will be located is triggered.
As presented before, that second model is trained with the subset of
regulated flights (𝑅). Therefore, the location of the regulation is subject
to the flight being regulated, following a Bayesian approach. The end-
user must consider that this second model describes the location if the
flight ends up being regulated. These aspects are further described in
Section 5.3, where execution examples are provided.

3. Background

The feature selection is presented in Section 3.1. The different
modelling approaches implemented are introduced in Section 3.2. Sec-
tion 3.3 details the evaluation metrics used. Section 3.4 reviews previ-
ous work using tools for model explainability and justifies the selected
approach.

3.1. Feature selection analysis

The success of ML models primarily depends on the quality and
quantity of information used to obtain the desired predictions. Good
examples of the effect that the selected features can have on the
performance of the models are found in (Pamplona & Alves, 2019;
Rebollo & Balakrishnan, 2014). Feature selection is identifying and
selecting a subset of relevant features from a larger set of features
to improve the performance of a ML model. It involves analysing the
importance of each feature and selecting only those most informative
for the given task.

In this article, a univariate feature selection method with a scoring
method based on an ANalysis Of VAriance (ANOVA) (Judd, McClelland,
& Ryan, 2017) between labels and the features for classification and
regression tasks is used to calculate a statistical score or a measure of
importance for each feature in isolation, without assuming linearity in
the relationship between the target variable and the features. The idea
is to compute the F-statistic for each feature, which is the variance
ratio between the groups to the variance within the groups. A high
F-statistic indicates that the means of the groups are significantly differ-
ent, and thus, the feature is more relevant for the classification task. In
regression analysis, the F-test determines whether a set of independent
variables (i.e., features) are statistically significant in explaining the
dependent variable (i.e., target variable).3

3.2. Modelling approach

Two families of models are used to predict information related to
ATFM regulations. Binary classifiers are used to predict the probability

3 Python Scikit-learn tools have been used for this process. https://scikit-
learn.org/ (Accessed May 2024).
4

Fig. 2. Probability distribution ATFM delay approach.

of events: if a flight will be regulated, which location is protected by the
regulation (airspace or airport), and whether the issued delay will be
zero. On the other hand, the expected issued delay and the probability
distribution of this ATFM delay is estimated for regulated flights with
an assigned delay greater than zero.

A binary classifier in machine learning is an algorithm that predicts
the likelihood of an input being one of two possible classes or cate-
gories. For instance, in a random forest classifier, the predicted class
probabilities of an input sample are computed as the mean predicted
class probabilities of the trees in the forest.

As mentioned in Section 2, to train the model that predicts the
flights that will be regulated, label the flights according to: 𝑅 = {𝑓 ∈
𝐹 | 𝑓 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑} and 𝑁 = {𝑓 ∈ 𝐹 | 𝑓 𝑖𝑠 𝑛𝑜𝑡− 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑}, being 𝐹 is the
flights from the airline’s fleet.

For the model that predicts the protected location, the model con-
siders only the flights which belong to the subset 𝑅 labelling them
according to the subsets 𝐴 = {𝑓 ∈ 𝑅|𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑏𝑦𝑎𝑒𝑟𝑜𝑑𝑟𝑜𝑚𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠}
and 𝑆 = {𝑓 ∈ 𝑅 | 𝑓 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑏𝑦 𝑎𝑖𝑟𝑠𝑝𝑎𝑐𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠}.

Finally, to identify whether the issued delay will be zero or non-
zero, the two possible classes come from the subsets 𝑍 = {𝑓 ∈
𝑅 | 𝑓 ℎ𝑎𝑠 𝑑𝑒𝑙𝑎𝑦 = 𝑧𝑒𝑟𝑜} and 𝐷 = {𝑓 ∈ 𝑅 | 𝑓 ℎ𝑎𝑠 𝑑𝑒𝑙𝑎𝑦 > 𝑧𝑒𝑟𝑜} are
used, training the model with the flights of subset 𝑅.

For the expected ATFM delay of regulated flights, the goal is to
provide a probability distribution of possible minutes of delays. To
do so, the work done in (De Falco & Delgado, 2021) predicting the
expected block time and in (Falco et al., 2023) for the prediction
of turnaround and target off-block times have been adapted to the
estimation of the expected ATFM delay. This approach transforms a
regression problem into a combination of regression and classification
problems. First, a regressor model predicts the target variable (i.e.,
the amount of ATFM delay). Then, the error of this model on the
dataset is discretised (from a minimum and maximum value) using a
binning process and used to train a probabilistic multi-output classifier.
The combination of the two models (regression and distribution of
probability errors) produces the probability distribution of ATFM delay.
Fig. 2 depicts the interaction between the two models.

For this model, the subsets of observations used to train the model
come from regulated flights where a non-zero delay was issued (𝐷).

https://scikit-learn.org/
https://scikit-learn.org/
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Note that providing a probability distribution of possible ATFM
delays, even though when it is expected to be small, instead of a single
value is paramount when assessing the impact of the regulation as
uncertainty plays a significant role when translating delay into costs
due to the non-linearity of cost of delay (Cook & Tanner, 2015). For
this purpose, a novel approach has been selected to study its potential,
even though more consolidated methods exist in the literature.

3.3. Evaluation metrics

Performance metrics suited for the model type are used to measure
their quality. Section 3.3.1 presents the metrics for the binary classifier.
Section 3.3.2 evaluates the delay probability distributions of the ATFM
delay.

3.3.1. Binary classifiers
Metrics based on thresholds, which compare the labels predicted by

the models and the ground truth, are used in this article for the binary
classifiers. The selected evaluation metrics are:

• Accuracy: proportion of correct predictions among all predic-
tions made by the model (positives and negatives). A high accu-
racy score indicates that the model is making correct predictions
overall;

• Recall: proportion of true positive instances the model correctly
identified. A high recall score indicates the model correctly iden-
tifies positive instances;

• Precision: proportion of instances predicted as positive that are
true positive instances. A high precision score indicates that the
model is making accurate positive predictions;

• F1-Score: measure of accuracy for unbalanced datasets. The
weighted average of precision and recall. A high F1-Score indi-
cates the model has a good balance of precision and recall and
correctly identifies both classes.

3.3.2. Probability distribution
In this case, the goal is not just to provide a real number from a

regressor model about the minutes of ATFM delay but to consider the
inherited uncertainty present in the ML models and the system. As the
end goal is to estimate the uncertainty in the prediction, the evaluation
metrics are designed with the same intention.

The accuracy of these models is computed as the difference be-
tween the expected value of the distribution and the actual ATFM delay
(see red line in Fig. 3). Therefore, the Mean Absolute Error (MAE)
can be computed to quantify how close the expected value of the
distribution is to the actual ATFM delay.

As the classifier is trained to capture a continuous variable in a
range of possible values after a binning process, it is possible to define
a measure of uncertainty considering the range covered by a given
distribution percentile (De Falco & Delgado, 2021). The average min-
utes required to cover 90% of the probability in the distribution is used
to measure this uncertainty. The lower the uncertainty, the narrower
the distribution; therefore, fewer minutes are required to cover 90% of
the probability, which ensures that any possible uncertainty from the
model is captured (see blue bins in Fig. 3). Measuring the uncertainty as
the average time required to cover 90% of the probability in a discrete
probability distribution is often referred to as a ‘‘90th percentile’’ or
‘‘P90’’ measure, which is a well-known approach. The 90th percentile
represents the value below which 90% of the data falls, so it provides
a good indication of the upper bound of the expected delay, capturing
worst-case scenarios within the probability distribution.

Although the probability distribution provides a range of possible
values, there may still be cases where there are significant discrepancies
between the predicted distribution and actual ATFM delay. To better
understand these extreme cases, i.e., when the actual ATFM delay is
much larger or smaller than the values predicted by the distribution,
5

Fig. 3. Evaluation probability distribution ATFM delay.

the Prediction Interval Coverage Probability (PICP) is calculated as
a measure of how well the computed prediction distributions cover the
actual outputs (targets). Based on the definition presented in (Khosravi,
Nahavandi, & Creighton, 2010), we define the PIPC as follows:

𝑃𝐼𝐶𝑃 = 1
𝑁

𝑁
∑

𝑖=1
𝐶𝑖 (1)

where

𝐶𝑖 =
{

1 𝑡𝑖 ∈ [𝐿𝑃𝐼 𝑖, 𝑈𝑃𝐼 𝑖]
0 𝑡𝑖 ∉ [𝐿𝑃𝐼 𝑖, 𝑈𝑃𝐼 𝑖]

(2)

𝐿𝑃𝐼 𝑖 and 𝑈𝑃𝐼 𝑖 are, respectively, the lower and upper bounds of the
prediction distribution constructed for the ith sample. 𝑡𝑖 is the ith target
value the model aims to estimate. 𝑁 is the number of samples of the
validation test.

Note that the classifier used to characterise the distribution is
bounded by the discretisation of the error of the regressor as described
in Section 3.2.

3.4. Explainable machine learning

In many real-life applications, especially those with high safety lev-
els, the performance of the models is as important as its interpretability.
That is, obtaining theoretical guarantees on the expected behaviour of
machine learning-based systems during operation.

To understand the factors impacting the predictions, SHapley Addi-
tive exPlanations (SHAP) is used as it can explain the output of many
machine learning models (see Lundberg and Lee (2017) for further de-
tails about SHAP). This technique is widely used in ML applied to ATM;
for instance, Mas-Pujol, Salamí, and Pastor (2022) employed SHAP
to study the influence of both scalar and image-based input features
predicting the likelihood of traffic volumes to be regulated. Dalmau
(2022) used it to understand the outcome of the proposed ensemble
method to predict the likelihood of re-routing to mitigate ATFM regu-
lations. Lambelho, Mitici, Pickup, and Marsden (2020) utilised SHAP to
explain the models used for strategic slot flight assignment at London
Heathrow Airport. Xie, Pongsakornsathien, Gardi, and Sabatini (2021)
used it in a more general manner to explain ML solutions in ATM.

SHAP calculates the contribution of individual input features to the
predictions made by the model. This quantification is expressed using
numerical values, where each value represents the degree of influence
that a specific feature has on a particular prediction. SHAP values can
be positive or negative and around zero:

• Positive indicates that the presence or elevated value of that
feature increases the model’s prediction or output, driving the
prediction in a favourable direction.
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Table 1
Data sources used to predict ATFM regulations for individual flights.

Data source Period time Usage Comment

Airline data 2018 Labelling ATFM information (probability, location, and delay)
DDR2 2018 Features Flight intentions (origin, destination, and Scheduled Off-Block Time (SOBT)) for the airline of interest
Airports data Static Features Size (small, medium, big) and hub information (no, yes)
PREDICT 2018 Features Airport demand (number departures and arrivals)

2018 Features Network demand (entry and occupancy count)
NOAA 2018 Features Weather (origin/destination airport)
f
p
a

• Negative signifies that its presence or elevated value has con-
tributed to reducing the model’s prediction or output, steering the
prediction in an adverse direction.

• Zero suggests that the presence or value of that feature did not
influence the prediction for that specific observation. In essence,
the feature played no role in determining the model’s output.

Luo, Wu, Wang, Wang, and Meng (2021) found that SHAP provides
a more intuitive and interpretative way of understanding the relation-
ships between input features and the model’s predictions than other
model-agnostic techniques such as Local Interpretable Model-Agnostic
Explanations (LIME).

4. Modelling

Section 4.1 introduces the data sources used. Both to label the
observations and to engineer the input features. Section 4.2 summarises
the engineered input features that train the models. Section 4.3 spec-
ifies the output of each model — the targets or labels. Section 4.4
presents the feature correlation analysis, determining the more relevant
features to train the models. The supervised ML models are described
in Section 4.5.

4.1. Data sources

The models presented in Section 4.5 aim to forecast ATFM regu-
lations from a flight-centric perspective. Data from a European airline
with a high volume of operations have been used to label the observa-
tions. This guarantees accurate data for the labelling process and their
availability. Concretely, we have used data from 2018, composed of
approximately 200,000 flights (𝐹 ) from which 66,000 were regulated
(𝑅) – around 33% of all operated flights.

From the regulated flights, 61% were due to airspace ATFM regu-
lations (𝑆) while 39% have as protected location type the aerodrome
(𝐴). 31% of the regulated flights received a delay equal to zero (𝑍),
13% a delay greater than zero but smaller than 5 min, and only 10%
a delay greater than 20 min. It is worth mentioning that cancelled
regulations are omitted, and no filtering has been applied according
to the regulation’s reason.

The datasets for the binary classifiers are not balanced, i.e., the
distribution of classes is uneven. However, using evaluation metrics
such as the F1-Score will help us determine if the models are reporting
a balanced performance or whether the models have a preference
between the two possible classes.

To create the input features, the Data Demand Repository 2 (DDR2)
from EUROCONTROL is used to extract the Flight Intentions (FIs)
(origin, destination, and SOBT). Static airport information specifies the
size of the departure/arrival airports and whether they are used as a
hub for the airline. To estimate the demand of the crossed airspace
sector, it is necessary to have access to the flight plans. However,
they are not normally available at the selected prediction horizon. The
PREDICT software is the NM support tool intended to estimate the
flight plans when those still need to be submitted. The implementation
utilised in this article is purely based on historical flight plans, while the
official implementation has additional features such as a catalogue or
the shortest router finder for those flights not available in the historical
data. National Oceanic and Atmospherics Administration (NOAA) is the
6

selected source of weather forecast (National Oceanic and Atmospherics
Administration (NOAA), 2024).

Table 1 collects all the data sources and their usage.

4.2. Input features

When developing machine learning models, ensuring that the data
used to train the final models are available during execution time is
crucial (Delgado, Mas-Pujol, Skorobogatov, Argerich, & Gregori, 2022).
However, one of the challenges in the aviation field is that historic
datasets tend to contain snapshots of released data, making it very
difficult to know what data were available at a given moment. This is
particularly relevant for the network and weather data. Therefore, the
same label can be predicted with the information available at different
horizons. As this article focuses on predictions at D-1, we need to
ensure that data sources used are available 24 h before the SOBT. Note
that as we are estimating characteristics of ATFM, if the prediction
horizon is too close to the operation of the flight, e.g. a few hours
before departure, the information on the regulations would already be
known, and no benefit for planning purposes could be obtained from
the models.

It is helpful to differentiate between static and dynamic data (and
eatures). Static data (and features) do not vary as a function of the
rediction horizon. Examples of these data are origin and destination,
ircraft type, or time of the day when the flight is scheduled. Dynamic

data might change at different horizons. For example, the weather
forecast might be updated over time, or the expected demand at the ar-
rival airport might differ depending on the available flight information.
This distinction allows us to estimate the importance of the dynamic
features on the overall performance of the algorithms and, therefore,
the relevance of the prediction horizon for a particular problem.

Table 2 collects all the engineered features grouped by topic, their
definition, and the feature type (static or dynamic). Hour, day, and
month of planned departure characterise the day of operations and the
seasonality. The characteristics of departure and arrival airports are
also considered. We used the size of the airports and if it is used as a
hub by the airline as defined in (Gurtner, Delgado, & Valput, 2021).
Also related to the airports, the normalised number of departures
and arrivals in the same hour as planned by the flight is computed
using the OD pairs and ETOT. The normalisation of these features
has been done using two techniques. First, by the average number
of departures/arrivals at the same flight hour in the previous thirty
days. Second, by the average number of flights in the previous thirty
days at the same hour and day of the week. Note that the names of
the airports are not explicitly used, even if state-of-the-art machine
learning techniques can handle high-cardinal features, as the goal is
to create models which are as general as possible. The specific airports
will, indeed, be correlated with some of the features already considered
by the model, e.g. size and congestion, and therefore their explicit
consideration is not necessarily required to achieve high-performance
models (as shown in this article).

Information about the expected congestion of the network is also
used. In this case, we show the models the normalised Occupancy
Count (OC) and Entry Count (EC) between all the elementary crossed
sectors in the planned routes. OC and EC are normalised with respect
to the average number of flights inside the sector in the previous thirty
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Table 2
Input features grouped by topic.

Topic Feature Definition Type

Operational Hour departure Hour from SOBT. Value from 0 to 23 Static
time Day week departure Day week form SOBT. Value from 0 to 6

Month departure Month form SOBT. Value from 0 to 11

Airport static Size departure airport Three size {small, medium, large} Static
information Size arrival airport Three size {small, medium, large}

Hub departure Used as a hub by the airline {no, yes}
Hub arrival Used as a hub by the airline {no, yes}

Airport Normalised departures hour Departures respect the same hour Dynamic
demand Normalised departures day Departures respect the same day of week

Normalised arrival hour Arrivals respect the same hour
Normalised arrival day Arrivals respect the same day of week

Network Normalised OC average OC/avg. OC. Most crowded crossed sector Dynamic
demand Normalised OC max OC/max. OC. Most crowded crossed sector

Normalised EC average EC/avg. EC. Most crowded crossed sector
Normalised EC max EC/max. EC. Most crowed crossed sector

Weather Visibility depart/arrival Directly from NOAA divided by 12000 Dynamic
Wind depart/arrival Directly from NOAA (Knots) divided by 30
u-wind depart/arrival Directly from NOAA (Knots) divided by 30
Temperature depart/arrival Directly from NOAA (F) divided by 125
Rel. humidity depart/arrival Directly from NOAA divided by 0.0015
Geopotential depart/arrival Directly from NOAA divided by 25000
Ventilation rate depart/arrival Directly from NOAA divided by 40000
s
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days in the same hour. They are also normalised using the maximum
values considering the previous thirty days, in the same hour of the
day. Finally, the weather conditions at the departure and destination
airports are modelled based on the NOAA weather forecast.

4.3. Output targets — Labelling

The expected outcome of the models depends on the selected ML
algorithm, the labelling used, and the type of prediction (binary, re-
gression or classification). For the binary classifiers that predict the
probability of regulated flight regulation, a label equal to zero indicates

non-regulated flight; otherwise, the label is one. This differentiates
etween the subsets 𝑅 and 𝑁 as indicated in Section 2. The protected

location would use a label equal to zero if the flights were regulated due
to aerodrome congestion, while one corresponds to congestion in the
airspace, generating subsets 𝐴 and 𝑆. The model that predicts whether
he ATFM delay will be zero would utilise a label equal to one if the
light had zero minutes of delay, for the definition of subsets 𝑍 and 𝐷.

Note that while the output from a random forest model can provide
a measure of confidence or certainty about a prediction, it is not a
probability in the strict sense. However, you can indirectly estimate
class probabilities with a random forest by looking at the proportion of
trees that vote for a particular class (Liaw, Wiener, et al., 2002).

For the probability distribution of ATFM delay, as the name indicates,
we want to predict a probability distribution, combining a regressor
and a classifier, as explained in Section 3.3.2. For the regressor, the
labelling used is the actual issued minutes of ATFM delay to each of the
flights. For the probabilistic classifier, once the prediction error from
the regressor has been computed on the training set, the next step is to
discretise and bin the error of this first model to train a probabilistic
classifier model to predict these errors.

4.4. Feature selection analysis

Fig. 4 shows the sum of the scores (F-statistics) by the different
features grouped per topic obtained applying an ANOVA analysis as
xplained in Section 3.1. This provides a measure of each feature’s rela-
ive importance in the problem’s context. Note that different topics have

different amounts of features. For instance, the topic of operational time
has three features, while the topic of weather contains 14. Therefore,
weather may report a much larger overall relative importance. How-
ever, no normalisation according to the number of features per topic
7

has been applied to show their overall contribution. T
The previous figure (Fig. 4) provides an overall view of the results
obtained during the future selection analysis. However, as Section 3.1
explained, an individual analysis has been performed per model.

For the probability of regulated flight, weather information shows high
ignificance when explaining the probability of the event. Especially the
ind components and speed, geopotential,4 and temperature. It is also

highly correlated with the size of the arrival airport, the congestion
at both airports and network demand features. On the other hand,
the operational information and the congestion at the airports are less
correlated with the target features, but their correlation cannot be
ignored. Finally, the feature that indicates whether the arrival airport
is used as a hub by the airline does not add information; thus, it is
removed from the final training dataset.

When estimating the protected location, the ANOVA analysis shows
hat the static information about the airports has high variability with
he labelling, providing meaningful information. Especially the size of
he airports and whether the departure airport is used as a hub by
he airline. Similar to the previous case study, the most correlated
eather features related to the weather are the wind, followed by the
eopotential, and the ventilation rate5 of the departure airport. The
est of the input features do not present a clear pattern. However, the
ontribution is not negligible, except for the congestion in the same
our and the ventilation rate of the arrival airport, which are removed
rom the training dataset as the score is smaller than one.

Focusing on whether the ATFM delay will be zero, the static in-
ormation about the origin/destination airports is the most correlated
nformation with the target, and weather information plays a minor
ole than in the previous case studies. Furthermore, something impor-
ant to note is that the overall score of the features is significantly
maller. Previously, the observed scores for individual features were
round three, while now they are around 0.5. This indicates that the
verall significance of the selected features is very low when predicting

4 Geopotential is a way of measuring height in the atmosphere that consid-
rs the Earth’s gravity, but instead of using physical meters or feet, we use a
ypothetical unit of energy called gravitational potential energy. By measuring
he geopotential height of a pressure surface, we can better understand how
he atmosphere is structured and changes over time.

5 Ventilation rate is based on multiplying transport wind to mixing height.
ixing height represents the height of the mixed layer (or parcel of air)

hat would rise in the atmosphere due to atmospheric mixing or turbulence.

ransport wind is the average wind speed through the mixed layer.
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Fig. 4. Feature correlation ATFM characteristics.
whether the identified ATFM regulation will issue a delay equal to zero
minutes for specific flights. The results make sense as the final imposed
ATFM delay comes from the CASA algorithm based on the first-in-first-
served principle. For instance, the condition of the network does not
determine the issued ground delay. The congestion at the airports, the
month of the year, and the visibility are removed from the final training
dataset due to their low correlation.

Finally, the feature selection analysis between the selected features
and the actual ATFM delay shows a medium level of variance compared
to the previous three case studies. Interestingly, although the selected
features exhibit a lower correlation for the labelling used to predict
whether the delay is zero, this is not the case for the actual ATFM delay
with an average score of around two. The most correlated features are
the departing hour and the characteristics of the departure airport.
Then, the wind, the geopotential, the network congestion normalised
by the maximum historical values, and the temperature. All features
with a score lower than one are removed from the training dataset.

4.5. Model training

Model training includes selecting the model and hyper-parameters
that best fit each problem. The approach followed in this article is
based on a GridSearch analysis to find the best models and their hyper-
parameter (Hastie, Tibshirani, Friedman, & Friedman, 2009) using the
training/validations datasets.

4.5.1. Binary classifiers training
The balanced accuracy score has been used for the binary classifiers

as the scoring function to ensure that the selected algorithm and hyper-
parameters are as optimal as possible for both classes for the final
model. Based on the literature, the analysed algorithms are the MLPs
(i.e., NN), decision tree, random forest, AdaBoost, and Linear SVCs.

After the analysis, the supervised algorithm that stands out is the
random forest classifier, with different configurations for the target
variable. Table 3 shows the hyper-parameters of the different binary
models and a reminder of the subset of flights used to train the models
as described in Section 2. For the probability of regulated flight and
protected location, the GridSearch analysis reports that the ML algorithm
is a random forest classifier using a criterion equal to ‘gine’, a maximum
depth of 50, and 200 estimators. For the binary classifier that aims to
predict whether the ATFM delay is going to be zero, the results indicate
that also a random forest classifier is the best candidate, but using a
criterion equal to ‘gine’, a maximum depth of 50, and 25 estimators.

The results obtained from the GridSearch analysis match what
can be found in the literature, showing that simpler models tend to
perform better than complex ones for flight-centric approaches. For
instance, Gui et al. (2019) show that random forest-based models report
higher performance than complex artificial NN (e.g. LSTMs, which tend
to under-perform and overfit) when predicting flight delays.
8

Another important benefit of using this type of classifier is the
low training and prediction complexity. A random forest presents a
prediction complexity of approximately 𝑂(𝑁𝑙𝑜𝑔(𝑁)) in the worst-case
scenario. 𝑁 is the number of trees or estimators. This simplifies to ap-
proximately 𝑂(1100) operations with 200 estimators, which is relatively
small and indicates that making predictions with tree-based models
should be computationally efficient, even for large datasets and many
estimators.

4.5.2. Probability distribution training
Similar to the binary classifiers, different supervised algorithms

have been evaluated using a GridSearch analysis to discover the best
possible candidate to predict the ATFM delay of regulated flights. To
do so, MLPs for regression, decision tree regressors, random forest
regressors, AdaBoost regressors, and Ridge have been studied. In each
case, all possible combinations of a pre-defined search space have
been used to train models and discover the best possible candidate.
Table 4 collects the hyper-parameters of the best model to predict the
minutes of ATFM delay, which is a random forest regressor using a
‘squared_error’ as the criterion, a maximum depth of 100, a maximum
number of features equal to ‘auto’ which means that all the features are
used, and 25 estimators. Note that this model is trained on the subset
of flights that are regulated and have a positive delay (𝐷).

Once trained, the regressor and the prediction error are computed
on the training set, and the next step is to discretise and bin the error
from the regressor so that a classification model can be trained to
predict these errors. After the error distribution analysis, an error range
of [−20, 20] minutes is selected, corresponding to the 90th percentile
of the probabilities in the distribution error with a bin size equal to
2 min to ensure a good resolution.

Similar to the previous tree-based classifiers, the tree-based re-
gressor and the selected NN present a low training and prediction
complexity (e.g., the NN uses one hidden layer with 25 units). Focusing
on the prediction complexity, the models will be very efficient in
evaluating new scenarios and predicting the expected ATFM delay.6
Therefore, as in the previous cases, there is no need to use advanced
techniques such as the ones based on knowledge distillation to reduce
the complexity of the trained models (Xiao et al., 2023; Xiao, Xing,
Zhao, et al., 2024).

Table 5 collects the hyper-parameters for the multi-output classifier
required to predict the probability distribution of the error of the
regressor. The main specification of the classifier has been extracted
from (De Falco & Delgado, 2021), and different combinations of MLPs
have been tested to find the best hyper-parameters. The analysis reports
that the best performance is obtained using the optimiser Adam, one

6 A prediction can be generated in approximately 0.2 s with a 9th
generation Intel Core i7.
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Table 3
Binary classifiers models parameters.

Target problem Training subset ML algorithm Hyper-parameters Value

Probability regulated flight 𝐹 Random forest classifier Num. estimators 200
(yes VS no) Max. depth 50

Criterion gini

Protected location 𝑅 Random forest classifier Num. estimators 200
(aerodrome VS airspace) Max. depth 50

Criterion gini

Zero ATFM delay 𝑅 Random forest classifier Num. estimators 25
(zero VS non-zero) Max. depth 50

Criterion gini
Table 4
Regressor — Probability distribution ATFM delay models parameters.

Target problem Training subset ML algorithm Hyper-parameters Value

ATFM delay 𝐷 Random forest regressor Num. estimators 25
(minutes) Max. depth 100

Max. features auto
Criterion squared_error
Table 5
Classifier — Probability distribution ATFM delay.

Target problem Training subset ML algorithm Hyper-parameters Value

ATFM delay 𝐷 MLP Learning rate 0.0001
(prob. distribution) Num. hidden layers 1

Num. units 25
Batch size 64
Optimiser Adam
Activation functions Relu
Weights initialisation Glorot uniform
Learning rate 0.0001
a
t
w
p
p
t
a

hidden layer with 35 neurons, a ‘relu’ activation function, and a learn-
ing rate equal to 0.0001. The GridSearch analysis is used to define the
hidden layers.

It is worth mentioning that using cross-entropy as a loss function
for the classification model enables us to consider the probabilities of
each class (bin) in the prediction as a probability for the real value
being on that bin. Therefore, the possible values on all bins (shifted
by the expected value of the regression model) can be understood as
a probability distribution of the target variable (De Falco & Delgado,
2021).

5. Results

The performance of the optimised models was evaluated on the
test set, using the typical 80%–20% train–test split. Section 5.1 shows
the performance of the different models. Section 5.2 presents the
feature analysis based on SHAP values to interpret the models’ predic-
tions. Section 5.3 provides some examples of the advice capabilities
of the system, integrating the outcome of the different models as
integrated into an expert system. Finally, Section 5.4 compares the
results from this article with the ones obtained in a previous publication
(Mas-Pujol, Salamí, & Pastor, 2021) where post-operational data were
used.

To better show the contribution of the dynamic datasets (and fea-
tures), the performance of the models will be compared to a static
model trained using only the static data (and features). For each of the
models, it is presented the proposed metrics using only static data (i.e.,
operational time and static airport information) and all the proposed
features (i.e., static and dynamic features).

5.1. Performance metrics

Table 6 shows the results from the binary classifier. The probability
9

of regulated flight exhibits a balanced performance with all the metrics b
around 82%. It is interesting to see how the dynamic features signif-
icantly increase the performance of the models, especially the recall.
This indicates that the additional features positively contribute to the
detection of possible samples (i.e., regulated flights), also increasing
the overall accuracy. The protected location model for regulated flights
shows the best performance, taking advantage of the dynamic features.
For this model, we can see that the precision is the metrics with a
larger improvement, indicating that the model can distinguish positive
predictions better. The better recall and precision, indicating a more
accurate detection of airspace regulations, improved around 10% of the
overall performance with a balanced accuracy of around 87%. Finally,
the model that predicts whether the ATFM delay will be zero reported
accuracy and F1-Score close to 70%. The drop in the performance is
expected due to the low correlation of the input features (see Fig. 4,
compared to the previous models). Probably, the model will benefit
from features related to the information used by the CASA algorithm,
such as the expected moment in which the flight will enter the con-
gested region. However, this approach will require a tool that identifies
what and when the crossed traffic volumes will be regulated in the
selected prediction horizon, information unavailable at D-1.

Note that the results for the protected location are conditioned on
the probability of a flight being regulated, as the model is trained
on the subset of flights that are regulated (𝑅). The protected location
will be only estimated for flights expected to be regulated. A single
model which directly predicts if a flight will be regulated and the
protected location has been tried, i.e., trained using all the flights (𝐹 )
nd differentiating between three classes: non-regulated, regulated due
o airspace or regulated due to airports. This model shows a slightly
orse performance, with an accuracy of 0.69, while the current ap-
roach shows a combined accuracy of 0.71. Moreover, the Dispatcher3
roject’s advisory board validated the current approach, stating that
he proposed approach will add more value to the process as it will
llow the decision-maker to consider the area where the flight would

e regulated if that is the case, following a Bayesian approach.
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Table 6
Evaluation metrics binary classifiers.

Model Features Accuracy Recall Precision F1-Score

Prob. flight regulated Static 0.71 0.66 0.85 0.74
Static and Dynamic 0.82 (+0.11) 0.81 (+0.15) 0.82 (−0.03) 0.82 (+0.08)

Protected location Static 0.78 0.76 0.75 0.75
Static and Dynamic 0.87 (+0.09) 0.84 (+0.08) 0.89 (+0.14) 0.86 (+0.11)

Zero delay Static 0.59 0.68 0.58 0.62
Static and Dynamic 0.68 (+0.09) 0.67 (−0.01) 0.69 (+0.11) 0.69 (+0.07)
Table 7
Evaluation probability distribution.

Features MAE (mins) Mean 90% probability (mins) PICP (%)

Static 12.38 20.13 0.83
Static and Dynamic 9.58 (−2.8) 12.87 (−7.26) 0.88 (+0.05)
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Table 7 presents the results when predicting the probability distri-
ution of the expected ATFM delay for regulated flight with a non-zero
elay. As can be seen, the addition of dynamic features improves
erformance considerably. The value of the MAE, which estimates the
rror between actual and expected delay, is reduced to 9.6 min (an
mprovement of 2.8 min). Furthermore, the results show a reduction
f around 7 min in the uncertainty: from 20 to 13 min. The predicted
robability distribution is narrower, requiring a smaller time range to
over 90% of the overall probability. Using only static features, the
ICP (actual ATFM delay inside the predicted distribution) is 83%,
hile it improves by 5%, to 88%, when adding the dynamic features.
herefore, the dynamic data not only reduces the uncertainty of the
redictions (narrower probability distribution) but increases the PICP
ATFM delay falls within the predicted distribution). Similarly to the
ero delay model, the model will probably benefit from additional
eatures linked to the information used by the CASA algorithm.

.2. Feature importance — SHAP values

The graphs below aggregate the features and observations for the
op 10 most relevant features, showing on the 𝑦-axis the name of the

features and the 𝑥-axis the average contribution to the final predic-
tion. A colour schema has been used to easily identify topics of the
different input features (e.g. light blue for operational information), and
hose topics that only contain static features are distinguished using a
iagonal line pattern.

Fig. 5 depicts the SHAP analysis for the probability of regulated flight,
urple for airport-related static information. The model prioritises the
ize of the arrival airport, the expected wind, the network demand,
he geopotential, and operational information such as the day of the
eek or the hour. Aerodrome ATFM regulations are issued due to
igh demand at the destination airport; thus, the importance of the
rrival airport’s size as a bigger airport implies more traffic and higher
robabilities of regulations. The relevance of wind at the arrival air-
ort can drive similar conclusions. The expected network demand is
irectly related to airspace ATFM regulations, and the geopotential is
inked to the altitude of the airports, e.g. to the likelihood of adverse
eather conditions. Finally, the hour and day of the week are highly

elevant because most regulations are issued in the morning to avoid
ownstream effects or on the weekends due to the larger traffic volume.

Fig. 6 shows the SHAP analysis of the protected ATFM location
aerodrome or airspace). In this case, static features play an important
ole. The size of the arrival airport is the most relevant input feature,
ollowed by whether the arrival airport is used as a hub by the airline
nd some operational information, such as the day of the week or the
eparting hour. The model mainly considers wind-related information
s the dynamic features.

Fig. 7 presents the SHAP analysis of the trained model to predict
hether the expected ATFM delay of a regulated will be zero or non-
10

ero. In this case, the most relevant features are the flight operational p
nformation, the geopotential, and the wind. However, if we focus our
ttention on the values on the 𝑥-axis, the range of reported SHAP values
s much smaller than in the previous models (previously from 0 to 0.1,
nd now from 0 to 0.05). This indicates that the model cannot extract
uch information from the features directly related to the observed low
erformance.

For the probability distribution of ATFM delay, Fig. 8 presents the
HAP analysis of the trained random forest regressor, which estimates
he minutes of ATFM delay. The analysis shows that the hour of
eparture is the most relevant feature. The next most relevant features
re the wind, the network demand, the congestion at the airports,
nd the geopotential. Blue dots represent low values of the features
hile red high values. Thus, the SHAP values of the hour of departure

ndicate that most non-zero ATFM regulations are implemented in the
orning, while high wind, network demand, and geopotential might

e responsible for the regulation.
Finally, Fig. 9 shows the results from the SHAP analysis for the

lassifier used to characterise the error of the regressor. The static hour,
day, and size of the arrival airport are, in this case, the most impor-
tant features. The wind, the airport’s congestion, and the departure
aerodrome’s size follow them. The selected error range is [−20, 20]
minutes with a bin size equal to 2 min (20 classes), as explained in
Section 4.5.2. Therefore, class 0 corresponds to −20 min correction,
class 10 to 0 min, and class 20 to 20 min. If we focus our attention
on the legend in Fig. 9, we can see that the most frequent classes are
between 0 and 10, indicating the classifier is trying to compensate for
an overestimation from the regressor. As seen before, predicting the
minutes of ATFM delay is the most challenging part.

5.3. Operational usage

The previously presented models can be integrated into an expert
system that provides the tactical planners and duty managers with the
relevant information when defining the operational plan on D-1 and
when monitoring and managing the fleet on the day of operations,
respectively. The proposed system, therefore, combines the outcome
of the different models, ensuring that only the necessary information
is displayed and avoiding an overload of information. Furthermore,
the proposed colour schema indicates the uncertainty of the models.
Uncertain predictions are shown in red; otherwise, green is used.

The simplest scenario is the one where the flight is not regulated.
The closer to zero the predicted value by the probability of regulated
flight model, the less likely it is for the flight to be regulated. For
example, Fig. 10(a) shows that, in this case, the flight has a 12%
probability of being regulated. The outcome is displayed in green as
the model is certain about the prediction.

On the other hand, if the model that predicts the probability of
regulation is uncertain, i.e., probability ≥ 0.25 ≤ 0.75, the outcome
s displayed in red, and the analysis is extended by evaluating the

rotected location and whether the issued delay would be zero (see
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Fig. 5. Top-10 SHAP analysis probability of regulated flight.
Fig. 6. Top-10 SHAP analysis protected ATFM location.
Fig. 7. Top-10 SHAP analysis zero ATFM delay.
Fig. 10(b)). If the flight is expected to be regulated, i.e., probability of
being regulated >0.75, the predictions of location and amount of delay
will also be carried out and displayed (as shown in Figs. 11 and 12). The
protected location is represented on the integration view by changing
the top level between aerodrome or airspace as a function of the highest
predicted value.

For flights with high uncertainty or likely to be regulated with a
delay different than zero, the system triggers the models required to
11
show the amount of delay assigned to the flight. Fig. 11 shows the
predictions at D-1 obtained for a flight from LIQR to LFPO with a SOBT
at 8:50. The framework predicts with a high probability the flight will
be regulated due to airspace congestion, but it is uncertain about the
amount of delay (probability zero delay around 0.5). If the flight is
regulated with a positive delay, the expected ground delay is 5 min
with an uncertainty (90th percentile) of 14 min.
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Fig. 8. Top-10 SHAP analysis regressor ATFM delay.
Fig. 9. Top-10 SHAP analysis multi-output classifier ATFM delay.
Fig. 10. Certain and uncertain probability of ATFM regulation.
Airlines need to monitor flights that are highly likely to be regulated
closely. Therefore, the tactical planner could benefit from identifying
those flights during the pre-tactical phase and actively producing new
flight plans and preparing solutions (e.g. aircraft swaps) to reduce the
impact of ATFM delays on their fleet. Nonetheless, airlines, through
the duty manager, can also benefit from uncertain predictions as red
flags linked to flights that should be monitored as their status could
change during the day of operations. The proposed framework could
also be used to evaluate the newly produced flight plans, using a what-
if scenario, to determine the implications of changes in the initial flight
plan. For example, Fig. 12 evaluates the same previous flight but with
a different horizontal route, crossing less congested sectors. The new
proposed route has been extracted from historical data, using a similar
12
principle to the one proposed in the PREDICT implementation used in
the article, i.e., using historical information. In this new scenario, the
models are still certain about the ATFM regulation, indicating the flight
is still regulated but with a high probability of a delay equal to zero.
Other combinations could be tested if desired.

5.4. Available at prediction-horizon vs post-operational data sources

This section compares the performance of the models presented in
this article and the one obtained in (Mas-Pujol et al., 2021). In (Mas-
Pujol et al., 2021), the models were trained using data available post-
operationally, e.g. demand estimated using the last filled flight plan,
instead of from PREDICT, and actual weather information (METARs)
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Fig. 11. Certain probability regulated flight & Uncertain probability zero delay.
Table 8
Comparison of performance binary classifiers using forecasts and perfect data.

Model Experiment Accuracy Recall Precision F1-Score

Prob. regulated flight Post-operational 0.88 0.90 0.86 0.89
Forecast 0.82 (−0.06) 0.81 (−0.05) 0.82 (−0.04) 0.82 (−0.07)

Protected location Post-operational 0.84 0.80 0.83 0.82
Forecast 0.87 (+0.03) 0.84 (+0.04) 0.89 (+0.09) 0.86 (+0.04)

Zero delay Post-operational 0.73 0.75 0.71 0.76
Forecast 0.68 (−0.05) 0.67 (−0.08) 0.69 (−0.03) 0.69 (−0.07)
Table 9
Comparison of performance probability distribution ATFM delay using forecasts and perfect data.

Experiment MAE (mins) Mean 90% probability (mins) PICP (%)

Post-operational 9.37 13.56 0.87
Forecast 9.58 (+0.21) 12.57 (−1.01) 0.88 (+0.01)
Fig. 12. Certain probability regulated flight & Certain probability zero delay.

at the moment of operation instead of a weather forecast. These data
are not available at the prediction horizon D-1; however, it provided
a baseline to compare the performance of the models when using
information with less uncertainty.

Table 8 presents the results on the accuracy, the recall, the pre-
cision, and the F1-Score for the models of (Mas-Pujol et al., 2021)
(post-operational) and the ones of this article (forecast). As shown, for
the probability of regulated flight and zero delay models, using forecast
data, there is a drop in performance of around 5%. However, the
model for protected location, which identifies if the regulation impacting
the flight is located in the airspace or the arrival airport, shows an
improvement of 5% when using the forecast data.

Similarly to the protected location model, using data sources based
on the forecast (available at the prediction horizon) also improves the
performance of probability distributions of ATFM delay. Table 9 compares
the performance obtained by the model trained in this article and the
one using post-operational data from (Mas-Pujol et al., 2021). Using the
13
information available in the prediction horizon reduces the prediction’s
uncertainty with minimal accuracy reduction and an equivalent PICP.

Overall, using post-operational data does not improve all the models
and provides a minimal enhanced performance while complexifying the
deployment of the models.

6. Conclusions

The European ATM Master Plan (SESAR, 2020) envisions earlier
information sharing between stakeholders, aiming to improve collab-
orative planning related to demand-capacity imbalances. The available
data and the use of ML techniques could be key to incorporating new
tools into the current pipeline when facing ATFM regulations. Tools
based on supervised techniques could be the answer due to their fast
response to new scenarios, creating a human-machine methodology
where the human is still in charge of critical situations.

In this article, we propose using ML models trained on data avail-
able at D-1 to infer the impact of ATFM regulations on individual
flights. This critical information would support the airlines’ tactical
planners in improving their operational plans, anticipating disruptions
and highlighting which flights should be closely monitored by duty
managers during the day of operations. Not only if the flight is reg-
ulated, but the main characteristics of the regulations could improve
the planning and implementation of preventive actions. Concretely, we
have trained models able to predict the probability of regulations for
individual flights, the protected location, whether the issued ATFM
delay will be zero, and the probability of the minutes of delay for
regulated flights with information available at D-1. These particular
models have been selected as they provide actionable operational in-
formation to the user. Furthermore, the low prediction complexity of
the proposed models overcomes any time constraint issue that can arise
when deploying the models (Paleyes, Urma, & Lawrence, 2022).

The features analysis highlights the most relevant features for each
of the four selected ATFM models. The main conclusion from this
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analysis is the need for specialised features when predicting infor-
mation related to the minutes of ATFM delay. Moreover, the models
will always benefit from extra information about the less frequent
regulations (e.g. military actions). However, ensuring that the airline’s
data sources are available is essential.

Results show that, even though the models are imperfect, they can
extract patterns in data to accurately identify ATFM-related informa-
tion. The models can predict which flight will be regulated and the
protected location (aerodrome or airspace) with an accuracy of around
85%, whether the issued delay will be zero with an accuracy of 70%,
and reported a MAE of 9 min between the actual as estimated minutes
of ATFM delay. Despite the challenges found predicting the minutes
of ATFM delay, the approach selected based on (De Falco & Delgado,
2021) to predict a probability distribution of values, rather than a single
value, enriches the advice capabilities of the system clearly showing to
the end user the uncertainty of the predictions.

Nowadays, some tools are available for the Flow Manager Positions
(FMPs) to assess the impact of ATFM regulations before activating them
(e.g. SIMulation and EXperiment (SIMEX) (EUROCONTROL, 2022a)).
The models presented in this article enable airspace users to develop
equivalent tools identifying possible downstream effects on their fleet.
The integrated view proposed in this article could be used as a what-if
function to evaluate new flight plans before submitting them. More-
over, machine learning tools can be seamlessly integrated with the
current highly automated methodology, as the SHAP analysis proved
a realistic behaviour.

The results obtained in this article using the forecast available at the
prediction horizon D-1 have been compared with the ones reported us-
ing only static (i.e., not using data which evolves) and post-operational
models (Mas-Pujol et al., 2021). When comparing the performance
against static models, the accuracy reported improves around 10% for
the binary classifiers (i.e., probability of regulated flight, the protected
location, and whether the delay will be zero) and by 3 min for the
delay of non-zero regulated flights while reducing the uncertainty by
7 min and increasing the PICP by 5% (actual ATFM delay is within the
predicted probability distribution). Note, however, that static models
can be used with a much longer look ahead prediction horizon as they
do not depend on dynamic factors, which might evolve as the day of
perations approaches. It is worth noticing how post-operational data
oes not improve all the models. This indicates that using data similar
o the one available when the ATFM regulations were implemented
forecast available at D-1) is more suitable. When the regulations were
ssued, post-operational data was not available; therefore, using this
nformation to predict the regulations is inefficient. Moreover, using
ata available at D-1 ensures all the models can be triggered as all the
eatures can be computed at that time horizon.

As the delay used for the labelling is the final experienced ATFM
elay by the flights, the impact of mitigation actions, e.g. reroutings,

is already captured by the model. After applying any possible mit-
igation actions, the actual ATFM is the required delay to solve the
demand-capacity imbalance. The models will, therefore, assist the duty
managers (and dispatchers) in identifying the actual delays that the
flights would experience.

The proposed method and system have some limitations that could
be overcome in future work. The accuracy of downstream models is
conditioned on the previous ones. Additional features, such as en-
route weather information, could improve the accuracy of models.
The PICP of the probability distribution of ATFM delay model could
also be improved, as around 10% of the actual ATFM delays do not
fall within the distribution. This might require fine-tuning the error
range and resolution to discretise the regressor error. Furthermore,
even though the novel selected method has potential, future research
could benefit from comparing this approach with more conventional
techniques to predict probability distributions. Also related to the
selected models, it could be interesting to study whether models based
14

on attention mechanisms could improve the overall performance, such
as (Xiao, Xing, Qu, et al., 2024) where the authors present a densely
knowledge-aware network for classification tasks.

Another future improvement could be to consider when the flights
will enter the congested region. This could impact the model which
estimates the amount of ATFM delay because this is the main source
of information used by the CASA algorithm when issuing the actual
ATFM delay. However, this requires a prior estimator to identify the
congested traffic volumes, which is difficult with a large prediction
horizon; however, Mas-Pujol, Salamí, and Pastor (2022) showed this
might be possible.

As the models presented are trained on subsets of data which
consider the materialisation of some conditions, e.g. the location of
the regulation is subject to the flight being regulated, some difficulties
might be experienced by the end-user who needs to consider the
outcome of the models in this context. However, this keeps the human
in the decision-making process and provides all the information that
aligns with the training and practice of the tactical and duty managers.

Related to the capabilities of the presented models, they could be
integrated into the current decision support tools used by airlines to
estimate and minimise the impact of disrupted operations (e.g. reac-
tionary delay including the probability of missing ATFM slots). When
developing the system presented in this article, we ensured that the
data used for the training and the execution of the models was avail-
able to the airline operating centre at D-1. Therefore, as information
becomes available, the models can easily be re-trained over time to
minimise the impact of any potential data drift. The models only use
features available and stored by the airlines, such as the departing time
or information about the origin and destination airports; information
about expected network demand (or the input required to the PREDICT
model) can be obtained from the NM. Therefore, airlines should be able
to deploy, maintain and update the models within their facilities.
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