Building the layers of a manufacturing taxonomy: how 3D printing is creating a new landscape of production eco-systems and competitive dynamics

Rieple, A., Kapetaniou, C., Pilkington, A., Fransden, T. and Pisano, P.

This is an electronic version of a paper presented at Academy of Management: At the Interface, Atlanta, Ga, 04 to 08 Aug 2017.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk
Building the layers of a manufacturing taxonomy

How 3D printing is creating a new landscape of production ecosystems and competitive dynamics

Alison Rieple (University of Westminster)
Chrysta Kapetaniou (University of Westminster / LSE)
Alan Pilkington (University of Westminster and Copenhagen Business School)
Thomas Fransden (Copenhagen Business School)
Paola Pisano (Turin University)
The problem

• Recent innovations in 3D printing technologies and processes have influenced how products are designed, built and delivered.

• However, there is a significant gap in our knowledge of how 3D printing is impacting on manufacturing eco-systems and competitive dynamics in different industries and contexts
 • “a granular understanding of the socioeconomic consequences of 3D printing lags activity” (Ford et al., 2016).

• This paper addresses this by developing a taxonomy of firms based on their use of 3D printing
Methodology

- Based on systematic review of secondary data
 - Newspaper articles, websites, industry commentaries, academic papers
- 20 Illuminatory cases
3D printing

• Process of joining materials to make objects using digitised model data
• Original use for prototyping and model making
• Now more widely used in manufacturing of end products
• Benefits include:
 • Supply chain efficiencies
 • Shorter design processes
 • Reduced time to market
 • Move from mass manufacturing to mass customization
 • Monetizing of the long tail
 • Sustainability benefits
 • Reduction of waste
3D’s potentially disruptive effect on manufacturing ecosystems

• Potentially transforming many manufacturing sectors’ business models
 • location of manufacturing,
 • new materials,
 • new supply chains,
 • new cost and pricing structures,
 • much greater potential for co-development
 • disintermediation
 • Maker movement
Current generic limitations of 3D printing technologies

- Raw materials’ reliability
 - new suppliers who are inventing the materials as they go along
- Limitations in the size of products possible
- Problems in scaling up production
Use of 3D printing in different sectors (Wohlers 2014, p.18)
Industrial taxonomies

• Pavitt (1984)
• Castellacci (2008)
 • Help to conceptualise typical behaviours in different sectors
 • Draw out implications for competitive strategies and dynamics
• Pavitt
 • Focused on innovation and dominance
 • Castellacci added to this service- manufacturing sectors external sources and open business models
Pavitt’s taxonomy showing technological linkages
Pavitt Taxonomy of Innovation Patterns (adapted from Kristensen 1999)

<table>
<thead>
<tr>
<th>Sector type/variables</th>
<th>Supplier-dominated (SD)</th>
<th>Scale-Intensive (SI)</th>
<th>Science-Based (SB)</th>
<th>Specialised suppliers (SS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm size</td>
<td>Small firms</td>
<td>Large firms</td>
<td>Large firms</td>
<td>Small firms</td>
</tr>
<tr>
<td>Type of innovation</td>
<td>Processes</td>
<td>Processes</td>
<td>Mixed products and processes</td>
<td>Products</td>
</tr>
<tr>
<td>Locus of innovation</td>
<td>External</td>
<td>Production</td>
<td>R&D departments</td>
<td>Decentralised</td>
</tr>
<tr>
<td>Means of appropriability</td>
<td>Tacit knowledge</td>
<td>Tacit knowledge and entry barriers</td>
<td>Patents and entry barriers</td>
<td>Tacit knowledge/reputation</td>
</tr>
<tr>
<td>Competitive parameter</td>
<td>Price</td>
<td>Price/quality</td>
<td>Performance/quality/price</td>
<td>Quality/ performance</td>
</tr>
</tbody>
</table>
Castellacci’s taxonomy

Vertical chain

Personal goods and services
- Supplier-dominated goods
- Supplier-dominated services

Mass production goods
- Scale-intensive
 - Science-based

Infrastructural services
- Physical infrastructure
- Network infrastructure

Advanced knowledge providers
- Specialised suppliers
- Knowledge-intensive business services

Technological content
Three major components of the new taxonomy

- inductive approach enabled 3 categories to emerge from the data
 1. the uses and applications of 3D printing
 2. the level of customisation
 3. the level of competitive turbulence.
Our results: the main users of 3D printing

• consumer products,
 • clothing/textiles
 • artistic products such as jewellery
• consumer electronics,
• automotive,
• aerospace,
• medical/dental,
• industrial/business machines,
• material suppliers
• Knowledge Intensive Business Services (KIBS)
 • software development, design, and online platforms for the application of 3D printing
<table>
<thead>
<tr>
<th>Industry</th>
<th>Sector</th>
<th>Uses and applications of 3D printing</th>
<th>Customisation</th>
<th>Competitive Turbulence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier-Dominated</td>
<td>Wearing apparel</td>
<td>Customised Products</td>
<td>Co-creation and Personalisation</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Jewellery, bijouterie and related articles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Footwear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale-Intensive</td>
<td>Motor vehicles</td>
<td>Specialised components for production</td>
<td>Mass Customisation</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spare parts and components</td>
<td>None</td>
<td>Medium</td>
</tr>
<tr>
<td>Science-Based</td>
<td>Air and spacecraft and related machinery</td>
<td>Approved components</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prototype jet engine parts</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specialised components for production</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Medical and dental instruments and supplies</td>
<td>Customised orthopedic implants and prosthetics</td>
<td>Personalisation</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Pharmaceutical products</td>
<td>Approved drugs</td>
<td>Personalisation</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consumer electronics</td>
<td>Production tooling</td>
<td>Personalisation</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low volume customized products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Knowledge Providers</td>
<td>Knowledge Intensive Business Services</td>
<td>Consulting, Software, Design</td>
<td>Enabling opportunities</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Specialized suppliers</td>
<td>3D printing materials and equipment</td>
<td>Enabling opportunities</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Supplier dominated

• Implement technologies developed outside the firm
• May not invest themselves in R&D
• Improvement rather than radical change
• Rapid prototyping ethos applied to end products

• Current challenges
• Standard of materials and supplies
• Lack of choice of suppliers
 • Supplier power likely to increase
Scale-intensive firms

• Invest heavily in R&D
• Close cooperation with specialized suppliers
• Not yet achieved scalability in end products
• Using 3D printing to create tools and components
• Large potential cost savings
 • But loss of profits from spare parts as they can be produced by other printers

Current challenges
• 3d printing not yet able to speed up mass production times
Science-Based firms

• Internally-generated new knowledge
• Collaboration with institutions such as universities
• 3d printing opened up new possibilities
 • Aerospace, defence, shipping etc
 • Huge cost and performance possibilities
 • Geographical benefits
 • Bypass international import duties
 • Parts for ships can be made at sea
 • Customizable products

• Current challenges
 • Unreliability of raw materials
 • 3D printers inability to cope with this (as normal manufacturing techniques can)
 • Size limitations
 • Lock-in to certain suppliers
 • Certification and reputation risk problems
Advanced Knowledge Providers and Knowledge Intensive Business Services (KIBS)

• Heterodox sector
• 3D developers as well as 3D users (architects etc)
• Significant technological capability
 • Suppliers of know-how to other firms
• Provision of online design libraries

• Current concerns
• IPR issues
• Crowd customisation
 • Co-development
 • Maker movement
Final thoughts

• 3D printing will not fulfil the hype in all sectors
 • How many 3D printing shops do you have on your high street?
 • Too many intermediary roles and supply standards to be resolved
 • Scale-intensive industries likely to use 3D printing selectively

• 3D printing allows (in theory) co-creation in most sectors
 • But the role of designer, IPR and skills of end users is yet to be resolved

• 3D printing more disruptive in some industries than others
 • Supplier-dominated firms likely to be worse affected
THANK YOU