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Introduction
Analysis of current genetic diversity enables inferences 
regarding the evolution of species. However, factors affecting 
genetic diversity (eg, demography, migration, genetic drift, 
and natural selection) interact to such an extent that they are 
challenging to disentangle, and distinct situations may lead 
to similar outcomes. Genetic data consequently require spe-
cific analytical tools. In this context, computer simulation is 
a powerful approach to investigate the joint effects of these 
various processes, since it allows simulation of complex sce-
narios. Although more complexity does not necessarily equal 
more realism,1 computer simulation has been shown to be an 
invaluable tool for understanding the evolutionary processes 
that might otherwise remain undetected.2–4

Until recently, spatially explicit simulations have been 
used mostly for the study of selectively neutral loci.5 A few 
studies have investigated the effects of positive or negative 
selection in a spatially explicit context,6,7 but none of these 
have considered multiallelic loci under balancing selection, 
the main characteristics of the major histocompatibility 
complex (MHC). Moreover, the interaction of balancing 
selection and population structure has been shown to be 

complex.8,9 Three types of balancing selection models have 
been proposed to explain the high diversity of MHC lin-
eages as follows: (1) heterozygote advantage (HA),10 (2) rare 
allele advantage (RAA),11 and (3) fluctuating selection over 
space and time (FS).12 The relative role and contribution of 
these three nonmutually exclusive models in the evolution of 
MHC is intensely debated.12–15 Even though a spatial model 
with constant negative frequency-dependent selection (FDS) 
coefficients on specific human leukocyte antigen (HLA) alleles 
has previously been implemented,16 this framework is not flex-
ible enough to test the alternative models aforementioned. HA 
and RAA selection have also been modeled,17–20 sometimes 
including sexual selection through disassortative mating,21 
but without any spatial component. The island model22 has 
been used to integrate space and selection in order to assess the 
effects of migration on genetic differentiation when selection 
is at play,8,9,23,24 but this is not, strictly speaking, a spatially 
explicit model.

The study of the human MHC, namely, HLA, has great 
potential to unravel human evolution and settlement,25–30 as 
large worldwide databases are available for several genes.31 
However, a spatially explicit computer simulation framework 
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capable of taking HLA characteristics into account has not 
been previously available. In this context, we developed a 
new computer simulation program called SELECTOR. The 
originality of SELECTOR lies in the simulation of both 
population spatial demography and balancing selection at 
a multiallelic genetic locus. In particular, it merges three 
main evolutionary processes as follows: (1) population spa-
tial structure and migration, (2) genetic drift, and (3) natural 
selection (balancing or positive). In SELECTOR, selection 
may either be uniform over the whole simulated geographic 
area or vary with latitude and/or longitude. Moreover, 
SELECTOR allows the user to perform model comparison 
and parameter estimation, as it can easily be integrated in 
an approximate Bayesian computation (ABC) estimation 
framework such as ABCtoolbox.32 In the work presented 
here, we describe the main principles of SELECTOR, vali-
date the algorithms using simple models for which theoreti-
cal expectations can be computed, and finally illustrate its use 
through a specific application.

Program Implementation
SELECTOR can be used to simulate complex evolution-
ary models by taking into account demographic variation of 
population sizes over space and time, as well as the effect of 
selection at a given genetic locus. SELECTOR simulates the 
genes of diploid individuals, generation after generation (ie, 
forward in time) within a two-dimensional stepping-stone 
framework.33 The whole population is subdivided into numer-
ous subunits called demes, where each deme has its own spa-
tial coordinates and can exchange migrants with neighboring 
demes at each generation. Demographic increase in popu-
lation within each deme follows a logistic growth model to 
account for competition for resources among the members 
of each deme.34 Demographic parameters such as migration, 
growth rates and carrying capacity can be modified inde-
pendently in each deme at different periods of time during 
the simulation. A wide variety of demographic scenarios, 
including a succession of demographic events, can thus be 
tested. Even though the demographic and migration algo-
rithms in SELECTOR are derived from those implemented 
in the program SPLATCHE (model no. 1: even number of 
migrant, SPLATCHE user manual, p. 21,35) SELECTOR 
simulates forward in time all the individuals and genes in 
the entire population and does not use a backward coalescent 
algorithm36 to reconstruct the genetic diversity of samples. 
This full forward approach has the major advantage of allow-
ing the user to consider various types of natural selection on 
genetic lineages.

Demographic model. Each deme has its own demo-
graphic characteristics and is regulated independently using a 
logistic growth model as follows:
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where Ni(t) and Ni(t − 1) are the number of individuals belong-
ing to the current deme i at generation t and t − 1, respectively, 
ri is the growth rate by generation (the rapidity at which the 
population density increases or decreases), and Ki is the car-
rying capacity (the maximum number of individuals sustained 
by the resources of the deme). If ri = 0, the population does 
not grow, while if ri = 1, it doubles during the earliest phase 
of growth, then the increase slows down because of intrademe 

competition 
K N t

K
i i

i

− −





( )1

. If Ki = 0, the deme is not acti-

vated, which means that it cannot be occupied at any time (no 
growth, no immigration) even if some individuals are added 
into it at the beginning of the simulation.

Migration model. In every deme, the number of emi-
grants E from deme i at each generation t and in each direc-
tion j is computed as
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where mij is the migration rate in that direction (from i to j), 
Ni(t) is the number of individuals in the current deme i at 
generation t, Bi is the number of neighbors (with K . 0) of 
the current deme i, and zij is the remaining fractional part of 
migration from preceding generations (refer the user’s manual 
for a numerical example). Eij is an integer (number of indi-
viduals) and equal among all neighboring demes, so that the 
remaining fractional part from Eij (i in direction j) is kept in 
memory for the next generation and computed as
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Note that in SELECTOR, Nm defines the amount of emi-
gration from one deme because it can be set independently for 
each deme using the parameters K and m. However, in a homoge-
neous area and at demographic equilibrium (ie, when N = K), the 
number of immigrants is equal to the number of emigrants. In 
SELECTOR, it is possible to modify the migration rate between 
any pair of demes. This refers to the routes in the SELECTOR 
user’s manual.37 Note that a deme with K = 0 is never considered 
as a target of migration and cannot receive immigrants.

Demographic processes. The order of demographic 
events is as follows:

1.	 Demographic regulation occurs in every deme i using 
Equation 1 leading to Ni(t).

2.	 The number of emigrants Eij(t) in all directions j is com-
puted in every deme i using Equations 2 and 3 and the 

total number of emigrants is computed as E E ti ij

Bi

= ∑ ( )
1

.

3.	 The number of immigrants in each deme i is computed as 

I E ti ji

Bi

= ∑ ( )
1

.
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4.	 The density in every deme i is updated with the sum of 
emigrants and immigrants as

	 N t N t E Ii i i i
′ +( ) ( )= − 	 (4)

Note that the number of simulated generations must be 
either defined by the user, assuming that the generation time 
is known, or estimated for the organism under study, or a 
prior distribution may be defined in order to take into account 
uncertainty regarding the generation time.

Simulated genetic data. SELECTOR simulates the 
allele frequency trajectories in demes through the effects of 
genetic drift, migration, demographic variation, and selec-
tion. To achieve this, it records the two allelic variants of a 
given genetic locus for each simulated diploid individual. 
These variants are simply coded “ax” where x varies between 
1 and nmax, the maximum number of allelic variants in the 
system (defined by the user as input parameters). At the begin-
ning of a simulation, alleles taken from a list from 1 to nmax 
are randomly distributed in the first generation of individu-
als belonging to the source population(s). All alleles have the 
same probability 1/nmax of being drawn. This implies that 
initial allele frequencies vary among source populations, if 
there are more than one, and among independent simulations 
because different subsets of alleles are randomly drawn from 
the ancestral genetic pool of nmax alleles for each source and 
each simulation. Some alleles may not be represented in the 
source population(s), and this probability is inversely propor-
tional to the initial population size. If the size of the source 
population is large, then the variation of initial genetic diver-
sity among simulations is reduced. All source populations can 
either be constituted from the same or from different ancestral 
allelic pools (identical or different lists of alleles, respectively). 
The number of alleles can increase during the simulation if the 
mutation rate parameter is . 0, so that each new allele appear-
ing by mutation increments ax by 1. Refer the SELECTOR 
user’s manual for more details.37 SELECTOR outputs either 
allele frequencies for the whole deme or for a sample of n indi-
viduals drawn randomly from the deme in a format directly 
usable by ARLEQUIN.38 The data output can then be used to 
compute various indices of genetic diversity and structure.

Transmission of gametes. Within each deme, the transmis-
sion of genes from one generation to the next is based on a 
Wright–Fisher’s model.22,39 For each individual at generation 
t, two alleles are drawn randomly from two different individu-
als at generation t − 1.

Effect of selection. Three different models of selection 
are implemented in SELECTOR. When selection applies 
(selection coefficient s  .  0), the transmission of gametes 
from one generation to the next in each deme is modified as 
described here.

Symmetric overdominant selection (SOS), also called 
HA, simulates overdominant balancing selection, where all 
heterozygotes have the same selective advantage (fitness) over 

homozygotes.10,40 If the new genotype is heterozygote, it is 
accepted with the probability P = 1. If the new genotype is 
homozygote, it is either kept with the probability P = 1 − s, 
where s is the selection coefficient against homozygotes, or a 
new pair of alleles is drawn.

Frequency dependent selection (FDS), also called RAA, 
simulates a selection in favor of alleles that are less frequent 
in the population. A new allele ai is accepted with a prob-
ability P = 1 −  f (ai) *  s, where f (ai) is the current frequency 
of the allele ai in the deme and s is the selection coefficient 
against frequent alleles. If f (ai) tends to 0, then the probabil-
ity of keeping ai is close to 1, while if f (ai) tends to 1, then this 
probability is close to 1 – s. If the allele is not retained, then 
a new one is drawn.

Dominant positive selection (DPS) simulates positive 
selection for one specific allele a1 among nmax alleles. Indi-
viduals who do not carry the selected allele have a fitness 
equal to 1 − s, whereas the carriers have a fitness of 1.41 If 
the new genotype has the selected allele, in a homozygote or 
heterozygote state, it is accepted with the probability P = 1. 
If the genotype does not have the selected allele, it is kept 
with the probability P = 1 − s, or a new genotype is drawn.

Program Validation
In order to validate the algorithm of allele transmission imple-
mented in SELECTOR, we performed a series of simulations for 
which theoretical expectations can be analytically computed.

Evolution of allele frequencies within a single deme. In 
a single deme of size N individuals, we simulated the evo-
lution of na alleles during t generations, in the absence of 
selection. Then, we computed the heterozygosity Ht within 
the deme and compared it with the expected heterozygosity 

given by the formula H H
Nt

t

= −



0 1

1
2

,42 where H0 is the 

initial density at time 0. Here, the parameters K = N and r = 0 
apply, since the population size is constant (ie, size is equal to 
carrying capacity).

We varied all three parameters (K, r, and na) in eight 
independent combinations and performed 1,000 simulations 
for each combination. Average Ht  and standard deviation 
over these 1,000 simulations have been computed and com-
pared with the expected Ht (Table 1).

When comparing the simulated heterozygosity to the 
one expected theoretically under identical conditions (num-
ber of generations, deme size, and initial heterozygosity), we 
found that the average over 1,000 simulations was very close to 
the expected heterozygosity, differing by #0.6% in all cases.  
The small differences can be explained by the stochasticity of 
allele transmission in SELECTOR (see standard deviation), 
while the expected value is deterministic.

Evolution of allele frequencies within a series of inter-
connected demes. We assessed the validity of the migra-
tion algorithm by modeling four interconnected demes in a 
2 × 2 stepping-stone area, in the absence of selection. At the 

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Currat et al

30 Evolutionary Bioinformatics 2015:11(S2)

beginning of the simulation, each deme had one specific allele 
with 100% frequency (a1 in deme 1, a2 in deme 2, etc.). We 
simulated 500  generations with a migration rate m  =  0.01 
between each pair of demes, and large deme size (10,000 
diploid individuals) in order to minimize the effect of genetic 
drift. We then recorded the evolution of allele frequencies in 
the first deme and compared them with the frequencies theo-
retically expected with the formula p p m p pt

t= ( ) ( )+ + −1 0  
where pt is the frequency expected at time t in a deme when the 
initial frequency of the allele in that deme is p0 and the aver-
age frequency of that allele over all demes is p. This formula 
generates the expected allele frequencies for an island model 
with large deme size so that genetic drift can be neglected.43 
Completion of 100 simulations of this model typically takes 
∼8 minutes 30 seconds in a single node from a Linux server.

Figure 1A shows that the evolution of allele frequencies 
through time within a deme converges toward an equilibrium 
frequency of 25% for all four alleles, as expected theoretically. 
The differences between the theoretical and the simulated 
curves are due to the differences between the two models: 
the theoretical curves have been obtained for a deterministic 
island model with an infinite size, while the simulated curves 
have been generated by a stochastic stepping-stone model with 
a finite (but large) size. Figure 1A shows that the frequency of 
allele a1 (blue curve), which was fixed in deme 1 at the begin-
ning of the simulation, decreases, while the frequency of allele 
a4 (yellow curve), initially fixed in deme 4 without any direct 
connection with deme 1, takes longer to reach equilibrium 
compared with the two alleles fixed in the neighboring demes, 
2 and 3, which directly exchange migrants. The orange and 
green curves represent a2 and a3, respectively.

Evolution of allele frequencies under DPS. In a single 
deme of size N  =  10,000 (again to avoid too rapid genetic 
drift), we simulated the evolution of the frequencies of two 
alleles, a1 and a2, where a1 is under positive selection (DPS). 
The fitness of the various genotypes is computed as wa1a1 = 1, 
wa1a2 = 1, and wa2a2 = 1 − s, where s is the selection coefficient. 

The initial frequency of both alleles at time t0 is 0.5, but a1 is 
positively selected (s = 0.1) for 100 generations. We compared 
the simulated frequencies with those computed using the clas-
sical equation of allele frequencies in diploids under selection 
for survivorship.43

Figure 1B shows that the frequency of the allele a1 under 
positive selection increases gradually through time, in accor-
dance with theoretical expectations. The small variation is 
explained by the stochasticity of the simulated algorithm. 
The result of a single simulation is displayed. Completing 
100 simulations of this model typically takes ∼30 seconds in a 
single node from a Linux server.

Evolution of allele frequencies under overdominant 
selection. We further simulated the evolution of allele frequen-
cies in a biallelic system (na = 2) where heterozygotes are favored 
compared with homozygotes (SOS: wa1a1 = 1 − s, wa1a2 = 1, and 
wa2a2 = 1 − s) in a single deme of size N = 10,000. The initial 
frequencies of alleles a1 and a2 are 0.1 and 0.9, respectively, and 
we simulated selection for 200 generations when s = 0.1. We 
also simulated the evolution of these frequencies with the same 
parameters but using FDS. Then, we compared the simulated 
frequencies with those computed using the classical equation 
of allele frequencies in diploids under selection for survivor-
ship.43 Completing 100  simulations of this model typically 
takes ∼60 seconds in a single node from a Linux server.

Figure 1C shows that the frequencies of the two alleles 
converge to an equilibrium frequency of 0.5 if the size of the 
population is large enough to neglect drift, for both balancing 
selection models (SOS or FDS), as expected from theory.

Application
The interaction of balancing selection and population structure 
is challenging to study.9 It has, for example, been shown that 
genes under balancing selection are less sensitive to popula-
tion subdivision than neutral ones and are thus expected to 
show limited differentiation among demes compared with 
neutral genes under the same demographic conditions.8,23,44 
However, this conflicts with most observations,15,45 with some 
exceptions.46 In human populations, discordant results have 
been obtained; some studies have not found any reduction of 
interpopulation differentiation,44,47 while others have found 
some low interpopulation or intercontinental differentiation 
for almost all HLA loci, except DPB1.48–50 Because Schierup 
et al.23 theoretically showed that the reduction of genetic dif-
ferentiation under balancing selection, compared to neutrality, 
is more pronounced when gene flow between demes is low, 
with almost no difference when gene flow is large, we believe 
that spatial gene flow heterogeneity between demes may 
explain these contrasting HLA results.

We tested this hypothesis by assessing the effects of het-
erogeneous gene flow between populations on measures of 
genetic differentiation under balancing selection. We used 
SELECTOR to simulate the evolution of allele frequencies 
in interconnected demes, when SOS is at play. Thus, we 

Table 1. Comparison between simulated (H
_

t) and expected (Ht) 
heterozygosity in a deme for various combinations of parameters na, 
H0, t, and N.

Simulated with SELECTOR Expected
Ht

Difference

na H0 t N H–t

2 0.5 100 100 0.304 ± 0.18 0.303 0.001

2 0.5 1000 100 0.003 ± 0.03 0.003 0.000

2 0.5 100 1000 0.475 ± 0.03 0.476 0.003

2 0.5 1000 1000 0.300 ± 0.18 0.303 0.003

10 0.9 100 100 0.539 ± 0.16 0.545 0.006

10 0.9 1000 100 0.007 ± 0.05 0.006 0.001

10 0.9 100 1000 0.857 ± 0.02 0.856 0.001

10 0.9 1000 1000 0.550 ± 0.17 0.546 0.004
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designed a virtual square area made up of 256 demes (16 × 16 
demes, Fig.  1D). This area was divided into four identical 
groups of demes (square area of 64 demes each, Fig.  1D) 
connected by a migration rate minter, while the rate between 
demes of the same group is mintra. We performed several 
tens of thousands of simulations, varying input parameters 
such as K (carrying capacity), r (growth rate), mintra (migra-
tion rate between each pair of neighboring demes belong-
ing to the same group), minter (migration rate between each 
pair of neighboring demes belonging to different groups), 
na (number of alleles), and s (coefficient of selection against 
homozygotes). Either all the demes were fully occupied at 
carrying capacity during the whole simulation (constant 
population size) or they were populated after a population 
expansion from one single deme, where this deme was located 

in group A and the initial population size starting the popula-
tion expansion was 50 individuals. Population density within 
demes increased logistically at rate r (0.5 for all simulations) 
until it reached K (two choices, either 50 or 500). Migration 
occurred at rate m = 0.2 (20% of individuals belonging to each 
deme spread over the neighboring demes at each generation), 
even when demes had reached demographic equilibrium (car-
rying capacity). Genetic isolation between groups was not 
complete, and gene transfers could occur at a reduced migra-
tion rate (either by 40, 20, or 10 folds). We simulated a locus 
with 20 different lineages associated with symmetrical HA, 
with a selection coefficient between 0 (no selection) and 0.2 
(very strong selection), and we randomly drew eight samples 
of 100 genes in each group of demes, at regular spatial inter-
vals (dark colored demes in Fig. 1D).
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Figure 1. Comparison between simulated frequencies (sim, solid lines) and frequencies expected theoretically (exp, dotted lines). (A) Evolution of allele 
frequencies in the absence of selection within four interconnected demes. (B) Evolution of two alleles within a single deme under the effect of DPS on 
allele a1. (C) Evolution of two alleles within a single deme under the effect of SOS and FDS. (D) Schematic representation of the grid of demes where 
simulations are performed for the theoretical application. Each color represents one group of demes (blue, red, green, and yellow). Dark demes represent 
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while gray arrows symbolize migration between adjacent demes from the same group, which occurs at rate mintra. For the sake of clarity, only a few arrows 
are represented but migration occurs between all pairs of demes.
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We measured genetic differentiation at the end of each 
simulation by computing the indices FCT, FSC, and FST 
based on allele frequencies through an  Analysis of molec-
ular variance (AMOVA),51 the average pairwise genetic 
distances D intra between samples within the four groups 
of demes, and the average pairwise genetic distances D inter 
between samples belonging to different groups. We used 

the coancestry coefficient as a measure of genetic distance.52 
We also used multidimensional scaling analyses (MDS) to 
visualize pairwise genetic distances between the subsets 
of data.53,54

Our results show that, as theoretically expected,8,23,44 
genetic differentiation between demes is globally reduced 
under balancing selection compared with neutrality (Figs. 2 
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Figure 2. Pairwise FST within population groups (in orange) and between population groups (in blue) for 1,000 simulations and varying selection 
coefficients (symmetric HA). Dotted lines represent logarithmic regression lines. The left column shows the results for a stationary population, while the 
right column shows the results for an expanding population. Nminter increases from line 1 to line 3 and K is changed from 500 to 50 in line 4, compared to 
line 1 while all the other parameters remain identical (na = 20 alleles, r = 0.5, and m = 0.2).
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and 3). They also support previous results, suggesting that 
this reduction is generally less pronounced when gene flow is 
high (increasing Nminter from line 1 to line 3 in Figs. 2 and 3). 
In addition, our results reveal new patterns of population 
differentiation that emerge when mixing various gene flow 
intensities in a spatially structured population. When gene 
flow between groups of populations is reduced compared 

with within groups (Nminter , Nmintra), we observe that the 
average genetic distance Dinter between groups tend to be 
much more affected by selection than the intragroup aver-
age genetic distance Dintra (Fig. 2). When balancing selec-
tion increases, then Dinter gradually decreases until reaching 
Dintra (sometimes even becoming smaller, Fig.  4), thereby 
diluting the signal of genetic isolation. This can also be 
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seen when looking at fixation indices, the FCT being much 
more affected by balancing selection than the FSC. FCT may 
even become smaller than FSC if balancing selection is rela-
tively strong (Fig. 3). This effect is more pronounced in an 
expanding population compared with a stationary one and 
less pronounced when the number of alleles is lower or the 
time frame is shorter (Fig. 4, line 1 and line 2). This effect 
is consistently observed through parameter values and the 
choice of balancing selection models (FDS instead of SOS, 
Fig. 4, line 3).

When balancing selection occurs, genetic distances 
between populations that are not spatially isolated are only 
slightly reduced compared with neutral expectations, whereas 
genetic distances between spatially isolated populations are 
strongly reduced (ie, they are inversely proportional to the gene 
flow across the geographical barrier). This effect translates into 
a distortion of the graphical representation of the genetic rela-
tionships between populations. For instance, Figure 5 shows 
12 examples (randomly taken) of MDS performed on the 
simulated population samples, with s =  0.0, 0.02, or 0.05. In 
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Figure 4. Pairwise FST within population groups (in red) and between population groups (in blue) for 1,000 simulations and varying selection coefficients 
(symmetric HA). Dotted lines represent logarithmic regression lines. The left column shows the results for a stationary population, while the right column 
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the absence of selection (s = 0.0), the genetic differentiation 
between geographic groups of populations is clearly visible in 
most of the cases, reflecting the strong barrier to gene flow 
between them (Nminter = Nmintra/40). In contrast, when selec-
tion is at play (s . 0.0), genetic differentiation between geo-

graphic groups vanishes and the groups tend to overlap on the 
MDS. This effect increases with selection, and there is almost 
no genetic differentiation between the four groups of demes 
when balancing selection is strong (s = 0.05), despite a strong 
reduction of gene flow between them. Inversely, the genetic 
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differentiation between populations within the geographic 
groups is almost independent of the amount of balancing 
selection and does not change much with or without the action 
of selection. This is due to the fact that the effect of migration 
is stronger than that of selection within groups, while it is the 
opposite between groups.

Here, we used SELECTOR to investigate patterns of 
genetic differentiation between spatially distributed popula-
tions, accounting for isolation by distance,55 where gene flow is 
not uniform (accounting for partial barriers to migration, such 
as mountains, rivers, or seas). These two condition properties 
constitute one of the novelties of SELECTOR compared with 
previous approaches. In a virtual square area subdivided into 
four groups of demes separated by a partial barrier to migration, 
we simulated the evolution of allele frequencies in populations 
(demes) during 2,000 generations and we recorded indices of 
genetic differentiation such as genetic distances D and fixa-
tion indices FSC and FCT. Our results confirm that genetic 
differentiation between demes is globally reduced under bal-
ancing selection compared with neutrality (Figs.  2–4). This 
could be explained by two factors: (1) under overdominance, 
the demes tend to share the same set of alleles, as rare alleles 
entering a deme have a higher fitness than alleles already pres-
ent and (2) overdominant selection tends to increase within-
deme diversity relative to the total diversity because alleles 
are kept at more equal frequency than for neutral alleles. Our 
results also confirm that the difference between overdominant 
selection and neutrality is more pronounced when gene flow is 
reduced, because a strong gene flow aids the mixing of alleles 
between demes and thus tends to erase the effect of balancing 
selection. More strikingly, new patterns of population differ-
entiation emerge when mixing various gene flow intensities 
in a spatially structured population (Figs. 2 and 3). When a 
partial barrier to gene flow exists between geographic groups 
(Nminter , Nmintra, eg, separation between two different con-
tinents), the average genetic distance Dinter between groups 
tends to be more affected by selection than the intragroup 
average genetic distance Dintra. Consequently, when signifi-
cant genetic differentiation is detected through the analysis 
of neutral loci, this differentiation may not leave any signal on 
loci under balancing selection. But when looking at popula-
tions not separated by a barrier (belonging to the same conti-
nent), no differences are found between the two types of loci. 
Our results are robust to the parameters of the model as long 
as Nminter remains smaller than Nmintra (Fig. 4).

Discussion
The rapid development of computational techniques has led to 
studies of new aspects of genetic evolution. In particular, sim-
ulation approaches permit exploration of realistic evolutionary 
scenarios that are too complex to be studied analytically, and 
these approaches have the power to integrate models affected 
by various processes (including genetic, environmental, cul-
tural, and demographic processes). In this context, we present 

SELECTOR, a program that simulates genetic lineages 
under selection in a spatially explicit population framework. 
SELECTOR was primarily adapted to HLA loci because of 
the large worldwide datasets available for these genes and the 
need of a simulation program able to take into consideration 
their specific characteristics (multiple alleles and overdomi-
nant balancing selection) in a population genetic framework. 
We have validated the algorithms of SELECTOR by show-
ing that its outputs are those expected theoretically in sim-
ple situations, but the power of SELECTOR resides in the 
simulation of more complex scenarios for which expectations 
cannot be computed analytically.30,56,57 While SELECTOR 
has primarily been designed to investigate the joint effects of 
selection and demography on HLA markers, as exemplified in 
the study by Di et al.30, it has also been applied to assess the 
effects of restricted gene flow on selected and neutral loci.57 
SELECTOR can also be used to test comparable evolutionary 
hypotheses on other markers, such as lactase persistence.56

Here, we used SELECTOR to investigate patterns of 
genetic differentiation that could explain contrasting outcomes 
obtained on HLA data, for which some studies show a reduced 
interpopulation differentiation compared with neutral loci,48–50 
while others show no difference.44,47 Our results suggest that, if 
gene flow is high between populations, the effect of balancing 
selection is negligible compared with that of demography.30,47 
In contrast, when gene flow is reduced among populations, 
such as where there is a partial or strong geographic barrier, 
the effect of selection is visible, as is the case for the Strait of 
Gibraltar.57 The same logic may also explain why in the study 
by Sanchez-Mazas,50 the variance of components among con-
tinents is significantly reduced (t-test: P-value = 0.036, Table 2) 
between HLA under putative balancing selection (HLA-A, 
-B, -C, -DRB1, -DQA1, and -DQB1) compared with nearly 
neutral loci (HLA-DPB1, DNA markers, and STR), while the 
variance components between populations within continents 
is not (t-test: P-value =  0.337, Table 2). Indeed, smaller Nm 
between continents would allow for balancing selection to be 
detected, while larger Nm within continents would not. This 
question deserves to be investigated further through additional 
quantitative analyses.

Here, we mainly used a model of overdominant selection 
as a first approximation to the mode of balancing selection act-
ing on HLA loci, which explains the maintenance of numerous 
alleles.11 Interestingly, these results do not differ significantly 
when either a model of HA (SOS) or a model of RAA (FDS, 
Fig. 4) is applied. However, the patterns of selective pressure 
may have been more complex, resulting from a combination 
of the following: (1) overdominant and positive selection at 
some alleles in response to the presence of specific pathogens58; 
and/or (2) variability through space due to various pathogen 
environments59; and/or (3) variable through time due to cli-
matic variation. New selection models, such as divergent allele 
advantage20 or selection varying in time and space,15 and more 
detailed relationships between selection, demography, and 
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environment could be the next improvements of SELECTOR. 
Indeed, one of the interests of the simulation approach is that 
models can be improved and carefully investigated to assess 
specific combinations of parameter values and processes that 
may bring deeper understanding of observed patterns of 
genetic diversity. Another improvement of our approach would 
be the incorporation of molecular or multilocus data to analyze 
genomic information.

SELECTOR has been inspired by the program 
SPLATCHE,35 and both programs have similar basic demo-
graphic processes. The major difference between the two processes 
is that the forward-in-time process implemented in SELEC-
TOR, while being computationally more demanding than 
SPLATCHE’s backward-in-time coalescent approach, allows 
incorporating natural selection processes, while SPLATCHE  
simulates neutral loci only. However, the similarity between the 
two programs renders their respective outputs easily compa-
rable, and they can consequently be used to associate genetic 
patterns of selected genes, such as HLA, to neutral molecu-
lar markers.57 The evolution of allele frequencies in all demes 
can be obtained in a simple tabulated text format that is easily 
readable. In addition, final allele frequencies in a series of sam-
ples specified by the user are output in ARLEQUIN format 
(currently 3.5).38 and can thus be easily analyzed to compute 
various intra- or interpopulation genetic statistics. SELEC-
TOR has been developed in C++, which makes it computa-
tionally efficient and particularly suitable for research purposes. 
Thanks to its Linux version, SELECTOR may be incorporated 
through a bash pipeline into the ABC approach,60 such as with 
ABCtoolbox,32 in order to estimate parameters and formally 
compare models. This powerful method permits assessment 
of the relative probabilities of contrasting evolutionary sce-
narios, as well as estimation of the best parameter values.30,56,57 
Input parameters of SELECTOR can be directly drawn from 
prior distributions defined by the user (see SELECTOR user 
manual)37 and summary statistics computed from the output 
using ARLEQUIN. Since it is an approximation technique, 
ABC avoids the calculation of a likelihood function, and thus 

allows evaluation of complex evolutionary scenarios that would 
otherwise be intractable by full likelihood approaches. Even 
though ABC requires a large number of simulations, which 
depend on the number of parameters to be estimated and on 
the prior ranges used,61–63 it has been shown to outperform 
approximate maximum-likelihood approaches.64 We believe 
that SELECTOR provides a versatile and computationally 
efficient framework to investigate such scenarios.

When compared with other forward-in-time simula-
tion approaches, SELECTOR allows simulating (1) various 
natural selection mechanisms (not available in SPLATCHE), 
(2) spatially explicit scenarios, in comparison with “simuPOP,”65 
and (3) more than three populations with sophisticated pat-
terns of gene flow between populations and subpopulations, in 
comparison with “dadi”.66 SELECTOR is also more research 
oriented, being faster than dadi or simuPOP since it is writ-
ten in C++, which is compiled into a binary executable file, 
instead of interpreted Python.

Conclusion
Here, we have presented the simulation program SELEC-
TOR and demonstrated that it is a powerful and robust tool 
for investigating the combined effects of selection and demog-
raphy on the genetic variability of MHC loci.30,57 Moreover, 
its versatility makes it invaluable for tackling other evolution-
ary questions and gaining insights into the genetic evolution 
of human beings and other organisms. SELECTOR is freely 
available for research and teaching purposes at http://ua.unige.
ch/en/agp/tools/selector/.

Availability and Requirements
SELECTOR is written in C++, runs on MS windows or 
Linux, and is freely available for academic purposes at http://
ua.unige.ch/en/agp/tools/selector/.
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Table 2. Hierarchical analysis of genetic variance showing the variance components (%) taken from the study by Sanchez-Mazas.50

Locus Number of 
populations

Within 
populations

Among populations  
within continents

Among 
continents

HLA-A 81 88.5 6.2 5.3

HLA-C 59 92 4.1 3.9

HLA-B 69 92.5 4.3 3.2

HLA-DRB1 91 91.3 5.1 3.6

HLA-DQA1 46 88.3 4.6 7.1

HLA-DQB1 69 89.3 5.4 5.3

HLA-DPB1a 49 84 6.3 9.7

DNA markersa 14 84.4 4.7 10.8

STRa 52 87.6 3.1 9.2

Note: aLoci considered as evolving nearly neutrally.
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