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Abstract 

 

Early intervention in psychotic spectrum disorders is critical for maximizing key clinical 

outcomes.  While there is some evidence for the utility of intervention during the prodromal 

phase of the illness, efficacy of interventions is difficult to assess without appropriate risk 

stratification.  This will require biomarkers that robustly help to identify risk level and are also 

relatively easy to obtain.  Recent work highlights the utility of behavioral tasks in understanding 

the pathophysiology of psychotic symptoms. Computational modeling of performance on such 

tasks may be particularly useful because they explicitly and formally link performance and 

symptom expression.  Several recent studies have successfully applied principles of Bayesian 

inference to understanding the computational underpinnings of hallucinations. Within this 

framework, hallucinations are seen as arising from an over-weighting of prior beliefs relative to 

sensory evidence.  This view is supported by recently-published data from two tasks:  the 

Conditioned Hallucinations (CH) task, which determines the degree to which participants use 

expectations in detecting a target tone; and a Sine-Vocoded Speech (SVS) task, in which 

participants can use prior exposure to speech samples to inform their understanding of 

degraded speech stimuli.  We administered both of these tasks to two samples of participants at 

clinical high risk for psychosis (CHR; N = 19) and healthy controls (HC; N = 17).  CHR 

participants reported both more conditioned hallucinations and more pre-training SVS detection. 

In addition, there was a significant correlation between participants’ performance on both tasks. 

On computational modeling of behavior on the CH task, CHR participants demonstrate 

significantly poorer recognition of task volatility as well as a trend toward higher weighting of 

priors. This latter effect was found to predict performance on both tasks.  Taken together, these 

results support the assertion that these two tasks may be driven by similar latent factors in 

perceptual inference, and highlight the potential utility of computationally-based tasks in 

identifying risk. 

 

 

 

  



 

Introduction 

 

Early detection and treatment of psychosis is critical for maintaining functionality and 

maximizing clinical outcomes (Kane et al., 2016; Srihari et al., 2014, 2012). This effort has been 

made more reliable with the systematization of clinical evaluations for psychosis as it develops 

from the prodromal phase of the illness (Miller et al., 2002; Woods et al., 2014, 2009). 

Evaluation of progression continues to rely on symptom reports and clinical assessment. 

However, only a minority of those at clinical high risk of psychosis (CHR) will convert to frank 

psychosis (Hartmann et al., 2016) and the use of clinical measures alone, while promising, is 

nonetheless limited in predicting course and triggering treatment initiation (Cannon et al., 2016; 

Carrion et al., 2016). Development of objective measures for psychotic symptoms and disease 

states will be critical in identifying psychosis emergence, treating early in the disease trajectory, 

and maximizing functionality in those affected. 

Behavioral measures purporting to assess the cognitive and neural drivers of symptom 

expression may be sensitive and convenient measures of risk.  Behavior on a number of tasks 

has thus far been linked to severity of specific psychotic symptoms, including hallucinations 

(Alderson-Day et al., 2017; Cassidy et al., 2018; Powers et al., 2017; Teufel et al., 2015), 

delusions (Corlett et al., 2007; Corlett and Fletcher, 2012), and positive, (Roiser et al., 2013, 

2009; Schmidt et al., 2017), disorganization (Silverstein et al., 2013; Silverstein and Keane, 

2011; Uhlhaas et al., 2006), and negative symptoms (Gold et al., 2012; Heerey et al., 2007; 

Treadway et al., 2009) more broadly. 

Measures derived from generative computational models linking behavior and symptom 

expression may hold particular promise as objective markers for psychiatric disease, in part 

because such models are capable of describing normal and pathological information processing 

within a common framework, capturing biology, behavior, and their pathology simultaneously 

(Browning et al., n.d.; Corlett and Fletcher, n.d.; Friston et al., 2014; Stephan and Mathys, 2014; 

Wang and Krystal, 2014). Here we utilize a predictive processing framework (Friston et al., 

2006; K. Friston, 2005; Friston and Kiebel, 2009), which conceives of perception as the process 

of unconscious inference, in which we actively infer what is around us by combining our sensory 

input with our prior beliefs about the world (Friston, 2009). Within this framework, the brain 

functions as a predictive machine, predicting future states of the world using prior beliefs, which 

are then integrated with incoming sensory evidence to give rise to conscious perception.  

Recent work has highlighted the utility of this predictive processing framework for understanding 

how specific alterations in learning and inference may produce the positive symptoms of 

psychosis (Adams et al., 2013b; Corlett et al., 2019, 2010, 2007; K. J. Friston, 2005; Powers et 

al., 2016; Sterzer et al., 2018). This has been especially true of hallucinations, which have been 

proposed to arise from inappropriate over-weighting of prior beliefs in perception (Corlett et al., 

2019; Powers et al., 2016).  Over several years, using multiple different methods, hallucinations 

have been related specifically to behavior signaling overly-precise priors (Alderson-Day et al., 

2017; Cassidy et al., 2018; Powers et al., 2017; Zarkali et al., 2019).  This appears to be true in 

hallucinations within the context of psychotic illness (Cassidy et al., 2018; Powers et al., 2017; 

Teufel et al., 2015) as well as in the general population (Alderson-Day et al., 2017; Powers et 

al., 2017), and within hallucinations arising from other neuropsychiatric disorders (Zarkali et al., 

2019).   
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The utility of these behavioral measures as biomarkers may depend upon several as-yet-

unknown factors.  One such factor is theoretical:  within the massive processing hierarchy of the 

brain, to what degree are these tasks and measures actually measuring the same latent 

construct?  If the proposed abnormalities driving hallucinations (i.e., overly precise priors) are 

not unitary, the clinical utility of estimating them may be limited.  Second, it is unclear whether 

hyper-precise priors are present not only in fully-formed hallucinations, but also in the earliest 

phases of illness.  If not, the use of such measures to detect abnormalities leading to the 

expression of frank hallucinations may also be limited. 

We present data derived from two tasks purporting to measure hyper-precise priors in 

hallucinations, collected in an overlapping sample of individuals across two CHR clinic sites, 

and among and age-matched healthy controls.  We demonstrate that both methods are 

sufficiently sensitive to detect hyper-precise priors in CHR and that their scores are correlated, 

supporting the hypothesis that these two methods measure the same underlying construct. 

Lastly, we propose other computational parameters that may signal the need for care and 

increased risk for conversion in this high-risk group.  

 

Methods 

 

Participants 

 

The sample comprised 19 CHR participants and 17 healthy controls (HC) recruited across two 

sites: the Georgia Psychiatric Risk Evaluation Program (G-PREP; directed by author G.P. 

Strauss) (CHR N = 9, HC N = 10) and the Adolescent Development and Preventive Treatment 

program (ADAPT; directed by author Vijay Mittal) (CHR N = 10, HC N = 7).   

 

Similar recruitment procedures were followed across both sites, which involved referrals of 

youth displaying early signs of psychosis from local clinicians (e.g., psychiatrists, psychologists, 

social workers, school psychiatrists) to receive diagnostic assessment and monitoring 

evaluations. CHR youth were also recruited via online and print advertisements, and in-person 

presentations to community mental health centers. 

 

Clinical Procedures 

 

The Structured Interview for Psychosis-Risk  Syndromes (SIPS) (Miller et al., 1999) was 

administered to detect the presence of a psychosis-risk syndrome in three possible ways: 1) the 

presence of attenuated positive symptoms or fully psychotic positive symptoms occurring over a 

very brief time period; and/or 2) decline in global functioning accompanying the presence of 

schizotypal personality disorder and age <19; and/or 3) a family history of schizophrenia with 

decline in functioning.  The SIPS contains an instrument, the Scale of Prodromal Symptoms 

(SOPS), that rates the severity of relevant symptoms along a 7-point scale ranging from absent 

to severe and psychotic.  Ratings in the range of 3 to 5 are required for designation as at CHR.  

This measure gauges several distinct categories of prodromal symptom domains including 

positive (unusual thoughts, suspiciousness, grandiosity, perceptual abnormalities, disorganized 

communication) and negative dimensions (social anhedonia, avolition, expression of emotion, 
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experience of emotions and self, ideational richness, occupational functioning).  The Structured 

Clinical Interview for the Diagnostic and Statistical Manual (SCID-I) (First et al., 1995) was 

administered to determine the presence of psychosis and substance dependence exclusionary 

criteria. Clinical interviews were conducted in person by advanced doctoral students, trained 

over a two-month period, and certified to perform the SIPS.  All interviewers had inter-rater 

reliability scores that exceeded the minimum study criterion of Kappa > 80.   

 

Social functioning was assessed with the Global Functioning Scale: Social (GFS-S) (Carrión et 

al., 2019).  This inventory provides ratings of functioning on a 10-point Likert scale where a 

score of 10 reflects “Superior Social/Interpersonal Functioning” and 1 indicates “Extreme Social 

Isolation”. The scale was designed for adolescents and has been found to be valid and reliable 

in assessing at-risk populations.   

 

Healthy control (HC) participants were recruited from the local community using posted flyers 

and electronic advertisements. HC participants had no current major (former Axis I) DSM-5 

diagnoses as established by the SCID (First, 2016). HC also had no family history of psychosis 

and were not taking psychotropic medications. All participants were free from lifetime 

neurological disease.  

 

All participants provided written informed consent for a protocol approved by the University of 

Georgia and Northwestern University Institutional Review Boards and received monetary 

compensation for their participation. 

 

Task Procedures 

 

Tasks were administered on Dell G3 15 gaming Laptops running Windows 10, MATLAB 2018b 

(www.mathworks.com), and the third iteration of the Psychophysics toolbox 

(http://psychtoolbox.org/).  Responses were made by key press. 

 

Figure 1 provides a schematic of the Conditioned Hallucinations (Fig. 1a,b) and the Sine Wave 

Speech (Fig. 1c) tasks.   

 

Conditioned Hallucinations Task 

 

The Conditioned Hallucinations task (Powers et al., 2017) is an auditory detection task.  

Participants work to detect a tone (1 kHz) embedded in 70-dB SPL white noise and presented 

concurrently with a flashed gray checkerboard on a black background (Fig. 1a). Participants 

completed a short practice session reporting auditory detection, which was repeated until their 

responses were at 85% accuracy. Individual threshold (75% detection rate) is determined prior 

to the start of the experiment proper using the QUEST maximum likelihood-based procedure for 

threshold determination (Watson and Pelli, 1983), which is part of the  Psychtoolbox 3.0 

package in MATLAB. Thresholding was performed using two 40-trial interleaved staircases with 

step-sizes computed by QUEST during the participant responses. A psychometric function was 

fitted to the QUEST-computed 75% likelihood of detection of target stimulus embedded in noise 
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(reported as dBSNR) (Treutwein and Strasburger, 1999), computing 50% and 25% detection-

likelihood tone intensities (Fig. 1b, left). Total trial length during thresholding was 2500ms. 

 

In the experiment blocks, participants learned the association between the target auditory 

stimulus (tone) and a simultaneously presented visual stimulus (checkerboard).  After this 

association-training, the participants were tested on this association over 12 blocks, with 30 

trials each. The likelihood of tone presentation at threshold was decreased non-linearly over the 

12 blocks, while increasing the presentation of subthreshold and no-tone trials (Fig1b, right). 

The trials were pseudorandomized within each block. 

 

In addition to responding ‘Yes’ or ‘No’ to indicate whether or not they heard the tone, 

participants also reported their confidence level for their answer choice, by holding the 

response-button down; holding the button down longer indicated higher confidence in their 

decision of ‘Yes’ or ‘No’. 

 

Throughout the experiment,a white visual fixation cross was present on a black background. 

The visual stimulus was a 4x7 gray-on-black checkerboard pattern,  with gray squares at 25% 

brightness to maximize visual stimulation and minimize after-effect. The auditory stimulus was 

presented via Sony Professional MDR-7056 headphones, and consisted of a 1-kHz pure tone 

with a 100-ms tapered envelope to prevent transient effects.  

 

For all parts of the experiment, there was a 500- to 1000-ms fixation from trial start, which was 

followed by the simultaneous presentation of the visual stimulus, and if present, the target 

auditory stimulus, for one second. Participant responses were recorded for 1000 to 1500ms 

after stimulus offset. For the main part of the experiment, there was an additional 2000-ms 

period to record confidence-rating response, during which participants could hold down the 

response button to indicate their confidence level. 

  

For both detection and confidence responses, if a response couldn’t be reported, the trial was 

ignored and the stimulus intensity was repeated in the next trial. Figure 1A shows specific 

stimulus characteristics described here, as well as the structure of a single trial. See Figure 1A 

for a depiction of stimulus characteristics and trial structure.  

 

Sine-Vocoded Speech Task 

 

Previous work using Sine Wave Speech (SWS) indicates that individuals that hallucinate are 

more likely to identify an ambiguous auditory stimulus as speech (Alderson-Day, Lima e al., 

2017).  Sine wave speech (SWS) is typically made by replacing the first three formants (main 

bands of energy) in speech with pure tones (Remez et al., 1981). It is often unintelligible on first 

exposure and may not even be recognized as speech-like (often sounding like ‘aliens’ or 

birdsong). Once the listener knows that it is potentially intelligible as speech (by training via 

exposure to pre-degradation speech templates, which thus serves as a prior expectation), 

relatively high levels of comprehension are achieved. Individuals who hallucinate are able to 

perceive speech in SWS even before exposure to the pre-degradation speech template and 
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without being told speech is present (Alderson-Day, Lima et al. 2017), consistent with the 

presence of a strong prior for speech in people who hear voices.   

Here, we used a similar signal manipulation, sine-vocoded speech (SVS) (Souza & Rosen, 

2009), that differs only in the respect that rather than tracking only the first three formants, sine 

waves are synthesised at the centre frequency of a bank of filters spanning a broad frequency 

range. With training, SVS sentences can be rendered intelligible and recognised as speech. 

SVS can also be rendered fully unintelligible by flipping the frequency mapping of the original 

sentence – providing an ideal control stimulus, with equal complexity (for full details on stimulus 

production, see Supplementary Materials) (Fig1c). 

The “naïve” listening procedure can be challenging to reproduce due to the need to obscure the 

purpose of the task in advance. Here we therefore deployed a simpler paradigm assessing the 

ability of CHR participants to discriminate potentially intelligible SVS from unintelligible control 

SVS (45 trials/condition) before and after exposure to pre-degradation speech templates (i.e. 

updating their prior expectation).  Participants were asked to report whether or not they detected 

speech on each trial (Fig1d).  

In a pre-training phase, participants were presented with intelligible and unintelligible SVS and 

the number of correctly detected speech trials was recorded (hits) along with the number of 

unintelligible trials incorrectly classified as speech (false alarms).  Following exposure to 90 

trials (45 of each stimulus type), participants heard the 45 clear speech templates of the 

potentially intelligible SVS speech trials, before being tested on their SVS classification again.  

 

Data Analysis 

Conditioned Hallucinations Task 

We recorded: 1) participant responses for tone detection, 2) response times, 3) confidence 

rating levels. Trials with no recorded responses were discarded for the purposes of subsequent 

analyses. Detection probability was computed as the ratio of trials during which participants 

reported ‘Yes’ for hearing the tone, to those trials during which they reported ‘No’. No-tone trials 

where the participants recorded a ‘Yes’ response were considered conditioned hallucinations.  

 

The Hierarchical Gaussian Filter (HGF) was fit to the behavioral data from the CH task. This 

model has been previously optimized specifically for use in the CH task, drawing upon evidence 

from simulations and Bayesian model comparison (Powers et al., 2017). The model is included 

in a freely-available toolbox (http://www.translationalneuromodeling.org/hgftoolbox-v4-10/). 

Details on the model are included in the Supplement. 

 

Between group differences for behavioral, as well as modeling variables were computed using 

Welch’s two-sample t-test. Correlations between measures were computed using Pearson's 

product-moment correlation test. All analyses were done using packages stats, tidyverse, 

tableone, and plots were created using the ggplot2 package, performed with the software 

RStudio 1.2.5001 (http://www.rstudio.com/). 

 

Sine Vocoded Speech Task 
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We recorded the participants’ responses for speech detection during both pre-training and post-

training blocks. Using signal detection theory (Stanislaw & Todorov, 1999), we calculated 

participants’ discrimination performance (d’), as well as their bias in classifying speech and non-

speech (beta), and how those variables changed following the experience of template stimuli. 

One indication of enhanced speech priors is the detection of speech in unintelligible speech 

stimuli: a pre-training bias for speech.  Another (following Teufel et al (2015)) is any enhanced 

benefit of top-down information following template exposure, in the CHR relative to controls. 

 

Results 

 

Sample Characteristics 

 

Table 1 summarizes the demographic features of the full healthy control (N = 17) and CHR (N = 

19) samples.  The groups were well-matched demographically, with the exception of a 

significant difference in racial makeup (�2 = 13.814 ; p = 0.032).  Clinical measures on the CHR 

and HC groups differed predictably.  The CHR group had significantly higher P4 (SIPS 

Hallucinatory Behavior; T = 9.97, p < 0.001) and lower GAF scores (T =-7.90 ; p < 0.001) 

compared to matched healthy controls. 

 

Subsets consisting of individuals who performed the CH task (Table S1), the SVS task (Table 

S2), and both (Table S3) exhibited similar patterns of similarities and differences. CHR youth 

did not meet lifetime criteria for a DSM-5 psychotic disorder as determined via SCID interview 

(First et al., 1995). No CHR participants had been prescribed an antipsychotic. 

 

Performance on both tasks differs between groups 

 

As seen in Figure 2a, CHR participants were more likely to report conditioned hallucinations 

(mean = 0.145; T15.5 = 2.74; p = 0.015) than matched healthy controls (CH mean = 0.018).    

 

Groups did not differ in initial threshold estimates (T21.99; p = 0.098; Fig. S1a).  This was true 

only of the conditioned hallucination (no-tone) condition (Fig. S1b):  group means did not differ 

at the 75% Detection (CHR mean: 0.88; HC mean: 0.89; T19.9 = 0.086; p = 0.93) or 50% 

Detection conditions (CHR mean: 0.71; HC mean: 0.73; T21.9 = 0.78).  The group difference in 

reporting detection at the 25% Detection condition trended toward significance (CHR mean: 

0.40; HC mean: 0.30; T21.9 = 1.51; p = 0.14).  

 

CHR participants were also more likely to exhibit pre-training detection of sine-wave speech 

than healthy controls (CHR mean = 0.302; HC mean = mean = 0.012; T14.5 = 2.33; p = 0.035; 

Fig 2b).   

 

The behavioral effects for the SVS task reported above could be driven by differences between 

groups in latent variables, estimated using the Signal Detection Theory approach. During the 

pre-training portion of the task, the CHR group showed a higher mean bias for classifying the 
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stimuli as speech, even though this difference did not reach significance (T30 = 1.65, p = 0.11).  

Measures of sensitivity did not change significantly after training (main effect of time: F1,30 = 2.81 

; p = 0.104; group x time interaction:  F1,30 = 0.66; p = 0.42). There was a main effect of training 

(F1,30 = 4.44, p = 0.044) and an interaction of group and training (F1,30 = 5.33, p = 0.028) in pro-

speech bias, with healthy controls exhibiting significantly more pro-speech bias after training 

(Fig. S2). 

 

Furthermore, both the pre-training speech bias (r = -0.513621 , p = 0.017) and the change in 

speech bias after the training (r = -0.66, p = 0.0019) were significantly correlated with P4 (SIPS 

Hallucinatory Behavior) score. However, only the pre-post change in speech bias remained 

significant using an outlier-resistant correlation method (Spearman’s rho = -0.75, p < 0.001).   

 

Lastly, performance on both tasks correlated significantly (Fig. 2c;  Pearson’s R = 0.67; T21 = 

4.1483; p = 4.56 x 10-4) but did not survive application of an outlier-resistant method 

(Spearman's rho: 0.19, p = 0.3758) 

 

Interestingly, there was no correlation between P4 (SIPS Hallucinatory Behavior) score and 

either the probability of reporting conditioned hallucinations (R = 0.178; p = 0.54) or pre-training 

detection of sine wave speech (R = 0.20; p = 0.39).   

 

CHR participants differ in recognition of volatility in stimulus contingencies 

 

To provide further insight into the mechanisms driving the main behavioral effects above, we 

estimated parameters of a three-level Hierarchical Gaussian Filter (HGF; Fig. 3a) (Mathys et al., 

2011; Stephan and Mathys, 2014) using behavior from the Conditioned Hallucinations task 

(Powers et al., 2017).   

 

No difference in decision noise was seen between groups (Fig. 3f). CHR participants exhibited 

a trend toward higher relative precision of priors compared to healthy controls (Fig. 3e; T = 

1.5821 ; p = 0.132.  Similar trends were exhibited in terms of group belief trajectories:  CHR 

participants tended to exhibit more tenacious beliefs that the tone was present when the visual 

stimulus was on any given trial (Fig. 3d) and across the experiment (Fig. 3c), although neither 

of these differences reached statistical significance.   

 

By contrast, groups did differ significantly in their ability to recognize the changing probabilistic 

relationship between the tone and the visual stimulus (Fig. 3b).  While HC participants were 

likely to recognize that the visual stimulus became less predictive of the tone over time, CHR 

participants did not (F11,242 = 3.13; p = 5.78 x 10-4).   

 

 

Prior precision correlates with performance on both tasks  

 

In order to determine whether prior precision drives performance, we tested for a correlation 

between HGF-derived prior precision and performance on both tasks.  As expected, estimated 
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prior precision predicted performance on the Conditioned Hallucinations task (Fig. 4a; R = 

0.871;  T21 =  8.126; p = 6.407x 10-8).  It also significantly predicted pre-training detection on the 

SVS task (Fig. 4b; R = 0.753; T21 = 5.245; p = 3.364 x 10-5), although this did not survive after 

removal of outliers. 

 

 

Discussion 

 

We have demonstrated that participants at CHR for psychosis perform differently on two tasks 

grounded in predictive processing theory compared to healthy controls:  CHR participants 

exhibited behavior consistent with hyper-precise priors on both tasks.  Further, we have shown 

that performance on the two tasks are correlated, supporting some commonality of mechanism.  

Modeling of behavior on the Conditioned Hallucinations task using the HGF demonstrated group 

differences in volatility-related parameter estimates as well as a correlation between prior 

weighting and performance on both tasks. 

 

The fact that CHR participants exhibited an increased tendency toward conditioned 

hallucinations as well as pre-training detection of sine wave speech indicates a tendency to 

exhibit hyper-precise priors even in the earliest phases of the illness.  This is consistent with 

performance of at-risk individuals on recognition of previously-viewed visual scenes (Teufel et 

al., 2015).  Interestingly, modeling of performance in the CHR group reflected that of individuals 

with psychosis and hallucinations in past work (Powers et al., 2017).  Thus, model parameters 

demonstrated low change in X1, high relative prior precision, and low tendency to appropriately 

recognize volatility in the A-V contingency, although not all of these differences reached 

statistical significance.  This is consistent with the idea that the CHR condition may be 

accurately described as both an at-risk state and a syndrome conferring a need for care (Woods 

et al., 2001).   

 

In the Conditioned Hallucinations task, participants are progressively exposed to fewer and 

fewer trials in which the target tone is predicted by the presence of the light.  Thus, the 

contingency between the light and tone becomes progressively more volatile over the course of 

the experiment.  Modeling of behavior using the HGF takes this volatility into account, explicitly 

estimating volatility beliefs related to the inter-stimulus contingency.  It is particularly notable that 

inter-group differences in volatility estimates were even more significant than seen in individuals 

with fully-formed psychosis (Powers et al., 2017). The behavioral differences between groups in 

the SVS task shows that while the CHR group has a higher speech-bias before the training, the 

HC group shows the ability to modulate speech-bias after acquiring new information in the post-

training speech detection task, suggesting that the HC participants might have a more robust 

ability to modulate bias depending on environmental conditions compared to the CHR group. 

The results from both tasks are broadly consistent with recent accounts of volatility beliefs 

impacting low-level learning of action-outcome contingencies specifically in  psychosis-spectrum 

illness (Deserno et al., 2020).   
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If computationally-oriented tasks are meant to assay the same underlying state in the same 

participants, and if this state is stable over time, performance on these tasks should correlate.  

This is exactly what we demonstrate.  For the first time, two tasks that have been thought to 

estimate the propensity of participants to rely upon their priors have been run on the same 

participants.  Results show that this property appears to be conserved across tasks. Especially 

promising is the fact that estimated prior weighting on one task (CH) predicts performance on a 

separate task meant to assay the same underlying computational parameter. Given that these 

are only two among several tasks to recently show prior-weighting effects in psychosis and 

psychosis-related states (Alderson-Day et al., 2017; Cassidy et al., 2018; Powers et al., 2017; 

Zarkali et al., 2019), it prompts the question as to whether all such measures capture the same 

latent state.   Recent work has highlighted the need to take into account the hierarchical 

structure inherent in the systems involved (Corlett et al., 2019). Additionally, other models take 

explicit account of systems involved in action as they relate to perceptual inference (Adams et 

al., 2013a).  Two such recent studies highlight the possibility that inference about action state 

(i.e., talking vs listening) may be a critical component of hallucinogenesis (Benrimoh et al., 

2019, 2018). It remains unclear whether and how tasks that purport to measure these 

computational alterations may themselves relate to the findings here.  Future work should 

engage participants in a range of tasks meant to assay related model parameters, as well as 

subject data to several competing models, using principled means of comparison to determine 

the best explanatory fit for the data observed (Rosa et al., 2010).   

 

The lack of correlation between symptom measures and performance on either tasks stands in 

stark contrast to the studies this work was based upon (Alderson-Day et al., 2017; Powers et al., 

2017), which highlight a specific relationship to hallucinatory propensity in clinical and non-

clinical voice-hearers.  This lack of observed relationship may be due to several factors.  First, 

there are statistical considerations: sample sizes from this study are approximately half those 

employed in the original studies, and only a small subset of individuals had self-reported 

hallucination severity measures; the range of symptom scores observed here is markedly low 

(P4 scores were clustered around 3 with low variation in the sample); and P4 values fail to take 

into account several phenomenological factors like frequency, intensity, or loudness of voice-

hearing, instead focusing on more clinically-relevant factors such as distress or impairment 

associated with these experiences. Furthermore, the P4 measure does not take into account the 

sensory modality of the phenomenological experience, and whether the experience is visual or 

auditory could be important for mediating the performance on the auditory CH and SVS 

tasks.However, a second possibility may hold more promise for explaining pathological states 

leading to hallucinations.  In this account, a lack of correlation with symptoms may be related to 

the phenomenologically semi-developed nature of the voice-hearing experience in CHR: most 

individuals with non-zero P4 scores experience relatively mild hallucinations, and most are non-

verbal (Niles et al., 2019).  This relative developmental nascency may mean that those who 

exhibit altered performance on these tasks and hyper-precise priors may not be individuals with 

high hallucination propensity at the moment, but may be more likely to develop frank 

hallucinations in the future. Longitudinal assessment of the relationship between prior precision 

and hallucinogenesis in CHR as well as symptomatic fluctuation in fully-formed psychosis is 

warranted to understand the clinical utility of the measures employed here. Further, larger 
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multisite consortiums such as Computerized Assessment for Psychosis Risk (CAPR) and the 

Psychosis Risk Outcome Network (ProNET) will be important for providing the statistical power, 

and long-term clinical visit frequency density, necessary for model confirmation and refinement. 

 

Taken as a whole, the findings presented here speak to the potential clinical utility and 

sensitivity of well-chosen behavioral measures, and--in particular--measures that are based 

solidly in explicit, formalized generative models for symptom expression.  As a field, 

Computational Psychiatry comprises advocates for data-driven, machine-learning-based 

approaches to understanding heterogeneity of psychiatric presentation as well as others who 

espouse modeling as a way to uncover latent processes driving psychopathology (Browning et 

al., n.d.).  The results here represent a way forward that marries the two approaches:  

employing measures that can be easily gathered from large, heterogeneous samples that 

nonetheless are able to speak to latent computational states that confer risk for symptom and 

disease progression. Future attempts may employ larger samples, with measures tied to other 

symptom domains, in an attempt to meaningfully parse the diversity of this markedly 

heterogeneous population.  It may also be possible to employ both inferential and data-driven 

approaches within a hierarchical Bayesian framework, as has been done in model-based 

neuroimaging and electrophysiological approaches (Yao et al., 2018). 
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Figure Legends 

 

Figure 1. Behavioral Tasks.  The Conditioned Hallucinations (CH) task (a,b) and the Sine 

Wave Speech task (c,d) were administered.  a. In the CH task, participants were asked to 

detect the presence of a 1-kHz tone embedded in white noise.  The tone, when present, was 

paired with a white checkerboard flash on a black background, causing participants to build an 

association between the difficult-to-hear tone and salient checkerboard flash. b. We estimated 

individual psychometric curves for tone detection (left) and then systematically varied stimulus 

intensity over 12 blocks of 30 conditioning trials. Threshold tones were more likely early, and 

sub-threshold and absent tones were more likely later (right). c. Stimuli for the SVS task were 

created, of which some can become intelligible with training (top), and some are fully 

unintelligible (bottom). d. First participants are naive to the stimuli, and are asked to report their 

detection of speech for each trial. After training with the pre-degradation speech stimuli, 

participants repeat the task and are again asked to report their detection of speech. 

 

Figure 2. Group-Level Behavioral Effects a. Mean between-group differences in CH task 

performance. CHR N= 12; HC N=12. . b. Mean between-group differences in SVS task 

performance. CHR N= 15; HC N=19. c. Correlation between SVS task performance and CH 

task performance. CHR N= 11; HC N=12. p<0.001.  Asterisk denotes p < 0.05. 

 

Figure 3. HGF model analysis.  a. Schematic of the computation for the HGF model, mapping 

experimental stimuli to recorded responses. The first level (X1) represents whether the subject 

believes a tone was present or not on trial t. The second level (X2) is their belief that visual cues 

are associated with tones. The third level (X3) is their belief about the volatility of the second 

level. The HGF allows for individual variability in weighting between sensory evidence and 

perceptual beliefs (parameter ν). b. At X3, there was a significant block-by-group interaction. 

***P < 0.001. c-e.  CHR participants also exhibited trends toward higher beliefs in trial-wise (c)  

and experiment-long (d) contingencies between the presence of the tone and the visual 

stimulus. f. There were no inter-group effects of decision noise. Error bars represent ±1 SEM. 

Line shadings represent 95% confidence intervals. Red = CHR; White with black outline = HC. 

 

Figure 4. Relationships between prior precision and performance on both tasks. As 

expected, performance on the CH task (a) was predicted by prior precision.  Performance on 

the separate Sine Wave Speech task (b) was driven by estimated prior precision on the CH 

task.   
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Tables 

 

Table 1.  Group Demographic Characteristics 

             

 CHR HC p 

n 19 17  

Age (mean (SD)) 20.95 (1.93) 20.88 (1.50) 0.911 

Gender (portion male) 

(%) 

5 (26.3) 1 (5.9) 0.232 

Race (%)   0.065    

 African American 4 (21.1) 2 (11.8)  

 Asian American 1 (5.3) 6 (35.3)  

Caucasian 12 (63.2) 5 (29.4)  

 Latinx 2 (10.5) 1 (5.9)  

 Multiracial 0 (0.0) 2 (11.8)  

Native American 0 (0.0) 1 (5.9)  

GAF Score (mean (SD))a 60.33 (11.08) 88.60 (5.46) <0.001 

WTAR/WRAT Score 

(mean (SD))a 

106.78 (12.39) 112.88 

(10.94) 

0.14 

LSHS Total Score (mean 

(SD))b 

20.78 (8.29) 4.40 (6.02) 0.002 

SIPS Positive Symptoms 

(mean (SD))b 

12.11 (3.41) 0.29 (0.76) <0.001 

Table(s)



SIPS Negative Symptoms 

(mean (SD))b 

5.33 (5.72) 1.14 (1.46) 0.071 

a. CHR N = 18; HC N = 5 

b. CHR N = 18; HC N = 7 
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