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1 Introduction

The forecast of monthly �nancial volatility is used in many economic and risk management decision

making processes. On the one hand, macroeconomic and monetary policy decisions, relying on

expectations of GDP growth and in�ation targets, must take into account the �nancial markets

volatility forecast as it closely relates to interest rates expectations (see Schwert (1989) for a

comprehensive analysis on the relation between monthly stock returns volatility and macroeconomic

variables). On the other hand, the forecast of long-horizon (monthly) �nancial volatility is key for

risk management decisions, such as portfolio choice, strategic positioning, regulatory and internal

capital allocation, and risk-adjusted performance measurement schemes.

The literature on modelling and forecasting volatility has undergone extensive development

since the seminal autoregressive conditional heteroscedasticity (ARCH) and generalized ARCH

(GARCH) models of Engle (1982) and Bollerslev (1986). GARCH models and their generalizations,

surveyed in Terasvirta (2009) and Silvennoinen and Terasvirta (2009), are currently widely used

by researchers and practitioners for forecasting the dynamics of �nancial returns variance. The

availability of high-frequency (intra-daily) �nancial data has motivated the development of the so-

called data-driven models of realized volatility (see Andersen and Bollerslev (1998), Andersen et

al. (2001, 2003), Meddahi (2002) and Barndor¤-Nielsen and Shephard (2004)), and the mixed data

sampling (MIDAS) regression models (Ghysels et al., 2006).

A simple method for forecasting monthly volatility consists on using returns sampled at monthly

frequency to perform a 1-step-ahead GARCH-type forecast (see e.g. Schwert, 1989). This method

requires a very long sample to exploit the volatility clustering feature of higher frequency returns.

Alternatively, one can use daily returns and perform multi-step-ahead volatility forecasts using a

GARCH-type model (see Baillie and Bollerslev, 1992). Operationally, these 1-day-ahead GARCH

forecasts can be converted to longer horizons by scaling by the square root of the horizon (for
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instance, as in Morgan�s (1996) RiskMetrics). Christo¤ersen et al. (1998) assessed these two

methods and found that volatility forecastability declines quickly with the horizon vanishing beyond

horizons of ten or �fteen periods (days) ahead.

In this letter, I follow the methodology based on data-driven models, to predict EuroStoxx 50

monthly volatility by aggregating multi-step (daily) ahead volatility forecasts.1 Similarly, measures

of the unobservable target volatility are calculated by aggregating (future) squared or absolute

returns (see Ghysels et al. (2006) and Barndor¤-Nielsen and Shephard (2004)).2

The EuroStoxx 50 returns conditional variance is modeled by assuming either a GARCH model

or an asymmetric GARCH (AGARCH) (Glosten et al., 1993) to account for "leverage e¤ects",

together with two distributions: the Normal distribution, and the Student�s t that is �exible to

account for excess kurtosis not not fully captured by Normal-GARCH processes (Bollerslev, 1987).

Models are also estimated for �ltered returns by outliers to eliminate the known bias in GARCH

parameter estimates caused by extreme observations (Carnero et al., 2007), and forecasts based on

those estimations are also analyzed.

The models performance is evaluated by using the mean squared error loss function (MSE

hereafter), and the Minzer-Zarnowitz (1969) regression method.(M-Z hereafter).

The remainder of the paper is organized as follows. Section 2 presents the data and the models

for conditional heteroscedasticity, and discusses the estimation results. Section 3 presents the

method to measure the unobservable volatility variable. Section 4, presents the methodology and

results of the monthly volatility forecasting. Finally, Section 5 summarizes the conclusions.

1Models based on monthly returns and on square-root scaling are not considered in the analysis given

its known inferior performance for monthly volatility forecast. Only GARCH 1-step-ahead monthly forecasts

are used as benchmark to illustrate the performance of the rest of considered models.
2Unlike most papers on volatility forecasting which focus on a horse race of di¤erent volatility models,

this study investigates models performance with respect to alternative measures of the monthly volatility

proxy obtained using data at di¤erent frequencies.
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2 Stock returns volatility modeling

Let daily returns be denoted by rt = log(Pt) � log(Pt�1). Throughout the paper the time index

t will refer to daily sampling. I also use data sampled at a lower frequency (monthly), with each

month having m days, then I denote the monthly return as rmt = log(Pmt) � log(Pm(t�1)). To

make the analysis more realistic I consider months with their actual number of working days, so

mij (number of observations of month i year j) is not constant and ranges from 20 to 23 days. For

the sake of simplicity in notation, I drop the ij subindices of m.

The data set used consists of daily and monthly returns of the EuroStoxx 50 index over a 19

years period, from February 1, 1988 to December 3, 2007, for a total of 5; 176 daily and 239 monthly

observations. The data were downloaded from Datastream. Table 1 presents descriptive statistics

of the data, which illustrate the known stylized features of �nancial returns: volatility clustering

(Engle, 1982), heavy-tailed distribution (Mandelbrot, 1963), and asymmetric response of returns

to positive and negative shocks (Black, 1976). To save space, all Figures used in this study are

provided as Supplementary material.3

Table 1. Descriptive statistics of EuroStoxx 50 daily and monthly percent returns. The Jarque-
Bera (J-B) statistic is asymptotically distributed as a �2 distribution with 2 degrees of freedom

under the null of normality, the p-value (p-v) of the test is in parenthesis next to the J-B statistic.

Obs Mean Max Min St. Dev. Skew Kurtosis J-B stat (p-v)

Sample 2/01/1988 - 12/03/2007

Daily 5176 0.0372 7.078 -7.5191 1.1876 -0.2228 7.8511 5118.2 (0.00)

Monthly 239 0.7985 15.306 -20.230 5.1762 -0.7252 4.5528 44.965 (0.00)

Both daily and monthly returns are �ltered by their conditional mean to remove small linear

dependences attributed to non-synchronous trading in the stocks that form the index (see Sentana

and Wadhwani, 1992). The Akaike Information Criterion (AIC hereafter) selects the following

3Figure 1 includes the plots of the daily and monthly prices and returns series.
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process for the conditional mean: rt = � + "t; all ARMA parameters, but the intercept, were not

statistically signi�cant at least at 10 per cent level.

I assume two distributions for the returns, the Normal as benchmark and the Student�s t

(Bollerslev, 1987) as a more �exible distribution to �t the leptokurtosis of the data distribution.

To account for volatility clustering and the "leverage e¤ect" the conditional variance of the returns

distribution is speci�ed to follow either a GARCH (1,1), (eq. 2), or an AGARCH(1,1), eq. 3.4 To

�x notation the return process is given by,

rt = �+ "t; (1)

"t = h
1
2
t �t; "tj
t�1 � N(0; ht); "tj
t�1 � t�(0; ht);

ht = ! + �u2t�1 + �ht�1; (2)

ht = ! + �(ut�1 � 
)2 + �ht�1; (3)

where 
t�1 denotes the information set up to time t� 1, � is the degrees of freedom parameter of

the Student�s t distribution, and ht is the variance of the conditional distribution of rt. For the

sake of simplicity in notation, hereafter I use rt, instead of "t = rt � �, to denote �ltered returns.

The models are estimated by maximum likelihood (ML) techniques and standard errors are

robust Bollerslev and Wooldridge (1992). When the Normal distribution is assumed, ML estimation

of GARCH and AGARCH models provides quasi-ML estimates (QMLE) which are consistent and

asymptotically normal although not e¢ cient (see Straumann and Mikosch (2006) for the analysis

of the AGARCH case). Under the Student�s t distribution, the GARCH models MLE are not

consistent although they may be more e¢ cient (see Newey and Steigerwald (1997) for further

4Other possibilities include APARCH (Ding et al., 1993), FIGARCH (Baillie et al., 1996), and HYGARCH

(Davidson, 2004) models and their extensions. GARCH-in-Mean models (Engle et al., 1986) are not

considered as they are likely to not provide signi�cantly di¤erent performance than GARCH models for

monthly volatility forecasts, since the e¤ect of the mean factor vanishes after 2-steps-ahead volatility forecast.
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details).

Returns are also �ltered to eliminate outliers that are known to bias the (Q)ML parameter

estimates of GARCH processes (Carnero et al., 2007). In our empirical application, outliers are

identi�ed by the simple rule of 3 times the sample standard deviation (3 � bh 12 ) and substituted by
the returns sample mean: 117 outliers were substituted for the daily returns, and 5 for the monthly

data. This �ltering procedure will not a¤ect the models ranking regarding their out-of-sample

forecasting performance, since it is same for all models.5

2.1 Estimation results

Table 2 reports the estimation results for the models using the daily returns. Hereafter �n�and �t�

preceded by the conditional variance process denote that the assumed distribution for the returns

is either the Normal or the Student�s t, respectively. Panel 1 presents the results for the un�ltered

returns. The sum of b� and b� is near 1, which indicates high persistence in the EuroStoxx 50
returns daily volatility. The degrees of freedom coe¢ cient, b�, is around 6, con�rming the existence
of leptokurtosis in the returns distribution. The asymmetry parameter estimate, 
̂, is statistically

di¤erent from zero or one, con�rming the existence of the "leverage e¤ect" in the index return daily

volatility.

The estimation results in Panel 2 for the �ltered returns show that the returns distribution is

nearer to normality (b� is higher for the un�ltered returns). Furthermore, we note that the bias of b�
and b� is not corrected for the �rst sample window, although careful monitoring of estimation reveals
that it does correct for other windows over the out-of-sample period, for which b� take values above
25. According to the AIC, asymmetry and Student�s t errors both provide the GARCH speci�cation

5Alternative procedures, applicable in a forecasting volatility context, to correct for outliers in returns

series with GARCH e¤ects are proposed in Franses and Ghysels (1999).
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with more �exibility to �t the data.

Table 2. Models estimation results for daily returns across the in-sample period (2/01/1988-
1/01/1999, observations 2,850). (Q)MLE estimates, and t-statistics (in parenthesis) obtained from
robust standard errors. Panel 1 presents the model estimation for the original sample, and Panel 2
for the sample corrected by substituting outliers (returns larger than 3 times the sample standard
deviations) by the returns sample mean.

GARCH-n AGARCH-n GARCH-t AGARCH-t
Panel 1: No Filter
! .0475 (2.48) .0279 (2.11) .0226 (3.65) .0189 (3.25)
� .1113 (4.47) .0889 (3.36) .0226 (5.68) .0934 (5.95)
� .8370 (26.7) .8616 (24.2) .8797 (44.5) .8789 (45.5)

 .4445 (3.08) .2661 (4.10)
� 6.037 (7.47) 6.207 (7.33)
LogL -3641.9 -3623.9 -3483.5 -3476.1
AIC 2.5578 2.5459 2.4474 2.4428

Panel 2: Filter 3*bh 12
! .0110 (2.78) .0073 (1.93) .0085 (2.48) .0062 (1.91)
� .0607 (5.43) .0567 (5.51) .0617 (5.17) .0612 (5.43)
� .9238 (63.1) .9284 (67.8) .9275 (62.9) .9272 (65.1)

 .2625 (5.40) .2375 (3.56)
� 9.333 (6.23) 9.7201 (5.93)
LogL -3383.4 -3374.8 -3356.8 -3350.6
AIC 2.3764 2.3711 2.3584 2.3548

3 The volatility proxy

The goal is to predict a measure of volatility over a monthly horizon that corresponds to: 1-

step-ahead forecast for monthly frequency data, ehm(t+1), and to m-days-ahead forecast for daily
frequency, eht+m. As volatility is an unobservable variable, and in order to make the analysis

comparable to a large body of existing literature, I consider several measures of volatility for

the period t to t + m (daily frequency), or mt to m(t + 1) (monthly frequency). As primary

measures, I consider the squared and absolute value monthly returns, denoted as r2m(t+1) and��rm(t+1)��, respectively. Following the volatility literature on high-frequency (intra-daily) data, I also
consider the increments in the quadratic variation, Ht+m, (see Ghysels et al., 2006) and the "realized

power" variation, Pt+m, of the return process (see Barndor¤-Nielsen and Shephard, 2004). Those
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variables are not observed directly but can be measured with some discretization error through: the

sum of future (a) daily squared and (b) absolute value returns, denoted as eHt+m =
Pm
j=1 (rt+j)

2

and ePt+m =
Pm
j=1 jrt+j j, respectively. Note that I aggregate daily returns to obtain measures of

"realized" monthly volatility since the target is the forecast of monthly volatility.6

Figure 2 presents the four di¤erent EuroStoxx 50 returns monthly volatility measures over the

out-of-sample period for un�ltered (Panel 1) and �ltered returns (Panel 2). It is observed that

monthly volatility tends to be underestimated when using punctual monthly squared returns in

relation to the aggregated measure of quadratic variation. This underestimation is systemic when

considering punctual monthly absolute value returns in relation to the "realized power" volatility.

It is worth noting that, in the case of discrete time processes, the proxies r2m(t+1);mt andeHt+m;t =Pm
j=1 (rt+j;t)

2 are unbiased measures for the implied (true) underlying monthly volatility,

and although the former is noisier, both ensure a correct ranking of models, provided that the loss

function is quadratic (see e.g. Andersen and Bollerslev (1998), Awartani and Corradi (2005) and

Hansen and Lunde (2005)).

4 Volatility forecasting methodology

For the monthly forecasts using the monthly frequency, I use the �rst 132 observations to estimate

the parameters of the GARCH models, and compute N = 107 out-of-sample (February 1999 to

December 2007) 1-step-ahead forecasts of the conditional variance, Emt(r2m(t+1)) =
bhm(t+1), by

using a rolling window of constant size 239�N that discards old observations.

For the daily frequency, I use the �rst 2; 850 observations to estimate the parameters of the

GARCH models, and compute N = 107 out-of-sample m-step-ahead forecasts of the conditional

6Higher frequency data (intra-daily) could be used for the monthly proxy, but this option is discarded

since for monthly-horizon forecasts there are not signi�cant di¤erences in performance, as shown in Ghysels

et al. (2006)
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variance by using a rolling window of non-constant size 5; 176� (N �m) that discards the m oldest

observations and incorporates the newest m observations of the month that just went; the out-of-

sample period is February 2, 1999 to December 3, 2007 (2; 326 daily observations corresponding to

107months).7 Then I use a recursive multi-step-ahead forecasting procedure (Baillie and Bollerslev,

1992) where the optimal predictor for the 1-step-ahead GARCH(1,1) conditional variance is given

by

bht+1 � Et(ht+1) = ! + �u2t + �ht; (4)

and the m-step-ahead optimal predictor is

bht+m � Et(ht+m) = ! + (�+ �)ht+m�1: (5)

For the AGARCH(1,1), the optimal m-step-ahead predictor of the conditional variance is given by,

Et(ht+m) =

8><>:
! + �(ut � 
)2 + �ht,

! + (�+ �)ht+m�1 + �
2,

for m = 1;

for m > 1:

(6)

Then, a monthly conditional variance forecast is obtained by adding the previous m-steps-ahead

conditional variance forecasts, bHt+m =
Pm
t+j
bht+j : When the target volatility is either ePt+m or��rm(t+1)��, the monthly forecast predictor is: bH 1

2
t+m =

Pm
t+j
bh 12t+j . In summary, this procedure

simulates realistic monthly forecasts of EuroStoxx 50 volatility from February 1999 to December

2007, performed the �rst day of each month over that period, with an updating window that

discards the oldest month observations and incorporates the daily data from the latest month.

The models performance is measured by using the MSE with respect to the volatility proxies

described in Section 2, namely eHt+m, ePt+m, r2m(t+1) and ��rm(t+1)��. MSE are calculated for �ltered
(returns series free of outliers) and un�ltered returns. The volatility models forecasting performance

obtained by using the �ltered returns is measured with respect to either �ltered or un�ltered

volatility proxies. I also consider the M-Z regression to measure the models forecasting performance.

7Note that in this case window sizes may di¤er at most in 3 daily observations, a small number given the

window size, but all windows have the same number of months.
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It consists on estimating the following equation,

eHt+m = #0 + #1 bHt+m + ut+m: (7)

Thus, the forecast from a model is optimal with respect to the available information set (
T+i�1)

if the null H0 : (#0; #1) = (0; 1) is accepted.8

4.1 Forecast results

Figure 3 presents the plots of the monthly volatility forecasts, bHt+m, obtained from a GARCH-n,

and punctual 1-step-ahead monthly forecasts obtained from a GARCH-n model �tted to monthly

data, with respect to proxies eHt+m and r2m(t+1). It is clearly observed that bHt+m is much

more �exible to capture periods of high volatility in relation to both proxies and, both methods

(aggregation and monthly punctual forecasts) provide similar results for periods of low volatility.

Figure 4 presents plots of bHt+m obtained from AGARCH-n and AGARCH-t models against

the proxy eHt+m. From the plots it can be observed that both models provide reasonably good

forecasts being di¢ cult to discriminate between them.

Figure 5 presents monthly forecasts bHt+m and bH 1
2
t+m; from a GARCH-n model and �ltered

returns against (�ltered and un�ltered) proxies eHt+m and ePt+m, respectively. As expected, it is
observed a better �t of forecasts bHt+m to the proxy eHt+m than when un�ltered data are considered.
But bHt+m obtained from �ltered data are not able to capture "real" periods of high volatility, as

shown by the large discrepancy between bHt+m and bH 1
2
t+m from �ltered data and proxies eHt+m and

ePt+m from non-�ltered returns. Note that eHt+m and ePt+m for non-�ltered returns are the actual

(observed) proxies of volatility and so the target variables.

A sharp result that emerges from Table 3 (below) is that, for both �ltered and un�ltered returns,

Normal models provide a lower MSE than their Student�s t counterparts, being the AGARCH-n

8Note that, without loss of generality, the M-Z equation is speci�ed for the proxy eHt+m and the forecastsbHt+m.
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generally preferred to the GARCH-n model. This result is consistent with those in the existing

literature that show that the heavy-tail assumption in GARCH models helps to better forecast

measures such as value-at-risk rather than conditional variance (see, e.g., Brooks and Persand

(2003), Awartani and Corradi (2005), and Ñíguez (2008)). In relation to the M-Z regression criteria,

it is worth noting that the null of optimal forecasts is accepted only for Normal models when the

target variable is eHt+m, being rejected for the rest of cases at any reasonable signi�cance level.
It stands out the high R2 found from models when either eHt+m and ePt+m are used as proxies;

these values are higher than those generally found in the literature. On the other hand, when

proxies r2m(t+1) and
��rm(t+1)�� are used (see Table 4) the values reported are in line with those in the

literature (see, for instance, Andersen and Bollerslev, 1998). Furthermore, R2 from models using

�ltered data are higher, as expected. It is also worth mentioning that for un�ltered returns the

same model ranking is found with respect the MSE when using either eHt+m or r2m(t+1) as proxies

for the implied (underlying) volatility.

Table 3. Out-of-sample monthly forecasting performance with respect to quadratic variation
(Panel 1) and absolute value variation (Panel 2) proxies, for �lter and un�ltered returns. Predictions
are obtained from GARCH models �tted to daily �ltered and un�ltered returns. P-value and R2

from the Minzer-Zarnowitz regression, and MSE stands for Mean Square Error.

GARCH-n AGARCH-n GARCH-t AGARCH-t
Panel 1: Proxy eHt
No Filter
P-value 0.0726 0.1601 0.0071 0.0306
R2 0.4726 0.4832 0.4809 0.4904
MSE 1566.9 1512.4 1612.4 1539.3
Filter 3*bh 12
P-value 0.2287 0.1816 0.0369 0.0142
R2 0.3816 0.4022 0.3927 0.4118
MSE 147.3 143.0 149.7 147.7
Panel 2: Proxy ePt
No Filter
P-value 0.0000 0.0000 0.0000 0.0000
R2 0.5448 0.5622 0.5621 0.5754
MSE 99.3 96.4 111.3 106.2
Filter 3*bh 12
P-value 0.0000 0.0000 0.0000 0.0000
R2 0.3602 0.3793 0.3724 0.3791
MSE 49.3 51.3 54.7 56.9
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Table 4. Out-of-sample monthly forecasting performance with respect to squared (Panel 1)
absolute value (Panel 2) monthly returns. Predictions are produced by using GARCH models
�tted to daily �ltered and un�ltered returns. P-value and R2 from Minzer-Zarnowitz regression,
and MSE stands for Mean Square Error.

GARCH-n AGARCH-n GARCH-t AGARCH-t
Panel 1: Proxy monthly r2mt
No Filter
P-value 0.0000 0.0000 0.0000 0.0000
R2 0.1239 0.1232 0.1322 0.1304
MSE 3495.8 3435.6 3730.5 3636.9
Filter 3*bh 12
P-value 0.0000 0.0000 0.0000 0.0002
R2 0.3892 0.3670 0.3818 0.3577
MSE 550.6 547.1 522.6 524.1
Panel 2: Proxy monthly jrmtj
No Filter
P-value 0.0000 0.0000 0.0000 0.0000
R2 0.1548 0.1558 0.1632 0.1646
MSE 617.6 617.8 672.7 665.0
Filter 3*bh 12
P-value 0.0000 0.0000 0.0000 0.0000
R2 0.4588 0.4295 0.4593 0.4281
MSE 315.0 323.6 332.8 341.6

5 Conclusions

This article provides a study of the predictability of stocks monthly volatility. I consider di¤erent

measures for the unobservable target monthly volatility including, monthly squared returns and

an estimate of the increments of the returns quadratic (absolute value) variation calculated using

daily future squared (absolute value) returns.

I analyse the forecasting performance of GARCH and AGARCH models with Normal and

Student�s t errors together with a procedure that aggregates Baillie and Bollerslev�s (1992) multi-

step-ahead volatility optimal forecasts to predict monthly volatility. I �nd that this method provides

rather accurate results of monthly volatility in relation to other methods based on either 1-step-

ahead GARCH-type forecasts using monthly frequency, or multi-step-ahead (without aggregation)

GARCH-type forecasts using daily returns (see Christo¤ersen et al. (1998)). Normal AGARCH

models seem to provide more accurate volatility forecasts according to the MSE loss functions and

M-Z regression criteria.
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