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Abstract

In this thesis, four novel sign adaptive algorithms proposed by the author were analyzed and
evaluated for floating-point arithmetic operations. These four algorithms include Sign
Regressor Least Mean Fourth (SRLMF), Sign Regressor Least Mean Mixed-Norm (SRLMMN),
Normalized Sign Regressor Least Mean Fourth (NSRLMF), and Normalized Sign Regressor Least
Mean Mixed-Norm (NSRLMMN). The performance of the latter three algorithms has been
analyzed and evaluated for real-valued data only. While the performance of the SRLMF
algorithm has been analyzed and evaluated for both cases of real- and complex-valued data.

Additionally, four sign adaptive algorithms proposed by other researchers were also analyzed
and evaluated for floating-point arithmetic operations. These four algorithms include Sign
Regressor Least Mean Square (SRLMS), Sign-Sign Least Mean Square (SSLMS), Normalized
Sign-Error Least Mean Square (NSLMS), and Normalized Sign Regressor Least Mean Square
(NSRLMS). The performance of the latter three algorithms has been analyzed and evaluated
for both cases of real- and complex-valued data. While the performance of the SRLMS
algorithm has been analyzed and evaluated for complex-valued data only.

The framework employed in this thesis relies on energy conservation approach. The energy
conservation framework has been applied uniformly for the evaluation of the performance of
the aforementioned eight sign adaptive algorithms proposed by the author and other
researchers. In other words, the energy conservation framework stands out as a common
theme that runs throughout the treatment of the performance of the aforementioned eight
algorithms.

Some of the results from the performance evaluation of the four novel sign adaptive
algorithms proposed by the author, namely SRLMF, SRLMMN, NSRLMF, and NSRLMMN are as
follows. It was shown that the convergence performance of the SRLMF and SRLMMN
algorithms for real-valued data was similar to those of the Least Mean Fourth (LMF) and Least
Mean Mixed-Norm (LMMN) algorithms, respectively. Moreover, it was also shown that the
NSRLMF and NSRLMMN algorithms exhibit a compromised convergence performance for real-
valued data as compared to the Normalized Least Mean Fourth (NLMF) and Normalized Least
Mean Mixed-Norm (NLMMN) algorithms, respectively.

Some misconceptions among biomedical signal processing researchers concerning the
implementation of adaptive noise cancelers using the Sign-Error Least Mean Fourth (SLMF),
Sign-Sign Least Mean Fourth (SSLMF), and their variant algorithms were also removed.

Finally, three of the novel sign adaptive algorithms proposed by the author, namely SRLMF,
SRLMMN, and NSRLMF have been successfully employed by other researchers and the author
in applications ranging from power quality improvement in the distribution system and
multiple artifacts removal from various physiological signals such as ElectroCardioGram (ECG)
and ElectroEncephaloGram (EEG).
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1 Introduction
1.1 Adaptive Filters

When the filter is required to operate in a stationary environment, wherein the statistics of
the signal to be processed are known, the use of Wiener filter provides a solution, which is
optimum in the mean square error sense. However, when the filter is required to operate in
a nonstationary environment, wherein the statistics of the signal to be processed are
unknown, the use of an adaptive filter offers an attractive solution to the problem. In a
nonstationary environment, adaptive filters provide significant improvement in performance
over fixed filters [1].

An adaptive filter has the ability of adapting its characteristics in order to achieve the desired
objectives. Adaptation is accomplished automatically by adjusting the filter coefficients or
filter weights in accordance with the input data. Thus, making an adaptive filter in reality a
nonlinear device as it does not obey the principle of superposition [1].

1.2 Adaptive Filtering Algorithms

An adaptive filter relies on a recursive algorithm for its operation. The algorithm starts from
some predetermined set of initial conditions. In a stationary environment, the algorithm
converges to the optimum Weiner solution after some successive iterations. In a
nonstationary environment, the algorithm offers a tracking ability, wherein it can track time
variations in the input data statistics [1], [2].

A number of adaptive algorithms have been reported in the open literature in order to adjust
the filter coefficients. Some of the most well-known algorithms include Least Mean Square
(LMS) [3]-[5], Least Mean Fourth (LMF) [6]—[9], Least Mean Mixed-Norm (LMMN) [10]-[12],
Sign Regressor Least Mean Square (SRLMS) [13]-[16], Sign-Error Least Mean Square (SLMS)
[17]-[25], Sign-Sign Least Mean Square (SSLMS) [26]—[31], Sign Regressor Least Mean Fourth
(SRLMF) [32], [33], Sign Regressor Least Mean Mixed-Norm (SRLMMN) [34] etc. The latter two
novel algorithms, namely SRLMF and SRLMMN were proposed, analyzed, and evaluated by
the author.

1.3 Applications of Adaptive Filters

Adaptive filters have been successfully employed in many diverse fields such as biomedical
engineering, communications, control systems, radar, seismic, and sonar signal processing,
etc. The main difference among the various applications arises in the manner in which the
desired response is extracted. On this basis, adaptive filters are classified into four basic
classes, namely modelling, inverse modelling, interference/noise cancellation, and linear
prediction [1], [2].



In [32]-[46], system identification, an application of modelling, has been implemented to
evaluate the performance of the respective algorithms discussed in these publications. In [47],
channel equalization, an application of inverse modelling, has been implemented to evaluate
the performance of the respective algorithms discussed in this particular publication. In [48],
both single-stage and cascaded interference/noise cancellation adaptive filter structures have
been implemented to evaluate the performance of the respective algorithms discussed in this
particular publication.

Therefore, only modelling, inverse modelling, and both single-stage and cascaded
interference/noise cancellation adaptive filter structures are briefly discussed below.
Moreover, all the simulations in the publications listed in the author’s original contributions
except in [49] are performed by the author using MathWorks’ MATLAB software (see
Appendix A for a sample MATLAB program). It should be noted that there were no simulation
results reported in [49] as it was a comments article.

1.3.1 Modelling

The problem of modelling in the context of adaptive filters is depicted in Figure 1.1. The aim
is to estimate the parameters of an unknown system or plant. Both the unknown system and
the adaptive filter are driven by the same input u;. v; is the additive noise. The adaptive filter
output y; is subtracted from the desired signal d;. The resulting error signal e; is used to
update the adaptive filter coefficients such that the error signal gets minimized iteratively [1],

[2].

Note that throughout this thesis, scalar quantities such as v; are denoted by lowercase letters,
vector quantities such as u; are denoted by boldfaced lowercase letters, and matrices such as
regressor covariance matrix R are denoted by boldfaced uppercase letters.

Ui

-

Adaptive Yi
Filter

Figure 1.1: Modelling scenario.



1.3.2 Inverse Modelling

The problem of inverse modelling in the context of adaptive filters is depicted in Figure 1.2.
The most widely used application of inverse modelling, also known as deconvolution, is in
communications wherein an inverse model, also called an equalizer [50], is employed to
mitigate the effect of channel distortion. At convergence, the adaptive filter has a best transfer
function equal to the reciprocal of the unknown system’s or plant’s transfer function, such
that the combination of the two constitutes an ideal transmission medium. In Figure 1.2, a
delayed version of the system input s; forms the desired signal d; for the adaptive filter [1],

[2].

Adaptive
Filter

v

Figure 1.2: Inverse modelling scenario.
1.3.3 Interference/Noise Cancellation

The problem of interference/noise cancellation in the context of adaptive filters is depicted in
Figure 1.3. In this application, the adaptive filter structure shown below is used to cancel the
interference/noise present in the corrupted primary input d;, which contains the desired
signal plus interference/noise [51]. The secondary or reference input u; contains the reference
interference/noise that is correlated only with the interference/noise present in the corrupted
primary input d;, the adaptive filter is adjusted so that an estimate of the interference/noise
that is present in the corrupted primary input d; appears at its output y;, and e; is the filtered
signal free from interference/noise [1], [2].

1.3.4 Cascaded 2-Stage Adaptive Noise Cancellation

A cascaded 2-stage adaptive noise canceller is shown in Figure 1.4. As can be seen from this
figure d;; forms the corrupted primary input of the first adaptive noise canceller, d;; contains
the desired signal plus the two noise signals n; and n,, u;; forms the reference input of the
first adaptive noise canceller, u;; contains the first reference noise signal that is correlated
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only with the first noise signal n; present in the corrupted primary input d;;, u;, forms the
reference input of the second adaptive noise canceller, u;, contains the second reference
noise signal that is correlated only with the second noise signal n, present in the corrupted
primary input d;;, ¥;1 and y;, are the respective adaptive filter outputs, e;; is the partially
corrupted signal free from the first noise signal nq, e;; will act as the partially corrupted
primary input d;, to the second adaptive noise canceller, and e;, is the filtered signal free from
both noise signals n; and n,.

d;

u; Adaptive /.
Filter

v

Figure 1.3: Interference/Noise cancellation scenario.

U;q Adaptive
Filter 1

Adaptive
Filter 2

\ 4

Figure 1.4: Cascaded 2-stage adaptive noise cancellation scenario.

1.4 Advantages of Sign Adaptive Algorithms



Reduction in the complexity of the LMS algorithm has always received attention in the area of
adaptive filtering. This reduction is usually done by clipping either the input data or the
estimation error or both in order to reduce the number of multiplications necessary at each
algorithm iteration. The clipping of the input data or the estimation error or both is
accomplished by the application of signum function.

The algorithm based on clipping of the input data is known as the Sign Regressor Algorithm
(SRA), the algorithm based on clipping of the estimation error is known as the sign-error
algorithm or more commonly the Sign Algorithm (SA), and the algorithm based on clipping of
both the input data and the estimation error is known as the Sign-Sign Algorithm (SSA).

The aforementioned three sign adaptive algorithms result in a performance loss when
compared with the LMS algorithm. However, significant reduction in computational cost and
simplified hardware implementation can justify this performance loss in applications requiring
reduced implementation costs.

1.5 Real and Complex Forms of Sign Adaptive Algorithms

There are certain applications wherein the adaptive filter input and its desired signal are in
complex-valued form. For example, in digital data transmission, where the most widely
employed signalling techniques are Phase Shift Keying (PSK) and Quadrature Amplitude
Modulation (QAM). In this particular application, the baseband signal comprises of two
separate components which are the real and imaginary parts of a complex-valued signal. Thus,
we find cases where the formulation of the adaptive filtering algorithms must be given in
terms of complex-valued variables. It should be noted that real adaptive filters are special
cases of complex adaptive filters [1], [2].

Some of the sign adaptive algorithms such as the SRLMF algorithm has been analyzed and
evaluated by the author for both cases of real- and complex-valued data in [32], [33].

1.6 Objectives

The first objective of this thesis was to propose, analyze, and evaluate various novel sign
adaptive algorithms that exhibit good convergence rate with respect to their respective
counterparts while maintaining all the advantages of the sign adaptive algorithms. This
objective was achieved by analyzing and evaluating four novel sign adaptive algorithms
proposed by the author, namely SRLMF [32], [33], SRLMMN [34], Normalized Sign Regressor
Least Mean Fourth (NSRLMF) [35], [36], and Normalized Sign Regressor Least Mean Mixed-
Norm (NSRLMMN) [37], [38].

In [32], it was shown that the convergence rate of the SRLMF algorithm was similar to that of
the LMF algorithm. In [34], it was shown that the convergence rate of the SRLMMN algorithm
was similar to that of the LMMN algorithm. In [35], it was shown that the NSRLMF algorithm
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has an improved convergence rate as compared to the LMF and SRLMF algorithms as per the
expectations. However, the NSRLMF algorithm exhibits a compromised convergence rate as
compared to the Normalized Least Mean Fourth (NLMF) algorithm as shown in [35] and [36].
In [37] and [38], it was shown that the NSRLMMN algorithm has an improved convergence
rate as compared to the LMMN and SRLMMN algorithms as per the expectations. However,
the NSRLMMN algorithm exhibits a compromised convergence rate as compared to the
Normalized Least Mean Mixed-Norm (NLMMN) algorithm as shown in [37].

The second objective was to analyze and evaluate the performance of various sign adaptive
algorithms for complex-valued data. This objective was achieved by analyzing and evaluating
the performance of the SRLMS [39], SSLMS [41], SRLMF [33], Normalized Sign-Error Least
Mean Square (NSLMS) [44], [45], and Normalized Sign Regressor Least Mean Square (NSRLMS)
[42] algorithms.

The third objective was to analyze and evaluate the performance of various sign adaptive
algorithms for real-valued data. This objective was achieved by analyzing and evaluating the
performance of the SSLMS [40], SRLMF [32], SRLMMN [34], NSLMS [44], [45], NSRLMS [43],
NSRLMF [35], [36], and NSRLMMN [37], [38] algorithms.

Note that the SRLMS, SSLMS, NSLMS, and NSRLMS algorithms mentioned in the second and
third objectives were proposed and analyzed using different methods by other researchers.

Finally, the fourth objective was to remove misconceptions among biomedical signal
processing researchers concerning the implementation of adaptive noise cancelers using the
Sign-Error Least Mean Fourth (SLMF), Sign-Sign Least Mean Fourth (SSLMF), and their variant
algorithms. This objective was achieved in [46], [49].

1.7 Methodology

The framework employed in the publications listed in the author’s original contributions in
[32]-[45], relies on energy conservation approach as described in [52]. The energy
conservation framework has been applied uniformly by the author for the analysis and
evaluation of the performance of various sign adaptive filters proposed by the author and
other researchers. In particular, the same framework is used for steady-state analysis, tracking
analysis, and transient analysis of various sign adaptive filters. In other words, the energy
conservation framework stands out as a common theme that runs throughout the treatment
of the performance of sign adaptive filters.

One of the features of the energy conservation approach employed for the evaluation of the
performance of sign adaptive filters is that it allows for the evaluation of steady-state and
tracking results without requiring a preliminary transient analysis.



An example of the unified application of the energy conservation framework in the afore-
mentioned publications in this section is presented in Appendix B.

In [46], some insights were provided on the convergence and steady-state behaviors of the
SLMF, SSLMF, Normalized Sign-Error Least Mean Fourth (NSLMF), and Normalized Sign-Sign
Least Mean Fourth (NSSLMF) algorithms for both cases of real- and complex-valued data. In
[47], the performance of the SRLMF and LMF algorithms is investigated in an adaptive channel
equalization scenario. In [48], a novel cascaded 4-stage adaptive noise canceller is proposed
for the removal of four artifacts present in the ElectroCardioGram (ECG) signal. In [49], some
comments were reported on the adaptive noise cancelers implemented using the SLMF,
SSLMF, and their variant algorithms. There were no new expressions derived in [46]—[49].
Therefore, there was no need for the application of the energy conservation framework in
these publications.

1.8 Coherence/Consistency

The coherence or consistency in the publications listed in the author’s original contributions
can be demonstrated by the following facts:

1. The filter coefficients/weights update equations of various sign adaptive algorithms
for real- and complex-valued data analyzed and evaluated in the publications listed in
the author’s original contributions are shown in Tables 1.1 and 1.2, respectively.

These sign adaptive algorithms are derived from the traditional LMS, LMF, LMMN,
Normalized Least Mean Square (NLMS), NLMF, and NLMMN algorithms by clipping
either the input data or the estimation error, or both, which is accomplished by the
application of signum function. Thus, the signum function is commonly encountered
throughout the treatment of the performance of sign adaptive filters.

Table 1.1: Filter coefficients/weights update equations of various sign adaptive algorithms
for real-valued data.

Algorithm Filter Coefficients/Weights Update Equation
SSLMS [40] w; = w;_; + u sign[u;] " sign[e;]
SRLMF [32] w; = w;_; + usign[u;]Te?
SRLMMN [34] w; = w;_; + usign[u;]Te;[6 + (1 — §)e?]
NSLMS [44], [45] w; = W;_; + 4 u;sign[e;]
NSRLMS [43] w; = w;_; + u; sign[u;]7e;
NSRLMF [35], [36] w; = w;_; + ; sign[u;]Te?
NSRLMMN [37], [38] w; = w;_; + u; sign[u;]%e;[6 + (1 — §)e?]

Table 1.2: Filter coefficients/weights update equations of various sign adaptive algorithms for
complex-valued data.



Algorithm Filter Coefficients/Weights Update Equation
SRLMS [39] w; = w;_; + ucsgnfu;] e;
SSLMS [41] w; = w;_q + u csgn[u; ] csgnle;]
SRLMF [33] w; = W;_; + ucsgnfu;]*e;|e;|?
NSLMS [44], [45] w; = wW;_; + p; ujcsgn|e;]
NSRLMS [42] w; = w;_; + ; csgnfu;]*e;

In Tables 1.1 and 1.2, w; is the updated filter weight vector at iteration i = 0, u is the fixed
step-size, y; is the variable step-size depending on the normalization used, u; is the regressor
vector, e¢; = d; — y; is the estimation error signal, d; is the desired signal, y; is the adaptive
filter output, § is the mixing parameter ranging between 0 < § < 1, sign(.) denotes the sign
of its argument, and csgn(.) denotes the complex sign of its argument. The definition of the
signum function for real-valued data is given by:

-1, ifx <0,
sign[x] ={ 0, ifx =0, (1.1)
1, ifx > 0.

The definition of the signum function for complex-valued data is given by:

—1, if R[x] < 0 or (R[x] = 0 and J[x] < 0),
csgn[x] = 0, if R[x] = J[x ]= (1.2)
1, ifR[x] > 0 or (R[x] = 3[x] > 0).

2. While the performance of different adaptive filters has been studied separately in the
open literature, the framework adopted in this thesis applies uniformly across various
sign adaptive filters analyzed and evaluated in the publications listed in the author’s
original contributions.

An advantage of applying energy conservation approach is that the tracking results of
a particular sign adaptive filter can be obtained by mere inspection from its steady-
state results as there are only minor differences. An example of this fact can be
observed by comparing the expressions (B.1) and (B.4) in Appendix B for the steady-
state Mean Square Error (MSE) and tracking MSE of the SRLMMN algorithm,
respectively. The only difference between these two expressions is the presence of the
term u~1Tr(Q) in the tracking MSE of the SRLMMN algorithm.

1.9 Significance

Three of the novel sign adaptive algorithms proposed, analyzed, and evaluated by the author,
namely SRLMF, SRLMMN, and NSRLMF have been successfully employed in applications
ranging from power quality improvement in the distribution system and multiple artifacts



reduction in the physiological signals. The significance of employing the above three novel
algorithms in the aforementioned applications is outlined below:

1. In[53], the SRLMMN algorithm-based [34] control technique is successfully applied by
other researchers in the real-time implementation of active shunt compensator for
power quality improvement in the distribution system. The SRLMMN algorithm-based
control technique has proven itself to be highly efficient in this particular application
by offering fast convergence, less steady-state error, low total harmonic distortion,
and less computation complexity when compared with the Recursive Least-Squares
(RLS) and Variable Step-size Least Mean Square (VSLMS) algorithms [53].

2. The motivation for employing sign adaptive algorithms in different applications such
as artifacts removal from various physiological signals such as ECG,
ElectroEncephaloGram (EEG), etc. is due to their simplicity of implementation [48],
[54], [55].

3. In [48], the SRLMF and SRLMMN algorithms were employed by the author in a novel
cascaded 4-stage adaptive noise canceller for the removal of four artifacts present in
the ECG signal, namely baseline wander, motion artifacts, muscle artifacts, and 60 Hz
Power Line Interference (PLI).

4. In [54], adaptive algorithms such as NSLMS [44], [45], NSRLMS [43], and their variants
were employed by other researchers for removing various artifacts from ECG signals.

5. In [55], the variants of the SRLMF algorithm [32] such as the NSRLMF [35], [36] and
Block-Based Normalized Sign Regressor Least Mean Fourth (BBNSRLMF) algorithms
were employed by other researchers for brain signal enhancement in remote health
monitoring applications.

6. In[56], [57], the NSRLMF algorithm is successfully employed by other researchers for
power quality improvement in wind-solar based distributed generation system. The
NSRLMF algorithm is shown to outperform the LMF algorithm by displaying enhanced
dynamic response amidst sudden system variations [56], [57]. It should be noted that
the authors in [56] published their expanded work in [57] at the time of making minor
amendments to my thesis.

1.10 Contributions

The contributions of this thesis are briefly outlined below and will be discussed in detail in the
subsequent chapters:



1. The various sign adaptive algorithms analyzed and evaluated in this thesis can be
classified into two categories, namely non-normalized and normalized. Each of this
category can be further classified into two subcategories, namely real- and complex-
valued data. This classification is depicted in Figure 1.5.

2. The four novel algorithms proposed, analyzed, and evaluated in this thesis include
SRLMF [32], [33], SRLMMN [34], NSRLMF [35], [36], and NSRLMMN [37], [38]. The
performance of the latter three algorithms has been analyzed and evaluated for real-
valued data only. While the performance of the SRLMF algorithm has been analyzed
and evaluated for both cases of real- and complex-valued data.

3. The other four algorithms analyzed and evaluated in this thesis include SRLMS [39],
SSLMS [40], [41], NSRLMS [42], [43], and NSLMS [44], [45]. The performance of the
latter three algorithms has been analyzed and evaluated for both cases of real- and
complex-valued data. While the performance of the SRLMS algorithm has been
analyzed and evaluated for complex-valued data only.

4. Finally, some misconceptions among biomedical signal processing researchers
concerning the implementation of adaptive noise cancelers using the SLMF, SSLMF,
and their variant algorithms were clarified in [46], [49].

Sign Adaptive
Algorithms

Non-normalized Normalized

Real-valued Complex-valued Real-valued Complex-valued
Data Data Data Data

SRLMMN NSRLMMN
341 [37], 38]

Figure 1.5: Family of the sign adaptive algorithms.



2 The SRLMF Algorithm
2.1 Introduction

The Sign Regressor Least Mean Fourth (SRLMF) algorithm is based on the clipping of the input
data, which is also called as the regression data. The SRLMF algorithm belongs to the family of
the Least Mean Fourth (LMF) algorithm. The only difference in the filter weights update
equations of these two algorithms is the application of the signum function on the input data
of the SRLMF algorithm.

The filter weights update equations of the SRLMF algorithm for real- and complex-valued data
are given by (2.1) and (2.2), respectively [32], [33]:

w; = w;_; + usign[u;]Te}, (2.1)
w; = wi_g + pesgnfug] el |, (2.2)

where w; is the updated filter weight vector at iteration i > 0, u is the step-size, u; is the
regressor vector, e; = d; — y; is the estimation error signal, d; is the desired signal, y; is the
adaptive filter output, sign(.) denotes the sign of its argument, csgn(.) denotes the complex
sign of its argument, and the definitions of the signum function for real- and complex-valued
data are given by (1.1) and (1.2), respectively.

2.2 Background

The Sign Regressor Least Mean Square (SRLMS) algorithm, which is the counterpart of the
SRLMF algorithm has been studied extensively in the open literature. However, there were no
efforts made to study the performance evaluation of the SRLMF algorithm until it was
proposed, analyzed, and evaluated in [32], [33].

The motivation to introduce the sign regressor term in the SRLMF algorithm is to achieve
reduced computational complexity compared to the LMF algorithm. However, the
convergence performance of the SRLMF algorithm is slower than the LMF algorithm but better
than the SRLMS algorithm.

The advantage of employing the SRLMF algorithm in various applications is its computational
simplicity. However, the simplification in computations for the SRLMF algorithm comes at the
expense of slower convergence. The slow convergence in the performance of the SRLMF

algorithm is because of the clipping effect of the signum function on the input data.

2.3 Contributions/Published Manuscripts
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The three published papers on the performance evaluation of the SRLMF [32], [33], [47]
algorithm for real- and complex-valued data are as follows:

[P1] M. M. U. Faiz, A. Zerguine, and A. Zidouri, “Analysis of the sign regressor least mean
fourth adaptive algorithm,” EURASIP Jour. on Advances in Signal Processing, vol. 2011,
art. no. 373205, pp. 1-12, Jan. 2011, DOI: https://doi.org/10.1155/2011/373205

A novel adaptive algorithm called the SRLMF algorithm was proposed, analyzed, and
evaluated for the case of real-valued data in [32]. The expressions for the steady-state Mean
Square Error (MSE) ¢ = E[e;?] of the SRLMF algorithm were derived for both smaller and
larger step-sizes and are given by (2.3) and (2.4), respectively [32]:

V2ugs Tr(R)

¢ =
602 |moZ

V25 Tr(R)
602 /naﬁ—wﬁuff;‘Tr(R)

+ a2, (2.3)

+ o2 (2.4)

(p:

Also, the expressions for the tracking MSE ¢’ of the SRLMF algorithm were derived for both
smaller and larger step-sizes and are given by (2.5) and (2.6), respectively [32]:

, VZUESTr(R)+u~1Tr(Q) [mao?
(p =
602 ,naﬁ

V2ZuUES Tr(R)+u 1 Tr(Q) maf
= + 02. (2.6)
602 |mo2—15V2usdTr(R)

+ o2, (2.5)

In addition, the expressions for the optimum step-size p,,; of the SRLMF algorithm were also

derived for both smaller and larger step-sizes and are given by (2.7) and (2.8), respectively
[32]:

/TwﬁTr(Q) 2.7)

Hopt = VZESTr(R)’

= |Tr(Q) 225({{,‘) Tr(Q) N 155 Tr(Q) (2.8)
Hopt = 36(0 2) (55) \/_ngr(R) 60288 '

A sufficient condition for the convergence in the mean of the SRLMF algorithm is also derived
and is given by (2.9) [32]:
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In (2.3) to (2.9), 02 = E[v;2] is the noise variance, é; = E[v;*] and &$ = E[v;°] are the fourth
and sixth-order moments of the noise sequence v;, respectively, 2 = E[u;?] is the regressor
variance, Tr(R) is the trace of the regressor covariance matrix R = E[ul-Tui], Tr(Q) is the
trace of the covariance matrix Q = E[qiq?] of the noise sequence q;, A ax IS the maximum
eigenvalue of R, and ¢ is the estimation error variance.

Moreover, the weighted variance relation has been extended in order to derive expressions
for the MSE and Mean Square Deviation (MSD) of the SRLMF algorithm during the transient
phase [32].

The convergence performance of the SRLMF and LMF algorithms is found to be almost
identical for real-valued data in a uniform noise environment with an SNR of 10 dB as shown
in Figure 1 [P1].

The steady-state MSE expressions of the SRLMF algorithm for both smaller and larger step-
sizes given by (2.3) and (2.4), respectively, are compared with the simulation results in Figure
2 [P1]. In this Figure, the noise variance is fixed at 62 = 0.001, the adaptive filter length is
fixed at M = 5, the step-size is varying from u = 1le — 3to 1le — 1, the length of white
Gaussian regressors and white Gaussian noise is fixed at N = 1e6, the number of iterations
are fixed at L = 100, and the coefficients of an unknown system identification setup are fixed
at w, = [0.227 0.460 0.688 0.460 0.227]7. The theoretical curves appear to be overlapping
in Figure 2 [P1]. However, a zoom into the region around y = 0.05 in Figure 2 [P1] reveals that
these two theoretical curves, although extremely close to each other, do not overlap as shown
in Figure 2.1 below.

| |=—9— Theory (small 1)
-30 | Theory (separation)

-29.98 1

-29.99

30+

MSE (dB)

-29.98

-29.99 1

-30

0.0497 0.0498 0.0499 0.05 0.0501 0.0502 0.0503 0.0504 0.0505
Step-size (p)

Figure 2.1: Comparison of the steady-state MSE expressions of the SRLMF algorithm using
white Gaussian regressors - a closer look.
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In Figure 2 [P1], it is observed that the simulations results vary in a zigzag manner with respect
to the theoretical results. Such a behavior of the simulation results is because of the
insufficient number of iterations. To prove our point, we have carried out the simulations for
the number of iterations fixed at L = 1000 as shown in Figure 2.2 below.

-29.98
==& Simulation

+ Theory (small y)

U~ Theory (separation)

-29.99

MSE (dB)

_30‘;‘,—-—} 47—\‘,—-—\«1 v

102 107
Step-size ()

Figure 2.2: Comparison of the steady-state MSE expressions of the SRLMF algorithm using
white Gaussian regressors.

In Figures 3 and 4 [P1], it is observed that the simulations results are not in a very good match
with the theoretical results. This is again because of the insufficient number of iterations. To
prove our point, we have carried out the simulations for the number of iterations fixed at L =
1000 as shown in Figures 2.3 and 2.4 below, which are much better than Figures 3 and 4 [P1],

respectively.

-29.98

=8~ Simulation
+ Theory (small y)

U= Theory (separation)

-29.99

MSE (dB)

1072 107
Step-size (1)

Figure 2.3: Comparison of the steady-state MSE expressions of the SRLMF algorithm using
correlated Gaussian regressors.
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-29.98
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-29.99

MSE (dB)

Step-size ()

Figure 2.4: Comparison of the steady-state MSE expressions of the SRLMF algorithm using
Gaussian regressors with an eigenvalue spread = 5.

[P2] M. M. U. Faiz and A. Zerguine, “Analysis of the complex sign regressor least mean
fourth adaptive algorithm,” in Proc. of the 2" IEEE Int. Conf. on Signal and Image
Processing Applications (ICSIPA 2011), Kuala Lumpur, Malaysia, pp. 553-555, Nov.
2011, DOI: https://doi.org/10.1109/ICSIPA.2011.6144115

After comprehensively analyzing and evaluating the performance of the SRLMF algorithm for
the case of real-valued data in [32], the performance of the SRLMF algorithm was further
investigated in an adaptive channel equalization scenario for both cases of real- and complex-
valued data in [47]. This provided the motivation to analyze and evaluate the performance of
the SRLMF algorithm for the case of complex-valued data in [33].

The expressions for the steady-state MSE ¢ = E[|e;|?] of the complex SRLMF algorithm were
derived for both smaller and larger step-sizes and are given by (2.10) and (2.11), respectively
[33]:

6
o =10 4 52 (2.10)
o2 |no2
6
MR 4 52, (2.11)

(p =
o3 |mof—9ugy Tr(R)

Also, the expressions for the tracking MSE ¢’ of the complex SRLMF algorithm were derived
for both smaller and larger step-sizes and are given by (2.12) and (2.13), respectively [33]:

) 4uESTr(R)+u~1Tr(Q) [mo?

(p =
402 , ol

+ o2, (2.12)
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) 4uESTr(R)+u~1Tr(Q) (mo?
(p =
402 |moi-36u&sTr(R)

In addition, the expressions for the optimum step-size up,; of the complex SRLMF algorithm
were also derived for both smaller and larger step-sizes and are given by (2.14) and (2.15),
respectively [33]:

\/;ﬁTr(Q)

+ o2 (2.13)

.U'Opt = 4€§TF(R) ) (214)
_ 81(6)°Tr(@ , ™% [ ogiTr(
Hope = |Tr(Q) | 7550 r + Gremy | ™ "aozzg (2.15)

In (2.10) to (2.15), 62 = E[|v;|?] is the noise variance, &; = E[|v;|*] and &$ = E[|v;|®] are the
fourth and sixth-order moments of the noise sequence v;, respectively, a2 = E[|u;|?] is the
regressor variance, Tr(R) is the trace of the regressor covariance matrix R = E[u;u;], and
Tr(Q) is the trace of the covariance matrix Q = E[q;q;] of the noise sequence q;.

It is interesting to note that the expressions for the steady-state MSE, tracking MSE, and
optimum step-size of the SRLMF algorithm for both real- and complex-valued data cases given
from (2.3) to (2.8) and from (2.10) to (2.15) are found to be identical except for a scaling factor
[32], [33]. Moreover, it is shown that the simulation results are in a good match with the
analytical results for white Gaussian regressors.

Finally, a comparison between the convergence performance of the SRLMF and LMF
algorithms indicates slower convergence of the SRLMF algorithm for complex-valued data in
a uniform noise environment with an SNR of 10 dB.

[P3] M. M. U. Faiz and A. Zerguine, “Adaptive channel equalization using the sign regressor
least mean fourth algorithm,” in Proc. of the 1% IEEE Saudi Int. Electronics,
Communications and Photonics Conf. (SIECPC 2011), Riyadh, Saudi Arabia, pp. 1-4, Apr.
2011, DOI: https://doi.org/10.1109/SIECPC.2011.5876986

The performance of the SRLMF and LMF algorithms was investigated when deployed in two
types of adaptive channel equalizers, namely adaptive linear equalizer and adaptive decision
feedback equalizer. The Bit Error Rate (BER) and MSE behaviors of the SRLMF and LMF
algorithms were examined in both the above equalizers for Binary Phase Shift Keying (BPSK)
and Quadrature Phase Shift Keying (QPSK) data in an Additive White Gaussian Noise (AWGN)
and uniform noise environments, respectively. The filter weights update equations of the
SRLMF algorithm for real- and complex-valued data given by (2.1) and (2.2) were used to
handle BPSK and QPSK data, respectively [47].
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For a given constellation, the BER performance of the SRLMF and LMF algorithms is similar for
lower Signal to Noise Ratios (SNR’s). As the SNR increases, an enhancement in the BER
performance of the SRLMF algorithm is obtained over the LMF algorithm. However, the BER
performance of the SRLMF and LMF algorithms is again similar for higher SNR’s. Also, for a
fixed value of SNR, it was observed that the probability of error increases as the order of the
constellation increases [47].

Moreover, it was shown that the convergence performance of the SRLMF algorithm degrades
compared to the LMF algorithm in both the aforementioned equalizers for both BPSK and
QPSK data in a uniform noise environment with an SNR of 20 dB. Also, it was observed that
the MSE increases as the order of the constellation increases [47].
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A novel algorithm, called the signed regressor least mean fourth (SRLMF) adaptive algorithm, that reduces the computational cost
and complexity while maintaining good performance is presented. Expressions are derived for the steady-state excess-mean-square
error (EMSE) of the SRLMF algorithm in a stationary environment. A sufficient condition for the convergence in the mean of the
SRLMEF algorithm is derived. Also, expressions are obtained for the tracking EMSE of the SRLMF algorithm in a nonstationary
environment, and consequently an optimum value of the step-size is obtained. Moreover, the weighted variance relation has been
extended in order to derive expressions for the mean-square error (MSE) and the mean-square deviation (MSD) of the proposed
algorithm during the transient phase. Computer simulations are carried out to corroborate the theoretical findings. It is shown that
there is a good match between the theoretical and simulated results. It is also shown that the SRLMF algorithm has no performance
degradation when compared with the least mean fourth (LMF) algorithm. The results in this study emphasize the usefulness of
this algorithm in applications requiring reduced implementation costs for which the LMF algorithm is too complex.

1. Introduction

Reduction in complexity of the least mean square (LMS)
algorithm has always received attention in the area of
adaptive filtering [1-3]. This reduction is usually done by
clipping either the estimation error or the input data, or
both to reduce the number of multiplications necessary at
each algorithm iteration. The algorithm based on clipping
of the estimation error is known as the sign error or more
commonly the sign algorithm (SA) [4-8], the algorithm
based on clipping of the input data is known as the sign
regressor algorithm (SRA) [9-12], and the algorithm based
on clipping of both the estimation error and the input data
is known as the sign sign algorithm (SSA) [13, 14]. These
algorithms result in a performance loss when compared
with the conventional LMS algorithm [9, 10]. However,
significant reduction in computational cost and simplified
hardware implementation can justify this poor performance
in applications requiring reduced implementation costs [15,
16].

The behavior of the SRA algorithm depends on the input
data. It 1s shown in [11] that for some inputs, the LMS
algorithm is stable while the SRA algorithm is unstable. This
is a drawback of the SRA algorithm when compared with the
SA algorithm since the latter is more stable than the LMS
algorithm [4, 16]. The SRA algorithm is always stable when
the input data is Gaussian as in the case of speech processing.
Also, the performance of the SRA algorithm is superior to
that of the SA algorithm for Gaussian input data. It is shown
in [10] that the SRA algorithm is much faster than the SA
algorithm in achieving the desired steady-state mean-square
error for white Gaussian data. Theoretical studies of the SRA
algorithm with correlated Gaussian data in both stationary
and nonstationary environments are found in [12].

The convergence rate and the steady-state mean-square
error of the SRA algorithm is only slightly inferior to
those of the LMS algorithm for the same parameter setting.
In [10], the convergence rate of the SRA algorithm is
compared with that of the LMS algorithm to show that the
SRA algorithm converges slower than the LMS algorithm
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by a factor of 2/m for the same steady-state mean-square
error.

It is shown in [17] that the SRA algorithm exhibits
significantly higher robustness against the impulse noise than
the LMS algorithm.

The above-mentioned advantages motivate us to analyze
the proposed sign regressor least mean fourth (SRLMF)
adaptive algorithm. In this paper, the mean-square analysis,
the convergence analysis, the tracking analysis, and the
transient analysis of the SRLMF algorithm are carried
out. The framework used in this work relies on energy
conservation arguments [18]. Expressions are evaluated for
the steady-state excess-mean-square error (EMSE) of the
SRLMF algorithm in a stationary environment. A condition
for the convergence of the mean behavior of the SRLMF
algorithm is also derived. Also, expressions for the tracking
EMSE in a nonstationary environment are presented. An
optimum value of the step-size ¢ is also evaluated. Moreover,
an extension of the weighted variance relation is provided in
order to derive expressions for the mean-square error (MSE)
and the mean-square deviation (MSD) of the proposed
algorithm during the transient phase. From the simulation
results it is shown that both the SRLMF algorithm and
the least mean fourth (LMF) algorithm [19] have a similar
performance for the same steady-state EMSE. Moreover, the
results show that the theoretical and simulated results are in
good agreement.

The paper is organized as follows: following the Intro-
duction is Section2 where the proposed algorithm is
developed, while the mean-square analysis of the proposed
SRLMF algorithm is presented in Section 3. The convergence
analysis of the proposed algorithm is presented in Section 4.
Section 5 presents the tracking analysis of the proposed algo-
rithm for random walk channels and as a by-product of this
analysis the optimum value of step-size for these channels
is derived. And Section 6 presents thoroughly the transient
analysis of the proposed algorithm. The Computational
Load is detailed in Section 7. To investigate the performance
of the proposed algorithm, several simulation results for
different scenarios are presented in Section 8. Finally, some
conclusions are given in Section 9.

2. Algorithm Development

The SRLMF algorithm is based on clipping of the regression
vector u; (row vector). Consider now the adaptive filter,
which updates its coefficients according to the following
recursion [18]:

w; = wi +uH[wlufgle], 20, (1)

where w; (column vector) is the updated weight vector at
time 7, p is the step-size, H[u;] is some positive-definite
Hermitian matrix-valued function of u;, g[e;] denotes some
function of the estimation error signal given by

ei = di —uwi_p, (2)
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where d; is the desired signal. When the data is real-valued
and g[e;] = ¢}, the general update form in (1) becomes

Wi = Wi +yH[u;}uiTe?, i=0. (3)
Now if
1 1 1
Hlu;] = dia; , eets R 4
v g{|un| | |u,-M|} ”

then the update form in (3) reduces to

S }u?e?
u |7 | (5)

= W1 +usign [u,-]Te?, i=0,

W = Wi_ +ydiag{ |u] I

where M is the filter length. The SRLMF algorithm update
recursion in (5) can be regarded as a special case of the
general update form in (3) for some matrix data nonlinearity
that is implicitly defined by the following relation:

sign [u;]" = Hlu]ul. (6)

3. Mean-Square Analysis of
the SRLMF Algorithm

We wil assume that the data {d;,u;} satisfy the following
conditions of the stationary data model [18, 20-24].

(A.1) There exists an optimal weight vector w° such that
d; = ww° +v,.

(A.2) The noise sequence v; is independent and identically
distributed (i.i.d.) with variance o2 = E[|]?] and is
independent of u; forall 7, j.

(A.3) The initial condition w_; is independent of the zero
mean random variables {d;, u;, v;}.

(A.4) The regressor covariance matrix is R = E[u;u;] > 0.

For any adaptive filter of the form in (1), and for any
data {d;,u;}, assuming filter operation in steady-state, the
following variance relation holds [18]:

WE[Iuilg )] = 2E[englel], asi— o, (7)
where

E[1uili] = E[wH[w]u], (8)

e = eq + Vi, (9)

and e, = u;(W® —w;_;) is the a priori estimation error. Then
g[e;i] becomes

gle;] = e = (eq +vi) [eﬁi +vi+ 2ea‘.v;], (10)

By using the fact that e,, and v; are independent, we reach at
the following expression for the term E[eq g[ei]]:

Elesglei]] = 3"3]5[33,] + E[egx]. (11)
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Ignoring third and higher-order terms of e,, then (11)
becomes

Eleq glei]] ~ 30E[ ] | (12)

To evaluate the term E[ ||u;]| %Igz [e;]], we start by noting that

g lei] = eS, +6e£’iv,' + 6, V2 + lSe4 vE+15¢2 V

(13)
+ 2063',1/,-3 + v?.

If we multiply g?[e;] by |lu;||; from the left, use the fact that

v; is independent of both u; and e, and again ignoring third
and higher-order terms of e,,, we obtain

B luilg e ]| = 6F [ llwillfeqv? ] + 15l yel vf |
+E[ luil3¢]
~ 6Eluillfeq |E[v7 | + 15 uillfe ]
x E[v] +E[ luillf ]E[+¢]
~ 6F | luilhe |E[v ] + 15E il &2

+ B[ luliF]E
(14)

where &} = E[|vil*], & = E[|w|%] denote the forth and
sixth-order moments of Vi, respectwely.
From Price’s theorem [25] we have

E[xsign(y)] —\/gglyE[xy], (15)

then

E[ Il ] = E[wsign [w]"] = fﬂiogn(lz). (16)

Substituting (16) into (14) we get

E[luillfig?lei]] = 6E[ luilifeq |E[v] + 15[ Iuiliye &5

ol

Substituting (12) and (17) into (7) we get

/ )+ 158 E ] luile?
(18)

+ GyE[Huflleeai]E[vf].

6UE

In order to simplify (18) and arrive at an expression for
the steady-state EMSE { = E[ei ], we consider two cases.

(1) Sufficiently Small Step-Sizes. Small step-sizes lead to
small values of E[e2 | and ¢,, in steady-state. Therefore, for
smaller values of y, the last two terms in (18) can be ignored,
the steady-state EMSE is given by

6
¢ = g—i /% Te(R). (19)

(2) Separation Principle. For larger values of y, we resort
to the separation assumption, namely, that at steady-state,
[|u; IIZH is independent of ¢;,. In this case, the last term in (18)
will be zero since e, is zero mean, the steady-state EMSE can
be shown to be

pés.[2/ma2 Tr(R)
{=—+ . (20)
(602 - 154E1,[2/702 Te(R))

4. Convergence Analysis of
the SRLMF Algorithm

Convergence analysis of the SRLMF algorithm is much more
complicated than that of the LMS algorithm due to existence
of the higher order estimation error signal in the coefficient
update recursion. We thus make the following assumptions
along with (A.2) to make the analysis mathematically more
tractable [19-24, 26]:

(A.5) d; and u; are zero-mean, wide-sense stationary, and
jointly Gaussian random variables.

(A.6) The input pair {d;, u;} is independent of {d;,u;} for
all 4, j.

Subtracting both sides of (5) from w” we get

Wi = Wi 1+ usign [u;]"el, (21)

wherew; =
we obtain

w? —w;. Taking expectations of both sides of (21)

E[W;] = E[W; 1] +uE[sign [w] "¢ ]. (22)

Using Price’s theorem [25], we can conclude that

E[sign [u,']Te?} = J%E[U,Te?]- (23)

Substituting (23) into (22) we get

N L Y

The expectation E[u]¢}] can be simplified using the fact that
for zero-mean and ;omtly Gaussian random variables x; and
X2

E[x1x3] = 3E[x1x ] E[x2]. (25)
20



4
Thus, using (25) in conjunction with (A.5), it follows that
Elufe!| = E[E[ufe] | Wy ]]
= 3E[E[¢] | Wi )JE[E[ufe; | Wis]]  (26)
= 3E[ o2, |E[E[uFe 1%:4]],
where

E[US\W,-,I} = g, —var{E[e; | W]}

(27)
= a2,
and from (9)
E[E[u?ei \W,-,IH E[E[u[T (vi +uwy ) | Wi 1]]
= E[E[u?ulwr 1 |Wr l]]
(28)
E[ fuw; 1]
= RE[W; 1].
Substituting (27) and (28) in (26) yields
E[u & ] — 30RE[W,_,]. (29)
Substituting (29) into (24) we get
~ ~ 2, i
E[wi] = E[wi 1] +3p, | —0;RE[W; 1]
o}
(30)

2 ~
- [I +3u, | o UEZR:|E[W;_1L

Ultimately, it is easy to show that the mean behavior of the
weight vector, that is E[w;], converges to the optimal weight

vector w’ if i is bounded by:
\ 210}

—_, 31
3 max0? (31)

O<uc<
where Ay represents the maximum eigenvalue of the
regressor covariance matrix R. Notice, that there exists the
time-varying function 62 and the regressor variance o2 in the
upper bound for . Since 67 is usually large at the beginning
of adaptation processes, we can see that the convergence
of the SRLMF algorithm strongly depends on the choice of
initial conditions.

5. Tracking Analysis of the SRLMF Algorithm

Here, we assume that the data {d;,u;} satisfy the following
assumptions of the nonstationary data model [18].

(A.7) There exists a vector w{ such that d; = wyw{ + v;.

(A.8) The weight vector varies according to the random-
walk model w! = w? | + q;, and the sequence g;
is 1.1.d. with covariance matrix Q. Moreover, g; is
independent of {v;,u;} forall i, j.
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(A.9) The initial conditions {w_;,w?,} are independent of
the zero mean random variables {d;, w;, v;,q;!.

In this case, the following variance relation holds [18]:

as i — oo,

(32)

yE[HufHZHgl[ef}] +u ' Tr(Q) = 2E[eqgleil],

Tracking results can be obtained by inspection from the
mean-square results as there are only minor differences.
Therefore, by substituting (12) and (17) into (32), we get

60’3E|:€i,:| = u ' Tr(Q) + pé® ﬂ Tr(R)

+ 13#64E[Hui”Heag:|

+ 6uE[ [ willyeq |E[v7]:

(33)

We again consider two cases for the evaluation of the tracking
EMSE ( of the SRLMF algorithm.

(1) Sufficiently Small Step-Sizes.  Also, here, in this case we get

u ! Te(Q) + pély2/mal Tr(R)

(34)
602

An optimum value of the step-size of the SRLMF algorithm
is obtained by minimizing (34) with respect to y. Setting the
derivative of { with respect to i equal to zero gives

Tr(Q)

Hopt = J 2/l Tr(R)ES )

(2) Separation Principle. Similarly here as it was done for the
derivation of (20), we obtain the following:

u T Tr(Q) + uéy2/mo? Tr(R)
(= . (36)
(602 — 15ué8,/ma2 Tr(R) )

and eventually the optimum step-size of the SRLMF algo-
rithm is given by

225(E47 Tr(Q) !
opt = T
Lop r(Q) 36(02)% (£9) 2/nol Tr(R)EE
15¢;
" ek Tr(Q).

(37)

6. Transient Analysis of the SRLMF Algorithm

Here, we will assume that the data {d;, u;} satisfy the condi-
tions of the stationary data model described in Section 3.
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6.1. Weighted Energy-Conservation Relation

Theorem 1. For any adaptive filter of the form (1), any
positive-definite Hermitian matrix X, and for any data {d;, v;},
it holds that [18]:

eHE

P ~ 2
|7 ol 5 + [ 5]
(58)

i gy 195 +

H.

wHwZW, and |willfey =

where ef*wiH[uj]ZwW; , e
u;(H[w;]ZH[w;])u]".

Proof. Let us consider the adaptive filter updates of the
generic form given in (1). Subtracting both sides of (1) from
w’, we get

Wi = Wiy — uH[u;]uigle;]. (39)

If we multiply both sides of (39) by w;H[w;]Z from the left,
we get

B = el — gl fgsglei] (40)

e
Two cases can be considered here.
Case 1 (||u;||fgyy = 0). In this case, W; = W;_; and elgfz = egi
so that W[5 = Wit [1§ and |ef*|? = [eFF|%.
Case 2 (|[u;ll} #0). In this case, we use (40) to solve for
g[ef}’

HY _ HZ
(eal _er ) (41)

Substituting (41) into (39), we get

lei] = ———
B il

N Hlu;]u/
Wi=W - —5— (e‘];‘[z - eg):)_ (42)
HuiHHZH
Expression (42) can be rearranged as
~  Hlui]u/ ~ Hlu;]u/
R TE)
HUEHH):H ”UiHH):H
Evaluating the energies of both sides of (43) results in
Hlw]uf g Hlu]u/ :
i et = (Wi T (44)
HuiH].[):H b Hux'”H):H ¥

After a straightforward calculation, the following weighted
energy-conservation results:

~ 12 1 2 ~ 2
[I¥illy + B2 = (Wi +

1 ur |2
3 eP1 .
HUiHHZH

2
[l HIH
(45)

The weighted energy-conservation relation in (45) can also
be written as

2 N 2
e = Jul fanl [+ | ]
(46)

il g 195 +

6.2. Weighted Variance Relation. Here, the weighted variance
relation presented in [18] has been extended in order to
derive expressions for the MSE and the MSD of the SRLMF
algorithm during the transient phase.

Theorem 2. For any adaptive filter of the form (1), any
positive-definite Hermitian matrix Z, and for any data {d;,u;},
it holds that

E[I%5] = E[IWinal] + p2E[ sl ele] ]
—2u Re(E[eEZ*g[e,-]D, asi— co.

Similarly, for real-valued data, the above weighted variance
relation becomes

E[IWilz] = E[IMiallz] + @B lwillfng?lei]

(48)
—ZyE[eEZg[e;]}, as i — oo,
Proof. Squaring both sides of (40), we get
2 2
2| = o plulgle] . (49)

For compactness of notation let us omit the argument of g so
that (49) looks like

2 2
HE 2.4 2 HEp 2 ok
|e§.Z = |eg ) + i [l | gl — peq” il zng

¢ 2
— pel™ w3z,

(50)
Substituting (50) into (46), we get
il = ol sl 5 + 4 i s L
- VeaH,-z”uf“i?{ZHg* - PQEZ* il gz
(51)

Dividing both sides of (51) by ||u,'H2HEH (of course here
”ui”%{z}[ #0) we get
[l = (1l + 2 ol o 61— ™™ — el™s.
(52)
Taking expectations of both sides of (52), we obtain
~ 12 ~ 2 2
E[IWillz] = E[[1%i1[[5] + #2E] il s [ glei] |

- #E[eﬁzg[ei]* + el glei] }
or in the following format:

E[IIWllz) = B[ slle] + wE[ Ioi iz glei] ] )
54

—2u Re(E[egz*g[ef]D, as i — oo,

For real-valued data, the weighted variance relation in (54)
becomes

B[] = E[fali2] + 2| e

55
—ZE[HZ[” e i 53)
HE| e, glei] |, asi— oo,

22



The transient analysis of the class of filters in (1) is more
challenging due to the presence of the error nonlinearity.
Nevertheless, by using some approximations, the analysis can
be carried out to provide some useful insights about the
performance of the SRLMF algorithm.

To start, the expectations E[HUjH%_]Eng[C‘;‘” and
E[eEZg[e;]] are evaluated in the ensuing analysis in
terms of the weighted norm of W;_;. Since these expectations
are involved mathematically we will rely on the following
assumption in order to facilitate their evaluation [18].

(A.10) The a priori estimation errors {e,,,el™} are jointly
circular Gaussian.

Evaluation ofE[ef,ng[e;]]. From Price’s theorem, if x and y
are jointly Gaussian random variables that are independent
from a third random variable z, then it holds that [25]:

E[xy]
E[y?]

Applying this result to the term E[ef®g[e;]], and using (9),
we get

Elxg(y +2)] = E[yg(y +2)]. (56)

E[eaHizg[gi}] = E[egzg[ea, + Vi]]

. (57)
_ E[egzea‘.] E[eaig[ex]] ]
ez ]
In view of the assumption (A.10), the expectation E[e,,g[e;]]

depends on e, only through its second moment, E[é] |.
Therefore, we can define the following function of E[e2 ]:

Ele, gle;
=

For the SRLMF algorithm, g[e;] = e,-s, therefore

E[ea,g[ei]] = E[ea, (ea, + Vi)a]
(59)

—Ffet 301302 p2 4P
= E[eai +3e,vi+3e,vi +v; C’a,]-

Now since e, and v; are zero mean Gaussian and inde-
pendent random variables with variances E[el] and o2,
respectively, we obtain

Eleggle]] = E[ei] + 303E[c§’]‘ (60)

By using the fact that for circular Gaussian e, it holds that
Elel] = 3E[€§,]2,we get

E[esgleil] = 3E[€i]2 + 303E[e§‘]

61)
e[ |[[ ] + o]
Substituting (61) into (58), we get
z, = 3[E[e ] + o?] (62)

The expression for Z; is related to the desired term
E[elZg[e;]] through the equality

E[egzg[e;]] = ZIE[eaHizea[}. (63)
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Evaluation of E[|lu;ll}syg®lei]]. In order to facilitate the
evaluation of the term E[|lu;||#yye?[ei]] we use the sepa-
ration principle, namely, we assume that the filter is long
enough so that the following assumption holds [18].

(A11) |u; le_[):H 1s independent of e;.

Therefore,

E[ luilisug’leil ] = (E[luillfin]) (Elgtleil]).  (64)

Since e,, is Gaussian and independent of the noise, the expec-
tation E[g?[e;]] depends on e, through its second moment
only. Therefore, we can define the following function of
E[el]:

Z = E[g*[ei]]. (65)
For the SRLMF algorithm, g[e;] = €. Since e, and v; are
zero mean Gaussian and independent random variables with

variances E[e2 ] and o2, we have 67 = E[ef] = E[e2] + o2.
Moreover from [18], E[¢®] = 150°.

Thus
-4
= 150°
~15(2)’
= 15(E[e2 | + 03)3

= 15(15[‘3‘%,_])3 + 450§(E[e§’.])2 +45EIE[ 2 ] + 1588,
(66)

The expression for Z; is related to the desired term
E[llu;ll3j552%[e;]] through the equality

E[ o sseg?lei]] = ZoE[ i

= ZQE[Hsign[uf]H%].
Since
E[ ui si ] = E[wiHlu SH[u;)u] |
= E[sign[u,']E sign [u,-}T} (68)
~ E |Isign[u;][17 ]
Substituting (63) and (67) into (55), we get
E[I[8illz] = E[II%i1][5] + 12 ZoE[ Isignlu] |13

(69)
- 2yZIE[eEEeQ,]‘

Independence Assumption. Tf we assume that the regressor
sequence {u;} is .i.d. then
E[egzeaf] = E[W,_IZH[uj]u}-qu;,l]
(70)
~ g2
= E[ % 1l |
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In this way, the terms {E[egzea,], Z1, 25} become all func-
tions of W;_;. Therefore, (69) becomes

E[[[%l1z] = E[IIW-1llz | + 2 22E[|Isignlwi][I5]
= 2pZaE [t Bt ]
= E[ W 1[[3] + 1 Z2E]Isignuwi] I3
= 2 Z B[ W13 a0,

= B[ Wi 1[[3] + 2 22E] lIsign wi] Iy

\/EP‘ZIE[H‘T‘J’:'—IH%R]-

We thus find that studying the transient behavior of the
SRLMF algorithm in effect has reduced to evaluating the
functions Z, and Z; and studying the resulting variance
relation (71). Let us now illustrate the application of the
above results for white and correlated input data.

(71)

White Input Data. For white input data R is diagonal, say
R = 0?1 Therefore, if we select T = I, the variance relation
(71) becomes

E[ 111" = E[IWi 1] ] + 222 Isignlui] ]

(72)
82 ~
B /%‘uZIE[Hwi,lH?‘],

2 T T,
a = Wi W WiWi-|

Now since
€
= Wit i,
Substituting (73) into (66), we get
70 = 15 (B[ %1l 1)+ 4502 (E[ I )
+ 45E8E[|[Wi 1o, | + 1588

= 15(E[Ii 1IR]) + 450 (E[ Il ])

+ 4SEAE[ Wiz IR | + 158

(74)
3 2
= 15(ZE[[[Wi o[ ])” + 4502 (2E[ ¥ 1| ])
+45E402E [, |[*] + 1585,
Similarly by substituting (73) into (62), we get

Z1 = 3(a2E[|[W1[[*] + 02). (75)

7
Substituting (74) and (75) into (72), we get
[ e [y R P e [
+ 4502 (2E[ W] ])’
+45ERO2E|[W 1| [F] + 158¢ ] (76)

X E| [signlu|["] - 3\/%#
(o217 o2 [l

Since E[ || sign[w;]1|*] = M, the recursion in (76) becomes

E[I1%117] = E[|I#-1]*] + 15208 (E[[[§:-1]1*])°
+ 502 Moz (E[I%1)])°

+ 45 MELOZE[ ([ 1P| + 1512 MES

. ﬁﬁ#ai(E[HWflﬂz])z "
_ 6\/%#0315[“%1”2]

= FE[IIi ] + 1502 ME,

where

2
f=1+3u (15yMa§£§ -2, /%o&)
2
+ 3ua? (15,uMo§a§ — 24 /?)E[H%_lﬂl] (78)

. 2
+ 152 Mot (E[ ¥ |F])
We see that the transient behavior of the SRLMF algorithm

is described by a nonlinear recursion in E[||W;/|?] due to the
presence of the factor E[||W;_; [|*] inside f.

Correlated Input Data. For uncorrelated data, the variance
relation (72) shows that only unweighted norms of W; and
W;_| appear on both sides of the equation. However, for
correlated data, different weighing matrices will appear on
both sides of (72).

It~ =Tlin (71), we get

E[Il1"] = E[[[Wict| ] + 12 22E |Isignluwi] ]

3 N , (79)
- ﬁﬁMZlE[HWi—lﬂk]-
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IfX =Rin (71), we get

E[IWillx ] = E[I%i allx ] + 1222 lIsignluillly ]

- [l

Similarly if £ = RM~1in (71), we get

(80)

E[”“’:‘lew—l} = E[HWHHZRM—l] + MEZZE[“SigH[uf} ||2RM,I]

8 N
—4/ TE—GEPZlE[HWi—ﬂ@Aw]r

The term E[ ||W; Hllw | can be inferred from the prior weighting
factors

LELIl P | B[l ] [l |- [ Iellac | .

(82)

(81)
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Using this fact, we have

E[I1Wilo | = —po[IWl1*] — puE[ 1

- ot B[l |

We can collect the above results into a compact vector
notation by writing (79)—(81) as

Wi=F Wi+t ZY, (86)

where the M x 1 vectors {'W;, Y} are given by

B ~2] i . 21 7
E[ %] E[|Isign[u]| ]
by expressing R as a linear combination of its lower-order o ) )
powers using the Cayley-Hamilton theorem. Thus let p(x) = E[”Wi”R] E[| [sign[u;]| |R]
det(x] — R) denote the characteristic polynomial of R, say Wi = ’ ¢ = ’
M M-1 -2 .
x) =My M 4 M 24+ pix+ o N ‘
p) M PM-2 P P0(83) 7E[Hw,'H§M_1l 7E[||51gn[uf]\|2RM4]i
(87)
Then we know that [18]:
RM = —py (RM ! —pp oRM 2 oo — pR—pol. (84)  and the M x M coefficient matrix F is given by
. 5 -
1 - [—uZ
\ :103# !
8
0 1 - Z
\/ m&ﬂ !
8
0 0 1 - VA
\/ rmﬁ‘u !
;o (88)
8
0 0 1 - |—=uz
\/ naﬁy !
8 8 8 8
| —=upoZ: |—ppZ |—upm—2Zy 1+ |—upuZ
|\ 72 Upodoy n03MP1 1 na&'upM 241 ) UpmM-1 17
As can be seen from (86), the transient behavior of the  and the excess mean-square error is defined as
SRLMF algorithm is described by an M-dimensional state-
space recursion as opposed to one-dimensional in the white EMSE £ JilﬂE[ lea | 2], (90)
input case (72). e
We know that, the mean-square error is defined as where
MSE £ limE||e;|* 89 T IR
JmEEr ) (89) E| Jeq || = E[[[Wiallg | o1
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TapLe 1: Computational load per iteration for LMF and SRLMF
algorithms when data is real.

Algorithm + X Sign
LMF 2M 2M+3
SRLMF M 2M+2 1

TapLE 2: Computational load per iteration for LMF and SRLMF
algorithms when data is complex.

Algorithm + X Sign
LMF 8M +1 8M+5
SRLMF 6M +1 6M+3 2

The evolution of E[|e,, |*] is described by the second entry of
the state vector ‘W; in (86). The resulting learning curve of
the filter is E[[e;|?] = 02 + E[leg, |*].

We know that the mean-square deviation is defined as

MSD 2 limE[[[#{ ] (92)

The evolution of E[[|W;]?] is described by the first entry of
the state vector ‘W; in (86).

7. Computational Load

Finally, the computational complexity of the LMF and
SRLMF algorithms is discussed in this section. Tables 1
and 2 detail the estimated computational load per iteration
for LMF and SRLMF algorithms, respectively, for real- and
complex-valued data in terms of the number of real additions
(+), real multiplications (x), and comparisons with zero (or
sign evaluations). We know that one complex multiplication
requires four real multiplications and two real additions,
while one complex addition requires two real additions.

As can be seen from these two tables, the computational
complexity of the SRLMF algorithm becomes more inter-
esting when the data is complex-valued. The case of fading
channels in mobile communications is a good example where
this scenario can bring drastic improvement in complexity of
the SRLMF algorithm over the LMF algorithm.

8. Simulation Results

First, the performance analysis of the LMF and the SRLMF
algorithms is investigated in an unknown system identifica-
tion setup with w® = [0.227 0.460 0.688 0.460 0.227]T
as far as convergence, steady-state and transient behaviors are
concerned. Figure 1 depicts the convergence behavior of the
two algorithms for a signal to noise ratio (SNR) of 10dB in
a uniform environment. This figure shows almost identical
performance for the two algorithms; no deterioration has
occurred to the SRLMF algorithm.

Second, in order to validate the theoretical findings,
extensive simulations are carried out for different scenarios.
While Figures 2—4 are for the case of the steady-state EMSE of
the SRLMF algorithm in a stationary environment, Figure 5
is for the case of the tracking EMSE in a nonstationary

9
0 T T 3
= i
=
- i
195}
= |
SRLMF 7
" A sl
6 8 10 12
x10%

Iterations

Fieure 1: Comparison of the MSE learning curves of LMF and
SRLMF algorithms in a uniform noise environment with SNR =
10dB.

—29.98 S

-29.99

MSE (dB)

Step-size (u)

—&— Simulation
—— Theory (small y)
—— Theory (separation)

Figure 2: Theoretical and simulated MSE learning curves of
the SRLMF algorithm using white Gaussian regressors with shift
structure with SNR = 30 dB.

environment. In all of these figures the MSE is plotted versus
the step-size p with a SNR = 30 dB.

In the case of Figure 2, the regressors, with shift structure,
are generated by feeding a unit-variance white process into a
tapped delay line. However, in Figure 3, the regressors, with
shift structure, are generated by passing correlated data into
a tapped delay line. Here, the correlated data are obtained
by passing a unit-variance ii.d. Gaussian data through
a first-order autoregressive model with transfer function
V1—a¥/(1 —az ') and a = 0.8. To further test the validity
of the results, Gaussian regressors with an eigenvalue spread
of five without a shift structure are used, this is depicted in
Figure 4. As it can be seen from these figures, the simulation
results match very well the theoretical results ((19) and (20)).
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—29.98

—-29.99

MSE (dB)

1072 107!
Step-size (u)

—&— Simulation
—6— Theory (small y)
—— Theory (separation)

Ficure 3: Theoretical and simulated MSE learning curves of the
SRLMF algorithm using correlated Gaussian regressors with shift
structure with SNR = 30 dB.

YT SO S SO SN

—-29.99

MSE (dB)

-30

Step-size (u)

—6— Simulation
—6— Theory (small y)
—7— Theory (separation)

Ficure 4: Theoretical and simulated MSE learning curves of the
SRLMF algorithm using Gaussian regressors with an eigenvalue
spread = 5 without shift structure with SNR = 30 dB.

Third, to further validate the theoretical results in a track-
ing scenario, the results of Figure 5 depicts this behavior.
Here, the random-walk channel behaves according to

Wi =W+ (93)

where q; is a Gaussian sequence with zero mean and variance
oy = 1077 and w’; = w°. As observed from Figure 5, the
simulation results corroborate closely the theoretical results
((34) and (36)).

Finally, we examine the transient behavior of the SRLMF
algorithm for the case of Gaussian data. Let us consider a

real-valued regression sequence {u;} with covariance matrix

EURASIP Journal on Advances in Signal Processing

b

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Step-size (p)

—&— Simulation
—— Theory (small g)
—7— Theory (separation)

Ficure 5: Theoretical and simulated MSE learning curves of the
SRLMF algorithm for a random-walk channel with SNR = 30dB.

MSD (dB)

4
Iterations <10
(a)
0 T T : -
—10 1
g -0f 1
4 =30t 1
Z _pl| 3
—50 L L L L
0 2 4 6 8 10
. x10*
Iterations
—— Simulation
~~~ Theory
(b)

Ficure 6: Theoretical and simulated MSD (a) and MSE (b) learning
curves of the SRLMF algorithm using white Gaussian regressors
with SNR = 50dB.

R whose eigenvalue spread we set at p = 5. Let the SNR be
50dB and the step-size is fixed at 4 = 0.01.

The results in Figures 6 and 7 show the theoretical and
simulated MSD and MSE learning curves of the SRLMF
algorithm using white Gaussian regressors and Gaussian
regressors with an eigenvalue spread equal to 5. The theo-
retical values are obtained by using the expression (86). As
can be seen here, There is an excellent match between the
theoretical and simulated results.
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Ficure 7: Theoretical and simulated MSD (a) and MSE (b) learning
curves of the SRLMF algorithm using Gaussian regressors with an
eigenvalue spread = 5, SNR = 50 dB.

9. Conclusions

A new adaptive algorithm, called the SRLMF algorithm, has
been presented in this work. Expressions are derived for the
steady-state EMSE in a stationary environment. A condition
for the mean convergence is also found, and it turns out
that the convergence of the SRLMF algorithm strongly
depends on the choice of initial conditions. Also, expressions
are obtained for the tracking EMSE in a nonstationary
environment. An optimum value of the step-size u is also
evaluated. Moreover, an extension of the weighted variance
relation is provided in order to derive expressions for the
mean-square error (MSE) and the mean-square deviation
(MSD) of the proposed algorithm during the transient
phase. Monte Carlo simulations have shown that there is
a good agreement between the theoretical and simulated
results. The simulation results indicate that both the SRLMF
algorithm and the LMF algorithm converge at the same rate
resulting in no performance loss. The analysis developed
in this paper is believed to make practical contributions to
the design of adaptive filters using the SRLMF algorithm
instead of the LMF algorithm in pursuit of the reduction in
computational cost and complexity whilst still maintaining
good performance.
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Abstract—In this paper, expressions are derived for the steady-
state and tracking excess-mean-square error (EMSE) of the
complex sign regressor least mean fourth (SRLMF) adaptive
algorithm. In addition, an expression for optimum step-size is
also derived. Finally, it is shown that the theoretical results are
consistent with the simulation results.

I. INTRODUCTION

The sign regressor least mean fourth (SRLMF) adaptive
algorithm is based on clipping of the input data. A thorough
analysis of the SRLMF algorithm for the case of real-valued
data can be found in [1]. Furthermore, it was shown that the
SRLMF algorithm and the least mean fourth (LMF) algorithm
[2] converge at the same rate for real-valued data resulting in
no performance loss.

The present paper extends the mean-square analysis and
the tracking analysis of the SRLMF algorithm for the case
of complex-valued data. In the process of this evaluation, we
distinguished between real- and complex-valued data as the
definition of the sign function is different in both cases. The
framework used here relies on energy conservation arguments
[3]. It is shown that the analytical results of the paper are
in a good agreement with the simulation results. Moreover,
the results show that the complex SRLMF algorithm has
a performance loss in terms of convergence behavior when
compared with the complex LMF algorithm.

II. THE COMPLEX SRLMF ALGORITHM

The complex SRLMF algorithm is based on clipping of the
regressor u;. The update equation of the algorithm is given by
Wi = W;_1+ [t c-sgn[ui]*ei|ei\2‘ i>0, (1)

where w; is the updated weight vector, p is the step-size. e;
is the estimation error signal, and
-1, if R[2] <0 or
(R[z] = 0 and I[z] < 0),

e

csgnfz] = if R[z] = S[z] =0, (2)

[y

if R[x] > 0 or
(R[z] = 0 and 3[z] > 0).

978-1-4577-0242-6/11/$26.00 ©2011 IEEE

III. MEAN-SQUARE ANALYSIS OF THE COMPLEX SRLMF
ALGORITHM

Let us assume that the data {d;, u;} satisfy the following
conditions of the stationary data model [3]:

A.l  There exists an optimal weight vector w® such that
d; = ;w4 v;.

A.2 The noise sequence v; is independent and identi-
cally distributed (i.i.d.) circular with variance o2 =
E[|v;]?] and is independent of u; for all 4, ;.

A.3  The initial condition w_j is independent of the zero
mean random variables {d;, u;, v;}.

A4 The regressor covariance matrix is R = E [uju;] >

0.

For the adaptive filter of the form in (1), and for any
data {d;,u;}, assuming filter operation in steady-state, the
following variance relation holds [3]:

nk [||u1H%I|g[clH2] = 2Re [E [e} gled]]], asi— o0, (3)

where

EffJu][f] = E[Re[u;Hlu;]u]]. Q)

€; = €q; + Ui, (5)
and ey, = w;(w®—w;_1) is the a priori estimation error. Then
gle;] becomes
eailea” + € [0il? + €a,[ef, vi + €a,07] + vilea, |
+u|vi | + v len,vi + €q, ;] (6)

gles] =

By using the fact that e,, and v; are independent, we reach at
the following expression for the term E [ezlg[eiﬂ:
Eleqsled]l = Ellealvil®] +E [lea,[ez,vi + ea,v]]
+E [e vilel vi + eq,v7]] (7
Ignoring third and higher-order terms of e,, and since the

noise sequence v; is assumed to be circular ie., E[v?] = 0,
then (7) becomes

E [ezig[eiﬂ ~ QJEEHGQI \2] (8)

553
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To evaluate the term E [||u;]|3|g[e;]|?]. we start by noting that
lgleidl® = lea,|® + [v:l° + Bleq, |*[el, vi + eq,v]]
+3|Ti|4[€zlui + eq, v + |€a1|2€,’§11‘i[.‘36;“li v
+264,07] + |€a; [*€a, v} [3ea, 0] + 2¢5, 03]
+5[vil*[ea, [* + 5lea,[*Jvil* + vil*e}, vi[3e, v
+2e,,07 ] + |1‘i|2€a11‘f [3eq,vf + 26’21 V4]
9003 |*|ea, [P[eh, vi + €a,v7] + 5503 + €5 vF°.
(C)]
If we multiply |g[e:]]? by ||us||} from the left, use the fact
that v; is independent of both u; and e,,, and again ignoring
third and higher-order terms of e,,, we get
E [||uallfilefed|*] = B willE] + 9B [wil flea, ]
+3E [|Jwg| |G v [es, vi + ea,vf]] L (10)
where ¢4 = Ef|v;|Y], €8 = E[|v;]%] denote the forth and sixth-

order moments of v;, respectively.
From Price’s theorem [4] we have

E [Re[z"csgn(y)]] = \/%;/—fE [Re[z*y]] . (11)

where = and y denote two complex-valued jointly-Gaussian
random variables. Therefore,
Ellluil[fi] = ERe[u;HuJui]],
= E[Re[u;esgnlu,]*]],
4Tr(R)
e

Substituting (12) into (10) we get

(12)

4Tr(R)
Vv TTUIQL

+3E [HulH%\u\‘l[e; Vi +€a11‘;H . (13)

E ([ [Flgle:]?] =~ & + 9, EllJui B ea, ]

Substituting (8) and (13) into (3) we get

1Tr(R
102E]Jeu?] = #aﬁ{ =
ma,

w

+Op& Bl il [flea|”]

+30E [lJuallf vl e, vi + eavf]] . (14)

In order to simplify (14) and arrive at an expression for the
steady-state excess-mean-square error (EMSE) ¢ = E[jeq, |?]
of the complex SRLMF algorithm, let us consider the follow-
ing two cases:

1. Sufficiently small step-sizes

Small step-sizes lead to small values of E[|e,,|?] and e,, in
steady-state. Therefore, in this case, the last two terms in (14)
can be ignored, the steady-state EMSE is given by
c = M (15)

o2\/mo2

2. Separation principle

For larger step-sizes, we use the separation assumption,
namely, that at steady-state, ||[u;||% is independent of e,,. In

978-1-4577-0242-6/11/$26.00 ©@2011 |IEEE

this case, the last term in (14) will be zero since e,, is zero
mean, the steady-state EMSE can be shown to be

6 4 .
- TS [m} Tr(R)
(403—9#5:}[ \H Tr(R))

IV. TRACKING ANALYSIS OF THE COMPLEX SRLMF
ALGORITHM

(16)

Here, let us assume that the data {d;,u;} satisfy the
following assumptions of the nonstationary data model [3]:

A5 There exists a vector w¢ such that d; = w;w? + v;.

A6 The weight vector varies according to the random-
walk model w{ = w{_; + q;. and the sequence g;
is i.i.d. with covariance matrix Q. Moreover, q; is
independent of {v;,u;} for all 4, j.

A7 The initial conditions {w_;,w?} are independent

of the zero mean random variables {d;, w;, v;, q; }.

In this case, the following variance relation holds [3]:

pE [[Juil[flefe’] + 17 Tr(Q) = 2Re [E[e; gle]]] .

as i — 00. (17)

Tracking results can be obtained by inspection from the mean-
square results as there are only minor differences. Therefore,
by substituting (8) and (13) into (17) we get

B 4Tv(R)
Q) 4 sl
+u& Bl ug[fileq, ”]

*

+34E ([l [foloil “[es, vi + ea,viT] (18)

407E]leq, ]

We again consider two cases for the evaluation of the tracking
EMSE ( of the complex SRLMF algorithm:

1. Sufficiently small step-sizes

Also, here, in this case we get

HITE(Q) + i { \/4—} TH(R)

102
4oz

(= (19)

An optimum value of the step-size of the complex SRLMF
algorithm is obtained by minimizing (19) with respect to p.

Therefore,
VredTr(Q)

IET(R) (20

fopt =

2. Separation principle

Similarly here as it was done for the derivation of (16), we
obtain the following:

WITHQ) 4+ et { \/4—} TH(R)
R)

(405*9#5:}[\/%% Tr( ) ,

s

(= (zh)
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and eventually the optimum step-size of the complex SRLMF
algorithm is given by

_ | [BUEPTHQ) | V7oR
pore =\ MY To2pen T am(®)

0%

_40‘253%(@). (22)

V. SIMULATION RESULTS

First, in order to validate the theoretical findings extensive
simulations are carried out for different scenarios. Figure 1 is
for the case of the steady-state mean-square error (MSE) of a
5-tap SRLMEF filter in a stationary environment and Figure
2 is for the case of the tracking MSE in a nonstationary
environment. In both these figures, the MSE is plotted as a
function of the step-size y for a signal to noise ratio (SNR) of
30 dB. Moreover, all the simulations reported in this work use
complex-valued signals and white Gaussian regressors with
shift structure. As can be seen from Figure I, the simulation
results match very well the theoretical results ((15) and (16)).

Second, to further validate the theoretical results in a
tracking scenario, Figure 2 depicts this behavior. Here, the
random-walk channel behaves according to

wi =W +q. (23)

where q; is a Gaussian sequence with zero mean and variance
crg = 107", As observed from Figure 2, the simulation results
corroborate closely the theoretical results ((19) and (21)).

Finally, the convergence behavior of the complex LMF and
the complex SRLMF algorithms is compared in an uniform
noise environment for an SNR of 10 dB, Figure 3 illustrates
this behavior. As can be seen from this figure, the complex
SRLMF algorithm has a performance loss when compared
with the complex LMF algorithm for the same steady-state
MSE.

VI. CONCLUSIONS

It is interesting to note that the expressions for the steady-
state EMSE, tracking EMSE, and optimum step-size of the
SRLMF algorithm for real- and complex-valued data are found
to be identical except for a scaling factor. It is shown that
the simulation results are in a good match with the analytical
results. It is also shown that the convergence performance
of the complex SRLMF algorithm is inferior when compared
with the complex LMF algorithm.
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ABSTRACT

In this paper, the performance analysis of the least mean
fourth (LMF) algorithm and the sign regressor least mean
fourth (SRLMF) algorithm is investigated in an adaptive
channel equalization scenario. The simulation results in-
dicate that both the LMF and the SRLMF algorithms ex-
hibit similar bit error rate (BER) performance. Moreover,
the results show that the SRLMF algorithm has a slight
performance degradation in terms of convergence behav-
ior when compared with the LMF algorithm.

1. INTRODUCTION

Reduction in complexity of the least mean square (LMS)
algorithm has always received attention in the area of adap-
tive filtering [1]-[3]. This reduction is usually done by
clipping either the estimation error or the input data, or
both to reduce the number of multiplications necessary at
each algorithm iteration. Many complexity reduction al-
gorithms have been reported in the literature and among
them is the sign regressor algorithm (SRA), which is based
on clipping of the input data [4]—[7]. These algorithms re-
sult in a performance loss when compared with the LMS
algorithm [4]-[5]. However, significant reduction in com-
putational cost and simplified hardware implementation
can justify this poor performance in applications requir-
ing reduced implementation costs [8§]-[9].

In this work, the bit error rate (BER) performance and
the convergence performance of the least mean fourth (LMF)
algorithm [10], and the sign regressor least mean fourth
(SRLMF) algorithm [11] in an adaptive channel equal-
ization scenario [12] are compared. Moreover, the con-
vergence analysis, the mean-square analysis, the tracking
analysis, and the transient analysis of the SRLMF algo-
rithm are found in [11].

This paper is organized as follows: following the In-
troduction is Section 2 where the SRLMF algorithm is
described. The computational complexity is detailed in
Section 3. The adaptive linear equalization and decision-
feedback equalization (DFE) scenarios are presented in
Sections 4 and 5, respectively. The simulation results are
reported in Section 6. Finally, some conclusions are re-
ported in Section 7.

978-1-4577-0069-9/11/$26.00 ©2011 IEEE

2. THE SRLMF ALGORITHM

The SRLMF algorithm is based on clipping of the regres-
sor u;, which is a row vector, say

>

w; = Uy w1 Uio Ui M+1), (1)

where M is the filter order. For real-valued data, the SRLMF
update recursion is

wi = w_q + psign[u]Te?, i >0,

(2

where w; (column vector) is the updated weight vector at
time i, /¢ is the step-size, ¢; is the estimation error signal,
and sign|[u;] is a row vector with the signs of the entries
of u; defined as

—1, ifz <0,
sign[z] = 0, ifz=0, (3)
1, ifx>0.

For complex-valued data, the update recursion in (2) be-
comes

W, = W1+ [ csgn[ui}*e?. i>0, 4
where
—1, ifRz] < Oor
(R[z] = 0 and I[z] < 0),
csgnfz] = 0, ifR[z]=x] =0, (5)

1, ifR[z] > Oor
(R[z] = 0 and J[z] > 0).

In this work, for binary phase-shift keying (BPSK) and
quadrature phase-shift keying (QPSK) data, the SRLMF
update equations ((2) and (4)) are used. respectively.

3. COMPUTATIONAL COMPLEXITY

The computational complexity of the LMF and the SRLMF
algorithms is discussed in this section. Tables 1 and 2 de-
tail the estimated computational complexity per iteration
for the LMF and the SRLMF algorithms, respectively, for
real- and complex-valued data in terms of the number of
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Table 1. Computational complexity per iteration of the
LMF and the SRLMF algorithms for real-valued data.
Algorithm | + X sign
LMF 2M 2M + 3
SRLMEF 2M | 2M + 2 (M +2) 1

Table 2. Computational complexity per iteration of the
LMF and the SRLMF algorithms for complex-valued
data.

Algorithm =+ X sign
LMF SM+1 8M +5
SRLMF 6M +1 | 6M+3 (4M +3) 2

real additions (+), real multiplications (), and sign eval-
uations.

When the step-size is selected as = 27 for some
positive integer i, then the SRLMF algorithm can be very
efficiently implemented by means of shift registers, and
the M multiplications that are needed for a generic 1 can
be ignored. In this particular case, we can replace the 20/
and 6 M figures that appear in Tables 1 and 2, respectively,
by M and 4 M multiplications. Therefore, in the multipli-
cations column, the entries between parenthesis indicate
the number of multiplications needed whenever the step-
size is chosen as a power of 271, This simplification is not
possible in the case of LMFE.

4. ADAPTIVE LINEAR EQUALIZATION

Consider a finite impulse response (FIR) channel with M
taps defined by:

Clz)=co+ ez Vb (-M_lzf(M*l). (6)

Data symbols s; transmitted through the channel in (6) get
corrupted by the noise sequence v;, which is assumed to
be independent and identically distributed (i.i.d.) additive
white Gaussian noise (AWGN). Also, in our work, data
symbols s; are chosen from a BPSK or a QPSK constel-
lation. Due to the channel memory, each received signal
u; contains contributions not only from s; but also from
prior symbols, since

M-1

u; = cps; + Z CLSi_ L + U;. (7)
k=1

The second term on the right-hand side of (7) is the inter-
symbol-interference (ISI) [12]-[13]. As the name implies
it refers to the interference that is caused by prior sym-
bols. The objective of an equalizer is to combat this ISI
and to recover the data symbols s; from the received sig-
nal u;. In order to achieve this objective, an adaptive linear
equalizer employs current and prior measurements u; g,
say for K = 0,1,...,L — 1. This is because prior mea-
surements contain information that is correlated with the

ISI term in u;, and therefore they can help in estimating
the interference term and removing its effect.

The adaptive linear equalizer structure shown in Fig-
ure | has basically two modes of operation [12]-[13]: a
training mode during which a delayed replica of the in-
put sequence s; is used as a reference sequence d;, and
a decision-directed mode during which the output of the
decision-device 5;_ A replaces the reference sequence. The
received signal u; is processed by the FIR equalizer to
generate the estimated signal $;_ A, which is later fed into
a decision device. The purpose of this decision device
is to map each 8;_ to the closest symbol in the symbol
constellation.

5. ADAPTIVE DECISION-FEEDBACK
EQUALIZATION

A basic adaptive decision-feedback equalization model is
shown in Figure 2, which is better suited for channels
with pronounced ISI. Unlike an adaptive linear equalizer,
a DFE structure uses the prior symbols s;_j, themselves,
say for k = 1,..., M — L, in order to cancel their effect
from wu; rather than relying on the prior measurements. In
addition to using an FIR filter in the feedforward path, as
in adaptive linear equalization, a DFE structure employs a
feedback filter in order to feedback previous decisions and
use them to reduce ISI. Here, the estimated signal §;_ A is
obtained by combining the outputs of the feedforward and
feedback filters [12]-[13].

q,
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Fig. 1. Adaptive linear equalization model.
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Fig. 2. Adaptive decision feedback-equalization model.
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6. SIMULATION RESULTS

First, the performance analysis of the LMF and the SRLMF
algorithms is investigated in an adaptive linear equaliza-
tion setup, respectively, for BPSK and QPSK data. The
simulations reported in this work are based on an FIR
channel with M = 4 taps defined by:

Clz)=05+12:"" F1.5272 — 273, (8)

The adaptive filter is trained with 1000 BPSK/QPSK sym-
bols, followed by decision-directed operation during 7000
BPSK/QPSK symbols. Choose delay A = 7 and equal-
izer length L = 10. Use SRLMF to train the equalizer
with step-size p¢ = 0.01. The performance of the LMF and
the SRLMF algorithms is compared for the same steady-
state mean-square error (MSE) or misadjustment.

Finally, the performance analysis of the LMF and the
SRLMF algorithms is further investigated in an adaptive
DFE setup, respectively, for BPSK and QPSK data. Here,
choose A = 7, L = 10 feedforward taps, and ) = 2
feedback taps.

Figure 3 reports the comparison of the BER curves
at the input of the LMF linear equalizer and the SRLMF
linear equalizer, respectively, for BPSK and QPSK data
in an AWGN environment. While Figure 5 reports the
same comparison for the case of the LMF DFE and the
SRLMF DFE. As can be seen from these figures, for a
given constellation, the BER performance of the LMF and
the SRLMF algorithms is similar for lower signal to noise
ratios (SNR). As the SNR increases, an enhancement in
the BER performance of the SRLMF algorithm is obtained
over the LMF algorithm. However, the BER performance
of the LMF and the SRLMF algorithms is again similar
for higher SNR’s. Also, one can notice that, for a fixed
SNR, the probability of error increases as the order of the
constellation increases.

Figure 4 reports the comparison of the MSE learning
curves of the LMF linear equalizer and the SRLMF linear
equalizer, respectively, for BPSK and QPSK data in a uni-
form noise environment with SNR = 20 dB. While Figure
6 reports the same comparison for the case of the LMF
DFE and the SRLMF DFE. As can be seen from these
figures, the convergence performance of the SRLMF al-
gorithm is slightly inferior when compared with the LMF
algorithm. Also, one can notice that, the mean square er-
ror increases as the order of the constellation increases.

7. CONCLUSIONS

In this work, the performance analysis of the LMF and the
SRLMF algorithms in an adaptive channel equalization
scenario is compared. The simulation results report sim-
ilar BER performance for both the algorithms. It is also
shown that the convergence performance of the SRLMF
algorithm is only slightly inferior when compared with the
LMEF algorithm.
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Fig. 3. Comparison of the BER curves at the input of the
LMF linear equalizer and the SRLMF linear equalizer, re-
spectively, for BPSK and QPSK data in an AWGN envi-
ronment.
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3 The SRLMMN Algorithm
3.1 Introduction

The Sign Regressor Least Mean Mixed-Norm (SRLMMN) algorithm is based on the clipping of
the input data. The SRLMMN algorithm belongs to the family of the Least Mean Mixed-Norm
(LMMN) algorithm. The only difference in the filter weights update equations of these two
algorithms is the application of the signum function on the input data of the SRLMMN
algorithm. The SRLMMN algorithm is a hybrid version of the Sign Regressor Least Mean Square
(SRLMS) and Sign Regressor Least Mean Fourth (SRLMF) algorithms. The SRLMMN algorithm
combines the benefits of both the SRLMS and SRLMF algorithms such as improved stability
and convergence performance, respectively.

The filter weights update equation of the SRLMMN algorithm for real-valued data is given by
(3.1) [34]:

w; = w;_; + usign[u;]Te;[§ + (1 — 8)e?], (3.1)

where w; is the updated filter weight vector at iteration i > 0, u is the step-size, u; is the
regressor vector, e; = d; — y; is the estimation error signal, d; is the desired signal, y; is the
adaptive filter output, § is the mixing parameter ranging between 0 < § < 1, sign(.) denotes
the sign of its argument, and the definition of the signum function for real-valued data is given
by (1.1).

The filter weights update equation of the SRLMMN algorithm reduces to the filter weights
update equations of the SRLMF and SRLMS algorithms when the mixing parameter 6 becomes
0 and 1, respectively.

3.2 Background

The LMMN algorithm is a well-known member of the family of mixed-norm adaptive filtering
algorithms and has been analyzed extensively in the open literature. However, there were no
efforts made to analyze the performance evaluation of the SRLMMN algorithm until it was
proposed, analyzed, and evaluated in [34].

The LMMN algorithm combines the benefits of both the classical Least Mean Square (LMS)
and Least Mean Fourth (LMF) algorithms [10]. Some of the studies, which investigated the
performance evaluation of the LMMN algorithm are as follows. The convergence, steady-
state, and tracking analysis of the LMMN algorithm was studied in [11], [12]. In [58], the LMMN
algorithm was introduced for the first time in an adaptive echo canceller wherein it has shown
improved performance over the LMS algorithm by offering relatively faster convergence and
lower Mean Square Error (MSE).
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In [59], an LMMN-based adaptive control technique is employed for the eradication of
harmonics and for the extraction of fundamental load component for power quality
improvement of grid intertie wind—photovoltaic system. The LMMN-based adaptive control
technique offers lesser MSE, thereby resulting in reduced misadjustments and improved
convergence compared to the conventional control schemes [59].

The motivation to introduce the sign regressor term in the SRLMMN algorithm is to achieve
reduced computational complexity compared to the LMMN algorithm. However, the
convergence performance of the SRLMMN algorithm is slower than the SRLMF algorithm but
better than the SRLMS algorithm as expected.

3.3 Contributions/Published Manuscripts

The two published papers on the performance evaluation of the SRLMMN [34], [48] algorithm
for real-valued data are as follows:

[P4] M. M. U. Faizand A. Zerguine, “On the convergence, steady-state, and tracking analysis
of the SRLMMN algorithm,” in Proc. of the 23" European Signal Processing Conf.
(EUSIPCO 2015), Nice, France, pp. 2691-2695, Aug.-Sep. 2015, DOl
https://doi.org/10.1109/EUSIPC0.2015.7362873

A novel adaptive algorithm called the SRLMMN algorithm was proposed, analyzed, and
evaluated for the case of real-valued data in [34]. The expressions for the steady-state and
tracking MSE of the SRLMMN algorithm were derived and are given by (B.1) and (B.4) in
Appendix B, respectively.

In addition, a sufficient condition for the convergence in the mean of the SRLMMN algorithm
was also derived and is given by (3.2) [34]:

‘/;Ui (3.2)

0 < psrLmmn < Amax(6+3(1-8)a2)’

where uspimmn is the step-size of the SRLMMN algorithm, o2 = E[u;?] is the regressor
variance, A« is the maximum eigenvalue of the regressor covariance matrix R, and 2 is the
estimation error variance.

We can obtain the expressions for the step-size bounds of the SRLMF and SRLMS algorithms
from (3.2) by setting § equal to 0 and 1, respectively, as shown below:

2mo?

0 < psprLmr < , (3.3)

2
3Amax0e
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2
2oy

0 < psrLms < PR (3.4)

Note that the expression for the step-size bound of the SRLMF algorithm in (3.3) is the same
as that obtained by the author in [32]. Furthermore, an excellent agreement is observed
between the simulation and analytical results.

Finally, a comparison between the convergence performance of the SRLMMN and LMMN
algorithms indicates no performance degradation of the SRLMMN algorithm for real-valued
data in a uniform noise environment with an SNR of 10 dB.

[P5] M. M. U. Faiz and I. Kale, “Removal of multiple artifacts from ECG signal using cascaded
multistage adaptive noise cancellers,” Array, vol. 14, art. no. 100133, pp. 1-9, July
2022, DOI: https://doi.org/10.1016/j.array.2022.100133

Although cascaded multistage adaptive noise cancellers have been employed before by other
researchers for multiple artifact removal from the ElectroCardioGram (ECG) signal, they all
used the same adaptive algorithm in all the cascaded multi-stages for adjusting the adaptive
filter weights. In this paper, a cascaded 4-stage adaptive noise canceller is proposed by the
author for the removal of four artifacts present in the ECG signal, namely baseline wander,
motion artifacts, muscle artifacts, and 60 Hz Power Line Interference (PLI) [48].

The performance of eight adaptive algorithms, namely LMS, LMF, LMMN, SRLMS, Sign-Error
Least Mean Square (SLMS), Sign-Sign Least Mean Square (SSLMS), SRLMF, and SRLMMN is
investigated in terms of Signal-to-Noise Ratio (SNR) improvement for removing the
aforementioned four artifacts from the ECG signal [48].

The shortlisted LMMN, LMF, LMMN, LMF algorithms are employed in the proposed cascaded
4-stage adaptive noise canceller to remove the respective ECG artifacts as mentioned above.
The proposed cascaded 4-stage adaptive noise canceller employing the LMMN, LMF, LMMN,
LMF algorithms outperforms those that employ the same algorithm such as the LMS algorithm
in all the four stages. One unique and powerful feature of the proposed cascaded 4-stage
adaptive noise canceller is that it employs only those adaptive algorithms in the four stages,
which are shown to be effective in removing the respective ECG artifacts as mentioned above.
Such a scheme has not been investigated before in the open literature [48].
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ABSTRACT

In this work, a novel algorithm named sign regressor least
mean mixed-norm (SRLMMN) algorithm is proposed as
an alternative to the well-known least mean mixed-norm
(LMMN) algorithm. The SRLMMN algorithm is a hybrid
version of the sign regressor least mean square (SRLMS)
and sign regressor least mean fourth (SRLMF) algorithms.
Analytical expressions are derived to describe the conver-
gence, steady-state, and tracking behavior of the proposed
SRLMMN algorithm. To validate our theoretical findings,
a system identification problem is considered for this pur-
pose. It is shown that there is a very close correspondence
between theory and simulation. Finally, it is also shown that
the SRLMMN algorithm is robust enough in tracking the
variations in the channel.

Index Terms— LMS, LMF, LMMN, SRLMS, SRLMF,
SRLMMN; sign regressor, mixed-norm, convergence, steady-
state, tracking.

1. INTRODUCTION

The least mean mixed-norm (LMMN) algorithm [1] is a
well-known member of the family of mixed-norm adaptive
filtering algorithms, which combines the benefits of the well-
established least mean square (LMS) [2] and least mean
fourth (LMF) algorithms [3]. In [4], the LMMN algorithm
was introduced for the first time in an adaptive echo cancel-
lation problem where it has shown improved performance
over the LMS algorithm in terms of convergence and mis-
adjustment. In-depth convergence. steady-state, and tracking
analysis of the LMMN algorithm can be found in [5]-[6].

Signed adaptive filters are extensively used for the pro-
cessing and analysis of electrocardiogram (ECG) signals [7]
as they are computationally less complex when compared
to their unsigned counterparts. The proposed sign regressor
least mean mixed-norm (SRLMMN) algorithm is a signed
version of the LMMN algorithm, which is obtained by taking
the signum function of the input data. The SRLMMN algo-
rithm is a hybrid algorithm based on a combination of the
sign regressor least mean square (SRLMS) [8]-[9] and sign

978-0-9928626-3-3/15/$31.00 ©2015 |[EEE
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regressor least mean fourth (SRLMF) [10] algorithms. The
SRLMMN algorithm reduces to SRLMF and SRLMS algo-
rithms when the mixing parameter becomes zero and one,
respectively. In the present work. analytical expressions for
the convergence, steady-state mean-square error (MSE), and
tracking MSE of the SRLMMN algorithm are derived.

The rest of the paper is structured as follows. The weight
update equation of the proposed algorithm is described in
Section 2. The convergence, steady-state, and tracking anal-
ysis of the SRLMMN algorithm is carried out in Sections 3,
4, and 5, respectively. Simulation studies which confirm the
theoretical findings are presented in Section 6. followed by
conclusions in Section 7.

2. THE SRLMMN ALGORITHM

The weight update equation of the LMMN algorithm can be
written as follows [9]:

W, =Wi_1 + U ul-Te;[(S + (1= 6)2?]. 0<o<1, (1)

where w; € R¥*! is the updated weight vector at iteration 7,
M is the length of adaptive filter, u is the step-size, u; € R
is the regressor vector, ¢ is the mixing parameter, and e; is the
estimation error given by

e = di —wwig, (2)

where d; is the desired value. The SRLMMN algorithm is
obtained from the LMMN algorithm in (1) by replacing the
regressor vector by its sign as shown below:

W, =W+ sign[u,—]Te,-[(S +(1— (S)(’?l 0<6<1. (3
3. CONVERGENCE ANALYSIS

To carry out the convergence analysis of the SRLMMN algo-
rithm we rely on the assumptions mentioned in [11].
Subtracting both sides of (3) from the optimal weight vector
wi we get

Wi =W —u 6 signfu;]Te; —p (1 - (S)sign[u,-]Tef, (4)
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where the weight error vector w; is given by
V~V,' = W? — W;. (5)

Taking the expectation of both sides of (4) under the assump-
tions mentioned in [11] we obtain

E[w;] = E[Wiq]-u 0 E [sign[u,-]Te,-]—,u (1-6)E [sign[u,-]Te?] )
(6)

2 -
\f FRE[WL'—I]’ (7
I
72 TeRE[Wi-1]. (8)

where o2 is the regressor variance, o2 is the estimation error
variance, and R = E[u?u;] is the regressor autocorrelation

matrix. Upon substituting (7) and (8) into (6), we have

1=yt /%R(6+3(1 - 0)07)

From (9), it is easy to show that the mean behavior of the
weight error vector, that is E[w;], converges to the zero vector
if the step-size p is bounded by:

\2no2

Amax (6 + 3(1 = §)02) ’

From [10], we have

E [sign[u,—]Te,-]

|
38}

E [sign[ul-]Te?]

E[wi] = Ewial. 9

0<pu<

(10)

where Ay, is the maximum eigenvalue of R. We can obtain
the step-size bounds of the SRLMF and SRLMS algorithms
from (10) by setting ¢ equal to O and 1. respectively, as shown
below:

0 < L N2 (11)
MSRLMF < 55— 5+
3dmax 2

\2no2 .

’{max

0 < psrims < (12)
Note that the step-size bound of the SRLMF algorithm in (11)
is the same as that obtained by us in [10]. Equation (10) can
also be rewritten in the following equivalent form:

0 < pt <6 psrums + (1 — O)usrLME- (13)

4. STEADY-STATE ANALYSIS
To carry out the steady-state analysis of the SRLMMN algo-
rithm we shall assume that the data {d;, u;} satisfy the assump-
tions of the stationary data model mentioned in [12].
For the adaptive filter of the form in (3). and for any data
{di,u;}, assuming filter operation in steady-state, the follow-
ing variance relation holds [9]:

KE [lluig?le;]| = 2E [eqgleil], as i— oo, (14)
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where
E[u;H[u;Ju] ], (15)
eq + Vi, (16)

Elllu;l1

¢ =

with gle;] denoting some function of ¢;, and ¢, = w;(w” —
w;_1) is the a priori estimation error. Then gle;] for the
SRLMMN algorithm can be shown to be

2

a;

+2e,vH. (17)

gle;] = Oleq +vi) + S{e; + € v,-2 + 2e§l Vi + vie, + v?

where § = | — §. By using the fact that e,, and v; are indepen-
dent, and by ignoring third and higher-order terms of e,,. we
reach at the following expression for the term E [e,, g[e;]]:

Eleqgleil] = (6 + 380 )Eel . (18)
To evaluate the term E [||Ui|||2_|g2 [e,-]]. we start by noting that
0'2[93 + v? +2e,4vi] + Sz[eg‘ + 66; v; + be,, V‘;S
+15e3 v+ 153 v + 2060 v7 + V0] + 265] €],

2.2 3 3,4
+0¢,,vi + e, vi+deq v + Vil (19)

Plel =

If we multiply gz[e,;] by ||u,-||a from the left, use the fact that
v; is independent of both u; and e,,. and again ignoring third
and higher-order terms of ¢,,. we obtain

E[luifgle]] = (6 + 158 + 126602 |luilfe? |
+(6%02 + 868 + 2666E il | (20)

where jq“ﬁ = E[v?] and EE = E[v?] are the fourth and sixth-
order moments of the noise sequence v;, respectively.
Substituting (18) and (20) into (14), and by using the separa-
tion principle [12], we get

(622 + B2E8 + 2636DE [Ilwilly | = [2(5 + 3602
—u(6% + 158288 + 12660H)E [||u,-||;] [El21. (21

Ultimately, the expression for the steady-state MSE ¢ =
E [0,2] of the SRLMMN algorithm can be shown to be

p(Po? + 3268 + 26568 (| Tr(R)

2(8 +3602) — (6% + 1582} + 126502) |2 Tr(R)

¥ +0

v

(22)
We can obtain the expressions for the steady-state MSE of the
SRLMEF and SRLMS algorithms from (22) by setting ¢ equal
to 0 and 1, respectively, as shown below:

HE} 7= Tr(R)

@SRLME = +oy,. (23)
60} — 15uE} [ Tr(R)
poy ,,5.5 Tr(R) 5

PSRIMS = —————— + 0. (24)

2-p TR
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Note that the expression for the steady-state MSE of the
SRLMF algorithm in (23) is the same as that obtained by us
in [10]. Similarly, here Equation (22) can also be rewritten in
the following equivalent form:

@ = & @srLms + (1 — O)PSRLME- (25)

5. TRACKING ANALYSIS
To carry out the tracking analysis of the SRLMMN algorithm
we shall assume that the data {d;, u;} satisfy the assumptions
of the nonstationary data model mentioned in [11].
For the adaptive filter of the form in (3), and for any data
{di.u;}, assuming filter operation in steady-state, the follow-
ing variance relation holds [9]:

KE [l (e + 7' TrQ) = 2E[eqgleil].

as i — oo. (26)

Tracking results can be obtained by inspection from the
steady-state results in Section 4 as there are only minor dif-
ferences. Therefore, by substituting (18) and (20) into (26)
the expression for the tracking MSE ¢  of the SRLMMN
algorithm can be shown to be

u(SP0s + 678 + 2008}) [ = Tr(R) + 1~ ' Tr(Q)

.

¢ = +0oy,.

26 +3502) - p(6® + 1582} + 126507) [ ZTr(R)
(27)
We can obtain the expressions for the tracking MSE of the
SRLMF and SRLMS algorithms from (27) by setting § equal
to 0 and 1, respectively, as shown below:

’ 1é0 {%'%Tr(R) + ' Tr(Q) ,
LSRLMF = > +o,, (28)
60% — 15u&d | 7= Tr(R)

’ po? %'ﬁTr(R)+}u’lTr(Q) ,
PSRLMS ~ + 05, (29)

2—pu {%'%Tr(R)

where Q = E[q,;q;r] is the autocorrelation matrix of the se-
quence ¢; in the random walk model as described in the next
section. Note that the expression for the tracking MSE of the
SRLMF algorithm in (28) is the same as that obtained by us
in [10]. Similarly, here Equation (27) can also be rewritten in
the following equivalent form:

¢ =06 pgpims + (1 — O)Pspimp- (30)

6. SIMULATION RESULTS
In all the simulations, the problem of identification of an un-
known system is considered with filter tap-length of M = 10.
The tap-weight vector of the unknown system is considered to
be stationary for both convergence and steady-state MSE of
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the SRLMMN algorithm and nonstationary for tracking MSE
of the SRLMMN algorithm. The amount of nonstationarity
added to the tap-weight vector is according to a random walk
model, as described later in this section. The signal-to-noise
ratio (SNR) is fixed at 30 dB (Figures 1-4), 20 dB (Figures 5—
8), and 10 dB (Figures 9—-10). The mixing parameter is fixed
at 0.5 for Figures 1, 5, and 9. The step-size is fixed at 0.005
for Figure 2 and 0.01 for Figure 6. We have considered addi-
tive white Gaussian noise (AWGN) environment for Figures
1-8 and uniform noise environment for Figures 9—10.

ceoiieto [ —o— Simulation
H —<&— Theory

2988t
209 b

Y S

MSE (¢B)

2994 [ one i
B X

2088l b

-3

Fig. 1. Steady-state behavior of the SRLMMN algorithm ver-
sus u for fixed & (6 = 0.5).

e Simulation
—5— Theory

MSE (dB)

Fig. 2. Steady-state behavior of the SRLMMN algorithm ver-
sus ¢ for fixed u (u = 0.005).

To demonstrate the tracking abilities of the SRLMMN al-
corithm, we have considered a random walk model as shown
below:

wi =W, +q;. (31)

where q; is a zero mean Gaussian noise sequence with vari-
ance 0'5 = 10710,

In order to examine the steady-state and tracking behavior
of the SRLMMN algorithm, we have performed simulations
for four diftferent cases: In the first case, steady-state/tracking
MSE of the SRLMMN algorithm is plotted against the step-
size for a fixed value of the mixing parameter, as shown in
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-29.65
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Fig. 3. Steady-state behavior of the SRLMMN algorithm ver-
sus u for varying o (¢ varying from O to ).
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Fig. 4. Steady-state behavior of the SRLMMN algorithm ver-
sus ¢ for varying g (¢ varying from 107* to 1072).

Figures 1 and 5, respectively. In the second case, steady-
state/tracking MSE of the SRLMMN algorithm is plotted
against the mixing parameter for a fixed value of the step-
size, as shown in Figures 2 and 6, respectively. In the third
case, steady-state/tracking MSE of the SRLMMN algorithm
is plotted against the step-size for varying values of the mix-
ing parameter, as shown in Figures 3 and 7, respectively.
Finally, in the fourth case, steady-state/tracking MSE of the
SRLMMN algorithm is plotted against the mixing parameter
for varying values of the step-size, as shown in Figures 4
and 8, respectively. In all these cases. an excellent match is
observed between the theoretical and simulated results, as
shown in Figures 1-8.

Moreover, in order to study the convergence aspects of the
SRLMMN algorithm some results are presented in Figures
9-10. Figure 9 compares the convergence rate of the LMMN
and SRLMMN algorithms. We can observe from Figure 9 that
the learning curves of both the algorithms are almost identi-
cal. Finally. Figure 10 compares the convergence rate of the
SRLMMN algorithm for various values of §. Notice in Fig-
ure 10 that, the SRLMMN algorithm reduces to SRLMF and
SRLMS algorithms when ¢ = 0 and & = 1, respectively.
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Fig. 5. Tracking behavior of the SRLMMN algorithm versus
w for fixed o (6 = 0.5).
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Fig. 6. Tracking behavior of the SRLMMN algorithm versus
¢ for fixed p (1 = 0.01).

7. CONCLUSIONS

A new variant of the LMMN algorithm called the SRLMMN
algorithm has been introduced and analyzed in this paper. It
has been shown that the SRLMMN algorithm can achieve
similar performance with respect to its adaptive counter-
part but with reduced complexity. Furthermore, an excellent
agreement is observed between the simulation and analytical
results. Thus, a combination of the SRLMS and SRLMF
algorithms has resulted in a hybrid algorithm, which is robust
to variations in the channel statistics.
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ARTICLE INFO ABSTRACT

Keywords: Although cascaded multistage adaptive noise cancellers have been employed before by researchers for multiple

ECG artifact removal from the ElectroCardioGram (ECG) signal, they all used the same adaptive algorithm in all the

LMS cascaded multi-stages for adjusting the adaptive filter weights. In this paper, we propose a cascaded 4-stage
Il:x:[N adaptive noise canceller for the removal of four artifacts present in the ECG signal, viz. baseline wander, motion
PLI artifacts, muscle artifacts, and 60 Hz Power Line Interference (PLI). We have investigated the performance of

eight adaptive algorithms, viz. Least Mean Square (LMS), Least Mean Fourth (LMF), Least Mean Mixed-Norm
(LMMN), Sign Regressor Least Mean Square (SRLMS), Sign Error Least Mean Square (SELMS), Sign-Sign Least
Mean Square (SSLMS), Sign Regressor Least Mean Fourth (SRLMF), and Sign Regressor Least Mean Mixed-Norm
(SRLMMN) in terms of Signal-to-Noise Ratio (SNR) improvement for removing the aforementioned four artifacts
from the ECG signal. We employed the LMMN, LMF, LMMN, LMF algorithms in the proposed cascaded 4-stage
adaptive noise canceller to remove the respective ECG artifacts as mentioned above. We succeeded in achieving
an SNR improvement of 12.7319 dBs. The proposed cascaded 4-stage adaptive noise canceller employing the
LMMN, LMF, LMMN, LMF algorithms outperforms those that employ the same algorithm in the four stages.
One unique and powerful feature of our proposed cascaded 4-stage adaptive noise canceller is that it employs
only those adaptive algorithms in the four stages, which are shown to be effective in removing the respective
ECG artifacts as mentioned above. Such a scheme has not been investigated before in the literature.

1. Introduction cancellation method to remove motion artifacts in stress ECG signals by

using an accelerometer. The adaptive noise cancellers in [6] are imple-

Adaptive noise cancellation is a method of estimating signals, which
are corrupted by additive noise or interference. This method employs
a primary input, which is the corrupted signal, and a secondary or
reference input, which is the noise correlated with the noise present in
the primary input. The reference input is adaptively filtered and sub-
tracted from the primary input in order to obtain the signal estimate.
The adaptive noise cancellation method can be employed whenever an
appropriate reference input is available [1,2].

Thakor and Zhu [3] proposed several adaptive filter structures for
noise cancellation and arrhythmia detection in ECG signals. The diverse
forms of noise like baseline wander, 60 Hz PLI, muscle artifacts, and
motion artifacts were eliminated from the ECG signal [3]. Hamilton [4]
investigated the relative performance of an adaptive and nonadaptive
60-Hz notch filters for the reduction of PLI in the ECG signal. Ziarani
and Konrad [5] proposed a nonlinear adaptive method of elimination
of PLI from the ECG signal. The proposed method offered a robust
structure and is shown to have a high degree of immunity with respect
to external noise [5]. Raya and Sison [6] proposed an adaptive noise

* Corresponding author.

mented using the two of the most widely employed adaptive filtering
algorithms, viz. LMS and Recursive Least Squares (RLS). Martens et al.
[71 proposed an improved adaptive noise canceller for the reduction
of the fundamental PLI component and harmonics in the ECG signal.
Behbahani [8] simulated and tested an adaptive noise cancellation
method using the LMS algorithm for removing the 60 Hz PLL Lin
and Hu [9] developed an efficient RLS adaptive notch filter for the
suppression of PLI in the ECG signal. They also proposed a PLI detector
that employed an optimal linear discriminant analysis algorithm for the
detection of PLI in the ECG signal [9].

Rahman et al. [10-12, range] employed Normalized Sign Regressor
Least Mean Square (NSRLMS), Normalized Sign Error Least Mean
Square (NSELMS), and Normalized Sign-Sign Least Mean Square
(NSSLMS) algorithms for canceling various artifacts such as base-
line wander, 60 Hz PLI, muscle artifacts, and motion artifacts from
the ECG signal. Rahman et al. [13] employed LMS, SRLMS, SELMS,
and SSLMS algorithms for canceling various artifacts as mentioned
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above from the ECG signal. In [13], it is shown that the performance
of the SRLMS algorithm is superior to the LMS algorithm in terms
of SNR improvement. Rahman et al. [14] expanded the work in
[10-12, range] by employing Block-Based Normalized Sign Regressor
Least Mean Square (BBNSRLMS), Block-Based Normalized Sign Error
Least Mean Square (BBNSELMS), and Block-Based Normalized Sign-
Sign Least Mean Square (BBNSSLMS) algorithms for canceling various
artifacts as mentioned above from the ECG signal.

Islam et al. [15] added the four types of Alternating Current (AC)
and Direct Current (DC) interference/noise with ECG signals and nul-
lified these noises using the LMS and RLS algorithms. Vullings et al.
[16] developed an adaptive Kalman filter to enhance the quality of
the ECG signal. Dhubkarya et al. [17] implemented an adaptive noise
canceller for denoising an ECG signal and tested the performance of the
system using various algorithms such as LMS, Normalized Least Mean
Square (NLMS), and RLS. Chandrakar and Kowar [18] employed the
RLS algorithm for the removal of different kinds of noises from the
ECG signal. Kim et al. [19] proposed a motion artifact removal method
using a cascaded 2-stage LMS adaptive filter for an ambulatory ECG
monitoring system. Mugdha et al. [20] conducted a study of the RLS
algorithm in noise removal from ECG signals and concluded that the
RLS algorithm is more efficient in removing noises from ECG signals
than the LMS algorithm.

Ebrahimzadeh et al. [21] compared various kinds of ECG noise
reduction algorithms such as LMS, Block-Based Least Mean Square
(BBLMS), NLMS, Unbiased and Normalized Adaptive Noise Reduction
(UNANR), and RLS. Sharma et al. [22] used an adaptive noise canceller
that employs LMS algorithm for ECG noise removal and concluded
that an increase in the step-size increases the noise as well as the
rate of convergence. Satheeskumaran and Sabrigiriraj [23] proposed
a Variable Step Size Delayed Least Mean Square (VSSDLMS) adaptive
filter to remove the artifacts from the ECG signal. Sehamby and Singh
[24] used an LMS-based adaptive noise canceller to derive a noise-
free fetal ECG signal. Haritha et al. [25] surveyed different filters and
denoising techniques used for ECG signals. Qureshi et al. [26] proposed
a cascaded 3-stage adaptive noise canceller to eliminate three types of
artifacts from the ECG signal, viz. baseline wander, 60 Hz PLI, and
motion artifacts. The same algorithm was used in all three stages of
the cascaded adaptive noise canceller. The results of a cascaded 3-
stage LMS-based adaptive noise canceller were compared with those
of a cascaded 3-stage NLMS-based adaptive noise canceller, a cascaded
3-stage Log LMS-based adaptive noise canceller, and a cascaded 3-
stage SRLMS-based adaptive noise canceller. Warmerdam et al. [27]
proposed a fixed-lag Kalman smoother to filter PLI from ECG recordings
with minimal distortion of the ECG waveform.

Sutha and Jayanthi [28] discuss prototype hardware developed to
monitor and record the raw mother ECG signal containing the fetal
ECG and a signal processing algorithm to extract the fetal ECG. The
adaptive noise canceller employed in their work uses the SSLMS algo-
rithm [28]. Gilani et al. [29] employed an LMS-based adaptive noise
canceller to remove the 50 Hz PLI from the ECG signal. Venkatesan
et al. [30] studied a Delayed Error Normalized Least Mean Square
(DENLMS) adaptive filter with pipelined architecture to remove the
white Gaussian noise from the ECG signal. Srinivasa and Pandian
[31] eliminate the 50 Hz PLI from ECG signal using an LMS-based
adaptive noise canceller. Xiong et al. [32] have shown that the cosine-
based adaptive algorithm is superior to the standard LMS algorithm
in reducing the high amplitude motion artifact noise from the ECG
signal. Saxena et al. [33] remove the 50 Hz PLI from the ECG signal
using an NLMS-based adaptive noise canceller. Manju and Sneha [34]
performed ECG denoising using Weiner filter and Kalman filter. Their
results have shown that the Wiener filter performs better than the
Kalman filter for ECG noise removal. Khiter et al. [35] proposed a novel
adaptive denoising method called self correcting leaky normalized least
mean square algorithm with varied step size and leakage coefficient for
reducing the muscle artifacts from the ECG signal. Yadav et al. [36]
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applied the symbiotic organisms search algorithm for estimating the
weight vectors of an optimized adaptive noise canceller for reducing
the artifacts from the ECG signal.

In this paper, we will employ a cascaded 4-stage adaptive noise
canceller to remove the four types of artifacts from the ECG signal,
viz. baseline wander, motion artifacts, muscle artifacts, and 60 Hz
PLI. The contributions of this paper are: (1) We first determine the
best performing adaptive algorithms in terms of SNR improvement
among the eight adaptive algorithms studied in this paper, viz. Least
Mean Square (LMS), Least Mean Fourth (LMF), Least Mean Mixed-Norm
(LMMN), Sign Regressor Least Mean Square (SRLMS), Sign Error Least
Mean Square (SELMS), Sign-Sign Least Mean Square (SSLMS), Sign
Regressor Least Mean Fourth (SRLMF), and Sign Regressor Least Mean
Mixed-Norm (SRLMMN) for removing the aforementioned four artifacts
from the ECG signal, (2) We then employ the four shortlisted algo-
rithms, viz. LMMN, LMF, LMMN, LMF in the proposed cascaded 4-stage
adaptive noise canceller for removing the aforementioned four artifacts
from the ECG signal, and (3) We then compare the performance of
the proposed cascaded 4-stage adaptive noise canceller employing the
LMMN, LMF, LMMN, LMF algorithms with those that employ the LMS,
LMS, LMS, LMS algorithms, the LMF, LMF, LMF, LMF algorithms, the
LMMN, LMMN, LMMN, LMMN algorithms, and the SRLMMN, SRLMF,
SRLMMN, SRLMF algorithms. We were able to achieve a significant
improvement in the SNR of the filtered ECG signal after the application
of our proposed scheme over other schemes. The remainder of this
paper is organized as follows. Various adaptive algorithms studied in
this paper are discussed in Section 2. The proposed cascaded 4-stage
adaptive noise canceller is discussed in Section 3. Simulation results
are discussed in Section 4. Finally, the paper is concluded in Section 5.

2. Adaptive algorithms

In this work, we have studied eight adaptive algorithms, viz. LMS,
LMF, LMMN, SRLMS, SELMS, SSLMS, SRLMF, and SRLMMN for the
removal of multiple artifacts present in the ECG signal. The weight
update equations of these eight adaptive algorithms are given in Table 1
wherein w, € RM*! is the updated weight vector at iteration i > 0, M is
the adaptive filter length, 4 is the step-size, u; € R™ is the regressor
or input vector with variance og, & is the mixing parameter ranging
between 0 < 6 < 1, ¢, is the estimation error given by

e =d; —u;wW,_i, 1)
where d, is the desired value, and

-1, ifx<0,
sen[x] =4 0, ifx=0, (2)
1, ifx>0.

The LMMN algorithm is a combination of the LMS and LMF algorithms
as long as the mixing parameter is ranging between 0 < § < 1. The
LMMN algorithm reduces to LMF and LMS algorithms when the mixing
parameter becomes zero and one, respectively.

The sign adaptive filters are used for the processing and analysis
of ECG signals as they are computationally less complex. However, the
performance of a sign adaptive filter is compromised because of the
clipping effect due to the application of signum function to either the
regressor vector, estimation error, or both. The SRLMS, SELMS, and
SSLMS algorithms are also known in the literature as the Sign Regressor
Algorithm (SRA), Sign Algorithm (SA), and Sign-Sign Algorithm (SSA),
respectively. The SRLMMN algorithm is a combination of the SRLMS
and SRLMF algorithms as long as the mixing parameter is ranging
between 0 < 6 < 1. The SRLMMN algorithm reduces to SRLMF and
SRLMS algorithms when the mixing parameter becomes zero and one,
respectively. Note that the SRLMF [37] and SRLMMN [38] algorithms
were developed by us and are being employed in this work for the
removal of multiple artifacts present in the ECG signal.
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Table 1
‘Weight update equations of various adaptive algorithms.

Adaptive algorithm ‘Weight update equation

LMS [39,40] WS W tpue

LMF [40,41] wi=w_ +uule

LMMN [42] W, =W, +pulels+(1-6)l]
SRLMS [43] w,=w,_ +u sgnfu e

SELMS [44] W, =W, +u ulsgnfe,]

SSLMS [45] w,=w,_, +u sgn[u;'sgnle;]

SRLMF [37] w,=w,_, +p sgnfu,]"e

SRLMMN [38] w,=w_, +u sgnfu]"e s+ (1 - 5)53]

d; = ECG + Artifact

ﬁL vi oo /%\ ¢, = ECG

\\J‘

|

u; = Artifact

-

Fig. 1. Adaptive noise canceller.

3. Proposed cascaded 4-stage adaptive noise canceller

A single-stage adaptive noise canceller for removing a single artifact
from the ECG signal is shown in Fig. 1. As can be seen from this figure d;
forms the primary input of the adaptive noise canceller, d; contains the
ECG signal with an additive artifact, u; forms the secondary or reference
input of the adaptive noise canceller, u; contains the reference artifact
that is correlated only with the artifact present in the corrupted ECG
signal d;, w; are the adaptive filter coefficients, y, is the adaptive filter
output, and e; is the filtered ECG signal free from the artifact.

A proposed cascaded 4-stage adaptive noise canceller for removing
the four artifacts from the ECG signal is shown in Fig. 2. As can be
seen from this figure d;; forms the primary input of the first adaptive
noise canceller, d;; contains the ECG signal with four additive artifacts,
viz. baseline wander, motion artifacts, muscle artifacts, and 60 Hz PLI,
u;; forms the secondary or reference input of the first adaptive noise
canceller, u;; contains the reference baseline wander that is correlated
only with the baseline wander present in the corrupted ECG signal d;;,
u;, forms the secondary or reference input of the second adaptive noise
canceller, u;, contains the reference motion artifacts that is correlated
only with the motion artifacts present in the corrupted ECG signal d;;,
u;; forms the secondary or reference input of the third adaptive noise
canceller, u;; contains the reference muscle artifacts that is correlated
only with the muscle artifacts present in the corrupted ECG signal d;,
u,y forms the secondary or reference input of the fourth adaptive noise
canceller, u;, contains the reference 60 Hz PLI that is correlated only
with the 60 Hz PLI present in the corrupted ECG signal d;;, w;; to
w;, are the respective adaptive filter coefficients, y,; to yy are the
respective adaptive filter outputs, ¢;; is the partially corrupted ECG
signal free from baseline wander, e¢; will act as the primary input dj,
to the second adaptive noise canceller, e, is the partially corrupted
ECG signal free from baseline wander and motion artifacts, e;, will act
as the primary input d;; to the third adaptive noise canceller, e is
the partially corrupted ECG signal free from baseline wander, motion
artifacts, and muscle artifacts, ¢;; will act as the primary input dy to
the fourth adaptive noise canceller and e is the filtered ECG signal
free from baseline wander, motion artifacts, muscle artifacts, and 60 Hz
PLL One unique and powerful feature of our proposed cascaded 4-
stage adaptive noise canceller is that it employs only those adaptive
algorithms in the four stages, which are shown to be effective in the
subsequent section in removing the aforementioned four artifacts from
the ECG signal.

w
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Fig. 2. Proposed cascaded 4-stage adaptive noise canceller.

4. Simulation results
4.1. Baseline wander removal

In this experiment, the step-size is fixed at u = 0.01, the adaptive
filter length is fixed at M = 5, the noise variance is fixed at ag =0.1,
and the number of iterations is fixed at L = 10 for all the eight
adaptive algorithms studied. In addition to the above settings, the
mixing parameter is fixed at § = 0.5 for the LMMN and SRLMMN
algorithms.

In this case, 3600 samples of the clean ECG signal are taken from
the MIT-BIH Arrhythmia Database (MITDB) Record: 105 [46], and they
are later added with the 3600 samples of baseline wander taken from
the MIT-BIH Noise Stress Test Database (NSTDB) Record: bw [46].

All eight adaptive algorithms studied in this paper, viz. LMS, LMF,
LMMN, SRLMS, SELMS, SSLMS, SRLMF, and SRLMMN are tested sep-
arately by plugging them in a single-stage adaptive noise canceller as
described in Fig. 1 for baseline wander removal. The SNR before and
after adaptive filtering is recorded in Table 2. The SNR is calculated
by using the built-in MATLAB function, viz. snr(x,y). The SNR before
and after adaptive filtering in Table 2 is calculated as described by the
MATLAB code fragment in Appendix A. Here, y is the adaptive filter
output. Note that the ECG signal and baseline wander have a gain of
200 each. Therefore, we divide these signals by 200 as shown in the
MATLAB code fragment in Appendix A.

As can be seen from Table 2 the LMMN algorithm outperforms the
other seven algorithms in terms of SNR improvement. The Mean Square
Error (MSE) plot after baseline wander removal using a single-stage
adaptive noise canceller employing the SSLMS adaptive algorithm,
which is the worst-case scenario among the eight algorithms studied
is shown in Fig. 3.

4.2. Motion artifacts removal

In this experiment, the step-size is fixed at x = 0.01, the adaptive
filter length is fixed at M = 5, the noise variance is fixed at ag =0.1,
and the number of iterations is fixed at L = 10 for all the eight
adaptive algorithms studied. In addition to the above settings, the
mixing parameter is fixed at § = 0.5 for the LMMN and SRLMMN
algorithms.

In this case, 3600 samples of the clean ECG signal are taken from
the MIT-BIH Arrhythmia Database (MITDB) Record: 105 [46], and they
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Table 2
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Baseline wander removal using a single-stage adaptive noise canceller.

Adaptive algorithm SNR before filtering (dB)

SNR after filtering (dB) SNR improvement (dB)

LMS 7.9251 7.9446 0.0195
LMF 7.9251 7.9513 0.0262
LMMN 7.9251 8.9812 1.0561
SRLMS 7.9251 3.3297 —4.5954
SELMS 7.9251 3.9091 —4.0160
SSLMS 7.9251 1.1036 —6.8215
SRLMF 7.9251 8.2505 0.3254
SRLMMN 7.9251 5.2039 —2.7212
Table 3

Motion artifacts removal using a single-stage adaptive noise canceller.

Adaptive algorithm SNR before filtering (dB)

SNR after filtering (dB) SNR improvement (dB)

IMS 5.7109 3.7061 -2.0048
LMF 5.7109 5.7874 0.0765
LMMN 5.7109 4.4862 -1.2247
SRLMS 5.7109 21133 -3.5976
SELMS 5.7109 1.4867 -4.2242
SSLMS 5.7109 0.6071 -5.1038
SRLMF 5.7109 4.0887 ~1.6222
SRLMMN 5.7109 27931 -2.9178
MSE after baseline wander removal using SSLMS MSE after motion artifacts removal using SSLMS
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Fig. 3. MSE after baseline wander removal using a single-stage adaptive noise canceller
employing the SSLMS adaptive algorithm (worst-case scenario)

are later added with the 3600 samples of motion artifacts taken from
the MIT-BIH Noise Stress Test Database (NSTDB) Record: em [46].

All eight adaptive algorithms studied in this paper, viz. LMS, LMF,
LMMN, SRLMS, SELMS, SSLMS, SRLMF, and SRLMMN are tested sep-
arately by plugging them in a single-stage adaptive noise canceller as
described in Fig. 1 for motion artifacts removal. The SNR before and
after adaptive filtering is recorded in Table 3. The SNR before and
after adaptive filtering in Table 3 is calculated by replacing line five
in Appendix A MATLAB code fragment with Joad('emm'); Note that the
motion artifacts have a gain of 200. Therefore, we divide this signal
by 200 as shown in the MATLAB code fragment in Appendix A. As
can be seen from Table 3 the LMF algorithm outperforms the other
seven algorithms in terms of SNR improvement. The MSE plot after
motion artifacts removal using a single-stage adaptive noise canceller
employing the SSLMS adaptive algorithm, which is the worst-case
scenario among the eight algorithms studied is shown in Fig. 4.

Fig. 4. MSE after motion artifacts removal using a single-stage adaptive noise canceller
employing the SSLMS adaptive algorithm (worst-case scenario).

4.3. Muscle artifacts removal

In this experiment, the step-size is fixed at u = 0.01, the adaptive
filter length is fixed at M = 3, the noise variance is fixed at 05 =0.1,
and the number of iterations is fixed at L = 100 for all the eight
adaptive algorithms studied. In addition to the above settings, the
mixing parameter is fixed at § = 0.5 for the LMMN and SRLMMN
algorithms.

In this case, 3600 samples of the clean ECG signal are taken from
the MIT-BIH Arrhythmia Database (MITDB) Record: 105 [46], and they
are later added with the 3600 samples of muscle artifacts taken from
the MIT-BIH Noise Stress Test Database (NSTDB) Record: ma [46].

All eight adaptive algorithms studied in this paper, viz. LMS, LMF,
LMMN, SRLMS, SELMS, SSLMS, SRLMF, and SRLMMN are tested sep-
arately by plugging them in a single-stage adaptive noise canceller as
described in Fig. 1 for muscle artifacts removal. The SNR before and
after adaptive filtering is recorded in Table 4. The SNR before and
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Table 4
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Muscle artifacts removal using a single-stage adaptive noise canceller.

Adaptive algorithm  SNR before filtering (dB)

SNR after filtering (dB) SNR improvement (dB)

MS 17.8230 23.8256 6.0026
IMF 17.8230 21.0251 3.2021
IMMN 17.8230 26.1239 8.3009
SRLMS 17.8230 10.0358 -7.7872
SELMS 17.8230 19.2611 1.4381
SSLMS 17.8230 5.4269 ~12.3961
SRLMF 17.8230 16.5538 -1.2692
SRLMMN 17.8230 12.3562 -5.4668
MSE after muscle artifacts removal using SSLMS MSE after 60 Hz PLI removal using SSLMS
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Fig. 5. MSE after muscle artifacts removal using a single-stage adaptive noise canceller
employing the SSLMS adaptive algorithm (worst-case scenario).

after adaptive filtering in Table 4 is calculated by replacing line five
in Appendix A MATLAB code fragment with /ead('mam); Note that the
muscle artifacts have a gain of 200. Therefore, we divide this signal
by 200 as shown in the MATLAB code fragment in Appendix A. As
can be seen from Table 4 the LMMN algorithm outperforms the other
seven algorithms in terms of SNR improvement. The MSE plot after
muscle artifacts removal using a single-stage adaptive noise canceller
employing the SSLMS adaptive algorithm, which is the worst-case
scenario among the eight algorithms studied is shown in Fig. 5.

4.4. 60 Hz PLI removal

In this experiment, the step-size is fixed at y = 0.01, the adaptive
filter length is fixed at M =5, and the number of iterations is fixed at
L = 10 for all the eight adaptive algorithms studied. In addition to the
above settings, the mixing parameter is fixed at § = 0.5 for the LMMN
and SRLMMN algorithms.

In this case, 3600 samples of the clean ECG signal are taken from
the MIT-BIH Arrhythmia Database (MITDB) Record: 105 [46], and they
are later added with the 3600 samples of synthetic PLI with amplitude
100 mV, frequency 60 Hz, and sampled at 360 Hz, which has been
chosen to be the same as the rest of the ECG signals used throughout
our experiments.

All eight adaptive algorithms studied in this paper, viz. LMS, LMF,
LMMN, SRLMS, SELMS, SSLMS, SRLMF, and SRLMMN are tested sep-
arately by plugging them in a single-stage adaptive noise canceller as
described in Fig. 1 for the 60 Hz PLI removal. The SNR before and
after adaptive filtering is recorded in Table 5. The SNR before and after
adaptive filtering in Table 5 is calculated as described by the MATLAB
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2500 3000 3500

Fig. 6. MSE after 60 Hz PLI removal using a single-stage adaptive noise canceller
employing the SSLMS adaptive algorithm (worst-case scenario).

code fragment in Appendix B. Here, y is the adaptive filter output. Note
that the ECG signal has a gain of 200. Therefore, we divide this signal
by 200 as shown in the MATLAB code fragment in Appendix B.

As can be seen from Table 5 the LMF algorithm outperforms the
other seven algorithms in terms of SNR improvement. The MSE plot
after 60 Hz PLI removal using a single-stage adaptive noise canceller
employing the SSLMS adaptive algorithm, which is the worst-case
scenario among the eight algorithms studied is shown in Fig. 6.

4.5. Multiple artifacts removal

In this experiment, the step-size is fixed at y = 0.01, the adaptive
filter length is fixed at M = 5, the noise variance is fixed at 0:7 =0.1,
and the number of iterations is fixed at L = 10 for all the algorithms
presented in Table 6. In addition to the above settings, the mixing
parameter is fixed at § = 0.5 for the LMMN and SRLMMN algorithms.

In this case, 3600 samples of the clean ECG signal are taken from
the MIT-BIH Arrhythmia Database (MITDB) Record: 105 [46], and they
are later added with the 3600 samples of baseline wander taken from
the MIT-BIH Noise Stress Test Database (NSTDB) Record: bw [46], the
3600 samples of motion artifacts taken from the MIT-BIH Noise Stress
Test Database (NSTDB) Record: em [46], the 3600 samples of muscle
artifacts taken from the MIT-BIH Noise Stress Test Database (NSTDB)
Record: ma [46], and the 3600 samples of synthetic PLI with amplitude
100 mV, frequency 60 Hz, and sampled at 360 Hz.

The four adaptive algorithms, viz. LMMN, LMF, LMMN, and LMF
shortlisted from the four experiments as discussed in Sections 4.1-
4.4 are tested by plugging them in the proposed cascaded 4-stage
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Table 5

60 Hz PLI removal using a single-stage adaptive noise canceller.
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Adaptive algorithm SNR before filtering (dB)

SNR after filtering (dB)

SNR improvement (dB)

LMS 14.6914
LMF 14.6914
LMMN 14.6914
SRLMS 14.6914
SELMS 14.6914
SSLMS 14.6914
SRLMF 14.6914
SRLMMN 14.6914

14.2872 —0.4042
16.4652 1.7738
15.3068 0.6154
14.1104 —-0.5810
16.029 1.3382
13.6714 -1.0200
15.2992 0.6078
14.2847 —0.4067

adaptive noise canceller as described in Fig. 2 for removing base-
line wander, motion artifacts, muscle artifacts, and 60 Hz PLI from
the ECG signal, respectively. We then compare the performance of
the proposed cascaded 4-stage adaptive noise canceller employing the
LMMN, LMF, LMMN, LMF algorithms with that employing the LMS,
LMS, LMS, LMS algorithms, the LMF, LMF, LMF, LMF algorithms, the
LMMN, LMMN, LMMN, LMMN algorithms, and the SRLMMN, SRLMF,
SRLMMN, SRLMF algorithms. The SNR before and after adaptive fil-
tering is recorded in Table 6. As can be seen from this table, we
have achieved a significant improvement in the SNR by employing the
LMMN, LMF, LMMN, LMF algorithms in the proposed cascaded 4-stage
adaptive noise canceller. The SNR before and after adaptive filtering
in Table 6 is calculated as described by the MATLAB code fragment in
Appendix C. Here, y is the adaptive filter output. Note that the ECG
signal, baseline wander, motion artifacts, and muscle artifacts have a
gain of 200 each. Therefore as before, we divide these signals by 200
as shown in the MATLAB code fragment in Appendix C.

As an example, in row 2 of Table 6, the LMMN algorithm is used
in adaptive noise cancellers 1 and 3 in Fig. 2 for removing baseline
wander and muscle artifacts, respectively. The LMF algorithm in row
2 of Table 6 is used in adaptive noise cancellers 2 and 4 in Fig. 2 for
removing motion artifacts and 60 Hz PLI, respectively. The MSE plot
after multiple artifacts removal using the proposed cascaded 4-stage
adaptive noise canceller employing the SRLMMN, SRLMF, SRLMMN,
SRLMF algorithms, which is the worst-case scenario among the al-
gorithms studied in Table 6 is shown in Fig. 7. The MSE plot after
multiple artifacts removal using the proposed cascaded 4-stage adaptive
noise canceller employing the LMMN, LMF, LMMN, LMF algorithms,
which is the best-case scenario among the algorithms studied in Ta-
ble 6 is shown in Fig. 8. Figs. 9(a) and 10(d) show the clean ECG
signal free from artifacts, Figs. 9(b) and 10(e) show the ECG signal
with additive baseline wander, motion artifacts, muscle artifacts, and
60 Hz PLI, Fig. 9(c) shows the filtered ECG signal from the proposed
cascaded 4-stage adaptive noise canceller employing the SRLMMN,
SRLMF, SRLMMN, SRLMF algorithms for multiple artifacts removal,
which is the worst-case scenario among the algorithms studied in
Table 6, and Fig. 10(f) shows the filtered ECG signal from the proposed
cascaded 4-stage adaptive noise canceller employing the LMMN, LMF,
LMMN, LMF algorithms for multiple artifacts removal, which is the
best-case scenario among the algorithms studied in Table 6. As can be
seen from Fig. 10(f) the LMMN, LMF, LMMN, LMF algorithms are found
to be effective in removing the respective multiple artifacts from the
ECG signal demonstrating our proposed scheme outperforms those in
the open literature, which primarily concentrate on LMS. It is worth
noting that the last three schemes in Table 6, viz. the LMF, LMF, LMF,
LMF algorithms, the LMMN, LMMN, LMMN, LMMN algorithms, and
the SRLMMN, SRLMF, SRLMMN, SRLMF algorithms have also not been
tested before in the literature.

5. Conclusions

From our experiments, we have found that the LMMN algorithm
is best suited for removing the baseline wander and muscle artifacts
and the LMF algorithm is best suited for removing the motion ar-
tifacts and 60 Hz PLL. We employed the LMMN, LMF, LMMN, LMF

MSE after multiple artifacts removal using SRLMMN,SRLMF,SRLMMN,SRLMF
or . . . T T T —
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Fig. 7. MSE after multiple artifacts removal using the proposed cascaded 4-stage
adaptive noise canceller employing the SRLMMN, SRLMF, SRLMMN, SRLMF adaptive
algorithms (worst-case scenario).
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Fig. 8. MSE after multiple artifacts removal using the proposed cascaded 4-stage
adaptive noise canceller employing the LMMN, LMF, LMMN, LMF adaptive algorithms
(best-case scenario).

algorithms in the proposed cascaded 4-stage adaptive noise canceller
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Table 6
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Multiple ECG artifacts (Baseline Wander, Motion, Muscle, 60 Hz PLI) removal using the proposed cascaded 4-stage adaptive

noise canceller.

Adaptive algorithm

SNR before filtering (dB)

SNR after filtering (dB) ~ SNR improvement (dB)

LMMN, LMF, LMMN, LMF 2.2116
LMS, LMS, LMS, LMS 2.2116
LMF, LMF, LMF, LMF 2.2116
LMMN, LMMN, LMMN, LMMN 2.2116
SRLMMN, SRIMF, SRLMMN, SRLMF 22116

14.9435 12.7319
14.0935 11.8819
14.8909 12.6793
14.2994 12.0878
13.6959 11.4843
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Fig. 9. (a) MIT-BIH Arrhythmia Database (MITDB) Record: 105, (b) MIT-BIH Arrhyth-
mia Database (MITDB) Record: 105 + MIT-BIH Noise Stress Test Database (NSTDB)
Record: bw + MIT-BIH Noise Stress Test Database (NSTDB) Record: em + MIT-BIH
Noise Stress Test Database (NSTDB) Record: ma + 60 Hz PLI, (c) Recovered MIT-
BIH Arrhythmia Database (MITDB) Record: 105 using the proposed cascaded 4-stage
adaptive noise canceller employing the SRLMMN, SRLMF, SRLMMN, SRLMF adaptive
algorithms for multiple artifacts removal (worst-case scenario).

Clean ECG signal
o 15F T : T T T )
3 [ ‘w f
19 ) INERNN
[, VL] ] il )
<05 : ‘ ‘ ‘ ‘ . ‘
500 1000 1500 2000 2500 3000 3500
Samples
i
ECG signal with multiple artifacts (Baseline Wander,Motion,Muscle,60 Hz PLI)
[} 1.57 T T \\ ‘ V ‘ T T ]
E Py I (I L R I B T [ | i
= 0481 | | | | ’
T A N B Y W-W-w, MNP |
RN A i VOO Y
500 1000 1500 2000 2500 3000 3500
Samples
(€)
ECG signal after multiple artifacts removal using LMMN,LMF,LMMN,LMF
o 150 T T : : T T ™
200 ) T T T T T B
2050 || (N T N A I O O
E: 702 Z-»-/u‘.j-’J'.;‘*’V“‘.J\-»“.,-‘“fv‘- L ot ol ] sl ol el ]
1 L L 1

L L L
500 1000 1500 2000 2500 3000 3500
Samples

{f)

Fig. 10. (d) MIT-BIH Arrhythmia Database (MITDB) Record: 105, (e) MIT-BIH Arrhyth-
mia Database (MITDB) Record: 105 + MIT-BIH Noise Stress Test Database (NSTDB)
Record: bw + MIT-BIH Noise Stress Test Database (NSTDB) Record: em + MIT-BIH
Noise Stress Test Database (NSTDB) Record: ma + 60 Hz PLI, (f) Recovered MIT-
BIH Arrhythmia Database (MITDB) Record: 105 using the proposed cascaded 4-stage
adaptive noise canceller employing the LMMN, LMF, LMMN, LMF adaptive algorithms
for multiple artifacts removal (best-case scenario).

to remove the respective ECG artifacts as mentioned above. We suc-
ceeded in achieving an SNR improvement of 12.7319 dBs, which is
better than the other compared methods. It is found that the pro-
posed cascaded 4-stage adaptive noise canceller employing the LMMN,
LMF, LMMN, LMF algorithms outperforms those that employ the LMS,
LMS, LMS, LMS algorithms, the LMF, LMF, LMF, LMF algorithms, the
LMMN, LMMN, LMMN, LMMN algorithms, and the SRLMMN, SRLMF,
SRLMMN, SRLMF algorithms in terms of SNR improvement. It is also
found that the performance of a single-stage adaptive noise canceller
employing the SSLMS algorithm is comparatively poor in terms of
SNR improvement as compared to the other seven algorithms studied
in this work, viz. LMS, LMF, LMMN, SRLMS, SELMS, SRLMF, and
SRLMMN. The different types of normalized adaptive algorithms and
their respective sign counterparts in identifying the best candidates for
the removal of multiple artifacts from the ECG signal using adaptive
filters in cascade as discussed in this work will be the subject of our
future studies.
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Appendix A

var_noise =0.1;

sqn = sqrt(var_noise),
load('105m');

input = val(l, :)/200;
load ("bwm");

v =sqn * val(l,:)/200;
snr_before = snr(input, v);

snr_after = snr(input,y);
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Appendix B

load('105m");

input = val(l, :)/200;

f=060;

[s=1360;

r=[1:Nl/fs:

v="0.13%sin(2 % pi % f « 1 +randn),

snr_be fore = snr(input, v);

snr_after = snr(input, y);

Appendix C

var_noise =0.1;

sqn = sqrt(var_noise);
load('105m");

input = val(l, :)/200;
load('bwm');

vl = sqn = val(l, :)/200;
load('emm');

v2 = sqn = val(l, :)/200;
load('mam');

v3 = sqn = val(l, :)/200;
f =060

fs=360;

t=1

1t NJ/fs:

vd = 0.1 sin(2 % pi % f %t +randn),

v=vl+0v2+ 03+ vd;

snr_be fore = snr(input, v);

snr_after = snr(input, y),
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4 The NSRLMF Algorithm
4.1 Introduction

The Normalized Sign Regressor Least Mean Fourth (NSRLMF) algorithm is based on the
clipping of the input data. The NSRLMF algorithm belongs to the family of the Normalized
Least Mean Fourth (NLMF) algorithm [60]. The difference in the filter weights update
equations of these two algorithms is the application of the signum function on the input data
of the NSRLMF algorithm and the manner in which normalization has been applied.

The filter weights update equation of the NSRLMF algorithm for real-valued data is given by
(4.1) [35], [361]:

Wi =W+ sign[u;]Te?, (4.1)

2
w1

where w; is the updated filter weight vector at iteration i > 0, u is the step-size, € is a small
positive constant to avoid division by zero when the regressor is zero, u; is the regressor
vector, e¢; = d; — y; is the estimation error signal, d; is the desired signal, y; is the adaptive
filter output, sign(.) denotes the sign of its argument, the definitions of the signum function
for real-valued data is given by (1.1), ||u;||4 = u;H[u;]u], and H[u;] is some positive-definite
Hermitian matrix-valued function of u; defined by:

H[u;] = diag {L = ;}, (4.2)

, )y
[uig]” Jugz| [uiml

where M is the filter length and sign[u;]T = H[u;Ju’

i
4.2 Background

The Normalized Sign Regressor Least Mean Square (NSRLMS) algorithm, which is the
counterpart of the NSRLMF algorithm has been studied extensively in the open literature.
However, there were no efforts made to study the performance evaluation of the NSRLMF
algorithm until it was proposed, analyzed, and evaluated in [35], [36].

The normalization term present in the NSRLMF algorithm has been introduced in order to
enhance its convergence performance compared to the Sign Regressor Least Mean Fourth
(SRLMF) algorithm. The motivation to introduce the sign regressor term in the NSRLMF
algorithm is to achieve reduced computational complexity compared to the NLMF algorithm.
However, the convergence performance of the NSRLMF algorithm is slower than the NLMF
algorithm but better than the NSRLMS algorithm.

In [56], [57], the NSRLMF algorithm is successfully employed by other researchers for power
quality improvement in wind-solar based distributed generation system under harmonically
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distorted grid. The NSRLMF algorithm is shown to outperform the Least Mean Fourth (LMF)
algorithm by providing enhanced dynamic response amidst sudden system variations [56],
[57]. It should be noted that the authors in [56] published their expanded work in [57] at the
time of making minor amendments to my thesis.

4.3 Contributions/Published Manuscripts

The two published papers on the performance evaluation of the NSRLMF [35], [36] algorithm
for real-valued data are as follows:

[P6] M. M. U. Faiz and A. Zerguine, “The e-Normalized Sign Regressor Least Mean Fourth
(NSRLMF) adaptive algorithm,” in Proc. of the 11 IEEE Int. Conf. on Information
Sciences, Signal Processing and their Applications (ISSPA 2012), Montreal, QC, Canada,
pp. 339-342, July 2012, DOI: https://doi.org/10.1109/1SSPA.2012.6310571

A novel adaptive algorithm called the NSRLMF algorithm was proposed, analyzed, and
evaluated for the case of real-valued data in [35]. The expression for the steady-state Mean
Square Error (MSE) ¢ = E[e;?] of the NSRLMF algorithm was derived and is given by (4.3) [35]:

_ pp1&S 2
¢ = 605 p2—15ud1 & + oo, (4.3)
where ¢, = E [Lﬁz : (4.4)
(e+1lul1%)
Y (4.5)
b2 = T '

wherein o2 = E[v;?] is the noise variance, and &} = E[v;*] and é§ = E[v;°] are the fourth
and sixth-order moments of the noise sequence v;, respectively. Moreover, it is shown that
the simulation results are in a good match with the analytical results for both white Gaussian
and correlated Gaussian regressors.

Finally, a comparison between the convergence performance of the NSRLMF and NLMF
algorithms indicates a slight performance degradation of the NSRLMF algorithm for white
Gaussian regressors in a uniform noise environment with an SNR of 10 dB.

[P7] M. M. U. Faiz and A. Zerguine, “Convergence and tracking analysis of the e-NSRLMF
algorithm,” in Proc. of the 38 IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP 2013), Vancouver, BC, Canada, pp. 5657-5660, May 2013, DOI:
https://doi.org/10.1109/ICASSP.2013.6638747
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The convergence and tracking behaviors of the NSRLMF algorithm were analyzed and
evaluated for the case of real-valued data in [36]. The expression for the tracking MSE ¢’ of
the NSRLMF algorithm was derived and is given by (4.6) [36]:

r_ H$1&5+uTITr(Q) 2
¢ = 605 P2 —150p1 &y + o, (4.6)

where Tr(Q) is the trace of the covariance matrix Q = E[q;q] of the noise sequence q;. In
addition, the expression for the optimum step-size uy,. of the NSRLMF algorithm was also
derived and is given by (4.7) [36]:

Tr(Q [ 25(¢)°Tr(@ +i]_5€1‘;‘Tr(Q) (4.7)

Hort = 1758 La(od) @r2gs ~ 1] 2oFdast

Furthermore, the stability bound on the step-size of the NSRLMF algorithm to ensure
convergence in the mean was also derived and is given by (4.8) [36]:

2

O<u< 14302’

(4.8)

It is clear from (4.8) that the upper bound on the step-size of the NSRLMF algorithm no longer
depends on the maximum eigenvalue A,,,x of the regressor covariance matrix R = E[ul-Tui]
as was in the case of the SRLMF algorithm [32]. Moreover, it is shown that the simulation
results are in a good match with the analytical results for both white Gaussian and correlated
Gaussian regressors.

Finally, a comparison between the convergence performance of the NSRLMF and NLMF
algorithms indicates that the effect of clipping on the performance of the NSRLMF algorithm
is more evident for correlated Gaussian data than white Gaussian data in both Additive White
Gaussian Noise (AWGN) and uniform noise environments with an SNR of 10 dB. This results in
slower convergence of the NSRLMF algorithm for correlated Gaussian data than white
Gaussian data compared to the NLMF algorithm.
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ABSTRACT

In this paper, a new algorithm, the e—normalized sign re-
gressor least mean fourth (NSRLMF) algorithm is pre-
sented as a substitute for the e—normalized least mean
fourth (NLMF) algorithm. This new algorithm reduces
significantly the computational load. Moreover, the pro-
posed algorithm has similar convergence properties as those
of the e ~NLMF algorithm. Finally, simulations corrobo-
rate very well the theoretical findings.

1. INTRODUCTION

The sign based variants of the least mean square (LMS)
algorithm [1] were introduced in order to reduce its com-
putational and implementation costs [2]—[3]. The sign re-
gressor algorithm (SRA) is one such variant of the LMS
algorithm, which is based on clipping of the input data
[4]. However, these sign based algorithms result in slower
convergence speeds when compared with the LMS algo-
rithm [5]-[6].

In [7], itis shown that the normalized least mean fourth
(NLMF) algorithm exhibits faster convergence than the
least mean fourth (LMF) algorithm [8]. Convergence and
steady-state analysis of the NLMF algorithm are found in
[9].

The above mentioned advantages motivates us to an-
alyze and design the proposed e—normalized sign regres-
sor least mean fourth (NSRLMF) algorithm, which is the
normalized version of the sign regressor least mean fourth
(SRLMF) algorithm [10]. In this paper, the mean-square
analysis of the e=NSRLMEF algorithm is developed. The
framework used in our analysis relies on energy conser-
vation arguments [11]. From the simulation results it is
shown that the theoretical and simulated results are in good
agreement. Moreover, the results show that the e =NSRLMF
algorithm exhibits faster convergence than the LMF and
SRLMEF algorithms and slightly slower convergence than
the e—NLMF algorithm for the same steady-state mean-
square error (MSE).

The rest of the paper is organized as follows. Section
2 deals with a more explicit development of the proposed
algorithm, and Section 3 treats its mean-square analysis.
The computational load of the proposed algorithm is de-
tailed in Section 4, while the performance evaluation of

978-1-4673-0382-8/12/$31.00 ©2012 |IEEE
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the resulting algorithm is carried out in Section 5. Finally,
the conclusion section summarizes this work.

2. ALGORITHM DEVELOPMENT

Consider a zero-mean random variable d with realizations
{d(0),d(1),...}, and a zero-mean random row vector u

(regressor) with realizations {ug, uy, . ..}. the optimal weight

vector w? that solves:
min E|d — uw|?, D
w

can be approximated iteratively via the update equation
(the e ~NSRLMF algorithm)

L

/ .
S e — i>0, (2)
e+ |l

w; = w;_1+ signfu;]Ted,
where w; (column vector) is the updated weight vector
at time 7, g is the step-size, € is a small positive con-
stant to avoid division by zero when the regressor is zero,
[lus| |3 = w;H[u;]ul, H[u,] is some positive-definite Her-
mitian matrix-valued function of u; defined by

1 1 1
= . (3)
|ui1| ‘uif\rI|

where M is the filter length, sign[u;]T = H[u;]ul, and
¢; denotes the estimation error given by

H[u;] = diag {

e; =d; —u;w;_q. 4

3. MEAN-SQUARE ANALYSIS OF THE
e—NSRLMF ALGORITHM

We shall assume that the data {d;, u;} satisfy the follow-
ing conditions of the stationary data model [11]:

A.1 There exists an optimal weight vector w° such that

di = w;w? 4+ v;.

A.2 The noise sequence v; is independent and identically
distributed (i.i.d.) with variance 02 = E[v?] and is
independent of u; for all ¢, j.

A.3 The initial condition w_ is independent of the zero
mean random variables {d;, u;, 1,',-},
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A.4 The regressor covariance matrix is R = E[ufu;] >
0.

For the adaptive filter of the form in (2), and for any
data {d;, u;}. assuming filter operation in steady-state, the
following variance relation holds [11]:

E [||uil[fg[e:]] = 2E [ea,g[ei]] . asi— o0, (5)
where

Elllwl[f] = BEluHwuf], (6)

e = eq, + g, (7)

with g[e;] denoting some function of e;, and ¢,, = u;(W°—

w;_1) is the a priori estimation error. Then g[e;] for the
e—NSRLMF algorithm becomes

3

7

e+ [lwllf’

e

gleq]

——  {e? e, 02 +2€ LU+ vge
E+Hu;||2{al ‘ai 1

+vf + 24,07} (8)

By using the fact that e,, and v; are independent, we reach
at the following expression for the term E [e,, g[e;]]:

el o2
kB [7 ) ] + 302K [7 ) ] .
€+ [Jual [y €+ il
)

Ignoring third and higher-order terms of ¢,,, we obtain

Efleq,glei]

2

a:
S (10
€+|IUi\\%J )

To evaluate the term E [||u;||F8?[es]]. we start by noting
that

Eleq,glei]] = 30’3]’3 [

.2[ — 1

6 5 .. ~ 5
?les] W [eai + 6eg vy + Geg, v

+ 15ep v + 152 v} + 20e3 v} + v } (11)

If we multiply g2[e,] by ||u;||% from the left, use the fact
that v; is independent of both u; and ¢, . and again ignor-
ing third and higher-order terms of ¢,,, we obtain

[lws | [Frea,

g2led)] = 6 [ (lite | Bpo)

i g [l
}51) +B [

E [[|u][f

15K luillfel, ] €. (12)
(et [[7)2 v
where ¢! = E[v}] and £ = E[vf] denote the fourth and
sixth-order moments of v;, respectively.

Substituting (10) and (12) into (5) we get

[lusllfres, 4

CERIIFAL ] S

6 2 €a,

[luilFreq,

Gk [(gﬂlml\%)?

} E[v?] +

[luill
(e+[TuslF)2

15pE [

+pE [
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In order to simplity (13), we use the separation principle,
namely, that at steady-state, ||u;||3 is independent of e,,
and 631 Also, the first term in (13) will be zero since e,
is zero mean. Therefore. we obtain

o T ] 2 1¢c4 [ [Juil I J 6
158 [l | BledJed + e [l ]
. 2 1 2
= 6o, E [m] E[c,ai]. (14)
Now, let us define the following quantities:
|| |7y
Z £ E [7 , (15)
(€ + [Jul[f)?
1
Zy 2 B [7} , (16)
e+ [Jugllf
then we can write (14) more compactly as
1502 Elel 165 + 2185 = 6022,E[el ],
1216y = (60722 — 15p21£))E[e? ]. a7

Therefore, the expression for the steady-state excess-mean-
square error (EMSE) ¢ = E[e2 ] of the e~NSRLMF al-
gorithm is given by

125
(60223 —15pZ162)

(= (18)

When € is sufficiently small, which is usually the case,
then its effect can be ignored. Therefore,

1
ZIZZQZE[ig}, (19)
[ [
In this case, expression (18) becomes
6
(= gt 20)

(607 — 15058)”

which is independent of the regressor.

An alternative expression for the steady-state EMSE
of the e=NSRLMF algorithm can be obtained by using
the assumption € ~ 0 in order to simplify (13) into

G#E[“u Tt }E[ }+1J#E[|uu ]gv
+1E ety ] €8 = 60 E[W} @

Now, let us use the following steady-state approximations:

Ca, Elea,]

B N P R (22)
{HUiH?J Efusl[3]
E[ efh ] _ E[e?zl] (23)
willf ] Eflfwll7] :
From [10]. we have

B[] = /5 Tr(R). 24

’ mo
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Substituting (22), (23) and (24) into (21) we get

. wol E[eﬁl}
15/ =" mwmy

— Go2
= 607

&+ 1 [t ] <

Tal E[egi]

7 TrR)"

(25)

Therefore, the steady-state EMSE of the e-~NSRLMF al-
gorithm can also be approximated by

pTr(R) 2 ngE{ 1 }
(602 — 15ugd) \| 702 | TwillZ )

4. COMPUTATIONAL LOAD

¢ (26)

In this section, the computational load of the proposed
algorithm is compared with other algorithms in the fam-
ily. Tables 1 and 2 report this comparison for real- and
complex-valued data, respectively, in terms of the num-
ber of real additions (+), real multiplications (x), real
divisions (/). and sign evaluations per iteration. As can
be seen from Table 1, the real-valued data case, both the
e—NLMF and e-NSRLMF algorithms have equal com-
putational complexity, while there are 2M extra additions

and multiplications for the e ~NLMF algorithm when com-

pared to the e=NSRLMF algorithm in the complex-valued
data case as reported in Table 2.

Table 1. Computational load for real-valued data.

Algorithm + x / | sign
LMF 2M | 2M + 3

SRLMF 2M | 2M + 2 |
e—NLMF AM | SM+3 |1
¢e—NSRLMF | 3M | 3M +2 | 1 |

Table 2. Computational load for complex-valued data.

Algorithm + X /| sign
LMF SM +1 8M +5

SRLMF 6M +1 6M +3 2
e—NLMF 10M +1 | 10M +5 | 1
e—NSRLMF | 8M +1 SM+3 | 2 2

5. SIMULATION RESULTS

To assess the performance of our proposed algorithm, ex-
tensive simulations are carried out for this purpose. First,
the theoretical findings are tested. Figures 1-2 illustrate
the steady-state MSE of a 10-tap filter using white and cor-

related Gaussian regressors, respectively, for the e—NSRLMF

algorithm. Here, the MSE is plotted versus the step-size
¢ for a signal to noise ratio (SNR) of 30 dB and the value
of € is set to 1075, As can be seen from these figures,
the simulation results match very well the theoretical ones
((20) and (26)), which are the first and second approxima-
tions of the steady-state EMSE of the proposed algorithm,
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respectively. Similarly, Figure 3 shows the MSE behavior
of the e=NSRLMF algorithm when tested using Gaussian
regressors with an eigenvalue spread of five. As can be
seen from this figure, the simulation results are found to
reasonably corroborate with the second approximation of
the steady-state EMSE of the proposed algorithm in par-
ticular.

Second, the performance of our proposed e —~NSRLMF
algorithm is compared with those of the LMF, SRLME,
and e—NLMF algorithms in an unknown system identifi-
cation scenario with

w? = [0.227 0.460 0.688 0.460 O.QQT]T. (27)

Figure 4 depicts the convergence behavior of all four al-
gorithms using white Gaussian regressors in a uniform
noise environment for an SNR of 10 dB. One can no-
tice from this figure that the e —NSRLMF algorithm con-
verges faster than the LMF and SRLMF algorithms, while
slightly slower than the e=NLMF algorithm. Similar be-
havior, as depicted in Figure 5, can be observed for the
third-tap weight of all the algorithms.

-29.96

@ Simulation

=@ Theory (1st approximation)
=2p—= Theory (2nd approximation)

-29.98F ik

MSE (dB)

~ao§

Step-size (1)

Fig. 1. Steady-state MSE of the e~NSRLMF algorithm
using white Gaussian regressors.

-29.96

=—8— Simulation
=== Theory (1st approximation)
== Theory (2nd approximation)

MSE (dB)

Step-size (n)

Fig. 2. Steady-state MSE of the e~NSRLMF algorithm
using correlated Gaussian regressors.
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Stepsize (1)

Fig. 3. Steady-state MSE of the e=NSRLMF algorithm
using Gaussian regressors with an eigenvalue spread=>5.
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e-NSRLMF

LMF

L Y 1
3,000 4,000 5,000

Iterations
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Fig. 4. Learning curves for LMF, SRLMF, e—NLMF, and
e—NSRLMF algorithms in a uniform noise environment.

6. CONCLUSIONS

Closed-form analytical expressions are derived for the steady-

state EMSE behavior of the e=NSRLMF algorithm. In
addition, the computational complexity of the proposed
algorithm is compared with those of LMF, SRLMF, and
e—NLMF algorithms. Simulations performed are found
to corroborate with the analytical results. Finally, it was
shown that the e ~NSRLMF algorithm has a slight perfor-
mance loss when compared with the e=NLMF algorithm.
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ABSTRACT

In this work, the convergence and tracking behavior of the
e—normalized sign regressor least mean fourth (NSRLMF)
algorithm are analyzed in the presence of white and corre-
lated Gaussian data. Furthermore, the stability bound on the
step-size of the e~NSRLMF algorithm to ensure convergence
in the mean, which also leads us to the mean convergence
of the e—normalized sign regressor least mean mixed-norm
(NSRLMMN) algorithm is derived. Finally, simulation re-
sults are conducted to confirm the validity and performance
of the proposed adaptive algorithm for both white and corre-
lated Gaussian regressors.

Index Terms— LMF, NLMF, SRLMF, NSRLMF, Con-
vergence, Tracking.

1. INTRODUCTION

The normalized least mean fourth (NLMF) algorithm was in-
troduced for two reasons [1]-[2]. First, to get better conver-
gence rate as compared to the traditional least mean fourth
(LMF) algorithm [3]. Second, to overcome the convergence
dependency of the LMF algorithm on the input data correla-
tion statistics.

On the other hand. the sign regressor least mean fourth
(SRLMEF) algorithm, which is based on clipping of the input
data, was introduced in order to reduce the complexity of the
LMF algorithm [4]. Then, it was also observed that the LMF
and SRLMF algorithms converge at an almost identical rate
for the case of real-valued data. However, the convergence
behavior of both of these algorithms depends on the input data
correlation statistics [3]-[4].

Motivated by the advantages of sign adaptive filters and
NLMF algorithm as mentioned above we introduced the nor-
malized version of the SRLMF algorithm and performed its
steady-state analysis in [5]. In the present paper, the conver-
gence and tracking behavior of the e—=NSRLMF algorithm is
analyzed and very well supported by simulations.

The remainder of the paper is organized as follows. In
Section 2, a brief description of the e~NSRLMF algorithm
is provided, while in Section 3, the tracking analysis of the
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¢—NSRLMF algorithm is derived. Section 4 deals with the
convergence analysis of the proposed algorithm. Simulation
results are reported in Section 5 to validate the theoretical
findings. Finally, Section 6 concludes the paper.

2. THE e~ NSRLMF ALGORITHM

The weight update recursion of the e~ NSRLMF algorithm is
given by the following expression:
10, (1)

W = W;_1 + sig‘n[ui}Te?‘

I
e+l
where w; is the updated weight vector, ¢ is the step-size, u; is
the regressor vector, ¢ is a small positive constant to avoid di-
vision by zero when the regressor is zero, ¢; is the estimation
error, ||u||% = w;H[u;Jul, Hu,] is some positive-definite
Hermitian matrix-valued function of u; defined by

Hlu;] = diag { ! L} ;
‘uiM‘

M is the filter length and sign[u;]T = H[u;Ju}.

2)

|u11" |ui2‘

3. TRACKING ANALYSIS

Tracking analysis of the e~NSRLMF algorithm can be ex-
tended in a straightforward way using its mean-square anal-
ysis presented in [5] as there are only slight differences. We
will therefore be brief in this section.

Here, let us assume that the data {d;, u, } satisfy the fol-
lowing conditions of the nonstationary data model [6]:

A.1 There exists an optimal weight vector w¢ such that d; =
u;w? + v;, where d; is the desired sequence and v; is
the noise sequence with variance o2

v*

A.2 The weight vector varies according to the random-walk
model w¢ = w?_; + q;, and the sequence q; is in-
dependent and identically distributed (i.i.d.) with co-
variance matrix Q. Moreover, ¢, is independent of
{v;.u;} foralld, j.

A.3 The initial conditions {w_q,w?”} are independent of
the zero mean random variables {d;, u;, v;, q; }.
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For the adaptive filter of the form in (1), and for any data
{d;,u;}, assuming filter operation in steady-state, the follow-
ing variance relation holds [6]:

pE (|| [fe’le]] + 07 TrH(Q) = 2E[eq,gle]],
as i — 0o,

(3)

where g[e;] denotes some function of e; and for the e~ NSRLMF
algorithm g[e;] is readily given by

3
€
oles = -
sl = = 2k
= +v +3€ i + 3e 4)
6+Hqu2{ ﬂz 2}
€a; = W;(W? — w;_y) is the a priori estimation error, the

estimation error is

e = eq i (5)

and finally
E[uH[u;|uf].

Bl = (6)

In [5]. the following expressions for the terms I [e,, g[e;]] and

E [||u;|fg%[es]] were derived:
E [ea, gle]] E[ “u, ]+3 E[ . %
ea,glei]] =E | —"— | +300E | ——|.
N e+ [l e+ [l
lllEen ]
B [l e?led]] ~ O [iiiites | Blof]
[luillres, | a i 6
+158 { (e )2] G4 ] € ®

where ¢} = E[v}] and ¢% = E[vf] denote the fourth- and
sixth-order moments of v;, respectively. Finally, substituting
expressions (7) and (8) into (3) we get

HZ1E +p M IH(Q) = (6325 — 15uZiE)Ee; ), (9)
where Z| and Z, are defined, respectively, as

2

2z, & E [7”‘““11 ] (10)
' (c+ wil )2
1

2, £ E [7} . (11)

e+ [luilff

Therefore,
square error (EMSE) ¢ = E[e2
gorithm is given by

the expression for the tracking excess-mean-
] for the e~NSRLMF al-

12188 + ' Tr(Q)

. (12)
(60’322 — 15#2153)

¢ =

Consequently, the optimum step-size of the e—~NSRLMF al-
gorithm can be obtained by minimizing (12) with respect to ¢
and can be shown to be

TQ) [BEPTQ) | 1] 5THQ)
%WZJ E[uﬂ&ﬁﬁ+_'_f4;‘“”

Z 202 Z5£8
Finally, the corresponding minimum value of the tracking
mean-square error (MSE) of the e—~NSRLMF algorithm is
derived derived straight forward from (12) and is given by

#optzl ‘S? + }u'oplt Tr (Q) 2

. 14
(60225 — 15p10pe Z162) M (1

B [62} =

1

4. CONVERGENCE ANALYSIS

To carry out the convergence analysis of the e—NSRLMF al-
gorithm we rely on the following assumptions [2]:

A.4 The noise sequence v; is independent of u; for all 4, j
and both sequences have zero mean.

A.5 The weight error vector w; (defined below) is indepen-
dent of the input u; for all i, j.

Subtracting both sides of (1) from w we get

Wi =Wi_1 — _# sign[ui}Te?, (15)
e+ Il
where the weight error vector w; is given by
w; = W — w,. (16)
We know that, the desired sequence d; is given by
d; = w,w + v, (17)
and the estimation error e; is given by
e =d; —u;wi_q. (18)

Then substituting (16) and (17) into (18) and expanding the
3

term €, we get
13 = (uivmvi_l)3 + t'? + 3(u,ﬁ,-_1) v; -+ Bulwi_lv (19)
At convergence [2], the following holds:
(0 Wi 1) < Wy (20)

Since (u;w;_1)? is a convex function for u;w;_; > 0, the
above inequality is always true as long as w;w;_1 < 1.
Therefore, (19) can be approximated by

3

€~ WWi_q + L‘? + 3(]_]1"’;\}2'_1)21'1' + 3uiﬁfi_1rf. 210
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Substituting (21) into (15) we get

W, = Wi sign[uy] [uz-wi_lJrui

€ + [l

-I-S(Uiﬁ}i,l)z'l'q‘ + 3112"“"}1'711'@'2} s

It . ~
= |I- m ui&;lgn[ui}T(l + '3z12)} Wi_1
wiomlyy 1T
_%[l? + 3(111“7{’1;1)21!@‘}. (22)
€ u; H

Taking the expectation of both sides of (22) under the above-
mentioned assumptions and by ignoring e as it is very small,
we obtain

u;sign [ui]T

E[w;] = [I —uE { ] (1+ 303)} E[W;_1]. (23)

wilh

Now, let us use the following approximation:

E [uisign[lzli]TJ N E [uisigu[l;i}lﬂ} 24
Huz‘-HH E[ ‘U%HH]
From [4], we have
Efljuil3] = E [usign[u]™] = [ Tr(®).  (25)
To2
Upon substituting (24) and (25) into (23), we have
E[w;] = [1 - u(1 +302)] E[W;_1]. (26)

From (26), it is easy to show that the mean behavior of the
weight error vector, that is E[W,], converges to the zero vector
if the step-size  is bounded by:

9

0<p< ——= (27)

1+ 302

Note that the step-size bound of the e—=NSRLMF algorithm
in (27) is the same as that obtained for the NLMF algorithm
in [2]. Tt is clear from (27) that the upper bound on the step-
size of the e—~NSRLMF algorithm no longer depends on the
maximum eigenvalue. Ay, of the input data autocorrelation
matrix as was in the case for the SRLMF algorithm [4].

In [7]. it was mentioned that the step-size bound of the
€—NSRLMMN algorithm can be obtained by combining the
step-size bounds of the e~NSRLMS and e—~NSRLMF algo-
rithms. This is very clear from the fact that the e—-NSRLMMN
algorithm reduces to e—~NSRLMF and e—NSRLMS algo-
rithms when the mixing parameter. 0, takes the value O and 1.
respectively. Therefore, by utilizing equation (27), the mean
convergence of the e—NSRLMMN algorithm can now be
approximated by:

2(1 — )
1+302°

0 < pre—NsrLMMN < 20 + (28)

5. SIMULATION RESULTS

Several simulation results are conducted to corroborate the
theoretical findings in an unknown system identification sce-
nario. For this purpose, ¢ = 107% and M = 5 have fixed
throughout this study. In Figures 1-2, the variance of the
Gaussian noise sequence ¢; in the random-walk model is
fixed at 07 = 107" Moreover, the correlated data can be
obtained in the same way as was done in [7].

Figures 1-2 depict the tracking MSE of the e~ NSRLMF
algorithm using correlated and white Gaussian regressors, re-
spectively. In these figures, the MSE is depicted as a func-
tion of the step-size for a signal-to-noise ratio (SNR) of 20
dB under an additive white Gaussian noise (AWGN) environ-
ment. It is seen in Figure | that the simulation results are in
a close match with the analytical results for values of 1 up
to 0.5. A zoom into the region around yz = 0.1 in Figure 1
shows that the tracking MSE possesses a minimum value of
0.01006151 at ;¢ = 0.114, which are in excellent agreement
with the corresponding theoretical values of 0.01005815 and
Hops = 0.1143 obtained from expressions (14) and (13), re-
spectively. However, the simulation and analytical results are
found to be in reasonable agreement for white Gaussian data
as depicted in Figure 2.

=8== Simulation
0.0107 = Theoy |}
P

0.0106

0.0105

ootoostst| e
0.0104 0.01005815 ———0—-—""'__—

0.0103

MSE

0.0102

0.0101

0.01 I I I I I I
0.001 0.1 02 03 04 05 06 07 08 09 1
Step-size (u)

Fig. 1. Theoretical and simulated tracking MSE of the
e—NSRLMF algorithm using correlated Gaussian regressors.

Finally, the results in Figures 3-4 compare the conver-
gence behavior of the e—NSRLMF and e—NLMF algorithms
in AWGN and uniform noise environments, respectively. In
these figures, the convergence curves are plotted for both cor-
related and white Gaussian data at an SNR of 10 dB. As can
be seen from these figures, the e—NLMF algorithm outper-
forms the ¢—~NSRLMF algorithm with correlated Gaussian
input. However, the performance of both algorithms is found
to be similar in white Gaussian data.

6. CONCLUSIONS

In this work, expressions are derived for the tracking MSE
and optimum step-size of the e—~NSRLMF algorithm. A
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Fig. 2. Theoretical and simulated tracking MSE of the
¢é—NSRLMF algorithm using white Gaussian regressors.
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Fig. 3. Comparison of the MSE learning curves of e—NLMF
and e—NSRLMF algorithms in AWGN environment.

sufficient condition for the convergence in the mean of the
¢—NSRLMF algorithm is also derived and is found to be the
same as that of the NLMF algorithm. It is also shown that the
upper bound on the step-size of the e~NSRLMF algorithm
depends on the noise variance only and is independent of
the input data correlation statistics. As a by-product of this
work, the mean convergence of the e~ NSRLMMN algorithm
is also obtained. Finally, a close match between analytical
and simulation results for correlated Gaussian data than white
Gaussian data is obtained. Moreover, the effect of clipping
on the performance of the e~=NSRLMF algorithm is found
to be more evident for correlated Gaussian data than white
Gaussian data.

Current work is devised for the recently newly version of
the NLMF algorithm [8]. Similarly, as was done in this work,
future work is extending the presented idea to that in [8] and
eventually compare their results. Due to the nature of the nor-
malization in [8], it is expected that the analytical approach
will be very involved.
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Fig. 4. Comparison of the MSE learning curves of e—~NLMF
and e—NSRLMEF algorithms in a uniform noise environment.
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5 The NSRLMMN Algorithm
5.1 Introduction

The Normalized Sign Regressor Least Mean Mixed-Norm (NSRLMMN) algorithm is based on
the clipping of the input data. The NSRLMMN algorithm belongs to the family of the
Normalized Least Mean Mixed-Norm (NLMMN) algorithm. The difference in the filter weights
update equations of these two algorithms is the application of the signum function on the
input data of the NSRLMMN algorithm and the manner in which normalization has been
applied. The NSRLMMN algorithm is a hybrid version of the Normalized Sign Regressor Least
Mean Square (NSRLMS) and Normalized Sign Regressor Least Mean Fourth (NSRLMF)
algorithms. The NSRLMMN algorithm combines the benefits of both the NSRLMS and NSRLMF
algorithms such as improved stability and convergence performance, respectively.

The filter weights update equation of the NSRLMMN algorithm for real-valued data is given by
(5.1) [37], [38]:

w; =w;_; + sign[u;]Te;[§ + (1 — 8)e?], (5.1)

2
e+||ugllf

where w; is the updated filter weight vector at iteration i = 0, u is the step-size, € is a small
positive constant to avoid division by zero when the regressor is zero, u; is the regressor
vector, e; = d; — y; is the estimation error signal, d; is the desired signal, y; is the adaptive
filter output, § is the mixing parameter ranging between 0 < § < 1, sign(.) denotes the sign
of its argument, the definitions of the signum function for real-valued data is given by (1.1),
[|u;]|4 = u;H[u;]u}, and H[u;] is some positive-definite Hermitian matrix-valued function of
u; defined by:
1 1 1

Hu,] = diag {——,—, .., —1, 5.2

L] & Vuaal Tzl ™ Tagw (5.2)
where M is the filter length and sign[u;]T = H[u;]u;. The filter weights update equation of

the NSRLMMN algorithm reduces to the filter weights update equations of the NSRLMF and
NSRLMS algorithms when the mixing parameter 6 becomes 0 and 1, respectively.

5.2 Background

The NLMMN algorithm, which is the counterpart of the NSRLMMN algorithm has hardly
received any attention in the open literature. Also, there were no efforts made to study the
performance evaluation of the NSRLMMN algorithm until it was proposed, analyzed, and
evaluated in [37], [38].

The normalization term present in the NSRLMMN algorithm has been introduced in order to
enhance its convergence performance as compared to the Sign Regressor Least Mean Mixed-
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Norm (SRLMMN) algorithm. The motivation to introduce the sign regressor term in the
NSRLMMN algorithm is to achieve reduced computational complexity compared to the
NLMMN algorithm. However, the convergence performance of the NSRLMMN algorithm is
slower than the NSRLMF algorithm but better than the NSRLMS algorithm as expected.

5.3 Contributions/Published Manuscripts

The two published papers on the performance evaluation of the NSRLMMN [37], [38]
algorithm for real-valued data are as follows:

[P8] M. M. U. Faiz and A. Zerguine, “Convergence analysis of the e NSRLMMN algorithm,”
in Proc. of the 20" European Signal Processing Conf. (EUSIPCO 2012), Bucharest,
Romania, pp. 235-239, Aug. 2012, ISBN: 978-1-4673-1068-0

A novel adaptive algorithm called the NSRLMMN algorithm was proposed, analyzed, and
evaluated for the case of real-valued data in [37]. The expression for the steady-state Mean
Square Error (MSE) ¢ = E[e;?] of the NSRLMMN algorithm was derived and is given by (5.3)
[37]:

_ 1(8205+6285+28885) 1 2
P = 2(6+3002) b2 -n(67+1562E4+126502); Tov, >3

where ¢, = E [(”“—”‘2* (5.4)

2 21
+lugl1%)

¢, =E [;] (5.5)

2
e+[|ugllfy

wherein § = 1 — 6, 62 = E[v;?] is the noise variance, and &} = E[v;*] and & = E[v;°] are
the fourth and sixth-order moments of the noise sequence v;, respectively. We can obtain the
expressions for the steady-state MSE of the NSRLMF and NSRLMS algorithms from (5.3) by
setting 6 equal to 0 and 1, respectively, as shown in [43].

In addition, a sufficient condition for the convergence in the mean of the NSRLMMN algorithm
was also derived and is given by (5.6) [37]:

26
1+302

O<u<26+ . (5.6)

Similarly, we can obtain the expressions for the step-size bounds of the NSRLMF and NSRLMS
algorithms from (5.6) by setting § equal to 0 and 1, respectively, as shown in [37]. Moreover,
it is shown that the simulation results are in a good match with the analytical results for both
white Gaussian and correlated Gaussian regressors.
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Finally, a comparison between the convergence performance of the NSRLMMN and NLMMN
algorithms indicates performance degradation of the NSRLMMN algorithm in a uniform noise
environment with an SNR of 10 dB.

[P9] M. M. U. Faiz and A. Zerguine, “Tracking analysis of the e-NSRLMMN algorithm,” in the
Conf. Record of the 46" Asilomar Conf. on Signals, Systems, and Computers (Asilomar
2012), Pacific Grove, CA, USA, pp. 816-819, Nov. 2012, DOI:
https://doi.org/10.1109/ACSSC.2012.6489127

The tracking behavior of the NSRLMMN algorithm was analyzed and evaluated for the case of
real-valued data in [38]. The expression for the tracking MSE ¢’ of the NSRLMMN algorithm
was derived and is given by (5.7) [38]:

r_ Hch1+u1Tr(Q)

P = appbe, ) (5.7)
where a = 6 + 36072, (5.8)
b = 6%+ 158%&} + 126602, (5.9)
c =08%02 + 6285 + 256¢&), (5.10)

wherein Tr(Q) is the trace of the covariance matrix Q = E[qiq;r] of the noise sequence q;.
We can obtain the expressions for the tracking MSE of the NSRLMF and NSRLMS algorithms
from (5.7) by setting § equal to 0 and 1, respectively, as shown in [43].

In addition, the expression for the optimum step-size u,p; of the NSRLMMN algorithm was
also derived and is given by (5.11) [38]:

2
_\/Tr(Q) 1 4 ZeTr@) _ bTr(Q) (5.11)

opt = | ¢, 4aZce,? 2acgy’

Similarly, we can obtain the expressions for the optimum step-size of the NSRLMF and NSRLMS
algorithms from (5.11) by setting § equal to 0 and 1, respectively, as shown in [43]. Moreover,
it is shown that the simulation results are in a close match with the analytical results for
correlated Gaussian regressors in particular.

Finally, a comparison between the convergence performance of the NSRLMMN and Least
Mean Mixed-Norm (LMMN) algorithms indicates faster convergence of the NSRLMMN
algorithm in a uniform noise environment with an SNR of 10 dB.
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ABSTRACT

In this work, the £—normalized sign regressor least mean
mixed-norm (NSRLMMN) adaptive algorithm is proposed.
The proposed algorithm exhibits increased convergence rate
as compared to the least mean mixed-norm (LMMN) and
the sign regressor least mean mixed-norm (SRLMMN) algo-
rithms. Also, the steady-state analysis and convergence anal-
ysis are presented. Moreover, the proposed € —~NSRLMMN
algorithm substantially reduces the computational load, a
major drawback of the &€—normalized least mean mixed-
norm (NLMMN) algorithm. Finally, simulation results are
presented to support the theoretical findings.

Keywords: Adaptive filters, LMS, LMF, Least Mean Mixed-
Norm (LMMN), Sign regressor LMMN algorithm.

1. INTRODUCTION

While the least mean mixed-norm (LMMN) algorithm was
introduced in order to combine the advantages of both the
least mean square (LMS) and the least mean fourth (LMF)
algorithms [1]- [6], the sign adaptive filters were proposed
in order to reduce the computational cost and to simplify
the hardware implementation [7]— [8]. However, these sign
adaptive filters result in slower convergence speeds due to
clipping of the estimation error or the input data, or both [9].
The algorithm based on clipping of the input data of the
LMMN is known as the sign regressor least mean mixed-
norm (SRLMMN) algorithm. The convergence speed of the
SRLMMN algorithm can be increased by normalizing it.
Hence the name the € —normalized sign regressor least mean
mixed-norm (NSRLMMN) algorithm. From the simulation
results it is shown that the E-=NSRLMMN algorithm outper-
forms both the LMMN and SRLMMN algorithms.

The paper is organized as follows. In Section 2, the
£—NSRLMMN algorithm is proposed. The steady-state
analysis of the proposed algorithm is derived in Section 3,
and Section 4 presents its convergence analysis. A compari-
son of the computational complexity of the proposed algo-
rithm with those of other algorithms in the family is pre-
sented in Section 5. Finally, the simulation results and con-
clusions are presented in Sections 6 and 7, respectively.

2. THE e -NSRLMMN ALGORITHM

Consider a zero-mean random variable d with realizations
{d(0),d(1),...}, and a zero-mean random row vector u with
realizations {up, uy,...}. The LMMN algorithm is based on
the following convex cost function [1]—[3]:
Ji=E[8ef+(1-8)ef],

0<8<1, (1)
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where & is the mixing parameter and ¢; denotes the estima-
tion error given by

ei =di —wwi 1. (2)
The update equation for the € -NSRLMMN algorithm can
be shown to be governed by the following recursion:

2

sign[u;]Te;[8 + (1 — 8)e;

4

1,

i >0,

3
where w; (column vector) is the updated weight vector at
time 7 with optimal weight vector w°, u is the step-size, €
is a small positive constant used for regularization purposes,
[|us][f; = wH[u;u}, and H[u;] is some positive-definite Her-
mitian matrix-valued function of u; defined by

where M is the filter length and sign[u;]T = H[u;]u].

Wi =W |+ —75
C &+ [|ul[f;

1

|
|uiM‘

|ui1 ‘ ' ‘ule

(C)]

H[u,] = diag{

3. STEADY-STATE ANALYSIS OF THE
£—NSRLMMN ALGORITHM

We shall assume that the data {d;,u;} satisfy the following
assumptions of the stationary data model [10]:

A.1 There exists an optimal weight vector w” such that d; =
u;w + v

A.2 The noise sequence v; is independent and identically
distributed (i.i.d.) with variance o7 = E[v}] and is in-
dependent of u; for all £, j.

A.3 The initial condition w_; is independent of the zero
mean random variables {d;. u;,v;}.

A.4 The regressor covariance matrix is R = E[u]u;] > 0.

For the adaptive filter of the form in (3), and for any data
{df‘ u,-}, assuming filter operation in steady-state, the follow-
ing variance relation holds [10]:

HE [|Juil[fg’[ed]] = 2E [eqgleil], as i—oo,  (5)

where
Elllwl[f] = E[wHuu/], (6)
[ = E’ai -+ Vi, (7)

with g[e;] denoting some function of ¢;, and ¢,; = u;(w” —
wi_1) is the a priori estimation error. Then gle;] for the
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£—NSRLMMN algorithm becomes
4l +(1-8)¢7)
e+l
S(ea, +vi d
_ deatv) S+ eq?
et(lwlly ety ™
+2e5,viHvieg, +3] + 2007 ®)

glej]

where 8§ = 1 — §. By using the fact that €q; and v; are inde-
pendent, we reach at the following expression for the term
E[eqgleil):

4
Eleaglel] = SE[ |+ (5+3807)

e+||u|f

2
i } . )

€+ |||

Ignoring third and higher-order terms of ¢4;, we obtain

€2
— (10)
1] 1|H]

To evaluate the term E [||u||[f¢%[¢;], we start by noting that

E [eq;gei]] = (8 +3802)E [

gle] = 572[62
' (& + ||l Jg)*

© i
+577 62_+6eg_vi+6ea.vf
(+ Pl [)2 L% " '

7+ 2eq,1]

+ 1593[_»’,3 + 15€3im’,:4 +20€Z,-V§ + vf—’

266 [ 4 2.2 3
+m -eai—k()eail«i +degvi

+eqvi + v?} . (11)

If we multiply g°[e;] by Hu,||£1 from the left, use the fact that
vi is independent of both u; and ¢4, and again ignoring third
and higher-order terms of ¢,;, we obtain

E [|Jui|[fig’led] = (8° +158%E) +128807)

<E L \1s|?1|“’51)2} (526 +52§6+255§ )
H

e+ |u;
1wl ]
il (12
where &F = E[1¥], £¢ = E[v¢] denote the fourth and sixth-

order moments of v;, respectively.
Substituting (10) and (12) into (5) we get

(82 + 15824 + 1285 62)E [L]

(e-+/[uilfp)?

- - u; 2
(3207 + 8260+ 20360 [ Ll

=2(8 +3d0))E {W} ‘ (13)
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In order to simplify (13), we use the separation plmuplqe
namely, that at steady-state, ||u,\|H is independent of e,
Therefore, we obtain

o A > ll;' 2
1(52+158%E4 +128862)E [(H‘Hu! THV] Ele2)]

a5t adghe otk
—2(5+3562)E [m} Ele2], (14)

which can be set up compactly as

1(8%6] +8E0 +238EH 21 = [2(8 +3662) %
—1(8%+158°) +128507) #1] Elez . (15)

where
ff A E ||u’Hﬁ . 16
‘ [(HHufH%[)z (e
1
% L2 E|l——|. 17
’ [e+|\ui\|%1] (7

Therefore, the expression for the steady-state excess-mean-
square error (EMSE) { = E[e2 .| of the £ ~NSRLMMN algo-
rithm is given by

(820} +6°8) +286¢)) 7
[2(8+3602) 2 — u(82 +158%E} +128802) 2]

C= (18)

When ¢ is sufficiently small, which is usually the case, then
its effect can be ignored. Therefore, (16) and (17) reduce to

EZ’EZ’E{I} (19)

il
In this case, (18) becomes

w(802 + 5260 +285¢EH

= 2(8+3802) — (8% + 15828} + 128602

(20)

which is independent of the regressor.

An alternative expression for the steady-state EMSE of
the €-NSRLMMN algorithm can be obtained by using the
assumption & =~ 0 in order to simplify (13) into

w(8*+158%E} +125667)E [ |
uillg

2 —
Tt ] (8202 + 82

+286EME { ]:2(5+380§)E[25u] @21

[y

7
HH

Now, let us use the following steady-state approximation:

o2
E L P
[nuina] E

In [11], we have shown that

s 2
Elul ) = [ S TH(R). @)

Efez]

[l [

(22)
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Substituting (22) and (23) into (21) we get
w820} + 5260 +288EE L | = [2(6+3807)

i

— _ 2
—u(8?+ 1582} + 128500\ S pe 24)

Therefore, the steady-state EMSE of the e~NSRLMMN al-
gorithm can also be approximated by

UTH(R)(8262 + §2E0 +288¢E))
[2(843007) — u(82+158%E} + 1266 67)]

2 1
x\/rwf[ma]' @3)

Ultimately, an expression for the mean-square error (MSE)
of the eE-~NSRLMMN algorithm is given by

Elef] =¢+0a}. (26)

{ =

4. CONVERGENCE ANALYSIS OF THE
£-NSRLMMN ALGORITHM

In [1], the approximate bound on the step-size of the LMMN
algorithm was obtained by simply combining the step-size
bounds of LMS and LMF. Similarly, the approximate bound
on the step-size of our proposed € -NSRLMMN algorithm
can be obtained by combining the step-size bounds of
£€—NSRLMS and e -NSRLME

It was shown in [12] that the convergence in the mean
for the e-~NSRLMS algorithm is guaranteed by the stability
condition for the eE=NLMS algorithm, namely,

0 < fe NSRLMS < 2. (27)

Also, the mean convergence of the €-NSRLMF algorithm
can be bounded by

0 < He_NSRLMF < Hupper- (28)

Thus, by combining (27) and (28) the mean convergence of
the eE-NSRLMMN algorithm can be approximated by

0 < He NSRIMMN < 28 + (1 = &) Hupper- (29)

From (29) it is clear that the e-NSRLMMN algorithm re-
duces to e-~NSRLMF and £—-NSRLMS algorithms when
6 =0and § = 1, respectively. Our future work will focus on
finding the upper bound for the step-size of the e -NSRLMF
algorithm.

5. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the
€—NSRLMMN algorithm is compared with those of other
algorithms in the family, e.g., LMMN, SRLMMN, and
£—NLMMN algorithms. Tables 1 and 2 present this com-
parison for real- and complex-valued data, respectively, in
terms of the number of real additions (+), real multipli-
cations (), real divisions (/), and comparisons with zero
per iteration. Moreover, M is the filter order. As can
be seen from Table 1, the real-valued data case, both the
£—NLMMN and e-NSRLMMN algorithms have similar
computational complexity, while there are 2M and 2M +
4 extra additions and multiplications per iteration, respec-
tively, for the e ~NLMMN algorithm when compared to the
£€—NSRLMMN algorithm in the complex-valued data case
as reported from Table 2.
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Table 1: Computational cost for real-valued data.

Algorithm + X /| sign
LMMN 2M+2 | 2M +-4

SRLMMN 2M+2 | 2M +2 2
£—NLMMN AM+2 | 4M+4 | 2
€—-NSRLMMN | 4M +2 | 4M +2 | 2 2

Table 2: Computational cost for complex-valued data.

Algorithm + X / | sign
LMMN 8M +3 8M+6

SRLMMN 6M +3 oM +2 4
£—NLMMN 10M 43 | 10OM+6 | 2
£—NSRLMMN | 8M +3 SM+2 | 4 4

6. SIMULATION RESULTS

In order to evaluate the steady-state and convergence perfor-
mance of our proposed algorithm, extensive simulations are
carried out for this purpose. The parameter settings in this
study are as follows. In all the simulations, we have chosen
£ = 107°, the mixing parameter is fixed at § = 0.5 (except
Figures 5-6), and the filter length is fixed at M = 10 for Fig-
ures 1-2 and M =5 for Figures 3-8.

First, the steady-state MSE of the €-~NSRLMMN al-
gorithm using white and correlated Gaussian regressors is
shown in Figures 1-2, respectively. In Figure 2, the corre-
lated data is obtained by passing a unit-variance i.i.d. Gaus-
sian data through a first-order auto-regressive model with
transfer function “—% and ¢ = 0.8. In Figures 1-2, the
MSE is plotted as a function of the step-size u in additive
white Gaussian noise (AWGN) environment for a signal to
noise ratio (SNR) of 30 dB. As observed from these figures,
the simulation results are in a good match with the theoret-
ical results ((20) and (25)), which are, respectively, the first
and second approximations of the steady-state EMSE of the
€—NSRLMMN algorithm. Also, as can be seen from these
figures, the theoretical results are in a better match with the
simulation results for correlated Gaussian data than white
Gaussian data.

Second, the convergence behavior of the e —-NSRLMMN
algorithm is compared with that of LMMN, SRLMMN, and
£—NLMMN algorithms in an unknown system identification
setup with

w” =[0.227 0.460 0.688 0.460 0.227}T. (30)

Figure 3 shows the convergence performance of all the four
algorithms using white Gaussian regressors in a uniform
noise environment with SNR = 10 dB. As it is depicted from
this figure, the £ -NSRLMMN algorithm results in superior
performance over the LMMN and SRLMMN algorithms, but
is only slightly inferior when compared to the e—NLMMN
algorithm. Also, it is interesting to note that the performance
of the SRLMMN algorithm is found to be identical to that of
the LMMN algorithm for the same misadjustment. No dete-
rioration has occurred to the SRLMMN algorithm. One can
also observe this particular behavior from Figure 4, which
shows the comparison of the third-tap weight learning curves
of all the four algorithms for the same parameter settings.
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Third, Figures 5-6 demonstrate, respectively, the MSE
and normalized weight error vector learning behaviors of the
£—NSRLMMN algorithm for different values of the mixing
parameter § in a uniform noise environment at SNR = 10
dB. As can be seen from these figures, the eE-~NSRLMMN
algorithm boils down to e =NSRLMF and e -NSRLMS al-
gorithms when & = 0 and § = 1, respectively. Therefore, by
controlling § we can control the tradeoff between fast con-
vergence rate and small misadjustment. We also find that for
uniform noise, the E-~NSRLMF algorithm is superior to both
£—NSRLMS and e -NSRLMMN algorithms.

Finally, Figures 7-8 illustrate, respectively, the MSE and
normalized weight error vector convergence behaviors of the
£—NSRLMMN algorithm in uniform, Gaussian and Lapla-
cian noise environments for SNR = 10 dB. As can be seen
from Figure 7 that the best performance in terms of con-
vergence behavior is obtained with uniform noise while the
worst performance is obtained with Laplacian noise. We also
note from Figure 8 that the lowest weight error is reached
by the proposed algorithm for uniform noise environment as
compared to Gaussian and Laplacian noise environments.

7. CONCLUSIONS

In this work, the e -NSRLMMN algorithm is presented and
resulted in a significant reduction in computational load over
the e-NLMMN algorithm. The proposed e —NSRLMMN
algorithm has been shown to exhibit slightly slower con-
vergence rate than the £—-NLMMN algorithm for the
same steady-state error. The mean-square analysis of the
£—NSRLMMN algorithm is performed and is found to cor-
roborate the simulation results. Also, the convergence behav-
ior of the proposed algorithm is analyzed for different values
of the mixing parameter and different noise environments.
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form noise environment with SNR = 10 dB. dB.
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ABSTRACT

In this work, expressions for the tracking excess-mean-
square error (EMSE) and optimum step-size of the
e€—normalized sign regressor least mean mixed-norm
(NSRLMMN) adaptive algorithm are derived. Finally, ex-
tensive simulation results performed are found to corroborate
very closely with the theoretical results for correlated Gaus-
sian data.

1. INTRODUCTION

The least mean mixed-norm (LMMN) algorithm was intro-
duced in order to combine the advantages of the least mean
square (LMS) and the least mean fourth (LMF) algorithms,
for example, the LMMN algorithm is known to have better
steady-state performance than the LMS algorithm and better
stability properties than the LMF algorithm [1]-[7].

In [8], a new approach to perform the tracking analysis
of the LMF and LMMN algorithms was presented. This new
approach bypassed the need for working directly with the
weight error vector and was based on a fundamental energy-
preserving relation [9].

In this work, we propose a simplified version of the
LMMN algorithm called the £—normalized sign regressor
least mean mixed-norm (NSRLMMN) algorithm. This new
algorithm makes use of the signum of the reference input sig-
nal, thereby reducing the computational cost and simplifying
the hardware implementation [10]-[14]. The normalization
term in the update recursion of the e~ NSRLMMN algorithm
ensures that the proposed algorithm provides an increased
convergence rate as compared to the LMMN algorithm.

To perform the tracking analysis of the e-~NSRLMMN
algorithm we have used the modified energy-preserving rela-
tion presented in [9], in order to deal with the sign regressor
term present in the update recursion of the € -NSRLMMN
algorithm.

The paper is structured as follows. In Section 2, the
£—NSRLMMN algorithm is introduced. The tracking analy-
sis of the proposed algorithm is derived in Section 3. Finally,
simulation results and conclusions are presented in Sections
4 and 5, respectively.

2. THE e-NSRLMMN ALGORITHM

Consider a zero-mean random variable d with realizations
{dy,dy,...}, and a zero-mean random row vector u with re-
alizations {ug,uy,...}. The LMMN algorithm is based on
the following convex cost function [3]-[4]:

Ji=E[8e+(1-8)el], 0<8<1, 1)
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where § is the mixing parameter between the two error norms
and e; denotes the estimation error given by

e =di—ww; . (2)

The update recursion of the e~NSRLMMN algorithm can
be shown to be governed by the following recursion:
Wi = Wi+

H : T 2 "
———— sign[w;] €[04+ (1 —-8)e;], >0,
£+Huf”‘|:| [ ] [ I]

3

where w; (column vector) is the updated weight vector at
time i, K is the step-size, € is a small positive constant to
avoid division by zero when the regressor is zero, ||u;|[ =
wH[u]u!, and H[w] is some positive-definite Hermitian
matrix-valued function of u; defined by

1 1

1
H[ul]=d]ﬂg{m‘—.|u—l‘}, (4)

where M is the filter length and sign[u,-]T = H[ui]u?,

3. TRACKING ANALYSIS

We shall assume that the data {d;,u;} satisfy the following

conditions of the nonstationary data model [9]:

A.1 There exists a vector w; such that d; = w;w{ +v;, where
v; 1s the additive noise.

A.2 The weight vector varies according to the random-walk
model w{ = w{_; +q;, and the sequence g; is indepen-
dent and identically distributed (i.i.d.) with covariance
matrix Q. Moreover, q; is independent of {v;,u;} for all
iJ.

A.3 The initial conditions {w_;,w?,} are independent of
the zero mean random variables {d;,u;,vi, q; }.

For the adaptive filter of the form in (3), and for any data

{d;,u;}, assuming filter operation in steady-state, the follow-

ing variance relation holds [9]:

WE [[ul[fig’led] +n7'Te(Q) = 2Eleqglei]],

as i — oo, (5)
where
Mal2] — o, 1,.T
Ellwlli] = E[uHwlu;], (6)
e = €tV )

with g[e;] denoting some function of e;, eq; = u;(w” — w;_;)
is the a priori estimation error, and for the £—NSRLMMN
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algorithm g[e;] can be set up into the following:
eifd +(1-8)e]]
&+ ||uilf

8(eq; +vi 6
(é’a, t V12) . {eiﬂ'(’a,“’%
et|lwlly  e+|lully

+2eLvi+vies, + Vi +2eqv7 ®)

gle] =

where § =1 §. By using the fact that e,, and v; are inde-
pendent, we reach at the following expression for the term

E [ea,g[eEH:

4

— a1 4 (543862
&+ ||wllf

2
: ] . 9)

&+ | ul |

Elegglel] = 3E

Ignoring third and higher-order terms of e,;, we obtain

2
Eleqgle]] ~ (8+3867)E|—2—|,
e+ ||uill
&
aE | ———|, (10)
£+l [f

where a = 8 +3802.
To evaluate the term E [||w;[|[f;g(e;] |, we start by noting
that
62
le] =

g 2 [egf + V?’ + Zgaivf]

(€+[lwill3)
52

6 5. 5
e T [ Ot O

+15€§iv? + ]56; vt 2062}.1)? 8

266 )
e e | O e
1H L

+ae v} +V] | (11)

If we multiply g?[e;] by | ||| from the left, use the fact that
v; is independent of both u; and e,;, and again ignoring third
and higher-order terms of e, we obtain

E[||w||}glei] = (8% +158%E! +128662)

122 _ ~
XE {_“,J_] (8202 + 82E5 4+ 2654

(&4 |f1Jl

”uin] :| 12
XF‘[(H\ug [N (12)
where &' = E[v}] and £° = E[¢] denote the fourth and sixth-
order moments of v, respectively. Let b = 8%+ 1567 +
1288672 and ¢ = 6%62 + 6%E0 + 288E}. Therefore, (12)
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looks like
il ez, i [
E [luffeld] op | s o |l
e tel] P8 | e | ¥ [ Tl
(13)
Substituting (10) and (13) into (5) we obtain
[[willfiea, | |wil
UBE | ———F = | t ueE | ——5—
(&+ |uil[f)? (& + i)
2
1 ai
+u Tr =2aE|——1. 14)
dhs e+|uf-|a} (

In order to simplify (14), we use the separation principle,
namely, that at steady-state, ||u;||7 is independent of egi. Ul-
timately, (14) becomes

||yl } 2 il [
Mol T2y yep| Ml
. (e+|lwllf)?

,ubE{
(e+]wl[f)’

Ele2]. (15)

| T = ez |
Q) =208 | i

Or more compactly as

pe2i ( u7TH(Q) = a2 wbAJEE), (6
where
P h{&] )
(e +[[wlf{)? ]
and
% - E[;] (18)
e+ luillf

Consequently, the expression for the steady-state
excess-mean-square error (EMSE), { = F,[ei], of the
£€—NSRLMMN algorithm is given by

Cpe Q)

S A @

An optimum value of the step-size of the e ~NSRLMMN al-
gorithm can be obtained by minimizing (19) with respect to
W. Therefore, we get

Tr(Q)
= 1
HUopt \/ o +
and the corresponding minimum value of the steady-state
EMSE of the e-NSRLMMN algorithm is given by

bz%Tr(Q)} Q)

4azcﬁf’22 2ac%

opre 27 + ”n};l r(Q)
2025 — popb 2]

gm‘m = 210

4. SIMULATION RESULTS

To support the theoretical results, several simulations are car-
ried out in order to assess the tracking performance of the
£—NSRLMMN algorithm. Throughout this study, unless
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otherwise stated, we have chosen € = 1079, § = 0.5 (except
Figures 5 and 6), and M = 10 under additive white Gaus-
sian noise (AWGN) environment with a signal to noise ratio
(SNR) of 20 dB.

Figures 1 and 2 compare the theoretical MSE obtained
from expression (19) with the experimental MSE using cor-
related Gaussian regressors for smaller and larger values of
L, respectively. As can be seen from Fig. 1 that the theoreti-
cal and experimental MSE are in excellent match for smaller
values of y. Moreover, Fig. 1 shows that the steady-state
MSE possesses a minimum value of 00100872 at u = 0.017,
which are in very good agreement with the corresponding
theoretical values of 0.0100897 and i, = 0.0173 obtained
from expressions (21) and (20), respectively. Furthermore,
the theoretical and experimental MSE are found to be in good
match for larger values of | as can be seen from Fig. 2.

Similarly, Fig. 3 and Fig. 4 present the same comparison
for the case of white Gaussian regressors. As can be seen
from these figures, the simulation results are found to be in
reasonable agreement with the theoretical results.

Figures 5 and 6 compare the theoretical MSE obtained
from expression (19) with the experimental MSE using cor-
related and white Gaussian regressors for different values of
8, respectively. From the figures, it can be seen that the min-
imum value of the MSE occurs at 8 = 1 for AWGN noise.

Finally, Fig. 7 depicts the convergence performance of
the LMMN and the e-~NSRLMMN algorithms in an un-
known system identification setup with

w* =[0.227 0.460 0.688 0.460 0.227]T. (22)

As it is depicted from this figure, the e~ NSRLMMN al-
gorithm results in a superior performance over that of the
LMMN algorithm.

5. CONCLUSIONS

In this work, the tracking analysis of the e-NSRLMMN al-
gorithm is carried out. In order to validate our theoretical
findings simulations are performed for both cases of white
and correlated Gaussian regressors. It is shown that the ana-
lytical results are in a close match with the simulation results
for the correlated Gaussian regressor case in particular. Also,
it is shown that the e-NSRLMMN algorithm exhibits in-
creased convergence rate as compared to that of the LMMN
algorithm.
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Figure 1: Theoretical and simulated MSE for smaller values
of i using correlated Gaussian regressors.

75



0.017 T T r T T - r 0.015 T T T T T T T
—&— Simulation
—&O— Theory
0.016
0.014 4
0.015F
0013 B
w 0.014r- w
7] 7]
= =
0013y 0012 ]
0.0121
0.011 b
0.011F
‘/ o)
0.01 0.01 A \ . L . . H H Y
0.1 0.2 03 04 05 0.6 0.7 08 09 1 0 01 0.2 03 04 05 06 Q7 08 09 1
Step—size () Mixing Parameter ()

Figurc 2: Theoretical and simulated MSE for |argcr values Figurc 5: Theoretical and simulated MSE for different values

of i using correlated Gaussian regressors. of & using correlated Gaussian regressors.
0.015 T T T T T T T T T
0.011 ! ' ' j ' j i e arve— —6— Simulation
s _S;:]n;ﬁl;lmn 6— Theory
0.011 ] 0.014 4
0.0108, T 0013 1
w
w 7]
2 00108 1 =
0.012 1
0.0104 4 1
4
o 0.011 1
e o }
0.0102} e 1 S g
s e e
%4
0.01 ; . : : : ; ; ;
. L ] 0.1 0.2 03 04 05 06 07 08 08 1

0.01 L L | L L L .
0.001 001 002 003 004 005 006 007 008 009 0.1
Step=size ()

Mixing Parameter (3)
Figure 6: Theoretical and simulated MSE for different values

Figure 3: Theoretical and simulated MSE for smaller values ! ) . .
of § using white Gaussian regressors.

of u using white Gaussian regressors.

0.017 T T T T T T T T 0 4
—&— Simulation
—&— Theory -1 B
0.016
_2 -
0.0151 -3 1
g 4 1
0.014F s e-NSRLMMN
& w 1
= =
0.0131 -8 1
/ =7 1
0012+ /a/
/ - ]
] Q//Q/ .l 7
0,011 i
g/ -10L i ) R bt b
0.01 . ‘ ‘ . ‘ ‘ ‘ . 0 1000 2000 3000 4000 5000 6000
01 ©02 03 04 05 086 07 08 09 1 Iterations

Step=size (u)

Figure 7: Comparison of the MSE learning curves of LMMN
and e-NSRLMMN algorithms using white Gaussian regres-
sors in a uniform noise environment with SNR = 10 dB.

Figure 4: Theoretical and simulated MSE for larger values
of 1 using white Gaussian regressors.

819
76



6 Other Sign Adaptive Algorithms
6.1 Introduction
6.1.1 The SRLMS Algorithm

The Sign Regressor Least Mean Square (SRLMS) algorithm is based on the clipping of the input
data. The SRLMS algorithm belongs to the family of the Least Mean Square (LMS) algorithm.
The only difference in the filter weights update equations of these two algorithms is the
application of the signum function on the input data of the SRLMS algorithm.

The filter weights update equation of the SRLMS algorithm for complex-valued data is given
by (6.1) [39]:

w; = w;_; + ucsgn[u;]e;. (6.1)
6.1.2 The SSLMS Algorithm

The Sign-Sign Least Mean Square (SSLMS) algorithm is based on the clipping of both the input
data and the estimation error. The SSLMS algorithm belongs to the family of the LMS
algorithm. The only difference in the filter weights update equations of these two algorithms
is the application of the signum function on both the input data and the estimation error of
the SSLMS algorithm.

The filter weights update equation of the SSLMS algorithm for real- and complex-valued data
are given by (6.2) and (6.3), respectively [40], [41]:

w; = w;_; + p sign[u;]"sign[e;], (6.2)
w; = W;_; + ucsgn[u;]*csgn|e;]. (6.3)
6.1.3 The SLMF Algorithm

The filter weights update equation of the Sign-Error Least Mean Fourth (SLMF) algorithm
reduces to that of the Sign-Error Least Mean Square (SLMS) algorithm for both cases of real-
and complex-valued data [46], [49].

Similarly, the filter weights update equations of the Sign-Sign Least Mean Fourth (SSLMF),
Normalized Sign-Error Least Mean Fourth (NSLMF), and Normalized Sign-Sign Least Mean
Fourth (NSSLMF) algorithms reduces to those of the Sign-Sign Least Mean Square (SSLMS),
Normalized Sign-Error Least Mean Square (NSLMS), and Normalized Sign-Sign Least Mean
Square (NSSLMS) algorithms, respectively, for both cases of real- and complex-valued data
[46], [49].
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6.1.4 The NSRLMS Algorithm

The Normalized Sign Regressor Least Mean Square (NSRLMS) algorithm is based on the
clipping of the input data. The NSRLMS algorithm belongs to the family of the Normalized
Least Mean Square (NLMS) algorithm [61]. The difference in the filter weights update
equations of these two algorithms is the application of the signum function on the input data
of the NSRLMS algorithm and the manner in which normalization has been applied.

The filter weights update equations of the NSRLMS algorithm for real- and complex-valued
data are given by (6.4) and (6.5), respectively [42], [43]:

Wi =W +- sign[u;]"e;, (6.4)

2
w1

w; =w;_{+ csgn[u;]*e;. (6.5)

e+l
6.1.5 The NSLMS Algorithm

The Normalized Sign-Error Least Mean Square (NSLMS) algorithm is based on the clipping of
the estimation error. The NSLMS algorithm belongs to the family of the NLMS algorithm [61].
The difference in the filter weights update equations of these two algorithms is the application
of the signum function on the estimation error of the NSLMS algorithm and the manner in
which normalization has been applied.

The filter weights update equations of the NSLMS algorithm for real- and complex-valued data
are given by (6.6) and (6.7), respectively [44], [45]:

w; =w;_ + u; sign[e;], (6.6)

2
e+|uilli

w; =w;_; + u;csgn|e;]. (6.7)

2
e+|uilli

In (6.1) to (6.7), w; is the updated filter weight vector at iteration i > 0, u is the step-size, € is
a small positive constant to avoid division by zero when the regressor is zero, u; is the
regressor vector, e; = d; — y; is the estimation error signal, d; is the desired signal, y; is the
adaptive filter output, sign(.) denotes the sign of its argument, csgn(.) denotes the complex
sign of its argument, the definitions of the signum function for real- and complex-valued data
are given by (1.1) and (1.2), respectively, ||u;||4 = ul-H[ul-]u;r, and H[u;] is some positive-
definite Hermitian matrix-valued function of u; defined by:

H[u;] = diag {L L ;}, (6.8)

, )y
[uig]” Jugz| [uipml

where M is the filter length and sign[u;]T = H[u;]u;.
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6.2 Background
6.2.1 The SRLMS Algorithm

The SRLMS algorithm is also frequently referred to as simply the Sign Regressor Algorithm
(SRA) in the open literature. Some of the studies, which investigated the performance
evaluation of the SRLMS algorithm are as follows. The stability of the SRLMS algorithm
depends heavily on the characteristics of the input data [14]. It is shown in [14] that for some
inputs, the LMS algorithm is stable while the SRLMS algorithm is unstable. In [15], the SRLMS
algorithm with correlated Gaussian data was studied in the presence of both stationary and
nonstationary environments.

In [24], the transient performance degradation of the SRLMS algorithm was studied for
correlated input data. It was concluded that the SRLMS and LMS algorithms have the strongest
degradation when compared to the various other algorithms [24]. In [62], the SRLMS
algorithm was employed for the digital predistortion model identification purpose. It was
shown that the application of the SRLMS algorithm for digital predistortion model
identification can achieve similar linearization and convergence performance with much lower
computational complexity when compared to the conventional least-square-based algorithm
[62].

6.2.2 The SSLMS Algorithm

The SSLMS algorithm is also frequently referred to as simply the Sign-Sign Algorithm (SSA) in
the open literature. Some of the studies, which investigated the performance evaluation of
the SSLMS algorithm are as follows. The SSLMS algorithm with and without leakage was
investigated in [26]. The convergence analysis of the SSLMS algorithm was performed in [28],
[29]. Moreover, a rigorous tracking analysis of the SSLMS algorithm when employed in the
identification of a time-varying plant with a white Gaussian input was performed in [31].

6.2.3 The SLMF Algorithm

The variants of the SLMF algorithm such as the NSLMF algorithm and the Block-Based
Normalized Sign-Error Least Mean Fourth (BBNSLMF) algorithm were employed for removing
multiple artifacts from the ElectroEncephaloGram (EEG) signal, namely power line noise, eye
blink artifact, electromyogram, cardiac signal artifact, respiration artifact, and electrode
motion artifact [55].

Similarly, the variants of the SSLMF algorithm such as the NSSLMF algorithm and the Block-

Based Normalized Sign-Sign Least Mean Fourth (BBNSSLMF) algorithm were employed for
removing the aforementioned multiple artifacts from the EEG signal [55].
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It was concluded in [55] that the performance of the aforementioned algorithms, namely
NSLMF, NSSLMF, BBNSLMF, BBNSSLMF, and various other algorithms analyzed in the paper is
superior to the conventional Least Mean Fourth (LMF) algorithm. Hence these algorithms
were found to be more suitable for remote health monitoring EEG system [55].

6.2.4 The NSRLMS Algorithm

The NSRLMS is also referred to as simply the Normalized Sign Regressor Algorithm (NSRA) in
the open literature. Some of the studies, which investigated the performance evaluation of
the NSRLMS algorithm are as follows. The NSRLMS algorithm was analyzed for both white
Gaussian and colored Gaussian reference inputs in [63]. A fully analytical stochastic model for
the NSRLMS algorithm for Gaussian inputs was presented in [64].

The NSRLMS algorithm was successfully employed for multiple artifacts reduction from the
ElectroCardioGram (ECG) signal in [54], [65]. It was shown that the NSRLMS algorithm was the
best performing algorithm for multiple artifacts reduction from the ECG signal among the six
other algorithms studied in [54].

6.2.5 The NSLMS Algorithm

The NSLMS is also referred to as simply the Normalized Sign Algorithm (NSA) in the open
literature. Some of the studies, which investigated the performance evaluation of the NSLMS
algorithm are as follows. In [66], the convergence analysis of the NSLMS algorithm was
performed and the algorithm was tested in an adaptive noise cancellation scenario. It was
shown that the NSLMS algorithm performed better than the NLMS algorithm in cancelling the
geomagnetic background noise in the desired signal of magnetic anomaly detection systems
[66].

In another application, the NSLMS algorithm was successfully employed for multiple artifacts
reduction from the ECG signal in [67]. It was shown that the NSLMS algorithm outperformed
the traditional LMS algorithm in the cancellation of multiple artifacts from the ECG signal [67].

6.3 Contributions/Published Manuscripts
6.3.1 The SRLMS Algorithm

A published paper on the performance evaluation of the SRLMS [39] algorithm for complex-
valued data is as follows:

[P10] M. M. U. Faiz and A. Zerguine, “On the steady-state and tracking analysis of the
complex SRLMS algorithm,” in Proc. of the 22" European Signal Processing Conf.
(EUSIPCO 2014), Lisbon, Portugal, pp. 751-754, Sep. 2014, E-ISBN: 978-0-9928-6261-
9
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The SRLMS algorithm was analyzed and evaluated for the case of complex-valued data in [39].
The expression for the steady-state Mean Square Error (MSE) ¢ = E[|e;|?] of the complex
SRLMS algorithm was derived and is given by (6.9) [39]:

2
Q= 2o ® a2 (6.9)

w2 —2uTr(R)

Also, the expression for the tracking MSE ¢’ of the complex SRLMS algorithm was derived and
is given by (6.10) [39]:

4uciTr(R)+u~1Tr(Q) |mo?
o' = + o;.
2 |mo2—4uTr(R)

(6.10)

In addition, the expression for the optimum step-size y,p of the complex SRLMS algorithm
was also derived and is given by (6.11) [39]:

_1 @@ "] T (6.11)
Hopt = 3 o2 o2 Tr(R) 202 " '

In (6.9) to (6.11), 02 = E[|v;|?] is the noise variance, 02 = E[|u;|?] is the regressor variance,
Tr(R) is the trace of the regressor covariance matrix R = E[u;u;], and Tr(Q) is the trace of
the covariance matrix Q = E[q;q;] of the noise sequence q;. Moreover, it is shown that the
simulation results are in a good match with the analytical results.

Finally, a comparison between the convergence performance of the complex SRLMS and
complex LMS algorithms indicates slower convergence of the complex SRLMS algorithm for
both white Gaussian and correlated Gaussian regressors in both Additive White Gaussian
Noise (AWGN) and uniform noise environments with an SNR of 10 dB.

6.3.2 The SSLMS Algorithm

The two published papers on the performance evaluation of the SSLMS [40], [41] algorithm
for real- and complex-valued data are as follows:

[P11] M. M. U. Faiz and A. Zerguine, “Steady-State and tracking analysis of the SSLMS
algorithm,” in Proc. of the 15% IEEE Int. Multi-Conf. on Systems, Signals & Devices
(SSD 2018), Hammamet, Tunisia, pp. 45-48, Mar. 2018, DOI:
https://doi.org/10.1109/55D.2018.8570395
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The SSLMS algorithm was analyzed and evaluated for the case of real-valued data in [40]. The
expression for the steady-state MSE ¢ = E[e;?] of the SSLMS algorithm was derived and is
given by (6.12) [40]:

0= KTr(R) [uTr(R) + JuZ[Tr(R)]Z

2 2
20 | ton 1602 + a,,] + 0. (6.12)
Also, the expression for the tracking MSE ¢’ of the SSLMS algorithm was derived and is given
by (6.13) [40]:

2
@’ =§\/§[§\/§+ /%”+4agl + a7, (6.13)

where y = pE[||u||f] + 1" Tr(Q). (6.14)

In addition, the expression for the optimum step-size ,, of the SSLMS algorithm was also
derived and is given by (6.15) [40]:

Tr(Q)
= /— 6.15
Hopt = &Iyl ] (6.15)

In (6.12) to (6.15), 62 = E[v;?] is the noise variance, o7 = E[u;?] is the regressor variance,
Tr(R) is the trace of the regressor covariance matrix R = E[u} u;], and Tr(Q) is the trace of
the covariance matrix Q = E[qiq?] of the noise sequence q;. Moreover, it is shown that the
simulation results are in a good match with the analytical results.

Finally, a comparison between the convergence performance of the SSLMS and LMS
algorithms indicates slower convergence of the SSLMS algorithm in a uniform noise
environment with an SNR of 10 dB.

[P12] M. M. U. Faiz and A. Zerguine, “Analysis of the SSLMS algorithm for complex-valued
data,” in Proc. of the 16" IEEE Int. Multi-Conf. on Systems, Signals & Devices (SSD
2019), Istanbul, Turkey, pp- 262-265, Mar. 2019, DOI:
https://doi.org/10.1109/55D.2019.8893215

The SSLMS algorithm was analyzed and evaluated for the case of complex-valued data in [41].
The expression for the steady-state MSE ¢ = E[|e;|?] of the complex SSLMS algorithm was
derived and is given by (6.16) [41]:

= 2O uTr(R) + R TTIRP + 0303 + o (6.16)

Also, the expression for the tracking MSE ¢’ of the complex SSLMS algorithm was derived and
is given by (6.17) [41]:
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wherey = 2uE[[|u||§] + 1~ Tr(Q). (6.18)

In addition, the expression for the optimum step-size p,,; of the complex SSLMS algorithm
was also derived and is given by (6.19) [41]:

_ Tr(Q)
Hopt = 28wyl 1] (6.19)

In (6.16) to (6.19), 02 = E[|v;]|?] is the noise variance, 62 = E[|u;|?] is the regressor variance,
Tr(R) is the trace of the regressor covariance matrix R = E[uju;], and Tr(Q) is the trace of
the covariance matrix Q = E[q;q;] of the noise sequence q;. Moreover, it is shown that the
simulation results are in a good match with the analytical results.

Finally, a comparison between the convergence performance of the complex SSLMS and
complex LMS algorithms indicates slower convergence of the complex SSLMS algorithm for
both white Gaussian and correlated Gaussian regressors in both AWGN and uniform noise
environments with an SNR of 10 dB.

6.3.3 The SLMF Algorithm

The two published papers on the performance evaluation of the SLMF [46], [49] algorithm and
its variants for real- and complex-valued data are as follows:

[P13] M. M. U. Faiz and A. Zerguine, “Insights into the convergence and steady-state
behaviors of the SLMF and its variants,” in Proc. of the 12t IEEE Int. Multi-Conf. on
Systems, Signals & Devices (SSD 2015), Mahdia, Tunisia, pp. 1-4, Mar. 2015, DOI:
https://doi.org/10.1109/SSD.2015.7348094

In [46], it was shown that the filter weights update equations of the SLMF, SSLMF, NSLMF, and
NSSLMF algorithms reduces to those of the SLMS, SSLMS, NSLMS, and NSSLMS algorithms,
respectively, for both cases of real- and complex-valued data [46].

Moreover, it was also shown through rigorous simulations that the convergence and MSE
performance of the SLMF, SSLMF, NSLMF, and NSSLMF algorithms are exactly the same as
those of the SLMS, SSLMS, NSLMS, and NSSLMS algorithms, respectively, for both cases of
real- and complex-valued data [46].

Finally, the author was the recipient of the Best Paper Award for the contribution in [46] (see
Appendix C).
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[P14] M. M. U. Faiz, “Comments on “Efficient signal conditioning techniques for brain
activity in remote health monitoring network”,” IEEE Sensors Jour., vol. 15, no. 9, pp.
5349-5350, Sep. 2015, DOI: https://doi.org/10.1109/JSEN.2015.2431260

In [49], it was shown that the filter weights update equations of the SLMF and SSLMF
algorithms for real-valued data are exactly identical to those of the SLMS and SSLMS
algorithms, respectively.

Similarly, it can be shown that the filter weights update equations of all variants of the SLMF
and SSLMF algorithms are exactly identical to those of the respective variants of the SLMS and
SSLMS algorithms for both cases of real- and complex-valued data. For example, the filter
weights update equations of the BBNSLMF and BBNSSLMF algorithms are exactly identical to
those of the BBNSLMS and BBNSSLMS algorithms, respectively.

Therefore, it was concluded in [49] that the adaptive noise cancelers implemented using the
NSLMF, BBNSLMF, NSSLMF, and BBNSSLMF algorithms in [55] for removing multiple artifacts
from the EEG signal would deliver exactly the same performance compared to the adaptive
noise cancelers implemented using the NSLMS, BBNSLMS, NSSLMS, and BBNSSLMS
algorithms, respectively, provided the parameter settings and EEG data used are same.

6.3.4 The NSRLMS Algorithm

The two published papers on the performance evaluation of the NSRLMS [42], [43] algorithm
for real- and complex-valued data are as follows:

[P15] M. M. U. Faiz and A. Zerguine, “The e-Normalized Sign Regressor Least Mean Square
(NSRLMS) adaptive algorithm,” in Proc. of the 2™ IEEE Int. Conf. on Signal and Image
Processing Applications (ICSIPA 2011), Kuala Lumpur, Malaysia, pp. 556-558, Nov.
2011, DOI: https://doi.org/10.1109/ICSIPA.2011.6144114

The NSRLMS algorithm was analyzed and evaluated for the case of complex-valued data in
[42]. The expression for the steady-state MSE ¢ = E[|e;|?] of the complex NSRLMS algorithm
was derived and is given by (6.20) [42]:

_ 4ucZ Tr(R) E

+ 02 6.20
@) |mo? ||ul||H] v (6.20)

Also, the expression for the tracking MSE ¢’ of the complex NSRLMS algorithm was derived
and is given by (6.21) [42]:

__4Tr(R) [ 2p [

] + ;rlTr(Q)] + o2 (6.21)
Cemw nog

g Iy
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In (6.20) and (6.21), 62 = E[|v;|?] is the noise variance, 62 = E[|u;|?] is the regressor
variance, Tr(R) is the trace of the regressor covariance matrix R = E[u;u;], and Tr(Q) is the
trace of the covariance matrix Q = E[q;q;] of the noise sequence q;. Moreover, it is shown
that the simulation results are in a good match with the analytical results.

[P16] M. M. U. Faizand A. Zerguine, “A note on NSRLMS, NSRLMF, and NSRLMMN adaptive
algorithms,” in Proc. of the 15" IEEE Int. Multi-Conf. on Systems, Signals & Devices
(SSD 2018), Hammamet, Tunisia, pp. 40-44, Mar. 2018, DOI:
https://doi.org/10.1109/5SSD.2018.8570653

The NSRLMS algorithm was analyzed and evaluated for the case of real-valued data in [43] in
order to compare the NSRLMS, NSRLMF, and NSRLMMN algorithms. The expression for the
steady-state MSE ¢ = E[e;?] of the NSRLMS algorithm was derived and is given by (6.22) [43]:

2
o=+ (6.22)

Also, the expression for the tracking MSE ¢’ of the NSRLMS algorithm was derived and is given
by (6.23) [43]:

' 2+~ 1Tr(Q)
@ = —Md)l;qbzild): + 02, (6.23)
where ¢p; = E Lﬁz , (6.24)
(e+I1u;ll%)
=E|—— (6.25)
b2 = e+llugl] '

In addition, the expression for the optimum step-size i, of the NSRLMS algorithm was also
derived and is given by (6.26) [43]:

opt = \/TF(Q) [1 L eI @) _ i@ (6.26)

o5 1 40 ¢35 205 ¢,

In (6.22) to (6.26), 02 = E[v;?] is the noise variance and Tr(Q) is the trace of the covariance
matrix Q = E[ql-q;r] of the noise sequence q;. Moreover, it is shown that the simulation
results are in a good match with the analytical results.

Finally, a comparison between the convergence performance of the NSRLMS, NSRLMF, and
NSRLMMN algorithms indicates slower convergence of the NSRLMS algorithm in an AWGN

environment with an SNR of 10 dB as expected.

6.3.5 The NSLMS Algorithm
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The two published papers on the performance evaluation of the NSLMS [44], [45] algorithm
for real- and complex-valued data are as follows:

[P17] M. M. U. Faizand A. Zerguine, “A steady-state analysis of the e-Normalized Sign-Error
Least Mean Square (NSLMS) adaptive algorithm,” in the Conf. Record of the 45t
Asilomar Conf. on Signals, Systems, and Computers (Asilomar 2011), Pacific Grove,
CA, USA, pp. 538-541, Nov. 2011, DOI:
https://doi.org/10.1109/ACSSC.2011.6190059

The steady-state behavior of the NSLMS algorithm was analyzed and evaluated for both cases
of real- and complex-valued data in [44]. The expression for the steady-state MSE ¢ = E[e;?]
of the NSLMS algorithm was derived for real-valued data and is given by (6.27) [44]:

2
o= %\E lg\/g + /% + 403] + a2, (6.27)

where g2 = E[v;?] is the noise variance. In addition, the expression for the steady-state MSE
¢ = E[|e;|?] of the NSLMS algorithm was also derived for complex-valued data and is given
by (6.28) [44]:

2
Q= %E [#T‘E + ’% + 403] + a2, (6.28)

where 62 = E[|v;|?] is the noise variance. It is interesting to note that the expressions for the
steady-state MSE of the NSLMS algorithm for real- and complex-valued data given in (6.27)
and (6.28), respectively, are identical except for a scaling factor. Also, the steady-state MSE of
the NSLMS algorithm for real- and complex-valued data is found to be independent of the
regression data statistics. Moreover, it is shown that the simulation results are in a good match
with the analytical results.

[P18] M. M. U. Faiz, A. Zerguine, S. M. Asad, and K. Mahmood, “Tracking MSE performance
analysis of the &-NSLMS algorithm,” in Proc. of the 2" IEEE Int. Conf. on
Communications, Signal Processing and their Applications (ICCSPA 2015), Sharjah,
UAE, pp. 1-4, Feb. 2015, DOI: https://doi.org/10.1109/ICCSPA.2015.7081323

The tracking behavior of the NSLMS algorithm was analyzed and evaluated for both cases of
real- and complex-valued data in [45]. The expressions for the tracking MSE ¢’ = E[e;?] and
optimum step-size p,,; of the NSLMS algorithm were derived for real-valued data and are
given by (6.29) and (6.30), respectively [45]:

2
@ = %g [@ + /VT‘” + 20,,24)22] + 07, (6.29)

_ [Tr(@
tuopt - ¢1 )

(6.30)
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wherey = u¢, + u~1Tr(Q), (6.31)

¢, =E [%} (6.32)
¢, =E [e+||1ui||2]' (6.33)

In (6.29) to (6.33), 02 = E[v;?] is the noise variance and Tr(Q) is the trace of the covariance
matrix Q = E[q;q] ] of the noise sequence q;.

Also, the expressions for the tracking MSE ¢’ = E[|e;|?] and optimum step-size of the NSLMS

algorithm were derived for complex-valued data and are given by (6.34) and (6.35),
respectively [45]:

r _ ym|yWn /an'
0] :@lT-I_ ?'1'40'3(]522]-1-0'3, (6.34)

Tr(Q)
Hopt = ;T' (6.35)
where y = 2u¢; + u~1Tr(Q). (6.36)

In (6.34) to (6.36), 02 = E[|v;|?] is the noise variance and Tr(Q) is the trace of the covariance
matrix Q = E[q;q;] of the noise sequence q;.

In addition, the expressions for the tracking MSE and optimum step-size of the NSLMS
algorithm for both cases of real- and complex-valued data were also generalized in [45] as
they are identical except for a scaling factor and are given by (6.37) and (6.38), respectively
[45]:

1 Y\/E Y\/E yim
Q' = gl 1 + \/1_6 + 26!0',,2¢zzl + o2, (6.37)
Tr(Q)
Hopt = | g (6.38)
wherey = aup, + 1~ 1Tr(Q), (6.39)

wherein the scaling factor a takes the value 1 and 2 for real- and complex-valued data cases,
respectively. Moreover, it is shown that the simulation results are in a good match with the
analytical results.
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Finally, a comparison between the convergence performance of the NSLMS and NLMS
algorithms indicates slower convergence of the NSLMS algorithm for both white Gaussian and
correlated Gaussian regressors in an AWGN environment with an SNR of 10 dB. It is also
observed that the convergence performance of the NSLMS algorithm gets more inferior
compared to the NLMS algorithm for complex-valued data than real-valued data.
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ABSTRACT

In this paper, the steady-state and tracking behavior of the
complex signed regressor least mean square (SRLMS) algo-
rithm are analyzed in stationary and nonstationary environ-
ments, respectively. Here, the SRLMS algorithm is analyzed
in the presence of complex-valued white and correlated Gaus-
sian input data. Moreover, a comparison between the con-
vergence performance of the complex SRLMS algorithm and
the complex least mean square (LMS) algorithm is also pre-
sented. Finally, simulation results are presented to support
our analytical findings.

Index Terms— LMS, SRLMS, Steady-state, Tracking.

1. INTRODUCTION

Computational complexity reduction of the adaptive noise
cancelation system, particularly, in applications such as wire-
less biotelemetry system is very important [1]. The signed
regressor least mean square (SRLMS) algorithm is known to
have a reduced computational complexity compared to that
of the traditional least mean square (LMS) algorithm [2].
Therefore, adaptive filters equipped with the signed versions
of the LMS algorithm (such as the SRLMS algorithm) are
extensively used for the processing and analysis of electro-
cardiogram (ECG) signals [1].

The SRLMS algorithm is obtained from the conventional
LMS algorithm by replacing the regressor vector by its sign.
The SRLMS algorithm is also referred to as simply the signed
regressor algorithm (SRA) [2]-[3]. Theoretical studies of the
SRLMS algorithm can be found in [2]-[5]. To the best of the
authors knowledge, the steady-state and tracking analysis of
the SRLMS algorithm for the case of complex-valued data are
not available in the literature of adaptive filtering. Therefore,
this work reports the findings of the steady-state and tracking
analysis of the SRLMS algorithm for the case of complex-
valued data.

The organization of the paper is as follows. The com-
plex SRLMS algorithm is described briefly in Section 2. The
steady-state and tracking analysis of the complex SRLMS al-
gorithm are derived in Sections 3 and 4, respectively. Finally,
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simulation results and some concluding remarks are presented
in Sections 5 and 6, respectively.
2. THE COMPLEX SRLMS ALGORITHM

The weight update recursion for the complex SRLMS algo-
rithm is governed by

Wi = Wi—1 + pesgn[w]te;, >0, (1)

where w; is the updated weight vector, ¢ is the step-size, u; is
the regressor vector, and ¢; denotes the estimation error given
by

ep = dy —wwyy, 2)

where d; is the desired value.

3. STEADY-STATE ANALYSIS

We shall assume that the data {d;, u;} satisfy the following
assumptions of the stationary data model [6]:

A.1 There exists an optimal weight vector w such that
d; = uiwo + V;. (3)

A.2 The additive noise sequence v; is independent and
identically distributed (i.i.d.) circular with variance
a2 = E[|v;]?] and is independent of u; for all , 5.

A.3 The initial condition w_j is independent of the zero
mean random variables {d;, u;, vi};

A.4 The regressor covariance matrix is R = E [uu,] > 0.

For the adaptive filter of the form in (1), and for any data
{d;,u;}. assuming filter operation in steady-state, the follow-
ing variance relation holds [6]:

HE [Jlus| i lged?] = 2Re [E [ gle]], as i o0,
4)

where
Ellwllf] = EReuHulu;]), (5)
e = Cq, + Ui, (0)

with H[u; | denoting some positive-definite Hermitian matrix-
valued function of u;, e,, = u;(W® — w;_1) is the a priori
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estimation error, g[e;] denotes some function of e; and for the
complex SRLMS algorithm g[e;] = e;. Then, by using the
fact that e,, is independent of v;, we reach at the following
expression for the term E [¢} g[e;]]:

gled]] = Ellea,”].

To evaluate the term E [||u;|||g[es]|*]. we start by noting
that

Ele: (N

(8)

Now, if we multiply (8) by ||u;||% from the left, then take the
expected value of the resulting equation and use the fact that
v; is independent of both u; and e,,, we obtain

lgled]” = lea, [ + [vif® + €f,vi + eavf

E [[|uillfleled][*] = Ell[wil flea,*] + oSE[lwllE]. )
In [7]. we have shown that
4Tr(R)
B[||lwl|E] = . 10)
ol == (
Substituting (10) into (9) we get
402Tr(R)
E uiQU'QiQZE u;zea,2+b7, (11)
(1w [Fleles] ] = Ell[wllflea. ] Jro?
Substituting (7) and (11) into (4) we get
dposTr(R
el dea, )+ 22 _ope, 21 2

o2

In order to simplify (12), we use the separation principle,
namely. that at steady-state, ||u;|[f; is independent of eZ .
Therefore, we obtain

R)E[|ea, |? ] 40T ( (R) _

2 2
u u

ApTr(
2E[Jeq, |-

(13)

e

This leads to the expression for the steady-state excess-mean-
square error (EMSE), ¢ = E[|eq, |?]. of the complex SRLMS
algorithm which is given by

4102 Tr(R)
2y/mo2 — 4uTr(R

Ultimately, the steady-state mean-square error (MSE), ¢ =
E [le; |2] of the complex SRLMS algorithm is given by

(= 7= o (14)

4uc?Tr(R) 52 (15)
4uTr(R v

A —

s 2y/mo —

4. TRACKING ANALYSIS

Here, let us assume that the data {d;, u;} satisfy the following
assumptions of the nonstationary data model [6]:

A.5 There exists an optimal weight vector w such that

d; = u;wi + ;. (16)
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A.6 The weight vector varies according to the random-walk
model
wi =W +qi (n

where the Gaussian noise sequence q; is i.i.d. with vari-
ance O'g and covariance matrix Q. Moreover, q; is inde-
pendent of {v;, u,} forall i, j.

A.7 The initial conditions {w_;, w?,} are independent of
the zero mean random variables {di. u;, 'vl.qi}‘

In this case, the following variance relation holds [6]:

pB [lwlfElgle] ] + p 7t Tr(Q) = 2Re [E [ef gfe]] .

as i — 00. (18)

Therefore, by substituting (7) and (11) into (18), the tracking
EMSE of the complex SRLMS algorithm can be shown to be

7o~ Tr(Q)
TH(R)

~ ApolTr(R) +
2\/wol —
The optimum value of the step-size of the complex SRLMS

algorithm can be obtained by minimizing (19) with respect to
¢ and is given by

(19)

L @[ VaE] Q)
fopt = 5 o2 o2 Tr(R) 202

Ultimately, the corresponding minimum value of the tracking
MSE of the complex SRLMS algorithm is given by

+ V ﬂ-au #opt

— dpopi Tr(R

Aptopro2 Tr(R
2\/mol

Finally, Table 1 and Table 2 report the expressions for the
steady-state EMSE and the tracking EMSE of the complex
SRLMS and LMS algorithms, respectively.

+a§. 21

o I
¥min —

Table 1. Performance comparison of the steady-state EMSE
for the LMS and the complex SRLMS algorithms.

Algorithm Steady-state EMSE
po Tr(R)

LMS 2—puTr(R)
4pe?Tr(R)

Complex SRLMS 72@*4#%(?1)

5. SIMULATION RESULTS

Several simulations are carried out in order to corroborate our
theoretical findings. In all the simulations, the filter length
is fixed at M = 5. In Fig. 2 and Fig. 4, the correlated
data is obtained by passing a unit-variance i.i.d. Gaussian

data through a first-order auto-regressive model with transfer
v 1_“1) and a = 0.8.

function

In Figures 3—4, we have

az

a
chosen 03 108, Additive white Gaussian noise (AWGN)
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Table 2. Performance comparison of the tracking EMSE for
the LMS and the complex SRLMS algorithms.

Algorithm Tracking EMSE
poy Tr(R)+p~ ' Tr(Q)
LMS Sy Te (R
4pa Tr(R)++/ma? p~ 1 Tr(Q)
Complex SRLMS 2 /ro?—IuT(R)

environment is considered in Figures 1-6, while in Figures
7-8 uniform noise environment is considered. The signal-to-
noise ratio (SNR) is fixed at 30 dB in Figures 1-4 and 10 dB
in Figures 5-8.

First, the steady-state MSE of the complex SRLMS al-
gorithm using white and correlated Gaussian regressors is
shown in Figures 1-2, respectively. As can be seen from
these figures, the simulation results are in a very good match
with the theoretical result in equation (15) for values of
ranging from 0.0001 to 0.01.

—&— Simulation
—%— Theory

-25

27

MSE (dB)

Step-size (1)

Fig. 1. Theoretical and simulated steady-state MSE of the
SRLMS algorithm using white Gaussian regressors.

-24

&— Simulation
Theory

—26

MSE (dB)
&
3

-29

_anq o

Step-size (1)

Fig. 2. Theoretical and simulated steady-state MSE of the
SRLMS algorithm using correlated Gaussian regressors.

Second, Figures 3—4 demonstrate the tracking perfor-
mance of the complex SRLMS algorithm using white and
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correlated Gaussian regressors, respectively. A zoom into
the region around y¢ = 0.002 shows that the tracking MSE
possesses a minimum value of —29.828394 in Fig. 3 and
—29.871226 in Fig. 4 at p = 0.003, which are in very
good agreement with the corresponding theoretical values of
Omin = —29.896845 and piop; = 0.00208 obtained from
expressions (21) and (20), respectively.

N i H —&— Simulation
N : —&— Theory

20.828304 -+ vnrnnnns

-20.806845

28 000208 0003
o 7
~_ & >

e e
10 10° 10° 10"
Step-size (1)

MSE (dB)
5

Fig. 3. Theoretical and simulated tracking MSE of the
SRLMS algorithm using white Gaussian regressors.

Finally, the convergence behavior of the complex SRLMS
algorithm is compared to that of the complex LMS algorithm
in an unknown system identification setup. Figures 5 and 7
show the convergence performance of both the algorithms
using white Gaussian regressors, while Fig. 6 and Fig. §
show the convergence comparison using correlated Gaussian
regressors. As observed from these figures, the complex LMS
algorithm results in superior performance over the complex
SRLMS algorithm for the same misadjustment.

6. CONCLUSIONS
In this work, analytical expressions are derived for the steady-
state MSE, optimal step-size, and the corresponding optimal
tracking MSE of the SRLMS algorithm for complex-valued
data case. We observed that the theoretical values of the op-

—&— Simulation
—s— Theory
25

—29.871226} -

-29.896845}-- -

MSE (dB)
&
]

28 000208 0.003

107 10 10° 107
Step-size (1)

Fig. 4. Theoretical and simulated tracking MSE of the
SRLMS algorithm using correlated Gaussian regressors.
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Fig. 5. Convergence comparison of the LMS and the SRLMS
algorithms using white Gaussian regressors in an AWGN en-
vironment.
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Fig. 6. Convergence comparison of the LMS and the SRLMS
algorithms using correlated Gaussian regressors in an AWGN
environment.

timal step-size and the resulting minimum MSE of the com-
plex SRLMS algorithm are similar for white and correlated
Gaussian data. Furthermore, we also observed that the theo-
retical and simulation values of the optimal MSE of the com-
plex SRLMS algorithm are in much closer agreement for cor-
related Gaussian data than white Gaussian data. Finally, as
expected, the complex SRLMS algorithm has been shown to
exhibit slower convergence rate than the complex LMS algo-
rithm for the same misadjustment.
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Abstract—This paper presents expressions for the
steady-state mean-square error (MSE), the optimum step-
size, and the corresponding minimum value of the track-
ing MSE of the sign-sign least mean square (SSLMS)
algorithm for the case of real-valued data. Then, sim-
ulation results are presented to support our analytical
findings and found to corroborate them very well. Also,
the performance of the SSLMS algorithm is compared
to that of the LMS algorithm in the case where the noise
statistics are uniformly distributed.

Index Terms—SSA, SSLMS, steady-state, tracking.

I. INTRODUCTION

The sign-sign least mean square (SSLMS) algorithm
or simply the sign-sign algorithm (SSA) is based on
clipping of both the input data and the estimation error.
The SSLMS algorithm has been widely studied over
the past years [1]- [9].

In [10], a unified approach based on energy conser-
vation relation [11] was used to study the steady-state
and tracking analysis of a number of adaptive filters. To
the best of the authors’ knowledge, the steady-state and
tracking analysis of the SSLMS algorithm based on
this unified approach are not available in the literature
of adaptive filtering. Therefore, this work reports the
findings of the steady-state and tracking analysis of the
SSLLMS algorithm based on this unified approach.

The rest of the paper is organized as follows. The
SSLMS algorithm is described in Section 2. The
steady-state and tracking analysis of the SSLMS algo-
rithm is carried out in Sections 3 and 4, respectively.
The simulation results are discussed in Section 5. Fi-
nally, some concluding remarks are reported in Section
6.

II. THE SSLMS ALGORITHM

The SSLMS algorithm is based on clipping of both
the regressor vector u; with variance 02 = E[u?]
and the estimation error e;. The SSLMS algorithm
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updates its weight vector w, according to the following
recursive rule [1]- [9]:

w; = w,_q + psignfu,]Tsignle;], >0, (1)

where 4 is the step-size, sign[u;]T = H[u,]uf,
and I[u;] is some positive-definite Hermitian matrix-
valued function of u; defined for filter length M as

mw=d%{l ! 1}.(2

[ug, |7 [, | [z, |
ITI. STEADY-STATE ANALYSIS
To carry out the steady-state analysis of the SSLMS
algorithm we shall assume that the data {d;, u;} satisfy
the following assumptions of the stationary data model
[10]- [12]:
Al

There exists an optimal weight vector w*?
such that d; = u;w° + v;.
The noise sequence v; is independent and
identically distributed (i.i.d.) with variance
2 = E[v?] and is independent of u; for all
i, ]
The initial condition w_; is independent of
the zero mean random variables {d;,u;, v;}.
The regressor covariance matrix is R =
E[ufu] > 0.

For the adaptive filter of the form in (1), and for any
data {di,ul}, assuming filter operation in steady-state,
the following variance relation holds [10]- [11]:

A2

A3

A4

pE [[|w;|[fig?[e:] = 2E [eq,gles]], as @ — 00, (3)

where
E[II“?.II%I] = E[qu[uz]u;F], 4
e; €q, + U, (5)
with e,, = u;(w® — w,_;) denoting the a priori

estimation error, gle;] denoting some function of e;,
and for the SSLMS algorithm ge;] can be written as

gle:] = signleq, + vi. (6)
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Substituting (6) into (3) and by using the fact that
(sign[z])? = 1, we get

pE [||w|[fi] = 2E [eq,signleq, + vi]] - 7
From [12], we have
E 2 2
[l = ETT(R): 8)

where Tr(R) is the trace of R. From [13], we have
Eled ]

2
E [eq,signfeq, + v;]] = \/; \/W] ()]

By substituting (8) and (9) into (7), the expression
for the steady-state excess-mean-square error (EMSE),
¢ = EleZ ], of the SSLMS algorithm can be shown to

be
[ (10)

Finally, the expression for the steady-state mean-square
error (MSE), ¢ = E [(’f], of the SSLMS algorithm is
given by

pTr(R)

1o,

2 [Tr(R)J?

1602

_ wTr(R)

20,

2

p=C+al.

(11)
IV. TRACKING ANALYSIS

To carry out the tracking analysis of the SSLMS
algorithm we shall assume that the data {d;, u; } satisfy
the following assumptions of the nonstationary data
model [10], [11], [14]:

A.5 There exists a vector w{ such that d; =
u,w? + v;.
The weight vector varies according to the
random-walk model wj = w{_; +q;, and the
noise sequence q; is i.i.d. with variance o2
Elg?] and covariance matrix Q = E[q;q]].
Moreover, q; is independent of {v;,u;} for
all 7, 7.
The initial conditions {w_y,w?,} are inde-
pendent of the zero mean random variables
{d;,u;,v;,q;}

For the adaptive filter of the form in (1), and for any
data {di, ut}, assuming filter operation in steady-state,
the following variance relation holds [10]— [11]:

pE [ [frg®[ed] +p 7 Tr(Q)
2E [eq,glei]], as i — oo

A6

A7

(12)

Substituting (6) into (12) and by using the fact that
(sign[z])? = 1, we get

v = 2E [eq,sign[eq, + v, (13)

46

which can be set up as follows:

v = nE [[[u|[fi] +p ' Tr(Q).

By substituting (9) into (13) the expression for the
tracking EMSE ( of the SSLMS algorithm can be
shown to be

A L R VE
Y Rl Oy Y R E A &
¢ V9 [2 5 TV g T (s)

Consequently, the optimum step-size jiope of the
SSLMS algorithm can be obtained by minimizing (14)
with respect to y and 1s given by

T (Q)
E [|Jwl|f]

Finally, the corresponding minimum value of the track-
ing MSE ¢, of the SSLMS algorithm is given by

(14)

(16)

Hopt —

rn,, zqopt /E Yopt /z 2
¥ min 4 2 9 2 + +(71,~:
(a7)

where
Yopt = Pope B [[[wil[fi] + 165 Tr(Q). - (18)

V. SIMULATION RESULTS

In this section, the simulation results are reported
as follows: Uniform noise is considered in Figure 1
whereas additive white Gaussian noise (AWGN) is
considered in Figures 2-5. M is fixed at 5 in Figure
I and at 10 in Figures 2-5. The signal-to-noise ratio
(SNR) is fixed at 10 dB in Figure 1, at 30 dB in Figures
2-3, and at 20 dB in Figures 4-5. Finally, oé is fixed
at 1078 in Figures 4-5.

MSE (dB)

5,000

10,000 15,000
Iterations

20,000 25,000

Fig. 1. Comparison of the convergence curves of the SSLMS and
LMS algorithms.

As can be seen from Figure 1, the convergence
performance of the SSLMS algorithm is found to

94



2018 15th International Multi-Conference on Systems, Signals & Devices (SSD)

be inferior when compared with to that of the LMS
algorithm. The LMS algorithm converges faster than
the SSLMS algorithm in this scenario. In Figures 2—
3, the steady-state MSE of the SSLMS algorithm is
plotted for varying step-sizes and different regressors.
As can be seen from these figures, the simulation result
and the theoretical result in (11) are in close agreement
for correlated Gaussian regressors than white Gaussian
regressors.

Finally, Figures 4-5 show the tracking performance
of the SSLMS algorithm using white and correlated
Gaussian regressors, respectively. A zoom into the
region around g = 0.0001 in Figure 4 shows that
the tracking MSE possesses a minimum value of
—19.9314948 dB at p = 0.0001, which are in good
agreement with the corresponding theoretical values
of LpH;m —19.9513803 dB at pop, = 0.0001119
obtained from expressions (17) and (16), respectively.
Similarly, a zoom into the region around p = 0.0001
in Figure 5 shows that the tracking MSE possesses
a minimum value of —19.9484745 dB at ;¢ = 0.0001,
which are in very good agreement with the correspond-
ing theoretical values of g{)l;]m = —19.9513803 dB at
Jtopt = 0.0001119 obtained from expressions (17) and
(16), respectively.

VI. CONCLUSIONS

In this work, expressions are derived for the steady-
state MSE, the optimum step-size, and the corre-
sponding minimum value of the tracking MSE of the
SSLMS algorithm for the case of real-valued data.
It is shown that the convergence performance of the
SSLMS algorithm is inferior when compared with that
of the LMS algorithm. Finally, we observe a close
agreement between the simulation and analytical re-
sults for correlated Gaussian regressors than for white
Gaussian regressors.

MSE (dB)

10°

Step-size (1)

Fig. 2. Theoretical and simulated steady-state MSE of the SSLMS
algorithm using white Gaussian regressors.

47

Simulation
Theory |

107!
Step-size (1)

Fig. 3. Theoretical and simulated steady-state MSE of the SSLMS
algorithm using correlated Gaussian regressors.

—e— Simulation
—4— Theory ||

L A

MSE (dB)

19.9513803 -

Step-size (1)

Fig. 4. Theoretical and simulated tracking MSE of the SSLMS
algorithm using white Gaussian regressors.

=—8— Simulation
e Theory

1GGABATAG [+ == NG oo

MSE (dB)

19513808 Frrrevrrmrrmrnreeaen e

0.0001118

. 4

10
Step-size (1)

Fig. 5. Theoretical and simulated tracking MSE of the SSLMS
algorithm using correlated Gaussian regressors.
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Abstract—Terms for the steady-state mean-square error,
the optimum step-size, and the corresponding minimum
value of the tracking mean-square error of the sign-sign
least mean square algorithm for complex-valued data are
derived in the work. Moreover, convergence comparison of
the least mean square (LMS) algorithm and the sign-sign
LMS algorithm for complex-valued data is also presented.
Finally, simulation results are presented to support our
analytical findings.

Index Terms—Complex-valued data, sign-sign LMS,
Tracking, Steady-State.

I. INTRODUCTION

The presented sign—sign least mean square (SSLMS)
algorithm is known to have a reduced computational
complexity compared to that of the conventional least
mean square (LMS) algorithm [1]- [9]. Therefore,
adaptive filters equipped with the signed versions of the
LMS algorithm (such as the sign—sign LMS algorithm)
are extensively used for the processing and analysis of
electrocardiogram (ECGQG) signals [10].

The sign—sign LMS algorithm is based on clipping
the regressor vector and the estimated error. The pro-
posed sign—sign LLMS algorithm carries the adaptation
of its weight vector w; according to the following
recursive rule:

w; = w;_1 + u csgnlu;|*csgnle;], 1 >0, (D)

where p is the step-size, u; is the regressor vector with
variance o2 = E[|u;|?], and e; is the estimation error
given by

e =d; — Uwi—1, 2)

with d; denoting the desired value. This work reports
the findings of the steady-state and tracking analysis of
the sign—sign LMS algorithm for complex-valued data
based on energy conservation approach [11]- [12].
The rest of the paper is organized as follows: The
steady-state analysis is carried out in Section II. In Sec-
tion 111, the tracking analysis of the proposed algorithm
is studied, while the performance of the filter is tested
in Section IV. Finally, Section V concludes the paper.
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II. STEADY-STATE ANALYSIS

This section reports the steady-state analysis of of the
sign—sign LMS algorithm. Hence, for this task it shall be
assumed that the data {d;,u;} to satisfy the following
assumptions of the stationary data model [11]- [12]:

A.1  There exists an optimal weight vector w? such

that
d; = u;w® + ;. 3)

A.2  The additive noise sequence v; is independent
and identically distributed (i.i.d.) circular with
variance o2 = E[|v;|?] and is independent of
u; for all ¢, j.
The initial condition w_; is independent of
the zero mean random variables {d;,u;,v;}.
The regressor covariance matrix is R =
E[uju,] > 0.

For the adaptive filter of the form in (1), and for any
data {d;,u;}, assuming filter operation in steady-state,
the following variance relation holds [11]- [12]:

A3

A4

1E [|[wil|f|gled[?] = 2Re [E [e] gle]]], as i — oo,
4)

where
E[l[ul[fi] = E[RefuH[u;]u;]], (5)

and
e = eq + U (6)

with H[w;] denoting some positive-definite Hermitian
matrix-valued function of w;, the a priori estimation
error is given by

o

—Wi1) (N

€q, = W (W

i

gle;] denotes a function of e; and for the SSLMS
algorithm gle;] is defined as

gle:] = csgnleq, + i (8)
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Substituting (8) into (4), and using the fact that
|esgn[z]|> = 2 almost everywhere in the complex plane,
we get

pE [|[uil|f] = Re [E [e}, csgnleq, +vi]]] . (9)
In [13], we have shown that
4Tr(R
Effjuil}] = 200 (10)

with the trace of R given by Tr(R). From [14], then
we can write

Re [E [e}, csgnleq, +vi]]] = —=

The steady-state excess-mean-square error (EMSE) ex-
pression for the SSLMS algorithm, ¢ = E[le,,|?], is
derived after substituting (10) and (11) into (9), and is
given by

2,uTr(R)

¢= 5= [pm(R) + VAT RP + 0207
(11)
Ultimately, the steady-state mean-square error (MSE),
¢ =E [leil*],
by
p=(+al. (12)

III. TRACKING ANALYSIS

To carry out the tracking analysis of the sign—sign
LMS algorithm we shall assume that the data {d;,u;}
satisfy the following assumptions of the nonstationary
data model [11]-[12]:

A5 There exists a vector w{ such that d; =
UiW? + v;.

A.6  The weight vector varies according to the
random-walk model w{ = w¢_, + q;, where
the Gaussian noise sequence q; is independent
and identically distributed with o2 = E[|q;|?]
and covariance matrix Q = E[q;q}]. More-
over, q; is independent of {v;,u;} for all 7, j.

A.7  The initial conditions {w_;,w?,} are inde-

pendent of the zero mean random variables
{di, wi, vi, qi}.

For the adaptive filter of the form in (1), and for any
data {d;,u;}, assuming filter operation in steady-state,
the following variance relation holds [11]- [12] when
1 — o0:

HE [||uil[Flgle)*] + p~'Tr(Q) =
2Re [E [e}, glei]]] - (13)

Substituting (8) into (13) and knowing that |csgn[z]|? =
2, we obtain

v = 2Re [E [e}, csgnleq, + vi]]] (14)

978-1-7281-1820-8/19/$31.00 ©2019 IEEE

2 E[leq,|?]
v (\/E[Iea,l2]+03)'

where
v = 2uE [|[wil[f] + p~ ' Tr(Q).

By substituting (11) into (14) the tracking EMSE of the
SSLMS adaptive algorithm results in

= WA+ Vi

Consequently, the optimum step-size jiop¢ Of the sign—
sign LMS algorithm can be obtained by minimizing (15)
with respect to ; and is given by

_Tr(Q)
2E[[[willZ]’

(15)

(16)

a7

Hopt =

Finally, the s:onesponding minimum value of the track-
ing MSE ¢, .. of the sign—sign LMS algorithm is given
by

’ ’)/ /T
Pmin = 0';2\/_ [70pt\/7_7 + \/ 7§pt7r + 640’2 + O‘U,

(18)

where

Yopt = 2HoptE [[[uil[fi] + gp Tr(Q).  (19)

Finally, Tables I and II report the expressions for the
steady-state EMSE and tracking EMSE of the LMS and
complex sign—sign LMS algorithms, respectively.

TABLE 1
STEADY-STATE EMSE EXPRESSIONS COMPARISON OF THE LMS
AND COMPLEX SIGN-SIGN LMS ALGORITHMS.

Algorithm Steady-state EMSE Expression
uo>Tr(R)
LMS 2—uTr(R)
2,L‘( n(R))*

Complex SSLMS

+@E{(ﬂ ;tz[Tr(R 12 + 0202

TABLE 11
TRACKING EMSE EXPRESSIONS COMPARISON OF THE LMS AND
COMPLEX SIGN=SIGN LMS ALGORITHMS.

Algorithm Tracking EMSE Expression
LMS po Tr(R)+p 1 Tr(Q)

2—uTr(R)
¥+ G4a'f,J

Complex sign-sign LMS

IV. SIMULATION RESULTS

In Figures 14, the filter length is fixed at M = 10
and signal-to-noise ratio (SNR) is fixed at 10 dB. In
Figures 5-8, the filter length is fixed at M = 5 and SNR
is fixed at 30 dB. Two scenarios are used. In Figures
1-2 and in Figures 3-8, uniform and Gaussian noise
are used, respectively.
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In Figures 2, 4, 6, and 8, the correlated data is
obtained by passing a unit-variance i.i.d. Gaussian data
through a first-order auto-regressive model with transfer

function f% and a = 0.8.

As depicted from Figures 14, the performance of the
LMS algorithm is found to be superior when compared
with that of the SSLMS algorithm for complex-valued
data. Figures 5-6 show the steady-state performance of
the sign—sign LMS algorithm using white and correlated
Gaussian regressors, respectively. Figures 7-8 show the
tracking performance of the sign-sign LMS algorithm
using white and correlated Gaussian regressors, respec-
tively. As can be seen from Figures 5-8, the simulation
and analytical results are in relatively better agreement
for white Gaussian regressors than correlated Gaussian

regressors for complex-valued data.

ms
ssLms

MSE (dB)

.

10000

o 5000 15000
Iterations

Fig. 1. Comparison of the SSLMS and LMS adaptive filters in a
uniform noise for white Gaussian regressors.

LMS
SSLMS |

MSE (dB)

10000 15000

Iterations

Fig. 2. Comparison of the SSLMS and LMS adaptive filters in a
uniform noise for correlated Gaussian regressors.

V. CONCLUSIONS

This work reports terms for the steady-state MSE,
the optimum step-size, and the corresponding minimum
value of the tracking MSE of the SSLMS algorithm for

978-1-7281-1820-8/19/$31.00 ©2019 IEEE

Fig. 3. Comparison of the SSLMS and LMS adaptive filters in a
Gaussian noise for white Gaussian regressors.

Fig. 4. Comparison of the SSLMS and LMS adaptive filters in a
Gaussian noise for correlated Gaussian regressors.
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Fig. 5. Theoretical and simulated steady-state MSE of the sign-

sign LMS algorithm using white Gaussian regressors in an AWGN
environment.

complex-valued data. It is shown that the convergence
behaviour of the LMS algorithm is superior to that
of the SSLMS algorithm. Finally, a good agreement
between the simulation and the theoretical results for
white Gaussian regressors than correlated Gaussian re-
gressors is obtained.
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Fig. 6. Theoretical and simulated steady-state MSE of the sign—sign
LMS algorithm using correlated Gaussian regressors in an AWGN
environment.
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Fig. 7. Theoretical and simulated tracking MSE of the sign—sign LMS
algorithm using white Gaussian regressors in an AWGN environment.
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Fig. 8. Theoretical and simulated tracking MSE of the sign—sign
LMS algorithm using correlated Gaussian regressors in an AWGN
environment.
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Abstract—In this paper, we provide some insights into the
convergence and steady-state behaviors of the sign-error least
mean fourth (SLMF), sign-sign least mean fourth (SSLMEF),
normalized sign-error least mean fourth (NSLMF), and normal-
ized sign-sign least mean fourth (NSSLMF) algorithms for both
cases of real- and complex-valued data. Moreover, we also report
the equivalence algorithms of the block-based normalized sign-
error least mean fourth (BBNSLMF) and block-based normalized
sign-sign least mean fourth (BBNSSLMF) algorithms. Finally,
simulations are conducted for both cases of real- and complex-
valued data to provide us with more insights into the performance
of the SLMF, SSLMF, NSLMF, and NSSLMF algorithms.

Index Terms—Convergence, Steady-state, SLMF, NSLMF, BB-
NSLMF, SSLMF, NSSLMF, BBNSSLMF.

[. INTRODUCTION

In [1]. eight adaptive noise cancelers were proposed for
electroencephalogram (EEG) signal enhancement in remote
health monitoring applications. These eight adaptive noise
cancelers were implemented using the variants of least mean
fourth (LMF) algorithm [2], such as the normalized least
mean fourth (NLMF) [3]-[4], normalized sign regressor least
mean fourth (NSRLMF) [5]-[6], normalized sign-error least
mean fourth (NSLMF), normalized sign-sign least mean
fourth (NSSLMF). block-based normalized least mean fourth
(BBNLME), block-based normalized sign regressor least mean
fourth (BBNSRLMF), block-based normalized sign-error least
mean fourth (BBNSLMF), and block-based normalized sign-
sign least mean fourth (BBNSSLMEF) algorithms [1]. Four of
these adaptive noise cancelers implemented using the NSLME,
NSSLME BBNSLME, and BBNSSLMF algorithms [1] are the
motivation behind this work.

The organization of this paper is as follows. The sign-
error least mean fourth (SLMF) algorithm, which is the basis
for developing the NSLMF and BBNSLMF algorithms [1]
is described in Section II. The sign-sign least mean fourth
(SSLMF) algorithm, which is the basis for developing the
NSSLMF and BBNSSLMF algorithms [1] is described in
Section III. The NSLMF and NSSLMF algorithms [1] are
described in Sections IV and V, respectively. Simulation results
are discussed in Section VI. Finally, the paper is concluded in
Section VII.

978-1-4799-1758-7/15/$31.00 ©2015 IEEE

II. THE SLMF ALGORITHM

The SLMF algorithm [1] is based on clipping of the
estimation error signal, whose weight update equation for real-
valued data is given by

Wi =W; 1+ U u;[‘sign[eﬂ 1> 0, (1)
where w; is the updated weight vector, p is the step-size, u;
is the regressor vector, the estimation error signal ¢; is given
by

e; = dl‘ — Wi, (2)

where d; is the desired value, and

-1, ifxr<0,
signfa] = 0, ifxr=0, 3)
1, ifz>0.
We know that,
sign[‘va] = sign[z]. 4

Therefore, the SLMF algorithm in (1) boils down to the sign-
error least mean square (SLMS) algorithm as shown below

[71-(81]:
W; =W 1+ p u?sign[ei]. i>0. (3)

In Table [ we give some examples for the validity of equation
(4).

TABLE I
SOME EXAMPLES FOR EQUATION (4).
x| signfz] | sign[z?]
0 0 0
0.1 1 1
—0.1 -1 -1

For complex-valued data [9], the weight update equation of
the SLMF algorithm takes the form

Wi =Wi_) +p uesgnfele]?], i3> 0, (6)
where
-1, if R[z] <0or
(R[z] =0 and S{z] < 0),
esgnfr] =< 0, if Rz] = Q[z] =0, (7)

1, if Rz]>0o0r
(R[z] = 0 and S[z] > 0).



We know that |e;|? is a positive number. The multiplication
of \e,;|2 with ¢; yields a scaled version of the estimation error
signal while preserving the signs of its real and imaginary
parts. Therefore, the complex SLMF algorithm in (6) reduces
to the complex SLMS algorithm as shown below [7]-[8]:

wW; = W;_1 + g Wesgnle;], @ >0. (8)

In Table I we present some examples for the following
equation:

esgn[z|z|?] = csgn(z]. 9)

TABLE II
SoME EXAMPLES FOR EQUATION (9).

T csgnfz] | csgnfzz[?]
0 0
0.1+0.1¢ 1 1
0.1 —-0.1i 1 1
—0.140.14 —1 -1
—0.1—-0.10 —1 —1

[II. THE SSLMF ALGORITHM

The SSLMF algorithm [1] is obtained by clipping both
the regressor vector and the estimation error signal as shown
below for real-valued data:

W, =W,_1+u sigu[ui]Tsign[eﬂ. i>0.  (10)
Putting equation (4) into (10) we observe that the SSLMF
algorithm boils down to the sign-sign least mean square
(SSLMS) algorithm as shown below [8], [10]:

i>0. (11)

Wi =W;_1 +p sign[uz-}Tsigu[eiL

For complex-valued data, the weight update rule of the
SSLMEF algorithm takes the following form:
Wi =W;_1+u csgn[ui]*csgll[ei|ei|2]. i >0, (12)

which boils down to the complex SSLMS algorithm as de-
scribed below [8], [10]:
>0, (13)

The MATLAB implementation of the complex SSLMS
algorithm is as follows:

Wi = Wiy + p csgnfug] esgnleq].

w; = W, 1+ u {sign[real(u})| + sign[imag(u}))i}

x{sign[real(e;)] + sign[imag(e;)]i}. (14)

Also, the MATLAB implementation for the complex SSLMF
algorithm is
W, = Wi_1 + p {sign[real(u})] + sign[imag(u})]i}

(15)

x {sign[real(e; )abs(e;)?] + sign[imag(e;)abs(e;)?]i}.

IV. THE NSLMF ALGORITHM

The weight update recursion of the NSLMF algorithm [1]
for real-valued data is given by:

1 >0, (16)

(a7

Wi_1 + i u}sign[ed],
L
€ + sign[u;sign[u;] T

w, =

Hi =

where y; is the normalized step-size and € is an extremely
small positive constant to avoid division by zero whenever the
regressor is zero. When the data is complex-valued, the weight
update recursion of the NSLMF algorithm is governed by

i>0, (18)

(19)

W = Wiy wesgnfe;le; ],
f
€ + esgnfug]esgnfu,]*

i =

Based on the discussion in Section II, the NSLMF algorithm in
(16) and (18) gets reduced to the normalized sign-error least
mean square (NSLMS) algorithm [11] as described by the
equations (20) and (21), respectively, for real- and complex-
valued data cases.

Wi = W1+ u?sign[q], i > 0. (20)
Wi = W1+ ujesgnfe], >0 2n

V. THE NSSLMF ALGORITHM

The weight update recursions of the NSSLMF algorithm
[1] for real- and complex-valued data cases are given by the
following two equations, respectively.

i>0. (22)
i>0.(23)

w; = Wi 1+ sign[u;)Tsign[e?],

Wi—1 + [ C»‘Sgn[ui]*csgﬂ[ei\@iﬂ

Wi

Similarly, in this case too, the NSSLMF algorithm in (22)
and (23) gets reduced to the normalized sign-sign least mean
square (NSSLMS) algorithm [12]-[13] as described by the
equations (24) and (23), respectively, for real- and complex-
valued data cases.

12> 0.
1> 0.

(24)
(25)

W, = W1+ sign[ui}Tsign[ei]._

W, Wi_1 + i csgnfug] esgnfe;],
The normalization term used in [1] for the NSLMF and
NSSLMF algorithms is slightly different than the one we have
used in this work. No matter how one chooses to normalize,
the NSLMF and NSSLMF algorithms will eventually boil
down to the NSLMS and NSSLMS algorithms, respectively.

In [1]. the update equations of the SLME, SSLMF, NSLMFE,
and NSSLMF algorithms are given for the case of real-
valued data. For the sake of completeness, in this paper we
have discussed the SLMF, SSLMF, NSLMFE and NSSLMF
algorithms for both cases of real- and complex-valued data.

Finally, Table III reports the equivalence algorithms of the
block-based algorithms proposed in [1].
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TABLE 111
BLOCK-BASED ALGORITHMS AND THEIR EQUIVALENTS.

Block-based Algorithm
BBNSLMF
BBNSSLMF

Equivalent Algorithm
BBNSLMS
BBNSSLMS

VI. SIMULATION RESULTS

In all the simulations, the adaptive weight vector length
is fixed at M = 10 and an additive white Gaussian noise
(AWGN) environment is considered at a signal-to-noise ratio
(SNR) of 10 dB. The value of ¢ is fixed at 10~ for all the
normalized algorithms.
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Fig. 1. Convergence behavior of the SLMS and SLMF algorithms.
. Real-valued Data
[——ssLus —— SSLMF
\ 0
] \ . g
g \ \
8 [N R S N

3K 6K

SSLMS, SSLMF (Overlapping)

h
6,000
lterations

L L
0 3,000 9,000

12,000

Fig. 2. Convergence behavior of the SSLMS and SSLMF algorithms.

Figures 1-4 demonstrate the convergence performance of
the SLMF, SSLME, NSLME, and NSSLMF algorithms for the
case of real-valued data, and while Figures 5-8 demonstrate
their convergence performance for the case of complex-valued
data. As can be seen from Figures 1-8, the SLMF, SSLME,
NSLME and NSSLMF algorithms converge at exactly the
same rate and have the same mean-square error (MSE) per-
formance as the SLMS, SSLMS, NSLMS, and NSSLMS
algorithms, respectively.
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Fig. 3. Convergence behavior of the NSLMS and NSLMF algorithms.
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Fig. 4. Convergence behavior of the NSSLMS and NSSLMF algorithms.

As depicted in Figures 1-8, the NSLMF and NSSLMF
algorithms outperform the SLMF and SSLMF algorithms,
respectively. In Figures 1. 3, 5, and 7 it is observed that the
SLMF and NSLMF algorithms converge faster for real-valued
data than complex-valued data. Finally, it is noted in Figures
2, 4. 6, and 8 that the convergence performance of the SSLMF
and NSSLMF algorithms is superior for complex-valued data
than real-valued data.

VII. CONCLUSIONS

In this work, we have shown that the convergence and MSE
performance of the SLMF, SSLMF, NSLMEF, and NSSLMF al-
gorithms are exactly the same as those of the SLMS, SSLMS,
NSLMS, and NSSLMS algorithms, respectively, for both the
real- and complex-valued data cases. As was expected, the
NSLMF and NSSLMF algorithms converge faster than the
SLMF and SSLMF algorithms, respectively, for both the
real- and complex-valued data cases. We observed that the
convergence behavior of the SLMF and NSLMF algorithms is
better when the data is real-valued than complex-valued. It is
interesting to note that the SSLMF and NSSLMF algorithms
converge faster for complex-valued data than real-valued data.
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Fig. 5. Convergence behavior of the complex SLMS and complex SLMF
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Comments on “Efficient Signal Conditioning Techniques for Brain Activity
in Remote Health Monitoring Network™
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Abstract— The main purpose of this paper is to remove misconceptions
among biomedical signal processing researchers concerning the imple-
mentation of adaptive noise cancelers using the sign-error least mean
fourth (SELMF), sign-sign least mean fourth (SSLMF), and their variant
algorithms.

Index Terms— Adaptive noise cancelers, SELMF, SSLMF.

I. INTRODUCTION

In [1], the authors proposed several adaptive noise cancelers for
electroencephalogram (EEG) signal enhancement in remote health
monitoring applications. Four of these adaptive noise cancelers
proposed in [1] are implemented using the normalized sign-error
least mean fourth (NSELMF), block-based normalized sign-error
least mean fourth (BBNSELMF). normalized sign-sign least mean
fourth (NSSLMF), and block-based normalized sign-sign least mean
fourth (BBNSSLMF) algorithms. The former two algorithms are the
variants of the sign-error least mean fourth (SELMF) algorithm and
the latter two algorithms are the variants of the sign-sign least mean
fourth (SSLMF) algorithm.

II. THE SELMF AND SSLMF ALGORITHMS

The SELMF algorithm is obtained from the conventional least
mean fourth (LMF) algorithm [2] by replacing the estimation error
signal e; by its sign. The weight vector update equation of the SELMF
algorithm is given by

wi = wi_y +p ulsien[e]], iz 0, (1)

where w; is the updated weight column vector, u is the step-size,
u; is the regressor row vector, the estimation error signal e; is
given by

e =di —u;wi_y, (2)
where d; is the desired value, and
-1, ifx <0,
sign[x] = { 0. if x =0, (3)
1, if x > 0.
We know that,
sign[x”] = sign[x]. (4)

Therefore, the SELMF algorithm in (1) reduces to the sign-error least
mean square (SELMS) algorithm as given below [3], [4]:
i>0.

Wi =Wi_| +pu u[Tsign[z’,»], (5)
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The SSLMF algorithm is based on clipping of both the regressor
vector and the estimation error signal, whose weight update rule is
given by
ilTsignfel]. i =0,

Wi = W;_| + ¢ sign[u (6)

Substituting equation (4) in (6) we find that the SSLMF algorithm
reduces to the sign-sign least mean square (SSLMS) algorithm as
given below [4], [5]:

W =W, +u sign[u;]Tsign[ei]. i =0. (7)

In [1], the SELMF and SSLMF algorithms are wrongly cited to be
mentioned in our paper on the analysis of sign regressor least mean
fourth (SRLMF) algorithm [6]. There is absolutely no mention of the
SELMF and SSLMF algorithms in [6].

Note that the SRLMF algorithm [6] is referred to as the sign
clipped least mean fourth (SCLMF) algorithm in [1]. Furthermore,
the variants of the SRLMF algorithm [6] such as the normalized sign
regressor least mean fourth (NSRLMEF) [7]. [8] and block-based nor-
malized sign regressor least mean fourth (BBNSRLMF) algorithms
are referred to as the normalized clipped least mean fourth (NCLMF)
and block-based normalized clipped least mean fourth (BBNCLMF)
algorithms, respectively, in [1].

III. CONCLUSIONS

The adaptive noise cancelers implemented using the SELMFE
SSLMF. and their variant algorithms in [1] for EEG signal enhance-
ment would deliver exactly the same performance in terms of
the convergence rate and mean-square error (MSE) as compared
to the adaptive noise cancelers implemented using the SELMS
[3], [4]. SSLMS [4], [5]., and their corresponding variant algo-
rithms [9]. [10]. respectively, provided the parameter settings and
EEG data used are same. Thus, there is no point in conducting
research on the SELMF, SSLMF, and their variant algorithms as
they are exactly identical to the SELMS [3]. [4], SSLMS [4],
[5], and their corresponding variant algorithms [9], [10], respec-
tively. Note that only the SRLMF [6] and its variant algorithms
[7], [8] are distinct from the sign regressor least mean square
(SRLMS) [11] and its corresponding variant algorithms [12], [13],
respectively.
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Abstract—In this paper, expressions are derived for the steady-
state and tracking excess-mean-square error (EMSE) of the
e—normalized sign regressor least mean square (NSRLMS) adap-
tive algorithm. Finally, it is shown that simulations performed
for both the cases of white and correlated Gaussian regressors
substantiate very well the theory developed.

[. INTRODUCTION

The sign based variants of the least mean square (LMS)
algorithm [1] were introduced due to the simplicity of their
implementation. The sign regressor algorithm (SRA) is one
such variant of the LMS algorithm, which is based on clipping
of the input data [2]. However, these sign based algorithms
result in a performance loss when compared with the LMS
algorithm [3].

In [4], it is shown that the normalized least mean square
(NLMS) algorithm converges faster than the LMS algorithm.
A sign version of the NLMS algorithm, the normalized sign
regressor least mean square (NSRLMS) algorithm or simply
the normalized sign regressor algorithm (NSRA) as it is more
commonly known combines the advantages of the NLMS
and SRA algorithms. Theoretical studies of the NSRLMS
algorithm can be found in [5]-[6]. In [7]. the NSRLMS was
tested in an adaptive noise cancellation scenario in order to
remove noise from the electrocardiogram (ECG) signal. In our
work, expressions are evaluated for the steady-state excess-
mean-square error (EMSE) of the e~NSRLMS algorithm in
a stationary environment. Also, expressions for the tracking
EMSE in a nonstationary environment are presented. The
framework used in our analysis relies on energy conservation
arguments [8]. From the simulation results it is shown that the
theoretical and simulated results are in very good agreement.

The organization of the paper is as follows. In Section II, the
¢—NSRLMS algorithm is described. The mean-square analysis
and the tracking analysis of the e=NSRLMS algorithm is pre-
sented in Sections ITT and TV, respectively. Finally, simulation
results are discussed in Section V and Section VI concludes
the paper.

II. THE e—~NSRLMS ALGORITHM

Consider a zero-mean random variable d with realizations
{d(0),d(1),...}, and a zero-mean random row vector u with
realizations {ug, uy,...}. The optimal weight vector w® that

978-1-4577-0242-6/11/$26.00 ©2011 IEEE

solves:
min E|d — uw|?, (1)
w

can be approximated iteratively via the recursion (the

¢—NSRLMS algorithm)

Iz N )

W, = W;_ ———5 csgnju;)Te;, >0, 2
i 11+E+”U,‘HI%I 55[1} i = U, (2)

where w; (column vector) is the updated weight vector at
time 4, p is the step-size, ¢ is a small positive constant to
avoid division by zero when the regressor is zero, H[] is some
positive-definite Hermitian matrix-valued function of u;. and
¢; denotes the estimation error signal given by

e =di —u;wi_1. (3)

III. MEAN-SQUARE ANALYSIS OF THE e—NSRLMS
ALGORITHM

We shall assume that the data {d;,u;} satisty the following
conditions of the stationary data model [8]:

A.1  There exists an optimal weight vector w such that
di = u-;WO + v;.

A.2  The noise sequence v; is independent and identi-
cally distributed (i.i.d.) circular with variance o2 =
E[v;|%] and is independent of u; for all i, .

A.3  The initial condition w_; is independent of the zero
mean random variables {d;, u;, u}

A4 The regressor covariance matrix is R = E [ufu;] >

0.

For the adaptive filter of the form in (2), and for any
data {d;,u;}, assuming filter operation in steady-state, the
following variance relation holds [8]:

KE [[|ug| 3 lgfes] ] = 2Re [E [e7 gled]]] .

where

as i — oo, (4)

Efl[us][f] = E[Re[u;H[u]u;]], (5)
€; = €q, + Uiy (6)
with g[.] denoting some function of e;, and e,, = u;(wW® —

w;_1) is the a priori estimation error. Then gle;] for the
e—NSRLMS algorithm becomes

e v
g[f’-z} = o U

— . (7)
e+ [l
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By using the fact that e,, and v; are independent, we reach at
the following expression for the term B [e gle;]]:

E[e; gles]] = E leal® ) (8)
e e+ ||l

To evaluate the term E [||u;||%|g[es][*]. we start by noting that

1
2 2 2 * *

gles]|” = ————5—= |le + v |" el v Fegvp| . (9
‘b[ 'L” (E H 1“2 }2 U Cll‘ ‘ 1| a; T ai 1] )

If we multiply |g[e;]|? by ||u;||% from the left, and use the
fact that v; is independent of both u; and e,,, we obtain

s ] ea, | 2
Elludiged?] = B[ Ml ] o
el (e + [l l5)?
I }
xF [7 . (10)
(€ + [Jui|[3)?
Substituting (8) and (10) into (4) we get
> |2 12 1- |2
2Re {E [76“"‘ 5 H = uk {7‘|H1HH|(G§| 2} + pos

€+ [Jugllf (€ + [l )

|||y }
x| — I
[(Eﬂlui\l?{)?

By using the assumption € ~ 0 in (11), we obtain

9R [E{‘e‘“‘?“ E{‘e‘“‘?]Jr QE[ ! ] (12)
2Re |E =k | +—% po B | w—=1]. (
;][ IEHIE: AR

Now, let us use the following steady-state approximation:
9 el |~ H ul’]
/ 2
[l [

E[f 1]
From Price’s theorem [9] we have

(13)

E[Re[z"csgn(y)]] = \/E\U/—EE [Re[z"y]] . (14)

where « and y denote two complex-valued jointly-Gaussian
random variables. Therefore,

Efllwlff] = E[RefuHu]uf]],
= E[Re[u;esgnfu]*]],
_ 4Tr(R) (15)
Substituting (13) and (15) into (12) we get
bl 2 2 2 1
VTOZE[|eq,|?] _ mogElleq, 7] + 02K . (16)
2Tr(R) 1Tr(R) w1y

Therefore, the steady-state EMSE ( =
e—NSRLMS algorithm can be shown to be

Elleq,|?] of the

¢ =

402 Tr(R) [ 1 an
|

(2 —p)/mo? . [ug| 3

978-1-4577-0242-6/11/$26.00 ©2011 |IEEE

[V. TRACKING ANALYSIS OF THE e—~NSRLMS
ALGORITHM

Here, we assume that the data {d;, u;} satisty the following
conditions of the nonstationary data model [8]:

A5 There exists a vector w{ such that d; = w;wj + v;.

A.6 The weight vector varies according to the random-
walk model w{ = w{_; + q;. and the sequence q;
is i.i.d. with covariance matrix Q. Moreover, q; is
independent of {v;,u;} for all i, j.

A.7  The initial conditions {w_1,w?,} are independent

of the zero mean random variables {di. u;, tr,‘.qi}‘

In this case, the following variance relation holds [8]:
pE [[[wil[flgled] ] + 17" TH(Q) = 2Re [E [e] gled]]
as ¢ — o0, (18)

Tracking results can be obtained by inspection from the mean-
square results as there are only minor differences. Therefore,
by substituting (8) and (10) into (18) we get

2 1 ey (2= )V ToZE leq,|?]
oy E [m] +u Tr(Q) = 1T R) L (19)

Therefore, the tracking EMSE ¢ of the e-~NSRLMS algorithm
is given by
4Tr(R)
(=" [,ucrfE [ 5
(Zf;l)m I [5
Moreover, in both cases, the expression for the mean-square
error (MSE) of the e~NSRLMS algorithm is obtained by

E[le)?] = ¢+ o2 21
V. SIMULATION RESULTS

} +,u71Tr(Q)} . (20

First, in order to validate the theoretical findings extensive
simulations are carried out for different scenarios. Figures
1-2 are for the case of the steady-state MSE of a 10-tap
e—NSRLMS filter in a stationary environment and Figures 3-
4 are for the case of the tracking MSE in a nonstationary
environment. In all of these figures the MSE is plotted as a
function of the step-size p for a signal to noise ratio (SNR)
of 30 dB and the value of ¢ is set to 1076, Moreover, all the
simulations reported in this work use complex-valued signals.

In the case of Figures | and 3, the regressors, with shift
structure, are generated by feeding a unit-variance white
process into a tapped delay line. However, in Figures 2 and 4,
the regressors, with shift structure, are generated by passing
correlated data into a tapped delay line. Here, the correlated
data is obtained by passing a unit-variance ii.d. Gaussian
data through a first-order auto-regressive model with transfer
function ﬁ and @ = 0.8. As can be seen from Figures
1-2, the simulation results match very well the theoretical
result (17), which is the steady-state EMSE of the e ~NSRLMS
algorithm.

Finally, to further validate the theoretical results in a
tracking scenario, Figures 3-4 depict this behavior. Here, the
random-walk channel behaves according to

w{ =w) | +qi, (22)
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where q; is a Gaussian sequence with zero mean and variance
Ug = 1072, As observed from Figures 3-4, the simulation
results corroborate closely the theoretical result (20), which is

the tracking EMSE of the e=NSRLMS algorithm.

VI. CONCLUSIONS

The mean-square analysis and the tracking analysis of the
e—NSRLMS algorithm is carried out. Moreover, simulations
performed are found to closely corroborate with the analytical
results.
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Abstract—In this paper, we compare the expressions
for the steady-state mean-square error (MSE), the opti-
mum step-size, and the corresponding minimum tracking
MSE of the normalized sign regressor least mean square
(NSRLMS), the normalized sign regressor least mean
fourth (NSRLMF), and the normalized sign regressor
least mean mixed-norm (NSRLMMN) algorithms for
the case of real-valued data. The expressions for the
steady-state MSE, the optimum step-size, and the cor-
responding minimum tracking MSE of the NSRLMF
and NSRLMMN algorithms based on energy conser-
vation relation approach are available in the literature
for the case of real-valued data. Thus, in order to
compare these three algorithms, we have derived the
expressions for the steady-state MSE, the optimum step-
size, and the corresponding minimum tracking MSE of
the NSRLMS algorithm based on energy conservation
relation approach for the case of real-valued data. Finally,
simulation results to substantiate the analytical results of
the NSRLMS algorithm are also presented for the case
of real-valued data.

Index Terms—NSRLMS,
steady-state, tracking.

NSRLMF, NSRLMMN,

[. INTRODUCTION

In [1]- [2], we had proposed the normalized sign
regressor least mean mixed-norm (NSRLMMN) algo-
rithm, which is based on clipping of the regressor vec-
tor u;. The NSRLMMN algorithm updates its weight
vector w;nsrLMMN) according to the following recur-
sive rule:

Wi (NSRLMMN) W1 +

it
e+ [Juill
i >0,

+oe2], (1
where g is the step-size, ¢ is an extremely small
positive constant to avoid division by zero when the
regressor is zero, ¢ is the mixing parameter, § = 1 — 4,
e; is the estimation error, ||w||% = wH[u|ul,
sign[u;]T

H[u;Jul. and H[u;] is some positive-
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sign[u;]Te;[6

)

40
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definite Hermitian matrix-valued function of u; defined
1

for filter length M as
H[u;] = diag { } )
‘uim ‘

The NSRLMMN algorithm reduces to normalized
sign regressor least mean fourth (NSRLMF) and nor-
malized sign regressor least mean square (NSRLMS)
algorithms when ¢ takes the value 0 and 1, respectively.
The weight update equations of the NSRLMF [3]- [4]
and NSRLMS [5]- [8] algorithms are thus given by
(3) and (4), respectively:

1

|111'1 ‘ ’

L T 3
W;(NSRLMF) = Wi—1 + sign[u;] e, (3)

L
e+ [l

Wi(NSRLMS) = Wi—1 + G signfu;]Te,. (4

Adaptive filters equipped with the NSRLMS al-
corithm are extensively used for the processing and
analysis of electrocardiogram (ECG) signals [7]— [8].
To the best of the authors™ knowledge, the steady-state
and tracking analysis of the NSRLMS algorithm based
on energy conservation relation approach [9]- [10] are
not available in the literature. Therefore, this work
reports the findings of the steady-state and tracking
analysis of the NSRLMS algorithm based on energy

conservation relation approach.

II. STEADY-STATE ANALYSIS

In [1], the expression for the steady-state mean-
square error (MSE), pnsrivvn = E[ef]. of the

NSRLMMN algorithm is given by
(6202 4+ 5268 + 26564)

i 2(8 + 3802) — p(82 + 1562¢4 + 126602)
+02, (5
where 02 = E[v?]. £ = E[v}], and &8 = E[v¢] denote

the second. fourth, and sixth-order moments of the
noise sequence, v;, respectively.
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The steady-state MSE expressions of the NSRLMF
[3] and NSRLMS algorithms can be easily obtained by
substituting ¢ is equal to 0 and 1 in (5), respectively,
as shown below:

pés

- 2
¥PNSRLMF 602 —" o (6)
0y — 13#%1,
2
Hay, 2
PNSRLMS = 2 +oy,. (7)

Note that the steady-state MSE expression of the
NSRLMF algorithm in (6) is exactly the same as the
one derived by us in [3].

To carry out the steady-state analysis of the
NSRLMS algorithm we shall assume that the data
{d;,u;} satisfy the following assumptions of the sta-
tionary data model [1], [3], [9]- [11]:

A.l  There exists an optimal weight vector w°
such that the desired sequence d; = u;w” +
Vi.

The noise sequence v; is independent and
identically distributed (i.i.d.) with variance 03
and is independent of wu; for all 4, j.

The initial condition w_; is independent of
the zero mean random variables {d;, u;, v;}.
The regressor covariance matrix is R =
Elulu;] > 0.

A2

A3

A4

For the adaptive filter of the form in (4), and for any
data {d;,u;}, assuming filter operation in steady-state,
the following variance relation holds [1], [3]. [9]-[11]:
(8)

HE [llulBg?fed] = 26 [eagled], as i — oo,
where ¢; = €4, + Vi, €4, = W (W° — w;_1) is the
a priori estimation error, and g[e;] for the NSRLMS
algorithm can be written as

Ca, + Ui
e+ [Jwl[f

9

gles] =

By using the fact that e,, and v; are independent,
we rteach at the following expression for the term

Elcq,gles]]:
|

To evaluate the term E [||u;[|Fg?[e;]]. we start by
noting that

2
€a;

— (10)
e+ [Juillf

Efeq,glei]] = E {

2

e,. t2eq,v; +v

(€ + [ll[f)?

2
i

g?les] = (11)

41

If we multiply g?[e;] by |[u;||7 from the left and use
the fact that v; is independent of both u; and ¢,,, we

obtain
. [ [l e, ]

u; 2 2 e; TR
B [||us|frg®[e]] (c+ [[ua[)2

w7 2
El————5— .o(12
* [(e+ i z2) 7
Substituting (10) and (12) into (8) we get
i | e, HLE[ sl [f ]02
(et [[u[F)® (e+[luil[F{)% | v
€2

In order to simplify (13), we use the separation princi-
ple, namely, that at steady-state, ||u;||% is independent
of eg Therefore, we obtain

w13 2 [[ue |3 2
pE [(eﬂ\uﬁ%)z] Elea,] + uE [(e+|\u1|lﬂa>2] T
— 9F [Ti”g] Ele2,). (14)
Now, let us define the following quantities:
| |5
Z 2 E [7 R (15)
(e + [|wiF)?
1
Z, & Bl——— . 16
: [e+||m||%1]' (e
then we can write (14) more compactly as
,uZlE[eii] +p20k = QZQE[ei]. (17)

Therefore, the expression for the steady-state excess-
mean-square error (EMSE), (nsrims = E[eg] of the
NSRLMS algorithm is given by

¢ . puZio?
NSRLMS = 53 =

When € is sufficiently small, which is usually the case,
then its effect can be ignored. Therefore,

(18)

1
21:22:E|:72j| . (19)
||
In this case, expression (18) becomes
2
s
(NSRLMS = / . (20)
2—p

Finally, the expression for the steady-state MSE,
pYnsriMss Of the NSRLMS algorithm is given below,
which is exactly the same as in (7):

2

v

—

Ho
PNSRLMS — B)

2D
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ITII. TRACKING ANALYSIS

In [2], the expressions for the minimum track-
ing MSE, pn;in(NSRLMMN) = E[e?], and the corre-
sponding optimum Step-size, popy(NsRLMMN). Of the
NSRLMMN algorithm are given by

1

! :uopt-czl + ,U,O_ptTT(Q)

o _ 2
Pmin(NSRLMMN) 423 — fiopth 21 + o
(22)
Tr(Q) 1 02Z,Tr(Q)
Hopt(NSRLMMN) oz, + 1a%cZ]
_mQ) (23)
2acZy

where a = 0 + 3002, b = 6% + 150262 + 125002,
c = 0202 + 6265 + 20562, and Q = E[q;qf] is the
covariance matrix of the noise sequence q;.

The expressions for the minimum tracking MSE and
the corresponding optimum step-size of the NSRLMF
[4] and NSRLMS algorithms can be easily obtained
by substituting ¢ is equal to 0 and 1 in both (22) and
(23), respectively, as shown below:

/—"-optzl 516. + P'-Lc:p}t TT(Q)

min(NSRLMF) 60’522 _ ]-Sp'-fooptzl'f:i-

.

+07, (24)

Tr(Q) [25(£5)?Tr(Q) | 1
Hopt(NSRLMF) = €6 104(24)265 Z
56,1Tr(Q)
_ 25 5
o 2
-1
’ fLLOptzlgg + ,uopt.rI\r(Q) 2

Pmin(NSRLMS) — 225 — fropt 21 +0,, (26)

_Tr(Q) 1 ZiTr(Q)] Tr(Q)
Hopt(NSRLMS) = 022, + 40_2322 - 2022,
27

Note that the expressions for the minimum tracking
MSE and the corresponding optimum step-size of the
NSRLMF algorithm in (24) and (25), respectively. are
exactly the same as the one derived by us in [4].

To carry out the tracking analysis of the NSRLMS
algorithm we shall assume that the data {d;, u;} satisfy
the following assumptions of the nonstationary data
model [2], [4], [9]- [11]:

A.5 There exists a vector w{ such that d; =
u;,w? + v;.
A.6  The weight vector varies according to the

random-walk model w{ = wi_; + q;, and
the noise sequence q; is i.i.d. with variance
o2 = E[q?]. Moreover, g; is independent of
{uj,v;} for all i, ;.

42

A.7  The initial conditions {w_q, w?,} are inde-
pendent of the zero mean random variables
{dg. u;, v, QL}

For the adaptive filter of the form in (4), and for any
data {d;, u;}, assuming filter operation in steady-state,

the following variance relation holds [2], [4], [9]-[11]:

KE [[[willfe®(e]] + 7' Tr(Q)
2E [cq,glei]

as i — 0o. (28)

We can obtain the tracking results by inspecting the
steady-state results in Section II as there are only
minor differences. Therefore, by substituting (10) and
(12) into (28) the expression for the tracking EMSE,
CNSRLMS = E[eZ ]. of the NSRLMS algorithm can be
shown to be

pZi10? + 1 Tr(Q)
222 - /.LZl '
Consequently, the optimum step-size, fiopy(NSRLMS)

of the NSRLMS algorithm can be obtained by mini-
mizing (29) with respect to p and is given by

(29)

r’
CN SRLMS —

) _ [r@ [, Zm@] )
opt(NSRLMS) 022, 40223 20525
(30)

Finally, the corresponding minimum tracking MSE,
® min(NSRLMS)* of the NSRLMS algorithm is given by

4 :U‘optzlag + N‘gpltTr(Q) 2
¥min(NSRLMS) — 325 — Jiopt 21 + 0

Note that the expressions for the optimum step-size
and the corresponding minimum tracking MSE of the
NSRLMS algorithm in (30) and (31), respectively, are
exactly the same as the one in (27) and (26).

31

IV. SIMULATION RESULTS

The parameter settings in this study are as follows.
In all the figures, € is fixed at 1076 and A is fixed at
5. 02 is fixed at 1079 in Figures 3-4.

The steady-state performance of the NSRLMS algo-
rithm using white and correlated Gaussian regressors
is shown in Figures 1-2, respectively. In Figures 2
and 4, the correlated data is obtained by passing a
unit-variance i.i.d. Gaussian data through a first-order
auto-regressive model with transfer function 17[1(;321)
and a = 0.8. As can be seen from Figures 1-2, the
simulation result and the theoretical result in (21) are
in close agreement for correlated Gaussian regressors
than white Gaussian regressors.

Figures 3—4 show the tracking performance of the
NSRLMS algorithm using white and correlated Gaus-
sian regressors, respectively. A zoom into the region
around g = 0.04 in Figure 3 shows that the tracking
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107
Step-size

Fig. 1. Theoretical and simulated steady-state MSE of the NSRLMS
algorithm using white Gaussian regressors in an AWGN environment
at SNR = 20 dB.

107
Step-size

Fig. 2. Theoretical and simulated steady-state MSE of the NSRLMS
algorithm using correlated Gaussian regressors in an AWGN envi-
ronment at SNR = 20 dB.

MSE possesses a minimum value of —19.7256310 dB
at ;¢ = 0.04, which are in good agreement with the
corresponding theoretical values of %Jn;m(NSRLMS) =
—19.8060506 dB at Hopt(NSRLMS) — 0.0436759 ob-
tained from expressions (31) and (30), respectively.
Similarly, a zoom into the region around p = 0.04
in Figure 4 shows that the tracking MSE possesses
a minimum value of —19.7963810 dB at p 0.04,
which are in good agreement with the corresponding
theoretical values of pn'ﬂn(NSRLMS) = —19.8060506
dB at jiopy(NSRLMS) 0.0436759 obtained from
expressions (31) and (30), respectively.

Finally, Figure 5 shows the convergence perfor-
mance of the NSRLMMN algorithm for different
values of d. As can be seen from this figure,
the NSRLMMN algorithm reduces to NSRLMF and
NSRLMS algorithms when ¢ takes the value 0 and 1,
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Fig. 3. Theoretical and simulated tracking MSE of the NSRLMS

algorithm using white Gaussian regressors in an AWGN environment
at SNR = 20 dB.
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Fig. 4. Theoretical and simulated tracking MSE of the NSRLMS
algorithm using correlated Gaussian regressors in an AWGN envi-
ronment at SNR = 20 dB.

respectively.

V. CONCLUSIONS

In this paper, we have shown that the expres-
sions for the steady-state MSE, optimum step-size,
and the corresponding minimum tracking MSE of the
NSRLMF algorithm, which are derived in [3]- [4]
are exactly the same as those obtained by substituting
d is equal to O in the corresponding expressions of
the NSRLMMN algorithm, which are derived in [1]-
[2]. Furthermore, in this paper we have derived the
expressions for the steady-state MSE, optimum step-
size, and the corresponding minimum tracking MSE
of the NSRLMS algorithm, which are found to be
exactly the same as those obtained by substituting
d is equal to 1 in the corresponding expressions of
the NSRLMMN algorithm, which are derived in [1]-
[2]. Finally, we observe a close agreement between
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Fig. 5. Comparison of the MSE learning curves of the NSRLMMN

algorithm for different values of & in an AWGN environment at SNR
=10 dB.

the simulation and analytical results of the NSRLMS
algorithm for correlated Gaussian regressors than white
Gaussian regressors.
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ABSTRACT

In this work, expressions are derived for the steady-state
excess-mean-square error (EMSE) of the &-—normalized
sign-error least mean square (NSLMS) adaptive algorithm
for both cases of real- and complex-valued data. More-
over, a comparison between the computational load of the
£—NSLMS algorithm and the £—normalized least mean
square (NLMS) algorithm is also presented. Finally, simu-
lation results to substantiate the theoretical findings are pre-
sented.

1. INTRODUCTION

The sign based variants of the least mean square (LMS) al-
gorithm [1] were introduced with the objective to reduce its
computational and implementation costs [2]-[3]. The sign-
error algorithm or simply the sign algorithm (SA) as it is
more commonly known is one such variant of the LMS al-
gorithm, which is based on clipping of the estimation error
[4]. However, these sign based algorithms result in a perfor-
mance loss in terms of convergence behavior when compared
with the LMS algorithm [5]-[6].

In [7]. it is shown that the normalized least mean square
(NLMS) algorithm exhibits faster convergence than the LMS
algorithm. In [8], the convergence analysis of the normal-
ized sign-error least mean square (NSLMS) algorithm was
provided and the algorithm was tested in an adaptive noise
cancellation scenario. In this paper, expressions are evalu-
ated for the steady-state excess-mean-square error (EMSE)
of the e=NSLMS algorithm in a stationary environment. The
framework used in this paper relies on energy conservation
arguments [9]. From the simulation results it is shown that
the theoretical and simulated results are in good agreement.

The paper is organized as follows: following the Intro-
duction is Section 2 where the e—~NSLMS algorithm is de-
scribed, while Section 3 deals with the mean-square analysis.
Section 4 details the computational load of the e—=NSLMS
algorithm. The simulation results are reported in Section 5.
Finally, some conclusions are reported in Section 6.

2. THE e-NSLMS ALGORITHM

Consider a zero-mean random variable d with realizations
{dy.dy,...}, and a zero-mean random row vector u with re-
alizations {up,uy,...}. The optimal weight vector w° that
solves

min|w; = wi_i| %, (0
subject to
di—u;w; =0, (2)
978-1-4673-0323-1/11/$26.00 ©2011 IEEE
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can be approximated iteratively via the recursion (the
e—NSLMS algorithm)

W, =W+ Isignle]. >0, (3

H Su
e+ ]
where w; (column vector) is the updated weight vector at
time 7, U is the step-size, £ is a small positive constant to
avoid division by zero when the regressor is zero, and ¢; de-
notes the estimation error given by

€ =d;— ;W (4
For complex-valued data, the update recursion in (3) be-
comes
i=0. (%)

Wi =W+ ujcsenle;],

&+ |[wl?

3. MEAN-SQUARE ANALYSIS OF THE & -NSLMS
ALGORITHM

In this section, the mean-square analysis of the e—NSLMS

algorithm for both cases of real- and complex-valued data

is carried out. In the process of this evaluation, we distin-
guished between real- and complex-valued data as the defi-
nition of the sign function is different in both cases.

We shall assume that the data {d;, u;} satisfy the follow-

ing assumptions of the stationary data model [9]:

A.1 There exists an optimal weight vector w such that d; =
w4 v,

A.2 The noise sequence v; is independent and identically
distributed (i.i.d.) with variance ¢} = E[|w;|?] and is in-
dependent of u; for all i, .

A.3 The initial condition w_; is independent of the zero
mean random variables {d;, u;,v;}.

A4 The regressor covariance matrix is R = E[ufu;] > 0.

3.1 Real-Valued Data

For the adaptive filter of the form in (3), and for any data
{d;, u;}, assuming filter operation in steady-state, the follow-
ing variance relation holds [9]:

RE[|[w[*g’fe]] = 2E[e,gle]]. asi—o,  (6)

where
(7

with g[.] denoting some function of ¢;, and e, = u;(w® —
w;_1) is the a priori estimation error. Then gle;] for the

e = eq+ Vi,
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£—NSLMS algorithm becomes

~ signfeg; 4 vi]

g, ==L 1 8
c[ez} £+HuiH2 ( )
Substituting (8) into (6) we get
. [nuﬂ(sign[eu,; wnz} _oF {{ +2v,-]] ®
(& 4[| uil*) €+ ||uif|

Using the fact that (sign[x])> = 1 almost everywhere on the

real line, we get
R

[[ui]®
uE
[(H [Juif[2)*
In order to simplify (10), we resort to the separation princi-
ple, namely, that at steady-state, ||u;||? is independent of ¢,
We then obtain

eqSigneq; + Vil
&+ il

(10)

[ } { ! ]
El——55| = 2E|l——5
[(8+|ux'2)2 &+ |lwf?
x  Elegsignleq, +vi]. (11
If we define the following quantities:
112
o 2 {'“’ } (12)
' (€ +|uif[2)*
1
£ E|l——], 13
e ® e "
then the equality in (11) can be written more compactly as
poy, = 21,E[eqsignfes, +vil]. (14)

In order to evaluate the expectation on the right-hand side of

(14) let us rely on the following assumption [9]:

A.5 The estimation error ¢; and the noise sequence v; are
jointly Gaussian.

From Price’s theorem [ 10] for real-valued data we have

21

Elx sign(y)] = Elxy], 15
sign(y)] =/ bl (15)
then
. 2 Ele2.
Ele,signje, +vi]| =4/ = | ——= (16)
T\ JEE]+0?
Substituting (16) into (14) we get
2 E[e2.
oy, = 217L,\/j Bl (17
T\ B2 +o?

When the regularization parameter € is sufficiently small,
which is usually the case, then its effect can be ignored and
the definitions of e, and 1, coincide, and in this case (17)
reduces to

Elez]
E[eg]+op

n=2 (18)

n

Therefore, the expression for the steady-state EMSE { =
E["i,] of the e~NSLMS algorithm is given by

u

2
u=m

= (19

3.2 Complex-Valued Data

For the adaptive filter of the form in (5), and for any data
{di, u;}. assuming filter operation in steady-state, the follow-
ing variance relation holds [9]:

LE [|[uil|*|gle]|*] = 2Re [E [¢; glei]]] . asi— oo (20)
In this case, ge;] for the e~NSLMS algorithm becomes

B csgneq; + il

glei] = e+ |ulf 21

Substituting (21) into (20), and using the fact that

|esgn|x]|? = 2 almost everywhere in the complex plane, we
get

g P 1 g [ [acsenleatrilll o)

g (I I A

Therefore, proceeding on the same lines as we did in the pre-
vious section following (10), we obtain

poy, =1,Re [E [e;iCSgn[eﬂi + Vf]” . (23)

In order to evaluate the expectation on the right-hand side of

(23) let us rely on the following assumptions [9]:

A.6 The real parts of ¢; and v; are jointly Gaussian.

A.7 The imaginary parts of ¢; and v; are jointly Gaussian.

A.8 The real and imaginary parts of ¢; have identical vari-
ances,

A.9 The real parts of {e;,v;} are independent of their imagi-
nary parts.

From Price’s theorem [10] for complex-valued data we have

E [Re[x"csgn(y)]] = \/j_inE[Re[x*y]]. (24)
then
2 E[leq,
Re [E [e;, csgnleq, +vi]]] = (E[iZ]LoZ) (25)

Substituting (25) into (23), and using the fact that the regu-
larization parameter € is sufficiently small, we get

2 Elles/!
U=—[—~-——|. (26)
VI VE[eq ]+ 07
Also, here, in this case we get
2
g:¥{¥+ %Mo& .on

It is interesting to note that the expressions ((19) and
(27)) for the steady-state EMSE of the e —NSLMS algorithm,
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respectively, for real- and complex-valued data are identical
except for a scaling factor. Also, the EMSE is found to be
independent of the regression data. Moreover, in both cases,
the expression for the MSE of the e—~NSLMS algorithm is
obtained by

E[leif’] =C +oy. (28)

4. COMPUTATIONAL LOAD

Finally, the computational load of the e—NLMS and the
£—NSLMS algorithms is discussed in this section. Tables |
and 2 detail the estimated computational load per iteration of
the e-NLMS and the e -NSLMS algorithms, respectively,
for real- and complex-valued data in terms of the number of
real additions (+), real multiplications (x ), real divisions (/),
and sign evaluations.

Table I: Computational load per iteration of the e—NLMS
and the e—~NSLMS algorithms for real-valued data.

Algorithm | + X /| sign
e—NLMS [ 3M [3M+1 |1
e-NSLMS | 3M | 3M 1] 1

Table 2: Computational load per iteration of the e—NLMS
and the e—=NSLMS algorithms for complex-valued data.

Algorithm | + X [ ] sign
e-NLMS [ 10M | 1OM+2 | 1
e-NSLMS | 8M 8M 2] 2

As can be seen from Table 1, the computational load per
iteration of the e —NSLMS algorithm is similar to that of the
e—NLMS algorithm for real-valued data. However, signifi-
cant reduction in computational load per iteration is achieved
for the e=NSLMS algorithm over the e—NLMS algorithm
for complex-valued data as seen from Table 2.

5. SIMULATION RESULTS

In order to validate the theoretical findings extensive simu-
lations are carried out for different scenarios. While Figures
1-3 are for the case of real-valued data and Figures 4-6 are
for the case of complex-valued data. In all of these figures
the MSE of a 5-tap e —NSLMS filter is plotted as a function
of the step-size p for a signal to noise ratio (SNR) of 30 dB
and the value of £ is set to 107°,

In the case of Figures | and 4 the regressors, with shift
structure, are generated by feeding a unit-variance white pro-
cess info a tapped delay line. However, in Figures 2 and 5 the
regressors, with shift structure, are generated by passing cor-
related data into a tapped delay line. Here, the correlated
data is obtained by passing a unit-variance i.i.d. Gaussian
data through a first-order auto-regressive model with trans-
fer function (]7[1;',) and ¢ = 0.8. To further test the validity
of the results, Gaussian regressors with an eigenvalue spread
of five without a shift structure are used, this is depicted in
Figures 3 and 6. As can be seen from these figures, the sim-
ulation results match very well the theoretical results ((19)
and (27)).

6. CONCLUSIONS

Expressions derived for the steady-state EMSE of the
£—NSLMS algorithm are found to be identical for real- and
complex-valued data except for a scaling factor. Moreover,
it is shown that the e ~NSLMS algorithm is computation-
ally more simple than the e —NLMS algorithm for complex-
valued data. Finally, simulations performed are found to cor-
roborate with the theory developed.

7. ACKNOWLEDGMENT

The authors acknowledge the support provided by King Fahd
University of Petroleum and Minerals to carry out this work.

REFERENCES

[1] B. Widrow and S. D. Stearns, “Adaptive Signal Process-
ing,” Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.

[2] D. L. Duttweiler, “Adaptive filter performance with non-
linearities in the correlation multiplier,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 30, no. 4, pp.
578-586, Aug. 1982.

A. Gersho, “Adaptive filtering with binary reinforce-
ment,” [EEE Trans. Inform. Theory, vol. 30, no. 2, pp.
191-199, Mar. 1984.

N. A. M. Verhoeckx and T. A. C. M. Claasen, “Some
considerations on the design of adaptive digital filters
equipped with the sign algorithm” IEEE Trans. Com-
mun., vol. 32, no. 3, pp. 258-266. Mar. 1984.

T. A. C. M. Claasen and W. E G. Mecklenbrauker,
“Comparison of the convergence of two algorithms
for adaptive FIR digital filters,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 29, no. 3, pp. 670-678,
June 1981.

N. I. Bershad, “Comments on ‘comparison of the con-
vergence of two algorithms for adaptive FIR digital fil-
ters,” " IEEE Trans. Acoust., Speech, Signal Processing,
vol. 33, no. 6, pp. 1604-1606, Dec. 1985.

M. Tarrab and A. Feuer, “Convergence and performance
analysis of the normalized LMS algorithm with uncor-
related Gaussian data” IEEE Trans. Inform. Theory, vol.
34, no. 4, pp. 680-691, July 1988.

N. L. Freire and S. C. Douglas, “Adaptive cancella-
tion of geomagnetic background noise using a sign-error
normalized LMS algorithm.” in Proc. IEEE Int. Conf.
Acoust., Speech, and Signal Processing, vol. 3, pp. 523—
526, Apr. 1993.

[9] A. H. Sayed. “Fundamentals of Adaptive Filtering,” Wi-
ley Interscience, New York, NY, USA. 2003.

[10] R. Price, “A useful theorem for nonlinear devices hav-
ing Gaussian inputs,” IRE Trans. Inform. Theory, vol. 4,
no. 2, pp. 69-72, June 1958,

—_
(98]
—_—

117



-20.5

Y] FE U S

I T T

MSE (dB)

B = =

] O DU

107
Step-size (1)

Figure 1: Theoretical and simulated MSE of the e -NSLMS

algorithm using white Gaussian regressors.

-205

-206

-297

MSE (dB)

T -

29 gLt

Step-size (1)

Figure 2: Theoretical and simulated MSE of the e —-NSLMS

algorithm using correlated Gaussian regressors.

-29.5
P I

B e R

MSE (dB)

] S A

-29.9

-30

Step-size (1)

Figure 3: Theoretical and simulated MSE of the e —-NSLMS
algorithm using Gaussian regressors with an eigenvalue

spread=5.

541

-295

-296--

-20.7

MSE (dB)

208

o909k

_3p

Step-size (u)

Figure 4: Theoretical and simulated MSE of the complex
£—NSLMS algorithm using white Gaussian regressors.

-205

-296

-297 -

MSE (dB)

-208

-20.9

Step-size (u)

Figure 5: Theoretical and simulated MSE of the complex
£—NSLMS algorithm using correlated Gaussian regressors.

295 —
SROB L -

S29.7 -

MSE (dB)

-298 -~

-209

Step-size (u)

Figure 6: Theoretical and simulated MSE of the complex
£—NSLMS algorithm using Gaussian regressors with an

eigenvalue spread=>3.

118



[P18]

Tracking MSE Performance Analysis of the
e—NSLMS Algorithm

Mohammed Mujahid Ulla Faiz*, Azzedine Zerguine', Syed Muhammad Asad*, and Khalid Mahmood*

“Electrical and Electronics Engineering Technology Unit
Hafr Al-Batin Community College
Hafr Al-Batin 31991, Saudi Arabia
"Department of Electrical Engineering
King Fahd University of Petroleum & Minerals
Dhahran 31261, Saudi Arabia
E-mail: {mujahid, azzedine, syedasad. kmahmood}@kfupm.edu.sa

Abstract—In this paper, the tracking behavior of the
e—normalized sign-error least mean square (NSLMS) algorithm
is analyzed in the presence of white and correlated Gaussian
regressors. Moreover, generic analytical expressions are derived
for the optimal step-size and the corresponding optimal mean-
square error (MSE) of the e—~NSLMS algorithm for both the
real- and complex-valued data cases. Additionally, a comparison
between the convergence behavior of the e—NSLMS algorithm
and the e—normalized least mean square (NLMS) algorithm
is also discussed. Finally, simulation results to corroborate our
theoretical findings are presented.

Keywords—LMS, NLMS, SLMS, NSLMS, Tracking.

[. INTRODUCTION

The e—normalized sign-error least mean square algorithm
or simply the e—normalized sign least mean square (NSLMS)
algorithm belongs to the families of normalized least mean
square (NLMS) algorithms and sign algorithms (SA) and is
based on clipping of the estimation error signal [1]-[2]. The
¢—NSLMS algorithm is computationally more simple than the
¢—~NLMS algorithm due to the clipping of the error signal
[3]. In [4], it is shown that the e~NSLMS algorithm performs
better than the least mean square (LMS) algorithm to eliminate
noise from the electrocardiogram (ECG) signal.

In [5], the convergence analysis of the NSLMS algorithm
was performed for an adaptive noise cancellation system.
In our previous paper [3], the steady-state analysis of the
¢—~NSLMS was performed and we showed that the mean-
square error (MSE) expressions of the e~NSLMS algorithm
for real- and complex-valued data are identical except for a
scaling factor.

In the present paper general analytical expressions are
derived for the tracking analysis of the e—NSLMS algorithm
based on the energy conservation approach [3], [6]. Moreover,
the analytical expressions derived are found to be in good
agreement with the simulation results.

The rest of the paper is organized as follows. In Section
2, the e—NSLMS algorithm is described. In Section 3, the
tracking analysis of the e—NSLMS algorithm is derived.

Simulation results are presented in Section 4, followed by
conclusions in Section 3.

II. THE e~NSLMS ALGORITHM

The weight update recursion of the e—NSLMS algorithm
for real-valued data is given by the following expression:

[ T
——— u; sign[e;],
A
where w; is the updated weight vector, 1 is the step-size, €
is a small positive constant to avoid division by zero when
the regressor u; is zero, d; is the desired value, and e; is the
estimation error signal given by

W =W;_1+ i>0, (1)

e = dj — UiW_1. (2)
For complex-valued data, the update recursion in (1) becomes

Wi =W;_1 + wesenle;], >0 (3)

’_L.
e+ [Juil?

[II.  TRACKING ANALYSIS

The main aim of the tracking analysis of an adaptive filter
is to quantify its ability to track the time variations in the
channel. In this section, the tracking analysis of the e—-NSLMS
algorithm is carried out in a straightforward manner using its
steady-state analysis presented in [3] as there are only minor
differences. While performing this analysis, we differentiate
between real- and complex-valued data as the sign function is
defined differently for each case [7].

Here, let us assume that the data {d;,u;} satisfy the
following conditions of the nonstationary data model [6], [8]-

[9]:

Al There exists an optimal weight vector w¢ such
that
d; = Llinq + v, 4

where v; is the additive noise with variance o2

A2 The weight vector varies according to the random-
walk model

W,L-O = W'L('Ll + qi., (5)

978-1-4799-6532-8/15/$31.00 () 2015 IEEE
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and the Gaussian noise sequence q; is indepen-
dent and identically distributed (i.i.d.) with vari-
ance crg and covariance matrix Q. Moreover, q;
is independent of {v;,u;} for all i, j.

A3 The initial conditions {w_i,w?,} are inde-
pendent of the zero mean random variables

{di ;. v, g5}

A. Real-Valued Data

The following variance relation holds for the weight update
recursion of the e~NSLMS algorithm given in (1) when the
data is real-valued [6]:

E [ Peled]] + 5 THQ) = 2B [en,eled]
as 100, (6)
where
i = €q; + Vi, (7)

with gle;] denoting some function of e;, 5, = w;(W? —w;_;)
is the a priori estimation error, and when the data is real-valued
gle;] for the e~NSLMS algorithm is given by

_ signfeq, + vj]

gle;| = ——————. (8)
A==
Substituting (8) into (6) we get
;|2 (signleq, + 1:,-})2} O
- 4+ T
eruipe |9
e ea;signfe,, +v;] ©)
e+ [[ul]?

Since (sign[z])? = 1, we get
o L7 ‘ {
El——us | +1  Tr(Q)=2E
e g 7@

Using the separation principle [3], we get

eq,51gn[eq, + vi]
€+ |[ul

[ w2
E JE & Bl | B
P e TPy

1 .
H_”W] E[eq,sign[eq, + vi]]. (1)

The above equation can be rewritlen as

nZ+ ;.t_lTr(Q) = 225K [eq,sign]eq, + vi]], (12)

] + ' Te(Q)

o

where “ HZ
AN I . 13
: qum)?] )
and 1
A
Ak "

From [3], we have

. 2
E[eq;signleq, +vi]] = 2 (%) (1)

P\ VRl T o2

Substituting (15) into (12) we get

IT(Q) = 92012 -
(121 + TI(Q)QZQ\/;(W)- (16)

After some simplification, the expression for the tracking
excess-mean-square error (EMSE). ¢ = E[eZ ], of the
e—NSLMS algorithm is given by

~ ~ ﬂ,2\.
VT ’er-‘/ ’1g+zagzg ,an

STz
v =p2 4 Te(Q). (18)

Consequently, the optimum step-size of the e~NSLMS algo-
rithm can be obtained by minimizing (18) with respect to p
and is given by

where

1r(Q
flopt = 1;1 ) (19)

Finally, the corresponding minimum value of the tracking
MSE. ¢ = E [¢?], of the e~NSLMS algorithm for real-valued
data can be shown to be

_ ”r’oPt\/E 'YOPtﬁJr

2
Pmin = " 20
i 122 |1 % (20)

where
Yopt = ,Uoptzl + ,u;pltTl(Q) (21)

B. Complex-Valued Data

In this case, the following variance relation holds for the
weight update recursion of the e—NSLMS algorithm given in
(3) when the data is complex-valued [6]:

u [[[wilPlefed]”] + 17" Te(Q) = 2Re [E[e] gfei]]]
as i — oc. (22)

For complex-valued data, gle;] for the e—=NSLMS algorithm
is given by
csgnfeq; + v

23
e =

glei] =

Substituting (23) into (22), and since [esgn[z]|* = 2, we get

2wk ||uZH2 + —lT(Q)
e e T

_ R [ [Cacsgrlea +uil )] (24)
e+ [Juyf

Again relying on the separation principle [3], it can be shown
that

212, + 7 Tr(Q) = 225Re [E [e;tcsgn[eai + t:z-m . (25)

In [3], we have evaluated the following expression for the
expectation on the right-hand side of (23)

2 Ellea, |2
Re [E [egicsg;n[eai +1‘im = NG (\/ﬁ) .
S e

Substituting (26) into (25) we get

202y 4 T(Q) = 222 [ Lllewl] i 27
TR Vel e )
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Also, here, in this case we get

,Wﬁ M ﬁ Ar2 72 bl
(= S22 | 4 +1/ T + 40223 |, (28)

v =2uZ+pM(Q), (29)

Similarly, the optimum step-size of the e—~NSLMS algorithm
can be obtained by minimizing (29) with respect to p and is
given by

where

(30)

Finally, the corresponding minimum value of the tracking MSE
of the e~NSLMS algorithm for complex-valued data can be
shown to be

o “/c»p‘r.\/7_T ”J’opt\/?
‘19]‘1'1111 - 8222 4 +

where
Yopt = 2opt 21 + g Tr(Q). (32)

C. Generalization

The expressions obtained for the optimum step-size of
the e~NSLMS algorithm in the previous two sections can be
generalized as follows:

™(Q)

=\[—5 33
Hopt O.Zl ( )

where the scaling factor @ = 1 for real-valued data case
and o = 2 for complex-valued data case. Similarly, the
corresponding minimum value of the tracking MSE of the
¢—~NSLMS algorithm can be generalized by the following
expression:

o :'Yoptﬁ 70pt\/7?+
L 2

where
“opt = 0-puopt,zl + ﬂ;pltTl(Q) (35)

IV. SIMULATION RESULTS

To assess the validity of our theoretical findings, extensive
simulations are carried out for different scenarios. In all the
simulations, we have chosen the adaptive filter length M = 10
and the normalization constant e = 1075, In Figures 1-4. we
have chosen 0'3 = 107® and additive white Gaussian noise
(AWGN) with a signal-to-noise ratio (SNR) of 20 dB.

For the case of real-valued data, Figures 1-2 depict the
tracking behavior of the e—NSLMS algorithm using white and
correlated Gaussian regressors, respectively. As can be seen
from Figure 1, the simulation results are in a close agreement
with the analytical results for values of p up to 0.001. A closer
look, into the region around p = 0.001 in Figure 1, shows that
the tracking MSE possesses a minimum value of 0.01014645
at g = 0.001, which are in excellent agreement with the
corresponding theoretical values of g = 0.01012611 and

0.012

—&— Simulation
0.0118[ —&—Theory  H

001161
001014845 — ——0—

0.0114)

0ot12f
w
2 P
= oonp 001012611 ——— —

poer 0.000998 4

0.0106

0.0104

0.0102F

1 2 3 4 5 6 7 8 9 10
Step-size (u) X107

Fig. 1. Theoretical and simulated MSE of the e=NSLMS algorithm using

white Gaussian regressors.
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Fig. 2. Theoretical and simulated MSE of the e—NSLMS algorithm using
orrelated Gaussian regressors.

fiopt = 0.000998 obtained from expressions (20) and (19),
respectively.

For the case of complex-valued data, Figures 3—4 demon-
strate the tracking performance of the e—~NSLMS algorithm
using white and correlated Gaussian regressors, respectively.
As can be seen from these figures, the simulation and analytical
results are found to be in reasonable agreement for complex-
valued data case.

Finally, the convergence performance of the e—NLMS
algorithm is compared with that of the e~NSLMS algorithm in
an unknown system identification scenario for both the real-
and complex-valued data cases. Figure 5 shows the conver-
gence comparison of the e=NLMS and ¢—NSLMS algorithms
in an AWGN environment. On the other hand, Figure 6 shows
the convergence comparison of the complex e—NLMS and
complex e—~NSLMS algorithms in an AWGN environment. In
both these figures, the convergence curves are plotted for both
white and correlated Gaussian data at an SNR of 10 dB. As
can be seen from these figures, the e—NLMS algorithm results
in superior performance over the e—~NSLMS algorithm for the
same misadjustment.
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Fig. 3. Theoretical and simulated MSE of the complex e=NSLMS algorithm
using white Gaussian regressors.
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Fig. 4. Theoretical and simulated MSE of the complex e=NSLMS algorithm
using correlated Gaussian regressors.

V. CONCLUSIONS

In this work, generalized expressions are derived for
obtaining the optimal step-size and the resulting minimum
MSE of the e~NSLMS algorithm for both cases of real- and
complex-valued data. It is observed that the expressions for the
optimal step-size and the corresponding optimal MSE of the
e—NSLMS algorithm for real- and complex-valued data cases
differ only by a scaling factor a. Moreover, we also observe a
close match between the analytical and simulation results for
real-valued data than complex-valued data. Finally, it is noted
that the convergence performance of the e—~NSLMS algorithm
gets more inferior when compared with that of the e~NLMS
algorithm when the data is complex-valued than real-valued.
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7 Future Work

The Mean Square Error (MSE) performance of the four novel adaptive algorithms, which were
proposed, analyzed, and evaluated in the publications listed in the author’s original
contributions, namely Sign Regressor Least Mean Fourth (SRLMF) [32], [33], Sign Regressor
Least Mean Mixed-Norm (SRLMMN) [34], Normalized Sign Regressor Least Mean Fourth
(NSRLMF) [35], [36], and Normalized Sign Regressor Least Mean Mixed-Norm (NSRLMMN)
[37], [38] as well as various other novel algorithms can be tested for fixed-point arithmetic
operations and subsequently compared with their respective MSE performance for floating-
point arithmetic operations.

Additionally, the MSE performance of the aforementioned four algorithms as well as various
other novel algorithms can be studied for the four types of quantization/loss of precision
methods, namely truncate, round, round-to-zero, and convergent round.

Moreover, the fixed-point adaptive noise cancellers operating on the aforementioned four
algorithms as well as various other novel algorithms can be implemented for applications such
as artifacts removal from various physiological signals such as ElectroCardioGram (ECG),
ElectroEncephaloGram (EEG), etc.

7.1 Contributions/Published/Accepted Manuscripts

[A1] M. M. U. Faiz and I. Kale, “A novel fixed-point leaky sign regressor algorithm based
adaptive noise canceller for PLI cancellation in ECG signals,” in Proc. of the 7" IEEE Int.
Forum on Research and Technologies for Society and Industry Innovation (RTSI 2022),
Paris, France, pp. 186-190, Aug. 2022, DOI:
https://doi.org/10.1109/RTSI55261.2022.9905081

In this paper, a novel fixed-point Leaky Sign Regressor Algorithm (LSRA) based adaptive noise
canceller has been employed for the cancellation of 60 Hz Power Line Interference (PLI) from
the ECG signal. A sufficient condition for the convergence in the mean of the LSRA algorithm
is also derived. The fixed-point LSRA-based adaptive noise canceller employed in this work is
fully quantized using an in-house quantize function [68].

The most effective number of quantization bits required for the various parameters are found
to be 6-bits and are determined through rigorous simulations. The filtered ECG signal free
from 60 Hz PLI is successfully recovered using a novel 6-bit fixed-point LSRA-based adaptive
noise canceller [68].

[A2] M. M. U. Faiz, S. K. Reni, and I. Kale, “A new fixed point noise cancellation method for
suppressing power line interference in electrocardiogram signals,” accepted in Proc. of
the 10t IEEE Int. Conf. on E-Health and Bioengineering (EHB 2022), lasi, Romania, pp.
1-4, Nov. 2022.
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In this paper, a novel fixed-point Leaky Sign Regressor Least Mean Mixed-Norm (LSRLMMN)
based adaptive noise canceller has been employed for the cancellation of 60 Hz PLI from the
ECG signal. A sufficient condition for the convergence in the mean of the LSRLMMN algorithm
is also derived [69].

The fixed-point LSRLMMN-based adaptive noise canceller employed in this work is fully
guantized. The intention for the extensive quantization study and modeling approach was
with a view to the physical integrated circuit implementation. All the modeling and simulation
studies were carried out at the bit-level with various loss of precision schemes to ensure
compliance with the set specification. The filter coefficients and all the data paths are
guantized in order to establish at a high-level behavioral level of the parameters for a
decreased complexity in integrated circuit implementation [69].

The number of quantization bits required for the primary input, secondary input, step-size,
leakage factor, mixing parameter, filter coefficients, filter output, and filtered ECG signal of
the fixed-point LSRLMMN-based adaptive noise canceller are found to be 8-bits for the round
and convergent round methods [69].

It should be noted that at the time of making minor amendments to my thesis the publication
in [A1] was available on IEEE Xplore and the manuscript in [A2] was accepted and virtually
presented. Also, | was awarded the Globally Engaged Research (GER) Scholarship for the
academic year 2022-2023 by the Graduate School, University of Westminster, London, United
Kingdom, for the work in [A1] and [A2] at the time of making minor amendments to my thesis.
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8 Conclusions

The eight adaptive algorithms analyzed and evaluated in this thesis include Sign Regressor
Least Mean Square (SRLMS), Sign-Sign Least Mean Square (SSLMS), Normalized Sign Regressor
Least Mean Square (NSRLMS), Normalized Sign-Error Least Mean Square (NSLMS), Sign
Regressor Least Mean Fourth (SRLMF), Sign Regressor Least Mean Mixed-Norm (SRLMMN),
Normalized Sign Regressor Least Mean Fourth (NSRLMF), and Normalized Sign Regressor Least
Mean Mixed-Norm (NSRLMMN).

The former four aforementioned algorithms, namely SRLMS, SSLMS, NSRLMS, and NSLMS
were proposed and analyzed using different methodologies by other researchers in the open
literature. In this thesis, the energy conservation framework has been applied uniformly for
the evaluation of the performance of various sign adaptive algorithms including SRLMS,
SSLMS, NSRLMS, and NSLMS. The performance of the SSLMS, NSRLMS, and NSLMS algorithms
has been analyzed and evaluated for both cases of real- and complex-valued data. While the
performance of the SRLMS algorithm has been analyzed and evaluated for complex-valued
data only.

The latter four aforementioned algorithms, namely SRLMF, SRLMMN, NSRLMF, and
NSRLMMN are newly proposed by the author. The performance of the SRLMF algorithm has
been analyzed and evaluated for both cases of real- and complex-valued data. While the
performance of the SRLMMN, NSRLMF, and NSRLMMN algorithms has been analyzed and
evaluated for real-valued data only.

For the case of real-valued data, new expressions for the steady-state Mean Square Error
(MSE) of the SSLMS, SRLMF, SRLMMN, NSRLMS, NSLMS, NSRLMF, and NSRLMMN algorithms
were derived. Moreover, new expressions for the tracking MSE of the SSLMS, SRLMF,
SRLMMN, NSRLMS, NSLMS, NSRLMF, and NSRLMMN algorithms were also derived. In
addition, new expressions for the optimum step-size of the SSLMS, SRLMF, NSRLMS, NSLMS,
NSRLMF, and NSRLMMN algorithms were also derived. Also, a sufficient condition for the
convergence in the mean of the SRLMF, SRLMMN, NSRLMF, and NSRLMMN algorithms were
newly derived (see Appendix D).

For the case of complex-valued data, new expressions for the steady-state MSE of the SRLMS,
SSLMS, SRLMF, NSRLMS, and NSLMS algorithms were derived. Moreover, new expressions for
the tracking MSE of the SRLMS, SSLMS, SRLMF, NSRLMS, and NSLMS algorithms were also
derived. Also, new expressions for the optimum step-size of the SRLMS, SSLMS, SRLMF, and
NSLMS algorithms were derived (see Appendix D).

It was shown by the author that the Sign-Error Least Mean Fourth (SLMF), Sign-Sign Least
Mean Fourth (SSLMF), and their variant algorithms boils down to the Sign-Error Least Mean
Square (SLMS), SSLMS, and their corresponding variant algorithms for both cases of real- and
complex-valued data, respectively. Thus, effectively removing the misconceptions among
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biomedical signal processing researchers concerning the implementation of adaptive noise
cancelers using the SLMF, SSLMF, and their variant algorithms.

Moreover, the SRLMMN algorithm-based control technique employed by other researchers
for the control of shunt compensator for power quality improvement in the distribution
system has proven itself to be highly efficient by offering fast convergence, less steady-state
error, low total harmonic distortion, and less computation complexity when compared with
the Recursive Least-Squares (RLS) and Variable Step-size Least Mean Square (VSLMS)
algorithms.

Furthermore, the NSRLMF algorithm is successfully employed by other researchers for power
quality improvement in wind-solar based distributed generation system. The NSRLMF
algorithm is shown to exhibit enhanced system dynamics as compared to the LMF algorithm.

Finally, it was shown by the author that the SRLMF and SRLMMN algorithms outperforms

other sign adaptive algorithms such as the SLMS, SRLMS, and SSLMS algorithms in baseline
wander and motion artifacts removal from the ECG signal.
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9 Appendix A
A sample MATLAB program to generate Figure 1 in [46] is shown below:

clc
clear all
close all

var_n=0.1;
sqn = sqgrt(var_n);

N =12000;
L =1000;

mu_sims = 0.001;
mu_simf = 0.001;

M =10;
wo =rand(M,1);

MSE1 = zeros(1,N);
MSE2 = zeros(1,N);

fork=1:L

input = randn(1,N);

v =sgn*randn(1,N);

u = zeros(1,M);

w1l = zeros(M,1);

w2 = zeros(M,1);

el =zeros(1,N);

e2 =zeros(1,N);

for j=1:N
u = [input(j) u(1:M-1)];
d=u*wo + v(j);
el(j)=d-u*wi;
e2(j)=d-u*w2;
% The SLMS algorithm weights update equation
w1l =w1+ mu_slms*u'*sign(el(j));
% The SLMF algorithm weights update equation
w2 =w2 + mu_simf*u'*sign((e2(j))"3);

end

MSE1 = MSE1 + abs(e1).A2;

MSE2 = MSE2 + abs(e2).72;

end

MSE_SLMS = MSE1/L;
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MSE_SLMF = MSE2/L;
plot(smooth(smooth(smooth(10*log10(MSE_SLMS)))),'r')
hold on
plot(smooth(smooth(smooth(10*logl0(MSE_SLMF)))),'b")
legend("\bf SLMS',"\bf SLMF')

xlabel("\bf Iterations')

ylabel("\bf MSE (dB)")

title("\bf Real-valued Data')

axis tight

hold off

The MATLAB programs to generate the remaining figures in the publications listed in the
author’s original contributions except in [49] are made available in the below shared location.
As mentioned earlier there were no simulation results reported in [49] as it was a comments
article.

https://drive.google.com/drive/folders/17DUXLOHv-
K6sJ7VDMGeSLIw5l OjMTJ?usp=sharing
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10 Appendix B

An example of the unified application of the energy conservation framework [52] in the
publications listed in the author’s original contributions [32]-[45] is presented here.

In [34], the expression for the steady-state Mean Square Error (MSE) @sr.mmn = E[e?] of the
Sign Regressor Least Mean Mixed-Norm (SRLMMN) algorithm was shown to be:

(5202 +52E5+258¢6%) /#Tr(k)
u

2(6+3502)-p(87+1582¢}+1268502) |5 Tr(R)
u

@SRLMMN = + o7, (B.1)

where p is the step-size, § is the mixing parameter ranging between 0 <6 <1, =1 -6,
oZ = E[v?] is the noise variance, & = E[v]'] and é¢ = E[v?] are the fourth and sixth-order
moments of the noise sequence v;, respectively, 62 = E[u?] is the regressor variance, and

Tr(R) is the trace of the regressor covariance matrix R = E[uiTul-].
We can obtain the expressions for the steady-state MSE of the Sign Regressor Least Mean
Fourth (SRLMF) and Sign Regressor Least Mean Square (SRLMS) algorithms from (B.1) by

setting 6 equal to 0 and 1, respectively, as shown below:

VZp&S Tr(R)

PSRLMF = + 07, (B.2)
602 ,naﬁ—lS\/Euf,‘}Tr(R) v
V2uoZTr(R
PSRLMS = b TT® ;. (B.3)

2 |moZ2—2uTr(R)

Note that the expression for the steady-state MSE of the SRLMF algorithm in (B.2) is the same
as that derived by the author in [32].

Also, in [34], the expression for the tracking MSE @gpimmn Of the SRLMMN algorithm was
shown to be:

u(8705+8268+265¢8) [ 2o Tr(®) +u Tr(@
u

- - - - + o2, (B.4)
2(8+3802)-p(82+158284+128802) /mTr(R)
u

/ _
@PSRLMMN =

where Tr(Q) is the trace of the covariance matrix Q = E[qiq?] of the noise sequence q;.

Similarly, we can obtain the expressions for the tracking MSE of the SRLMF and SRLMS
algorithms from (B.4) by setting § equal to 0 and 1, respectively, as shown below:
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VZUESTr(R)+u~1Tr(Q) [mo?

602 |mo2—15vV2piTr(R)

POSRLMF = + of, (B.5)

. V2pes Tr(R)+u~1Tr(Q) maf, 5
PsSrLMS = +oy. (B.6)
2 |mo2—2uTr(R)

Note that the expression for the tracking MSE of the SRLMF algorithm in (B.5) is the same as
that derived by the author in [32].

Another such example is demonstrated in [43], wherein it is shown how to obtain the
expressions for the steady-state/tracking MSE of the Normalized Sign Regressor Least Mean
Fourth (NSRLMF) and Normalized Sign-Error Least Mean Square (NSRLMS) algorithms from
the expressions for the steady-state/tracking MSE of the Normalized Sign Regressor Least
Mean Mixed-Norm (NSRLMMN) algorithm by setting 6 equal to 0 and 1, respectively.
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12 Appendix D

The expressions for the steady-state MSE, tracking MSE, optimum step-size, and step-size
bound of various sign adaptive algorithms for real-valued data, which were described in
Chapters 2 to 6 are shown in Tables D.1, D.2, D.3, and D.4, respectively.

Table D.1: The steady-state MSE expressions of various sign adaptive algorithms for real-

valued data.
Algorithm Steady-State MSE Expression
SSLMS N N
UTr(R) |uTr(R)  [p2[Tr(R)] 5
[40] = + + 02|+ o)
20, 40, 1602
6
SRLMF 1 £ smaller step-sizes: ¢ = VZUESTER) o2
(32] 602 ,rwﬁ
6
For larger step-sizes: ¢ = V2uETr(R) + o2
602 [mo2—15VZuéLTr(R)
SRLMMN
34] u(8%02 + 5285 + 266¢}) / Tr(R)
0= +0;
2(6 +3602) — u(82 + 1562} + 126602) / 7 Tr(R)
NSRLMS _ ,uav
(431 |9~
NSLMS
(4] \f BT L 402+ o2
NSRLMF [, &8
[35] ~ 602¢, — 151, &3
NSRLMMN o= u(6%a? + 625,, + 26881 5
[37] 2(6 + 3802)p, — u(82 + 156264 + 126802) ¢, °

Table D.2: The tracking MSE expressions of various sign adaptive algorithms for real-valued

data.
Algorithm Tracking MSE Expression

SSLMS y wly v |

[40] __I__I_Jr VT gz 4 o2

aNZ|2N2 T T8 T T
SRLMF VZUESTr(R)+u~Tr(Q) o
[32] For smaller step-sizes: ¢’ = + o,
602 /naﬁ
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VZUESTr(R)+u~1Tr(Q) |mo?

602 ’mrlzt— 15vV2ué; Tr(R)

For larger step-sizes: ¢ = + o7

SRLMMN
(34] u(8202 + 5285 + 285¢%) / Tr(R) +u1Tr(Q)
Q' = + 0y
2(6 +3602) — (62 + 156284 + 1255802) /WTr(R)
u
NSRLMS , up,02 + u~1Tr(Q) o2
43 | ? 2¢, — ud; v
NSLMS
_yr|yvm o |yin
[45] ' 2452 2
() 4¢2 2 \/16+20"¢2 + o5
NSRLMF P ue &y +u ' Tr(Q) 42
361 |¥ " 6oZ¢, — 15udiés
NSRLMMN | uce, + u~tTr(Q) o2
381 | ¥ " 2ag, —ubg, "

Table D.3: The optimum step-size expressions of various sign adaptive algorithms for real-

valued data.
Algorithm Optimum Step-Size Expression
SSLMS Tr(Q)
[40] = [———
Fort = |EDITw 1]
SRLMF —
[32] i T[O'IZLTI‘(Q)
For smaller step-sizes: fiopt = VEESTIR)
. 225(&2)"Tr(Q nog 15&2Tr(Q)
For larger step-sizes: piopr = [Tr(Q) (( 2)) (;()) Zenm| T ;U;Q
NS'[Z_;'}"S _ @, @] _ (@
Hort = 1526, | ¥ 40297 | 2020
NSLMS
TF(Q)
[45] Hopt =
s | Tr(Q) (25(D°Tr(Q) | 1] _56Tr(Q)
Fopt 4(02)2($20%5 " 1] 202488
e | T@ ‘1 b4:Tr(Q)]  DTr(Q)
Hopt = cpr | 4a2ce,? 2acg,
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Table D.4: The step-size bound expressions of various sign adaptive algorithms for real-valued

data.
Algorithm Step-Size Bound Expression
SRLMF 202
[32] Oo<u< L
3/1maXO-€2
SRLMMN V 2mo?
34 | O<k< Z
Amax(6 + 3(1 _ 6)Ge)
NSRLMF 0<y< 2
[36] 15307
NSRLMMN 5 26
37) | O<H<20+7357

Moreover, the expressions for the steady-state MSE, tracking MSE, and optimum step-size of
various sign adaptive algorithms for complex-valued data, which were described in Chapters
2 and 6 are shown in Tables D.5, D.6, and D.7, respectively.

Table D.5: The steady-state MSE expressions of various sign adaptive algorithms for complex-

valued data.
Algorithm Steady-State MSE Expression
SRLMS = 2,[10',,2TI‘(R) g2
[39] Jroz — 2uTr(R)
SSLMS 2uTr(R) . . — ,
T [uTr(R) + VU2[Tr(R)2 + 0Z0¢] + o7
6
SRLMF | £or smaller step-sizes: ¢ = uTI®) o2
[33] o2 ,Tmﬁ
6
For larger step-sizes: ¢ = v Tr(R) + o2
o} |mof—~9ug, Tr(R)
NSRLMS 4uc2Tr(R) . l 1 l g2
¢ = o
142] @-wyroz llwll] "™
NSLMS
2
[44] =,uf Mf+ M47T+40§ + of

Table D.6: The tracking MSE expressions of various sign adaptive algorithms for complex-

valued data.
Algorithm Tracking MSE Expression
SR;-SAS , _ AuclTr(R) + u~'Tr(Q)ymo? g2
139] 2 /maz — 4uTr(R) Y
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SSLMS y\/—
[41] Q' =— [ Vi ++/y? 7T+64a,,]+0v
SRLMF APEETI R+~ Tr(Q) o
[33] For smaller step-sizes: ¢’ = + o
405 ’mrlzt Y
) ) 4uELTr(R)+u~1Tr(Q) mo? 5
For larger step-sizes: ¢’ = + oy
40?2 ,naﬁ—36u§,‘}Tr(R)
NSRLMS 4Tr(R) o 1
R E + u ITr(Q)| + o
I A N il [T :
— W/ TTo? illg
NSLMS
, _wm|yWn |yt
[45] ' =5o7| 4 \] ot 4oZdp? | + ol
2

Table D.7: The optimum step-size expressions of various sign adaptive algorithms for complex-

valued data.
Algorithm Optimum Step-Size Expression
gy 1 [t@[1r(@) | Jrog| (@)
Hopt =7 o2 a2  Tr(R) 202
SSLMS Tr(Q)
[41] Hopt = |S5Emne iz1
°Pt T J2E[Iuy] 1]
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