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Abstract 

 

In this thesis, four novel sign adaptive algorithms proposed by the author were analyzed and 
evaluated for floating-point arithmetic operations. These four algorithms include Sign 
Regressor Least Mean Fourth (SRLMF), Sign Regressor Least Mean Mixed-Norm (SRLMMN), 
Normalized Sign Regressor Least Mean Fourth (NSRLMF), and Normalized Sign Regressor Least 
Mean Mixed-Norm (NSRLMMN). The performance of the latter three algorithms has been 
analyzed and evaluated for real-valued data only. While the performance of the SRLMF 
algorithm has been analyzed and evaluated for both cases of real- and complex-valued data. 

 
Additionally, four sign adaptive algorithms proposed by other researchers were also analyzed 
and evaluated for floating-point arithmetic operations. These four algorithms include Sign 
Regressor Least Mean Square (SRLMS), Sign-Sign Least Mean Square (SSLMS), Normalized 
Sign-Error Least Mean Square (NSLMS), and Normalized Sign Regressor Least Mean Square 
(NSRLMS). The performance of the latter three algorithms has been analyzed and evaluated 
for both cases of real- and complex-valued data. While the performance of the SRLMS 
algorithm has been analyzed and evaluated for complex-valued data only. 

 
The framework employed in this thesis relies on energy conservation approach. The energy 
conservation framework has been applied uniformly for the evaluation of the performance of 
the aforementioned eight sign adaptive algorithms proposed by the author and other 
researchers. In other words, the energy conservation framework stands out as a common 
theme that runs throughout the treatment of the performance of the aforementioned eight 
algorithms. 
 
Some of the results from the performance evaluation of the four novel sign adaptive 
algorithms proposed by the author, namely SRLMF, SRLMMN, NSRLMF, and NSRLMMN are as 
follows. It was shown that the convergence performance of the SRLMF and SRLMMN 
algorithms for real-valued data was similar to those of the Least Mean Fourth (LMF) and Least 
Mean Mixed-Norm (LMMN) algorithms, respectively. Moreover, it was also shown that the 
NSRLMF and NSRLMMN algorithms exhibit a compromised convergence performance for real-
valued data as compared to the Normalized Least Mean Fourth (NLMF) and Normalized Least 
Mean Mixed-Norm (NLMMN) algorithms, respectively. 
 
Some misconceptions among biomedical signal processing researchers concerning the 
implementation of adaptive noise cancelers using the Sign-Error Least Mean Fourth (SLMF), 
Sign-Sign Least Mean Fourth (SSLMF), and their variant algorithms were also removed. 

 
Finally, three of the novel sign adaptive algorithms proposed by the author, namely SRLMF, 

SRLMMN, and NSRLMF have been successfully employed by other researchers and the author 

in applications ranging from power quality improvement in the distribution system and 

multiple artifacts removal from various physiological signals such as ElectroCardioGram (ECG) 

and ElectroEncephaloGram (EEG).   
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1 Introduction 

 
1.1 Adaptive Filters 

 
When the filter is required to operate in a stationary environment, wherein the statistics of 
the signal to be processed are known, the use of Wiener filter provides a solution, which is 
optimum in the mean square error sense. However, when the filter is required to operate in 
a nonstationary environment, wherein the statistics of the signal to be processed are 
unknown, the use of an adaptive filter offers an attractive solution to the problem. In a 
nonstationary environment, adaptive filters provide significant improvement in performance 
over fixed filters [1]. 
 
An adaptive filter has the ability of adapting its characteristics in order to achieve the desired 
objectives. Adaptation is accomplished automatically by adjusting the filter coefficients or 
filter weights in accordance with the input data. Thus, making an adaptive filter in reality a 
nonlinear device as it does not obey the principle of superposition [1]. 
 
1.2 Adaptive Filtering Algorithms 

 

An adaptive filter relies on a recursive algorithm for its operation. The algorithm starts from 

some predetermined set of initial conditions. In a stationary environment, the algorithm 

converges to the optimum Weiner solution after some successive iterations. In a 

nonstationary environment, the algorithm offers a tracking ability, wherein it can track time 

variations in the input data statistics [1], [2]. 

 

A number of adaptive algorithms have been reported in the open literature in order to adjust 
the filter coefficients. Some of the most well-known algorithms include Least Mean Square 
(LMS) [3]–[5], Least Mean Fourth (LMF) [6]–[9], Least Mean Mixed-Norm (LMMN) [10]–[12], 
Sign Regressor Least Mean Square (SRLMS) [13]–[16], Sign-Error Least Mean Square (SLMS) 
[17]–[25], Sign-Sign Least Mean Square (SSLMS) [26]–[31], Sign Regressor Least Mean Fourth 
(SRLMF) [32], [33], Sign Regressor Least Mean Mixed-Norm (SRLMMN) [34] etc. The latter two 
novel algorithms, namely SRLMF and SRLMMN were proposed, analyzed, and evaluated by 
the author. 
 
1.3 Applications of Adaptive Filters 

 

Adaptive filters have been successfully employed in many diverse fields such as biomedical 

engineering, communications, control systems, radar, seismic, and sonar signal processing, 

etc. The main difference among the various applications arises in the manner in which the 

desired response is extracted. On this basis, adaptive filters are classified into four basic 

classes, namely modelling, inverse modelling, interference/noise cancellation, and linear 

prediction [1], [2].  
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In [32]–[46], system identification, an application of modelling, has been implemented to 
evaluate the performance of the respective algorithms discussed in these publications. In [47], 
channel equalization, an application of inverse modelling, has been implemented to evaluate 
the performance of the respective algorithms discussed in this particular publication. In [48], 
both single-stage and cascaded interference/noise cancellation adaptive filter structures have 
been implemented to evaluate the performance of the respective algorithms discussed in this 
particular publication.  
 
Therefore, only modelling, inverse modelling, and both single-stage and cascaded 
interference/noise cancellation adaptive filter structures are briefly discussed below. 
Moreover, all the simulations in the publications listed in the author’s original contributions 
except in [49] are performed by the author using MathWorks’ MATLAB software (see 
Appendix A for a sample MATLAB program). It should be noted that there were no simulation 
results reported in [49] as it was a comments article. 
 
1.3.1 Modelling  

 

The problem of modelling in the context of adaptive filters is depicted in Figure 1.1. The aim 

is to estimate the parameters of an unknown system or plant. Both the unknown system and 

the adaptive filter are driven by the same input 𝐮𝑖.  𝑣𝑖  is the additive noise. The adaptive filter 

output 𝑦𝑖 is subtracted from the desired signal 𝑑𝑖. The resulting error signal 𝑒𝑖 is used to 

update the adaptive filter coefficients such that the error signal gets minimized iteratively [1], 

[2].   

 

Note that throughout this thesis, scalar quantities such as 𝑣𝑖  are denoted by lowercase letters, 

vector quantities such as 𝐮𝑖  are denoted by boldfaced lowercase letters, and matrices such as 

regressor covariance matrix 𝐑 are denoted by boldfaced uppercase letters. 

 

Figure 1.1: Modelling scenario. 
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1.3.2 Inverse Modelling 

 

The problem of inverse modelling in the context of adaptive filters is depicted in Figure 1.2. 

The most widely used application of inverse modelling, also known as deconvolution, is in 

communications wherein an inverse model, also called an equalizer [50], is employed to 

mitigate the effect of channel distortion. At convergence, the adaptive filter has a best transfer 

function equal to the reciprocal of the unknown system’s or plant’s transfer function, such 

that the combination of the two constitutes an ideal transmission medium.  In Figure 1.2, a 

delayed version of the system input 𝑠𝑖 forms the desired signal 𝑑𝑖 for the adaptive filter [1], 

[2]. 

 

Figure 1.2: Inverse modelling scenario. 

 

1.3.3 Interference/Noise Cancellation 

 

The problem of interference/noise cancellation in the context of adaptive filters is depicted in 

Figure 1.3. In this application, the adaptive filter structure shown below is used to cancel the 

interference/noise present in the corrupted primary input 𝑑𝑖, which contains the desired 

signal plus interference/noise [51]. The secondary or reference input 𝐮𝑖  contains the reference 

interference/noise that is correlated only with the interference/noise present in the corrupted 

primary input 𝑑𝑖, the adaptive filter is adjusted so that an estimate of the interference/noise 

that is present in the corrupted primary input 𝑑𝑖 appears at its output 𝑦𝑖, and 𝑒𝑖 is the filtered 

signal free from interference/noise [1], [2]. 

 

1.3.4 Cascaded 2-Stage Adaptive Noise Cancellation 

 

A cascaded 2-stage adaptive noise canceller is shown in Figure 1.4. As can be seen from this 

figure 𝑑𝑖1 forms the corrupted primary input of the first adaptive noise canceller, 𝑑𝑖1 contains 

the desired signal plus the two noise signals 𝑛1 and 𝑛2, 𝐮𝑖1 forms the reference input of the 

first adaptive noise canceller, 𝐮𝑖1 contains the first reference noise signal that is correlated 
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only with the first noise signal 𝑛1 present in the corrupted primary input 𝑑𝑖1, 𝐮𝑖2 forms the 

reference input of the second adaptive noise canceller, 𝐮𝑖2 contains the second reference 

noise signal that is correlated only with the second noise signal 𝑛2 present in the corrupted 

primary input 𝑑𝑖1, 𝑦𝑖1 and 𝑦𝑖2 are the respective adaptive filter outputs, 𝑒𝑖1 is the partially 

corrupted signal free from the first noise signal 𝑛1, 𝑒𝑖1 will act as the partially corrupted 

primary input 𝑑𝑖2 to the second adaptive noise canceller, and 𝑒𝑖2 is the filtered signal free from 

both noise signals 𝑛1 and 𝑛2. 

 
Figure 1.3: Interference/Noise cancellation scenario. 

 

 
Figure 1.4: Cascaded 2-stage adaptive noise cancellation scenario. 

 
1.4 Advantages of Sign Adaptive Algorithms 
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Reduction in the complexity of the LMS algorithm has always received attention in the area of 

adaptive filtering. This reduction is usually done by clipping either the input data or the 

estimation error or both in order to reduce the number of multiplications necessary at each 

algorithm iteration. The clipping of the input data or the estimation error or both is 

accomplished by the application of signum function. 

 

The algorithm based on clipping of the input data is known as the Sign Regressor Algorithm 

(SRA), the algorithm based on clipping of the estimation error is known as the sign-error 

algorithm or more commonly the Sign Algorithm (SA), and the algorithm based on clipping of 

both the input data and the estimation error is known as the Sign-Sign Algorithm (SSA).  

 

The aforementioned three sign adaptive algorithms result in a performance loss when 

compared with the LMS algorithm. However, significant reduction in computational cost and 

simplified hardware implementation can justify this performance loss in applications requiring 

reduced implementation costs. 
 

1.5 Real and Complex Forms of Sign Adaptive Algorithms 

 

There are certain applications wherein the adaptive filter input and its desired signal are in 

complex-valued form. For example, in digital data transmission, where the most widely 

employed signalling techniques are Phase Shift Keying (PSK) and Quadrature Amplitude 

Modulation (QAM). In this particular application, the baseband signal comprises of two 

separate components which are the real and imaginary parts of a complex-valued signal. Thus, 

we find cases where the formulation of the adaptive filtering algorithms must be given in 

terms of complex-valued variables. It should be noted that real adaptive filters are special 

cases of complex adaptive filters [1], [2]. 

 

Some of the sign adaptive algorithms such as the SRLMF algorithm has been analyzed and 

evaluated by the author for both cases of real- and complex-valued data in [32], [33].  

         

1.6 Objectives 

 

The first objective of this thesis was to propose, analyze, and evaluate various novel sign 

adaptive algorithms that exhibit good convergence rate with respect to their respective 

counterparts while maintaining all the advantages of the sign adaptive algorithms. This 

objective was achieved by analyzing and evaluating four novel sign adaptive algorithms 

proposed by the author, namely SRLMF [32], [33], SRLMMN [34], Normalized Sign Regressor 

Least Mean Fourth (NSRLMF) [35], [36], and Normalized Sign Regressor Least Mean Mixed-

Norm (NSRLMMN) [37], [38].  

 

In [32], it was shown that the convergence rate of the SRLMF algorithm was similar to that of 

the LMF algorithm. In [34], it was shown that the convergence rate of the SRLMMN algorithm 

was similar to that of the LMMN algorithm. In [35], it was shown that the NSRLMF algorithm 
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has an improved convergence rate as compared to the LMF and SRLMF algorithms as per the 

expectations. However, the NSRLMF algorithm exhibits a compromised convergence rate as 

compared to the Normalized Least Mean Fourth (NLMF) algorithm as shown in [35] and [36]. 

In [37] and [38], it was shown that the NSRLMMN algorithm has an improved convergence 

rate as compared to the LMMN and SRLMMN algorithms as per the expectations. However, 

the NSRLMMN algorithm exhibits a compromised convergence rate as compared to the 

Normalized Least Mean Mixed-Norm (NLMMN) algorithm as shown in [37]. 

 

The second objective was to analyze and evaluate the performance of various sign adaptive 

algorithms for complex-valued data. This objective was achieved by analyzing and evaluating 

the performance of the SRLMS [39], SSLMS [41], SRLMF [33], Normalized Sign-Error Least 

Mean Square (NSLMS) [44], [45], and Normalized Sign Regressor Least Mean Square (NSRLMS) 

[42] algorithms.  

 

The third objective was to analyze and evaluate the performance of various sign adaptive 

algorithms for real-valued data. This objective was achieved by analyzing and evaluating the 

performance of the SSLMS [40], SRLMF [32], SRLMMN [34], NSLMS [44], [45], NSRLMS [43], 

NSRLMF [35], [36], and NSRLMMN [37], [38] algorithms. 

 

Note that the SRLMS, SSLMS, NSLMS, and NSRLMS algorithms mentioned in the second and 

third objectives were proposed and analyzed using different methods by other researchers. 

 

Finally, the fourth objective was to remove misconceptions among biomedical signal 

processing researchers concerning the implementation of adaptive noise cancelers using the 

Sign-Error Least Mean Fourth (SLMF), Sign-Sign Least Mean Fourth (SSLMF), and their variant 

algorithms. This objective was achieved in [46], [49]. 

 

1.7 Methodology 

 

The framework employed in the publications listed in the author’s original contributions in 

[32]–[45], relies on energy conservation approach as described in [52]. The energy 

conservation framework has been applied uniformly by the author for the analysis and 

evaluation of the performance of various sign adaptive filters proposed by the author and 

other researchers. In particular, the same framework is used for steady-state analysis, tracking 

analysis, and transient analysis of various sign adaptive filters. In other words, the energy 

conservation framework stands out as a common theme that runs throughout the treatment 

of the performance of sign adaptive filters. 

 

One of the features of the energy conservation approach employed for the evaluation of the 

performance of sign adaptive filters is that it allows for the evaluation of steady-state and 

tracking results without requiring a preliminary transient analysis. 
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An example of the unified application of the energy conservation framework in the afore-

mentioned publications in this section is presented in Appendix B. 

 

In [46], some insights were provided on the convergence and steady-state behaviors of the 

SLMF, SSLMF, Normalized Sign-Error Least Mean Fourth (NSLMF), and Normalized Sign-Sign 

Least Mean Fourth (NSSLMF) algorithms for both cases of real- and complex-valued data. In 

[47], the performance of the SRLMF and LMF algorithms is investigated in an adaptive channel 

equalization scenario. In [48], a novel cascaded 4-stage adaptive noise canceller is proposed 

for the removal of four artifacts present in the ElectroCardioGram (ECG) signal. In [49], some 

comments were reported on the adaptive noise cancelers implemented using the SLMF, 

SSLMF, and their variant algorithms. There were no new expressions derived in [46]–[49]. 

Therefore, there was no need for the application of the energy conservation framework in 

these publications. 

 

1.8 Coherence/Consistency 
 

The coherence or consistency in the publications listed in the author’s original contributions 

can be demonstrated by the following facts: 

 

1. The filter coefficients/weights update equations of various sign adaptive algorithms 

for real- and complex-valued data analyzed and evaluated in the publications listed in 

the author’s original contributions are shown in Tables 1.1 and 1.2, respectively.  

 

These sign adaptive algorithms are derived from the traditional LMS, LMF, LMMN, 

Normalized Least Mean Square (NLMS), NLMF, and NLMMN algorithms by clipping 

either the input data or the estimation error, or both, which is accomplished by the 

application of signum function. Thus, the signum function is commonly encountered 

throughout the treatment of the performance of sign adaptive filters. 

 

Table 1.1: Filter coefficients/weights update equations of various sign adaptive algorithms 

for real-valued data. 

 

Algorithm Filter Coefficients/Weights Update Equation 

SSLMS [40] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇 sign[𝐮𝑖]Tsign[𝑒𝑖] 
SRLMF [32] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇 sign[𝐮𝑖]

T𝑒𝑖
3 

SRLMMN [34] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇 sign[𝐮𝑖]
T𝑒𝑖[𝛿 + (1 − 𝛿)𝑒𝑖

2] 
NSLMS [44], [45] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇𝑖 𝐮𝑖

Tsign[𝑒𝑖] 
NSRLMS [43] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇𝑖 sign[𝐮𝑖]T𝑒𝑖  

NSRLMF [35], [36] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇𝑖 sign[𝐮𝑖]T𝑒𝑖
3 

NSRLMMN [37], [38] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇𝑖 sign[𝐮𝑖]T𝑒𝑖[𝛿 + (1 − 𝛿)𝑒𝑖
2] 

 

Table 1.2: Filter coefficients/weights update equations of various sign adaptive algorithms for 

complex-valued data. 
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Algorithm Filter Coefficients/Weights Update Equation 

SRLMS [39] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇 csgn[𝐮𝑖]∗𝑒𝑖 

SSLMS [41] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇 csgn[𝐮𝑖]
∗csgn[𝑒𝑖] 

SRLMF [33] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇 csgn[𝐮𝑖]
∗𝑒𝑖|𝑒𝑖|

2 
NSLMS [44], [45] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇𝑖  𝐮𝑖

∗csgn[𝑒𝑖] 

NSRLMS [42] 𝐰𝑖 = 𝐰𝑖−1 + 𝜇𝑖 csgn[𝐮𝑖]∗𝑒𝑖 

 

In Tables 1.1 and 1.2, 𝐰𝑖 is the updated filter weight vector at iteration 𝑖 ≥ 0, 𝜇 is the fixed 

step-size, 𝜇𝑖 is the variable step-size depending on the normalization used, 𝐮𝑖  is the regressor 

vector, 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖 is the estimation error signal, 𝑑𝑖 is the desired signal, 𝑦𝑖 is the adaptive 

filter output, 𝛿 is the mixing parameter ranging between 0 ≤ 𝛿 ≤ 1, sign(. ) denotes the sign 

of its argument, and csgn(. ) denotes the complex sign of its argument. The definition of the 

signum function for real-valued data is given by: 

 

sign[𝑥] = {
−1, if 𝑥 < 0,
   0, if 𝑥 = 0,
   1, if 𝑥 > 0.

         (1.1) 

 

The definition of the signum function for complex-valued data is given by: 

 

csgn[𝑥] = {
−1, if ℜ[𝑥] < 0 or (ℜ[𝑥] = 0 and ℑ[𝑥] < 0),

0, if ℜ[𝑥] = ℑ[𝑥] = 0,
   1, if ℜ[𝑥] > 0 or (ℜ[𝑥] = 0 and ℑ[𝑥] > 0).

    (1.2) 

 

2. While the performance of different adaptive filters has been studied separately in the 

open literature, the framework adopted in this thesis applies uniformly across various 

sign adaptive filters analyzed and evaluated in the publications listed in the author’s 

original contributions. 

 

An advantage of applying energy conservation approach is that the tracking results of 

a particular sign adaptive filter can be obtained by mere inspection from its steady-

state results as there are only minor differences. An example of this fact can be 

observed by comparing the expressions (B.1) and (B.4) in Appendix B for the steady-

state Mean Square Error (MSE) and tracking MSE of the SRLMMN algorithm, 

respectively. The only difference between these two expressions is the presence of the 

term 𝜇−1Tr(𝐐) in the tracking MSE of the SRLMMN algorithm. 

 

1.9 Significance 
 

Three of the novel sign adaptive algorithms proposed, analyzed, and evaluated by the author, 

namely SRLMF, SRLMMN, and NSRLMF have been successfully employed in applications 

ranging from power quality improvement in the distribution system and multiple artifacts 
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reduction in the physiological signals. The significance of employing the above three novel 

algorithms in the aforementioned applications is outlined below: 

 

1. In [53], the SRLMMN algorithm-based [34] control technique is successfully applied by 

other researchers in the real-time implementation of active shunt compensator for 

power quality improvement in the distribution system. The SRLMMN algorithm-based 

control technique has proven itself to be highly efficient in this particular application 

by offering fast convergence, less steady-state error, low total harmonic distortion, 

and less computation complexity when compared with the Recursive Least-Squares 

(RLS) and Variable Step-size Least Mean Square (VSLMS) algorithms [53]. 

 

2. The motivation for employing sign adaptive algorithms in different applications such 

as artifacts removal from various physiological signals such as ECG, 

ElectroEncephaloGram (EEG), etc. is due to their simplicity of implementation [48], 

[54], [55].  

 

3. In [48], the SRLMF and SRLMMN algorithms were employed by the author in a novel 

cascaded 4-stage adaptive noise canceller for the removal of four artifacts present in 

the ECG signal, namely baseline wander, motion artifacts, muscle artifacts, and 60 Hz 

Power Line Interference (PLI). 

 

4. In [54], adaptive algorithms such as NSLMS [44], [45], NSRLMS [43], and their variants 

were employed by other researchers for removing various artifacts from ECG signals. 

 

5. In [55], the variants of the SRLMF algorithm [32] such as the NSRLMF [35], [36] and 

Block-Based Normalized Sign Regressor Least Mean Fourth (BBNSRLMF) algorithms 

were employed by other researchers for brain signal enhancement in remote health 

monitoring applications. 

 

6. In [56], [57], the NSRLMF algorithm is successfully employed by other researchers for 

power quality improvement in wind-solar based distributed generation system. The 

NSRLMF algorithm is shown to outperform the LMF algorithm by displaying enhanced 

dynamic response amidst sudden system variations [56], [57]. It should be noted that 

the authors in [56] published their expanded work in [57] at the time of making minor 

amendments to my thesis. 

 

1.10 Contributions 
 

The contributions of this thesis are briefly outlined below and will be discussed in detail in the 

subsequent chapters: 
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1. The various sign adaptive algorithms analyzed and evaluated in this thesis can be 

classified into two categories, namely non-normalized and normalized. Each of this 

category can be further classified into two subcategories, namely real- and complex-

valued data. This classification is depicted in Figure 1.5. 

 

2. The four novel algorithms proposed, analyzed, and evaluated in this thesis include 

SRLMF [32], [33], SRLMMN [34], NSRLMF [35], [36], and NSRLMMN [37], [38]. The 

performance of the latter three algorithms has been analyzed and evaluated for real-

valued data only. While the performance of the SRLMF algorithm has been analyzed 

and evaluated for both cases of real- and complex-valued data. 

 

3. The other four algorithms analyzed and evaluated in this thesis include SRLMS [39], 

SSLMS [40], [41], NSRLMS [42], [43], and NSLMS [44], [45]. The performance of the 

latter three algorithms has been analyzed and evaluated for both cases of real- and 

complex-valued data. While the performance of the SRLMS algorithm has been 

analyzed and evaluated for complex-valued data only. 

 

4. Finally, some misconceptions among biomedical signal processing researchers 

concerning the implementation of adaptive noise cancelers using the SLMF, SSLMF, 

and their variant algorithms were clarified in [46], [49]. 

 

Figure 1.5: Family of the sign adaptive algorithms.  
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2 The SRLMF Algorithm 

 

2.1 Introduction 

 

The Sign Regressor Least Mean Fourth (SRLMF) algorithm is based on the clipping of the input 

data, which is also called as the regression data. The SRLMF algorithm belongs to the family of 

the Least Mean Fourth (LMF) algorithm. The only difference in the filter weights update 

equations of these two algorithms is the application of the signum function on the input data 

of the SRLMF algorithm. 

 

The filter weights update equations of the SRLMF algorithm for real- and complex-valued data 

are given by (2.1) and (2.2), respectively [32], [33]: 

 

𝐰𝑖 = 𝐰𝑖−1 + 𝜇 sign[𝐮𝑖]T𝑒𝑖
3,         (2.1) 

 

𝐰𝑖 = 𝐰𝑖−1 + 𝜇 csgn[𝐮𝑖]∗𝑒𝑖|𝑒𝑖|
2,         (2.2) 

 

where 𝐰𝑖 is the updated filter weight vector at iteration 𝑖 ≥ 0, 𝜇 is the step-size, 𝐮𝑖  is the 

regressor vector, 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖  is the estimation error signal, 𝑑𝑖 is the desired signal, 𝑦𝑖 is the 

adaptive filter output, sign(. ) denotes the sign of its argument, csgn(. ) denotes the complex 

sign of its argument, and the definitions of the signum function for real- and complex-valued 

data are given by (1.1) and (1.2), respectively. 

 

2.2 Background 

 

The Sign Regressor Least Mean Square (SRLMS) algorithm, which is the counterpart of the 

SRLMF algorithm has been studied extensively in the open literature. However, there were no 

efforts made to study the performance evaluation of the SRLMF algorithm until it was 

proposed, analyzed, and evaluated in [32], [33]. 

 

The motivation to introduce the sign regressor term in the SRLMF algorithm is to achieve 

reduced computational complexity compared to the LMF algorithm. However, the 

convergence performance of the SRLMF algorithm is slower than the LMF algorithm but better 

than the SRLMS algorithm. 

 

The advantage of employing the SRLMF algorithm in various applications is its computational 

simplicity. However, the simplification in computations for the SRLMF algorithm comes at the 

expense of slower convergence. The slow convergence in the performance of the SRLMF 

algorithm is because of the clipping effect of the signum function on the input data. 

 

2.3 Contributions/Published Manuscripts 
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The three published papers on the performance evaluation of the SRLMF [32], [33], [47] 

algorithm for real- and complex-valued data are as follows: 

 

[P1] M. M. U. Faiz, A. Zerguine, and A. Zidouri, “Analysis of the sign regressor least mean 
fourth adaptive algorithm,” EURASIP Jour. on Advances in Signal Processing, vol. 2011, 
art. no. 373205, pp. 1–12, Jan. 2011, DOI: https://doi.org/10.1155/2011/373205 

 
A novel adaptive algorithm called the SRLMF algorithm was proposed, analyzed, and 

evaluated for the case of real-valued data in [32]. The expressions for the steady-state Mean 

Square Error (MSE) 𝜑 = E[𝑒𝑖
2] of the SRLMF algorithm were derived for both smaller and 

larger step-sizes and are given by (2.3) and (2.4), respectively [32]: 

  

𝜑 =
√2𝜇𝜉𝑣

6Tr(𝐑)

6𝜎𝑣
2√𝜋𝜎𝑢

2
+ 𝜎𝑣

2,          (2.3) 

𝜑 =
√2𝜇𝜉𝑣

6Tr(𝐑)

6𝜎𝑣
2√𝜋𝜎𝑢

2−15√2𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2.       (2.4) 

 

Also, the expressions for the tracking MSE 𝜑′ of the SRLMF algorithm were derived for both 

smaller and larger step-sizes and are given by (2.5) and (2.6), respectively [32]: 

 

𝜑′ =
√2𝜇𝜉𝑣

6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢
2

6𝜎𝑣
2√𝜋𝜎𝑢

2
+ 𝜎𝑣

2,        (2.5) 

𝜑′ =
√2𝜇𝜉𝑣

6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢
2

6𝜎𝑣
2√𝜋𝜎𝑢

2−15√2𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2.       (2.6) 

 
In addition, the expressions for the optimum step-size 𝜇opt of the SRLMF algorithm were also 

derived for both smaller and larger step-sizes and are given by (2.7) and (2.8), respectively 
[32]:  
 

𝜇opt = √
√𝜋𝜎𝑢

2Tr(𝐐)

√2𝜉𝑣
6Tr(𝐑)

,         (2.7) 

 

𝜇opt = √Tr(𝐐) [
225(𝜉𝑣

4)
2

Tr(𝐐)

36(𝜎𝑣
2)

2
(𝜉𝑣

6)
2 +

√𝜋𝜎𝑢
2

√2𝜉𝑣
6Tr(𝐑)

] −
15𝜉𝑣

4Tr(𝐐)

6𝜎𝑣
2𝜉𝑣

6 .    (2.8) 

 
A sufficient condition for the convergence in the mean of the SRLMF algorithm is also derived 
and is given by (2.9) [32]:  
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0 < 𝜇 <
√2𝜋𝜎𝑢

2

3𝜆max𝜎𝑒
2.         (2.9) 

 
In (2.3) to (2.9), 𝜎𝑣

2 = E[𝑣𝑖
2] is the noise variance, 𝜉𝑣

4 = E[𝑣𝑖
4] and 𝜉𝑣

6 = E[𝑣𝑖
6] are the fourth 

and sixth-order moments of the noise sequence 𝑣𝑖 , respectively, 𝜎𝑢
2 = E[𝐮𝑖

2] is the regressor 

variance, Tr(𝐑) is the trace of the regressor covariance matrix 𝐑 = E[𝐮𝑖
T𝐮𝑖], Tr(𝐐) is the 

trace of the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
T] of the noise sequence 𝐪𝑖, 𝜆max is the maximum 

eigenvalue of 𝐑, and 𝜎𝑒
2 is the estimation error variance. 

 
Moreover, the weighted variance relation has been extended in order to derive expressions 
for the MSE and Mean Square Deviation (MSD) of the SRLMF algorithm during the transient 
phase [32].  
 
The convergence performance of the SRLMF and LMF algorithms is found to be almost 
identical for real-valued data in a uniform noise environment with an SNR of 10 dB as shown 
in Figure 1 [P1].  
 
The steady-state MSE expressions of the SRLMF algorithm for both smaller and larger step-

sizes given by (2.3) and (2.4), respectively, are compared with the simulation results in Figure 

2 [P1]. In this Figure, the noise variance is fixed at 𝜎𝑣
2 = 0.001, the adaptive filter length is 

fixed at 𝑀 = 5, the step-size is varying from 𝜇 = 1𝑒 − 3 to 1𝑒 − 1, the length of white 

Gaussian regressors and white Gaussian noise is fixed at 𝑁 = 1𝑒6, the number of iterations 

are fixed at 𝐿 = 100, and the coefficients of an unknown system identification setup are fixed 

at 𝐰𝑜 = [0.227 0.460 0.688 0.460 0.227]𝑇 . The theoretical curves appear to be overlapping 

in Figure 2 [P1]. However, a zoom into the region around 𝜇 = 0.05 in Figure 2 [P1] reveals that 

these two theoretical curves, although extremely close to each other, do not overlap as shown 

in Figure 2.1 below. 

 
 
Figure 2.1: Comparison of the steady-state MSE expressions of the SRLMF algorithm using 
white Gaussian regressors - a closer look. 
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In Figure 2 [P1], it is observed that the simulations results vary in a zigzag manner with respect 
to the theoretical results. Such a behavior of the simulation results is because of the 
insufficient number of iterations. To prove our point, we have carried out the simulations for 
the number of iterations fixed at 𝐿 = 1000 as shown in Figure 2.2 below. 

 
 
Figure 2.2: Comparison of the steady-state MSE expressions of the SRLMF algorithm using 
white Gaussian regressors. 
 
In Figures 3 and 4 [P1], it is observed that the simulations results are not in a very good match 
with the theoretical results. This is again because of the insufficient number of iterations. To 
prove our point, we have carried out the simulations for the number of iterations fixed at 𝐿 =
1000 as shown in Figures 2.3 and 2.4 below, which are much better than Figures 3 and 4 [P1], 
respectively.  

 
 
Figure 2.3: Comparison of the steady-state MSE expressions of the SRLMF algorithm using 
correlated Gaussian regressors. 
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Figure 2.4: Comparison of the steady-state MSE expressions of the SRLMF algorithm using 
Gaussian regressors with an eigenvalue spread = 5. 

 
[P2] M. M. U. Faiz and A. Zerguine, “Analysis of the complex sign regressor least mean 

fourth adaptive algorithm,” in Proc. of the 2nd IEEE Int. Conf. on Signal and Image 
Processing Applications (ICSIPA 2011), Kuala Lumpur, Malaysia, pp. 553–555, Nov. 
2011, DOI: https://doi.org/10.1109/ICSIPA.2011.6144115 

 
After comprehensively analyzing and evaluating the performance of the SRLMF algorithm for 
the case of real-valued data in [32], the performance of the SRLMF algorithm was further 
investigated in an adaptive channel equalization scenario for both cases of real- and complex-
valued data in [47]. This provided the motivation to analyze and evaluate the performance of 
the SRLMF algorithm for the case of complex-valued data in [33].  
 
The expressions for the steady-state MSE 𝜑 = E[|𝑒𝑖|

2] of the complex SRLMF algorithm were 

derived for both smaller and larger step-sizes and are given by (2.10) and (2.11), respectively 

[33]: 

 

𝜑 =
𝜇𝜉𝑣

6Tr(𝐑)

𝜎𝑣
2√𝜋𝜎𝑢

2
+ 𝜎𝑣

2,          (2.10) 

𝜑 =
𝜇𝜉𝑣

6Tr(𝐑)

𝜎𝑣
2√𝜋𝜎𝑢

2−9𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2.        (2.11) 

Also, the expressions for the tracking MSE 𝜑′ of the complex SRLMF algorithm were derived 

for both smaller and larger step-sizes and are given by (2.12) and (2.13), respectively [33]: 

 

𝜑′ =
4𝜇𝜉𝑣

6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢
2

4𝜎𝑣
2√𝜋𝜎𝑢

2
+ 𝜎𝑣

2,        (2.12) 
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𝜑′ =
4𝜇𝜉𝑣

6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢
2

4𝜎𝑣
2√𝜋𝜎𝑢

2−36𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2.       (2.13) 

In addition, the expressions for the optimum step-size 𝜇opt of the complex SRLMF algorithm 

were also derived for both smaller and larger step-sizes and are given by (2.14) and (2.15), 
respectively [33]:  
 

𝜇opt = √
√𝜋𝜎𝑢

2Tr(𝐐)

4𝜉𝑣
6Tr(𝐑)

,         (2.14) 

 

𝜇opt = √Tr(𝐐) [
81(𝜉𝑣

4)
2

Tr(𝐐)

16(𝜎𝑣
2)

2
(𝜉𝑣

6)
2 +

√𝜋𝜎𝑢
2

4𝜉𝑣
6Tr(𝐑)

] −
9𝜉𝑣

4Tr(𝐐)

4𝜎𝑣
2𝜉𝑣

6 .     (2.15) 

 
In (2.10) to (2.15), 𝜎𝑣

2 = E[|𝑣𝑖|
2] is the noise variance, 𝜉𝑣

4 = E[|𝑣𝑖|
4] and 𝜉𝑣

6 = E[|𝑣𝑖|
6] are the 

fourth and sixth-order moments of the noise sequence 𝑣𝑖 , respectively, 𝜎𝑢
2 = E[|𝐮𝑖|

2] is the 

regressor variance, Tr(𝐑) is the trace of the regressor covariance matrix 𝐑 = E[𝐮𝑖
∗𝐮𝑖], and 

Tr(𝐐) is the trace of the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
∗] of the noise sequence 𝐪𝑖. 

 
It is interesting to note that the expressions for the steady-state MSE, tracking MSE, and 
optimum step-size of the SRLMF algorithm for both real- and complex-valued data cases given 
from (2.3) to (2.8) and from (2.10) to (2.15) are found to be identical except for a scaling factor 
[32], [33]. Moreover, it is shown that the simulation results are in a good match with the 
analytical results for white Gaussian regressors. 
 
Finally, a comparison between the convergence performance of the SRLMF and LMF 
algorithms indicates slower convergence of the SRLMF algorithm for complex-valued data in 
a uniform noise environment with an SNR of 10 dB.  
 
[P3] M. M. U. Faiz and A. Zerguine, “Adaptive channel equalization using the sign regressor 

least mean fourth algorithm,” in Proc. of the 1st IEEE Saudi Int. Electronics, 
Communications and Photonics Conf. (SIECPC 2011), Riyadh, Saudi Arabia, pp. 1–4, Apr. 
2011, DOI: https://doi.org/10.1109/SIECPC.2011.5876986 

 
The performance of the SRLMF and LMF algorithms was investigated when deployed in two 
types of adaptive channel equalizers, namely adaptive linear equalizer and adaptive decision 
feedback equalizer. The Bit Error Rate (BER) and MSE behaviors of the SRLMF and LMF 
algorithms were examined in both the above equalizers for Binary Phase Shift Keying (BPSK) 
and Quadrature Phase Shift Keying (QPSK) data in an Additive White Gaussian Noise (AWGN) 
and uniform noise environments, respectively. The filter weights update equations of the 
SRLMF algorithm for real- and complex-valued data given by (2.1) and (2.2) were used to 
handle BPSK and QPSK data, respectively [47]. 
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For a given constellation, the BER performance of the SRLMF and LMF algorithms is similar for 
lower Signal to Noise Ratios (SNR’s). As the SNR increases, an enhancement in the BER 
performance of the SRLMF algorithm is obtained over the LMF algorithm. However, the BER 
performance of the SRLMF and LMF algorithms is again similar for higher SNR’s. Also, for a 
fixed value of SNR, it was observed that the probability of error increases as the order of the 
constellation increases [47]. 
 
Moreover, it was shown that the convergence performance of the SRLMF algorithm degrades 
compared to the LMF algorithm in both the aforementioned equalizers for both BPSK and 
QPSK data in a uniform noise environment with an SNR of 20 dB. Also, it was observed that 
the MSE increases as the order of the constellation increases [47]. 
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3 The SRLMMN Algorithm 

 

3.1 Introduction 

 

The Sign Regressor Least Mean Mixed-Norm (SRLMMN) algorithm is based on the clipping of 

the input data. The SRLMMN algorithm belongs to the family of the Least Mean Mixed-Norm 

(LMMN) algorithm. The only difference in the filter weights update equations of these two 

algorithms is the application of the signum function on the input data of the SRLMMN 

algorithm. The SRLMMN algorithm is a hybrid version of the Sign Regressor Least Mean Square 

(SRLMS) and Sign Regressor Least Mean Fourth (SRLMF) algorithms. The SRLMMN algorithm 

combines the benefits of both the SRLMS and SRLMF algorithms such as improved stability 

and convergence performance, respectively. 

 

The filter weights update equation of the SRLMMN algorithm for real-valued data is given by 

(3.1) [34]: 

 

𝐰𝑖 = 𝐰𝑖−1 + 𝜇 sign[𝐮𝑖]T𝑒𝑖[𝛿 + (1 − 𝛿)𝑒𝑖
2],      (3.1) 

 

where 𝐰𝑖 is the updated filter weight vector at iteration 𝑖 ≥ 0, 𝜇 is the step-size, 𝐮𝑖  is the 

regressor vector, 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖  is the estimation error signal, 𝑑𝑖 is the desired signal, 𝑦𝑖 is the 

adaptive filter output, 𝛿 is the mixing parameter ranging between 0 ≤ 𝛿 ≤ 1, sign(. ) denotes 

the sign of its argument, and the definition of the signum function for real-valued data is given 

by (1.1). 

 

The filter weights update equation of the SRLMMN algorithm reduces to the filter weights 

update equations of the SRLMF and SRLMS algorithms when the mixing parameter δ becomes 

0 and 1, respectively. 

 

3.2 Background 

 

The LMMN algorithm is a well-known member of the family of mixed-norm adaptive filtering 

algorithms and has been analyzed extensively in the open literature. However, there were no 

efforts made to analyze the performance evaluation of the SRLMMN algorithm until it was 

proposed, analyzed, and evaluated in [34].  

 

The LMMN algorithm combines the benefits of both the classical Least Mean Square (LMS) 

and Least Mean Fourth (LMF) algorithms [10]. Some of the studies, which investigated the 

performance evaluation of the LMMN algorithm are as follows. The convergence, steady-

state, and tracking analysis of the LMMN algorithm was studied in [11], [12]. In [58], the LMMN 

algorithm was introduced for the first time in an adaptive echo canceller wherein it has shown 

improved performance over the LMS algorithm by offering relatively faster convergence and 

lower Mean Square Error (MSE). 
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In [59], an LMMN-based adaptive control technique is employed for the eradication of 

harmonics and for the extraction of fundamental load component for power quality 

improvement of grid intertie wind–photovoltaic system. The LMMN-based adaptive control 

technique offers lesser MSE, thereby resulting in reduced misadjustments and improved 

convergence compared to the conventional control schemes [59]. 

 

The motivation to introduce the sign regressor term in the SRLMMN algorithm is to achieve 

reduced computational complexity compared to the LMMN algorithm. However, the 

convergence performance of the SRLMMN algorithm is slower than the SRLMF algorithm but 

better than the SRLMS algorithm as expected. 

 

3.3 Contributions/Published Manuscripts 

 

The two published papers on the performance evaluation of the SRLMMN [34], [48] algorithm 

for real-valued data are as follows: 

 

[P4] M. M. U. Faiz and A. Zerguine, “On the convergence, steady-state, and tracking analysis 
of the SRLMMN algorithm,” in Proc. of the 23rd European Signal Processing Conf. 
(EUSIPCO 2015), Nice, France, pp. 2691–2695, Aug.-Sep. 2015, DOI: 
https://doi.org/10.1109/EUSIPCO.2015.7362873 

 
A novel adaptive algorithm called the SRLMMN algorithm was proposed, analyzed, and 

evaluated for the case of real-valued data in [34]. The expressions for the steady-state and 

tracking MSE of the SRLMMN algorithm were derived and are given by (B.1) and (B.4) in 

Appendix B, respectively. 

  
In addition, a sufficient condition for the convergence in the mean of the SRLMMN algorithm 
was also derived and is given by (3.2) [34]: 
 

0 < 𝜇SRLMMN <
√2𝜋𝜎𝑢

2

𝜆max(𝛿+3(1−𝛿)𝜎𝑒
2)

,       (3.2) 

 

where 𝜇SRLMMN is the step-size of the SRLMMN algorithm, 𝜎𝑢
2 = E[𝐮𝑖

2] is the regressor 

variance, 𝜆max is the maximum eigenvalue of the regressor covariance matrix 𝐑, and 𝜎𝑒
2 is the 

estimation error variance. 

 

We can obtain the expressions for the step-size bounds of the SRLMF and SRLMS algorithms 

from (3.2) by setting 𝛿 equal to 0 and 1, respectively, as shown below: 

 

0 < 𝜇SRLMF <
√2𝜋𝜎𝑢

2

3𝜆max𝜎𝑒
2,        (3.3) 
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0 < 𝜇SRLMS <
√2𝜋𝜎𝑢

2

𝜆max
.         (3.4) 

 

Note that the expression for the step-size bound of the SRLMF algorithm in (3.3) is the same 

as that obtained by the author in [32]. Furthermore, an excellent agreement is observed 

between the simulation and analytical results.  

 
Finally, a comparison between the convergence performance of the SRLMMN and LMMN 
algorithms indicates no performance degradation of the SRLMMN algorithm for real-valued 
data in a uniform noise environment with an SNR of 10 dB. 
 
[P5] M. M. U. Faiz and I. Kale, “Removal of multiple artifacts from ECG signal using cascaded 

multistage adaptive noise cancellers,” Array, vol. 14, art. no. 100133, pp. 1–9, July 
2022, DOI: https://doi.org/10.1016/j.array.2022.100133  

 
Although cascaded multistage adaptive noise cancellers have been employed before by other 
researchers for multiple artifact removal from the ElectroCardioGram (ECG) signal, they all 
used the same adaptive algorithm in all the cascaded multi-stages for adjusting the adaptive 
filter weights. In this paper, a cascaded 4-stage adaptive noise canceller is proposed by the 
author for the removal of four artifacts present in the ECG signal, namely baseline wander, 
motion artifacts, muscle artifacts, and 60 Hz Power Line Interference (PLI) [48].  
 
The performance of eight adaptive algorithms, namely LMS, LMF, LMMN, SRLMS, Sign-Error 
Least Mean Square (SLMS), Sign-Sign Least Mean Square (SSLMS), SRLMF, and SRLMMN is 
investigated in terms of Signal-to-Noise Ratio (SNR) improvement for removing the 
aforementioned four artifacts from the ECG signal [48].   
 
The shortlisted LMMN, LMF, LMMN, LMF algorithms are employed in the proposed cascaded 
4-stage adaptive noise canceller to remove the respective ECG artifacts as mentioned above. 
The proposed cascaded 4-stage adaptive noise canceller employing the LMMN, LMF, LMMN, 
LMF algorithms outperforms those that employ the same algorithm such as the LMS algorithm 
in all the four stages. One unique and powerful feature of the proposed cascaded 4-stage 
adaptive noise canceller is that it employs only those adaptive algorithms in the four stages, 
which are shown to be effective in removing the respective ECG artifacts as mentioned above. 
Such a scheme has not been investigated before in the open literature [48]. 
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[P5] 
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4 The NSRLMF Algorithm 

 

4.1 Introduction 

 

The Normalized Sign Regressor Least Mean Fourth (NSRLMF) algorithm is based on the 

clipping of the input data. The NSRLMF algorithm belongs to the family of the Normalized 

Least Mean Fourth (NLMF) algorithm [60]. The difference in the filter weights update 

equations of these two algorithms is the application of the signum function on the input data 

of the NSRLMF algorithm and the manner in which normalization has been applied. 

 

The filter weights update equation of the NSRLMF algorithm for real-valued data is given by 

(4.1) [35], [36]: 

 

𝐰𝑖 = 𝐰𝑖−1 +
𝜇

𝜖+||𝐮𝑖||H
2 sign[𝐮𝑖]

T𝑒𝑖
3,        (4.1) 

 

where 𝐰𝑖 is the updated filter weight vector at iteration 𝑖 ≥ 0, 𝜇 is the step-size, 𝜖 is a small 

positive constant to avoid division by zero when the regressor is zero, 𝐮𝑖  is the regressor 

vector, 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖 is the estimation error signal, 𝑑𝑖 is the desired signal, 𝑦𝑖 is the adaptive 

filter output, sign(. ) denotes the sign of its argument, the definitions of the signum function 

for real-valued data is given by (1.1), ||𝐮𝑖||H
2 = 𝐮𝑖H[𝐮𝑖]𝐮𝑖

T, and H[𝐮𝑖] is some positive-definite 

Hermitian matrix-valued function of 𝐮𝑖  defined by:  

 

H[𝐮𝑖] = diag {
1

|𝐮𝑖1|
,

1

|𝐮𝑖2|
, … ,

1

|𝐮𝑖𝑀|
 },        (4.2) 

 

where 𝑀 is the filter length and sign[𝐮𝑖]
T =  H[𝐮𝑖]𝐮𝑖

T. 

 

4.2 Background 

 

The Normalized Sign Regressor Least Mean Square (NSRLMS) algorithm, which is the 

counterpart of the NSRLMF algorithm has been studied extensively in the open literature. 

However, there were no efforts made to study the performance evaluation of the NSRLMF 

algorithm until it was proposed, analyzed, and evaluated in [35], [36]. 

 

The normalization term present in the NSRLMF algorithm has been introduced in order to 

enhance its convergence performance compared to the Sign Regressor Least Mean Fourth 

(SRLMF) algorithm. The motivation to introduce the sign regressor term in the NSRLMF 

algorithm is to achieve reduced computational complexity compared to the NLMF algorithm. 

However, the convergence performance of the NSRLMF algorithm is slower than the NLMF 

algorithm but better than the NSRLMS algorithm. 

 

In [56], [57], the NSRLMF algorithm is successfully employed by other researchers for power 

quality improvement in wind-solar based distributed generation system under harmonically 
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distorted grid. The NSRLMF algorithm is shown to outperform the Least Mean Fourth (LMF) 

algorithm by providing enhanced dynamic response amidst sudden system variations [56], 

[57]. It should be noted that the authors in [56] published their expanded work in [57] at the 

time of making minor amendments to my thesis. 

 

4.3 Contributions/Published Manuscripts 

 

The two published papers on the performance evaluation of the NSRLMF [35], [36] algorithm 

for real-valued data are as follows: 

 

[P6] M. M. U. Faiz and A. Zerguine, “The ε-Normalized Sign Regressor Least Mean Fourth 
(NSRLMF) adaptive algorithm,” in Proc. of the 11th IEEE Int. Conf. on Information 
Sciences, Signal Processing and their Applications (ISSPA 2012), Montreal, QC, Canada, 
pp. 339–342, July 2012, DOI: https://doi.org/10.1109/ISSPA.2012.6310571 

 
A novel adaptive algorithm called the NSRLMF algorithm was proposed, analyzed, and 

evaluated for the case of real-valued data in [35]. The expression for the steady-state Mean 

Square Error (MSE) 𝜑 = E[𝑒𝑖
2] of the NSRLMF algorithm was derived and is given by (4.3) [35]: 

 

𝜑 =
𝜇𝜙1𝜉𝑣

6

6𝜎𝑣
2𝜙2−15𝜇𝜙1𝜉𝑣

4 + 𝜎𝑣
2,        (4.3) 

 

where 𝜙1 = E [
||𝐮𝑖||H

2

(𝜖+||𝐮𝑖||H
2 )

2],        (4.4) 

 

𝜙2 = E [
1

𝜖+||𝐮𝑖||H
2 ],         (4.5) 

 

wherein 𝜎𝑣
2 = E[𝑣𝑖

2] is the noise variance, and 𝜉𝑣
4 = E[𝑣𝑖

4] and 𝜉𝑣
6 = E[𝑣𝑖

6] are the fourth 

and sixth-order moments of the noise sequence 𝑣𝑖 , respectively. Moreover, it is shown that 

the simulation results are in a good match with the analytical results for both white Gaussian 

and correlated Gaussian regressors.  

 

Finally, a comparison between the convergence performance of the NSRLMF and NLMF 

algorithms indicates a slight performance degradation of the NSRLMF algorithm for white 

Gaussian regressors in a uniform noise environment with an SNR of 10 dB. 

 
[P7] M. M. U. Faiz and A. Zerguine, “Convergence and tracking analysis of the ε-NSRLMF 

algorithm,” in Proc. of the 38th IEEE Int. Conf. on Acoustics, Speech, and Signal 
Processing (ICASSP 2013), Vancouver, BC, Canada, pp. 5657–5660, May 2013, DOI: 
https://doi.org/10.1109/ICASSP.2013.6638747 
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The convergence and tracking behaviors of the NSRLMF algorithm were analyzed and 

evaluated for the case of real-valued data in [36]. The expression for the tracking MSE 𝜑′ of 

the NSRLMF algorithm was derived and is given by (4.6) [36]: 

 

𝜑′ =
𝜇𝜙1𝜉𝑣

6+𝜇−1Tr(𝐐)

6𝜎𝑣
2𝜙2−15𝜇𝜙1𝜉𝑣

4 + 𝜎𝑣
2,        (4.6) 

 

where Tr(𝐐) is the trace of the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
T] of the noise sequence 𝐪𝑖. In 

addition, the expression for the optimum step-size 𝜇opt of the NSRLMF algorithm was also 

derived and is given by (4.7) [36]:  

 

𝜇opt = √
Tr(𝐐)

𝜉𝑣
6 [

25(𝜉𝑣
4)

2
Tr(𝐐)

4(𝜎𝑣
2)

2
(𝜙2)2𝜉𝑣

6
+

1

𝜙1
] −

5𝜉𝑣
4Tr(𝐐)

2𝜎𝑣
2𝜙2𝜉𝑣

6 .     (4.7) 

 
Furthermore, the stability bound on the step-size of the NSRLMF algorithm to ensure 
convergence in the mean was also derived and is given by (4.8) [36]: 
 

0 < 𝜇 <
2

1+3𝜎𝑣
2.         (4.8) 

 

It is clear from (4.8) that the upper bound on the step-size of the NSRLMF algorithm no longer 

depends on the maximum eigenvalue 𝜆max of the regressor covariance matrix 𝐑 = E[𝐮𝑖
T𝐮𝑖] 

as was in the case of the SRLMF algorithm [32]. Moreover, it is shown that the simulation 

results are in a good match with the analytical results for both white Gaussian and correlated 

Gaussian regressors. 

 
Finally, a comparison between the convergence performance of the NSRLMF and NLMF 

algorithms indicates that the effect of clipping on the performance of the NSRLMF algorithm 

is more evident for correlated Gaussian data than white Gaussian data in both Additive White 

Gaussian Noise (AWGN) and uniform noise environments with an SNR of 10 dB. This results in 

slower convergence of the NSRLMF algorithm for correlated Gaussian data than white 

Gaussian data compared to the NLMF algorithm. 
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[P7] 
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5 The NSRLMMN Algorithm 

 

5.1 Introduction 

 

The Normalized Sign Regressor Least Mean Mixed-Norm (NSRLMMN) algorithm is based on 

the clipping of the input data. The NSRLMMN algorithm belongs to the family of the 

Normalized Least Mean Mixed-Norm (NLMMN) algorithm. The difference in the filter weights 

update equations of these two algorithms is the application of the signum function on the 

input data of the NSRLMMN algorithm and the manner in which normalization has been 

applied. The NSRLMMN algorithm is a hybrid version of the Normalized Sign Regressor Least 

Mean Square (NSRLMS) and Normalized Sign Regressor Least Mean Fourth (NSRLMF) 

algorithms. The NSRLMMN algorithm combines the benefits of both the NSRLMS and NSRLMF 

algorithms such as improved stability and convergence performance, respectively. 

 

The filter weights update equation of the NSRLMMN algorithm for real-valued data is given by 

(5.1) [37], [38]: 

 

𝐰𝑖 = 𝐰𝑖−1 +
𝜇

𝜖+||𝐮𝑖||H
2 sign[𝐮𝑖]

T𝑒𝑖[𝛿 + (1 − 𝛿)𝑒𝑖
2],      (5.1) 

 

where 𝐰𝑖 is the updated filter weight vector at iteration 𝑖 ≥ 0, 𝜇 is the step-size, 𝜖 is a small 

positive constant to avoid division by zero when the regressor is zero, 𝐮𝑖  is the regressor 

vector, 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖 is the estimation error signal, 𝑑𝑖 is the desired signal, 𝑦𝑖 is the adaptive 

filter output, 𝛿 is the mixing parameter ranging between 0 ≤ 𝛿 ≤ 1, sign(. ) denotes the sign 

of its argument, the definitions of the signum function for real-valued data is given by (1.1), 

||𝐮𝑖||H
2 = 𝐮𝑖H[𝐮𝑖]𝐮𝑖

T, and H[𝐮𝑖] is some positive-definite Hermitian matrix-valued function of 

𝐮𝑖  defined by:  

 

H[𝐮𝑖] = diag {
1

|𝐮𝑖1|
,

1

|𝐮𝑖2|
, … ,

1

|𝐮𝑖𝑀|
 },        (5.2) 

 

where 𝑀 is the filter length and sign[𝐮𝑖]
T =  H[𝐮𝑖]𝐮𝑖

T. The filter weights update equation of 

the NSRLMMN algorithm reduces to the filter weights update equations of the NSRLMF and 

NSRLMS algorithms when the mixing parameter δ becomes 0 and 1, respectively. 

 

5.2 Background 

 

The NLMMN algorithm, which is the counterpart of the NSRLMMN algorithm has hardly 

received any attention in the open literature. Also, there were no efforts made to study the 

performance evaluation of the NSRLMMN algorithm until it was proposed, analyzed, and 

evaluated in [37], [38]. 

 

The normalization term present in the NSRLMMN algorithm has been introduced in order to 

enhance its convergence performance as compared to the Sign Regressor Least Mean Mixed-
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Norm (SRLMMN) algorithm. The motivation to introduce the sign regressor term in the 

NSRLMMN algorithm is to achieve reduced computational complexity compared to the 

NLMMN algorithm. However, the convergence performance of the NSRLMMN algorithm is  

slower than the NSRLMF algorithm but better than the NSRLMS algorithm as expected. 

 

5.3 Contributions/Published Manuscripts 

 

The two published papers on the performance evaluation of the NSRLMMN [37], [38] 

algorithm for real-valued data are as follows: 

 

[P8] M. M. U. Faiz and A. Zerguine, “Convergence analysis of the ε NSRLMMN algorithm,” 
in Proc. of the 20th European Signal Processing Conf. (EUSIPCO 2012), Bucharest, 
Romania, pp. 235–239, Aug. 2012, ISBN: 978-1-4673-1068-0 

 
A novel adaptive algorithm called the NSRLMMN algorithm was proposed, analyzed, and 

evaluated for the case of real-valued data in [37]. The expression for the steady-state Mean 

Square Error (MSE) 𝜑 = E[𝑒𝑖
2] of the NSRLMMN algorithm was derived and is given by (5.3) 

[37]: 

 

 𝜑 =
𝜇(𝛿2𝜎𝑣

2+𝛿̅2𝜉𝑣
6+2𝛿𝛿̅𝜉𝑣

4)𝜙1

2(𝛿+3𝛿̅𝜎𝑣
2)𝜙2−𝜇(𝛿2+15𝛿̅2𝜉𝑣

4+12𝛿𝛿̅𝜎𝑣
2)𝜙1

+ 𝜎𝑣
2,      (5.3) 

 

where 𝜙1 = E [
||𝐮𝑖||H

2

(𝜖+||𝐮𝑖||H
2 )

2],        (5.4) 

 

𝜙2 = E [
1

𝜖+||𝐮𝑖||H
2 ],         (5.5) 

 

wherein 𝛿̅ = 1 − 𝛿, 𝜎𝑣
2 = E[𝑣𝑖

2] is the noise variance, and 𝜉𝑣
4 = E[𝑣𝑖

4] and 𝜉𝑣
6 = E[𝑣𝑖

6] are 

the fourth and sixth-order moments of the noise sequence 𝑣𝑖, respectively. We can obtain the 

expressions for the steady-state MSE of the NSRLMF and NSRLMS algorithms from (5.3) by 

setting 𝛿 equal to 0 and 1, respectively, as shown in [43]. 

 

In addition, a sufficient condition for the convergence in the mean of the NSRLMMN algorithm 
was also derived and is given by (5.6) [37]: 
 

0 < 𝜇 < 2𝛿 +
2𝛿̅

1+3𝜎𝑣
2.         (5.6) 

 

Similarly, we can obtain the expressions for the step-size bounds of the NSRLMF and NSRLMS 

algorithms from (5.6) by setting 𝛿 equal to 0 and 1, respectively, as shown in [37]. Moreover, 

it is shown that the simulation results are in a good match with the analytical results for both 

white Gaussian and correlated Gaussian regressors. 
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Finally, a comparison between the convergence performance of the NSRLMMN and NLMMN 
algorithms indicates performance degradation of the NSRLMMN algorithm in a uniform noise 
environment with an SNR of 10 dB. 

 
[P9] M. M. U. Faiz and A. Zerguine, “Tracking analysis of the ε-NSRLMMN algorithm,” in the 

Conf. Record of the 46th Asilomar Conf. on Signals, Systems, and Computers (Asilomar 
2012), Pacific Grove, CA, USA, pp. 816–819, Nov. 2012, DOI: 
https://doi.org/10.1109/ACSSC.2012.6489127 

 
The tracking behavior of the NSRLMMN algorithm was analyzed and evaluated for the case of 

real-valued data in [38]. The expression for the tracking MSE 𝜑′ of the NSRLMMN algorithm 

was derived and is given by (5.7) [38]: 

 

𝜑′ =
𝜇𝑐𝜙1+𝜇−1Tr(𝐐)

2𝑎𝜙2−𝜇𝑏𝜙1
+ 𝜎𝑣

2,         (5.7)  

 

where 𝑎 = 𝛿 + 3𝛿̅𝜎𝑣
2,         (5.8) 

 

𝑏 = 𝛿2 + 15𝛿̅2𝜉𝑣
4 + 12𝛿𝛿̅𝜎𝑣

2,        (5.9) 

 

𝑐 = 𝛿2𝜎𝑣
2 + 𝛿̅2𝜉𝑣

6 + 2𝛿𝛿̅𝜉𝑣
4,         (5.10) 

 

wherein Tr(𝐐) is the trace of the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
T] of the noise sequence 𝐪𝑖. 

We can obtain the expressions for the tracking MSE of the NSRLMF and NSRLMS algorithms 

from (5.7) by setting 𝛿 equal to 0 and 1, respectively, as shown in [43]. 

 
In addition, the expression for the optimum step-size 𝜇opt of the NSRLMMN algorithm was 

also derived and is given by (5.11) [38]:  
 

𝜇opt = √
Tr(𝐐)

𝑐𝜙1
[1 +

𝑏2𝜙1Tr(𝐐)

4𝑎2𝑐𝜙2
2 ] −

𝑏Tr(𝐐)

2𝑎𝑐𝜙2
.       (5.11) 

 

Similarly, we can obtain the expressions for the optimum step-size of the NSRLMF and NSRLMS 

algorithms from (5.11) by setting 𝛿 equal to 0 and 1, respectively, as shown in [43]. Moreover, 

it is shown that the simulation results are in a close match with the analytical results for 

correlated Gaussian regressors in particular. 

 
Finally, a comparison between the convergence performance of the NSRLMMN and Least 
Mean Mixed-Norm (LMMN) algorithms indicates faster convergence of the NSRLMMN 
algorithm in a uniform noise environment with an SNR of 10 dB. 
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[P8] 
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[P9] 
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6 Other Sign Adaptive Algorithms 

 

6.1 Introduction 

 

6.1.1 The SRLMS Algorithm 

 

The Sign Regressor Least Mean Square (SRLMS) algorithm is based on the clipping of the input 

data. The SRLMS algorithm belongs to the family of the Least Mean Square (LMS) algorithm. 

The only difference in the filter weights update equations of these two algorithms is the 

application of the signum function on the input data of the SRLMS algorithm. 

 

The filter weights update equation of the SRLMS algorithm for complex-valued data is given 

by (6.1) [39]: 

 

𝐰𝑖 = 𝐰𝑖−1 + 𝜇 csgn[𝐮𝑖]∗𝑒𝑖.          (6.1) 

 

6.1.2 The SSLMS Algorithm 

 

The Sign-Sign Least Mean Square (SSLMS) algorithm is based on the clipping of both the input 

data and the estimation error. The SSLMS algorithm belongs to the family of the LMS 

algorithm. The only difference in the filter weights update equations of these two algorithms 

is the application of the signum function on both the input data and the estimation error of 

the SSLMS algorithm. 

 

The filter weights update equation of the SSLMS algorithm for real- and complex-valued data 

are given by (6.2) and (6.3), respectively [40], [41]: 

 

𝐰𝑖 = 𝐰𝑖−1 + 𝜇 sign[𝐮𝑖]Tsign[𝑒𝑖],        (6.2) 

 

𝐰𝑖 = 𝐰𝑖−1 + 𝜇 csgn[𝐮𝑖]∗csgn[𝑒𝑖].        (6.3) 

 

6.1.3 The SLMF Algorithm 

 

The filter weights update equation of the Sign-Error Least Mean Fourth (SLMF) algorithm 

reduces to that of the Sign-Error Least Mean Square (SLMS) algorithm for both cases of real- 

and complex-valued data [46], [49].  

 

Similarly, the filter weights update equations of the Sign-Sign Least Mean Fourth (SSLMF), 

Normalized Sign-Error Least Mean Fourth (NSLMF), and Normalized Sign-Sign Least Mean 

Fourth (NSSLMF) algorithms reduces to those of the Sign-Sign Least Mean Square (SSLMS), 

Normalized Sign-Error Least Mean Square (NSLMS), and Normalized Sign-Sign Least Mean 

Square (NSSLMS) algorithms, respectively, for both cases of real- and complex-valued data 

[46], [49]. 
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6.1.4 The NSRLMS Algorithm 

 

The Normalized Sign Regressor Least Mean Square (NSRLMS) algorithm is based on the 

clipping of the input data. The NSRLMS algorithm belongs to the family of the Normalized 

Least Mean Square (NLMS) algorithm [61]. The difference in the filter weights update 

equations of these two algorithms is the application of the signum function on the input data 

of the NSRLMS algorithm and the manner in which normalization has been applied. 

 

The filter weights update equations of the NSRLMS algorithm for real- and complex-valued 

data are given by (6.4) and (6.5), respectively [42], [43]: 

 

𝐰𝑖 = 𝐰𝑖−1 +
𝜇

𝜖+||𝐮𝑖||H
2 sign[𝐮𝑖]

T𝑒𝑖,        (6.4) 

 

𝐰𝑖 = 𝐰𝑖−1 +
𝜇

𝜖+||𝐮𝑖||H
2 csgn[𝐮𝑖]∗𝑒𝑖.        (6.5) 

 

6.1.5 The NSLMS Algorithm 

 

The Normalized Sign-Error Least Mean Square (NSLMS) algorithm is based on the clipping of 

the estimation error. The NSLMS algorithm belongs to the family of the NLMS algorithm [61]. 

The difference in the filter weights update equations of these two algorithms is the application 

of the signum function on the estimation error of the NSLMS algorithm and the manner in 

which normalization has been applied. 

 

The filter weights update equations of the NSLMS algorithm for real- and complex-valued data 

are given by (6.6) and (6.7), respectively [44], [45]: 

 

𝐰𝑖 = 𝐰𝑖−1 +
𝜇

𝜖+||𝐮𝑖||H
2 𝐮𝑖

Tsign[𝑒𝑖],        (6.6) 

 

𝐰𝑖 = 𝐰𝑖−1 +
𝜇

𝜖+||𝐮𝑖||H
2 𝐮𝑖

∗csgn[𝑒𝑖].                     (6.7) 

 

In (6.1) to (6.7), 𝐰𝑖 is the updated filter weight vector at iteration 𝑖 ≥ 0, 𝜇 is the step-size, 𝜖 is 

a small positive constant to avoid division by zero when the regressor is zero, 𝐮𝑖  is the 

regressor vector, 𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖  is the estimation error signal, 𝑑𝑖 is the desired signal, 𝑦𝑖 is the 

adaptive filter output, sign(. ) denotes the sign of its argument, csgn(. ) denotes the complex 

sign of its argument, the definitions of the signum function for real- and complex-valued data 

are given by (1.1) and (1.2), respectively, ||𝐮𝑖||H
2 = 𝐮𝑖H[𝐮𝑖]𝐮𝑖

T, and H[𝐮𝑖] is some positive-

definite Hermitian matrix-valued function of 𝐮𝑖  defined by:   

 

H[𝐮𝑖] = diag {
1

|𝐮𝑖1|
,

1

|𝐮𝑖2|
, … ,

1

|𝐮𝑖𝑀|
 },        (6.8) 

 

where 𝑀 is the filter length and sign[𝐮𝑖]
T =  H[𝐮𝑖]𝐮𝑖

T. 
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6.2 Background 

 

6.2.1 The SRLMS Algorithm 

 

The SRLMS algorithm is also frequently referred to as simply the Sign Regressor Algorithm 

(SRA) in the open literature. Some of the studies, which investigated the performance 

evaluation of the SRLMS algorithm are as follows. The stability of the SRLMS algorithm 

depends heavily on the characteristics of the input data [14]. It is shown in [14] that for some 

inputs, the LMS algorithm is stable while the SRLMS algorithm is unstable. In [15], the SRLMS 

algorithm with correlated Gaussian data was studied in the presence of both stationary and 

nonstationary environments.  

 

In [24], the transient performance degradation of the SRLMS algorithm was studied for 

correlated input data. It was concluded that the SRLMS and LMS algorithms have the strongest 

degradation when compared to the various other algorithms [24]. In [62], the SRLMS 

algorithm was employed for the digital predistortion model identification purpose. It was 

shown that the application of the SRLMS algorithm for digital predistortion model 

identification can achieve similar linearization and convergence performance with much lower 

computational complexity when compared to the conventional least-square-based algorithm 

[62]. 

 

6.2.2 The SSLMS Algorithm 

 

The SSLMS algorithm is also frequently referred to as simply the Sign-Sign Algorithm (SSA) in 

the open literature. Some of the studies, which investigated the performance evaluation of 

the SSLMS algorithm are as follows. The SSLMS algorithm with and without leakage was 

investigated in [26]. The convergence analysis of the SSLMS algorithm was performed in [28], 

[29]. Moreover, a rigorous tracking analysis of the SSLMS algorithm when employed in the 

identification of a time-varying plant with a white Gaussian input was performed in [31]. 

 

6.2.3 The SLMF Algorithm 

 

The variants of the SLMF algorithm such as the NSLMF algorithm and the Block-Based 

Normalized Sign-Error Least Mean Fourth (BBNSLMF) algorithm were employed for removing 

multiple artifacts from the ElectroEncephaloGram (EEG) signal, namely power line noise, eye 

blink artifact, electromyogram, cardiac signal artifact, respiration artifact, and electrode 

motion artifact [55]. 

 

Similarly, the variants of the SSLMF algorithm such as the NSSLMF algorithm and the Block-

Based Normalized Sign-Sign Least Mean Fourth (BBNSSLMF) algorithm were employed for 

removing the aforementioned multiple artifacts from the EEG signal [55]. 
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It was concluded in [55] that the performance of the aforementioned algorithms, namely 

NSLMF, NSSLMF, BBNSLMF, BBNSSLMF, and various other algorithms analyzed in the paper is 

superior to the conventional Least Mean Fourth (LMF) algorithm. Hence these algorithms 

were found to be more suitable for remote health monitoring EEG system [55].  

 

6.2.4 The NSRLMS Algorithm 

 

The NSRLMS is also referred to as simply the Normalized Sign Regressor Algorithm (NSRA) in 

the open literature. Some of the studies, which investigated the performance evaluation of 

the NSRLMS algorithm are as follows. The NSRLMS algorithm was analyzed for both white 

Gaussian and colored Gaussian reference inputs in [63]. A fully analytical stochastic model for 

the NSRLMS algorithm for Gaussian inputs was presented in [64].  

 

The NSRLMS algorithm was successfully employed for multiple artifacts reduction from the 

ElectroCardioGram (ECG) signal in [54], [65]. It was shown that the NSRLMS algorithm was the 

best performing algorithm for multiple artifacts reduction from the ECG signal among the six 

other algorithms studied in [54]. 
 

6.2.5 The NSLMS Algorithm 

 

The NSLMS is also referred to as simply the Normalized Sign Algorithm (NSA) in the open 

literature. Some of the studies, which investigated the performance evaluation of the NSLMS 

algorithm are as follows. In [66], the convergence analysis of the NSLMS algorithm was 

performed and the algorithm was tested in an adaptive noise cancellation scenario. It was 

shown that the NSLMS algorithm performed better than the NLMS algorithm in cancelling the 

geomagnetic background noise in the desired signal of magnetic anomaly detection systems 

[66]. 

 

In another application, the NSLMS algorithm was successfully employed for multiple artifacts 

reduction from the ECG signal in [67]. It was shown that the NSLMS algorithm outperformed 

the traditional LMS algorithm in the cancellation of multiple artifacts from the ECG signal [67]. 

 

6.3 Contributions/Published Manuscripts 

 

6.3.1 The SRLMS Algorithm 

 

A published paper on the performance evaluation of the SRLMS [39] algorithm for complex-

valued data is as follows: 

 
[P10] M. M. U. Faiz and A. Zerguine, “On the steady-state and tracking analysis of the 

complex SRLMS algorithm,” in Proc. of the 22nd European Signal Processing Conf. 
(EUSIPCO 2014), Lisbon, Portugal, pp. 751–754, Sep. 2014, E-ISBN: 978-0-9928-6261-
9  
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The SRLMS algorithm was analyzed and evaluated for the case of complex-valued data in [39]. 

The expression for the steady-state Mean Square Error (MSE) 𝜑 = E[|𝑒𝑖|
2] of the complex 

SRLMS algorithm was derived and is given by (6.9) [39]: 

 

𝜑 =
2𝜇𝜎𝑣

2Tr(𝐑)

√𝜋𝜎𝑢
2−2𝜇Tr(𝐑)

+ 𝜎𝑣
2.         (6.9) 

 

Also, the expression for the tracking MSE 𝜑′ of the complex SRLMS algorithm was derived and 

is given by (6.10) [39]: 

 

𝜑′ =
4𝜇𝜎𝑣

2Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢
2

2√𝜋𝜎𝑢
2−4𝜇Tr(𝐑)

+ 𝜎𝑣
2.        (6.10) 

 

In addition, the expression for the optimum step-size 𝜇opt of the complex SRLMS algorithm 

was also derived and is given by (6.11) [39]:  
 

𝜇opt =
1

2
√

Tr(𝐐)

𝜎𝑣
2 [

Tr(𝐐)

𝜎𝑣
2 +

√𝜋𝜎𝑢
2

Tr(𝐑)
] −

Tr(𝐐)

2𝜎𝑣
2 .      (6.11) 

 
In (6.9) to (6.11), 𝜎𝑣

2 = E[|𝑣𝑖|
2] is the noise variance, 𝜎𝑢

2 = E[|𝐮𝑖|
2] is the regressor variance, 

Tr(𝐑) is the trace of the regressor covariance matrix 𝐑 = E[𝐮𝑖
∗𝐮𝑖], and Tr(𝐐) is the trace of 

the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
∗] of the noise sequence 𝐪𝑖. Moreover, it is shown that the 

simulation results are in a good match with the analytical results. 

 
Finally, a comparison between the convergence performance of the complex SRLMS and 
complex LMS algorithms indicates slower convergence of the complex SRLMS algorithm for 
both white Gaussian and correlated Gaussian regressors in both Additive White Gaussian 
Noise (AWGN) and uniform noise environments with an SNR of 10 dB.  
 

6.3.2 The SSLMS Algorithm 

 

The two published papers on the performance evaluation of the SSLMS [40], [41] algorithm 

for real- and complex-valued data are as follows: 

 
[P11] M. M. U. Faiz and A. Zerguine, “Steady-State and tracking analysis of the SSLMS 

algorithm,” in Proc. of the 15th IEEE Int. Multi-Conf. on Systems, Signals & Devices 
(SSD 2018), Hammamet, Tunisia, pp. 45–48, Mar. 2018, DOI: 
https://doi.org/10.1109/SSD.2018.8570395 
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The SSLMS algorithm was analyzed and evaluated for the case of real-valued data in [40]. The 

expression for the steady-state MSE 𝜑 = E[𝑒𝑖
2] of the SSLMS algorithm was derived and is 

given by (6.12) [40]: 

  

𝜑 =
𝜇Tr(𝐑)

2𝜎𝑢
[

𝜇Tr(𝐑)

4𝜎𝑢
+ √

𝜇2[Tr(𝐑)]2

16𝜎𝑢
2 + 𝜎𝑣

2] + 𝜎𝑣
2.      (6.12) 

 

Also, the expression for the tracking MSE 𝜑′ of the SSLMS algorithm was derived and is given 

by (6.13) [40]: 

 

𝜑′ =
𝛾

4
√

𝜋

2
[

𝛾

2
√

𝜋

2
+ √

𝛾2𝜋

8
+ 4𝜎𝑣

2] + 𝜎𝑣
2,       (6.13) 

 

where 𝛾 = 𝜇E[||𝐮𝑖||H
2 ] + 𝜇−1Tr(𝐐).        (6.14)  

 
In addition, the expression for the optimum step-size 𝜇opt of the SSLMS algorithm was also 

derived and is given by (6.15) [40]:  
 

𝜇opt = √
Tr(𝐐)

E[||𝐮𝑖||H
2 ]

.         (6.15) 

 

In (6.12) to (6.15), 𝜎𝑣
2 = E[𝑣𝑖

2] is the noise variance, 𝜎𝑢
2 = E[𝐮𝑖

2] is the regressor variance, 

Tr(𝐑) is the trace of the regressor covariance matrix 𝐑 = E[𝐮𝑖
T𝐮𝑖], and Tr(𝐐) is the trace of 

the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
T] of the noise sequence 𝐪𝑖. Moreover, it is shown that the 

simulation results are in a good match with the analytical results. 

 
Finally, a comparison between the convergence performance of the SSLMS and LMS 
algorithms indicates slower convergence of the SSLMS algorithm in a uniform noise 
environment with an SNR of 10 dB.  
 
[P12] M. M. U. Faiz and A. Zerguine, “Analysis of the SSLMS algorithm for complex-valued 

data,” in Proc. of the 16th IEEE Int. Multi-Conf. on Systems, Signals & Devices (SSD 
2019), Istanbul, Turkey, pp. 262–265, Mar. 2019, DOI: 
https://doi.org/10.1109/SSD.2019.8893215 

 
The SSLMS algorithm was analyzed and evaluated for the case of complex-valued data in [41]. 

The expression for the steady-state MSE 𝜑 = E[|𝑒𝑖|
2] of the complex SSLMS algorithm was 

derived and is given by (6.16) [41]: 

 

𝜑 =
2𝜇Tr(𝐑)

𝜎𝑢
2 [𝜇Tr(𝐑) + √𝜇2[Tr(𝐑)]2 + 𝜎𝑢

2𝜎𝑣
2] + 𝜎𝑣

2.     (6.16) 

 
Also, the expression for the tracking MSE 𝜑′ of the complex SSLMS algorithm was derived and 

is given by (6.17) [41]: 
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𝜑′ =
𝛾√𝜋

32
[𝛾√𝜋 + √𝛾2𝜋 + 64𝜎𝑣

2] + 𝜎𝑣
2,       (6.17) 

 

where 𝛾 = 2𝜇E[||𝐮𝑖||H
2 ] + 𝜇−1Tr(𝐐).       (6.18)  

 
In addition, the expression for the optimum step-size 𝜇opt of the complex SSLMS algorithm 

was also derived and is given by (6.19) [41]:  
 

𝜇opt = √
Tr(𝐐)

2E[||𝐮𝑖||H
2 ]

.         (6.19) 

 

In (6.16) to (6.19), 𝜎𝑣
2 = E[|𝑣𝑖|

2] is the noise variance, 𝜎𝑢
2 = E[|𝐮𝑖|

2] is the regressor variance, 

Tr(𝐑) is the trace of the regressor covariance matrix 𝐑 = E[𝐮𝑖
∗𝐮𝑖], and Tr(𝐐) is the trace of 

the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
∗] of the noise sequence 𝐪𝑖. Moreover, it is shown that the 

simulation results are in a good match with the analytical results. 

 
Finally, a comparison between the convergence performance of the complex SSLMS and 
complex LMS algorithms indicates slower convergence of the complex SSLMS algorithm for 
both white Gaussian and correlated Gaussian regressors in both AWGN and uniform noise 
environments with an SNR of 10 dB.  
 

6.3.3 The SLMF Algorithm 

 

The two published papers on the performance evaluation of the SLMF [46], [49] algorithm and 

its variants for real- and complex-valued data are as follows: 

 
[P13] M. M. U. Faiz and A. Zerguine, “Insights into the convergence and steady-state 

behaviors of the SLMF and its variants,” in Proc. of the 12th IEEE Int. Multi-Conf. on 
Systems, Signals & Devices (SSD 2015), Mahdia, Tunisia, pp. 1–4, Mar. 2015, DOI: 
https://doi.org/10.1109/SSD.2015.7348094 

 
In [46], it was shown that the filter weights update equations of the SLMF, SSLMF, NSLMF, and 

NSSLMF algorithms reduces to those of the SLMS, SSLMS, NSLMS, and NSSLMS algorithms, 

respectively, for both cases of real- and complex-valued data [46]. 

 
Moreover, it was also shown through rigorous simulations that the convergence and MSE 
performance of the SLMF, SSLMF, NSLMF, and NSSLMF algorithms are exactly the same as 
those of the SLMS, SSLMS, NSLMS, and NSSLMS algorithms, respectively, for both cases of 
real- and complex-valued data [46]. 
 
Finally, the author was the recipient of the Best Paper Award for the contribution in [46] (see 

Appendix C). 
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[P14] M. M. U. Faiz, “Comments on “Efficient signal conditioning techniques for brain 
activity in remote health monitoring network”,” IEEE Sensors Jour., vol. 15, no. 9, pp. 
5349–5350, Sep. 2015, DOI: https://doi.org/10.1109/JSEN.2015.2431260 

 
In [49], it was shown that the filter weights update equations of the SLMF and SSLMF 

algorithms for real-valued data are exactly identical to those of the SLMS and SSLMS 

algorithms, respectively.  

 

Similarly, it can be shown that the filter weights update equations of all variants of the SLMF 

and SSLMF algorithms are exactly identical to those of the respective variants of the SLMS and 

SSLMS algorithms for both cases of real- and complex-valued data. For example, the filter 

weights update equations of the BBNSLMF and BBNSSLMF algorithms are exactly identical to 

those of the BBNSLMS and BBNSSLMS algorithms, respectively. 

 

Therefore, it was concluded in [49] that the adaptive noise cancelers implemented using the 

NSLMF, BBNSLMF, NSSLMF, and BBNSSLMF algorithms in [55] for removing multiple artifacts 

from the EEG signal would deliver exactly the same performance compared to the adaptive 

noise cancelers implemented using the NSLMS, BBNSLMS, NSSLMS, and BBNSSLMS 

algorithms, respectively, provided the parameter settings and EEG data used are same. 

 

6.3.4 The NSRLMS Algorithm 

 

The two published papers on the performance evaluation of the NSRLMS [42], [43] algorithm 

for real- and complex-valued data are as follows: 

 
[P15] M. M. U. Faiz and A. Zerguine, “The ε-Normalized Sign Regressor Least Mean Square 

(NSRLMS) adaptive algorithm,” in Proc. of the 2nd IEEE Int. Conf. on Signal and Image 
Processing Applications (ICSIPA 2011), Kuala Lumpur, Malaysia, pp. 556–558, Nov. 
2011, DOI: https://doi.org/10.1109/ICSIPA.2011.6144114  

 
The NSRLMS algorithm was analyzed and evaluated for the case of complex-valued data in 

[42]. The expression for the steady-state MSE 𝜑 = E[|𝑒𝑖|
2] of the complex NSRLMS algorithm 

was derived and is given by (6.20) [42]: 

 

𝜑 =
4𝜇𝜎𝑣

2Tr(𝐑)

(2−𝜇)√𝜋𝜎𝑢
2

E [
1

||𝐮𝑖||H
2 ] + 𝜎𝑣

2.        (6.20) 

 
Also, the expression for the tracking MSE 𝜑′ of the complex NSRLMS algorithm was derived 

and is given by (6.21) [42]: 

 

𝜑′ =
4Tr(𝐑)

(2−𝜇)√𝜋𝜎𝑢
2

[𝜇𝜎𝑣
2E [

1

||𝐮𝑖||H
2 ] + 𝜇−1Tr(𝐐)] + 𝜎𝑣

2.      (6.21) 

 



85 
 

In (6.20) and (6.21), 𝜎𝑣
2 = E[|𝑣𝑖|

2] is the noise variance, 𝜎𝑢
2 = E[|𝐮𝑖|

2] is the regressor 

variance, Tr(𝐑) is the trace of the regressor covariance matrix 𝐑 = E[𝐮𝑖
∗𝐮𝑖], and Tr(𝐐) is the 

trace of the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
∗] of the noise sequence 𝐪𝑖. Moreover, it is shown 

that the simulation results are in a good match with the analytical results. 

 

[P16] M. M. U. Faiz and A. Zerguine, “A note on NSRLMS, NSRLMF, and NSRLMMN adaptive 
algorithms,” in Proc. of the 15th IEEE Int. Multi-Conf. on Systems, Signals & Devices 
(SSD 2018), Hammamet, Tunisia, pp. 40–44, Mar. 2018, DOI: 
https://doi.org/10.1109/SSD.2018.8570653 

 

The NSRLMS algorithm was analyzed and evaluated for the case of real-valued data in [43] in 

order to compare the NSRLMS, NSRLMF, and NSRLMMN algorithms. The expression for the 

steady-state MSE 𝜑 = E[𝑒𝑖
2] of the NSRLMS algorithm was derived and is given by (6.22) [43]: 

  

𝜑 =
𝜇𝜎𝑣

2

2−𝜇
+ 𝜎𝑣

2.          (6.22) 

 

Also, the expression for the tracking MSE 𝜑′ of the NSRLMS algorithm was derived and is given 

by (6.23) [43]: 

 

𝜑′ =
𝜇𝜙1𝜎𝑣

2+𝜇−1Tr(𝐐)

2𝜙2−𝜇𝜙1
+ 𝜎𝑣

2,         (6.23) 

 

where 𝜙1 = E [
||𝐮𝑖||H

2

(𝜖+||𝐮𝑖||H
2 )

2],        (6.24) 

 

𝜙2 = E [
1

𝜖+||𝐮𝑖||H
2 ].         (6.25) 

 
In addition, the expression for the optimum step-size 𝜇opt of the NSRLMS algorithm was also 

derived and is given by (6.26) [43]:  
 

𝜇opt = √
Tr(𝐐)

𝜎𝑣
2𝜙1

[1 +
𝜙1Tr(𝐐)

4𝜎𝑣
2𝜙2

2 ] −
Tr(𝐐)

2𝜎𝑣
2𝜙2

.       (6.26) 

 

In (6.22) to (6.26), 𝜎𝑣
2 = E[𝑣𝑖

2] is the noise variance and Tr(𝐐) is the trace of the covariance 

matrix 𝐐 = E[𝐪𝑖𝐪𝑖
T] of the noise sequence 𝐪𝑖. Moreover, it is shown that the simulation 

results are in a good match with the analytical results. 

 
Finally, a comparison between the convergence performance of the NSRLMS, NSRLMF, and 
NSRLMMN algorithms indicates slower convergence of the NSRLMS algorithm in an AWGN 
environment with an SNR of 10 dB as expected.  
 

6.3.5 The NSLMS Algorithm 
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The two published papers on the performance evaluation of the NSLMS [44], [45] algorithm 

for real- and complex-valued data are as follows: 

 

[P17] M. M. U. Faiz and A. Zerguine, “A steady-state analysis of the ε-Normalized Sign-Error 
Least Mean Square (NSLMS) adaptive algorithm,” in the Conf. Record of the 45th 
Asilomar Conf. on Signals, Systems, and Computers (Asilomar 2011), Pacific Grove, 
CA, USA, pp. 538–541, Nov. 2011, DOI: 
https://doi.org/10.1109/ACSSC.2011.6190059 

 
The steady-state behavior of the NSLMS algorithm was analyzed and evaluated for both cases 

of real- and complex-valued data in [44]. The expression for the steady-state MSE 𝜑 = E[𝑒𝑖
2] 

of the NSLMS algorithm was derived for real-valued data and is given by (6.27) [44]: 

  

𝜑 =
𝜇

4
√

𝜋

2
[

𝜇

2
√

𝜋

2
+ √

𝜇2𝜋

8
+ 4𝜎𝑣

2] + 𝜎𝑣
2,       (6.27) 

 

where 𝜎𝑣
2 = E[𝑣𝑖

2] is the noise variance. In addition, the expression for the steady-state MSE 

𝜑 = E[|𝑒𝑖|
2] of the NSLMS algorithm was also derived for complex-valued data and is given 

by (6.28) [44]: 

  

𝜑 =
𝜇√𝜋

4
[

𝜇√𝜋

2
+ √

𝜇2𝜋

4
+ 4𝜎𝑣

2] + 𝜎𝑣
2,        (6.28) 

 

where 𝜎𝑣
2 = E[|𝑣𝑖|

2] is the noise variance. It is interesting to note that the expressions for the 

steady-state MSE of the NSLMS algorithm for real- and complex-valued data given in (6.27) 

and (6.28), respectively, are identical except for a scaling factor. Also, the steady-state MSE of 

the NSLMS algorithm for real- and complex-valued data is found to be independent of the 

regression data statistics. Moreover, it is shown that the simulation results are in a good match 

with the analytical results. 

 

[P18] M. M. U. Faiz, A. Zerguine, S. M. Asad, and K. Mahmood, “Tracking MSE performance 
analysis of the ε-NSLMS algorithm,” in Proc. of the 2nd IEEE Int. Conf. on 
Communications, Signal Processing and their Applications (ICCSPA 2015), Sharjah, 
UAE, pp. 1–4, Feb. 2015, DOI: https://doi.org/10.1109/ICCSPA.2015.7081323 

 
The tracking behavior of the NSLMS algorithm was analyzed and evaluated for both cases of 
real- and complex-valued data in [45]. The expressions for the tracking MSE 𝜑′ = E[𝑒𝑖

2] and 
optimum step-size 𝜇opt of the NSLMS algorithm were derived for real-valued data and are 

given by (6.29) and (6.30), respectively [45]: 
 

𝜑′ =
𝛾√𝜋

4𝜙2
2 [

𝛾√𝜋

4
+ √

𝛾2𝜋

16
+ 2𝜎𝑣

2𝜙2
2] + 𝜎𝑣

2,       (6.29) 

𝜇opt = √
Tr(𝐐)

𝜙1
,          (6.30) 
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where 𝛾 = 𝜇𝜙1 + 𝜇−1Tr(𝐐),        (6.31) 

 

𝜙1 = E [
||𝐮𝑖||2

(𝜖+||𝐮𝑖||2)2
],         (6.32) 

 

𝜙2 = E [
1

𝜖+||𝐮𝑖||2
].         (6.33) 

 

In (6.29) to (6.33), 𝜎𝑣
2 = E[𝑣𝑖

2] is the noise variance and Tr(𝐐) is the trace of the covariance 

matrix 𝐐 = E[𝐪𝑖𝐪𝑖
T] of the noise sequence 𝐪𝑖.  

 

Also, the expressions for the tracking MSE 𝜑′ = E[|𝑒𝑖|
2] and optimum step-size of the NSLMS 

algorithm were derived for complex-valued data and are given by (6.34) and (6.35), 

respectively [45]: 

 

𝜑′ =
𝛾√𝜋

8𝜙2
2 [

𝛾√𝜋

4
+ √

𝛾2𝜋

16
+ 4𝜎𝑣

2𝜙2
2] + 𝜎𝑣

2,       (6.34) 

 

𝜇opt = √
Tr(𝐐)

2𝜙1
,          (6.35) 

 

where 𝛾 = 2𝜇𝜙1 + 𝜇−1Tr(𝐐).        (6.36) 

 

In (6.34) to (6.36), 𝜎𝑣
2 = E[|𝑣𝑖|

2] is the noise variance and Tr(𝐐) is the trace of the covariance 

matrix 𝐐 = E[𝐪𝑖𝐪𝑖
∗] of the noise sequence 𝐪𝑖.  

 

In addition, the expressions for the tracking MSE and optimum step-size of the NSLMS 

algorithm for both cases of real- and complex-valued data were also generalized in [45] as 

they are identical except for a scaling factor and are given by (6.37) and (6.38), respectively 

[45]: 

𝜑′ =
𝛾√𝜋

4𝛼𝜙2
2 [

𝛾√𝜋

4
+ √

𝛾2𝜋

16
+ 2𝛼𝜎𝑣

2𝜙2
2] + 𝜎𝑣

2,       (6.37) 

 

𝜇opt = √
Tr(𝐐)

𝛼𝜙1
,          (6.38) 

 

where 𝛾 = 𝛼𝜇𝜙1 + 𝜇−1Tr(𝐐),        (6.39) 

 

wherein the scaling factor 𝛼 takes the value 1 and 2 for real- and complex-valued data cases, 

respectively. Moreover, it is shown that the simulation results are in a good match with the 

analytical results. 
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Finally, a comparison between the convergence performance of the NSLMS and NLMS 
algorithms indicates slower convergence of the NSLMS algorithm for both white Gaussian and 
correlated Gaussian regressors in an AWGN environment with an SNR of 10 dB. It is also 
observed that the convergence performance of the NSLMS algorithm gets more inferior 
compared to the NLMS algorithm for complex-valued data than real-valued data. 
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7 Future Work 

 

The Mean Square Error (MSE) performance of the four novel adaptive algorithms, which were 
proposed, analyzed, and evaluated in the publications listed in the author’s original 
contributions, namely Sign Regressor Least Mean Fourth (SRLMF) [32], [33], Sign Regressor 
Least Mean Mixed-Norm (SRLMMN) [34], Normalized Sign Regressor Least Mean Fourth 
(NSRLMF) [35], [36], and Normalized Sign Regressor Least Mean Mixed-Norm (NSRLMMN) 
[37], [38] as well as various other novel algorithms can be tested for fixed-point arithmetic 
operations and subsequently compared with their respective MSE performance for floating-
point arithmetic operations.  

 
Additionally, the MSE performance of the aforementioned four algorithms as well as various 
other novel algorithms can be studied for the four types of quantization/loss of precision 
methods, namely truncate, round, round-to-zero, and convergent round.  

 
Moreover, the fixed-point adaptive noise cancellers operating on the aforementioned four 
algorithms as well as various other novel algorithms can be implemented for applications such 
as artifacts removal from various physiological signals such as ElectroCardioGram (ECG), 
ElectroEncephaloGram (EEG), etc. 
 
7.1 Contributions/Published/Accepted Manuscripts 
 

[A1] M. M. U. Faiz and I. Kale, “A novel fixed-point leaky sign regressor algorithm based 
adaptive noise canceller for PLI cancellation in ECG signals,” in Proc. of the 7th IEEE Int. 
Forum on Research and Technologies for Society and Industry Innovation (RTSI 2022), 
Paris, France, pp. 186–190, Aug. 2022, DOI: 
https://doi.org/10.1109/RTSI55261.2022.9905081 

 

In this paper, a novel fixed-point Leaky Sign Regressor Algorithm (LSRA) based adaptive noise 

canceller has been employed for the cancellation of 60 Hz Power Line Interference (PLI) from 

the ECG signal. A sufficient condition for the convergence in the mean of the LSRA algorithm 

is also derived. The fixed-point LSRA-based adaptive noise canceller employed in this work is 

fully quantized using an in-house quantize function [68].  

 

The most effective number of quantization bits required for the various parameters are found 

to be 6-bits and are determined through rigorous simulations. The filtered ECG signal free 

from 60 Hz PLI is successfully recovered using a novel 6-bit fixed-point LSRA-based adaptive 

noise canceller [68]. 

 

[A2] M. M. U. Faiz, S. K. Reni, and I. Kale, “A new fixed point noise cancellation method for 

suppressing power line interference in electrocardiogram signals,” accepted in Proc. of 

the 10th IEEE Int. Conf. on E-Health and Bioengineering (EHB 2022), Iasi, Romania, pp. 

1–4, Nov. 2022. 
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In this paper, a novel fixed-point Leaky Sign Regressor Least Mean Mixed-Norm (LSRLMMN) 

based adaptive noise canceller has been employed for the cancellation of 60 Hz PLI from the 

ECG signal. A sufficient condition for the convergence in the mean of the LSRLMMN algorithm 

is also derived [69].  

 

The fixed-point LSRLMMN-based adaptive noise canceller employed in this work is fully 

quantized. The intention for the extensive quantization study and modeling approach was 

with a view to the physical integrated circuit implementation. All the modeling and simulation 

studies were carried out at the bit-level with various loss of precision schemes to ensure 

compliance with the set specification. The filter coefficients and all the data paths are 

quantized in order to establish at a high-level behavioral level of the parameters for a 

decreased complexity in integrated circuit implementation [69]. 

 

The number of quantization bits required for the primary input, secondary input, step-size, 

leakage factor, mixing parameter, filter coefficients, filter output, and filtered ECG signal of 

the fixed-point LSRLMMN-based adaptive noise canceller are found to be 8-bits for the round 

and convergent round methods [69]. 

 

It should be noted that at the time of making minor amendments to my thesis the publication 

in [A1] was available on IEEE Xplore and the manuscript in [A2] was accepted and virtually 

presented. Also, I was awarded the Globally Engaged Research (GER) Scholarship for the 

academic year 2022-2023 by the Graduate School, University of Westminster, London, United 

Kingdom, for the work in [A1] and [A2] at the time of making minor amendments to my thesis. 

  



125 
 

8 Conclusions 

 

The eight adaptive algorithms analyzed and evaluated in this thesis include Sign Regressor 

Least Mean Square (SRLMS), Sign-Sign Least Mean Square (SSLMS), Normalized Sign Regressor 

Least Mean Square (NSRLMS), Normalized Sign-Error Least Mean Square (NSLMS), Sign 

Regressor Least Mean Fourth (SRLMF), Sign Regressor Least Mean Mixed-Norm (SRLMMN), 

Normalized Sign Regressor Least Mean Fourth (NSRLMF), and Normalized Sign Regressor Least 

Mean Mixed-Norm (NSRLMMN). 

 

The former four aforementioned algorithms, namely SRLMS, SSLMS, NSRLMS, and NSLMS 

were proposed and analyzed using different methodologies by other researchers in the open 

literature. In this thesis, the energy conservation framework has been applied uniformly for 

the evaluation of the performance of various sign adaptive algorithms including SRLMS, 

SSLMS, NSRLMS, and NSLMS. The performance of the SSLMS, NSRLMS, and NSLMS algorithms 

has been analyzed and evaluated for both cases of real- and complex-valued data. While the 

performance of the SRLMS algorithm has been analyzed and evaluated for complex-valued 

data only. 

 

The latter four aforementioned algorithms, namely SRLMF, SRLMMN, NSRLMF, and 

NSRLMMN are newly proposed by the author. The performance of the SRLMF algorithm has 

been analyzed and evaluated for both cases of real- and complex-valued data. While the 

performance of the SRLMMN, NSRLMF, and NSRLMMN algorithms has been analyzed and 

evaluated for real-valued data only. 

 

For the case of real-valued data, new expressions for the steady-state Mean Square Error 

(MSE) of the SSLMS, SRLMF, SRLMMN, NSRLMS, NSLMS, NSRLMF, and NSRLMMN algorithms 

were derived. Moreover, new expressions for the tracking MSE of the SSLMS, SRLMF, 

SRLMMN, NSRLMS, NSLMS, NSRLMF, and NSRLMMN algorithms were also derived. In 

addition, new expressions for the optimum step-size of the SSLMS, SRLMF, NSRLMS, NSLMS, 

NSRLMF, and NSRLMMN algorithms were also derived. Also, a sufficient condition for the 

convergence in the mean of the SRLMF, SRLMMN, NSRLMF, and NSRLMMN algorithms were 

newly derived (see Appendix D). 

 

For the case of complex-valued data, new expressions for the steady-state MSE of the SRLMS, 

SSLMS, SRLMF, NSRLMS, and NSLMS algorithms were derived. Moreover, new expressions for 

the tracking MSE of the SRLMS, SSLMS, SRLMF, NSRLMS, and NSLMS algorithms were also 

derived. Also, new expressions for the optimum step-size of the SRLMS, SSLMS, SRLMF, and 

NSLMS algorithms were derived (see Appendix D). 

 

It was shown by the author that the Sign-Error Least Mean Fourth (SLMF), Sign-Sign Least 

Mean Fourth (SSLMF), and their variant algorithms boils down to the Sign-Error Least Mean 

Square (SLMS), SSLMS, and their corresponding variant algorithms for both cases of real- and 

complex-valued data, respectively. Thus, effectively removing the misconceptions among 
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biomedical signal processing researchers concerning the implementation of adaptive noise 

cancelers using the SLMF, SSLMF, and their variant algorithms. 

 

Moreover, the SRLMMN algorithm-based control technique employed by other researchers 

for the control of shunt compensator for power quality improvement in the distribution 

system has proven itself to be highly efficient by offering fast convergence, less steady-state 

error, low total harmonic distortion, and less computation complexity when compared with 

the Recursive Least-Squares (RLS) and Variable Step-size Least Mean Square (VSLMS) 

algorithms.  
 

Furthermore, the NSRLMF algorithm is successfully employed by other researchers for power 

quality improvement in wind-solar based distributed generation system. The NSRLMF 

algorithm is shown to exhibit enhanced system dynamics as compared to the LMF algorithm. 

 

Finally, it was shown by the author that the SRLMF and SRLMMN algorithms outperforms 

other sign adaptive algorithms such as the SLMS, SRLMS, and SSLMS algorithms in baseline 

wander and motion artifacts removal from the ECG signal.  
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9 Appendix A 
 
A sample MATLAB program to generate Figure 1 in [46] is shown below:  
 
clc 
clear all 
close all 
  
var_n = 0.1;  
sqn = sqrt(var_n); 
  
N = 12000;  
L = 1000; 
  
mu_slms = 0.001;                     
mu_slmf = 0.001;   
  
M = 10; 
wo = rand(M,1); 
  
MSE1 = zeros(1,N);  
MSE2 = zeros(1,N);  
 
for k = 1:L 
      input = randn(1,N); 
      v = sqn*randn(1,N);          
      u = zeros(1,M); 
      w1 = zeros(M,1); 
      w2 = zeros(M,1); 
      e1 = zeros(1,N); 
      e2 = zeros(1,N);        
      for j=1:N 
            u = [input(j) u(1:M-1)];  
            d = u*wo + v(j);             
            e1(j) = d - u*w1; 
            e2(j) = d - u*w2; 
            % The SLMS algorithm weights update equation 
            w1 = w1 + mu_slms*u'*sign(e1(j));   
            % The SLMF algorithm weights update equation 
            w2 = w2 + mu_slmf*u'*sign((e2(j))^3);  
      end          
      MSE1 = MSE1 + abs(e1).^2; 
      MSE2 = MSE2 + abs(e2).^2; 
end   
 
MSE_SLMS  = MSE1/L; 
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MSE_SLMF  = MSE2/L;     
plot(smooth(smooth(smooth(10*log10(MSE_SLMS)))),'r') 
hold on 
plot(smooth(smooth(smooth(10*log10(MSE_SLMF)))),'b') 
legend('\bf SLMS','\bf SLMF')     
xlabel('\bf Iterations') 
ylabel('\bf MSE (dB)') 
title('\bf Real-valued Data') 
axis tight  
hold off     
 

The MATLAB programs to generate the remaining figures in the publications listed in the 

author’s original contributions except in [49] are made available in the below shared location. 

As mentioned earlier there were no simulation results reported in [49] as it was a comments 

article. 

https://drive.google.com/drive/folders/17DUXLOHv-

_K6sJ7VDMGeSLIw5I_OjMTJ?usp=sharing 
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10 Appendix B 
 

An example of the unified application of the energy conservation framework [52] in the 

publications listed in the author’s original contributions [32]–[45] is presented here.  

 

In [34], the expression for the steady-state Mean Square Error (MSE) 𝜑SRLMMN = E[𝑒𝑖
2] of the 

Sign Regressor Least Mean Mixed-Norm (SRLMMN) algorithm was shown to be:  

 

𝜑SRLMMN =
𝜇(𝛿2𝜎𝑣

2+𝛿̅2𝜉𝑣
6+2𝛿𝛿̅𝜉𝑣

4)√
2

𝜋𝜎𝑢
2 Tr(𝐑)

2(𝛿+3𝛿̅𝜎𝑣
2)−𝜇(𝛿2+15𝛿̅2𝜉𝑣

4+12𝛿𝛿̅𝜎𝑣
2)√

2

𝜋𝜎𝑢
2 Tr(𝐑)

+ 𝜎𝑣
2,     (B.1) 

 

where 𝜇 is the step-size, 𝛿 is the mixing parameter ranging between 0 ≤ 𝛿 ≤ 1, 𝛿̅ = 1 − 𝛿, 

𝜎𝑣
2 = E[𝑣𝑖

2] is the noise variance, 𝜉𝑣
4 = E[𝑣𝑖

4] and 𝜉𝑣
6 = E[𝑣𝑖

6] are the fourth and sixth-order 

moments of the noise sequence 𝑣𝑖 , respectively, 𝜎𝑢
2 = E[𝐮𝑖

2] is the regressor variance, and 

Tr(𝐑) is the trace of the regressor covariance matrix 𝐑 = E[𝐮𝑖
T𝐮𝑖]. 

 

We can obtain the expressions for the steady-state MSE of the Sign Regressor Least Mean 

Fourth (SRLMF) and Sign Regressor Least Mean Square (SRLMS) algorithms from (B.1) by 

setting 𝛿 equal to 0 and 1, respectively, as shown below: 

 

𝜑SRLMF =
√2𝜇𝜉𝑣

6Tr(𝐑)

6𝜎𝑣
2√𝜋𝜎𝑢

2−15√2𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2,      (B.2) 

 

𝜑SRLMS =
√2𝜇𝜎𝑣

2Tr(𝐑)

2√𝜋𝜎𝑢
2−√2𝜇Tr(𝐑)

+ 𝜎𝑣
2.        (B.3) 

 

Note that the expression for the steady-state MSE of the SRLMF algorithm in (B.2) is the same 

as that derived by the author in [32]. 

 

Also, in [34], the expression for the tracking MSE 𝜑SRLMMN
′  of the SRLMMN algorithm was 

shown to be: 

 

𝜑SRLMMN
′ =

𝜇(𝛿2𝜎𝑣
2+𝛿̅2𝜉𝑣

6+2𝛿𝛿̅𝜉𝑣
4)√

2

𝜋𝜎𝑢
2 Tr(𝐑)+𝜇−1Tr(𝐐)

2(𝛿+3𝛿̅𝜎𝑣
2)−𝜇(𝛿2+15𝛿̅2𝜉𝑣

4+12𝛿𝛿̅𝜎𝑣
2)√

2

𝜋𝜎𝑢
2 Tr(𝐑)

+ 𝜎𝑣
2,     (B.4) 

 

where Tr(𝐐) is the trace of the covariance matrix 𝐐 = E[𝐪𝑖𝐪𝑖
T] of the noise sequence 𝐪𝑖. 

 

Similarly, we can obtain the expressions for the tracking MSE of the SRLMF and SRLMS 

algorithms from (B.4) by setting 𝛿 equal to 0 and 1, respectively, as shown below: 
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𝜑SRLMF
′ =

√2𝜇𝜉𝑣
6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢

2

6𝜎𝑣
2√𝜋𝜎𝑢

2−15√2𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2,      (B.5) 

 

𝜑SRLMS
′ =

√2𝜇𝜎𝑣
2Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢

2

2√𝜋𝜎𝑢
2−√2𝜇Tr(𝐑)

+ 𝜎𝑣
2.       (B.6) 

 

Note that the expression for the tracking MSE of the SRLMF algorithm in (B.5) is the same as 

that derived by the author in [32]. 

 

Another such example is demonstrated in [43], wherein it is shown how to obtain the 

expressions for the steady-state/tracking MSE of the Normalized Sign Regressor Least Mean 

Fourth (NSRLMF) and Normalized Sign-Error Least Mean Square (NSRLMS) algorithms from 

the expressions for the steady-state/tracking MSE of the Normalized Sign Regressor Least 

Mean Mixed-Norm (NSRLMMN) algorithm by setting δ equal to 0 and 1, respectively. 
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11 Appendix C 
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12 Appendix D 
 

The expressions for the steady-state MSE, tracking MSE, optimum step-size, and step-size 

bound of various sign adaptive algorithms for real-valued data, which were described in 

Chapters 2 to 6 are shown in Tables D.1, D.2, D.3, and D.4, respectively. 

 

Table D.1: The steady-state MSE expressions of various sign adaptive algorithms for real-

valued data. 

 

Algorithm Steady-State MSE Expression 

SSLMS 
[40] 𝜑 =

𝜇Tr(𝐑)

2𝜎𝑢
[
𝜇Tr(𝐑)

4𝜎𝑢
+ √

𝜇2[Tr(𝐑)]2

16𝜎𝑢
2

+ 𝜎𝑣
2] + 𝜎𝑣

2 

SRLMF 
[32] 

For smaller step-sizes: 𝜑 =
√2𝜇𝜉𝑣

6Tr(𝐑)

6𝜎𝑣
2√𝜋𝜎𝑢

2
+ 𝜎𝑣

2 

For larger step-sizes: 𝜑 =
√2𝜇𝜉𝑣

6Tr(𝐑)

6𝜎𝑣
2√𝜋𝜎𝑢

2−15√2𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2 

SRLMMN 
[34] 

𝜑 =

𝜇(𝛿2𝜎𝑣
2 + 𝛿̅2𝜉𝑣

6 + 2𝛿𝛿̅𝜉𝑣
4)√

2
𝜋𝜎𝑢

2 Tr(𝐑)

2(𝛿 + 3𝛿̅𝜎𝑣
2) − 𝜇(𝛿2 + 15𝛿̅2𝜉𝑣

4 + 12𝛿𝛿̅𝜎𝑣
2)√

2
𝜋𝜎𝑢

2 Tr(𝐑)

+ 𝜎𝑣
2 

NSRLMS 
[43] 𝜑 =

𝜇𝜎𝑣
2

2 − 𝜇
+ 𝜎𝑣

2 

NSLMS 
[44] 𝜑 =

𝜇

4
√

𝜋

2
[
𝜇

2
√

𝜋

2
+ √

𝜇2𝜋

8
+ 4𝜎𝑣

2] + 𝜎𝑣
2 

NSRLMF 
[35] 𝜑 =

𝜇𝜙1𝜉𝑣
6

6𝜎𝑣
2𝜙2 − 15𝜇𝜙1𝜉𝑣

4
+ 𝜎𝑣

2 

NSRLMMN 
[37]  𝜑 =

𝜇(𝛿2𝜎𝑣
2 + 𝛿̅2𝜉𝑣

6 + 2𝛿𝛿̅𝜉𝑣
4)𝜙1

2(𝛿 + 3𝛿̅𝜎𝑣
2)𝜙2 − 𝜇(𝛿2 + 15𝛿̅2𝜉𝑣

4 + 12𝛿𝛿̅𝜎𝑣
2)𝜙1

+ 𝜎𝑣
2 

 

Table D.2: The tracking MSE expressions of various sign adaptive algorithms for real-valued 

data. 

 

Algorithm Tracking MSE Expression 

SSLMS 
[40] 𝜑′ =

𝛾

4
√

𝜋

2
[
𝛾

2
√

𝜋

2
+ √

𝛾2𝜋

8
+ 4𝜎𝑣

2] + 𝜎𝑣
2 

SRLMF 
[32] For smaller step-sizes: 𝜑′ =

√2𝜇𝜉𝑣
6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢

2

6𝜎𝑣
2√𝜋𝜎𝑢

2
+ 𝜎𝑣

2 
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For larger step-sizes: 𝜑′ =
√2𝜇𝜉𝑣

6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢
2

6𝜎𝑣
2√𝜋𝜎𝑢

2−15√2𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2 

SRLMMN 
[34] 

𝜑′ =

𝜇(𝛿2𝜎𝑣
2 + 𝛿̅2𝜉𝑣

6 + 2𝛿𝛿̅𝜉𝑣
4)√

2
𝜋𝜎𝑢

2 Tr(𝐑) + 𝜇−1Tr(𝐐)

2(𝛿 + 3𝛿̅𝜎𝑣
2) − 𝜇(𝛿2 + 15𝛿̅2𝜉𝑣

4 + 12𝛿𝛿̅𝜎𝑣
2)√

2
𝜋𝜎𝑢

2 Tr(𝐑)

+ 𝜎𝑣
2 

NSRLMS 
[43] 𝜑′ =

𝜇𝜙1𝜎𝑣
2 + 𝜇−1Tr(𝐐)

2𝜙2 − 𝜇𝜙1
+ 𝜎𝑣

2 

NSLMS 
[45] 𝜑′ =

𝛾√𝜋

4𝜙2
2 [

𝛾√𝜋

4
+ √

𝛾2𝜋

16
+ 2𝜎𝑣

2𝜙2
2] + 𝜎𝑣

2 

NSRLMF 
[36] 𝜑′ =

𝜇𝜙1𝜉𝑣
6 + 𝜇−1Tr(𝐐)

6𝜎𝑣
2𝜙2 − 15𝜇𝜙1𝜉𝑣

4
+ 𝜎𝑣

2 

NSRLMMN 
[38] 𝜑′ =

𝜇𝑐𝜙1 + 𝜇−1Tr(𝐐)

2𝑎𝜙2 − 𝜇𝑏𝜙1
+ 𝜎𝑣

2 

 

Table D.3: The optimum step-size expressions of various sign adaptive algorithms for real-

valued data. 

 

Algorithm Optimum Step-Size Expression 

SSLMS 
[40] 𝜇opt = √

Tr(𝐐)

E[||𝐮𝑖||H
2 ]

 

SRLMF 
[32] For smaller step-sizes: 𝜇opt = √

√𝜋𝜎𝑢
2Tr(𝐐)

√2𝜉𝑣
6Tr(𝐑)

 

For larger step-sizes: 𝜇opt = √Tr(𝐐) [
225(𝜉𝑣

4)
2

Tr(𝐐)

36(𝜎𝑣
2)

2
(𝜉𝑣

6)
2 +

√𝜋𝜎𝑢
2

√2𝜉𝑣
6Tr(𝐑)

] −
15𝜉𝑣

4Tr(𝐐)

6𝜎𝑣
2𝜉𝑣

6  

NSRLMS 
[43] 𝜇opt = √

Tr(𝐐)

𝜎𝑣
2𝜙1

[1 +
𝜙1Tr(𝐐)

4𝜎𝑣
2𝜙2

2 ] −
Tr(𝐐)

2𝜎𝑣
2𝜙2

 

NSLMS 
[45] 𝜇opt = √

Tr(𝐐)

𝜙1
 

NSRLMF 
[36] 𝜇opt = √

Tr(𝐐)

𝜉𝑣
6 [

25(𝜉𝑣
4)2Tr(𝐐)

4(𝜎𝑣
2)2(𝜙2)2𝜉𝑣

6 +
1

𝜙1
] −

5𝜉𝑣
4Tr(𝐐)

2𝜎𝑣
2𝜙2𝜉𝑣

6  

NSRLMMN 
[38] 𝜇opt = √

Tr(𝐐)

𝑐𝜙1
[1 +

𝑏2𝜙1Tr(𝐐)

4𝑎2𝑐𝜙2
2 ] −

𝑏Tr(𝐐)

2𝑎𝑐𝜙2
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Table D.4: The step-size bound expressions of various sign adaptive algorithms for real-valued 

data. 

 

Algorithm Step-Size Bound Expression 

SRLMF 
[32] 0 < 𝜇 <

√2𝜋𝜎𝑢
2

3𝜆max𝜎𝑒
2

 

SRLMMN 
[34] 0 < 𝜇 <

√2𝜋𝜎𝑢
2

𝜆max(𝛿 + 3(1 − 𝛿)𝜎𝑒
2)

 

NSRLMF 
[36]  

0 < 𝜇 <
2

1 + 3𝜎𝑣
2

 

NSRLMMN 
[37] 0 < 𝜇 < 2𝛿 +

2𝛿̅

1 + 3𝜎𝑣
2

 

 

Moreover, the expressions for the steady-state MSE, tracking MSE, and optimum step-size of 

various sign adaptive algorithms for complex-valued data, which were described in Chapters 

2 and 6 are shown in Tables D.5, D.6, and D.7, respectively. 

 

Table D.5: The steady-state MSE expressions of various sign adaptive algorithms for complex-

valued data. 

 

Algorithm Steady-State MSE Expression 

SRLMS 
[39] 𝜑 =

2𝜇𝜎𝑣
2Tr(𝐑)

√𝜋𝜎𝑢
2 − 2𝜇Tr(𝐑)

+ 𝜎𝑣
2 

SSLMS 
[41] 

𝜑 =
2𝜇Tr(𝐑)

𝜎𝑢
2

[𝜇Tr(𝐑) + √𝜇2[Tr(𝐑)]2 + 𝜎𝑢
2𝜎𝑣

2] + 𝜎𝑣
2 

SRLMF 
[33] 

For smaller step-sizes: 𝜑 =
𝜇𝜉𝑣

6Tr(𝐑)

𝜎𝑣
2√𝜋𝜎𝑢

2
+ 𝜎𝑣

2 

For larger step-sizes: 𝜑 =
𝜇𝜉𝑣

6Tr(𝐑)

𝜎𝑣
2√𝜋𝜎𝑢

2−9𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2 

NSRLMS 
[42] 𝜑 =

4𝜇𝜎𝑣
2Tr(𝐑)

(2 − 𝜇)√𝜋𝜎𝑢
2

E [
1

||𝐮𝑖||H
2 ] + 𝜎𝑣

2 

NSLMS 
[44] 𝜑 =

𝜇√𝜋

4
[
𝜇√𝜋

2
+ √

𝜇2𝜋

4
+ 4𝜎𝑣

2] + 𝜎𝑣
2 

 

Table D.6: The tracking MSE expressions of various sign adaptive algorithms for complex-

valued data. 

 

Algorithm Tracking MSE Expression 

SRLMS 
[39] 𝜑′ =

4𝜇𝜎𝑣
2Tr(𝐑) + 𝜇−1Tr(𝐐)√𝜋𝜎𝑢

2

2√𝜋𝜎𝑢
2 − 4𝜇Tr(𝐑)

+ 𝜎𝑣
2 
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SSLMS 
[41] 𝜑′ =

𝛾√𝜋

32
[𝛾√𝜋 + √𝛾2𝜋 + 64𝜎𝑣

2] + 𝜎𝑣
2 

SRLMF 
[33] For smaller step-sizes: 𝜑′ =

4𝜇𝜉𝑣
6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢

2

4𝜎𝑣
2√𝜋𝜎𝑢

2
+ 𝜎𝑣

2 

For larger step-sizes: 𝜑′ =
4𝜇𝜉𝑣

6Tr(𝐑)+𝜇−1Tr(𝐐)√𝜋𝜎𝑢
2

4𝜎𝑣
2√𝜋𝜎𝑢

2−36𝜇𝜉𝑣
4Tr(𝐑)

+ 𝜎𝑣
2 

NSRLMS 
[42] 𝜑′ =

4Tr(𝐑)

(2 − 𝜇)√𝜋𝜎𝑢
2

[𝜇𝜎𝑣
2E [

1

||𝐮𝑖||H
2 ] + 𝜇−1Tr(𝐐)] + 𝜎𝑣

2 

NSLMS 
[45] 𝜑′ =

𝛾√𝜋

8𝜙2
2 [

𝛾√𝜋

4
+ √

𝛾2𝜋

16
+ 4𝜎𝑣

2𝜙2
2] + 𝜎𝑣

2 

 

Table D.7: The optimum step-size expressions of various sign adaptive algorithms for complex-

valued data. 

 

Algorithm Optimum Step-Size Expression 

SRLMS 
[39] 𝜇opt =

1

2
√

Tr(𝐐)

𝜎𝑣
2

[
Tr(𝐐)

𝜎𝑣
2

+
√𝜋𝜎𝑢

2

Tr(𝐑)
] −

Tr(𝐐)

2𝜎𝑣
2

 

SSLMS 
[41] 𝜇opt = √

Tr(𝐐)

2E[||𝐮𝑖||H
2 ]

 

SRLMF 
[33] For smaller step-sizes: 𝜇opt = √

√𝜋𝜎𝑢
2Tr(𝐐)

4𝜉𝑣
6Tr(𝐑)

 

For larger step-sizes: 𝜇opt = √Tr(𝐐) [
81(𝜉𝑣

4)
2

Tr(𝐐)

16(𝜎𝑣
2)

2
(𝜉𝑣

6)
2 +

√𝜋𝜎𝑢
2

4𝜉𝑣
6Tr(𝐑)

] −
9𝜉𝑣

4Tr(𝐐)

4𝜎𝑣
2𝜉𝑣

6  

NSLMS 
[45] 𝜇opt = √

Tr(𝐐)

2𝜙1
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