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ABSTRACT
Despite the advances in genetic marker identification associated with severe COVID-19, the
full genetic characterisation of the disease remains elusive. This study explores imputation in
low-coverage whole genome sequencing for a severe COVID-19 patient cohort. We generated
a dataset of 79 imputed variant call format files using the GLIMPSE1 tool, each containing an
average of 9.5 million single nucleotide variants. Validation revealed a high imputation accuracy
(squared Pearson correlation ≈0.97) across sequencing platforms, showcasing GLIMPSE1’s ability
to confidently impute variants with minor allele frequencies as low as 2% in individuals with
Spanish ancestry. We carried out a comprehensive analysis of the patient cohort, examining
hospitalisation and intensive care utilisation, sex and age-based differences, and clinical
phenotypes using a standardised set of medical terms developed to characterise severe COVID-19
symptoms. The methods and findings presented here can be leveraged for future genomic
projects to gain vital insights into health challenges like COVID-19.

Subjects Genetics and Genomics, Bioinformatics, Personalized Medicine

CONTEXT
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) first appeared in Wuhan, China at the end of 2019 [1]. Clinical
presentation of COVID-19 can largely vary, ranging from asymptomatic infections to more
severe forms with pneumonia, multiple organ complications, and sepsis [2]. Previous
genome-wide association studies (GWAS) have collectively identified an association
between genetic risk factors at multiple loci across the human genome and severity and
susceptibility to COVID-19 infection [3–5]. Certain patient characteristics, such as older age
and male sex, alongside comorbidities such as obesity and cancer, have been shown to
contribute to severe outcomes in COVID-19 patients [6]. These existing insights into the
ailment have paved the way for new opportunities to explore the determinants of COVID-19
severity [7], particularly due to its potential applications in risk prediction, preventive
medicine, and patient management.

Traditionally, genotyping for GWAS has heavily utilised microarray technologies due to
their low costs and rapid turnaround times, making them valuable and affordable tools for
the high-throughput generation of genomic data [8]. However, arrays are limited by their
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experimental design, leading to biases in the data generated. In particular, the prior
selection of genetic markers and probes creates an ascertainment bias often resulting in the
overrepresentation of intensively researched populations that are more likely to be
involved in array development [9]. This contrasts with high-coverage whole genome
sequencing (WGS), which has promised the ability to probe variation across the entire
human genome, free from the ascertainment bias. This has led to its adoption in large-scale
population-level projects [10].

Despite significant cost reductions over time [11], WGS at the clinically accepted
standard of 30× coverage [12] remains expensive for many projects, especially for those
involving large sample cohorts, similar to those required for GWAS. However, recent
studies have demonstrated that sequencing larger numbers of individuals at lower
coverages and prioritising cost and haplotype diversity over sequencing depth can yield
more allelic information at the cohort and population levels [13]. As a result, low-coverage
WGS (lcWGS) has emerged as a cost-efficient alternative to high-coverage WGS, surpassing
microarrays in the discovery of common and low-frequency variation [14, 15], particularly
in underrepresented populations [16].

Similar to microarrays, lcWGS data can also be imputed using reference panels to
enhance resolution and statistical power while maintaining low sequencing and data
processing costs. The fundamental principle underlying the genotype imputation
algorithms is known as identity-by-descent (IBD), wherein two seemingly unrelated
individuals may share segments shorter than 10 centimorgans (cM) inherited from a distant
common ancestor [17]. Accordingly, the genotype imputation algorithms compare the
sparsely distributed haplotypes present in the lcWGS data with the haplotypes in the
high-coverage reference panel to infer genotype likelihoods in the regions not covered by
sequencing [18].

Previous imputation methods for lcWGS data exhibited significant drawbacks such as
higher costs, longer running time when using large reference panels due to computational
complexity [19], and use of more efficient approximations which resulted in lower
imputation accuracy [20, 21]. To address these challenges and improve the effectiveness of
the tool, we utilised the GLIMPSE1 algorithm [16], a less resource-intensive tool that
produces more accurate imputed data than its predecessors, to generate a VCF dataset
containing 79 imputed lcWGS samples.

Although genotype imputation in lcWGS datasets shows promise, its practical
applications are still in the initial stages. With continuous advancement in sequencing
technologies, we expect that imputation methods will play a significant role in unravelling
the complexities of the human genome and accelerating discoveries in precision medicine
and personalised healthcare.

DATASET DESCRIPTION
We generated a dataset consisting of 79 VCF files, and their respective FASTQ and CRAM
files, using the GLIMPSE1 imputation algorithm [16]. We leveraged the 1000 Genomes
Project Phase 3 dataset [22] as the reference panel for haplotypes. Collectively, the dataset
comprises approximately 325 GB of FASTQ data, 156 GB of CRAM data, and 6 GB of VCF data.

Our samples were specifically derived from sequenced DNA from a highly selective
cohort of patients, mostly made up of Iberian Populations in Spain (IBS) individuals
alongside individuals from other genetic backgrounds. All the patients included in the

Gigabyte, 2024, DOI: 10.46471/gigabyte.127 2/20

https://doi.org/10.46471/gigabyte.127


R. Santos et al.

dataset presented with severe COVID-19 symptoms during the initial wave of the
SARS-CoV-2 pandemic in Madrid, Spain.

The dataset a range of 5.01 million to 9.60 million high-confidence single nucleotide
variants per VCF file (Figure 1A). The average density of SNVs in the VCF files varied from
0 variants per megabase, in the centromeres and other hard-to-sequence regions, to more
than 20,000 variants per megabase (Figure 1B). Most samples in the dataset presented with
a variant overlap higher than 98% (Figure 1C). The high variant overlap was an expected
outcome of imputation against a single reference panel [23] with the lower overlap levels of
two samples against the rest of the dataset which was explained by the lower number of
variants in the files. To facilitate access for researchers interested in further studying this
data, it has been made available for reuse in the European Genome-phenome Archive [24],
under the accession number EGAS00001007573.

PATIENT COHORT CHARACTERISATION
We examined the dataset focusing on three main aspects: (1) a general characterisation of
the patients by age, sex, and ancestry; (2) hospital stays and time spent in the intensive care
unit (ICU); and (3) the distinct clinical phenotypes presented by the patients (respiratory,
thromboembolic, cardiovascular, etc.). Further details on the patient’s demographic
information and clinical history can be found in Supplementary File 1 [25].

Sampling strategy
The 79 genomic samples analysed in this study constituted a subset of a larger cohort of
individuals whose exomes were initially sequenced and analysed as part of a
comprehensive investigation into genetic determinants for COVID-19 severity [26]. The
subset was selected based on the quality assessment of DNA samples suitable for PCR-free
library preparation for lcWGS. All the individuals were patients hospitalised between
March and June 2020, during the first wave of the SARS-CoV-2 pandemic in Spain, at a
tertiary referral hospital in Madrid, and confirmed to be infected with SARS-CoV-2. We
aimed to select patients with the following clinical profile: (1) younger than 60 years old;
(2) experienced fever and respiratory symptoms for more than three days; (3) blood oxygen
saturation level below 93%; (4) bilateral pneumonia on imaging tests; and (5) no
comorbidities, such as diabetes, obesity, or immunosuppressive conditions. At the time of
recruitment of the study, the vaccines were yet to be developed.

Demographic characterisation
Through our analysis, we aimed to create a comprehensive demographic profile of our
cohort of severe COVID-19 patients. The age distribution in the cohort (Figure 2A) was
characterised by a distinct right skew, with a higher prevalence of individuals falling within
the 45–64 age bracket and particularly concentrated around 55–59 years, which aligned
with the latest understanding of the correlations between older age and severe COVID-19
outcomes [6]. However, the lower tail-end of the distribution also underscored the fact that
severe COVID-19 was not strictly age-related and young individuals might also suffer from
severe manifestations of the infection.

The sex distribution (Figure 2B) showed a higher frequency of male patients compared
to females. This finding concurred with previous research indicating that men were at a
higher risk of developing severe COVID-19 [6]. Investigating the age distribution in relation
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Figure 1. Characterisation of the genomic landscape of the imputed VCF dataset.
(A) The number of high-confidence single nucleotide variants (SNVs) for the 79 VCF files in the severe COVID-19
dataset. The x-axis represents the sample IDs in the dataset, while the y-axis denotes the total counts of SNVs for
each sample in millions (1 × 106). (B) SNV density across chromosomes in the dataset. The heatmap shows the
distribution of SNVs along the chromosomes, with each row representing a chromosome, 1–22 and ×, and each
column a bin-sized 1 megabase (Mb). The number of SNVs in each bin is weighted for the number of samples
containing each variant, to represent an average sample in the dataset. Colours range from low (blue) to high
(yellow) SNP density. (C) Percentage of overlap of SNVs between samples. The heatmap visualises the extent of
shared SNVs across different samples, with each cell representing the overlap percentage from the sample on the
x-axis to the sample on the y-axis. Therefore, the percentage value shown is the proportion of SNVs in the sample
on the x-axis and also found in the sample on the y-axis. The colour gradient from light to dark blue signifies an
increasing percentage of overlap.
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Figure 2. Demographic and geographic characterisation of the severe COVID-19 patient cohort.
(A) Distribution of patient ages with severe COVID-19 cases in our cohort. Each bar signifies an age bracket
comprising 5-year increments, with its height denoting the proportion of individuals within that age range. The
plot is overlaid with a Kernel Density Estimation (KDE) curve, which provides a smoothed estimation of the age
distribution. (B) Patients’ stratification by sex. Each bar represents one sex, with its length indicating the number
of patients belonging to that sex. (C) Distribution of patient age by sex. The boxplot presents the age distribution for
each sex. Each box represents the interquartile range (IQR) of ages for either males or females, with the dividing
line representing the median age. The diamonds represent outliers. (D) Distribution of patients by country of
origin. Each bar corresponds to a country, and its length indicates the number of patients from that country.

to sex (Figure 2C), indicated that both males and females had a similar median age of 55
and 53 years, respectively. However, the female age distribution demonstrated a broader
range (20–63 years) and slightly higher variability (SD 10.74 years) compared to the male
distribution, which exhibited a relatively narrower range (33–67 years) and lower
variability (SD 7.35 years). Thus suggesting a wider and more variable range of age-related
risk among females in the cohort.

Lastly, studying the country of origin of the patients (Figure 2D) revealed that most of the
patients in the cohort originated from Latin American countries and Spain. This
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geographical distribution is mostly reflected in the demographic composition of Madrid,
Spain, where the samples were collected. To expand our analysis beyond demographics and
understand the genetic makeup of our cohort, we also performed a Principal Component
Analysis (PCA) on our 79 samples, post-imputation and variant filtering, against the
backdrops of the 1000 Genomes Project [22] global superpopulations and IBS population.

The global PCA plots (Figure 3A) indicated that most samples clustered within the
European (EUR) group which mirrored the fact that a significant proportion of our cohort
hailed from Spain. Additionally, a subset of patients was found within or near the Admixed
American (AMR) and South Asian (SAS) clusters, reflecting the Latin American patients in
our cohort, and the mixed ancestry common in Latin American populations. A few patients
also clustered within the African (AFR) group, presumably representing the African
ancestry of patients hailing from Cape Verde and Morocco.

In the IBS-specific PCA plots (Figure 3B), most severe COVID-19 patients form a distinct
clustered close to the 1000 Genomes IBS population, indicating a shared genetic background
with this group, likely representing the individuals with IBS ancestry. However, it is worth
noting that subtle regional genetic variations within the Iberian population could
contribute to the observed dispersion within this shared genetic background, particularly
along the third principal component. The figure also showed a dispersion of patients
alongside the left side of the plots, representing individuals with ancestries other than IBS.
These outcomes highlighted the genetic diversity in our cohort, owing to the inclusion of
patients from Spain and other nations.

Hospital stays
Examining the hospital medical records of the patients provided valuable insights into the
hospitalisation experience of individuals with severe COVID-19. By examining these trends,
we gained a better understanding of the potential sex and age-based differences in the
duration of hospitalisation and the level of care required.

Firstly, we analysed the distribution of hospitalisation days in our patient cohort
(Figure 4A). The distribution was notably skewed to the right, with most patients requiring
relatively short hospital stays between 1 and 34 days. However, the distribution’s right tail
presented a subset of patients who required significantly longer stays of up to 202 days.
This could be attributed to cases of COVID-19 with increased severity which necessitated
additional medical attention.

Furthermore, an evaluation of the distribution of hospital stays by sex (Figure 4B)
revealed that the median duration of hospital stays was similar for both sexes. Nevertheless,
the distribution for male patients exhibited greater variability, heightened by the presence
of some outliers who spent an unusually high number of days in the hospital, representing
severe or complex cases that required a significantly longer time for recovery and medical
management. This could mean that the severe disease progression and recovery time in
males was less consistent than in females, possibly due to a wider range of severity in
clinical presentations among male patients.

In addition, we investigated the use of the intensive care unit (ICU). Approximately 25%
of the cohort was admitted to the ICU during their hospitalisation (Figure 4C), indicating
that, despite the severity of their COVID-19 symptoms, most patients were managed without
the need for intensive care. However, a much larger proportion of males necessitated ICU
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Figure 3. Principal component analysis of genetic variation in the severe COVID-19 patient cohort against
the 1000 Genomes Project global superpopulations and IBS (Iberian Populations in Spain) population.
(A) Projection of imputed low-coverage whole-genome sequencing (lcWGS) data from severe COVID-19 patients
against the backdrop of global superpopulations from the 1000 Genomes Project. Each point represents an
individual, colour-coded according to their superpopulation. Severe COVID-19 patients are distinguished by points
with a white fill and coloured border. The x-axis and y-axis on the two subplots represent the first and second, and
first and third principal components, respectively. The percentage of variance is explained by each component
indicated in the axis label. (B) Focused view of the genetic variation within the Iberian (IBS) population and the
severe COVID-19 patients. Individuals from the IBS population are represented by solid-coloured points, while
those with severe COVID-19 are represented by points with a white fill and coloured border. The x-axis and y-axis
on the two subplots represent the first and second, and first and third principal components, respectively, with
the percentage of variance explained by each component indicated in the axis label.

admission than females (Figure 4D). This further reinforced findings from numerous
studies that also identified male sex as a risk factor for severe COVID-19 outcomes [6].

We further stratified the ICU data by patient age (Figure 4E), showing that the majority of
patients who were admitted to the ICU were between 45 and 70 years old, which
underscored the heightened risk of severe outcomes in these age groups. Finally, we
investigated the ICU stay duration among those requiring such care (Figure 4F). Reflecting
the duration of hospital stays for the cohort, majority of patients admitted to the ICU spent
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Figure 4. Analysis of hospital stays among the severe COVID-19 patient cohort.
(A) Distribution of hospital stay durations in our cohort. Each bar corresponds to an interval of 5 days of stay at
the hospital, with its height indicating the proportion of patients’stay duration within that duration interval. The
plot is overlaid with a Kernel Density Estimation (KDE) curve which provides a smoothed estimate of the duration
distribution. (B) Stratification of hospital stay durations by sex. This boxplot presents the distribution of hospital
stays for each sex. Each box represents the interquartile range (IQR) of the duration of hospital stays for one
sex, with the line inside the box marking the median duration. The diamonds represent outliers. (C) Distribution
of patients admitted to the Intensive Care Unit (ICU). Each bar corresponds to either patients admitted to the
ICU (green) or patients not admitted to the ICU (blue), with its height indicating the number of patients in each
category. (D) Distribution of patients admitted to the ICU by sex. Each pair of bars corresponds to one sex, with
their height indicating the proportion of patients of that sex admitted to the ICU. Each bar corresponds to either
patients admitted to the ICU (green) or patients not admitted to the ICU (blue) and the bar’s height indicating the
number of patients in that category. (E) Distribution of ages of patients admitted to the ICU. Each bar corresponds
to an age group of 5 years, with the height indicating the proportion of patients in that age group. The plot is
overlaid with a KDE curve, which provides a smoothed estimate of the age distribution. (F) Distribution of ICU
stay durations among patients admitted to the ICU. Each bar corresponds to an interval of ICU stay durations of
5 days, with its height indicating the number of patients within that duration interval. The plot is overlaid with a
KDE curve, that provides a smoothed estimate of the duration distribution. Only patients who were admitted to
the ICU are represented in this plot.
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between 1 and 35 days there. However, a considerable subset of patients experienced
significantly longer ICU stays, representing a wide spectrum of disease severity and
recovery rates within the critical care cohort.

Clinical phenotypes
An analysis of the phenotypes of the severe COVID-19 patient cohort revealed valuable
insights into the most common phenotypes associated with severe forms of the disease,
their frequency and relationships. While established that COVID-19 phenotype ontologies
were readily available [27, 28] they lacked the level of granularity we required to
comprehensively characterise the clinical phenotypes of our cohort. Therefore, we devised
a specialised set of standardised terminology comprising 28 medical terms that were
organised into 4 primary clinical categories: Pulmonary, Extra-Pulmonary, Coagulation, and
Systemic phenotypes. Subsequently, we evaluated each patient’s record for the presence of
these terms.

Table 1 provides a detailed breakdown of the number of patients associated with each
specific phenotype, within the four major clinical categories. We found that the Pulmonary
category, which includes pneumonia, ARDS (acute respiratory distress syndrome), and a
combination of ARDS with admission to the ICU, was the most prevalent among our cohort.
Indeed, pneumonia alone was identified in 78 patients. The Extra-Pulmonary category
covered a broad range of clinical symptoms and conditions, with liver hepatitis and
gastrointestinal diarrhoea being the most common as observed in 10 patients each. The
Coagulation category focused on thrombotic events and related conditions. Pulmonary
embolism and deep venous thrombosis, each identified in 5 patients, were most prevalent.
Finally, the Systemic category, pertaining to conditions that affect the patient’s overall
health and well-being, such as persistent fever and symptoms like fatigue and headache.
Persistent fever was the most common Systemic phenotype, observed in 33 patients.

To further investigate the relationships between the phenotypes in our patient cohort
and to determine whether any of them were likely to co-occur, we performed a Spearman
correlation analysis using the function corr(method=“spearman”) from the seaborn package
for Python [29], and visualised the results in a heatmap (Figure 5). These correlations
suggested that the patients with one of these phenotypes were more likely to show others,
pointing to possible common underlying pathways or simultaneous occurrence in severe
disease presentation.

The plot indicated that most phenotypes are not strongly correlated, hence, the presence
of one phenotype does not necessarily predict the presence of another. This could be
indicative of the diverse clinical manifestations of severe COVID-19 with different
phenotypes appearing independently among patients. However, there were several pairs of
phenotypes exhibiting higher degrees of correlation. This became particularly evident in
neurological conditions, such as the correlations between psychiatric disorders,
encephalopathies and polyneuropathies, which appeared to be correlated to a relatively
high degree. In addition, moderate correlations were shown between the former three
neurological phenotypical categories and exanthema, myopathies, and bone marrow
abnormalities. Finally, some moderate correlations were observed between the ARDS & ICU
phenotype and a few other phenotypes thus pointing to the additional occurrence of
various phenotypes of COVID-19 severity in patients admitted to the ICU with ARDS.
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Table 1. Frequency of severe COVID-19 phenotypes in the patient cohort.

Major
Phenotypes

Phenotype Phenotype
ID

Patient count
n = 79

Pulmonary
n = 78

Pneumonia
ARDS (acute respiratory distress syndrome)
ARDS & ICU

V-1
V-2
V-3

78
47
20

Extra-pulmonary
n = 37

Skin – exanthema
Heart – myocarditis
Heart – arrhythmia
Liver – hepatitis
Kidney – glomerulonephritis
Kidney – tubulopathy
Neurological – encephalitis/encephalopathy
Neurological – psychiatric (delirium, etc.)
Neurological – polyneuropathy (neuropathy, Guillain-Barré, etc.)
Neurological – myelitis
Neurological – seizure
Gastrointestinal – diarrhoea
Gastrointestinal – nausea/vomiting
Endocrine dysfunction (thyroid, etc.)
Musculoskeletal – myopathy
Musculoskeletal – arthritis
Bone marrow – blood cytopenia, pancytopenia/aplasia

V-4
V-5
V-6
V-7
V-8
V-9
V-10
V-11
V-12
V-13
V-14
V-15
V-16
V-17
V-18
V-19
V-20

4
1
4

10
0
4
6
6
6
0
0

10
3
2
1
0
5

Coagulation
n = 12

Pulmonary embolism
Deep venous thrombosis
Peripheral arterial thrombosis
Stroke
Ischemic heart event
Disseminated intravascular coagulation

V-21
V-22
V-23
V-24
V-25
V-26

5
5
0
0
1
3

Systemic
n = 41

Persistent fever
Fatigue, malaise, headache, arthromyalgias

V-27
V-28

33
20

This exploratory analysis highlighted the diverse ways in which manifestations of severe
COVID-19 could call attention to the crucial role played by comprehensive and nuanced
clinical phenotyping in improving our understanding and management of the disease.

The table presents the distribution of our 28 severe COVID-19-specific phenotypes
organised into four major clinical categories: Pulmonary, Extra-pulmonary, Coagulation,
and Systemic, as observed in our severe COVID-19 patient cohort. For each category, the
total number of unique patients with at least one phenotype in the category is indicated.
Each phenotype is listed with a unique Phenotype ID (V-1 to V-28) and the number of
patients who were identified with that phenotype.

The plot illustrates the Spearman correlations between our 28 severe COVID-19-specific
phenotypes. Each square in the heatmap represents the correlation between two
phenotypes, with the colour of the square indicating the strength of the correlation, and the
number inside each square represents the correlation coefficient. Only statistically
significant (p < 0.05) correlation coefficients are shown. Darker colours represent stronger
positive or negative correlations here red represents positive correlations and blue
represents negative correlations. These indicate that individuals displaying one phenotype
are more or less likely to exhibit the other phenotype as well, suggesting potential
underlying mechanisms for the progression of severe COVID-19.

METHODS
DNA extraction and library preparation
We collected blood samples for each patient in 10 mL EDTA tubes. We then centrifuged the
tubes at 3000 rpm for 10 minutes to isolate the buffy coat, which we subsequently froze to
−20 °C until further use. Afterwards, we used the Maxwell RSC Buffy Coat DNA Kit (AS1540,
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Figure 5. Heatmap of phenotype correlations in the severe COVID-19 patient cohort.
 

Promega UK, Southampton, United Kingdom) to isolate genomic DNA from frozen buffy
coat samples. We assessed the concentration of the genomic DNA using spectrometric
analysis. We then fragmented the DNA using a Covaris E220 focused ultrasonicator (Covaris
Ltd., Brighton, United Kingdom) to generate 350 bp length DNA fragments. The following
parameters were used for the fragmentation process: 6 cycles, PIP 75, Cycles/Burst 1000,
Duty Factor 20%, Duration 20s. Post fragmentation, we prepared DNA libraries using the
MGIEasy PCR-Free DNA Library Prep Set (1000013453; MGI Tech Co. Ltd, Shenzhen, China).
The concentration of the DNA libraries was assessed using a Qubit 3.0 fluorometer (Life
Technologies). Finally, we sequenced the libraries on an MGI DNBSEQ-G400 sequencer
(RRID:SCR_017980; MGI Tech Co. Ltd), with a target sequencing depth of 1×.
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Sequencing quality control and preprocessing
We performed quality control and preprocessing of the resulting FASTQ files using the
nf-core [30] Sarek pipeline v3.1.2 [31–40]. The following parameters were applied during
the pipeline execution: nextflow run nf-core/sarek -r 3.1.2 -profile docker --input
samplesheet.csv --outdir /mnt/e/Sarek/out/ --trim_fastq --igenomes_base
/mnt/e/Sarek/references --genome GATK.GRCh37 --skip_tools strelka --seq_platform ‘MGI’.
We used the recalibrated base quality scores CRAM files produced by the Sarek pipeline as
the input for the subsequent step.

Imputation using GLIMPSE
We calculated genotype likelihoods using bcftools mpileup v1.16 (RRID:SCR_005227) [40],
with the parameters -I -E -a ‘FORMAT/DP’, followed by genotype calling using bcftools call,
with parameters --ploidy GRCh37 -S ploidy.txt -Aim -C alleles. The file ‘ploidy.txt’ contained
information about the sex of each sample, which was necessary to generate correct
genotype calls for chromosome × in males [16].

Following which we imputed the low-coverage genomes with GLIMPSE v1.1.1 [16].
Firstly, we split each chromosome into 2 Mb chunks, with 200 kb buffer regions on each side
of a chunk using GLIMPSE_chunk with the parameters --window-size 2000000 --buffer-size
200000. Secondly, we used GLIMPSE_phase to impute each chunk with the tool’s default
iteration parameters. GLIMPSE_phase imputation was multithreaded with GNU Parallel
v20230522 [41]. We used the 1000 Genomes Phase 3 dataset [22] as the reference panel,
since it had shown that inclusion of diversity in reference panels improves the quality of
imputation by reducing missing genotype calls [42, 43]. Finally, we used GLIMPSE_ligate to
join the imputed chunks into entire chromosomes, followed by bcftools concat to merge all
chromosomes into a single VCF file, containing chromosomes 1 to 22 and ×, for each sample.

Post-imputation filtering
Following imputation, we filtered the VCF files, to prioritise the most reliable genotype calls
for further analysis. We only proceeded with minor allele frequency (MAF) above 2% and
maximum genotype probability (GP) above 80%. We determined the MAF value through
our validation process (see Data Validation) as the minimum threshold of acceptable
imputation accuracy of r2 ≅ 0.9. The GP field represented the likelihood of each genotype
being accurate and was expressed as a value between 0 and 1 with the sum of probabilities
across all possible genotypes totalling 1 [44]. The chosen cutoff was determined as the best
compromise between imputation accuracy and loss of information [44]. With this approach,
we generated a dataset of imputed VCF files, from the DNA samples of our severe COVID-19
cohort.

Principal component analysis
We performed a principal component analysis (PCA) to assess the genetic ancestries of our
patient cohort, using PLINK v.1.90b6.21 (RRID:SCR_001757) [45]. To accomplish that, firstly
we normalised the variants from chromosomes 1 to 22 of the 1000 Genomes Project
Phase 3 dataset [22] using bcftools [40]. We then split the multi-allelic calls and left-aligned
indels against the reference genome using bcftools norm, with the parameters -m-any
--check-ref w; followed by bcftools annotation with the parameters -x ID -I
+‘%CHROM:%POS:%REF:%ALT’, to normalise the naming of unset IDs; and bcftools norm to
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remove duplicate records using the parameters -Ob --rm-dup both. Furthermore, we filtered
this global variant dataset to create a distinct subset containing variants exclusively from
the 1000 Genomes Project IBS individuals. We used bcftools view, with the -S parameter,
which included only variants originating from the specified 1000 Genomes IBS sample IDs.

We then converted the two datasets, 1000 Genomes global and IBS, to binary PLINK
format, using PLINK with the parameters --keep-allele-order --vcf-idspace-to _ --const-fid
--allow-extra-chr 0 --split-x b37 no-fail --make-bed. Next, we used PLINK to identify
population-specific markers by filtering the variants within both datasets based on MAF
and variance inflation factor (VIF), using the parameters --maf 0.10 --indep 50 5 1.5. We
then pruned the datasets through –extract to include only the variants that fulfilled the
thresholds.

Subsequently, we merged the variants from chromosomes 1 to 22 of all 79 post-filtering
imputed VCF files into a single BCF file using bcftools merge with the parameters -r $(seq -s,
1 22) --missing-to-ref, followed by a normalisation process akin to that of the 1000 Genomes
global and IBS datasets. Following this we converted the merged imputed dataset to binary
PLINK format.

We used PLINK again to determine common variants between the merged imputed
dataset and the populational markers in the 1000 Genomes global and IBS datasets, using
–bmerge, followed by use of –extract for the extraction of common variants. Finally, we
merged the extracted variant datasets with –bmerge and calculated 20 principal
components using –pca. We then plotted the first three principal components using the
matplotlib package for Python [46].

DATA VALIDATION
To validate our imputed dataset, we sought to quantify the accuracy of our imputation
process and determined whether it is affected by the choice of short-read sequencing
platforms. To perform that we obtained a healthy IBS genome (IBS001) independent from
our patient cohort, sequenced at 40× coverage using an Illumina system, at Dante Labs
(Cambridge, United Kingdom), and an MGI system, at BGI Tech Solutions Hongkong Co Ltd
(Tai Po, Hong Kong). After quality control, alignment, and pre-processing, we obtained two
CRAM files for the IBS001 individual: IBS001_illumina with an average depth per base of
39.34 and IBS001_bgi with an average depth per base of 41.64. The average depth per base
was calculated using mosdepth v0.3.3 [37], with the -x parameter, against the GATK b37
reference genome.

We downsampled both versions of the IBS001 genome to 1× coverage using samtools
v1.16 (RRID:SCR_002105) [40]. We calculated the subsampling fractions by dividing the
target depth per base (1.00) by their respective average depth per base of each file. Hence,
the genome sequenced on the Illumina platform was also downsampled using the
command samtools view -s 0.025419420437214, and the genome sequenced on the MGI
platform was downsampled using samtools view -s 0.0240153698366955.

The two resulting low-coverage downsamplings were used for the genotype calling,
imputation, and post-imputation filtering steps as described in the Methods section. This
process resulted in four VCF files: two pre-filtering files, two post-filtering files from the two
sequencing platforms, Illumina and MGI. These four files served as the imputed genotypes
for the validation process. Additionally, we also performed the genotype calling step on the
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Table 2. Aggregate GLIMPSE1 imputation concordance for the IBS001 validation genome.

Coverage r2 concordance pre-filtering r2 concordance post-filtering
BGI 40× Illumina 40× BGI 40× Illumina 40×

BGI 1× 0.962085 0.962852 0.970049 0.970573
Illumina 1× 0.961485 0.962807 0.969826 0.970724

original high-coverage files, with the VCF output as the gold standard genotypes for
validation.

To measure imputation accuracy we used GLIMPSE_concordance [16] to calculate a
squared Pearson correlation between the high-coverage and imputed dosages across
chromosomes 1 to 22 and ×, within several MAF bins (0–0.02%, 0.02–0.05%, 0.05–0.1%,
0.1–0.2%, 0.2–0.5%, 0.5–1%, 1–2%, 2–5%, 5–10%, 10–15%, 15–20%, 20–30%, 30–40%, and
40–50%), and a single aggregate squared Pearson correlation across all sites. We only used
sites in the validation data with a minimum depth of 8 reads and a minimum posterior
probability of 0.9999. To accomplish the same, we used the parameters --minDP 8
--minPROB 0.9999 --bins 0.00000 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.15 0.2
0.3 0.4 0.5.

We conducted a concordance assessment by comparing the imputed pre-filtering IBS001
genomes against the high-coverage validation IBS001 genomes, within sequencing
platforms (BGI 1× vs BGI 40× and Illumina 1× vs Illumina 40×) and across sequencing
platforms (BGI 1× vs Illumina 40× and Illumina 1× vs BGI 40×). This was done to identify any
quantifiable differences in imputation quality arising from the use of different short-read
sequencing platforms. Across all four platform comparisons (Figure 6A), GLIMPSE
accurately imputed variants in the 2–5%, 5–10%, 10–15%, 15–20%, 20–30%, 30–40%, and
40–50% MAF bins, represented by an r2 correlation equal to or higher than 0.90. However,
as anticipated, imputation accuracy steadily decreased for MAFs lower than 2%, likely due
to the underrepresentation of rare variants in the 1000 Genomes reference panel [16].
Overall, this resulted in an aggregate r2 correlation of approximately 0.96 across all MAF
bins for both IBS001 genomes (Table 2).

Furthermore, we evaluated the impact of the filtering process on the dataset accuracy.
We repeated the concordance comparison using GLIMPSE_concordance, instead of imputed
post-filtering IBS001 genomes against the high-coverage validation IBS001 genomes. Due to
the removal of low confidence sites during filtering, the r2 correlation in the 2–5%, 5–10%,
10–15%, 15–20%, 20–30%, 30–40%, and 40–50% MAF bins improved slightly (Figure 6B). In
turn, this improved the aggregate r2 correlation to approximately 0.97 on all four platform
comparisons we performed (Table 2).

In conclusion, the validation of our imputation and filtering process shows that
GLIMPSE1, with the 1000 Genomes Project Phase 3 [22] as the reference panel, can be
confidently used to impute variants with MAF up to approximately 2%.

The table displays the aggregate r2 correlation results obtained from the concordance
assessment of the imputed IBS001 genomes against the high-coverage validation IBS001
genomes. The analysis was performed for chromosomes 1 to 22 and × within sequencing
platforms (BGI 1× vs BGI 40× and Illumina 1× vs Illumina 40×) and across sequencing
platforms (BGI 1× vs Illumina 40× and Illumina 1× vs BGI 40×). The table presents the
aggregate r2 correlation values, indicating the overall imputation accuracy across all sites.
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Figure 6. Assessment of GLIMPSE1 imputation concordance within differentminor allele frequency (MAF)
bins for the IBS001 validation genome.
(A) Squared Pearson correlation (r2) between high-coverage and pre-filtering imputed dosages segregated into
various MAF bins. The x-axis shows MAF bins, ranging from 0 to 50%, and the y-axis shows the squared Pearson
correlation coefficient (r2). The analysis was performed for chromosomes 1 to 22 and ×, within sequencing
platforms (BGI 1× vs BGI 40× and Illumina 1× vs Illumina 40×) and across sequencing platforms (BGI 1× vs Illumina
40× and Illumina 1× vs BGI 40×). (B) Squared Pearson correlation (r2) between high-coverage and post-filtering
imputed dosages segregated into various MAF bins.

RE-USE POTENTIAL
Despite continuous improvements in genotype imputation algorithms, lcWGS imputation
remains underutilised as an economical alternative over higher-coverage sequencing.
Additionally, the understanding of host genetic markers that predispose COVID-19 severity
is still limited [7].

In this context, our manuscript’s dataset, coupled with the innovative strategies
employed presents a promising outlook. Not only do we showcase the viability of using
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lcWGS imputation to generate data for the study of disease-related genetic markers, but also
present a robust validation methodology to ensure the accuracy of the data produced. Our
ambition is to inspire confidence and stimulate further interest from researchers who wish
to deploy a similar approach to a range of other infectious diseases, genetic disorders, or
population-based genetic studies, particularly in large-scale genomic projects and
resource-limited settings where sequencing at higher coverages could prove to be
prohibitively expensive.

It is important to note, however, that the inherent probabilistic nature of imputed
low-coverage genotypes can introduce uncertainty into downstream analyses and
measures should be taken to mitigate such errors. For example, Petter and Ding [47]
proposed a statistical calibration method for polygenic scores (PGS) based on imputed
lcWGS genotypes, which showed improved estimations of PGS over traditional calculations
that ignore genotyping errors in low-coverage sequencing. Understanding the nature of
genotyping error is essential to accurately interpret imputed lcWGS results. Hence,
researchers should be mindful of adopting similar approaches when utilising imputed
datasets such as the one presented here.

Beyond the immediate implications in lcWGS imputation, this dataset serves as a
valuable resource for investigators studying genetic markers associated with COVID-19
severity. Specifically, the meticulous methodology utilised to characterise our patient cohort,
through standardised clinical terminology which paved the way for the discovery of genetic
components that might be linked to severe COVID-19 disease manifestations and
progressions. The scope of this methodology could be expanded and tailored to analyse
hospitalisation trends in other clinical cohorts. Thus serving as a template for future studies
aiming to comprehensively characterise complex diseases.

The analysis of patient hospitalisation particularly focused on sex and age-related
differences has the potential to inform healthcare policy and clinical guidelines. Similarly,
the insights gained from hospital stay distributions, ICU admissions, and the identification
of disease severity across different demographics can have broader applications beyond its
present use case. For instance, the insights could be translated into personalised care
strategies or even underpin predictive models for assisting healthcare providers in
delivering more effective treatments [48, 49].

Finally, the validation data regarding comparisons of short-read sequencing platforms is
of great importance. As genomic research progresses, the accuracy and reliability of
different sequencing platforms become increasingly critical. By offering a comparison of
imputation accuracy between Illumina and MGI sequencers, we provide an avenue for
other researchers to make informed decisions about their sequencing platforms. This has
become especially relevant as the scientific community strives to standardise genetic
research methodologies [50] to ensure consistent results and comparable outcomes across
different studies.

In conclusion, the dataset presented here, though primarily focused on COVID-19
severity, transcends the scope of this study and can be utilised in multiple domains of
scientific research. We encourage its reuse hoping that its integration into other studies will
advance our collective understanding and response to complex health challenges, such as
those presented by COVID-19.
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AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
• Project name: GLIMPSE low-coverage WGS imputation
• Project home page:

https://github.com/renatosantos98/GLIMPSE-low-coverage-WGS-imputation
• Operating system(s): Linux
• Programming language: Bash and Python3
• Other requirements: GLIMPSE 1.1.1; samtools 1.16; bcftools 1.16; Python 3.10.8; numpy

1.26.4; matplotlib 3.8.3; pandas 2.2.1; seaborn 0.12.2; parallel 20230522; mosdepth 0.3.3;
plink 1.90b6.21; bc 1.07.1.

• License: MIT license.

DATA AVAILABILITY
The clinical dataset is available in the European Genome-phenome Archive, under the
accession number EGAS00001007573. The other datasets (including summarised clinical
histories and phenotypes) supporting the results of this article are available in our Figshare
collection [51] and GitHub repository [52]. Additional data and code snapshots are also
available in the GigaDB repository [53].

LIST OF ABBREVIATIONS
AFR: 1000 Genomes Africans superpopulation; AMR: 1000 Genomes Admixed Americans
superpopulation; ARDS: acute respiratory distress syndrome; cM: centimorgans;
COVID-19: coronavirus disease 2019; EDTA: ethylenediaminetetraacetic acid; EUR: 1000
Genomes Europeans superpopulation; GP: genotype probability; GWAS: genome-wide
association studies; IBD: identity-by-descent; IBS: 1000 Genomes Iberian Populations in
Spain population; ICU: intensive care unit; lcWGS: low-coverage whole genome sequencing;
MAF: minor allele frequency; PCA: principal component analysis; PGS: polygenic scores;
SAS: 1000 Genomes South Asians superpopulation; SARS-CoV-2: severe acute respiratory
syndrome coronavirus 2; VCF: variant call format; WGS: whole genome sequencing.
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