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ABSTRACT 

 

This project aims at developing a new methodology of Service Assurance Techniques for Intent 

Based Networking. The mismatch problem between a network service and monitoring of the 

network service is discussed and addressed. Objective is to reduce amount of telemetry data 

exported over Wide Area Network (WAN) by processing telemetry at the edge by designing 

and implementing novel assurance agents. Instead of telemetry compression or in-line 

telemetry techniques, in our research we then proposed the different approach how to increase 

relevancy of telemetry data by using Service Aware information/tagging which is exported by 

our monitoring and telemetry export agents. Current lab tests on NSO (Cisco Orchestrator) 

based setup prove reduction of data exported over WAN by using real-world service definitions 

created by Subject Matter Experts. Such service definitions are provisioned on Cisco devices 

(routers) automatically by service orchestrator (NSO). By applying the proposed solution, 

amount of telemetry data may be reduced by factor of 40, while retaining relevancy of the 

provided information. Such a large efficiency factor is achieved by avoiding sending general 

device telemetry data for processing at central location, but rather sending service specific 

status information from the edge. Instead of sending number raw data, we send only computed 

information relevant for the service status. Experimental lab setup used is leveraging real-time 

Model-Driven Telemetry, Physical Network Devices as well as Virtual Devices. Future work 

is to apply developed Service Assurance Techniques on Open-Source Platform, such as Open 

Network Automation Platform (ONAP) [1] 
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1 Introduction 

 

1.1 Overview 

Software Defined Networking (SDN) and Intent Based Networking (IBN) are concepts aimed 

at facilitating configuration management and ensuring agile capabilities for the network.  

With rapid expansion of network services and data transported over the network, there is 

constant trend in increasing number of changes in the communication networks. Designing, 

deploying and verifying changes in legacy environment become even more challenging since 

it’s becoming increasingly complex to obtain service-aware telemetry data from the network 

elements. Network operations are facing challenges extracting meaningful information from 

monitored data acquired from various data sources. Without complex analytics, telemetry data 

could almost be considered as simple heap of data. As a consequence, it becomes increasingly 

complex to monitor service assurance since telemetry data received is only with no particular 

correlation towards services which exist in the network. Such complexity should be addressed 

by network monitoring platform or utility which would offer holistic view of the services across 

the network with capability to correlate telemetry data with the service configuration usually 

deployed by the Orchestrator such as Open Network Automation Platform (ONAP) [1], Cisco 

Network Services Orchestrator (NSO) [2] 

One of the recent innovative concepts to come to the networking industry is introduction of 

Intent Based Networking (IBN). The term Intent-Based Networking is not entirely new, since 

it has been around for more than a decade, yet only IBN concept has been leveraged by large 

cloud and network vendors such as Google and Cisco, along with new players in the area such 

as Apstra [2], Veriflow [3], Huawei [4] and other companies who entered IBN space. Objective 

of IBN based network is simple: Network that runs autonomously using given the initial intent 

– set of requirements/commands. Simple way to explain what IBN network would be to say 

it’s a self-operating autonomous system, closed loop which doesn’t require any human input. 

Analogy to some existing solutions could be drawn – such as self-driven cars for example and 

its automation features such as automatic parking. Generally, most recent cars would be able 

to park itself once driver decides it’s safe to park and initiates automatic parking sequence – 

responsibility still lies with the driver. Such parallel approach can be drawn with the modern 



11 

 

automated network infrastructure, where the network administrator needs to decide when 

automation is required. 

Comparatively, autonomous car a closed-loop system based on intent, where driver could issue 

high-level command such as “drive me to work” and such car would perform sequence of 

“intelligent” steps to conclude task by complying to all traffic and other set of rules which may 

have been imposed. Perhaps simpler, yet comparable example is parallel-parking of the car – 

where driver could issue command such as “parallel-park to the right” in order to activate 

autonomous parking sequence, but vehicle itself would perform all additional steps to interpret 

the command and start executing set of manoeuvres to park itself safely. It would be up to the 

vehicle to identify whether all the requirements for the intent have been met so that parking 

sequence could even commence sufficient space available to fit the vehicle, parking is allowed,  

Coming back to the actual topic at question – computer networking, in this context network 

operator could issue command such as: “establish connectivity between point A and B, with 

following criteria …” and IBN should be able to interpret this requirement by translating it to 

the appropriate network policy and configure networking devices to activate desired service.  

It’s also reasonable to expect some aspects of IBN may be leveraged separately, activating 

service, service assurance or similar. 

We could consider Network Operations as a trade-off between three main Key Performance 

Metrics: Scale, Reliability and Efficiency. In order to focus on any of the mentioned metrics 

Network operators usually have to decide which metric to focus on at the expense of the 

remaining relevant metrics. For example: If Network Operator focuses on Scale, then 

Efficiency is usually the one that suffers. Similarly, should Efficiency be the main concern, 

then Reliability will probably be the impacted one. Of course, achieving all three metrics 

should be the final objective. Policy Based Network Management (PBNM) [5] is not a new 

concept, but its application has becoming really important in recent years because the number 

of network elements is rapidly increased. Therefore, automatic network management that 

considers network administrator's intent or policy is essential nowadays. Different policies are 

possible using Event-Condition-Action (ECA) rule ("if condition then action") [6], [7]. 

 

In the paper [8], administrator's intent reactive configuration with extended intent-based 

Network Modelling (NEMO) language has been described. The two use cases as well as two 

scenarios for these cases are shown in Figure and Figure respectively. The issues of 

implementation have been discussed in detail. Main problem is that the network traffic depends 

on software usage.   
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Therefore, the automatic network management with the extension of NEMO language has been 

introduced in order to solve this problem. However, this extension is not tested deeply and 

there is no guarantee this will work in more complex scenarios. 

 

Cisco’s approach to solve IBN is represented in the Figure 1 

 

Figure 1 Cisco representation of Intent Based Networking (source: Cisco) [9] 

From Figure 1 which represents Cisco’s approach to IBN, it’s visible that there are few 

transformations which need to happen in order to apply business intent to the actual network 

infrastructure. This essentially means that business logic needs to be translated to policies 

which will in turn be represented as series of configuration directives for both physical and 

virtual infrastructure network elements. 
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1.2 Research Aims and Objectives 

 

The main challenges exhibited in the current network, telemetry and assurance designs are 

following: 

• Too much data, but not enough information - Without complex analytics, telemetry is 

just a haystack of data. Operators are stuggling with large quantity of telemetry, while 

the most important information is missing – link between telemetry and the network 

service 

• It’s increasingly difficult to monitor service health and intent, as there is no service 

context or correlation associated to the data 

• There is no simple solution for service assurance offering a holistic view of the state of 

the services across the network 

 

The individual research aims, and objectives of this project can be summarised as follows: 

• Defining mismatch between the network service sonfiguration and network service 

monitoring 

• Clarify importance of the service assurance 

• Investigation of current service assurance capabilities connection with Intent Based 

Networking 

• Development of novel service assurance techniques for Intent based networking 

• Verification of the proposed approaches and algorithms by simulations 

• Verification of the proposed approaches and algorithms in experimental environment 

 

In this research work, we are proposing solution based on Intent Based Networking. The 

proposed approach consists by: 

• Extraction of configuration intent by analysing of the network service configuration. 

• Discovery of the network elements along the network service data path. 

• Leveraging existing network monitoring capabilities of network elements, along with 

probes and Model Driven Telemetry (MDT) to get more accurate information on the 

status of desired Network Service. 

 

Research methodology used in understanding benefits of proposed monitoring approach 

involves qualitative approach, comparative analysis of existing - probe based monitoring and 
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proposed solution based on Intent Based Networking. By using the proposed approach, we 

have achieved higher than 40 for the telemetry efficiency ratio parameter. 

 

1.3 Research questions  

 

In this research, we are trying to answer the following fundamental questions, in order to 

achieve the main research objectives:  

1. What is the network intent and how is it related to network service configuration?  

2. How could we establish relation between network service intent, network device 

configuration and monitored data? 

3. What methods should be used to compare techniques for monitoring and telemetry 

data?  

4. What design methodologies can be offered to improve telemetry efficiency while 

retaining relevance of the information carried in telemetry data? 

5. Which network assurance techniques exist? 

6. How can we perform network service configuration decomposition in order to enable 

network assurance? 

7. Could we develop improved network assurance technique? 

 

 

While automation of network configuration and provisioning network services has advanced 

considerably, we’re still observing lag in verification, monitoring and assurance of the 

mentioned configuration and automation tasks. To illustrate this observation, we can take 

examples of usual network service models, such as: Virtual Private Network (VPN), Routing 

Protocol infrastructure, Video Streaming service, Equal-path multipath etc. 

In the Figure 12 we’ve outlined an example of the service configured using Yet Another Next 

Generation modelling language (YANG) 

While the configuration part is well structured, monitoring and assurance of the provisioned 

service poses a significant challenge. 

 

 

1.4 Original contribution to knowledge  
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Service Assurance, Model-Driven Telemetry, YANG are relatively new concepts, while 

service configuration and configuration monitoring are well known concepts present for 

decades. Despite the omni-present existence of mentioned concepts, there is very little that can 

use leveraged to tie telemetry data to the service intent.  

In this research we’re focusing on creating a bridge, providing the missing link between the 

intent, service definition, service configuration and service monitoring by means of advanced 

techniques aimed at: 

- Reducing telemetry data, yet increasing amount of useful information encoded in the 

telemetry streams (Chapter 3) 

- Service decomposition into atomic network service components (Chapter 4) 

- Solving one service component at a time using service heuristic package definition 

(Chapter 4) 

- Providing the health status per service component (Chapter 5) 

- Closed loop automation architecture (Chapter 5) 

 

By applying the above guiding principles, we’re tying telemetry to the intent, based on the 

service KPI and therefore bridging the gap between Configuration and Telemetry and achieved 

following contributions: 

 

1. We have introduced the notion of the “Metric Engine”, which maps an abstracted metric 

such as “interface.mtu” to a concrete metric implementation. For instance with Model-

Driven Telemetry (MDT), when using the exact sensor path such as Openconfig path to the 

mtu “openconfig-interfaces:interfaces/interface/state/mtu” or via the CLI command “show 

interface”. The actual implementation has been selected in-alignment to the hardware and 

software platform from which the telemetry data/metrics need to be collected. 

Introduction of Metric Engine enabled decoupling the Service computation from the 

metrics collection and thus to write service components that can be applied to different 

devices from different vendors. Consequently, one could write the service components 

using abstract metrics, these metrics need to have a corresponding entry in the metric engine 

for the Service to be supported on a new device. 

 

 

2. Introduced concept of a service component 

- definitions for the expressions related to service components 
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- ability to perform dynamic reconfiguration of the expressions. 

As for Service dynamic alternatives this essentially means that for the same 

expressions, several alternatives can be provided, in order of preference. The first one 

is usually the most detailed and the next ones are fallbacks to use when some metrics 

are missing. For instance, the first alternative of a Service monitoring a network 

interface can monitor the interface status, analyze the packet distribution, measure the 

temperature of the optics, while the last version might just check whether the interface 

is up. When a new metric is resolved, the Service computation can be reconfigured if 

the new metric allows to compute a better alternative. For instance, the Service 

checking the health of an interface might check at minimum whether the interface is up 

(last alternative) and at best check that the interface is up, that the number of errors is 

low, that the packet size distribution is stable and that the interface is not flapping (first 

alternative). The first alternative is more complete but needs less metrics to be resolved 

than the last one. 

- Service components that involve a list of sub-elements to be checked. For instance, a 

Service that checks the Equal Cost Multi-Path (ECMP) traffic balance towards a given 

destination needs to be reconfigured when the list of egress interfaces to this destination 

is updated 

 

3. We have introduced new language for writing service components, Domain-Specific 

Language (DSL), instead of writing Python code. The health score of a Service has been 

augmented with symptoms. A symptom is an issue detected by a service component. It is 

active as long as the Service detects that the issue is ongoing. Should the health score be 

less than 1 it would essentially mean that Service is not healthy. Such a Service is 

accompanied by accompanied with at least one symptom explaining what the cause of the 

issue. 

 

4. We formalised definition of an assurance graph in the YANG model by defining 

dependencies for computation of the network service health status. Dependencies can be 

described by leveraging Service status of the relevant network service: 

 

- Impacting: the score of the dependant is at the most the score of the dependency. (If 

dependency is broken, the dependent is broken as well) 
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- Informational: The score of the dependent is not impacting, but the symptoms are 

propagated 

 

 

1.5 Methodology  

Our methodology is based on the sequence of transformations, a data pipeline: Analysis of the 

service intent analysis of the Service Definition using Natural Language Processing (NLP) 

techniques, service decomposition using Directed Acyclic Graphs (DAG) and Heuristics 

analysis of the resulting graphs in order to reduce amount of data send in the telemetry. 

Therefore, the methodology framework can be described in more details as follows: 

 

1. Service definition is used as input and analysed by Natural Language Processing (NLP) 

principles in order to determine service components needed for further processing by 

the subsequent steps in our data pipeline analysis 

 

2. Analysis and decomposing the configuration of each service instance into an assurance 

graph, represented by an Directed Acyclic Graph (DAG),  which is built leveraging 

rules defined in the heuristic package. The assurance graph of a service instance is a  

DAG representing the structure of the assurance case for the service instance. The nodes 

of this graph are service instances or Service instances. Each edge of this graph 

indicates a dependency between the two nodes at its extremities: the service or Service 

at the source of the edge depends on the service or Service at the destination of the edge. 

 

3. From the network assurance graph, we derive a so-called expression graph which is a 

DAG whose sources are constants or metrics and other nodes are operators. The 

expression graph encodes all the operations needed to produce health statuses from the 

collected metrics Computing the expression graph from the assurance graph is a simple 

recursive operation: 

i. if the assurance graph contains a single service component, then build 

the corresponding expression graph containing  

ii. metrics 

iii. expressions 
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For instance, each of the service components “X Healthy” and “Y Healthy” 

independently produce a part of the expression graph 

 

• otherwise take the root (i.e. top-level) nodes and recursively compute 

the expression graph of each of their dependencies. Then, for each root: 

▪ build an expression graph by combining the expression graphs of its 

dependencies. 

▪ if the root is a Service combine the expression graph from the previous 

step with the expression graph produced from the service component. 

 

This graph can be seen as a standard dataflow, functional or streaming computation 

(inputs at the bottom, outputs at the top). 

 

4. Finally resulting health calculation is exported as Telemetry, using gRPC export, which 

essentially makes Agent a source for streaming telemetry. Exported telemetry contains 

statuses of the services and service components, the current assurance graph and the 

annotated metrics. It also streams partial computation results. 

 

The research is to conduct detailed development and investigation of techniques for Service 

Assurance for Intent Based Networking in order to notably improve service activation, 

performance and configuration verification to enable massive endpoint connectivity with 

reduced latency and cost compared to existing/legacy network technologies.  

 

1.6 Report Structure  

This report comprises six chapters: 

A Literature Review 

Model Driven Telemetry using YANG for Next Generation Network Applications 

Mismatch between network service configuration and network service monitoring 

Closed loop automation for Intent-Based Networking 

Conclusion and Future work 
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2 A Literature Review 

 

This literature overview chapter aims to provide a comprehensive analysis of the existing 

research on network assurance for Intent-Based Networking. Through an exploration of the 

literature, this chapter will examine the various approaches, methodologies, and technologies 

employed to ensure the assurance of network operations in an IBN environment, Gartner’s 

reference model etc. 

The chapter will begin by providing a brief overview of assurance in Intent-Based Networking, 

highlighting its fundamental principles and key characteristics. Subsequently, it will delve into 

the concept of network assurance, defining its scope and importance in the context of IBN. The 

chapter will then present a review of the literature, categorizing the existing research based on 

different aspects of network assurance. 

 

Assurance of Intent Based Networking Systems 

Telemetry collection, data processing and correlation with configuration intent has been topic 

of interest in various applications. Witnessing evolution in telemetry collection ranging from 

hardware implemented data collection devices in spacecraft [10] which required complex 

circuitry even to obtain level-0 telemetry data, focused moved towards the more modern use 

cases for telemetry. 

Such recent paper [11] by J. Pérez-Romero et al. describes challenges in telemetry for 5G small 

cell deployments. Two main challenging points are outlined: distribution of small cells and 

high complexity – the large number of metrics and sheer data volume which needs to be 

collected and analysed. J. Pérez-Romero et al. suggest two key characteristics of the efficient 

telemetry platform: (i) the capability to produce derived and aggregated information and (ii) 

ability to acquire, store and make data and information available using a distributed approach. 

Bond between the intent of network configuration and data collection using telemetry is 

essentially the missing link that could transform the way network devices are configured and 

monitored.  
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Figure 2 Assurance of Intent Based Networking System - Per Gartner [12] 

Gartner [12] has issued a paper and represented their view on the IBN which has been displayed 

in Figure 2.  

According to Gartner IBN should consist of the following four points:  

1. Translation of Intent to Configuration – The system would take higher-level 

business policy (what) as input from end users and converts it to the necessary network 

configuration (how). The system then generates and validates the resulting design and 

configuration for correctness. 

2. Automated Implementation – The system would be able to configure the appropriate 

network changes (how) over the whole existing network infrastructure. This task is 

usually performed using network automation and network orchestration. 

3. Awareness of Network State – The system receives information on the network status 

in real time for all network devices under its control and is protocol- and transport-

agnostic. 

4. Assurance and Remediation– The IBN would validate and assure on continuous basis 

(in real time) whether the status of the system is matching the original intent by 

checking all given key performance indicators, If necessary, it would perform 

corrective actions (change network configuration, send notification, divert or even bock 

traffic as needed) when desired intent is not met. 
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Furthermore, Gartner's approach to Intent-based networking (IBN) involves leveraging 

automation and artificial intelligence (AI) to simplify network management and enhance 

network agility. The goal is to align the network's behaviour with the intent of the business or 

user, allowing for more dynamic and efficient network operations. 

 

At the core of Gartner's IBN approach is the Intent Engine, which is responsible for interpreting 

the intent and translating it into network configurations and actions. The Intent Engine analyses 

high-level business or user intent statements and converts them into specific network policies 

or configurations. This abstraction layer allows for intent to be expressed in a more human-

friendly manner, rather than requiring detailed technical configurations. 

 

The Intent Engine utilizes various algorithms to understand and interpret intent statements. 

These algorithms may include natural language processing (NLP) techniques to parse and 

comprehend human-written intent, machine learning algorithms to analyse historical data and 

make predictions, and rule-based algorithms to enforce policies and constraints. The 

combination of these algorithms enables the Intent Engine to understand the context and intent 

behind the given statements and translate them into actionable network configurations. 

 

Additionally, Gartner emphasizes the importance of closed-loop automation in IBN. This 

means that the intent-driven network continuously monitors its behaviour and compares it to 

the desired intent. If any deviations or issues are detected, the network automatically takes 

corrective actions to bring its behaviour back in line with the intended state. 

 

Overall, Gartner's approach to IBN revolves around the Intent Engine, which acts as the central 

component for understanding and translating high-level intent into network configurations and 

actions. The use of various algorithms, including NLP and machine learning, helps in the 

interpretation and implementation of intent-driven networking. 

 

Gartner's intent-based networking (IBN) focuses on translating high-level business intent into 

network configurations and actions. While Gartner does not provide specific algorithms for 

IBN, there are various algorithms used in intent engines to achieve intent-based networking. 

Here are a few examples: 
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1. Rule-based algorithms: These algorithms use a set of predefined rules to match intent 

statements with corresponding network configurations. The intent engine checks if the intent 

statement satisfies any of the predefined rules and applies the corresponding configuration. 

 

2. Machine learning algorithms: These algorithms analyse large amounts of historical network 

data and intent statements to identify patterns and predict the appropriate network 

configurations. This approach enables intent engines to learn from past experiences and 

improve their accuracy over time. 

 

3. Natural language processing (NLP) algorithms: NLP algorithms are used to interpret and 

understand intent statements written in natural language. They analyse the syntax, semantics, 

and context of the statements to extract the desired network outcomes and translate them into 

actionable configurations. 

 

4. Optimization algorithms: Optimization algorithms are used to find the most efficient network 

configurations that align with the given intent. These algorithms consider various factors such 

as network topology, resource availability, performance requirements, and constraints to 

generate optimal or near-optimal solutions. 

 

5. Policy-based algorithms: These algorithms utilize policies defined by network 

administrators to guide the intent engine's decision-making process. The intent engine 

evaluates the intent statement against the policies and applies the appropriate network 

configurations based on the matching policies. 

 

It's important to note that Gartner's intent-based networking is a concept and framework, so the 

specific algorithms used may vary across vendors and implementations. The intent engine may 

incorporate a combination of these algorithms or even employ proprietary algorithms based on 

the vendor's approach and expertise. 

 

In order to ensure transformation from business logic to the network configuration is as 

structured and seamless as possible it’s necessary to utilize standardized data models which 

will be discussed in the next chapter. 
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Since transformation from business logic into configuration is complex process, it is in turn 

prone to possible errors and discontinuity between configuration and operational, monitoring 

capabilities. Consequently, discovering novel service assurance techniques and algorithms 

using Intent Based Networking (IBN), network function virtualization (NFV) as well as 

software defined network paradigms are the main objectives of this PhD research project. [13], 

[14] 

 

Figure 3 Intent Based Networking to Configuration Changes 

Figure 3 illustrates high level and simplified view of transforming business requirements into 

configuration changes, by means of automation and additional transformation steps – such as 

machine learning. 

NFV orchestrators (e.g., Tacker [13], ONAP [1], CISCO NSO [15]) are a crucial part for the 

dynamic and optimal management and orchestration of various virtualized network resources 

(e.g., VMs, Virtualized Network Functions). 5G technology, empowered by NFV and SDN, 

presents a new dimension of complexity that must be addressed by service assurance [16]. 

 

Using this orchestration software having higher level of abstraction, the rapid connectivity and 

provisioning could be achieved at lower prices while letting to operators possibility to build, 

arrange and preserve network service [17], [18]. Communication Service Provider (CSP) 

networks – such as Virtual Evolved Packet Core are subject to very dynamic configuration 

change. Provisioning, modification and termination of packet data services are being done in 
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rapid pace in order to keep up with dynamic environment needs and cater to main business 

drivers, such as IoT, Video etc. SDN technologies using Network Slicing approach are 

foundation for such a dynamic environment, allowing automated and programmatic 

configuration of network services [19]. 

 

Traditionally network services are being monitored by deployment of probes which generate 

traffic and provide feedback on the status of the service. Due to such rapid changes in network 

service configuration, there is open question in regard to monitoring and assuring provisioned 

services: What is the right approach to take in order to monitor the network which constantly 

changes? How to ensure network service is operational and carefully selecting probes to 

monitor network service? [18] [19], 

 

Monitoring using active probes face challenges such as introduction of synthetized traffic 

within the data flow, end to end monitoring only with no understanding of the data path, lack 

of comprehension of the configuration intent etc [20] [21] [22]. Generated traffic using probes 

should resemble real traffic of the network service, however even with almost perfect 

synthetized traffic, there is substantial possibility that real network service traffic could be 

impacted, but probe does not detect such a problem since probe is not part of the actual real 

data flow [23] [24]. Therefore, there is a gap in regard to monitoring and assurance of the actual 

network service data flow, with all network elements data traverses on the path between 

endpoints.  

 

Following chapter describes recent developments and methods in the field of model driven 

telemetry using YANG data modelling language for next generation networking. It also 

outlines advantages of using YANG models to configure network elements as compared to 

traditional approaches of using Command-Line Interface (CLI) and Simple Network 

Management Protocol (SNMP) in order to manage network elements. The explanation of 

shortcomings of SNMP when it is used for telemetry purposes with the recent scale of modern 

networks is also given. Finally, this paper provides outline on recent tool chain available to 

easily produce YANG based code as well as process model-driven telemetry data. 

 

2.1 Recent state-of-the-art solutions 
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Having a look into state-of-the art solutions, there are few papers proposing in-band network 

telemetry solution direction [25] [26] [27] [28]. The in-band network telemetry approach uses 

programmable data planes. In other words, network providers should indirectly detect reasons 

for delayed and imprecise telemetry data through nodes at network edges. Using In-band 

telemetry approach, the data-plane packets have extended headers as telemetry instructions.  

Due to this, in-band telemetry approach could directly collect much more precise telemetry 

metrics on device level (for instance hop latency or queue length). 

Paper [25] proposes a network telemetry platform named NetVision, simulates some aspects 

of in-band network telemetry, but does not propose a clear approach. The approaches have 

been proposed in journal papers’ articles [26] [27] [29]. The paper [26] improves network 

orchestrating with in-band data plane telemetry using machine learning. This work is extended 

in the newest paper of the same research group [27].  The authors in paper [28] improve the in-

band network telemetry approach in the direction that they raise run-time network 

programmability. The results demonstrate that the approach can not only adjust the sampling 

rate of in-band telemetry in run-time but also could program the corresponding data types 

dynamically. The authors also confirm that proper accuracy and timeliness for network 

monitoring could be achieved while greatly reducing the overheads of in-band telemetry. The 

article [30] presents an exhaustive survey on programmable data planes. Evidence indicates 

that the closed nature of today’s networks will diminish in the future, and open-source and the 

deep programmability architecture will dominate. In paper [30], the idea of traffic monitoring 

through in-band telemetry is extended up to the user’s end-devices, providing accurate end-to-

end latency measurement most demanding in 5G networks. In this way, the end-device 

becomes aware of its experienced service performance, enabling autonomous operations for 

faster reactions between edge and cloud. 

 

 

The main disadvantage of this approach is increasing network delay due to the injection of the 

telemetry data into data-plane packets. This is most demanding traffic from the network 

perspective and the approach proposed in this direction could not be scalable and sustainable 

to the challenges of the future networks. Also, compatibility on data paths is inherently lower 

if this telemetry approach is implemented. 

 

We’ll not review previously mentioned, very relevant solution is Netrounds [31], an Intent-

Based Networking and Automated Closed Loop Assurance solution proposed and developer 
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by the vendor with the same name. Netrounds is a service assurance platform designed to 

ensure the quality and performance of network services. Its methodology and techniques are 

focused on end-to-end testing and monitoring, providing real-time insights into network 

performance, and enabling proactive troubleshooting and optimization. Here is short overview 

of the strong points that Netrounds provides: 

 

1. End-to-End Testing: Netrounds conducts comprehensive end-to-end testing to 

validate the performance and functionality of network services. It verifies service availability, 

latency, throughput, and other key performance metrics across multiple network layers and 

devices. 

 

2. Active Monitoring: Netrounds solution employs active monitoring techniques to 

continuously measure and monitor the performance of network services. It actively generates 

synthetic traffic to simulate real user traffic patterns and captures relevant performance data, 

providing insights into service quality in real-time. 

 

3. Service-Level Monitoring: Netrounds measures the performance of network services 

from the perspective of end-users, focusing on service-level metrics such as availability, 

response time, and packet loss. It allows service providers to assess the customer experience 

and identify areas for improvement. 

 

4. Real-Time Analytics: Netrounds utilizes real-time analytics to analyze network 

performance data as it is collected. It provides visualizations, reports, and alarms to highlight 

performance issues and trends, enabling operators to quickly identify and resolve problems. 

 

However, Netrounds, like most of other network assurance solutions focuses on performing 

synthetic end-to-end testing on top of the network infrastructure. This essentially implies that 

synthetic tests are resembling the actual network service traffic, but due to its synthetic nature 

there is margin of error caused by dissimilarity of synthetic traffic versus the actual network 

service traffic.  

 

As an example, we could say that performing “ICMP ping” test over the network is different 

from running the actual ICMP traffic over the same network. Why? Well simply put running 

synthetic “ICMP ping” is giving us indication of the network service when the specific test is 
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run, but it is not a formal proof that network performed in the same manner in the prior or next 

instance of time. Furthermore, synthetic test is introducing additional data to the in-band 

network traffic, which is different from the approach we’ve taken in our work. 

 

2.2 Service Assurance techniques based on Open-Source orchestrators. 

 

Developing any modern software solution almost inevitably involves some sort of open-source 

component. ONAP [1] community represents 70% of global subscribers [32], with large 

number of service providers participating in the project and testing or contributing. However, 

this still doesn’t necessarily mean that mentioned service providers are using ONAP as 

orchestration platform in their production deployments. 

ONAP project is launched in March 2017 as merger of two projects: 

- OpenECOMP – project Lead by AT&T. It’s open-source version of AT&T’s ECOMP 

platform. ECOMP is software framework used by AT&T to manage  lifecycle of virtual 

network function  (VNFs) in their software defined network. ECOMP stands for 

Enhanced Control, Orchestration, Management & Policy and  

- Open-O – Lead by ChinaMobile and contributed by large Asian vendors ZTE and 

Huawei. Open-O is also a platform for orchestrating VNFs and services over various 

platforms and equipment built by different vendors. 

 

 

At this time, ONAP is managed by Networking Fund of the Linux Foundation. From ONAP’s 

mission statement, whose excerpt we could find here: 

“The mission of the Project is to create a comprehensive platform for real-time, policy-driven 

orchestration and automation of physical and virtual network functions that will enable 

software, network, IT and cloud providers and developers to rapidly automate new services 

and support complete lifecycle management. …” [32] 

 

and taking into consideration that project is backed by most of the world leading vendors and 

service providers, one could conclude that ONAP is poised to become industry-wide 

framework for rapidly enabling network services and virtual functions. Additionally, having in 

mind that ONAP scope also covers defining analytics and policies which are expected to be 

used in real-time, including reference interfaces and requirements for telemetry on VNFs it’s 
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clear that such a platform deserves serious analysis and consideration. It’s with no doubt clear 

that leveraging such a powerful platform, backed by many important global vendors and 

service providers could enable access to large number of test labs and environments to verify 

our work. 

To further affirm mentioned point on relevance and global significance of ONAP one can use 

retrieve statistical data from Bitergia, which is used as metrics platform to track code 

contributions and evolution of the project. From what we could identify in the field of research 

and relevant articles, there are many different vendors and contributors participating in the 

development of the ONAP open-source project. 

At the time of writing this article, ONAP grew into massive project with over 20 million lines 

in 273 repositories and 1100 contributors. AT&T’s contribution to the ONAP is still very 

substantial. However, presence and contributions by other organizations is also becoming 

significant. 
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Before diving into describing assurance techniques, it’s necessary to review architecture of the 

whole ONAP as solution, so that it’s better understood where does assurance fits in the whole 

picture. 

 

Figure 4 ONAP Platform architecture (4th release - Dublin) [1] 

 

As depicted on Figure 4, ONAP is composed of following high-level components: 

- Design Time Framework 

- Runtime Framework 

- ONAP Management 

- Shared Services 

 

Figure 5 provides simplified view to the ONAP functions and outlines role of the key 

components: 

1. Northbound based - RESTAPIs for Standard based interoperability with external 

platforms  

2. Integration with Cloud Providers using OOM which enables managing of the native 

cloud installation and deployment to Kubernetes-based cloud 

3. Shared services for ONAP such as Optimization Framework (OOF) which enables 

declarative approach, policy-driven method for creating and optimizing applications for 
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VNF placement, change and scheduling management. Logging and audit as centralized 

capability is also provided. 

4. Harmonization of industry models defined by Standards Development Organizations 

(SDOs) such as ESTI NFV MANO, VMF SID, ONF Core, TOSCA, IETF and MEF. 

 

 

Figure 5 ONAP functional overview [1] 

This is relevant in order to understand relationships between ONAP and other services and 

integration points, including assurance components relevant for our project. 

 

CLAMP, which stands for Closed Loop Automation and Management for Processes, is a 

project within ONAP framework and it is framework or methodology used in network 

automation. It involves the integration of automation technologies to create a closed-loop 

system that enables continuous monitoring, analysis, and automation of processes in a network. 

 

In simple terms, CLAMP aims to automate the entire lifecycle of processes in a network, from 

monitoring and analysis to decision-making and execution. It combines various automation 

technologies such as artificial intelligence, machine learning, and data analytics to achieve this 

goal. 

 

The closed-loop aspect of CLAMP refers to the feedback loop created within the system. It 

means that the automation process continuously collects data, analyses it, makes decisions 
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based on the analysis, and then implements those decisions. This closed-loop system ensures 

that processes in the network can be constantly optimized and adjusted based on real-time data 

and analysis. 

 

By implementing CLAMP, organizations can enhance operational efficiency, reduce manual 

errors, improve network performance, and enable faster decision-making. It is particularly 

useful in complex network environments where manual management and troubleshooting may 

not be feasible or efficient. 

 

Several design and runtime elements of ONAP are in charge of closed loop automation.  

Functionality for Fault, Configuration, Accounting, Performance, Security (FCAPS) is 

provided collectively by Control Loop components: 

- Data Collection, Analytics and Events (DCAE) is in charge of collecting configuration, 

usage and performance data 

- “Holmes” task is to connect to DCAE and enable alarm correlation on the whole platform 

 

 

 

Figure 6 High level overview of Closed Loop Automation as defined in ONAP [1] 

Figure 6 graphically represents stages in closed loop automation process, from service 

definition to service configuration, monitoring, observing events and change 

recommendations. It’s preferred that remediation changes are fully automated, but sometimes 

manual intervention of the operator is needed to perform the change. 
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Figure 7 CLAMP flow, depicting design, configuration, and deployment of Closed Loops 

 

Sequence diagram provided on Figure 7 outlines interactions between components and actors 

in closed loop automation.  

 

 

From mention these reasons and techniques explained above, which could be summarised as 

follows:  

- improving telemetry efficiency by compression, yet still retaining large quantity of data 

which is present, but not reelvant for the status of the network service 

- large quantity of telemetry data being sent from the edges to the hub location, hence 

causing even more load on the network infrastructure 

- drawing conclusions on the state of network service by leveraging synthetic tests in top 

of existing network services traffic, and thus introducing margin of error in the actual 

network traffic 

 

we could conclude that further advantages could be achieved by introducing our assurance 

techniques which are different in following ways: 

- improved relevance of the telemetry data by introducing network service-aware 

relevant telemetry fields in the model-driven telemetry 

- performing telemetry analysis at the network edge, within service aware agents and 

thus avoiding sending large quantities of telemetry data to central location 

- avoiding leveraging sythetic tests and hence eliminating introduction of margin of error 

- introducing service assurance language (DSL) which could simplify assurance 

expressions 
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Our assurance techniques and approach imply introducing a level of abstraction into telemetry, 

and then exporting only that newly created abstraction. Essentially this means sending less 

data, but more relevant data which has been already processed at the network edge. The papers 

[33] [34] [35] [36] [37] [38] have tried to solve the defined problem. The main problem of 

these state-of-the-are solutions is there is a lack of evidence regarding performance of the 

mentioned semantic definition-based approaches. Model driven telemetry inherently enables 

the real-time collection of hundreds of thousands of counters on large-scale networks, with 

contextual information to each counter provided in the telemetry data structure definition. 

Explaining network events in such datasets implies substantial analysis by a domain expert. 

There is obviously that there is a huge potential of this solution direction type of approaches, 

but still a lot of questions that need answers in future research & development. Therefore, it is 

a great time to dedicate a thesis to this topic especially because artificial intelligence and 

machine learning are developing incredibly fast nowadays and could be an excellent basis to 

outstandingly mitigate problems related to telemetry in next-generation networks. 

 

 

3 Model Driven Telemetry using YANG for Next 

Generation Network Applications 

 

It is difficult to imaging service assurance without good quality measurements and data from 

the assured network elements. Measurements are carried as data stream within Model Driven 

Telemetry (MDT). Models for the telemetry are defined using YANG data modelling language 

for next generation networking. There are also several advantages of using YANG models to 

configure network elements as compared to traditional legacy approaches of using Command-

Line Interface (CLI) and Simple Network Management Protocol (SNMP). The explanation of 

shortcomings of SNMP when it is used for telemetry purposes with the recent scale of modern 

networks is also given. Finally, this chapter provides outline on recent tool chain available to 

easily produce YANG based code as well as process model-driven telemetry data. 
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3.1 Model Driven Telemetry (MDT) Overview 

For the past 25 years, Simple Network Management Protocol (SNMP) and Command Line 

Interface (CLI) were main sources of operations data exposed by the network elements. As 

networks grew in size and complexity, SNMP and CLI became insufficient and impractical to 

address the challenges of operational data modelling, acquisition and processing. 

Configuration of network elements is traditionally done using CLI, making it convenient for 

human interaction. As a result, retrieval and processing of operational data from network 

elements was also done using CLI. Such approach is consequently leading to significant effort 

invested in parsing unstructured information received from CLI. It is relatively easy to develop 

scripts to automate configuration tasks done via CLI, however maintaining such scripts is 

becoming increasingly complex and costly since there is continuous effort to keep automation 

scripts up to date with little guarantee that CLI structure remains the same over different 

software versions on the network devices. Even though there are SNMP writable management 

information base (MIB) models which are allowing configuration to take place, in practice 

writable MIBs are either not being implemented or not adopted at large scale.  

When it comes to monitoring, there is of course SNMP as logical choice to poll statistics and 

operational data, however it’s clear that configuring network elements using one method – CLI 

and data statistics polling using another method – SNMP introduces additional levels of 

complexity, which is determining if CLI supported configuration has exposed capability to be 

monitored by SNMP. Additionally, it is unclear whether SNMP MIB needed for data 

monitoring has been implemented on the actual monitored devices within the required software 

versions. It is very common that some objects defined in SNMP MIB could be omitted from 

the implementation on the network device making it difficult to answer the question: “Given 

the CLI configuration, can it be monitored using SNMP at all? What are the available objects 

which would be relevant for the monitoring?”. To illustrate given question through one simple 

example: After polling an OID from router using SNMP value of 0 is returned.  Value 0 could 

well be its valid counter with the value; however it could also mean that actual OID is not 

implemented. The advantage of using Network Configuration Protocol (NETCONF) as a 

protocol and Yet Another Next Generation (YANG) as data-modelling language is that is 

provides list of the supported models in the HELLO message in NETCONF, hence making it 

very clear which models are supported by the management device. For a client it’s sufficient 

to connect to device via NETCONF protocol in order to obtain list of supported YANG 

modules. Such a straightforward approach of using HELLO message came as a result of 
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experience and improvements done in IETF. Changes in regard to HELLO mechanism 

identifying supported YANG modules came though as RFC 7895, YANG Module Library. 

Taking into account that IETF is the standard development organization that develops 

specification SNMP and MIBs as well as for NETCONF and YANG it is clear that focus on 

configuration management is moved from writable MIB modules to NETCONF/YANG with 

the following statement issued by IETF’s body - IESG: “IETF working groups are therefore 

encouraged to use the NETCONF/YANG standards for configuration, especially in new 

charters”. [39] 

Using Yet Another Next Generation (YANG) – model-driven approach both for configuring 

network elements as well as for monitoring those same network elements the requirements for 

additional levels of complexity to translate data from one protocol to another or to parse 

unstructured data has been eliminated. YANG is a full, formal contract language with rich 

syntax and semantics to build applications on. 

In period of 2010 until 2018, YANG data modelling language has undergone extensive 

developments since it was firstly introduced by Internet Engineering Task Force Request for 

Comment 6020 (IETF RFC 6020) [40] as a data modelling language for the Network 

Configuration Protocol (NETCONF) [41]. YANG as data modelling language is defined in 

IETF RFC 6020 (YANG 1.0) with improvements learned over the years incorporated in form 

of YANG 1.1 in RFC 7950. YANG became de facto standard as the modelling language for 

configuration of network devices.  

 

 

 

Figure 8 YANG and related protocols 
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Figure 8 outlines the relationship between YANG as data model language and possible 

encodings, protocols that could be used in implementing applications in different programming 

languages. 

As YANG data modelling language adoption grew in the industry RFC 8199 [42] provided 

guidelines on YANG module classification in two dimensions and additional subdivision 

within the dimensions: 

 

1. YANG Module Abstraction Layers 

1.1. Network Element YANG modules 

1.2. Network Service YANG modules 

 

2. YANG Module Origin Types 

2.1. Standard YANG Modules 

2.2. Vendor-Specific YANG Modules and Extensions 

2.3. User-Specific YANG Modules and Extensions 

 

IETF as the main driving force behind development of YANG has foreseen “tsunami of YANG 

models” which was materialized in over 320 standard YANG models and additional 10099 

vendor modules as it exists at the time of writing this article. [43]  

 

Figure 9 Growth of IETF YANG Models since 2015 depicts growth of total number of IETF 

YANG modules developed over time along with its compilation results. Initially there were 

quite a high number of compilation warnings compared with successful compilations. As 

industry started to adopt modelling language and gains experience in writing new modules 

using YANG, successful compilations are following the growth trend. 
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Figure 9 Growth of IETF YANG Models since 2015 [42] 

 

With growing popularity of YANG modelling language there are significant number of models 

built by different organisations. Consequently, relationships and interdependency between 

YANG modules is becoming increasingly complex. There are number of tools created on 

yangcatalog.org [42] to facilitate search, use, creation and collaboration on YANG models. 

 

3.2 Model Driven Telemetry 

For long period of time acquisition of network state information is done by polling data from 

the network devices or by using specialized network protocols. Since YANG can also be used 

to model state data of the network elements there is tendency to use YANG models for 

telemetry. 

Network monitoring based on legacy protocols such as SNMP is long overdue for significant 

improvements, as it has been designed for legacy implementations. Modern network 

deployments with high-density platforms require much higher scalability, performance, agility 

and extensibility. Streaming telemetry addresses major challenges outlined above, where data 

is being exported – streamed from network elements continuously with incremental updates. 

Operators may use data models to subscribe for specific data points needed. Comprehensive 

list of the requirements for telemetry are provided in the RFC 7923 [44] “Requirements for 

Subscription to YANG Datastores”. 
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By using YANG and Model-Driven Telemetry, issues with SNMP polling have been 

addressed. Telemetry is more efficient over SNMP since it there is no poll-response process 

altogether. By simply eliminating the polling and thus avoiding need for network element to 

wait for the next instruction significant gain is achieved, since network element does not need 

to wait for the instruction on what to do after every export cycle. Configured telemetry policy 

already instructs network element onto what data to collect, how often and where it should be 

exported.  

YANG as data modelling language has been introduced and defined in IETF. However, there 

are currently 2 two main organizations that steer Model-Driven Telemetry: Openconfig [44] 

and IETF . 

 

 

Figure 10 Block diagram of high-level view of Model-Driven Telemetry and components [44] 

 

Figure 10 depicts block diagram of Model-Driven Telemetry (MDT) and relationship of 

different layers in relation to MDT and YANG models. 

For both IETF and Openconfig same architecture applies in terms of Telemetry data acquisition 

and processing, with following components/layers as part of the simplified solution: 

● Collection Layer 

Tasked with receiving telemetry stream, aggregating and normalizing data for further 

processing 

● Storage Layer 
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Performs store, indexing and search functionalities 

● Applications Layer 

Takes care of automation, visualizing and alerting 

 

For Model-Driven Telemetry there are important options available which need to be taken into 

account for session initiation, encoding and transport. 

Session Initiation: Two distinct options are available for initiation of a telemetry session.  

- “dial-out” - Network device initiates connection to the Collector 

- “dial-in” – Collector initiates session to the network device 

 

As depicted at Figure 10, components of telemetry publishing and consumption model-driven 

telemetry are defined in a way to make it versatile, performant, and flexible. Aspects of this 

design are discussed below. 

Transport carries telemetry data using UDP, TCP or gRPC over HTTP/2. TCP and UDP 

transport protocols offer simplicity, however gRPC brings TLS encryption as security 

advantage.  

Encoding: Network element streams telemetry data using2 types of encoders: JavaScript Object 

Notation (JSON) or Google Protocol Buffers (GBP). 

JSON encoding is performed over TCP transport service and can optionally be compressed by 

zlib. 

GBP offers both UDP and TCP as transport service with two encoding formats: Compact GBP 

and Key-value. 

With Compact GBP encoding will be the most efficient, but it requires unique “.proto” file for 

each YANG model/path used by the receiver to decode the data. 

 With key-value encoding single “.proto” file is used to encode data in self-describing format. 

However, data on the wire is much larger when compared to compact mode, since with key-

value encoding names are included in the message content. 
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Figure 11 Streaming Telemetry architecture on Cisco XR platform 

Figure 11 represents design architecture of both configuration using YANG models as well as 

publishing of telemetry data using operational YANG models. This information is relevant 

since we’re using IOS XR based routers in the experiments conducting in this research. 

 

3.3 YANG Tools 

 

Over the past several years, as YANG gained adoption, there has been significant 

advancements of the tools and utilities which make it easier to develop applications and 

generate code leveraging YANG models. In the following section we’ll name some of the most 

widely used tools and how are they helping developers and users.  

YANG Development Kit (YDK) [45] is a Software Development Kit which helps generate 

APIs based on YANG Modules and can produce output in different programming languages. 

While data models provide structured representation of capabilities of the network device, 

creating functional code leveraging data models could be quite demanding since there are 

several other points to address, such as protocol, encoding, transport. Therefore, having SDK 

which can help generate APIs and code templates could be quite useful and this is exactly 

where YDK excels. 

YANG Catalog [42] is a tool and searchable database which can be accessed to find relevant 

models for the desired use case. Typical use case would be finding relevant YANG module for 

development of new application, where user could search correct module by name, keyword in 

module content, by vendor etc. YANG Catalog provides capability to download complete  



41 

 

PNDA complex architecture for Telemetry data acquisition, processing and visualization. 

PNDA is based on open-source components and designed in such way to decouple data sources 

from applications. Such an approach enables seamless integration of data sources and data 

reuse by different data-analytics applications without impacting data sources. As example one 

could indicate polled data source – such as SNMP Agents, which are usually polled heavily by 

multiple consumers. With high performance pub/sub bus which exists in PNDA, polling would 

be done only once, and data made available to all consumers. 

Pipeline is an Open-Source collector tailored for Streaming telemetry with capability to export 

data to multiple destinations. It can be used as part of PNDA architecture as well as standalone 

application. Of course, true power of collector is exhibited in its capability to efficiently process 

large quantities of telemetry data and make it available for easy processing by consumers or 

even better by streaming publish and subscribe platform such as Apache Kafka, which is also 

one of the main components of PNDA architecture. 

Ncclient [46] is a Python library for NETCONF clients which is in use for quite a while and 

facilitates development of Python based tools leveraging NETCONF protocol. Since all 

NETCONF protocol operations are implemented in Ncclient library, this enables quick 

network element configuration retrieval, editing, committing and so on, which helps maintain 

model driven telemetry configuration using relatively simple code base. 

 

3.4 Conclusion on MDT and YANG versus legacy monitoring 

Model-driven Telemetry (MDT) using YANG models is undoubtedly huge step forward and 

the path to take to enable advanced data analytics and machine learning applications. With 

proper data structures provided by MDT, infrastructure for applications such as PNDA 

conditions have been created to focus on data consumption and harvesting information 

contained in vast amounts of data, rather than focusing on preparing and parsing data, so it 

could be consumed. Over time, intensive data polling, retrieval and parsing of unstructured 

data is going to be practiced certainly too much lesser degree, probably only to support some 

legacy networking deployments – if any. 

Some of the relevant points have been made in the document which could prompt questions 

such as: Will SNMP disappear? 

Short answer is: No. SNMP and MIB models did solid job for monitoring. SNMP MIBs are 

configuration and state information but represented in a way that is unsuitable for 

configuration. 
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 NETCONF/YANG is doing better job enabling data model driven configuration 

management. With addition of model driven telemetry there are numerous advantages both in 

terms of performance and especially in automation segment, enabling much faster 

configuration as well as telemetry data acquisition. 

In the following chapter we’ll discuss  

 

4 Mismatch between network service configuration 

and network service monitoring 

 

What is the mismatch in question and where is it stemming from? Simple answer is that 

mismatch is caused by the distinct configuration options and models used between 

configuration and monitoring/operations. When the same YANG model defines both the 

configuration data and the operational state data, then establishing relationship between 

configured object and operational data is relatively easier. This unified approach can simplify 

the task of designing and managing network devices and services, as it ensures consistency 

between the configuration and operational state.  

 

However, the exact use of YANG models may vary between different implementations and 

vendors. Some might choose to have separate models for configuration and monitoring. 

Establishing a relationship between network service configuration and the YANG models used 

for configuration and monitoring is common challenge and can be considered complex 

depending on the specific requirements and context. 

 

1. Design Complexity: Creating YANG models that accurately represent the 

configuration, operational state, and statistics of network devices and services requires a deep 

understanding of the network domain and the specific requirements of the devices and services 

being modelled. This can be a complex task that requires careful design and expertise. 

 

2. Standardisation Many organizations adopt standardized YANG models developed 

by industry groups like the IETF. This can simplify the relationship between network service 

configuration and the YANG models because the models are already designed to represent 

common network concepts and practices. 
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3. Tool Support: There are tools available that can aid in the creation, validation, and 

implementation of YANG models. These tools can make it easier to establish and maintain the 

relationship between the network service configuration and the YANG models by providing 

features like syntax checking, simulation, and code generation. 

 

4. Interoperability: When working with network elements and services from different 

vendors, aligning their diverse configuration practices with standard YANG models might be 

challenging. Different vendors may implement or interpret the YANG models slightly 

differently, leading to potential inconsistencies. 

 

5. Customisation: In scenarios where custom or specialized configurations are required, 

the process of designing and implementing the YANG models can be more complex. It might 

necessitate a deeper collaboration between network engineers, architects, and developers to 

ensure that the YANG models accurately represent the unique aspects of the network service 

configuration. 

 

Therefore we could conclude that relationship between network service configuration and 

YANG models can also be a complex task that requires specialized knowledge and careful 

design, especially when dealing with custom or unique configurations or when aiming for 

interoperability across diverse systems. 

 

Let’s take following configuration for example. This XML example represents service 

definition as provisioned by Cisco Network Service Orchestrator (NSO) [15] [47]. Network 

service configuration is represented as XML document specifying multiple components as per 

YANG module definition.   
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Figure 12 Cisco NSO Network Service configuration for device pe-1 

Figure 12 Is XML formatted output generated by NSO, representing network service 

configuration to create Tunnel service over the network topology discussed in this work. XML 

configuration is leveraging YANG models to instil state on the network element – PE router 

running Cisco IOS XR operating system. 

On Figure 13 depicted below, we could see relevant configuration for the second tunnel 

endpoint located on the device pe-2. Both configuration excerpts are aimed to create 

configuration state on the respective network elements, which are part of the network service 

tunnel-ip12. 
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Figure 13 Cisco NSO Network Service configuration for device pe-2 

However, even if provided confirmation template is being sent to the network elements 

(devices) and configuration accepted by the devices, no errors reported, this still doesn’t mean 

that network service will be functional. Basically, even though configuration is correct, desired 

network service might be down and non-functional due to many reasons. Generally establishing 

status of the service – performing service assurance and troubleshooting the root cause is 

increasingly complex task. 

In order to address the challenge – assure and continuously monitor network service, 

monitoring loop should be closed using telemetry, so that appropriate data could be used to 

better understand service status. 

Let’s examine the configuration models, examples given in Table 1 and consider the 

relationship between configuration models used and the models used to monitor the 

configuration. 
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For configuration, Cisco IOSXR native YANG models are used: 

 

Configuration Component YANG Model 

Interface http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg 

VRF http://cisco.com/ns/yang/Cisco-IOS-XR-infra-rsi-cfg 

Network http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-io-cfg 

Tunnel http://cisco.com/ns/yang/Cisco-IOS-XR-tunnel-gre-cfg 

Table 1 YANG Models used for the configuration. 

However, mentioned YANG models are used for configuration only. In order to find out which 

parameters to monitor it’s needed to determine which YANG models provide relevant 

operational data. Additionally, it’s possible to perform monitoring using legacy approach – 

such as Simple Network Management Protocol (SNMP), Command Line Interface (CLI) or 

other means.  

 

4.1 Decomposition of the network service configuration 

 

In order to understand which data is available for monitoring and how to monitor the network 

service in question it’s necessary to perform service decomposition and establish which service 

components  
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Figure 14 From Orchestrator (NSO, ONAP) Service Configuration to YANG path via 

Heuristic Package 

Figure 14 Depicts relationship between different stages in network service decomposition, 

from higher towards lower layers, including the actual metrics collected from the network 

elements. 

 

Example of the Assurance Expression Tree  

• Assurance hierarchy between following Service components 

• Service components: tunnel, VPN, ... 

• Service components: (sub)interface, device, interior routing protocol 

• Service components can depend on other service components 

• Service components are assured on the agents 

 

The above-mentioned decomposition is illustrated on Figure 15. where GRE Tunnel network 

service has been decomposed to its Service components. GRE Tunnel network service 

obviously depends on health of Tunnel Interface, which in-turn depends on the underlying 

physical/logical interface. Ultimately, underlying interface health will also depend on the 

device where the particular interface resides. Apart from the GRE Tunnel Interface, GRE 

Tunnel as a service also depends on the Layer3 connectivity, which is also dependant on the 

health of interior routing protocol on the device itself. Finally, routing protocol’s health 

NSO Service Configuration

Services

Service Components

Expressions

Metric (YANG path)

Orchestrator to YANG Path via Heuristic Package
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depends on the health of egress interface, which is forward the network traffic, along with the 

routing protocol information as well. 

 

 

Figure 15 GRE Tunnel Network Service assurance decomposition 

Figure 15 represents graphically dependencies and decomposition of the actual tunnel service, 

along with all its service components. Each box represents the result of the evaluation for the 

particular service where boxes coloured in Green represent service components which have 

been determined as healthy based on the telemetry data, CLI or SNMP outputs, whatever it 

may it depend upon. Grey boxes represent service which state couldn’t be conclusively 

determined, since there is insufficient data to deem Service healthy or unhealthy 
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Figure 16 Network Service Assurance Tree 

Figure 16 represents detailed view of the network service assurance tree and service 

components related to the network service, in the example it’s tunnel service. Health and 

assurance tree of the whole network service depends on the status of the service components, 

which are integral part of the network service. We perform assessment of the health status of 

each of the service components that are taking part in the network service. 

 

Service Component Assurance Expression for health of a service component – interface: 

Values marked in Red are raw data received from the network elements by means of Model 

Driven Telemetry (MDT), SNMP, CLI etc. Values in Blue colour are the derived and calculated 

to be used as intermediary value for the final calculation. Once all needed values have been 

obtained, then we can perform the calculations and inference on the status of the service 

component.  
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Figure 17 Service Component Assurance Expression Tree 

Above mentioned expression and conditions are graphically represented on the Figure 17 

where it can be observed that interface could be considered as healthy (health=1.0, meaning 

100% healthy) if all Service components are also healthy: interface is up, number of errors is 

low, there is traffic on the interface and interface is not flapping. Same procedure is then 

performed on each of the  

 

 

 

 

 

Service Component Assurance Expression Tree
 Whether the interface is flapping.

                                                    

 Whether the interface is reported and configured  P.

                                                                      

 Total number of packets correctly received or sent.

                                                                   
                                                  

 Total number of errors (input and output)

                           

 Whether the number of errors is low.

                                    

 Whether there is some traffic (0.    low traffic, 1.0    normal traffic.)

                                     

 Whether the interface is healthy.
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Figure 18 Graphical representation of the Service Component Assurance Tree 

Branches of the Assurance tree and their logic are discussed below: 

Interface is considered “ P” if both administrative enabled state = True and operational state 

= True 

Interface errors are considered low if both in-errors and out-errors are 0. 

 … and so on 

 

 

 

4.2 Architecture of the proposed solution 

 

In the proposed architecture of the solution, as depicted in Figure 19 architecture consists of 

Assurance Orchestrator and Assurance Agents in addition to standard network configuration 

components – Configuration orchestrator such as Cisco NSO, ONAP etc and device being 

configured.  
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Figure 19 Architecture of the proposed assurance solution with a single assurance agent 

 

In the standard configuration flow, orchestrator is communicating to the device and sending 

the configuration using NETCONF over TCP protocol, port 830 by default. Any kind of 

telemetry would be configured as well and exported to the analytics platform. However, with 

the mentioned standard configuration flow correlation between telemetry data and service 

configuration is almost non-existent because configuration models are different from 

operational models which are exported in the telemetry. 

To address this gap between configuration and operational models it’s necessary to introduce 

additional components which will introduce tags in data exported via telemetry, so that values 

send via telemetry can be correlated back to the configuration. By introducing tags in the 

telemetry, it will be possible to correlate data in the telemetry with configuration model and 

therefore get clear insight into status of the provisioned network service. 
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4.3 Functional architecture of the Assurance agent  

 

Figure 20 Proposed Architecture of the Assurance Agent 

 

As described on Figure 20 proposed architecture of the assurance agent, we could observe that 

agent receives configuration from the orchestrator. In turn, configuration is used to perform 

following actions: 

● Collect metrics from the underlying network devices which have been configured to 

export data: telemetry, SNMP or other data sources 

● Compute status of the service based on the received data in order to determine whether 

service is healthy or degraded 

● Finally, Agent would export status and metrices to the service collectors using enriched 

telemetry and tags which would facilitate correlation of model driven telemetry with 

the network service configuration 
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4.4 Simplified graphical representation of the network service path through the network 

infrastructure 

 

Figure 21 Diagram of the configured Network service in the lab environment 

As depicted on the Figure 21 diagram of the configured Network service in the lab 

environment, Network service is a tunnel between customer’s router CE-1 and CE-3. Path 

between two mentioned customer’s routers traverses over the provider’s network, forwarded 

by provider edge (PE) and core routers. In the shown example we could observe that tunnel 

traverses PE-1, CORE-2 and PE-3 on the data path between the customer edge devices. 
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Figure 22 Topology Diagram as drawn by Cisco Virtual Internet Routing Lab software– 

VIRL [47] 

Figure 22 depicts network device topology, connectivity diagram as modelled by Cisco’s 

Virtual Internet Routing Lab software – VIRL [47]. BGP Autonomous system used is 

AS:65000, while we have various devices in the topology: 

- P routers Cisco IOS XRv 9000 running Cisco IOS XR 7.1.1 software 

- PE routers Cisco IOS XRv 9000 running Cisco IOS XR 7.1.1 and IOS XR 6.5.1 software 

- CE routers Cisco CSR1000v 

- Servers runing Linux Ubuntu 14.04 LTS 
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4.5 Experimental methodology 

One of the main hypotheses of the research is to confirm whether amount of the telemetry data 

could be reduced by leveraging service awareness. In the Figure 23 lab topology along with 

the deployed assurance agents have been shown. 

 

4.6 Lab Topology used in the experiment. 

 

Figure 23 Lab topology depicting Assurance Agents 
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Results have been produced and collected using the topology described in the Figure 23. It’s 

confirmed that indeed there could be significant reduction of the telemetry data if the suggested 

solution architecture would be deployed. Data reduction is so significant since essentially agent 

exports only service specific information and filters out all the bulk data which is used to 

compute network service status. Such a computation of is of course enabled by the recent 

developments in the network devices which are not only routing and switching traffic, but also 

have sufficient CPU capacity to perform complex computations. 

 

type device value percentage 

CLI p-1 69.5 MB 1.26% 

CLI pe-1 174.4 MB 3.17% 

CLI pe-3 69.6 MB 1.26% 

MDT p-1 447.2 MB 8.12% 

MDT pe-1 728.2 MB 13.22% 

MDT pe-3 732.8 MB 13.3% 

SNMP pe-3 38.0 kB 0.0% 

SNMP p-1 25.3 kB 0.0% 

SNMP pe-1 50.7 kB 0.0% 

MDT Data centre 1 

(Diegem) 

3.0 GB 55.87% 

MDT Data centre 2 (San 

Jose) 

210.1 MB 3.81% 

Table 2 Incoming data repartition 

Results shown in Table 2 provide information regarding the effective amount of data received 

from each of the devices in the topology which were involved in the service configuration or 

make part of the data path for the network service in question.  

 

Experimental setup and results achievements 

 

This experimental setup consists of customer premises routers (CE) as well as provider core 

routers (P) and provider edge routers (PE) running in a physical and virtualised environment. 

These devices, whether physical or virtual handle real traffic.  
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As shown in Figure 24, the network with service models is configured using the orchestration 

network architecture.  

 

 

Figure 24 Business Intent communicated to the configuration orchestrator. 

 

 

In Figure 25 orchestrator is configuring devices in order to fulfil desired service intent. 

Orchestrator uses Netconf protocol to access and configure network elements which are taking 

part in the data path to enable desired service. We could see example of the network service 

configuration in XML format depicted in Figure 12 and Figure 13. 
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Figure 25 Orchestrator sends configuration to network devices 

 

In the provided example, actual intent is to establish communication – tunnel service between 

ce-1 and ce-3 network device in order to enable communication between Client-1 and Client-

3. In order to traverse path between Client-1 and Client-3, data packets need to cross pe-1, p-2 

and pe-3 as shortest path between the endpoints. Of course, this trajectory may be different in 

function of routing protocols and connectivity in function of time, but topology discovery and 

update events will be discussed in future work. At this time, we’re focusing on fixed path 

through the experimental network and assuming there won’t be topology changes throughout 

the experiment shown in Figure 26. 
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Figure 26 Tunnel service is configured. 

However, there are important questions to be answered: 

Question: Service running within acceptable KPIs?  

Question: Is configuration model mapped to monitoring model? 

 In Figure 27 we can observe each of the network devices streaming telemetry data to the 

collector, monitoring platform which is receiving and processing all telemetry data.  

 

 

 

 

Figure 27 Telemetry data streamed to Monitoring/Analytics platform. 250000 different stats 

per router (740 kbps of data) 
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Thanks to the fact involved network elements are already using Model Driven Telemetry 

processing data points by collector is simpler. However, as there are so many different data 

points which are being monitored on devices, there may be information overload since on 

average router there could easily be 250000 different monitored data points. Such as large 

number of collected data points could essentially mean that amount of generated telemetry data 

may be significantly high and could pose challenge for network infrastructure as well as could 

cause impact to collector processing capacity. 

 

Instead of monitoring all relevant and non-relevant data points, causing unnecessary increase 

of traffic and compute resources to process large amount of data, we’re proposing significant 

reduction in amount of telemetry data by ensuring that only minimal set of relevant data points 

is exported from the network devices by means of intent-aware assurance agent. Data reduction 

task is accomplished by deploying assurance agent locally to the network devices, thus 

leveraging local area network (LAN) links and avoiding use of wide-are links (WAN) for large 

amount of data points. assurance agent is aware of the service details and is also capable of 

receiving telemetry data. As represented on assurance agent architecture in Figure 20Error! 

Reference source not found., service intent is received by from the orchestrator while MDT 

is received from network devices. 

 

 

In the block diagram Figure 20 Proposed Architecture of the Assurance Agent is performing 

analysis on the received datasets and series of computations in order to determine actual state 

of the service. Steps performed by assurance agent: collecting MDT, processing and exporting 

reduced – yet more relevant MDT is called assurance pipeline. Final result of assurance 

pipeline is significantly reduced amount of MDT containing only high-level status of the 

monitored service, as per pre-defined Key-Performance Indicators (KPIs).  

 

Measuring objective was to determine how much data is actually received via MDT under usual 

telemetry export, with typical data points for router such as environmental, interface stats etc. 

Result of this work outlines amount of measured data after performing analysis of the incoming 
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telemetry and mapping to service aware MDT. All routers and all incoming data points were 

taken into account. 
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Intent-Aware Monitoring Efficiency 

Total MB 

Average network 

traffic rate 1 min  

in kbps 

Average Network 

traffic rate 5 min  

in kbps 

Average network 

traffic rate over 15 

min in kbps 

Incoming Telemetry 

from routers 
5200 740.7 700.1 711.7 

Telemetry generated 

by Intent Aware 

Assurance Agents 

130.8 17.3 17.2 17.1 

Combined 

Telemetry to 

Analytics platform 

224.9 29.5 29.1 29.3 

This work efficiency 

ratio 
40.9 42.8 40.6 41.7 

Table 3 Experimental results 

Results shown on Table 3 outline achieved efficiency in regard to the raw telemetry data 

received from the routers vs reduced telemetry data focused only on the network service. 

As outlined in Table 3, demonstrated experimental results have reduced the amount of 

incoming MDT from routers from 5.2 GB to 130 MB, while preserving relevant information 

which is – is service running and operational per pre-defined KPIs. Network traffic is referring 

to the data being transferred over the tunnel, configured as part of the experiment. 

Configuration is simple, monitoring & assurance is complex. By means of assurance agent, 

we have accomplished reduction of telemetry data exported over WAN, while enriching MDT 

with the most relevant data – Service status in relation to the KPIs.  Therefore, the amount of 

Telemetry data has been reduced by injecting service aware information in MDT and removing 

all overhead MDT data points which do not need to be exposed to the network operator who is 

monitoring the service. Of course, full MDT can also be enabled if desired. 

The PhD candidate has prepared conference paper where he has put all these achievements.  
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4.7 Abstraction of device configuration model 

Why an “abstract device configuration model” ? 

In the context of the service assurance, device configuration is retrieved from a network 

orchestrator (NSO in our example).  The device configuration is contained in various YANG 

models, hence various namespaces. From this configuration, it’s necessary to generate 

requirements by applying a set of rules as depicted on Figure 28. 

 

Figure 28 Generating requirements from rules. 

  

The root YANG model is the one of NSO, and it is augmented by the YANG model of the 

services and of the device’s configuration. Currently, there is a single YANG model for the 

configuration of an XR device (http://tail-f.com/ned/cisco-ios-xr), but NSO could theoretically 

support NETCONF devices and thus have an arbitrary set of models for the configuration of a 

single device. 

4.8 Current implementation 

The current orchestrator implementation directly generates the requirements from a mixture of 

the NSO YANG model and the Cisco NED YANG model. The situation is similar to the one 

depicted in Figure 29, where for each device configuration model, we do have a different set 

of rules. 



65 

 

 

Figure 29 Direct configuration-to-requirement rules 

  

In this context, a rule contains: 

● A trigger, which is an XPath query. If an element matching that query is found among 

the elements configured for a specific service, we apply the rule and use that trigger as 

base node for subsequent XPath queries. 

Example: http://tail-f.com/ned/cisco-ios-xr:tunnel-ip is present among the elements 

configured  for the instance tunnel1 of service sain-tunnel -> we apply the rule. 

● A set of requirements patterns whose values are filled by XPath queries. Note that these 

XPath queries may refer to elements in other namespaces. 

Example:  

DeviceHealthy(<result of query ../../<NSO namespace>:name.text()>) 

● Some unformalized mapping code. Example: for each tunnel-ip directive, we define an 

endpoint in the overlay: Endpoint(<device name>, <./tunnel/vrf/name.text()>, 

<./tunnel/ip/version.text()>, <./tunnel/ip/address.text()>) and if we have only two 

endpoints, then we add the requirement Layer3Connectivity(endpoint1, endpoint2). 

To summarize, the rules are directly querying the XML containing the global config of NSO 

and its managed devices.  

The drawbacks of this are: 

● Need to adapt or redefine rules for each configuration output from the orchestrator 
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● If several models are used in conjunction, we need a rule for each possible conjunction 

of the models (i.e., cisco-ned/ncs, huawei-ned/ncs, cisco-ned/onap, huawei-ned/onap, 

pretty sure the last two have no meaning, but they could potentially exist) 

● We might reimplement the same query (i.e., get the IP of the source interface of the 

tunnel) various time 

Proposition: use an abstract model to represent the configuration 

The goal of this abstract model is to represent the device configuration (and perhaps layer-2 / 

layer-3 topology) information that are required for the rule engine to build requirements. 

The metamodel for representing such models can be built incrementally, as we are currently 

building rules. In order to support various configuration formats, we need to be able to map 

them to this metamodel, as shown in Figure 30. 

 

Figure 30 Using an abstract configuration model. 

Using this approach, we could parse the whole configuration of each device to generate the 

model. (+ LLDP to have the topology). We depict in Figure 31 possible instance fragment of 

such a model. It contains two devices and four interfaces.  

Then the example rule from above would become: 

● Trigger: presence of a TunnelInterface in the elements configured for a given service 

instance. Let’s call it tunnel-if 
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● The list of requirements for the rule will be the same, but instead of filling them with 

XPath Query, we can use the model: DeviceHealthy(tunnel-if.owning_device) 

● The same heuristic for connectivity between tunnel endpoints can apply (i.e., we match 

the 2 endpoints defined in the same service instance, which is not shown on Figure 30). 

In that case, the connectivity in the overlay can be expressed as:  

Layer3Connectivity(tunnel-124_r1.ipv4, tunnel-124_r4.ipv4) 

Note that we can also build the underlay connectivity independently for each tunnel interface 

with Layer3Connectivity(tunnel-if.destination, tunnel-if.source.ip) 

After normalization, these two requirements (the one with tunnel-124_r1 and the one with 

tunnel-124_r2) should be identified as the same requirement. 

 

Figure 31 Possible fragment of an instance of the configuration model. 

Potential advantages of this approach: 

● Simplified writing of the rules (maybe even a GUI for writing rules/requirements). 

● Possible mapping between YANG models, i.e., possible workflow for building the 

model: 

o List devices from NSO 

o Get-config from each device via Netconf and integrate the data from the various 

YANG models to the abstract configuration model. 

o [Get-oper LLDP from each device via Netconf -> build topology] 
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o Get-config from NSO -> list backpointers and identify corresponding elements 

in the model built. 

● Requirement are defined over elements of the model, not strings. 

● Simplified checking of the configuration (i.e., check that the source of a tunnel interface 

always has an IP) as global constraints 

Main challenges: sufficiently generic approach to encode the whole configuration. 

 

 

 

4.9 Heuristic packages  

Heuristic packages are used to encode human knowledge within the rule files with the objective 

to: 

● Automate building and monitoring of assurance cases for network services 

● Enabling exchange and reuse of assurance case between experts and operators 

By naming heuristic objective is to cover a large part of most common issues. However, in 

some cases: 

● A service reported as “Broken” might actually be functional 

● A service reported as “Healthy” might actually be non-operational 

In such cases, heuristics packages can be extended to improve coverage and accuracy. 

As we depicted on Figure 32 heuristic packages could be decomposed in 3 hierarchical layers, 

higher ones depending on the lower ones. 

- Rules 

- Service Components 

- Metric Engine 
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Figure 32 Heuristics packages decomposition. 

 

Figure 33 Service components 

Figure 33 provides visualisation of the service components, which are expected to focus on a 

very specific and well-scoped part of the networking system. Service components are report 

status: score (0/broken to 1/healthy) + symptoms. Service components are reusing metrics from 

the metrics engine. 

                  

             

Rules
Combine service components to assure whole

network service, leveraging service

configuration

Service Components

Compute status of the specific part of

the network system, leveraging metrics

Metric Engine

Device independent abstraction of

metrics to acquir e

     

Service Components

X Healthy Y Healthy

EqualMT (dev1,int1,dev2,int2)

interface.mtu(dev2,int2)interface.mtu(dev1,int1)

Broken   MTU mismatch   ealthy    =

InterfaceHealthy(dev, int)

TelemetryHealthy(int)

ConnHealthy(addr1, addr2)
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Figure 34 Rules 

Figure 35 depicts rules which are expected to parse configuration pushed by NSO to enable a 

service to produce an assurance graph. Assurance graph: service components with parameters 

from the configuration and dependencies. Dependencies aggregate symptoms to explain 

services malfunction. 

 

 

4.10 Service Language 

Domain-Specific Language (DSL), service language was developed to describe the 

computation needed to evaluate the status of a service components. Detailed description of the 

service language has been provided in Appendixes 

Appendix A - Service Language 

 

4.11 Network service and Intent connection 

 

The connection between network GRE (Generic Routing Encapsulation) tunnel service 

configuration and network intent lies in the way network intent can be achieved and managed 

through the use of GRE tunnels. We’re indicating some of the possible connections: 
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- Intent-based routing: By using GRE tunneling, we could define specific intent-based 

routing policies. For example, we can create tunnels that prioritize certain types of traffic, 

such as video conferencing or VoIP, to ensure a smoother user experience. 

 

- Security and isolation: GRE tunnels can be configured to create isolated network segments, 

providing secure connectivity between different parts of a network. Network intent can be 

defined to enforce security policies and ensure that traffic from one segment is not 

accessible to another. 

 

- Traffic engineering: GRE tunnels can be used to optimize network traffic by creating virtual 

links between different locations. With network intent, we could define policies to 

dynamically adjust the traffic flow through these tunnels based on real-time conditions, 

such as bandwidth availability or network congestion. 

 

- Multi-tenancy and service chaining: GRE tunnels can enable multi-tenancy in a network 

environment, where different customers or tenants can have their own isolated virtual 

networks. Network intent can be used to define policies for service chaining, where specific 

services or applications are automatically routed through different tunnels based on 

predefined rules. 

 

- Cloud connectivity: GRE tunnels can be used to establish secure connections between on-

premises networks and cloud environments. Network intent can define policies to ensure 

optimized and secure connectivity, such as routing traffic through specific tunnels to 

preferred cloud service providers. 

 

Overall, the configuration of GRE tunnel services, as we also demonstrated in our work, can 

be aligned with network intent to achieve specific goals, such as improved performance, 

security, isolation, and efficient management of network resources. 

 

4.12 Machine learning techniques 

In order to achieve improve prediction and better efficiency using machine learning it’s 

imperative to provide sufficient datasets to train the machine learning models. [48]To answer 

the question on to what would be considered as sufficient training data in it’s necessary to 
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perform further analysis of the business intent, network configuration, amount of generated 

telemetry data and service aware telemetry data. In either case, advancements in prediction 

with machine learning algorithms significantly depends on the quality of the datasets. Since 

it’s essentially difficult to obtain high-quality training datasets [48] telemetry data discussed in 

this article could be used as a base for such a dataset repository. 

With the data acquired using service aware telemetry it should be possible to facilitate machine 

learning objectives. In Table 1 there is short overview of the Machine learning: 

 

 

 

 

 

 

Machine Learning Objectives 

Supervised Unsupervised 

Discrete Data 

Classification 

(predict a label) 

 

Clustering 

(group similar items) 

Continuous Data 

 

Regression 

(predict a quantity) 

 

Dimensionality 

Reduction 

(reduce number of variables) 

Table 4 Machine Learning Objectives 

Application#1a: Discover Service-Impacting Objects 

 

• Discover new correlation or non-correlation  

• Goal is to improve the set of service-impacting objects (and hence the agent):  
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• Discover other objects that “impact ” the service KPIs 

=> Add those service-impacting objects to telemetry 

• Discover “ service-delivery ” objects that do not influence the service  

=> Remove those service-delivery objects from telemetry 

• Hope: by providing the known service-related objects to ML, we help the search 

Since there is service tag (label) available in the telemetry it could be possible to discover new 

relationships and dependencies in the acquired data sets. Such machine learning application 

could in turn predict service impacting behaviours and trigger corrective actions before service 

degradation below acceptable KPIs. 

Machine Learning (ML) and Ontology Based systems are important building block in 

conjunction with model telemetry data and network element sources to perform service 

decomposition in order to identify anomalies and outliers, perform root-cause analysis and 

possibly conclude by predicting service impact  

Assurance automation may be classified in the following areas. 

▪ Intelligent process automation: encoding the daily operations performed by level 1 

NOC engineers and incident management teams, empowering the operations with 

guided automations using software modules and increasing the level of accuracy and 

degree of automation. 

▪ Root-cause analysis: automating and using machine learning to increase the efficacy 

of root-cause analysis to generate insights and guided actions. Service quality 

degradation can be predicted to enable proactive service assurance. 

▪ Closed-loop assurance: integrating with configuration and orchestration systems to 

enable network changes to resolve performance and service issues. 
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5 Closed loop automation for Intent-Based 

Networking 

 

This chapter focuses on exploring the proposed solution for closed-loop automation in the 

context of intent-based networking. We will delve into the key concepts, principles, and 

technologies that underpin closed-loop automation in IBN.  

Firstly, we will discuss the importance of closed-loop automation in maintaining network 

reliability, scalability, and security. We will explore how closed-loop automation enables the 

network to dynamically adapt to changing conditions and proactively address potential issues 

before they impact business operations. 

 

5.1 Background 

A compulsory step for intent-based networking involves closing a loop with telemetry for 

service assurance. Discovering whether a service fulfils its service level agreement (SLA) is 

relatively easy when monitoring synthetic traffic mimicking the service. However, such an 

over-the-top mechanism only provides SLA compliance results that considers a network on 

which the service is enabled as a “black box,” without knowledge of inner workings or low- 

level components of the service. Therefore, a network operator tasked with the monitoring of 

the service has limited or no insights on which specific degraded or faulty network 

components/features are responsible for service degradation. This issue is particularly difficult 

when the network is composed of heterogeneous network components. Telemetry exists today 

to report operational information, but an issue arises in that telemetry from network devices in 

the network does not provide service context information. Hence, troubleshooting the service 

based on the telemetry is very complex, with, on one side, the service information, and on 

another side, network device-specific telemetry information. In the event that the network 

operator discovers that a service is underperforming, e.g., is not fulfilling its SLA, it may be 

near impossible for the network operator to identify in an efficient manner which low-level 

components of the service are responsible for such underperformance. The inability to identify 

efficiently the problematic low-level components hampers efforts to make repairs at the 

component-level in order to restore acceptable performance to the service.  
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5.2 Overview 

Aspects of the invention are set out in the independent claims and preferred features are set out 

in the dependent claims. Features of one aspect may be applied to any aspect alone or in 

combination with other aspects.   

A method is performed at one or more entities configured to configure and provide assurance 

for a service enabled on a network. The service is configured as a collection of service 

components on network devices of the network. A definition of the service is decomposed into 

a Service dependency graph that indicates the service components and dependencies between 

the service components that collectively implement the service. Based on the Service 

dependency graph, the service components are configured to record and report Service metrics 

indicative of Service health states of the service components. The Service metrics are obtained 

from the service components, and the Service health states of the service components are 

determined based on the Service metrics. A health state of the service is determined based on 

the Service health states. One or more of the service components are reconfigured based on the 

health state of the service.  

Corresponding systems and apparatus for implementing the methods described herein area also 

provided.  
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5.3 Service Assurance for Intent-Based Networking 

 

Figure 35 Block diagram of network service assurance architecture 

 With reference to Figure 35, there is a block diagram of an example network service assurance 

system or architecture (also referred to as a “service assurance system”). Service assurance 

system may provide service assurance for intent-based networking, for example. The service 

assurance system leverages programming capabilities of network devices in the intent-based 

network (also referred to as a “service network” or simply a “network”), and model/event 

driven metrics in telemetry obtained from the network devices, to deliver end-to-end service 

assurance for various services. Service assurance system includes a network orchestrator (NO) 

102, service operators to provide instructions to the network orchestrator, an assurance 

orchestrator that communicates with the network orchestrator, Assurance agents(1)-(M) 

(collectively, “assurance agents”) that communicate with the assurance orchestrator, assurance 

collectors that communicate with the Assurance agents and the service operators, and network 

devices(1)-(N) (collectively, “network devices”) that communicate with the network 

orchestrator and the assurance collectors. Network orchestrator configures network devices(1)-

(N) to implement an intent-based service network enabled to provide a variety of services to 

end users. Network devices may include routers, switches, gateways, and other network 

devices (physical or virtual). Assurance orchestrator, Assurance agents, and assurance 
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collectors are generally referred to as one or more “assurance entities” (or simply “entities”) 

configured to provide assurance for services on a network.  

Network orchestrator may include applications and/or services hosted on one or more server 

devices (more simply referred to as servers), for example, in a cloud-based data centre. 

Assurance orchestrator may also include applications and/or services hosted on one or more 

server devices, which may be the same as or different from the servers used by network 

orchestrator. Similarly, assurance collectors may also include applications and/or services 

hosted on one or more servers, which may be the same as or different from the servers used by 

assurance orchestrator. In an embodiment, assurance collectors are applications integrated into 

assurance orchestrator. Assurance agents(1)-(N) may each include applications and/or services 

hosted on one or more servers and may be distributed geographically to be near respective ones 

of network devices(1)-(N) enabled for services to be monitored under control of the assurance 

agents. Network orchestrator, assurance orchestrator, Assurance agents, assurance collectors, 

and network devices may communicate with each other over one or more communication 

networks, including one or more wide area networks (WANs), such as the Internet, and one or 

more local area networks (LANs).  

In the example of Figure 35, service assurance system supports multiple services, including 

service 1 and service 2 (collectively, “the services”). To this end, service operators include a 

service 1 operator for service 1 and a service 2 operator for service 2, and assurance collectors 

include a service 1 collector for service 1 and a service 2 collector for service 2. Service 

operators (e.g., service 1 operator and service 2 operator) provide to network orchestrator 

network and service intent-based instructions to setup/configure the services (e.g., service 1 

and service 2) for end users. Service operators also receive requests for assurance (e.g., “get 

assurance” requests) for the services from assurance collectors (e.g., service 1 collector and 

service 2 collector), and forward the requests to network orchestrator.  

5.4 Network Orchestrator 

Responsive to the aforementioned instructions and the requests sent by service operators, 

network orchestrator derives and sends to network devices intent-based network device 

configuration information to configure the network devices/service network for the services 

(e.g., for service 1 and service 2). In addition, network orchestrator derives and sends to 

assurance orchestrator service configuration information for providing assurance for the 
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services (e.g., service 1 and service 2) enabled on service network. Service configuration 

information includes, for each service deployed or implemented on service network, 

respectively, a definition of the service, including a service type (e.g., a type of network 

connectivity), a service instance (e.g., an identifier or name of the service), and configuration 

information that describes how the service is actually implemented of service network. That is, 

the definition of the configuration of the service is reflective of how the service is instantiated 

as a collection of the service components in service network.  

For network device configuration information, network orchestrator may employ, for example, 

the Network Configuration Protocol (NETCONF) (or, similarly, Representational State 

Transfer (REST) Configuration (RESTCONF)) to push intent-based network device 

configuration objects, such as Yet Another Next Generation (YANG) models or objects, to 

network devices. Similarly, for services configuration information, network orchestrator may 

also employ, for example, NETCONF to push intent-based service configuration YANG 

objects to assurance orchestrator. YANG is a data modelling language used to define data sent 

over a NETCONF compliant network to configure resources. NETCONF are used to install, 

manipulate, and delete configurations of the resources, while YANG is used to model both 

configuration and state data of the resources. YANG models/objects used to implement 

embodiments presented herein may include YANG models/objects extended to include 

service-specific metadata annotations in accordance with RFC 7952 [49], for example, or any 

other format that may be the subject of a future standard.  

Network orchestrator configures a wide range of different service components on one or more 

of network devices to enable/support each of the services on service network.  

To do this, network orchestrator (i) generates Service configuration information that includes 

network device configuration commands/instructions and associated configuration parameters 

for the service components to be configured, and (ii) pushes the Service configuration 

information to network devices in network device configuration information, as mentioned 

above. Network orchestrator also provides the Service configuration information to assurance 

orchestrator in service configuration information, as mentioned above.  

Network orchestrator stores in a service configuration database (DB) a definition of each of the 

services that the network service orchestrator configures on service network. In an example, 

service configuration database may be hosted on network orchestrator.  
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Figure 36 Example of service configuration database 

With reference to Figure 36 Example of service configuration database, there is an illustration 

of an example of service configuration database. In the example of Figure 36 Example of 

service configuration database, service configuration database stores definitions (1) and (2) 

(also referred to as “service definitions”) for service 1 and service 2, from Figure 35. Each 

definition (i) may be similar to or the same as the definition of a service described above. Each 

definition (i) may include a service type (i) and a service instance (i) for the service to which 

the service definition pertains, and configuration information 158(i) that describes how that 

service is actually implemented/configured on service network. More specifically, 

configuration information 158(i) for a given service includes, for each of the service 

components of the given service, a respective Service identifier (ID) (e.g., Service ID1-1, 

Service ID1-2, and so on), and respective Service configuration information (e.g., specific 

operations and/or intent-based network device configuration objects used to configure that 

Service on a network device). Network orchestrator may use a service type, a service instance, 

and a Service identifier of a Service as indexes into service configuration database 150 to search 

for and find respective Service configuration information for the service component.  

Some sample service component configurations have been provided in the Appendix B – 

Examples of service component configuration. 
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5.5 Assurance Orchestrator 

Returning to Figure 35, assurance orchestrator operates as a central controller for assurance of 

the services deployed on service network. That is, assurance orchestrator employs “service 

awareness” to control assurance for the services deployed on service network. In this role, 

assurance orchestrator performs several main operations. First, assurance orchestrator 

generates, from the service type and the service instance in the definition of each service 

defined in service configuration information, a unique service tag for the service. In an 

example, the service tag for a given service may be a tuple that includes the service type and 

the service instance from the definition of the given service. The service tag may be used to 

distinguish the service to which it pertains from all other services.  

Second, assurance orchestrator decomposes the definition of each service defined in service 

configuration information into a respective Service dependency graph of service components 

and dependencies/interdependencies between the service components that collectively 

(actually) implement the service on a network. That is, assurance orchestrator dissects each 

service into the respective Service dependency graph. The Service dependency graph includes 

(service component) nodes that represent the service components and links between the nodes 

that represent the dependencies between the service components. The Service dependency 

graph may include the service type and the service instance (e.g., the service tag) for the service 

represented by the Service dependency graph. To assist with the aforementioned 

decomposition, assurance orchestrator may poll or query various network devices identified in 

the definition to discover service components, such as packet routing protocols, implemented 

on the network devices and that are to be incorporated into the Service dependency graph.  

In a non-limiting embodiment, the Service dependency graph includes a Service dependency 

tree having a root node that represents the services, and nodes that represent the service 

components and that have parent-child relationships (i.e., the dependencies) between the 

nodes/service components that lead back to the root node. An example of a Service dependency 

tree is described below. Other types of graph constructs/data structures may be used to 

represent the Service dependency graph, as would be appreciated by one of ordinary skill in 

the art having read the present specification.  

Third, assurance orchestrator derives from each Service dependency graph a respective set of 

heuristic packages for the service described by the Service dependency graph. The heuristic 
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packages (i) specify/define service-related metrics (i.e., Service metrics) to be 

monitored/recorded and reported by the service components, and that are indicative of health 

statuses/states of the service components, i.e., that are indicators of health states of the service 

components, (ii) include rules to determine/compute key performance (KPIs) including the 

health states of the service components (also referred to individually as a “Service health state,” 

and collectively as “Service health states”) based on the Service metrics as recorded and 

reported, and (iii) which sensor paths (i.e., telemetry paths) are to be enabled for reporting 

telemetry, i.e., to report the Service metrics recorded by the service components from the 

service components. The heuristic packages may also include or be associated with the service 

tag for the service to which the heuristic packages correspond. Assurance orchestrator employs 

the heuristic packages to configure Assurance agents to monitor the service components of the 

services, and to compute the health states of the service components based on the monitoring, 

as described below.  

Fourth, assurance orchestrator provides to Assurance agents assurance agent configuration 

information including the heuristic packages and their corresponding service tags in association 

with each other. Assurance orchestrator may employ NETCONF to push the heuristic packages 

as YANG objects to Assurance agents. Assurance orchestrator may also provide the Service 

dependency graphs to assurance collectors in assurance collector configuration information. 

Benefits of assurance orchestrator: 

- Centralized management: The assurance orchestrator allows for centralized management and 

control of multiple assurance agents. It provides a single point of control for monitoring and 

controlling the network assurance solution. 

- Simplified deployment and configuration: The orchestrator can simplify the deployment and 

configuration process for multiple assurance agents. It ensures consistent configurations across 

the agents, reducing the chances of errors and misconfigurations. 

- Scalability: The orchestrator enables easy scalability by allowing the addition or removal of 

assurance agents as per the network requirements. It can dynamically allocate resources to 

different agents based on the network conditions. 
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- Improved efficiency: With an orchestrator, the coordination between different assurance 

agents can be optimized, resulting in improved efficiency and faster problem resolution. 

- Enhanced visibility and analytics: The orchestrator can collect and consolidate data from 

multiple assurance agents, providing a holistic view of the network. It enables advanced 

analytics and reporting, helping in identifying patterns, trends, and potential issues. 

 

Drawbacks of assurance orchestrator: 

- Single point of failure: Since the orchestrator is responsible for managing multiple assurance 

agents, any failure or downtime of the orchestrator can impact the entire network assurance 

solution. 

- Increased complexity: Implementing an orchestrator adds complexity to the network 

assurance solution. It requires additional setup, configuration, and maintenance efforts. 

- Performance overhead: The orchestration process can introduce some performance overhead 

due to the additional processing required by the orchestrator. This overhead can impact the 

real-time responsiveness of the assurance agents. 

  

5.6 Assurance Agents  

Assurance agents act as intermediary assurance devices between network devices, assurance 

collectors, and assurance orchestrator. More specifically, Assurance agents translate assurance 

agent configuration information, including the heuristic packages, to telemetry configuration 

information, and provide the telemetry configuration information to network devices, to 

configure the network devices to record and report the Service metrics mentioned above. For 

example, Assurance agents generate monitoring objects that define the Service metrics to be 

recorded and reported by the service components and provide the monitoring objects to the 

service components in telemetry configuration information, to configure the service 

components to record and report the Service metrics. Assurance agents may maintain 

associations/bindings or mappings between the heuristic packages, the monitoring objects 
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generated by the heuristic packages, and the services (e.g., service tags) to which the heuristic 

packages and the monitoring objects pertain. Assurance agents may employ NETCONF (or 

RESTCONF), for example, to push YANG monitoring objects to network devices.  

In response to receiving the monitoring objects in telemetry configuration information, network 

devices record the Service metrics specified in the monitoring objects and report the Service 

metrics (labelled as “metrics” in Figure 35) back to Assurance agents in telemetry streams. In 

an example, the telemetry streams carry Service metrics in telemetry objects corresponding to 

the monitoring objects. In turn, Assurance agents tag Service metrics with service tags to 

indicate which of the Service metrics are associated with/belong to which of the services, to 

produce service-tagged Service metrics (labelled “tagged metrics” in Figure 35). In other 

words, Assurance agents apply the service tags to the Service metrics for the services to which 

the service tags belong. In the example in which Service metrics are carried in telemetry 

objects, Assurance agents tag the telemetry objects with the service tag to produce service-

tagged telemetry objects). Thus, the service tags provide service context to the Service metrics.  

In one embodiment, Assurance agents do not perform any specific analysis on the Service 

metrics, leaving such analysis to assurance collectors and/or assurance orchestrator. In another 

embodiment, Assurance agents perform analysis on Service metrics as instructed by the 

heuristic packages, to produce health states of the service components (e.g., KPIs used as 

indicators of health states of the service components) to which the Service metrics pertain. 

Assurance agents provide to assurance collectors service-tagged Service metrics, along with 

health states of the service components when computed by the assurance agents. For example, 

Assurance agents provide flows of service-tagged Service metrics tagged with service tag 1 to 

indicate service 1 to service 1 collector, and service-tagged Service metrics tagged with service 

tag 2 to indicate service 2 to service 2 collector. Assurance agents may also provide service-

tagged Service metrics to assurance orchestrator.  

Benefits of assurance agent(s): 

- Distributed monitoring: Assurance agents can be deployed at various points in the network, 

allowing for distributed monitoring and ensuring comprehensive coverage. They can monitor 

specific network elements or segments in real-time. 
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- Proactive issue detection: Assurance agents continuously monitor the network and can 

proactively detect and alert about any potential issues or anomalies. This helps in identifying 

and resolving problems before they impact the network performance. 

- Fast and localized problem resolution: As agents are deployed closer to the network elements 

they monitor, they can quickly identify the root cause of issues and facilitate localized problem 

resolution. This reduces the troubleshooting time and minimizes the impact on the overall 

network. 

- Resource optimization: Assurance agents can optimize the utilization of network resources 

by monitoring and analyzing the traffic patterns. They can provide insights into resource usage, 

helping in optimizing network capacity and improving efficiency. 

 

Drawbacks of assurance agent(s): 

- Limited scope: Each assurance agent can monitor only a specific subset of the network. This 

can result in blind spots where certain network elements or segments might not be monitored. 

- Scalability challenges: Adding more assurance agents to cover a larger network can introduce 

scalability challenges. Coordinating and managing a large number of agents might become 

complex and resource-intensive. 

- Higher deployment and maintenance costs: Each assurance agent requires separate 

deployment, configuration, and maintenance efforts. Managing multiple agents can increase 

the overall cost of the network assurance solution. 

5.7 Assurance Collectors 

Assurance collectors receive/collect service-tagged Service metrics, and health states of the 

service components when available, from Assurance agents for various services, as uniquely 

identified by the service tags with which the Service metrics are tagged.  Assurance collectors 

associate service-tagged Service metrics with respective ones of the various services based on 

the service tags. Assurance collectors determine a respective overall health state of each service 

based on the health states of the service components of the service, as indicated by the service-
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tagged Service metrics and their KPIs/health states. When Assurance agents do not provide to 

assurance collectors health states of the service components along with service-tagged Service 

metrics, assurance collectors compute the health states of the service components from the 

service-tagged Service metrics as instructed by corresponding ones of the heuristic packages 

(e.g., by the heuristic packages tagged with the same service tag as the Service metrics).  

5.8 NETCONF/YANG (Object-Based) Implementation in Assurance System  

 

Figure 37 Block diagram of assurance orchestrator 

With reference to Figure 37 Block diagram of assurance orchestrator, there is a block diagram 

that shows additional details of assurance orchestrator, assurance collectors, a representative 

assurance agent (e.g., assurance agent (1)), and a representative network device (e.g., network 

device (1)) from Figure 35. Assurance collector includes pipeline analytics to analyse service- 

tagged Service metrics including the KPIs (if any) from Assurance agents, to determine health 

states of the service components and then service health states based on the health states of the 

service components.  

Assurance agent (1) includes a NETCONF agent, a telemetry consumer, a telemetry producer, 

and plugins. Plugins provide various functional capabilities to assurance agent (1) to assist with 

tasks/operations performed by the assurance agent, including communicating with entities 
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external to the assurance agent. Examples of plugins include, but are not limited to, one or more 

of the following: a command line interface (CLI) plugin P1; a Simple Network Management 

Protocol (SNMP) plugin P2; an IP service- level agreement (SLA) plugin P3; a NetFlow 

protocol plugin to communicate with NetFlow- enabled network devices P4; an in-situ 

operations, administration, and maintenance (IOAM) plugin P5 to provide real-time telemetry 

of individual data packets and flows; application programming interfaces (APIs) P6; and Layer 

Independent OAM Management in the Multi- Layer Environment (LIME) P7.  

NETCONF agent digests heuristic packages sent by assurance orchestrator. NETCONF agent 

generates monitoring objects (in telemetry configuration information) as network device 

configuration YANG objects based on the heuristic packages and pushes the monitoring 

objects to network device (1) to configure the network device for model-driven telemetry 

(MDT) used to report recorded Service metrics. NETCONF agent may include in the 

monitoring objects respective identifiers of the service components to which the monitoring 

objects pertain (e.g., an identifier of network device (1), since the network device is a service 

component), and the service tag for the service to which the Service pertains. Telemetry 

consumer 208 receives from network device (1) Service metrics recorded in (model-driven) 

telemetry objects corresponding to the monitoring objects. The telemetry objects include the 

Service metrics, the identifier of the Service (e.g., the identifier of network device (1)) to which 

the Service metrics pertain and may also include the service tag copied from the corresponding 

monitoring object. Telemetry consumer passes the (received) telemetry objects to telemetry 

producer. Telemetry producer tags the (received) telemetry objects with service tags, as 

mentioned above, and sends resulting service-tagged telemetry objects (representing service-

tagged Service metrics) to assurance pipeline analytics of assurance collectors, and optionally 

to assurance orchestrator. Telemetry producer may also copy into the service-tagged telemetry 

objects any KPIs/health states of service components computed by assurance agent (1) in the 

embodiment in which the assurance agent computes that information.  

Network device (1) includes a NETCONF agent and an MDT producer. NETCONF agent 

receives network device configuration information from network orchestrator and configures 

service component(s) on network device (1) based on the network device configuration 

information. NETCONF agent also receives the monitoring objects from NETCONF agent, 

and configures the network device, including MDT producer, based on the monitoring objects. 

MDT producer, records its local Service metrics and its Service identifier in telemetry objects 
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as instructed by the monitoring objects, and may optionally include the corresponding service 

tags in the telemetry objects, and reports the telemetry objects to telemetry consumer.  

 

ID Role 

102 Network Orchestrator 

104 Service Operator 

106 Assurance Orchestrator 

108 Assurance Agent 

110 Assurance Collectors 

112 Network Device 

113 Service Network 

206 Netconf Agent 

208 Telemetry Consumer 

210 Telemetry Producer 

211 Plugins 

Table 5 Summary of the component ids in assurance orchestrator block diagram 
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5.9 Distributed Assurance System 

 

Figure 38 Distributed arrangement of assurance agents 

With reference to Figure 38 there is a block diagram that shows an example of a distributed 

arrangement of Assurance agents and network devices of service assurance system. In the 

example of Figure 38, assurance agent (1) is co-located with network devices(1)-(3) at a first 

geographical location and assurance agent (2) is co-located with network devices(4)-(6) at a 

second geographical location separated from the first geographical location. Service 1 (see 

Figure 35) may be implemented on network devices(1)-(3), and Service 2 may be implemented 

on network devices(4)-(6). Geographically distributed Assurance agents(1) and (2) report their 

service-tagged telemetry objects to centralized assurance agent (3), which forwards the service-

tagged Service metrics to assurance collector 110.  

Examples of service configuration information for a service instance “xyz” (e.g., for a customer 

xyz) of service type L2 virtual private network (VPN) L2VPN, which is a peer- to-peer (p2p) 

connectivity type (i.e., L2VPN-p2p), are now described with reference to Figures. 3-5. In 

Figure 12, the example service configuration information is represented as eXtensible Markup 

Language (XML) encoding of YANG models.  
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5.10 Service Configuration Information/Definition Examples  

With reference to Figure 36, there is an illustration of first example service configuration 

information for a first network device and an interface of service instance xyz. More 

specifically, lines introduce a “GigabitEthernet” interface for/on a first provider edge (PE) 

network device “pe-1” (e.g., a router) for service instance xyz of type “l2vpn” indicated at line. 

As indicated at lines 302, first network device pe-1 is running an XR operating system, by 

Cisco. Interface configuration line provides an identifier “0/0/0/3” for the GigabitEthernet 

interface. There is also definition of a maximum transmission unit (MTU) for the interface. 

Groups of lines define parameters for IPv4 and IPv6 addresses configured on the interface.  

Second example service configuration information is present for a second network device of 

service instance xyz. More specifically, we’re introducing a second PE network device “pe-2” 

(e.g., a router) for service instance xyz of type “l2vpn”. We also define a QoS classification, as 

default, for traffic handled by the network device pe-2. Alternatively, or additionally, service 

configuration information may define a Quality-of-Experience (QoE) classification.  

We  also introduce third example service configuration information for a first cross-connect 

(“xconnect”) associated with second network device pe-2 for service instance xyz. An 

“xconnect” is a L2 pseudowire (L2 PW) used to create L2 VPNs (L2VPNs). Examples of 

xconnects are provided at [50], authored by C. Pignataro. In the present context of service 

assurance, “xconnect” refers to a syntax of a command used to realize the pseudowire in, for 

example, a Cisco internetwork operating system (IOS)-XR/IOS-XE operating system.  

Second network device pe-2 provides with service instance xyz. We define the first xconnect, 

which is associated with a GigabitEthernet subinterface 0/0/0/2.600 with an IPv4 address 

192.168.0.17.  
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5.11 Service Dependency Graph Example  

 

Figure 39 Service dependency graph 

With reference to Figure 39, there is an illustration of an example Service dependency graph 

in the form of a Service dependency tree for service L2VPN-p2p, meaning an L2 VPN for a 

peer-to-peer connection. Service dependency tree (or “tree” for short) includes a service node 

A-1 at the highest level of the tree. Service node A-1 identifies/represents the service by a 

service tag tuple that includes service type and service instance, e.g., tuple <service type, 

service instance>. In the example of Figure 39, service node A-1 represents service <L2VPN-

p2p, xyz>. Lower levels of tree are populated with Service nodes (shown as boxes) that 

identify/represent respective service components of the service <L2VPN-p2p, xyz>, and that 

connect back to service node A-1 through Service dependencies or parent-child links (shown 

as lines connecting boxes that depend on each other). Each of the Service nodes includes an 

identifier (e.g., a plain text identifier, as depicted in Figure 39) of the Service represented by 

that Service nodes. In the example of Figure 39, the lower levels of tree include:  

a) second level that includes Service nodes B-1 and B-2 for xconnect service components 

implemented on network devices pe-1 and sain-pe2.  

b) A third level that includes a Service node C-1 for an L3 network connectivity Service 

with components on network devices pe-1 and sain-pe2.  
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c) A fourth level that includes Service nodes D-1 and D-2 for routing protocol service 

components (e.g., Intermediate System to Intermediate System (IS-IS)) on network 

devices pe-1 and pe-2.  

d) A fifth level that includes Service nodes E-1 and E-2 for subinterface service 

components on network devices pe-1 and pe-2.  

e) A sixth level that includes Service nodes F-1 - F-8 for interface service components on 

network devices pe-1 or pe-2, as indicated.  

f) A seventh level that includes Service nodes G-1 – G3 for network devices pe-1 and pe-

2 as service components as indicated.  

In one example branch of Service dependency tree, service <L2VPN-p2p, xyz> depends on the 

Service of Service node B-1, which depends on the Service of Service node E-1, which depends 

on the Service of Service node F-2, and so on down the levels of the tree. As indicated by the 

Service links, a given Service may depend on multiple other service components. Traversing 

the levels of tree downward from the highest level to the lowest level of the tree, the service 

components of service <L2VPN-p2p, xyz> include network xconnects on network devices 

(e.g., on pe-1 and pe-2), L3 network connectivity on the network devices (L2 network 

connectivity on the network devices may also be a service component), routing protocols on 

the network devices, interfaces of the network devices, subinterfaces of the network devices, 

and the network devices themselves.  

Generally, the service components include: xconnects on network devices; L1 (e.g., optical), 

L2, and L3 network connectivity on the network devices; routing protocols on the network 

devices; interfaces of the network devices; subinterfaces of the network devices; 

communication behaviour of the interfaces and the subinterfaces; the network devices 

themselves and operations performed on/by the network devices. Service components also 

include logical network functions and groupings of logical and physical elements, such as: 

ECMP/ECMP groups of network devices; network tunnels; link protection functions executing 

in a network; network device protection functions executing in a network; and logical overlays 

on a physical network.  

Logical overlays may include link aggregation for a link aggregation group (LAG); Virtual 

Extensible (Vx) LAN (VxLAN); VxLAN-Generic Protocol Extension (GPE); Generic Routing 

Encapsulation (GRE); service function chaining (SFC) functionality including Network 

Service Header (NSH) implementation; and Multiprotocol Label Switching (MPLS); for 
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example. The service components may also include applications such as application 

categorization as per RFC 6759. The service components may also include one or more 

multicast subnets on network devices. 

5.12 Heuristic Packages 

With reference to the above Figure 39 Service dependency graph , there is an illustration of an 

example generalized heuristic  package generated based on a Service dependency graph. 

Heuristic package includes a header that identifies a Service of the Service dependency graph 

that is targeted by the heuristic package, and an overall function for which the heuristic package 

is to be used. For example, header may identify any specific one of xconnect, L3 connectivity, 

routing protocol, subinterface, interface, or network device, and the header may specify that 

the heuristic package is to be used to determine a health of the indicated service component.  

Heuristic package may include arguments, which indicate various conditions under which the 

heuristic package is to be used, such as a time duration over which the Service is to be 

monitored. Heuristic package also includes expressions, which include measure and compute. 

Measure specifies Service metrics of the Service that are to be recorded. For example, for a 

network device service component, the Service metrics may include central processor unit 

(CPU) usage, free memory, temperature, power, and the like. For an interface of the network 

device, the Service metrics may include traffic rate, and so on. Compute provides rules and/or 

instructions to compute KPIs based on the Service metrics, and instructions to determine a 

health state for the service component, such as thresholds against which computed values are 

to be compared to determine the health state.  

Compute may include rules to compute a health state that is binary, i.e., a health state that 

indicates either a passing health state when the Service is operating properly (e.g., meets a 

desired performance level) or a failing health state (which is a degraded health state) when the 

Service is not operating properly (e.g., does not meet the desired performance level). 

Alternatively, the rules may compute a health state that is graded, i.e., a health state that 

indicates a health state within a range of possible health states from passing to failing, e.g., 

including a passing health state, a failing health state, and a degraded health state that is not a 

passing health state or a failing health state (in this case, degraded means between passing and 

failing). In an example, the health states may include the following computed health state 

values: failing = 0, 0 < degraded < 1, passing = 1.  
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With reference to Figure 32 and Figure 39, there is an illustration of an example Heuristic 

package for a network device service component. Heuristic package includes header and 

arguments. Heuristic package includes compute to compute health indicators (KPIs) for a flash 

disk, flash, a hard disk, and storage, generally. For example, compute includes rules to set the 

health state to indicate a degraded health state if memory of a flash disk is full, and further rules 

to evaluate the following Boolean operation: flash_disk_free/flash_disk_size > 0.05, and so on. 

Heuristic package includes measure that lists power metrics to be measured (e.g., power 

demand), and compute to compute health states based on the power metrics. Heuristic package 

also includes compute to compute an overall health state (KPI) for the network device based 

on values computed in prior computes. That is, compute defines a rule expression to evaluate 

the overall health state of the Service based on the Service metrics and the computed 

(intermediate) values mentioned above.  

With reference to Figure 39, there is an illustration of an example heuristic package for a 

network protocol (e.g., IS-IS) Service implemented on a network device. Heuristic package 

includes header and arguments. Heuristic package includes measure to measure metrics 

associated with IS-IS, including to determine lists of valid IPv4 and IPv6 IS-IS routes on the 

network device (e.g., from a forwarding or routing table in the network device). Heuristic 

package includes compute to compute KPIs that include various counts and stabilities of the 

IPv4 and the IPv6 IS-IS routes based on the metrics from measure, and to compute an overall 

health state, which is also a KPI, for IS-IS based on previously computed values/KPIs.  

5.13 Assurance Collector Operations and User Interfaces 

Further operations of assurance collectors are now described in connection with Figure 39, and 

with reference again to Figure 35. As mentioned above, assurance collectors receive/collect 

service-tagged Service metrics from Assurance agents for various services, Service 

dependency graphs for the various services, and heuristic packages for the various services. 

The Service dependency graphs each includes the service tag for the service to which the 

Service dependency graph pertains. The heuristic packages each includes the service tag to 

which the heuristic package pertains. Assurance collectors associate all service-tagged Service 

metrics (and health states of service components when available) tagged with a given service 

tag to the Service dependency graphs that includes the given service tag, and to the heuristic 

packages that include the given service tag. In other words, assurance collectors associate all 
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service-tagged metrics (and health states of service components), Service dependency graphs, 

and heuristic packages that have a matching (i.e., the same) service tag to each other and to the 

service identified by that service tag.  

For each service, assurance collectors may populate the Service dependency graph with 

corresponding health states of the service components of the Service dependency graph as 

represented by the service-tagged Service metrics. For example, assurance collectors may 

populate the nodes of a Service dependency tree for the service with the health states of the 

service components represented by the nodes. In an embodiment in which Assurance agents 

provide the health states of the service components along with the service-tagged Service 

metrics to assurance collectors, the assurance collectors may populate the Service dependency 

tree with the provided health states. Alternatively, assurance collector 110 computes the health 

states of the service components from the corresponding service-tagged metrics in accordance 

with the corresponding heuristic packages, and then populates the Service dependency tree 

with the health states as computed.  

The resulting Service dependency graph, populated with health states of the service 

components, may be generated for display to an administrator in a graph form (e.g., tree) or 

otherwise, e.g., as a list of service components for the service. Also, for each service, assurance 

collectors may determine an overall health state of the service (also referred to simply as a 

“health state” of the service) based on the health states of the service components of the service. 

For example, if all of the service components have health states that indicate passing health 

states, assurance collectors may set the overall health state to indicate a passing overall health 

state. Alternatively, if the health states of one or more of the service components indicate failing 

health states, assurance collectors may set the overall health state to indicate a failing overall 

health state.  

5.14 Monitoring and Service-Tagged Telemetry Objects  

Monitoring object includes a Service identifier (ID) and configuration information. 

Configuration information may include YANG network device configuration information, for 

example, and identifies Service metrics to be recorded and reported, in accordance with a 

heuristic package. Configuration information may include one or more configuration code 

snippets to configure a service component, e.g., a network device, to perform the 

recording/reporting of the Service metrics. For example, a heuristic package with instructions 
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to monitor (memory) “space available” for MPLS in a network device running IOS-XR may 

result in the following command line interface (CLI) code snippet in a monitoring object 

destined for the network device:  

CLIMetric: 

Command: show resource detail, regex_type: textfam, 

regex: ios_xr/show_oef_rsource_detail.txt,  

key: “space available” filter:  

“node”  

“mpls” 

post_processing: convert2byte (GetTuple (value, 0), 

GetTuple (value, 1)  

 

Alternatively, the monitoring object may include a YANG object that performs the same 

function as the CLI code snippet. Alternative, the monitoring object may include binary 

information such as a packet.  

Monitoring object may also include a service tag for the service to which the Service identified 

by the Service ID pertains.  

With reference to Figure 36, there is an illustration of an example service-tagged telemetry 

object. Service-tagged telemetry object includes a Service identifier, a service tag, and 

information. Information includes recorded/reported Service metrics, computed values, and 

KPIs (including a health state of a service component) in accordance with a heuristic package 

from which a corresponding monitoring object was generated.  

5.15 Service Assurance Operational Flow 

With reference to Figure 37, there is a flowchart of an example method of performing assurance 

for a service enabled on a network. Assurance method may be performed by a system including 
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one or more entities to provide assurance for the service on the network. The one or more 

entities may include one or more of assurance orchestrator, Assurance agents, and assurance 

collectors.  

Within the assurance flow, a definition of a configuration of a service is received, e.g., by 

assurance orchestrator. The definition includes a service type, a service instance, and 

configuration information used to enable or implement the service in the network.  

Next, a service tag is generated from the service type and the service instance. For example, 

assurance orchestrator generates the service tag. The service tag identifies the specific 

instantiation of the service in the network, and is unique so as to distinguish the service from 

other services. The service tag may be a tuple that includes the service type and the server 

instance.  

Following step, based on the configuration information of the definition, the service is 

decomposed into a graph of service components and dependencies between the service 

components that collectively actually implement the service in the network. The service tag is 

applied to the Service dependency graph. For example, assurance orchestrator decomposes the 

service into the Service dependency graph, and may provide the Service dependency graph to 

assurance collectors.  

The service components are configured to record and report Service metrics indicative of health 

states of the service components (e.g., a respective health state of each of the service 

components) based on the Service dependency graph. The health states may respectively 

indicate either a passing health state or a failing health state. Alternatively, the health states 

may respectively indicate a health state within a range of health states including a passing 

health state, a failing health state, and a degraded health state that is not a passing health state 

or a failing health state. Operation may include the following further operations:  

a) Based on the Service dependency graph, assurance orchestrator generates heuristic 

packages, typically one per service component, that specify the Service metrics that the 

service components are to record and report, and include rules to compute the health 

states of the service components based on the Service metrics. Assurance orchestrator 

provides to Assurance agents the heuristic packages and the service tag.  
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b) Responsive to the heuristic packages, Assurance agents generate from the heuristic 

packages monitoring objects that define the Service metrics that the service components 

are to record and report, and provide the monitoring objects to the service components 

to configure the service components to record and report the Service metrics.  

Responsive to the configuring of operation, the Service metrics are obtained from the service 

components. For example, responsive to the monitoring objects, the service components record 

and then report to Assurance agents the Service metrics in telemetry objects corresponding to 

the monitoring objects.  

Sservice tag is applied to the Service metrics to produce service-tagged Service metrics. For 

example, Assurance agents receive the telemetry objects, insert the service tag into the 

telemetry objects, and then send the (resulting) service-tagged telemetry objects to assurance 

collectors. Optionally, Assurance agents also analyse the Service metrics to compute health 

states of the service components in accordance with the rules in the heuristic packages, and 

insert the health states into the service-tagged telemetry objects before sending them to 

assurance collectors, which receive the service-tagged telemetry objects.  

The service-tagged Service metrics are analysed to determine a health state of the service. For 

example, assurance collectors (i) associate the Service metrics in the service-tagged telemetry 

objects with the service based of the service-tagged telemetry objects, (ii) analyse the Service 

metrics to compute individual health states of the service components (unless the health states 

are included with the service-tagged telemetry objects), e.g., one health state per service 

component, based on the rules in the heuristic packages, and (iii) determine an overall health 

state of the service based on the individual health states of the service components, which were 

associated with the service based on the service tags at (i). For example, if all of the health 

states of the service components indicate passing health states, the overall health state may be 

set to indicate a passing overall health state. Alternatively, if one or more of the health states 

of the service components indicate failing health states, the overall health state may be set to 

indicate a failing overall health state. Alternatively, if one or more of the health states of the 

service components indicate degraded (not failing or passing) health states, and there are no 

failing health states, the overall health state may be set to indicate a degraded (not failing or 

passing) overall health state.  
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In addition, assurance collectors populate indications of the service components in the Service 

dependency graph with their respective health states, and generate for display the populated 

Service dependency graph to provide visual feedback. In various embodiments, operations 

performed by assurance collectors as described above may be shared between the assurance 

collectors and assurance orchestrator. In another embodiment in which assurance collectors are 

omitted, Assurance agents send service-tagged Service metrics (and health states) directly to 

assurance orchestrator, and the assurance orchestrator performs all of the operations performed 

by the assurance collectors as described above. That is, assurance orchestrator operates as the 

assurance orchestrator and assurance collectors.  

In an environment that includes multiple services, assurance method is performed for each 

service, by the one or more entities, to produce, for each service, respectively, a unique service 

tag, a Service dependency graph, heuristic packages, monitoring objects, telemetry objects, 

tagged telemetry objects, health states of service components, and an overall service health 

state. The one or more entities use the unique service tags to distinguish between the services 

and the aforementioned information generated for the services.  

5.16 Closed Loop Automation for Intent-based Networking  

Closed loop automation for intent-based networking is now described. Closed loop automation 

for intent-based networking discovers an overall health state of a service comprising a 

collection of service components based on health states of the service components, using 

techniques described above, for example. If the closed loop automation discovers that the 

overall health state of the service (also referred to as the “service health state”) indicates a 

failing overall health state, the closed loop automation reconfigures the service components so 

that the overall health state indicates a passing overall health state. In other words, the closed 

loop automation provides feedback to “close the loop” in service assurance system to restore 

the overall health state of the service to an acceptable, passing overall health state.  
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Figure 40 Service Assurance system adapted to perform the closed loop automation. 

 With reference to Figure 40, there is shown a block diagram of service assurance system 

adapted to perform the closed loop automation. Figure 40 is similar to Figure 35, except that 

Figure 40 shows additional flows used for the closed loop automation. For closed loop 

automation, assurance orchestrator determines an overall health state of each of the services 

implemented on service network, and then provides to network orchestrator service assurance 

messages (also referred to as “flow”). Service assurance messages include the overall health 

states for the services as determined by assurance orchestrator, and may also include health 

states of service components for each of the services. Service assurance messages may also 

include, for each of the services having an overall health state that indicates a failing (or 

degraded) overall health state, a corresponding request to reconfigure service components of 

that service, so as to return the overall health state to a passing overall health state. The request 

to reconfigure may also be referred to as a “Service reconfiguration request.”  

  

108

108(1)

Service 

Configuration DB 
(150)

Network Orchestrator 

(NO) (102)

Assurance 
Orchestrator 

(106)

Service 1 
Collector

(110)

Network 

Device
112(1)

Service 
Network 

113

Service 2 
Collector

(110)

Telemetry stream
NetConf

112(2) 112(N)

Assurance Agent 
Configuration

118 
Telemetry 

Configuration
120 

Assurance Agent 
Configuration

119 

Assurance 
Agents

(108(M))

KPIs /TAGGED 
Metrics

124

. . .

Service 2 
(Service Tag 2)Service 1 

(Service Tag 1)

METRICS
122

Device Configuration
114

Services 

Configuration
116

104

Service 1 Operators 

Service 2 Operators 
CONFIGURE 

(Instructions, Assurance Requests) GET ASSURANCE 
(Requests)

100

Device Reconfiguration
1504

Service 

Feedback 
Messages

1502



100 

 

 

ID Role 

100 Service Assurance System 

102 Network Orchestrator 

104 Service Operator 

106 Assurance Orchestrator 

108 Assurance Agent 

110 Service Collector 

112 Network Device 

113 Service Network 

Table 6 Device ID summary table 

Responsive to each request to reconfigure service components of a service received in service 

assurance messages, network orchestrator reconfigures the service components of the service, 

as identified in the request. To reconfigure the service components, network orchestrator 

provides Service reconfiguration information (also referred to as “flow”) to the network 

devices among network devices that host/implement the service components to be 

reconfigured.  

Service reconfiguration information may be formatted similarly to network device 

configuration information, and may be provided to network devices similarly to the way in 

which the network device configuration information is provided to the network devices.  

We also need to mention the flowchart of an example assurance method of closed loop 

automation for intent-based networking performed in service assurance system, as depicted in 

Figure 40, for example. Assurance method incorporates various operations described above. 

The terms “health state of a service component” and “Service health state” are synonymous 

and interchangeable.  

Network orchestrator configures a service as a collection of service components on network 

devices of a network, stores a definition of the service in service configuration database Figure 

36, and provides the definition to assurance orchestrator. The definition includes a service type, 

a service instance, and configuration information, as described above.  
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Assurance orchestrator generates a service tag based on the definition of the service, and 

decomposes the definition into a Service dependency graph that indicates the service 

components and dependencies between the service components that collectively implement the 

service.  

Based on the Service dependency graph, assurance orchestrator and Assurance agents, 

collectively, configure the service components to record and report Service metrics indicative 

of health states of the service components.  

Assurance agents and assurance orchestrator, collectively, obtain the Service metrics from the 

service components, tag the Service metrics with the service tag, and determine the health states 

of the service components based on the Service metrics.  

Assurance orchestrator determines an overall health state of the service based on the health 

states of the service components. In an example, assurance orchestrator populates Service 

nodes of the Service dependency graph with data representing respective ones of the health 

states of the service components, and searches the Service nodes for any of the health states of 

the service components that indicate a failing health state. Assurance orchestrator may generate 

for display the Service dependency graph populated with the data representing the health states 

of the service components, as shown in Figure 39, for example.  

If the overall health state indicates a failing overall health state, assurance orchestrator 

identifies one or more of the service components as the service components that are responsible 

for the failing overall health state based on the health states of the service components. 

Assurance orchestrator generates one or more service assurance messages that include (i) the 

identifier of the service (e.g., the service tag), (ii) the overall health state that indicates the 

failing overall health state, (iii) identifiers and health states of at least the one or more service 

components that are responsible for the failing overall health state, and (iv) a request to 

reconfigure the one or more of the service components. The one or more service assurance 

messages may report health states of all of the service components, not just those of the one or 

more service components responsible for the failing overall health state. Assurance orchestrator 

provides the one or more service assurance messages to network orchestrator, as indicated in 

flow of Figure 40.  
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Responsive to the one or more service assurance messages, including the request to reconfigure 

the one or more service components, network orchestrator reconfigures the one or more service 

components. To do this, network orchestrator (i) uses the identifier of the service and the 

identifiers of the one or more service components from the one or service assurance messages 

as indexes to access/retrieve the Service configuration information for the one or more service 

components from the service definition stored in service configuration database Figure 36, (ii) 

generates Service reconfiguration information based on the Service configuration information 

retrieved from the service definition, and (iii) provides the Service reconfiguration information 

to network devices among network devices that host/implement the one or more service 

components, as indicated in flow of Figure 40. In response to the Service reconfiguration 

information, network devices reconfigure the one or more service components to implement 

the requested Service reconfiguration, thus closing the loop for the closed loop automation 

process. The entire closed loop automation is performed without manual intervention.  

Network orchestrator may reconfigure the one or more service components in many different 

ways to improve the overall health state of the service, e.g., to change the overall health state 

from failing to passing. In one example, network orchestrator may simply repeat the operations 

used to configure the one or more service components as performed in the flow, in which case 

the Service reconfiguration information may include the same intent-based network device 

configuration objects that were used to initially configure the one or more service components. 

For example, network orchestrator may repeat the operations described above in connection 

with Figure 36 Example of service configuration database to configure one or more of an L1 

connection/interface, an L2 connection/interface, an L3 connection/interface, a packet routing 

protocol, ECMP, traffic shaping, and so on, as identified in the request to reconfigure.  

In another example, network orchestrator may reboot the one or more service components. To 

reboot a service component, network orchestrator may first validate permissions and user 

authorizations for the Service as provided in the service definition, force a process that 

implements the Service to enter a privileged mode, and then reboot the process or an operating 

system that hosts the process. Alternatively, network orchestrator may implement a process to 

perform a network device repair or link repair for critical network devices and/or links 

associated with the one or more service components.  

In yet another example, network orchestrator may not completely reconfigure the one or more 

service components, but rather may adjust/modify selected operational parameters of the one 
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or more service components (from their initially configured values) to improve their 

operational performance. This constitutes only a partial or limited reconfiguring of the one or 

more service components. For example, for the one or more service components, network 

orchestrator may:  

a) Adjust routing metrics, such as cost routing.  

b) Modify L2 QoS, MTU, or adjust storm control policies (L2).  

c) Change optical transmission power or hardcode interface speed (L1).  

d) Adjust L3 QoS or MTU (L3).  

e) Change ECMP hashing inputs (e.g., use destination IP instead of source IP).  

f) Perform traffic shaping by modifying QoS to assure a desired level of traffic 

throughput.  

g) Adjust interface traffic throughput (e.g., bandwidth).  

In even further examples, service assurance system may reprogram the level of detail and 

frequency of telemetry collection per network device in order to investigate in greater detail 

why the overall health state of the service indicates the failing health state.  

If the overall health state indicates a passing overall health state, assurance orchestrator 

generates one or more service assurance messages that include (i) the identifier of the service, 

(ii) the overall health state that indicates the passing overall health state, and (iii) identifiers 

and health states of the service components. The one or more service assurance messages do 

not include a request to reconfigure service components. Assurance orchestrator provides the 

one or more service assurance messages that do not include the request to network orchestrator 

in flow Figure 37. Responsive to the one or more service assurance messages that do not 

include the request, network orchestrator does not reconfigure any service components.  

With reference to FIG. 17, there are shown example operations 1700 expanding on operation 

1610 used to determine the overall health state of the service in method 1600.  

At 1702, assurance orchestrator computes each of the health states of the service components 

to respectively indicate a passing health state or a failing health state for a corresponding one 

of the service components.  

At 1704, assurance orchestrator determines the overall health state of the service as follows:  
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a) When one or more of the health states of the service components indicate the failing 

health state, set the overall health state of the service to indicate a failing overall health 

state.  

b) When all of the health states of the service components indicate a passing health state, 

set the overall health state of the service to indicate a passing overall health state.  

We compute each of the health states of the service components, respectively, to indicate a 

health state within a range of possible health states, including a passing health state, a failing 

health state, and a degraded health state that is neither the passing health state nor the failing 

health state.  

Next is to determine the overall health state of the service to indicate that the overall health 

state is within a range of possible overall health states, including the passing overall health 

state, the failing overall health state, and a degraded overall health state that is neither the 

passing overall health state.  

5.17 Computer System for Assurance Entities  

In summary, embodiments presented herein, proposed solution for service assurance for intent-

based networking, for example, uses service tagging of Service metrics recorded and reported 

by service components of a service to help an assurance orchestrator/collector “find a needle 

in the haystack” with respect to identifying Service problems that impact the service. This 

tagging helps the assurance orchestrator/collector asses all of the services that can be affected 

by particular telemetry data/sensor. The tagging facilitates specific export for data reduction, 

and filtering. The assurance orchestrator/collector can deterministically flag the services, 

including its service components, which need user attention or can provide feedback for 

remediation. Example high-level operations include:  

a) Get a service configuration from an assurance orchestrator. The service configuration 

includes a service type and a service instance.  

b) Create a specific service tag from the service configuration, e.g., <service type/service 

instance (e.g., identifier> tuple.  

c) Using the service configuration, an assurance platform, e.g., the assurance orchestrator, 

decomposes the service into a series of service components for that specific service 

type/instance with rules of heuristic packages.  
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d) Tag service components metrics with the service tag.  

e) To monitor a specific customer service instance, request all tagged Service metrics with 

the specific service tag.  

f) When determining service performance based on key performance indicators (KPIs), 

in case of service degradation/failure, identify the specific component(s)/service 

components that has failed based on the service tag. Reconfigure the service (or 

network on which the service is enabled) to avoid the fault component.  

In one form, a method is provided comprising: configuring a service as a collection of service 

components on network devices of a network; decomposing a definition of the service into a 

Service dependency graph that indicates the service components and dependencies between the 

service components that collectively implement the service; based on the Service dependency 

graph, configuring the service components to record and report Service metrics indicative of 

Service health states of the service components; obtaining the Service metrics from the service 

components and determining the Service health states of the service components based on the 

Service metrics; determining a health state of the service based on the Service health states; 

and reconfiguring one or more of the service components based on the health state of the 

service.  

In yet another form, a computer readable medium is provided. The computer readable medium 

stores instructions that, when executed by one or more processors coupled to one or more 

network interface units, cause the one or more processors to perform: configuring a service as 

a collection of service components on network devices of a network; decomposing a definition 

of the service into a Service dependency graph that indicates the service components and 

dependencies between the service components that collectively implement the service; based 

on the Service dependency graph, configuring the service components to record and report 

Service metrics indicative of Service health states of the service components; obtaining the 

Service metrics from the service components and determining the Service health states of the 

service components based on the Service metrics; determining a health state of the service 

based on the Service health states; and reconfiguring one or more of the service components 

based on the health state of the service.  
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6 Conclusion and Future work 

By leveraging the novel approach, the service definition and construction of this expression 

graph we were able to reduce amount of telemetry data exported from the network and export 

only service-intent relevant information instead of raw device data. This essentially means that 

it’s possible to determine service health at the edge and contribute to service assurance in much 

more efficient manner than traditional means of telemetry compression or establishing different 

channels to send same amount of raw telemetry data. 

We’ve presented the designed architecture which is able to, at almost real-time, perform 

analysis of the data streams and perform computations to establish the service health status. 

Service decomposition is performed in at least two phases: 

• Into an assurance graph, as depicted in Figure 41 

• Transforming the assurance graph into an expression graph, as depicted in Figure 42 

The information needed to execute these steps is contained in heuristic packages. Such a 

package contains 3 layers: 

• Rules: specify how to build an assurance graph composed of service components out of 

the configuration pushed to enable the service. 

• Service component: computes a health score and symptoms out of abstract metrics 

• Metric Engine: maps abstract metrics to device-specific metrics implementations 

 

There are several disadvantages and operational observations related to closed loop 

automation. Some of the most notable points, disadvantages include: 

 

1. Complexity: Closed loop automation systems can be complex to design and implement. They 

require sophisticated algorithms and integration with various components, which can increase 

the complexity of the overall system. 

 

2. Cost: Implementing closed loop automation can be expensive. It often involves investing in 

advanced technologies, software, and hardware, as well as training personnel to operate and 

maintain the system. 

 

3. Maintenance and Support: Closed loop automation systems require ongoing maintenance 

and support. This includes regular updates, troubleshooting, and addressing any issues or bugs 
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that may arise. It's essential to have dedicated resources to ensure the smooth functioning of 

the automated system. 

 

4. Limited Flexibility: Once a closed loop automation system is implemented, making changes 

or modifications can be challenging. The system is designed to operate in a specific way, and 

any changes may require significant reconfiguration or even redevelopment, resulting in a lack 

of flexibility. 

 

5. Data Dependence: Closed loop automation heavily relies on accurate and up-to-date data. If 

the data inputs are incorrect or incomplete, it can negatively affect the system's performance 

and decision-making capabilities. 

 

6. Potential for Errors: Despite being automated, closed loop systems are not immune to errors. 

Software bugs, hardware failures, or unforeseen circumstances can lead to errors or incorrect 

decisions. Regular monitoring and human oversight are necessary to identify and rectify any 

errors promptly. 

 

7. Resistance to Change: The implementation of closed loop automation might face resistance 

from employees or stakeholders who may feel threatened by the automation of certain tasks or 

processes. Overcoming this resistance and ensuring proper training and support for employees 

is crucial for successful implementation. 

 

Operational observations related to closed loop automation include: 

 

1. Improved Efficiency: Closed loop automation can significantly enhance operational 

efficiency by automating repetitive tasks, reducing manual intervention, and streamlining 

workflows. This leads to faster processing times, reduced errors, and increased productivity. 

 

2. Enhanced Decision-making: Closed loop automation systems can analyse vast amounts of 

data and make real-time decisions based on predefined rules and algorithms. This can lead to 

quicker and more accurate decision-making, especially in scenarios where immediate action is 

required. 

 

3. Scalability: Closed loop automation systems can be scaled to accommodate growing 

workloads or to handle additional processes. This scalability allows organizations to adapt to 

changing demands and expand their automation capabilities as needed. 

 

4. Risk Mitigation: Closed loop automation can help mitigate risks by detecting anomalies, 

identifying potential issues, and triggering appropriate actions or alerts. This proactive 

approach reduces the likelihood of errors, improves system resilience, and minimizes 

downtime. 
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5. Increased Customer Satisfaction: By automating certain processes, closed loop automation 

can improve response times, reduce errors, and enhance overall service quality. This leads to 

higher customer satisfaction levels as customers experience faster and more efficient service. 

 

It is important to note that the specific disadvantages and operational observations of closed 

loop automation can vary depending on the industry, use case, and implementation approach. 
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Metric Engine: maps abstract metrics to device-specific metrics implementation 

 

Figure 41 Applying rules on the configuration of a service instance results in an assurance 

graph that connects service components according to their dependencies. 

 

 

Figure 42 Transformation of an assurance graph with one service instance depending on two 

service components into an expression graph 
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Following step is to apply techniques described in the above work to the ontology-based 

system, which could be used as foundation to the reasoning engine – for analysis and automated 

error detection.  

 

Expression tree for the Service can be quite complex, which makes it inherently difficult to 

navigate through large number of different computations and dependencies. 

 

By applying advanced data modelling techniques, such as Ontologies, we could establish 

inferred relationships between raw data sources such the MDT and legacy protocols: SNMP, 

Syslog, RMON or even CLI to ensure higher level of precision and relevance within calculated 

assurance value for any specific Service assurance expression tree. 

 

Figure 43 Relationship between raw data source and Service assurance calculation 

 

Following the Ontology based model and reasoning engine, we could potentially insert inferred 

rules determine causal relationships using reasoning engine instead of heuristic packages build 

by a Subject Metter Experts. 

  

Service Component Assurance Expression Tree
 Whether the interface is flapping.

                                                    

 Whether the interface is reported and configured  P.

                                                                      

 Total number of packets correctly received or sent.

                                                                   
                                                  

 Total number of errors (input and output)

                           

 Whether the number of errors is low.

                                    

 Whether there is some traffic (0.    low traffic, 1.0    normal traffic.)

                                     

 Whether the interface is healthy.
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8 Appendixes 

8.1 Appendix A - Service Language 

The present language was developed to describe the computation needed to evaluate the status 

of a service component. 

Overview 

A service is specified by the following elements: 

• a name and a list of arguments  

• a list of metrics to collect  

• a list of expressions to combine the metrics into a single status value  

We show how to define each of these elements through examples. The complete specification 

of the syntax is detailed below. 

Global structure of a file 

Each file as the following structure: 

• a single level 1 header (The name of the service component) 

A description of the Service  

o a single level 2 header 'Arguments' 

The arguments of the Service  

o a single level 2 header 'Expressions' 

a sequence of level 3 blocks (either 'Measure' or 'compute')  

▪ 'Measure' blocks contain a list of metrics to monitor  

▪ 'Compute' blocks contain a list of expressions to compute  

Service component example 

This file is a minimal example for a service component 

Arguments 

• device: The device on which the metric is collected  
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• str param_2: A second parameter  

Expressions 

Measure 

A list of metrics to get. These need to be already defined as metrices, within our solution, 

to actually produce values. 

• int metric_1 = example.first(device=device) 

a first metric of type int named metric 1. It is parameterized by the device.  

Compute 

We check whether metric 1 is positive. Otherwise, we raise a symptom saying that 

metric_one is not positive. 

Note that since we raise a symptom, the value of m1_pos is actually a Status object. 

• m1_pos: Whether metric_1 is positive degraded if false -> Metric 1 is negative  

o metric_1 > 0  

Measure 

Another list of metrics to get. 

• str metric_2 = example.second(device=device, another_param=param_2) 

another metric that also depends on param2  

Compute 

We check that metric_2 is equal to foo. If not, we raise a symptom containing the actual 

value of metric 2. 

• m2_foo: Whether metric_2 is equal to foo. broken if false: Metric 2 is not foo but 

metric_2  

o metric_2 == "foo"  

Compute 
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We combine the two statuses to obtain the final value of the service component. 

• Service component example: the top-level status  

o Combine(m1_pos, m2_foo)  

 

Name and arguments 

The name is the level 1 header of the file. Arguments are defined in a list using '*' as an item: 

# InterfaceHealthy 

 

Checks whether a given interface on a given device is healthy. 

 

## Arguments 

  

  * device:  Device supporting the interface to check.  

  * str interface:  Name of the interface to check. 

The above example defines the name and arguments of InterfaceHealthy. An instance of 

this Service is totally parameterized by a device (of type device) and an interface (of type str). 

Metrics 

Each metric to collect is defined via a name and a set of parameters. An example is 

  * str admin_status = interface.administrative_status(device=device, 

interface=interface)   

     _ Whether the interface is currently enabled_  

Without further specification, the parameters are picked among the arguments of the Service 

component. In order to allow a parameter to be the result of a computation, it is necessary to 

specify a dynamic parameter just after the name of the metric: 

  * underlay_mtu[underlay_interface] = interface.mtu(device=device, 

interface=underlay_interface) 

    _ The mtu of an underlay interface_ 
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The parameter 'interface' of the metric is left unspecified. When referring to underlay_mtu in 

an expression, the underlay_interface value must be specified as well (see below.) 

Expressions 

Each expression is defined via a name, optionally a symptom to raise, and a list of potential 

expressions. An example reusing the previous metric is 

  * is_up:  Whether the interface is currently enabled    

    broken if false: Interface is down 

    + `admin_status == "UP"`  

Here a single expression is used. If this expression evaluates to false, then a symptom is raised. 

However, depending on the available metrics, we might want to use different expression to 

compute a given value. For instance, assuming that two devices: 

• device 1 provides "total_memory" and "free_memory" metrics  

• device 2 provides "total_memory" and "used_memory" metrics  

In that case, if we want to check that at least 10% of the memory is available, one can write: 

  * memory_healthy: At least 10% of the memory is available    

     + `free_memory/total_memory > 0.1` 

     + `Minus(total_memory,used_memory)/total_memory > 0.1` 

Dynamic elements 

Only the first expression for which all the names are available will be bound to the name 

"memory_healthy". 

As for metrics, if an expression needs to be repeated with various parameters, it can be 

parameterized. 

  * compatible_mtu_on[interface]: Check that the MTU of interface is large 

enough 

    + `underlay_mtu[interface] > encap_size + mtu_overlay` 

Here 

• interface is declared as a parameter of the compatible_mtu_on expressions.  
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• interface is passed as a parameter of underlay_mtu  

Note that when calling a parameterized expression, we don't need to have a name as a 

parameter, it can be an expression as well. For instance, we could have written 

underlay_mtu[Uppercase(interface)]. 

In some cases, we will want to apply the same expression to each element of a list of paramters. 

For instance, assuming that the expression compatible_mtu_on raises a symptom in case of 

incompatibility, we might want to check that expression on each interface in a given list, say 

all interfaces that are egress interfaces for a particular route. 

This is done by writing: 

Combine({compatible_mtu_on[egress_interfaces]}` 

The meaning of the above expression is: 

• evaluate egress_interfaces (should evaluate to a list) (For instance [Loopback0, 

Loobback1])  

• for each element, build the expression compatible_mtu_on with the value of the element 

as parameter, here we would build compatible_mtu_on[Loopback0] and 

compatible_mtu_on[Loopback1]  

• pass the results of all expressions to combine for aggregating them.  

• monitor for changes in egress_interfaces and update as the list changes  

Convention 

A possible way to organize the expressions section is to decompose the service component. 

For instance, DeviceHealthy can be divided into cpu_healthy, memory_healthy, 

storage_healthy ... For each subexpresssion, include a "Measure" block will all the metrics (i.e., 

relative to CPU) followed by a "Compute" block with all the expressions needed to assign a 

value to CPUHealthy. 

Finally, the last expression shall combine all expressions of the subparts into a single 

expression summarizing the value. 

External definitions 
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Operators 

The language in itself does not define any operator, they have to be defined as expressions. 

Metrics 

In the current language, we abstract the definition of a metric to a name and a set of parameters. 

To actually specify how to retrieve a value for a given device with a given OS, one has to add 

an entry in the relevant metrics file. 

 

 

Detailed spec 

 

Generalities 

Spaces tabs and new lines are ignored except otherwise specified. 

The syntax of the language is compatible with Markdown: i.e., if spaces and new lines are 

correctly ordered, the file will correctly render in Markdown. However, it is also possible to 

write syntactically correct file that do not render well in Markdown. 

Syntax 

For a machine-readable version of the syntax see the ANTLR grammar and lexer. 

Here is a human readable version of the syntax. Non terminals are in lower case, terminal are 

in upper case. 

Service := header arguments expressions 

 

Header 

The file starts with a header that defines the name of the Service and a description of the service 

component. 

header := '#' ID SUB_DESCRIPTION 
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ID : any sequence of letters, numbers or '_'  starting by either a letter or 

an '_' 

 

SUB_DESCRIPTION: anything that does not contain '#' 

The ID terminal is used for every ID in the syntax. The spaces IN the description are kept, and 

as long as the character '#' is not met, the sequel is considered part of the description. Thus, it 

is possible to use any markdown except title with "#" in the description. 

Arguments 

The arguments start with a level-2 Markdown title, followed by a list of a least one argument 

and optionally some global parameters. 

arguments :=  '## Arguments' (argument)+  (display_params)? 

 

argument := '*' ID? ID ':' LINE_DESC 

 

LINE_DESC: any string not containing a newline. 

In the argument syntax, the first ID indicates (optionally) the type and the second one is the 

actual name of the argument. The LINE_DESC contains a description of the argument, 

terminated by a new line. 

The display parameters indicate how to render the Service in a GUI. 

display_params :=  'display level' '=' ID  'web_label' '=' web_label 

 

web_label := BACKQ3 TEXT ('{' ID '}' TEXT)* BACKQ3   

 

BACKQ3 : 3 backquotes ('`') 

TEXT: any string not containing '{' 

The display level ID should be one of the predefined levels. The web label contains an arbitrary 

string with some IDs enclosed in braces. The IDs should be arguments declared before. The 

web label will be formatted using the python 'format' function to replace argument's ID in 

braces with the value of the argument. 

Expressions 
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The expressions start by a level 2 title 'Expression' and contains a sequence of measurements 

and computations. 

expressions := '## Expressions' ( measurements | computations )* 

 

Measurements 

A set of measurements is introduced by the level 3 title 'Measure' followed by a comment 

(optional), and then a list of measurement (i.e., metrics) to obtain. As explained above in this 

document, the metrics have to be defined. 

measurements := '### Measure' COMMENT measurement+ 

 

measurement := '*' ID? ID '=' METRIC_NAME '(' measurement_parameter (',' 

measurement_parameter)* ')' '_' M_DESCR '_' 

 

measurement_parameter := '-' ID '=' ID 

 

COMMENT : any string not containing '*' 

METRIC_NAME: identifiers separated by dots 

M_DESCR: any string not containing '_' 

For each measurement, we have two IDs, the first one, optional, indicates the type of the 

metrics, the second one indicates the name of the measurement. After the equal sign, the 

definition of the metric instance to associate to the measurement name is given. For instance 

interface.mtu(device=source_device, interface=source_interface), where 

source_device and source_interface are arguments of the service component. 

The METRIC NAME should match an existing metric in the metric engine. The parameters 

name should be existing parameters of that metric. 

Finally, the description of the measurement, which should not contain _ is enclosed between 

_. 

Computations 

A set of computations is introduced by the level 3 title 'Compute' followed by a comment 

(optional), and then a list of computations. 
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computations := '### Compute' COMMENT computation+ 

 

computation := '*' ID ':' LINE_DESC symptom? expression_decl+ 

 

symptom := LEVEL CONDITION: LINE_DESC 

 

LEVEL: 'broken' | 'degraded' 

 

CONDITION: ('if false'|'if true') 

 

expression_decl := '+' '`' expression '`'  

 

A computation is defined by: 

• a name  

• a one-line description  

• an (optional) symptom  

• at least one expression declaration  

The name is defined by the first ID in 'computation'. It should not be used by a previous 

argument, measurement or computation. 

The symptom can only be added if the expression evaluates to a Boolean value. LEVEL and 

CONDITION indicates the level of the symptom (degraded =~ warning and broken =~ error). 

There can be several expression definitions for the same expression name. If so, the first 

definition in order for which all subexpressions (i.e., references to other expressions, arguments 

or metrics) are available is taken. 

This mechanism allows to have flexibility in the expression as shown above. 

The label of the symptom can contain expressions enclosed between backquotes '`'. In that case, 

the expression is replaced by its value whenever the symptom is raised (the expressions are 

always evaluated.) As a corollary, the compiler does not allow the expressions used in the 

symptom labels to depend on a metric that is not already a dependency of all expression 

alternatives. 

For instance: 
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### Measure 

 

 * admin_status: Administrative status of the interface 

   [...] 

 * errors_count: Number of errors on the interface   

   [...] 

 

### Compute 

 

 * interface_healthy: Whether the interface is healthy  

   broken if false -> Interface is not up status: `admin_status` or too many 

errors `errors_count`  

   + `admin_status == "Status UP" and errors_count < 10` 

   + `admin_status` 

will not compile because the symptom label depends on errors_count but the last alternative 

doesn't. 

Expression 

The expressions have the following syntax: 

expression := sum (cmp sum)? 

 

cmp := '==' | '<=' | '<' | '>=' | '>' 

 

sum := factor ('+'  factor)* 

 

factor := atom (( '*' | '/') atom)* 

 

atom := ID | INT | FLOAT | STRING | BOOL | '(' expression ')' | call 

 

call := ID '(' expression (',' expression)* ')' 

This syntax supports expressions using the arithmetic operators '+', '*' and '/', the comparison 

operators in cmp, identifiers, literals of floats, ints, Booleans and strings, and function calls. 

Function calls are used for operators that do not have an infix version. The first ID is the name 

of the operator, which is checked against expression classes. In particular the number of 

arguments is checked. 
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The expression and metrics can be declared in any ordered. However, circular dependencies 

between expressions are not allowed. 

8.2 Appendix B – Examples of service component configuration 

Non-limiting examples of service components that network orchestrator may configure include 

layer 1 (L1), layer 2 (L2), and layer 3 (L3) connections/interfaces, packet routing protocols, 

logical network overlays such as equal-cost multi-path routing (ECMP), and service 

components related to traffic shaping. Non-limiting examples of operations employed by 

network orchestrator to configure the aforementioned example service components, on a 

network device among network devices, are provided below.  

To configure an L1 connection/interface:  

a) Enter L1 interface configuration mode.  

b) Configure on the network device components and interface parameters, including 

hardware parameters, memory buffers, optical transmit power, and optical 

encoding/modulation employed by optical interfaces on the network device.  

c) Exit the L1 interface configuration mode.  

 

To configure an L2 connection/interface:  

a) Select a type of interface (i.e., L2, virtual LAN (VLAN), port-channel).  

b) Enter L2 interface configuration mode.  

c) Assign a media access control (MAC) address, a maximum transmission unit (MTU), 

and an L2 Quality-of-Service (QoS) classification (referred to simply as “QoS”).  

d) Enable the L2 interface (no shutdown/enable L2 interface command).  

e) Exit the L2 interface configuration mode.  

 

To configure an L3 connection/interface:  

a) Select a type of interface (i.e., L3).  

b) Enter L3 interface configuration mode.  
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c) Assign an Internet Protocol (IP) address, an L3 MTU, and an L3 QoS.  

d) Enable the L3 interface (no shutdown/enable L3 interface command).  

e) Exit the L3 interface configuration mode.  

 

To configure a packet routing protocol (e.g., Intermediate System to Intermediate  

System (ISIS)):  

a) Check for pre-requirements of the packet routing protocol:  

i. IP address configured on at least one interface.  

ii. IP routing process running for an address family (e.g., IPv4, IPv6).  

b) Enter interface configuration mode for packet routing protocol.  

c) Select a routing protocol (e.g., ISIS) and start a routing protocol process on the network 

device (e.g., router Routing Information Protocol (RIP), router Open Shortest Path First 

(OSPF)).  

d) Assign interfaces to include routing advertisements (selects IP networks for the 

advertisements).  

e) Assign an IP address, an L3 MTU, and an L3 QoS.  

f) Exit the interface configuration mode.  

 

To configure ECMP:  

b) Identify parallel links or parallel multi-paths and associated network device interfaces for 

ECMP.  

c) Enter ECMP configuration mode.  

d) Enter interface or routing configuration mode  

a. Configure equal costs among interfaces identified in step (a) 

(e.g., configure Routing Information Base (RIB), Forwarding 

Information Base (FIB) accordingly).  

e) Exit the ECMP configuration mode.  
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To configure traffic shaping as its own Service or as a sub-component of another service 

component, e.g., an interface:  

a) Identify classes of network traffic (e.g., policy-map/class-map). 

b) Define shaping, specifying peak/average of traffic, and bursting profile.  

c) Enter interface (or permanent virtual circuit (PVC)) configuration mode.  

d) Applying the above-defined shaping to an interface. 

e) Exit interface configuration.  

 

The service components and operations to configure the service components listed above are 

provided by way of example, only, and may be modified and/or expanded to include additional 

service components and operations, as would be appreciated by one of ordinary skill in the 

relevant arts having read the present specification.  

 


