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Abstract
To date, time- and frequency-domainmetrics of signals acquired through laserDoppler fluximetry

have been unable to provide consistent and robust measures of the changes that occur in the

microcirculation inhealthy individuals at rest or in response to aprovocation, or in patient cohorts.

Recent studies have shown that in many disease states, such as metabolic and cardiovascular

disease, there appears to be a reduction in the adaptive capabilities of themicrovascular network

and a consequent reduction in physiological information content. Here, we introduce non-linear

measures for assessing the information content of fluximetry signals and demonstrate how they

can yield deeper understanding of network behaviour. In addition, we show how these methods

maybe adapted to accommodate themultiple time scalesmodulating blood flowandhow they can

be used in combinationwith time- and frequency-domainmetrics to discriminatemore effectively

between the different mechanistic influences on network properties.
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1 INTRODUCTION

Investigations of blood flow in microvascular networks have shown

that in many disease states, such as cardiovascular and metabolic

disease, there is a reduction in the adaptive capabilities of the

network and its ability to respond to an imposed stressor (Frisbee

et al., 2016). The processes underlying the modulation of the blood

flow are known to operate at different intensity levels and have

different periodicities (Stefanovska, Bracic, & Kvernmo, 1999), which

can change both temporally and spatially. Conventional time- and

frequency-domain analysis techniques have proved valuable in the

understanding of the network blood flow but have, so far, failed

to describe mechanistically the changes in observed flow patterns

between pathological conditions or haemodynamic states. Recently,

non-linear methods based on ideas from information theory have

been used to quantify the regularity and randomness of short

lengths of physiological signals and have demonstrated the potential

for diagnostic capability (Balasubramanian & Nagaraj, 2016). These
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studies suggest that suchmethodsmight be of benefit in the analysis of

microvascular network flow dynamics to discriminate better between

different influences on network functionality and flexibility.

The aim of this brief report is to describe the application of a

range of analysis techniques to signals derived from skin blood flow.

We review the main applications and considerations of approaches

in the time, frequency and complexity domains and their use in

combination to discriminate between microcirculatory blood flow

signals in differing pathophysiological and/or haemodynamic states.

Examples are taken from two groups of individuals at risk of cardio-

vascular and metabolic disease that we have reported previously in

detail elsewhere (Chipperfield, Thanaj, Scorletti, Byrne, & Clough,

2019), grouped for the use (CB1, n = 8) or not (CB0, n = 28) of

a calcium channel (CB) blocker for the treatment of hypertension.

Calcium channel blockers are considered here because they are vaso-

dilators that, in particular, inhibit myogenic control and can thus be

expected to result in altered microvascular flow dynamics, against

which the different analysis methodsmay be tested.
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2 ANALYSIS IN THE TIME DOMAIN

Based on the Doppler effect, laser Doppler flowmetry (LDF) was first

described in 1964 for the measurement of polystyrene balls entrained

in fluid (Yeh & Cummins, 1964) and first applied to retinal arteries and

capillary tubes in1972 (Riva et al., 1972). Theoutput signal is defined in

arbitrary perfusion units (PUs) as blood flux (BF) and is the product of

red blood cell concentration and velocity. The volume of tissue that is

sampled is dependent on the laser power, wavelength and separation

between emitting and receiving fibres (Clough, Chipperfield, Byrne,

de Mul, & Gush, 2009) and is subject to significant spatial variations

(Wahlberg & Fagrell, 1994).

Consider the two LDF signals shown in Figure 1a,b, recorded from

the forearm skin of two subjectswithout andwithCBuse, respectively.

The signal in Figure 1a shows a lower mean (8.3 PU) BF but with more

variation in the moving average than that in Figure 1b (mean 15.2 PU),

which appears to have larger variation in the higher frequencies.

Little information can be obtained directly from examination of

LDF signals (Roustit & Cracowski, 2012; Yvonne-Tee, Rasool, Halim,

& Rahman, 2005) alone, because they provide a relative index of

microvascular perfusion in the time domain. Thus, it is often used in

conjunction with a vasoreactivity test, such as iontophoresis, local

thermal warming or postocclusive reactive hyperaemia (shown in

Figure 1c), to assess dilator capacity and mechanisms influencing

vascular tone (Roustit & Cracowski, 2012). For the latter, resting BF

(RF) is determined as the mean BF over some time period, typically

5 min, before occlusion and measurement of the fold change (MF/RF)

as the ratio of mean peak (MF) of the reactive hyperaemia. In the

examples shown in Figure 1, the MF/RF values are 5.28 and 4.36,

respectively, indicating degraded dilatory capacity in the subject with

CB. A more robust test might account for differences in mean arterial

pressure (e.g. Ichinose, Nakabayashi, & Ono, 2019) to determine

cutaneous vascular conductance when comparing groups, although

this requires additional measurements. Although such analysis has

been used in research and clinical practice (e.g. Rossi, Carpi, Galetta,

Franzoni, & Santoro, 2008), its value as a diagnostic or prognostic

indicator of vascular disease or pathogenesis remains disputed. As

we have previously reported, reactive tests cannot discriminate

reliably or sufficiently between different pathophysiological groups

(Chipperfield et al., 2019) alone or mechanistically, in terms of

vasocontrol properties.

3 ANALYSIS IN THE FREQUENCY DOMAIN

Analysis of BF time series reveals local, spontaneous, rhythmic

oscillatory oscillation of BF (Figure 1) occurring at different

frequencies, which are taken to reflect the activity of local vaso-

control mechanisms. These repetitive oscillations are taken to

represent the influence of endothelial (0.0095–0.02 Hz), sympathetic

(0.02–0.06 Hz), myogenic (0.06–0.15 Hz), respiratory (0.15–0.4 Hz)

and cardiac activity (0.4–1.6 Hz) activity (Stefanovska et al., 1999) and

are usually made from resting BF signals. Two main methods are used

NewFindings

• What is the topic of this review?

We describe a range of techniques in the time, frequency

and information domains and their application alone and

together for the analysis of blood flux signals acquired

using laser Doppler fluximetry.

• What advances does it highlight?

This review highlights the idea of using quantitative

measures in different domains and scales to gain a better

mechanistic understanding of the complex behaviours in

themicrocirculation.

to assess the spectral contribution of these component signals; one is

based on the fast Fourier transform (FFT), the other on generalized

wavelet analysis. The choice of method used has been discussed in

detail elsewhere (Clough, Kuliga, & Chipperfield, 2017) and is thus

not considered further here. With the FFT, the power spectral density

of the BF signal is obtained from its discrete Fourier transform (in

perfusion units squared per hertz), estimating the absolute power in

the signal at a given frequency. Figure 2 shows the power spectrum,

calculated using Welch’s method, for the two subjects shown in

Figure 1. The magnitude of BF of the person with CB was observed

previously to be larger and with apparently greater variation in the

higher frequencies than the personwithout CB. However, examination

of the spectral content of the BF signals reveals that this is not the

case, with all bands having higher power without CB. Differences in

mean BF shown in Figure 1 in PUs are not seen in the power spectrum

of Figure 2, because it does not contain the DC (f = 0 Hz) component

and is shown in perfusion units squared per hertz.

The relative power contribution of each frequency band is often

used to evaluate its influence on the overall flow-motion. In the case

shown in Figure 2, large differences can be seen in all frequency bands.

Much research has presented data from different pathological groups

with known microvascular dysfunction (for examples, see review by

Clough et al., 2017), including responses to reactive tests. However,

there is a lack of consensus on the direction of change in oscillatory

components of the BF signal and the balance between the absolute

or relative power in the frequency bands, with much appearing to be

cohort specific and varying with the measurement site (Clough et al.,

2017). Direct comparison of different studies is complicated further

because the choice of parameters for frequency-domain analysis (e.g.

window size, overlap, number of bins) is a compromise between time

and frequency resolution. Signal parameters (e.g. sample rate, length

and prefiltering) may differ, and the methods can be sensitive to such

variations in the parameters. Furthermore, recent work suggests that

the frequency bands are not fixed and may vary, for example, with

age or pathological state (Grinevich, Tankanag, Tikhonova, &Chemeris,

2019). Nevertheless, such frequency-domain analysis is a valuable

tool in understanding the processes modulating BF and their relative

contribution to overall flow.
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F IGURE 1 Examples of blood flux signals recorded from forearm skin at ambient room temperature in individuals at risk of cardiovascular and
metabolic disease. (a) Individual without calcium channel blocker (black trace). (b) Individual with calcium channel blocker (blue trace). (c) Traces
showing resting blood flux (RF) andmeanmaximum blood flux (MF) from both subjects rest and during the response to arterial occlusion
(180mmHg for 3min; black trace without and blue with calcium channel blocker)

F IGURE 2 An example of blood flux (BF) absolute power spectral density plots for different individuals without (black) andwith calcium
channel blocker (CB) uptake (blue) showingmean and relative power per band

4 INFORMATION AND COMPLEXITY

If the signals in Figure 1 could be described accurately by some

mathematical model:

LDF(t) = f(t, x1, x2,… , xn), (1)

then all the information in LDF(t) would be described by the

n parameters, xn, and the original signal would effectively be

compressed. However, if there was any error in the model then it

would not describe LDF(t) accurately, and there would be a loss of

information. The time- and frequency-domain analysis described pre-

viously loses, or does not use, all the information present in the LDF

signals. The LDF signal is non-stationary, because the processes that

produce it vary in time, and the power spectral density can yield

information only on the overall signal content rather than the order

or sequence in which it appears. Time-domain methods generally

describe mean values or rates of change and thus do not capture
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the variability in the signal. Attempts to model the data (e.g. Tigno,

Hansen, Nawang, Shamekh, & Albano, 2011) have shown relatively

poor descriptive power.

Complexity analysis quantifies the degree of variability or loss

of spontaneity in a time series and has been applied to a range of

biosignals, such as EEGs (Kalev et al., 2015) and ECGs (Valenza et al.,

2017). The degree of variability in these signals reflects the physio-

logical adaptability of the underlying system and provides established

biomarkers of overall health status (Aboy,Hornero,Abásolo,&Alvarez,

2006). However, there is no single definition of complexity. Nagaraj

and Balasubramanian (2017) describe three methods of quantifying

complexity, which relate here to the following factors: (i) how hard it is

describe the information in LDF(t), i.e. thenumberof uniquepatterns in

the time series or model order; (ii) how hard it is to create or compress

the information without loss; and (iii) the degree of organization or

structure in LDF(t). The most widely used measures used in LDF

signal analysis are Lempel–Ziv complexity (LZC), sample entropy and

effort-to-compress complexity (Thanaj, Chipperfield, & Clough, 2018).

However the complexity is estimated, it provides a measure of the

information content of a signal (Tigno et al., 2011), and for brevity, only

LZC (Lempel & Ziv, 1976) will be considered here.

Lempel–Ziv complexity provides a measure of how hard it is to

describe the information contained in a signal and is the length of

the shortest instruction set needed to reconstruct the signal without

information loss. A simple periodic signal would have low complexity,

because the same termsare repeated continually. In contrast, a random

signal would have high complexity, because there are no rules, or

repeating patterns, that define it. Given that LZC does not require

the signal to be stationary, unlike chaos-based entropy analysis, the

complexity can be normalized to the length of sample window (Hu,

Gao, & Principe, 2006). Before LZC can be calculated, the original

LDF signal must be transformed to a binary sequence, which can be

achieved by recording a one if a sample is greater than the median and

zero otherwise (Albano et al., 2008). Alternatively, a delta encoding

method, whereby a zero is recoded if a value is less than the pre-

vious value in the time series or a one otherwise, which captures more

of the variability in the signal, can be used (Kuliga, Gush, Clough, &

Chipperfield, 2018). The signal is often divided into epochs of suitable

length to examine how LZC varies over time, or a sliding window could

be used to detect the time of rapid spontaneous changes in the signal.

Figure 3a shows an example of LZC calculated for 15 × 40 s

epochs from forearm skin LDF captured at 40 Hz in the two different

groups (CB1, n = 8 and CB0, n = 28). Given that the epochs are

not synchronized in any way, direct comparison of individual or

group values provides little understanding of spontaneous temporal

activity. However, Figure 3a clearly shows differences in the amount

of information contained in the BF signal, with the CB1 group being

less variable and having fewer unique states (lower LZC) than CB0. An

LZC index, calculated here as the mean of the 15 × 40 s epochs, can

also be used to examine the groups (Carey et al., 2019; Chipperfield

et al., 2019). In this case, the LZC index decreased from 0.362± 0.05 in

the CB0 group to 0.302 ± 0.05 (mean ± SD) in CB1, with a significant

difference between them (P= 0.0013).

5 FREQUENCY, COMPLEXITY AND SCALE

The physiological processes that regulate flow-motion operate across

multiple temporal scales, ranging from 0.001 to 2 Hz, and appear

to vary with other parameters, such as skin temperature (Kuliga

et al., 2018) and hypobaric hypoxia (Carey et al., 2019). For the

data presented above, the LZC index is correlated positively with

dilator capacity (MF/RF; r = 0.47, P = 0.001) and relative power in

the respiratory band (r = 0.52, P = 0.0001) and negatively with RF

(r=−0.37,P=0.008) and relative power in the cardiac band (r=−0.56,
P = 0.00004) (Chipperfield et al., 2019). The regular contribution to

the information in the BF signal from the cardiac band, illustrated in

Figure 2, appears to reduce the complexity in the CB1 group.

To account for these multiple, and potentially varying, process

scales, LZC can be evaluated at multiple time scales (MLZC) using

a coarse-graining approach (Cerutti, Hoyer, & Voss, 2009; Costa,

Goldberger,&Peng, 2002). The sampling frequency is alteredbya scale

factor, 𝜏 , defining the scale level used to resample the original signal,

reducing the scale of the time series. For the time series {x1,… , xN},
whereN is the number of samples, the coarse-grained time series, y𝜏 , is

as follows:

y𝜏i = 1
𝜏

i𝜏∑

i=(i−1)𝜏+1
xj,1 ≤ i ≤ N∕𝜏 , (2)

that is, the LZC is evaluated at different LDF sample rates where, for

an original sampling frequency of 40 Hz, the sampling frequency is

f
𝜏
= 40∕𝜏 where 𝜏 is the scale factor. At scale 𝜏 = 1 the original signal

is preserved at 40 Hz, and at scale 𝜏 = 24 resampled to 1.67 Hz. At

scale factor one, the time series y1 is the original signal, and the length

of each coarse-grained time series {y𝜏} is equal to the original signal

divided by the scale factor, 𝜏 . In previous work, we have investigated

the length of signal required to obtain viable complexity measures and

reported that a signal length> 1000 samples is required (Thanaj et al.,

2018), which equates to 10min captured at 40Hz at scale 𝜏 = 24.

Suchmultiscale analyses havebeen shown tobeeffective for under-

standing physiological signals in general (Costa et al., 2002; Humeau

et al., 2010). Figure 3b shows an example of MLZC for the two

groups, CB0 and CB1. As scale length increases (lower frequency

corresponding to higher scale), LZC can also be seen to increase

together with the separation between the groups until the Nyquist

frequency of the original BF signal is reached or passed. Assuming

that the maximal frequency of interest is the upper limit of the cardiac

band of 1.6 Hz, the Nyquist frequency will be 3.2 Hz. (𝜏 = 12). Above

this scale, i.e. with lower sample frequencies, the influence of the

relatively periodic heart rate will be diminished, and the signal will

contain more information. To reach higher scales would require longer

BF recordings.

One advantage of MLZC over LZC is that it can provide more

features for classification of LDF data from the complexity at each

scale. For example, we (Chipperfield et al., 2019) have shown that the

accuracy of classification between these two groups can be improved

from 77.8% using LZC to 86.1% with MLZC. Another benefit of MLZC
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F IGURE 3 Examples of Lempel–Ziv (LZ)
complexity of forearm blood flux: (a) calculated
for 15 × 40 s epochs for forearm laser Doppler
fluximetry signal captured at 40Hz of two
different groups of people at risk of
cardiovascular andmetabolic disease without
(black, n= 28) andwith (blues, n= 8) calcium
channel blocker (CB) uptake; and (b) at multiple
scales (scale= 40/frequency). Data are
presented asmeans± SEM

F IGURE 4 Spearman correlations between the flow-motion spectral power bands corresponding to endothelial (0.0095–0.02Hz; black),
neurogenic (0.02–0.06Hz; green), myogenic (0.06–0.15Hz; magenta), respiratory (0.015–0.4 Hz; blue) and cardiac (0.4–1.6 Hz; red) activity and
multiscale Lempel–Ziv complexity of skin blood flow signals in n= 28 people without CB (a) and n= 8 people with CB (b). Effective sampling
rate= 40Hz/scale. *P< 0.05, +P< 0.01

is that it can be used to understand how the spectral components of

the BF signal influence its complexity at different scales. For example,

the Spearman’s correlations between the power in each of the bands

of the power spectra of the BF signals and the MLZC at increasing

scale for the CB1 and CB0 groups described previously are shown

in Figure 4. Heart beat and respiration have significant but opposite

correlations with complexity until the Nyquist frequency is passed,

when their influence reduces. Skin sympathetic nerve activity is known

to be modulated by respiration, and cutaneous vasoconstrictor neuro-

nes are coupled temporally to cardiac and respiratory oscillations

(Fatouleh & Macefield, 2013). Heart rate variability also contributes

to the complexity of the BF signal (Sassi et al., 2015), and cardiac

rhythm is modulated by respiration (Simms, Paton, Allen, & Pickering,

2010). This coupling of the two high-frequency components might
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explain, in part,why theMLZC increasewith scale, especially given that

they exhibit little spontaneous variation in measurement conditions.

At higher scales, the resampled BF signal covers a longer time

period, and the lower frequencies associated with flow-motion, which

generally contain the majority of the power of the signal, contribute

proportionallymore to signal variability, resulting in higher complexity.

The CB changes the magnitude and relative influence of all the

power bands on the signal complexity, with the cardiac pulse wave

dominating.

6 CONCLUSIONS

Traditional time- and frequency-domain analysis methods alone are

unable to provide robust and consistent descriptors of the micro-

circulation dynamics in either the resting state or as a result of

an imposed stressor. Further insight can be achieved through the

combination of time-, frequency- and complexity-domain analysis, as

illustrated here by the different combinations of processesmodulating

activity at different time scales between groups with and without

CB uptake. The data presented here and elsewhere (Chipperfield

et al., 2019; Frisbee et al., 2016; Tigno et al., 2011) provide further

evidence that attenuation of flow-motion patterns is associated with

increased cardiovascular disease risk and that prophylactic treatment

results in a further decline of adaptivity through alteredmicrovascular

dynamics. The combination of techniques presented here opens new

possibilities for the analysis of signals arising from themicrocirculation

and elsewhere. The combination of, and relationship between, metrics

derived in the different domains can provide robust parameters that

account, to some degree, for the temporal scales of the origin of

the signal and the underlying local and systemic activity. Together,

thesemultiple-domain analyses provide a platform for investigation of

microvascular impairment in the skin and disease risk, which need to

be applied to further pathophysiological states.

COMPETING INTERESTS

None declared.

AUTHOR CONTRIBUTIONS

A.J.C., M.T. and G.F.C. all contributed to the writing of this review,

approved the final version of the manuscript and agree to be

accountable for all aspects of this work in ensuring that questions

related to the accuracy or integrity of any part of the work are

appropriately investigated and resolved. All persons designated as

authors qualify for authorship, and all thosewho qualify for authorship

are listed.

ORCID

A. J. Chipperfield https://orcid.org/0000-0002-3026-9890

REFERENCES

Aboy, M., Hornero, R., Abásolo, D., & Alvarez, D. (2006). Interpretation

of the Lempel-Ziv complexity measure in the context of biomedical

signal analysis. IEEE Transactions on Bio-Medical Engineering, 53, 2282–
2288.

Albano, A. M., Brodfuehrer, P. D., Cellucci, C. J., Tigno, X. T., & Rapp, P. E.

(2008). Time series analysis, or the quest for quantitative measures of

time dependent behavior. Phillipine Science Letters, 1, 18–31.
Balasubramanian, K., & Nagaraj, N. (2016). Aging and cardiovascular

complexity: Effect of the length of RR tachograms. PeerJ, 4, e2755.
Carey, D., Thanaj, M., Davies, T., Gilbert-Kawai, E., Mitchell, K., Levett,

D. Z. H., … Clough, G. F. (2019). Enhanced flow-motion complexity of

skin microvascular perfusion in Sherpas and lowlanders during ascent

to high altitude. Scientific Reports, 9, 14391.
Cerutti, S., Hoyer, D., & Voss, A. (2009). Multiscale, multiorgan and

multivariate complexity analyses of cardiovascular regulation.

Philosophical Transactions of The Royal Society. Series A. Mathematical,
Physical, and Engineering Sciences, 367, 1337–1358.

Chipperfield, A. J., Thanaj, M., Scorletti, E., Byrne, C. D., & Clough, G. F.

(2019). Multi-domain analysis of microvascular flow motion dynamics

in NAFLD.Microcirculation, 26, e12538.
Clough, G., Chipperfield, A., Byrne, C., de Mul, F., & Gush, R. (2009).

Evaluation of a new high power, wide separation laser Doppler probe:

Potential measurement of deeper tissue blood flow. Microvascular
Research, 78, 155–161.

Clough, G. F., Kuliga, K. Z., & Chipperfield, A. J. (2017). Flow motion

dynamics of microvascular blood flow and oxygenation: Evidence

of adaptive changes in obesity and type 2 diabetes mellitus/insulin

resistance.Microcirculation, 24, e12331.
Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale entropy

analysis of complex physiologic time series. Physical Review Letters, 89,
068102.

Fatouleh, R., & Macefield, V. G. (2013). Cardiorespiratory coupling of

sympathetic outflow in humans: A comparison of respiratory and

cardiac modulation of sympathetic nerve activity to skin and muscle.

Experimental Physiology, 98, 1327–1336.
Frisbee, J. C., Goodwill, A. G., Frisbee, S. J., Butcher, J. T., Wu, F., & Chantler,

P. D. (2016).Microvascular perfusion heterogeneity contributes to peri-

pheral vascular disease in metabolic syndrome: Metabolic syndrome

andmicrovascular perfusion. The Journal of Physiology,594, 2233–2243.
Grinevich, A., Tankanag, A., Tikhonova, I., & Chemeris, N. (2019). A new

approach to the analysis of skin blood flow oscillations in human.Micro-
vascular Research, 126, 103889.

Hu, J., Gao, J., & Principe, J. C. (2006). Analysis of biomedical signals by the

Lempel-Ziv complexity: The effect of finite data size. IEEE Transactions
on Bio-Medical Engineering, 53, 2606–2609.

Humeau, A., Buard, B., Mahé, G., Rousseau, D., Chapeau-Blondeau, F., &

Abraham, P. (2010). Multiscale entropy of laser Doppler flowmetry

signals in healthy human subjects: Multiscale entropy of LDF signal.

Medical Physics, 37, 6142–6146.
Ichinose,M., Nakabayashi,M., &Ono, Y. (2019). Difference in the integrated

effects of sympathetic vasoconstriction and local vasodilation in human

skeletal muscle and skin microvasculature. Physiological Reports, 7,
e14070.

Kalev, K., Bachmann, M., Orgo, L., Lass, J., & Hinrikus, H. (2015). Lempel-

Ziv and multiscale Lempel-Ziv complexity in depression. In 2015 37th
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 4158–4161.

Kuliga, K. Z., Gush, R., Clough, G. F., & Chipperfield, A. J. (2018). Time-

dependent behavior of microvascular blood flow and oxygenation:

A predictor of functional outcomes. IEEE Transactions on Bio-Medical
Engineering, 65, 1049–1056.

Lempel, A., & Ziv, J. (1976). On the complexity of finite sequences. IEEE
Transactions on Information Theory, 22, 75–81.

 1469445x, 2020, 9, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P087874 by T
est, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-3026-9890
https://orcid.org/0000-0002-3026-9890


1458 CHIPPERFIELD ET AL.

Nagaraj, N., & Balasubramanian, K. (2017). Three perspectives on

complexity: Entropy, compression, subsymmetry. The European Physical
Journal. Special Topics, 226, 3251–3272.

Rossi, M., Carpi, A., Galetta, F., Franzoni, F., & Santoro, G. (2008). Skin

vasomotion investigation: A useful tool for clinical evaluation of

microvascular endothelial function? Biomedicine & Pharmacotherapy =
Biomedecine & Pharmacotherapie, 62, 541–545.

Riva, C., Ross, B., & Benedek, G. B. (1972). Laser Doppler measurements

of blood flow in capillary tubes and retinal arteries. Investigative
Ophthalmology & Visual Science, 11, 936–944.

Roustit, M., & Cracowski, J. L. (2012). Non-invasive assessment of skin

microvascular function in humans: An insight into methods. Micro-
circulation, 19, 47–64.

Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C.-K., …
Macfadyen, R. (2015). Advances in heart rate variability signal analysis:

Joint position statement by the e-Cardiology ESC Working Group

and the European Heart Rhythm Association co-endorsed by the Asia

Pacific Heart Rhythm Society. Europace, 17, 1341–1353.
Simms, A. E., Paton, J. F. R., Allen, A. M., & Pickering, A. E. (2010). Is

augmented central respiratory–sympathetic coupling involved in the

generation of hypertension? Respiratory Physiology & Neurobiology, 174,
89–97.

Stefanovska, A., Bracic, M., & Kvernmo, H. D. (1999). Wavelet analysis

of oscillations in the peripheral blood circulation measured by laser

Doppler technique. IEEE Transactions on Bio-Medical Engineering, 46,
1230–1239.

Thanaj, M., Chipperfield, A. J., & Clough, G. F. (2018). Analysis of micro-

vascular blood flow and oxygenation: Discrimination between two

haemodynamic steady states using nonlinear measures and multiscale

analysis. Computers in Biology andMedicine, 102, 157–167.
Tigno, X. T., Hansen, B. C., Nawang, S., Shamekh, R., & Albano, A. M. (2011).

Vasomotion becomes less random as diabetes progresses in monkeys:

Vasomotion becomes less random with diabetes. Microcirculation, 18,
429–439.

Valenza,G., Citi, L., Garcia, R. G., Taylor, J. N., Toschi, N., &Barbieri, R. (2017).

Complexity variability assessment of nonlinear time-varying cardio-

vascular control. Scientific Reports, 7, 42779.
Wahlberg, E., & Fagrell, B. (1994). Spatial and temporal variation in laser

Doppler flux values in healthy lower limbs: Comparison between the

standard and the multiprobe. International Journal of Microcirculation,
Clinical and Experimental, 14, 343–346.

Yeh, Y., & Cummins, H. Z. (1964). Localized fluid flowmeasurementswith an

He–Ne Laser spectrometer. Applied Physics Letters, 4, 176–178.
Yvonne-Tee, G. B., Rasool, A. H. G., Halim, A. S., & Rahman, A. R. A. (2005).

Reproducibility of different laser Doppler fluximetry parameters of

postocclusive reactive hyperemia in human forearm skin. Journal of
Pharmacological and Toxicological Methods, 52, 286–292.

How to cite this article: Chipperfield AJ, Thanaj M, Clough

GF. Multiscale, multidomain analysis of microvascular flow

dynamics. Experimental Physiology. 2020;105:1452–1458.

https://doi.org/10.1113/EP087874

 1469445x, 2020, 9, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/E

P087874 by T
est, W

iley O
nline L

ibrary on [25/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1113/EP087874

