

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Specification and verification of reconfiguration protocols in
grid component systems.

Alessandro Basso1
Alexander Bolotov1
Artie Basukoski1
Vladimir Getov1
Ludovic Henrio2
Mariusz Urbanski3

1 Harrow School of Computer Science
2 CNRS/I3S/INRIA, Sophia Antipolis, France.
3 Institute of Psychology, Adam Mickiewicz University, Poznan, Poland.

Copyright © [2006] IEEE. Reprinted from the Proceedings of the 3rd IEEE
International Conference on Intelligent Systems (IS-2006), pp. 450-455.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org. By choosing to view this document, you agree to
all provisions of the copyright laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

3rd International IEEE Conference Intelligent Systems, September 2006

Specilficat'ion and 'Verilficat'ion of Rleconfigurat'ion
Protocols 'in G;rid Comnponent Systemns

Alessandro Bass', Alexander Boltoi, Artie Bas,ko,ski.Vl.dtmtr Ui

V/lacLlmir ,Getovl, LUCLOViC Henrio 2ancL MVariusz Urbanski'

Abstract
In this work we present an approach for the formal spec-

ification and verification of the reconfiguration protocols in
Grid component systems. We consider Fractal, a modular
and extensible component model. As a specification tool we
invoke a specific temporal language, separated clausal nor-
mal form, which has been shown to be capable of expressing
any ECTL+ expression thus, we are able to express the
complex fairness properties of a component system. The
structure of the normal enables us to directly apply the de-
ductive verification technique, temporal resolution defined
in the framework of branching-time temporal logic.

I. INTRODUCTION

There are two approaches to building long-lived and flex-
ible Grid systems. exhaustive and eneric. The former
approach provides rich systems satisfying every service re-
quest from applications but consequently its implementa-
tion suffers from very high complexity. In the latter ap-
proach we represent only the basic set of services (min-
imal and essential) and thus overcome the complexity of
the exhaustive approach. However, to achieve the full func-
tionality of the system we must make this li&htweight core
platform reconfigurable and expandable. One of the possi-
ble solutions here is to identify and describe the basic set
of features of the component model and to consider any
other functions as pluggable components [30l which can be
brought on-line whenever necessary 26].

Establishinc the theoretical foundations of the generic
processes involved in designini and functioning of such
Grid systems is highly important. A sienificant part of this
research lies in the area of formal specification and verifi-
cation of the core component model and the properties of
the desired Grid systems.
Among various approaches to re resenting a component

model we pay specific attention to the Fractal component
model [17]. The advantage of the Fractal framework is
that it defines the structure of the components, gives a ba-
sic classification of components, and has the mathematical
foundations e.g., the Nell calculus [7]. The Fractal spec-
ification defines the basic (non-functional) controls which
should be defined especially to enable dynamic reconfig-
uration of components, and a number of constiraints on
the interplay between functional and non-functional oper-

1 Harrow School of Comiiputer Science, University of Westminster,
London, UK.
2CNRSJ13S/INRIA, Sophia Antipolis France.
3 Institute of Psychology, Adam Mickiewicz University, Poznan,

Poland.
This work was partially supported by the FP6 Network of Excel-

lenJce CoreGRID funded by the European Commrission under contract
IST-2002-004265.

ations. The reconfiguration is obtained by triggering ap-
propriate actions on specific types of the components' in-
terfaces. These explicit dynamic properties of the Fractal
component model are particularly suitable for Grid systems
and environments In this work we focus on predefined cat-
egories of reconfigurations and also on proving properties
of these reconfigurations.

Given a formal specification of a distributed system there
are two major approaches to formal verification of this spec-
ification algorithmic and deductive 28. While the algo-
rithmic approach is fully automated, as in the case of model
checkin& its application, in &eneral, is restricted to finite
state systems On the other hand, methods of the second
deductive approach, can handle arbitrary systems provid-
ing uniform proofs. To the best of our knowledge, the only
technique currently used in the verification of distributed
hierarchical components is model checking.

In our approach the components are modelled in a spe-
cihic branchinu-time temporal logic, or SNFCTL(Separated
Normal Form for Computation Tree Logic) [14], and then
the temporal resolution is applied as a deductive verifica-
tion tool.
SNFCTL initially developed for CTL has been shown to

be able to express simple fairness constraints and their
Boolean combinations [10], [11]. Furthermore, a clausal
resolution over the set of SNFCTL clauses has been de-
fined [9], [10] and recently the search strategies for this
method were presented in [12].
These developments allow us to set up the following

problem structure tackled in the paper:

FCM > SNFcti(FCM) B7TRR

Here we suggest the tiranslation of the Fractal component
model (FCM) into the SNFCTL(FCM), the SNFCTL based
formal specification of FCM and to apply the 'branchin.
temporal resolution' method (BTR), the temporal resolu-
tion technique defined over the set of SNFCTL clauses.

II RECONFIGURATION SCENARIO

A. Component Model

Fractal is a modular and extensible component model.
The Fractal specification defines a set of notions character-
izing this model, an API (Application Program Interface),
and an ADL (Architecture Description Lan&uage).
Components are characterized by their content and the

membrane. The content of a component can be hidden
(in which case it is simply a black box) or it can be
constituted by a system of some other components (sub-

450

components). In the former case we would call a compo-
nent primitive while the latter case represents a compos-
ite component. The membrane or controller controls the
component. Controllers address non-functional aspects of
the component.

Fractal is a multi-level specifications. Depending on their
conformance level, Fractal components can feature intro-
spection and/or configuration. The control interfaces are
used in the Fractal model to allow configuration (recon-
figuration), and are defined as non functional. On the
Other hand, the functional interfaces of a component are
associated with its functionalities. A functional interface
can provide the required functionalities and we call it the
server interface Alternatively a client interface requires
some other functionalities
Component interfaces are linked to ether by bindings In

this papei, we will only consider primitive bindings that are
simple bindings transmitting invocations from the client
interface to the connected server interface.

There are four controllers that have been already defined
in Fractal (but others may be user-dehned depending on
the needs of the model)
* The attribute controller is used to configure a property
within a component, when theie is no need to take into
consideration bindings of interfaces.
. The binding controller is used when the attribute con-
troller is not applicable and actual binding/unbinding of
interfaces is required.
. The content controller can be used to retrieve the repre-
sentation of the sub components and add or remove them
accordinuly; note that if a sub component is shared by one
or more other components the scenario must be defined so
that also these other components are taken into considera-
tion.
. The life cycle controller allows to start and stop a com-
ponent, it is used for dynamic reconfiguration so that all
othe1 cntrol ca be applid sfel to the omponent w hile
the component is not in execution.

These are the basic controls which should be dehnued es-
pecially to be able to have dynamic ieconfiguration of com-
ponents.
The Fractal specification defines a number of constraints

on the interplay between functional and non-functional op-
erations:
. Content and binding control operations are only possible
when the component is stopped.
. When stopped, a component does not emit invocations
and must accept invocations through control interfaces;
whether or not an invocation to a functional interface is
possible is undehned.

B. ConfigurationlReconfiguration Scenalrio

In ueneral the initial configuration of a Fractal compo-
nent is given by the description of the component using
Fractal ADL.
From this first state, reconfiguration is obtained by trig

gering appropriate actions on the the life-cycle, the binding,
and the content control interfaces. A reconfiguration can

be triggered by any component that has a reference to a
correct non-functional interface.

In this work we focus on predefined categories of recon-
figurations and on provinu properties on these reconfiu-
ration. As far as the reconfiguration is concerned we use
the classical assumption that replacincg a component by a
similar one is safe for the system

III SPECIFICATION OF THE SCENARIO IN TEMPORAL
LOGIC FRAMEWORK

A. Formal Specificattion and Verification of Components
We distinguish the specification of the primitives and

of the composite component. The primitives are speci-
hied as a black box, usually in a programminu language of
our choice The component composition is specified using
Fractal ADL, and from this specifications it is possible to
extract the bindin s between interfaces of subcomponents
and the controllers of the component itself.

B Specification Language Normal Form for ECTL+
The lan(cuage of a normal form, SNFCTL developed for

a number of branching-time logics CTL [8, 14, ECTL
10] and ECTL+ 11], is based upon the extended set of
classical logic operators A, V, =>, , the set of future
time temporal operators (always), O (sometime),
(next time) and path quantifiers A (on all future paths)
and E (on some future path), classically defined constants
true and false and a new operator, start (at the initial
moment of time' with the intended meaning that it is true
only at the initial moment of time).
Underlying Tree Structures. Assuming familiarity

of the reader with the basic tree structure concepts we pre
cede the presentation of the SNFCTL lancuage by the in-
troduction of the notation that we will utilise.

Definition I (Tree) A tree, 7, is a pair (S R), where S
is a set of states and R C S x S is a relation between states
of S such that (a) so S is a unique root node (b)for every
si S there exists s C S such that R(s ,s j) and (c) for
everysi sj, Sk C S, if R(si, Sk) and R(sj, Sk) then si = sj.
By Xs, we abbreviate a path departing from si. A path

x is called a fullpath. Let X be a family of all fullpaths of
E. Given a path x,, and a state sj C X, (i <j) we term
a finite subsequence [Si, Sj si, si+ * * Sj of xs, a prefix
of a path xs and an infinite sub-sequence sj, s +l, Sj+2.
of X,i a suffix of a path x abbreviated Suf(x sj).
We assume that the underlying trees are countable c-

trees, i.e. any fullpath X C X is isomorphic to natural
numbers and every state si C S has a countable number of
successors.
Now we are ready to define the formal syntax and seman-

tics for SNFCTL. A set of SNFCTL clauses is interpreted in
a structure M = (S, R, s0, X L), where (S, R) is a count-
able w tree with a root s0, X is a set of all fullpaths and L
is an interpretation function mapping atomic propositional
symbols to truth values at each state and the following
condition is satisfied: X is R-generable [19], i.e. for every
state si C S, there exists Xji X such that si C Xi, and

451

for every sequence Xj = SO S2, the following is true:
Xj c X if, and only if, foi every i, R(s,s 7+r).

In our definition of an SNFCTL model structure M the
set of fullpaths X is B-generable. Therefore, followini [19],
it it is suffix fusion and limit closed.

Syntax. First, we hx a countable set, Prop = x, y, z,....
of atomic propositions The core idea of SNFCTL is to rep-
resent temporal information in the following three types of
constraints. Initiatl constraints represent information rele-
vant to the initial moment of time, the root of the compu-
tation tree. Step constraints indicate what will happen at
the successor state(s) given that some conditions are satis-
fied 'now'. Finally, Sometime constraints keep track on any
eventuality, again, given that some conditions are satisfied
now. Additionally, to enable sound reasoning within a
specific path context during the verificationr we incorpo-
rate indices.

Indices. The language for indices is based on the set of
termslIND {ff, g), h, LC(f), LC(g), LC(h) ...},
where f, g, h ... denote constants. Thus, EA(f) means that
A holds on some path labelled as (f. A designated type of
indices in SNFCTL are indices (LC(ind)) which represent a
limit closure of prehixes associated with (Ind). All Formulae
of SNFCTL of the type P PEOQ or P ypeE<>Q, where
Q is a purely classical expression, are labeled with some
index.

Definition 2 (Separated Normal Form SNFCTL) A set
of SNFCTL clauses is a set of Formulae A El [1(Pi = Fj)
where each of the clauses P > F is further restricted as
below, each cai cyp at crvii, ,m 3r or ryis a literal, true
or false and Ond^ c IND is soume index.

start

I

q a-=1 ?S

cv~
w
-1 av

k
i=l mi

AO n, 1/3m]

an initial clause

an A step clause

EO [r (an E step clause

AOry an A sometime clause

OE Y(LC(ind) an E sometime clause

C. Interpreting SNFCTL
We define a relation l= which evaluates the SNFCTL clauses
at a state si in a model M. The evaluation of the classical
connectives in the states is standard. Below we represent
the evaluation of the temporal operators and path quanti-
fiers.

(M,si)1 = AB iff for each X, (M,XSi) I= B
A4/si)s = EB iff there exists xS,-1 I*

such that A(M, Xs,) I= B
(M,X,,) l B iff for each sj c X,,, If i

then (M, Suf sj)) l= B.
(M X,,) I= OB iff there exists sj C Xs,

such that i < j and (MA Suf (xsi
(M,Xs,) I= OB iff (,Suf(Xsiy Si+i))

Jj

Sj))
I= B.

Definition s (Satishiability, validity) An SNFCTL clause,
C, is satisfiable if, and only if, there exists a model AM such
that (A/ so) = . An SNFCTL clause, C, is valid if, and
only if, it is satishied in every possible model.
An initial SNFCTL clause, start => F, is understood as

"F is satisfied at the initial state of so1me 1model M". AnY
other SNFcTL clause is interpreted taking also into account
that it occurs in the scope of A [

Thus, a clause A (x => AOp) is interpreted as "for
any fullpath X and any state si C X (O i), if x is satisfied
at a state si then p must be satisfied at the moment, next
to s, along each path which starts from s"

Next, a clause A (x => EO q d) is interpreted as
for any fallpath X and any state si X0V <i), if is
satisfied at a state si then q must be satisfied at the moment,
next to si, along a path which stcurts from si and which
is associ'ated wtltidth .d Speaking informally, we interpret
A[(x EOq ind)) such that given a state in a model
which satishies x (the left hand side of the clause), the label,
ind indicates the direction in which the successor state
which satisfies q can be reached (see similar developmernts
in the construction of louic DCTL* [27]).

Finally, we would like to point out that our interpreta-
tion of an LC index corresponds to the concept of a linear
interpretation [36.
Note that in the full ECTL1 language the standard 'un-

till (1) and unless' (v)) operators are used:
M, x AUIB iff there exists sj C x such
that i <j and (A, Suf(xV, sj)) i= B and for each
s,k x i, if i < k < jthen (M, SUf (Xs., Sk)) l= A.
and AWVB = EA V AlIB. In the SNFCTL these op-

erators are defined via the basic set of SNFCTL operators
[8]. For example, the following rules can be applied to re-
move the WV operator in the scope of either of the path
quantihers [8] where x is a new proposition:
Removal of EW
P ==~ E(p)/q) LC(ind)
P => q V (p Ax)
x =* EO(q X(p))(ind)

Removal of AW

P= A(p W q)
P => qV (pAx)
x = EO(q (p A))

DExample Specificati'on
Let us consider a simple printing queue component

model which consists of a client and one printing queue
component as primitives. The client interfaces of the client
are of type Cla and the servei interfaces of the printing
queue are of type SIr. Finally, we have a simplified ver-
sion of a life-cycle controller that allows to safely add or
remove a binding between a client and the printing queue.
Formal specification of non-functional aspects. In

order to allow for reconfiguration not only the scenario
must be formally specified, but also everything else which
allows dynamic reconfiguration. Although in the fractal
model four controller interfaces are defined, for reasons of
space, we will only specify the safe-unbinding part of a re-
duced Life-Cycle Controller (LCC) so that it can be used
in the deductive reasoning. Note that it is always pos-
sible to create new controllers if needed, in this case an

452

appropriate set of formal specifications for each controller
must be provided usine a similar procedure. If a controller
follows the standard Fractal model, a standard set of gen
eral temporal logic rules can be called and then modified to
match the specification; otherwise, in the case of user-made
definitions the pro rammers themselves must provide the
rules matching the criteria followed in the creation of the
dehinition.
Next we will let the propositions Bound, ...,Bound,

denote the bindings between components. The format that
each may take is Roundi (CL, ST,(1(< < n whic is
a proposition that (when true) specihes that a component
with Client Interface CI is bound to the Server Interface
SI, In this example we have two primitive components
one for the Printing Queue and one for the Client using the
Printing Queue. We would add as many of these proposi-
tions as necessary to describe the system
LCC is a proposition which when true signifies that the

Life Cycle Controller is active.
Before introducina the Life Cycle Controller Formula we

would need to specify how components are started and
stopped. However, for illustration in the context of this
paper we will only provide a partial specification of the
Life Cycle Controller and two primitive components; we
only deal with the formula that captures the bindings of
the two components. We will model the start of the com-
ponents by attaching them to start.
Now we introduce the formula for our version of the Sim-

plihied Life-Cycle Controller:

-,LCCA -(BoundCI SI) B nd2(CI SI,))~~~,SI)V Bounda y01 ka J

A E LCC = (Bound, (CIa, SIR) A BOUnd2 (CIa, SI,))
which states that if neither of the components are bound

and the LCC is not active then in all possible computations
when the LCC is active then we must have the two com-
ponents bound.

In the following example the Client can send a request
for printing: req(CIL) abbreviated below as req. When
true, this proposition states that a printing request has
been raised by the client which possesses the client interface
CIa. Simiiilarly print is a propositionu statinig that a printing
request has been satisfied by the printer
Formal specification of reconfiguration scenarios.
For this section we consider a simple printin queue

component model (see figure 1) which consists of one client
and one printing queue component as primitives. The
client interface of the client is labelled CIa, and the server
interfaces of the printing queue is labelled S'r. We will
also consider a simplified life-cycle controller LCC that al-
lows us to safely remove a binding between a client and
the printina queue. This simple example is sufficient to
demonstrate the potential of deductive reasoning, applied
to a fractal model.
We will take in consideration the safety part of the spec-

ification and its requirements [29]. The Life-Cycle Con-
troller LCC does not have a set specification being a non-
functional component. We suggest that the system has

Client Printincr Queue
CLa Si

Fig 1 Exam le in Fractal LC Controller

a common protocol of communication (both Client and
Printing Queue must follow a common process when a re-
quest is raised).

Client specification
(1) req=*

A(reqb (req A print))
(2) req A (-req2Hprint)

(3) req5 A> *req

Rmequest is kept until it
is possible to execute it
There will be no other
request until job
is printed
Ihe request for print will
be eventually released

The complete specification of the primitive

start = -req A (1) A (2) A (3)

where req defines the initial state for Client primitive.
Printing queue specification:
(4)A (print A print2)

(5) A(-IprmnItWreq)

(6) print Ar>A -print
(7) req A0print

Mutual Exclusion property.
it eveiy point in time,
the printer can peifoim at
most one printing operation:
There is no printing unless
requested
Printinre will eventually end
The request for printing
should be granted

The complete specification of the primitive.

start => rint A (4L A (5)A (67A (7)
Finally we specify the Life-Cycle Controller properties

which affect the receiving of a printing request and the
printing itself:

start =(>[(LCC A -req V print))
(req A print))

A (LCC >

When the life-cycle controller is activated, it ensures that
Client Interface and Server Interface are bound, therefore
allowing for requests to be sent from the Client, and prints
to be carried out by the Printina Queue, for the specific
binding,
We believe that the branching-time framework is appro

priate for our specification targets because of the following
reasons. Assume that after unbinding a client CI, it has
been removed forever. Now, from this moment of time it is
true to say that A =-req (in all possible futures from now
on, there will be no more requests from the Client Inter-
face to the Server Interface) and therefore at the previous
moment of time it was true to say that EOA -ireq (in
some future it will not be possible for the Client interface

453

to send a request to the Server Interace). The branching-
time framework used shows how significant its use can be
even in such simple example.
To apply deductive reasoning to this model various

properties could be taken into consideration. As a rela-
tvely simple example we consider te followin, property.
Let p stands for -rcq(CIa, SIr) A -print(CIa SI) As
sume now that during the reconfiguration of the system
the following property should be verified:

t A(OpA -p)

In the next section we will show how this formula can
be represented in terms of SNFCTL and then apply to
this specification the resolution technique as a verification
method.

IV TuE VERIFICATION METHOD - CLAUSAL
TEMPORAL RESOLUTION

A. Temporal Resolution Method for Branching- Time Log-
ics

In order to achieve a refutation of the generated specifi-
cation, we incorporate two types of resolution irules already
dehned in [8], [14. step resolution (SRES) and temporal
resolution (TRES). Step resolution is used between For-
mulae that refer to the same initial moment of time or
same next moment along some or all paths. Two step res-
olution rules that will be used in our example are given
below (where I is a literal and C and D are disjunctions of
literals).
SRES 1

start=
start=

start

ClV
DV l
CVD

SRES 3
P >AO(CVI)
Q >EO(D -I) nd

P Q) L=>EOG V D)(ind)
When an empty constraint is generated on the right hand

side of the conclusion of the resolution rule, we introduce
a constant false to indicate this terminating clause.
Now we present only two temporal resolution rules that

will be used in our verification example. In the formula-
tion of these rules below I is a literal and the hirst premises
abbreviate the A and E loops in 1 13], i e the situation
where, given that P is satisfied at some point of time, I
occurs always from that point on all or some path respec-
tively.

TRES 2
P
Q >

Q =~

AOA1EI

E(-PW 1) (LC(ind)

p
Q
Q

TRES 3
EOE l(LC(ind))
AO l
A(-PW 1-)

1. start x 8. xi A Y
2. start -> pV 9. xi A x

3. start --xxVx 10. z1 EO()p(f)
4. start z V p 1L. z EO
5. start 1zVz 12 y A0p
6. true= A () zV p) 13. xE ZLf)
7,. true AO(-,z V zi)

We apply step resolution rules between 1 and 2 and 1 and
3. No more SRES rules are applicable. Formula 12 is an
eventuality clause, and therefore, we are looking for a loop
in p (see 13] for the formulation of the loop searching pro-
cedure). The desired loop, E EO p(LC(f)) (given that
condition z, is satishied) can be found consideriug clauses
10 and 11 Thus, we apply the TRES 3 rule to resolve this
loop and clause 12, obtaining 16. Next we remove EW
from 16 deriving a purely classical Formula 17 (y is a new
variable). Simplify the latter, apply TEMP (the 'tempo-
rising' rule, see [8], obtaininu, in particular, 19 and 20, and
then a series of SRES rules to newly generated clauses
Now, as no more SRES rules are applicable, we find an-
other eventuality, Formula 13, and thus we next look for a
loop in z This loop can be found considering Formulae
9 and 26. AOA z given that condition xi is satisfied.
Thus, we can apply TRES 2 to resolve this loop and 13
deriving 27. Then we remove E ¾W from the latter (on step
28, where w is a new variable, we use only one of its conclu-
sions). Applying simplification and temporisinu to 28 we
obtain 29 The desired terminating clause start = false
is deduced by applying SRES I to steps 1, 15 and 23.

14.
15.
1.
17'
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

start
start

y
y
v

start
true
start

start
start

.1

x.1

x

start
start

y

=> A(--z Wp)
p>pV-zl A vp t c

AO(y V p t

gV -Z t

AQgz
AO(pV-
AO(pV-
AO ,zA-~

E(-Sx W,
z V-1x A
- V zV-
false

z)

Z) (LC
w

1 2, SRES I
1, , SRES 1
U 11, 12 TRES 3
16 A}W Removal

v) 16 A)/V Removal
17 SIMP TEMP

)1 17 SIMP TEMP
14,19, SRES 1
5,22, SRES 1
4, 22, SRES 1
8, 20, SRES3
7,24, SRES 3
6, 25, SRES 3

(f) 26 13 TRES 2
27 EW Removal
28 SIMP,TEMP
1 1,fY23 5RES I

We have found a contradiction, meaning that SNFCTL (t),
hence t itself is unsatisfiable.

V. CONCLUSIONS AND FUTURE WORK

B. Excample Verification
To verify (:) we apply the resolution method to the set of

SNFCTL clauses SNFCTL(T). We commence the resolution
proof presenting at steps 1 - 13 the clauses of SNFCTL (t) in
the following order: initial clauses, step clauses and, finally,
any sometime clauses.

In this paper we have introduced a formal framework
for the deductive verification of modular specification. As
a specification tool we use the branching-time temporal
logic. Specified properties and requirements of the system
are then translated into the language of a normal form,
SNFCTL, thus enabling the application of a powerful reso-
lution method.

454

Future extensions of this work will be in the applica-
tion of the Inferential Erotetic Logic (IEL) tools aiming at
optimisation of the process of reconfiguration of a compo-
nent model [15]. The Inferential Erotetic Logic (IEL) [31],
[34] is a powerful tool in the area of analyzine and mod-
elling such components of intelligent activity as planning
problem solving, and searching for information in mas-
sive data/knowledge bases [32]. Important developments
within the framework of IEL are Erotetic Search Scenarios
(ESS) [33] and Socratic Proofs (SP) [35]. ESS is based on
the idea of providing conditional instructions for solving
an initial problem, informing us which questions should
be asked and when they should be asked. Moreover, an
erotetic search scenario shows where to go if a direct an-
swer to a query appears to be acceptable and does so with
respect to any direct answer to each query. SP is a very
specific technique, which reduces the complexity of stan-
dard problem-solving methods by using pure questioning
only.

REFERENCES
1] R. Allen and D. Garlan A formal basis for architectural con-

nection. In ACM Trans. Softw. Eng. Methodol., Vol 6, nunm 3,
pages 213-249. ACM Press, NY, 1997.

[2 M. Astley and G. A. Agha. Customization and composi-
tion of distributed objects: Middleware abstractions for pol-
icy management. Proceedings of the ACM SIGSOFT 6th In-
ternational Symposium on Foundations of Software Engineer-
ing(FSE). Pages 1-9, 1998.

[3] L. Bachmair and H. Ganzinger. A Theory of Resoltition. In
J.A. Robinson and A. Voronkov, editors, Handbook of Auto-
mated Reasoning, chapter 2, Elsevier, 2001.

4] T. Barros and L. Henrio and E. Madelaine. Behavioural Mod-
els for Hierarchical CompoIeits. In Proceedings of SPIN'05.
Springer Verlag, 2005.

[5] T. Barros and L. Heiirio and E. Madelaine. Verification of Dis-
tributed Hierarchical Components. International Workshop on
Formal Aspects of Conliponent Software (FACS'05). Electronic
Notes in Theoretical Computer Science. Macao, Oct 2005.

[6 F. Baude, D. Caromel, and M. Morel. From Distributed Ob-
jects to Hierarchical Grid Components. In International Sym-
posiur on Distributed Objects and Applications (DOA), LNCS,
Springer Verlag, 2003.

7] P. Bidinger and J. Stefani. The kell calculus: operational se-
mantics and type system. In Proc. 6th IFIP FVOODS 03 Con-
ference, November 2003.

[8] A. Bolotov. Clausal Resolution for Branching-Time Temporal
Logic. PhD thesis, Department of Computing and Mathematics,
The Manchester Metropolitan University, 2000.

[9 A. Bolotov. Clausal resolution for extended computation tree
logic ECTL. II Proceedings of the Time-2003/International
Conference on Temporal Logic 2003, Cairns, July 2003. IEEE.

10] A. Bolotov and A. Basukoski. Clausal resolution for extended
computation tree logic ECTL. Journal of Applied Logic, in
Press.

[11] A. Bolotov and A. Basukoski. A Clatisal Resolution Method
for Branching Time Logic ECTL+. Annals of Mathematics and
Artificial IIltelligence, Spriniger Verlag, in Press.

12] A. Bolotov and A. Basukoski. Search Strategies for Resolution
in CTL-Type Logics: Extensioi aIid C,omplexity. In Proceedings
of the 12th International Symposium on Temporal Representa-
tion and Reasoning, (TIME 2005) 195 - 197, IEEE Computer
Society, 2005.

13] A. Bolotov and C. Dixon. Resolution for Branching Time Tem-
poral Logics: Applying the Temporal Resolution Rule. In Pro-
ceedings of the 7th International Conference on Temporal Rep-
resentation and Reasoning (TIME2000), pages 163-172, IEEE
Computer Society.

[14] A. Bolotov aAld I. Fiher A Clan al Reso nitior Method for

J15] A. Bolotov and P. Lupkowski and \. Urbanski Search and check.
Probleiii solving by probleiii reductionI. To be published in Pro-
ceedings of The 8th International Conference on Artificial Intel-
ligence and Soft Computing, Zakopanie, Polanrd, June 2006.

[16] J. Bradfield. and C. Stirling. NIodal logics aIid min-calc li. In
J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Pro-
cess Algebra, pages 293-330. Elsevier, North-Hollandd 2001.

17 E. Bruneton, T. Coupaye, and J. Stefani. Recursive and
Dynaniiic Software Coniiposition with Sharing. In Proc. of
the 7th It. Workshop on Component- Oriented Programming
(WCOP02), 2002.

518] E. Bruneton, T. Coupaye, I. Leclercq, V. Qua, J.-B. Stefani. An
Open CompoIient Model and Its Support in Java. CBSE 2004.

19] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science: Volumre B,
Formal Models and Semantics., pages 996-1072. Elsevier, 1990.

[20] E. A. Emerson. Automated reasoning about reactive systems.
In Logics for Concurrencyg Structures Versus Automata, Proc.
of International Workshop, volume 1043 of Lecture Notes in
Computer Science, pages 41-101. Springer 1996.

[21] E. A. Emerson and J. Y. Halpern. Decision procedures and
expressiveness in the teImiporal logic of branchiiig time. In JCSS
30(1), pages 1-24, 1985.

[22] E. A. Emersoi and J. Y. Halpern. "Sometimes" and "Not
never" revisited: On branching versus linear time temporal logic.
JACMI, 33():151-1785 1986.

[23] E. A. Emerson and A. P. Sistla. Deciding full branching time
logic. In STOC 1984, Proceedings of, pages 14-24, 1984.

[24] I. Fisher. A Resolution Method for Temporal Logic. In Proc. of
the XII Irnternational Joint Conference on Artificial Intelligence
(IJCAI), pages 99-104, 1991.

[25] M. Fisher aid C. Dixon and M. Peim. Clausal Temporal Res-
olnition. ACM Transactions on Computational Logic (TOCL),
1(2):12-56, 2001.

[26] C. Goble, D. De Roure, N.R. Shadbolt, and A.A.A. Fernan-
des. Enhancing Services and Applications with Knowledge and
Semantics. In I. Foster and C. Kesselr anr eds. The Grid
2: Blueprint for a New Computing Infrastructure, Morgan-
Kaufmnan, 2004.

[27] T. Hafer and W. Thomas. Computation tree logic CTL* and
path qn aiitifiers in the imronadic theory of the binary tree. In
Automata, Languages and Programming, Proc. 14 ICALP, vol-
uniie 267 of Lecture Notes in Computer Science 269-279, 1987

[28] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of
iiiear temporal logic verificatiois. In Proceedirgs of the 25th In-
ternational Colloquium on Automata, Languages and Program-
minag (ICALP-98), Vol. 1443 of Lecture Notes in Computer Sci-
ence, Springer:1-16,1998.

[29] Z. Maiina and A. Punieli. Temporal Specificatioii and Verification
of Reactive Modules. Weizinann Institute of Science Technical
Report, Iarch 1992.

[30] J. Thiyagalingam, S. Isaiadis and V. Getov. Towards Briilding a
Generic Services Platform: A Components- Oriented Approach.
In: V. Getov and T. Kielniiann, eds. Component Models and
Systems for Grid Applications, Springer-Verlag, 2004.

[31] A. Wisniewski. The Posiiig of Questions: Logical Formndations
of Erotetic Inferences. Kluwer AP, 1995

[32] A. Wisiiiewski. Erotetic Logic aiid Explanation by Abnorniiic
Hypoteses. Synthese 120, No. 3, pp. 295-309, 1999.

[33] A. Wisiiiewski. Erotetic search sceiiarios. Syiithese 134, No 3,
pp. 389-427, 2003

[34] A. Wisniewski. Qiestiofis and Infereices. Logique et Analyse
173-174-175, pp. 5-43, 2001.

[35] A. Wisniewski. Socratic Proofs. Journal of Philosophical Logic
33, pp. 299-326, 2004.

[36] P. Wolper. On the relation of programs alid coiputations to
models of teniiporal logic. In L. Bolc aiid A. Szalas, editors
Time and Logic, a computational approach, chapter 3, pages
131-178. UCL Press Limited, 1995.

CTL Branching Time Temporal Logic. Journal of Experimental
and Theoretical Artificial Iatelligence., 11:77-93, 1999.

455

