Airport economic value – informing business models

Denis Huet, Gérald Gurtner

Andrew Cook, Anne Graham, Samuel Cristobal, Bruno Desart

1. Goals and background

Objectives

- Contribute to SESAR Operational Focus Area 05.01.01 (Airport Operations Management)
- Assess the economic value of extra capacity at an airport
- Better understand interdependencies of various KPIs
- Assess existence and behaviour of an airport economic optimum, in a similar way to the early 2000s when estimating the economic en-route capacity optimum
- Build a simple model but highly data-driven

En-route capacity economic optimum

Airport Economic value (1/2)

Objective: Is it possible to compute an airport economic value as well as its optimum depending of various parameters?

Airport Economic value (2/2)

Gather various types of airport-related data:

- Operational.
- 🔳 Economic & Financial.
- Quality of service (satisfaction).

Develop a simple generic model based on real data.

Analyse behaviour of this model as well as its optimum.

2. Data analysis

Data sources

- Large variety of data sources
- Alignment is difficult!

Source	Typical Content	Use	Transfer
FlightGlobal	Number of flights, number of passengers, share of European flights	Cluster analysis, calibration	Transferred
EUROCONTROL CODA	Delay per airport & per type	Comparison with DDR delays	NA
EUROCONTROL DDR	Full trajectories of aircraft for one month of data	Delay distribution, capacity fitting, share of different types of companies	NA
ACI	Number of passengers (domestic, international, etc.)	Calibration purposes	Transferred
ACI	Ownership airport	Not used in final analyses	Transferred
Private communication, EUROCONTROL (2016)	Coordination of airport	Not used in final analyses	NA
Skytrax, etc.	Passenger satisfaction	Cluster analysis	Transferred
ATRS	Financial data	Cluster analysis, calibration	Transferred for 2013 and 2014
ATRS	Airport charges	Comparison with aeronautical revenues per aircraft	Transferred
Private communication, EUROCONTROL (2016)	Maximum Take-Off Weight	Cost of delay calibration	NA
University of Westminster	Cost of delay	Cost of delay calibration	Public report

Clustering

- Clustering produced to categorise airport based on data only
- Found 3 clusters (modularity-based method)
- Based on variables inferred from a principal component analysis

Cluster Id	ICAO Code	Airport Name	
2	EBBR	Brussels	
	EDDL	Dusseldorf	
	EGCC	Manchester	
	EIDW	Dublin	
	EKCH	Copenhagen Kastrup	
	ENGM	Oslo Gardermoen	
	ESSA	Stockholm Arlanda	
	LOWW	Vienna	
	LPPT	Lisbon	
1	EDDF	Frankfurt	
	EDDM	Munich	
	EGKK	London Gatwick	
	EGLL	London Heathrow	
	EHAM	Amsterdam Schiphol	
	LEBL	Barcelona-El Prat	
	LEMD	Madrid Barajas	
	LFPG	Paris Charles de Gaulle	
	LIRF	Rome Fiumicino	
	LSZH	Zurich	
	LTBA	Istanbul Ataturk	
0	EDDH	Hamburg	
	EDDK	Cologne Bonn	
	EFHK	Helsinki	
	EGBB	Birmingham	
	EGSS	London Stansted	
	ELLX	Luxembourg	
	EPWA	Warsaw Chopin	
	LFMN	Nice Cote d'Azur	
	LGAV	Athens	
	LHBP	Budapest	
	LKPR	Prague	
	LPPR	Porto	

3. Model development

Model overview

- Single airport modelling (calibrated on a big hub in Europe)
- Equilibrium between supply (airport capacity) and demand (traffic from airlines)
- Includes relationship between capacity and delay
- Includes loss of revenues for airline due to delays
- Includes traffic variation based on airline revenues
- Includes operational cost of airport, direct and indirect revenues

Model flow

- Airport chooses capacity based on cost and revenues
- Capacity sets level of delay
- Delay impacts airline revenue
- Airline revenue changes probability of operating flights
- Probability of operating flight changes airport revenue

Traffic vs. delay

Exponential fit Linear fit works well too

Cost vs. delay

 $c_d = -7.0\,\delta t - 0.18\,\delta t^2 + (6.0\,\delta t + 0.092\,\delta t^2)\sqrt{MTOW}$

- Sourced from Uni. of Westminster standard reference values
- For the airport calibrated, mix of type of aircraft and airlines taken into account

Problem: cost of average is not average cost of delay because:

- Cost is not linear with delay,
- In particular, airlines do not make money from negative delays (anticipated flights with respect to their schedule)

Distribution of delays

Lots of negative delays
Some very high positive delays

Cost of uncertainty

Cost of 'uncertainty' can be bigger than cost of average delay

Equilibrium

Delay depends on traffic;

- traffic depends on probability of operating the flight;
- probability depends on the cost of delay;
- cost of delay depends on delay.
- →Implicit equation.

4. Results

Airport income

Marginal cost of capacity is hard to calibrate → used as a variable.

Optimal capacity

 Optimal point in capacity
Point depends on several factors, including marginal operational cost

Airport comparison

- Airports have different profitable marginal costs
- Profitable marginal cost depends on the size of the airport

21

Pax per flight

 Increasing the number of pax per flight helps additional capacity units to be more profitable.

Passenger effects

- Up to a point, pax spend more when they spend more time at airport ('golden hour')
- Pax are less satisfied when waiting more
- More optimal points

Conclusions

- Study compiles lot of different sources of data.
- Only scratched the surface!
- Can be focused on specific airports in the future

- Model based on:
 - Delay vs traffic
 - Cost vs delay
 - Traffic vs revenues
- Full cost of delay, including uncertainty, is taken into account

- Single optimal capacity point in general
- Depends on marginal costs of capacity
- Can be used to benchmark airports
- Pax-related effects could be enhanced, e.g. access and dwell time models

UNIVERSITY OF WESTMINSTER[™]

Questions?

g.gurtner@westminster.ac.uk denis.huet@eurocontrol.int