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Abstract— Digital Alias-free Signal Processing (DASP) uses 
random sampling to mitigate aliasing. This paper investigates 
the use of DASP for realization of continuous-time, linear, time-
invariant systems with finite-duration impulse response. We 
propose a random sampling scheme and suitable processing 
algorithm to produce an estimator of the target output. The 
estimator is unbiased, and its variance is guaranteed to converge 
to zero at least at O(T) rate, where T is the average distance 
between consecutive sampling instants. If the input signal and 
system impulse response are piecewise continuous and satisfy 
some benign conditions, the convergence rate is at least O(T^2). 
But if they are continuous everywhere, the rate increases to 
O(T^3). 

Keywords—alias-free sampling, alias-free digital signal 
processing, system realization, random sampling, fast 
convergence 

I. INTRODUCTION 
DASP is a branch of DSP aiming at alleviating aliasing – 

a fundamental constraint of classical DSP. Manifestation of 
aliasing is that, unless the class of processed signals is suitably 
restricted, for any deterministic sampling pattern, uniform or 
not, there exist different signals taking identical values at the 
sampling instants. In order to avoid aliasing, DASP uses 
random sampling and tailor-made processing algorithms. In 
DASP, every sampled signal is random. Sampling schemes 
suitable for DASP guarantee that these processes differ from 
each other if the continuous-time originals are different. To 
give a simple example of avoiding aliasing, consider 
collecting a single signal sample 𝑥𝑥(𝜏𝜏0), where 𝜏𝜏0 is a random 
variable with the probability density function (PDF) 𝑓𝑓𝜏𝜏(𝜏𝜏0) =
1

√2𝜋𝜋
exp �− 𝜏𝜏0

2

2
� . The expected value of the discrete time 

process 𝑥𝑥𝑑𝑑(𝑡𝑡; 𝜏𝜏0) = 𝑥𝑥(𝜏𝜏0)
𝑓𝑓𝜏𝜏�𝜏𝜏0 �

𝛿𝛿(𝑡𝑡 − 𝜏𝜏0)  is E{𝑥𝑥𝑑𝑑(𝑡𝑡; 𝜏𝜏0)} =

∫ 𝑥𝑥𝑑𝑑(𝑡𝑡; 𝜏𝜏)𝑓𝑓𝜏𝜏(𝜏𝜏)d𝜏𝜏∞
−∞ = 𝑥𝑥(𝑡𝑡), which proves that in this case 

different continuous-time signals have different discrete-time 
counterparts – a necessary and sufficient condition for 
eliminating aliasing. Moreover, if 𝑔𝑔(∙) is the impulse response 
of a linear-time invariant system, then 𝑦𝑦�(𝑡𝑡; 𝜏𝜏0) = 𝑥𝑥(𝜏𝜏0)

𝑓𝑓𝜏𝜏�𝜏𝜏0 �
𝑔𝑔(𝑡𝑡 −

𝜏𝜏0) is an unbiased estimator of its output 𝑦𝑦(𝑡𝑡) when the input 
is 𝑥𝑥(∙) . To prove it we note that E{𝑦𝑦�(𝑡𝑡; 𝜏𝜏0)} =
∫ 𝑦𝑦�(𝑡𝑡; 𝜏𝜏)𝑓𝑓𝜏𝜏(𝜏𝜏)d𝜏𝜏∞
−∞ = ∫ 𝑥𝑥(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)d𝜏𝜏∞

−∞ = 𝑦𝑦(𝑡𝑡) . This 
short discussion shows that, in principle, aliasing can be 
avoided. 

Although avoidance of aliasing is a desirable feature of 
DSP, it does not make DASP a perfect replacement of 
continuous-time signal processing. Random discrete-time 
signals are normally observed through their single, time-
limited realizations. The results of signal processing are 

derived from this limited data rather than full knowledge of 
the random process. Therefore, DASP focuses on constructing 
estimators of the required outcomes, such as the signal Fourier 
transform or output of a filter, and assessing their accuracy.  

The origins of DASP can be traced back to 1960s when 
Shapiro and Silverman [1] elaborated on estimating power 
spectrum density of continuous-time random signals from 
samples collected at random time instants. The work was 
expanded and adopted for practical application in several 
papers including [2]-[3]. While the literature on the use of 
nonuniform sampling is widespread, here we entirely focus on 
deployment of random sampling for aliasing avoidance. 
Particularly, we draw attention to two books devoted to this 
topic [4]-[5] and an ample paper exploring hardware aspects 
needed for implementation of DASP systems [6].  

The work in this paper is chiefly motivated by the 
approaches developed for DASP estimation of the Fourier 
Transforms [7], where the authors proposed an unbiased and 
consistent DASP estimator of the Fourier Transform of 
deterministic signals, working in an arbitrary range of 
frequencies. It was demonstrated there that the clock jitter in 
the sampler reduces the infinite bandwidth of DASP. The 
larger the jitter, the narrower is the range of frequencies, 
within which alias-free signal processing can be performed. 
Subsequent papers [8]-[11] replaced the total random 
sampling scheme used in [7] with stratified sampling [8], 
which led to improving the pointwise convergence rate of the 
estimator from 𝑂𝑂(𝑇𝑇)  to 𝑂𝑂(𝑇𝑇3) , and then with antithetical 
stratified sampling [9] reaching the rate 𝑂𝑂(𝑇𝑇5) . All three 
estimators [7]-[9], still had the uniform convergence rate of 
𝑂𝑂(𝑇𝑇). This was addressed in [10], where the use of the first-
order hybrid sampling produced pointwise and uniform 
convergence rates 𝑂𝑂(𝑇𝑇5), and [11] where 𝐿𝐿-th order hybrid 
sampling increased both convergence rates to 𝑂𝑂(𝑇𝑇2𝐿𝐿+3) . 
Ample applications of DASP include communication systems 
[12], nuclear magnetic resonance (NMR) [13], and image 
processing [14].  

There is very limited literature on system realization in 
DASP. Some preliminary results can be found in [4] and [5].  

This paper focuses on DASP realization of continuous, 
linear, time-invariant systems defined by their finite-duration 
impulse response 𝑔𝑔(∙), i.e. 𝑔𝑔(𝑡𝑡) = 0 if 𝑡𝑡 < 𝑇𝑇𝐷𝐷  or 𝑡𝑡 ≥ 𝑇𝑇𝐻𝐻, and 
𝐻𝐻 = 𝑇𝑇𝐻𝐻 − 𝑇𝑇𝐷𝐷 > 0 . The target output 𝑦𝑦(∙) , is 𝑦𝑦(𝑡𝑡) =
∫ 𝑥𝑥(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)d𝜏𝜏𝑡𝑡−𝑇𝑇𝐷𝐷
𝑡𝑡−𝑇𝑇𝐻𝐻 

= ∫ 𝑧𝑧(𝜏𝜏; 𝑡𝑡)d𝜏𝜏𝑡𝑡−𝑇𝑇𝐷𝐷
𝑡𝑡−𝑇𝑇𝐻𝐻

, where 𝑧𝑧(𝜏𝜏; 𝑡𝑡) =
𝑥𝑥(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏). More generally: 



𝑦𝑦(𝑡𝑡) = � 𝑧𝑧(𝜏𝜏; 𝑡𝑡)d𝜏𝜏

𝛽𝛽(𝑡𝑡)

𝛼𝛼(𝑡𝑡) 

= �𝑧𝑧(𝜏𝜏; 𝑡𝑡)d𝜏𝜏
Γ

 (1) 

where 𝛼𝛼(𝑡𝑡) ≤ 𝑡𝑡 − 𝑇𝑇𝐻𝐻 , 𝛽𝛽(𝑡𝑡) ≥ 𝑡𝑡 − 𝑇𝑇𝐷𝐷 , and Γ = [𝛼𝛼(𝑡𝑡),𝛽𝛽(𝑡𝑡)). 
We sample 𝑥𝑥(∙)  using a simplified version of stratified 
sampling [8]. In our approach, all strata Γ𝑘𝑘 = [𝑘𝑘𝑘𝑘, (𝑘𝑘 + 1)𝑇𝑇) 
have the same length  𝑇𝑇 . Each stratum Γ𝑘𝑘  comprises one 
sampling instant  𝜏𝜏𝑘𝑘 = 𝑘𝑘𝑘𝑘 + 𝜏̂𝜏𝑘𝑘 , where {𝜏̂𝜏𝑘𝑘}𝑘𝑘=−∞ 

∞  is a 
sequence of IID random variables with PDF 𝑓𝑓𝜏𝜏�(𝜏𝜏) =

�
1
𝑇𝑇

if 𝜏𝜏 ∈ [0,𝑇𝑇) 
0 if 𝜏𝜏 ∉ [0,𝑇𝑇)

. We select 𝛼𝛼(𝑡𝑡) and 𝛽𝛽(𝑡𝑡) as close to each 

other as possible, and aligned with the strata borders. 
Let  𝛼𝛼(𝑡𝑡) = 𝑘𝑘𝑏𝑏(𝑡𝑡)𝑇𝑇  and 𝛽𝛽(𝑡𝑡) = �𝑘𝑘𝑓𝑓(𝑡𝑡) + 1�𝑇𝑇 , where the 
integers 𝑘𝑘𝑏𝑏(𝑡𝑡)  and 𝑘𝑘𝑓𝑓(𝑡𝑡)  are indexes of the first and last 
stratum over which the integral (1) is calculated. To ensure 
𝑘𝑘𝑏𝑏(𝑡𝑡)𝑇𝑇 ≤  𝑡𝑡 − 𝑇𝑇𝐻𝐻  and �𝑘𝑘𝑓𝑓(𝑡𝑡) + 1�𝑇𝑇 ≥ 𝑡𝑡 − 𝑇𝑇𝐷𝐷  we select 
𝑘𝑘𝑏𝑏(𝑡𝑡) = �𝑡𝑡−𝑇𝑇𝐻𝐻

𝑇𝑇
�

 
 and 𝑘𝑘𝑓𝑓(𝑡𝑡) = �𝑡𝑡−𝑇𝑇𝐷𝐷

𝑇𝑇
� − 1 , where ⌊∙⌋  and ⌈∙⌉ 

denote the floor and ceiling functions respectively. The 
integral (1) becomes 

𝑦𝑦(𝑡𝑡) = � �𝑧𝑧(𝜏𝜏; 𝑡𝑡)d𝜏𝜏
Γ𝑘𝑘  

𝑘𝑘𝑓𝑓(𝑡𝑡)

𝑘𝑘=𝑘𝑘𝑏𝑏(𝑡𝑡)

= � 𝐼𝐼𝑘𝑘

𝑘𝑘𝑓𝑓(𝑡𝑡)

𝑘𝑘=𝑘𝑘𝑏𝑏(𝑡𝑡)

 (2) 

The number of components in (2) is 𝐾𝐾 = 𝑘𝑘𝑓𝑓(𝑡𝑡) − 𝑘𝑘𝑏𝑏(𝑡𝑡) + 1. 
Since 0 ≤ 𝑡𝑡−𝑇𝑇𝐻𝐻

𝑇𝑇
− 𝑘𝑘𝑏𝑏(𝑡𝑡) < 1  and 0 ≤ 𝑘𝑘𝑓𝑓(𝑡𝑡) + 1 − 𝑡𝑡−𝑇𝑇𝐷𝐷

𝑇𝑇
< 1 

we get 0 ≤ 𝑘𝑘𝑓𝑓(𝑡𝑡) − 𝑘𝑘𝑏𝑏(𝑡𝑡) + 1 − 𝐻𝐻
𝑇𝑇 

< 2  and 𝐾𝐾 = 𝐻𝐻
𝑇𝑇

+ Λ , 
where 0≤ Λ < 2. We use 𝐼𝐼𝑘𝑘 = 𝑇𝑇𝑇𝑇(𝜏𝜏𝑘𝑘; 𝑡𝑡) to approximate the 
integrals 𝐼𝐼𝑘𝑘 in (2) and define DASP system realization: 

𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = � 𝐼𝐼𝑘𝑘

𝑘𝑘𝑓𝑓(𝑡𝑡)

𝑘𝑘=𝑘𝑘𝑏𝑏(𝑡𝑡)

= 𝑇𝑇 � 𝑥𝑥(𝜏𝜏𝑘𝑘)𝑔𝑔(𝑡𝑡 − 𝜏𝜏𝑘𝑘)

𝑘𝑘𝑓𝑓(𝑡𝑡)

𝑘𝑘=𝑘𝑘𝑏𝑏 (𝑡𝑡) 

 (3) 

In the remainder of this paper, we explore the properties 
of system realization (3). We prove that 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)  is an 
unbiased and consistent estimator of 𝑦𝑦(𝑡𝑡). We provide explicit 
measures of its accuracy and investigate how it changes when 
the stratum length goes to zero. Then we present a few 
numerical examples demonstrating properties of the DASP 
realizations. Finally, we summarize the work and outline our 
plans for future research. 

II. PROPERTIES OF DASP SYSTEM REALIZATION 

A. Causality 
The system (3) is causal iff for any 𝑡𝑡 the sampling instants 

𝜏𝜏𝑘𝑘  used for calculating 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) satisfy 𝜏𝜏𝑘𝑘 ≤ 𝑡𝑡. Theorem 1 
provides a necessary and sufficient condition for the causality.  

Theorem 1: The DASP system described by (3) is causal iff 
𝑇𝑇𝐷𝐷 ≥ 𝑇𝑇. 

Proof: It follows from (3) that 𝜏𝜏𝑘𝑘𝑓𝑓(𝑡𝑡) is the largest 𝜏𝜏𝑘𝑘 used for 
calculating 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡). Since 𝜏𝜏𝑘𝑘𝑓𝑓(𝑡𝑡) is a random variable with 

the upper bound �𝑡𝑡−𝑇𝑇𝐷𝐷
𝑇𝑇 
� 𝑇𝑇, the system (3) is causal iff for any 

𝑡𝑡: 

�
𝑡𝑡 − 𝑇𝑇𝐷𝐷
𝑇𝑇 

� ≤
𝑡𝑡
𝑇𝑇

 (4) 

Let the integers 𝑁𝑁𝑡𝑡  and 𝑁𝑁𝐷𝐷  satisfy 𝑡𝑡 = 𝑁𝑁𝑡𝑡𝑇𝑇 + 𝛿𝛿𝑡𝑡  and 𝑇𝑇𝐷𝐷 =
𝑁𝑁𝐷𝐷𝑇𝑇 + 𝛿𝛿𝐷𝐷, where 𝛿𝛿𝑡𝑡 ,𝛿𝛿𝐷𝐷 ∈ [0,𝑇𝑇). By substituting these for 𝑡𝑡 
and 𝑇𝑇𝐷𝐷 in (4), we get �𝛿𝛿𝑡𝑡−𝛿𝛿𝐷𝐷

𝑇𝑇
� − 𝑁𝑁𝐷𝐷 ≤

𝛿𝛿𝑡𝑡
𝑇𝑇

. If 𝛿𝛿𝑡𝑡 ≤ 𝛿𝛿𝐷𝐷 we have 

−𝑁𝑁𝐷𝐷 ≤
𝛿𝛿𝑡𝑡
𝑇𝑇

, implying 𝑁𝑁𝐷𝐷 ≥ 0. But if 𝛿𝛿𝑡𝑡 > 𝛿𝛿𝐷𝐷  then 1 − 𝑁𝑁𝐷𝐷 ≤
𝛿𝛿𝑡𝑡
𝑇𝑇

, hence 𝑁𝑁𝐷𝐷 ≥ 1. To ensure that (4) is satisfied for any 𝑡𝑡 we 
conclude  𝑁𝑁𝐷𝐷 ≥ 1, which is equivalent to 𝑇𝑇𝐷𝐷 ≥ 𝑇𝑇. 

□ 

B. Bias 
Theorem 2 below states that 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(∙)  is an unbiased 

estimator of 𝑦𝑦(∙). 

Theorem 2: For any t 
E{𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)} = 𝑦𝑦(𝑡𝑡) 

Proof: It follows from (2) and (3) that Theorem 2 holds if   
E�𝐼𝐼𝑘𝑘� =  𝐼𝐼𝑘𝑘 (5) 

In fact: 
E�𝐼𝐼𝑘𝑘� = E{𝑇𝑇𝑇𝑇(𝑘𝑘𝑘𝑘 + 𝜏̂𝜏𝑘𝑘)𝑔𝑔(𝑡𝑡 − 𝑘𝑘𝑘𝑘 − 𝜏̂𝜏𝑘𝑘)} =
∫ 𝑓𝑓𝜏𝜏�(𝜏𝜏)𝑇𝑇𝑇𝑇(𝑘𝑘𝑘𝑘 + 𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝑘𝑘𝑘𝑘 − 𝜏𝜏)d𝜏𝜏𝑇𝑇
0 =  
∫ 𝑥𝑥(𝑘𝑘𝑘𝑘 + 𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝑘𝑘𝑘𝑘 − 𝜏𝜏)d𝜏𝜏𝑇𝑇
0 = ∫ 𝑥𝑥(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)d𝜏𝜏Γ𝑘𝑘

= 𝐼𝐼𝑘𝑘. 
□ 

C. Consistency 
Since 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(∙)  is an unbiased estimator of 𝑦𝑦(∙) , the 

necessary and sufficient condition for its consistency is that its 
variance goes to zero when 𝑇𝑇 → 0. Theorem 3 states that this 
actually is true. 

Theorem 3: If 𝑌𝑌 = ∫ 𝑧𝑧2(𝜏𝜏; 𝑡𝑡)d𝜏𝜏Γ  is finite then 
lim
𝑇𝑇→0

𝜎𝜎2{𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)} = 0 
Proof: Since the sampling instants are independent from each 
other:   

𝜎𝜎2{𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)} = � 𝜎𝜎2�𝐼𝐼𝑘𝑘�
𝑁𝑁−𝑘𝑘2

𝑘𝑘=𝑁𝑁−𝑘𝑘1

 (6) 

By (5): 𝜎𝜎2�𝐼𝐼𝑘𝑘� = E�𝐼𝐼𝑘𝑘2� − 𝐼𝐼𝑘𝑘2 ≤ E�𝐼𝐼𝑘𝑘2� = 𝑇𝑇 ∫ 𝑧𝑧2(𝜏𝜏; 𝑡𝑡)d𝜏𝜏Γ𝑘𝑘
. 

Therefore, 𝜎𝜎2{𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)} ≤ 𝑇𝑇∑ ∫ 𝑧𝑧2(𝜏𝜏; 𝑡𝑡)d𝜏𝜏Γ𝑘𝑘
𝑁𝑁−𝑘𝑘2
𝑘𝑘=𝑁𝑁−𝑘𝑘1 =

𝑇𝑇 ∫ 𝑧𝑧2(𝜏𝜏; 𝑡𝑡)d𝜏𝜏Γ = 𝑇𝑇𝑇𝑇 . Since 𝜎𝜎2{𝑦𝑦𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆(𝑡𝑡)}  cannot be 
negative, we conclude  

0 ≤ 𝜎𝜎2{𝑦𝑦𝐷𝐷𝐴𝐴𝑆𝑆𝑆𝑆(𝑡𝑡)} ≤ 𝑇𝑇𝑇𝑇 (7) 
It is clear from (7) that when 𝑇𝑇 → 0 the variance of 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) 
converges to zero. 

□ 

D. Rate of convergence 
Formula (7) implies that the convergence rate of 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) 

to 𝑦𝑦(𝑡𝑡), in the sense of the size of its variance, is not slower 
than 𝑂𝑂(𝑇𝑇). But if 𝑧𝑧(∙ ; 𝑡𝑡) satisfies some conditions and 𝑇𝑇 is 
sufficiently short, this rate is faster. Let 𝑧̇𝑧(𝜏𝜏; 𝑡𝑡) = 𝑑𝑑

𝑑𝑑𝜏𝜏 
𝑧𝑧(𝜏𝜏; 𝑡𝑡). 

We say that 𝑧𝑧(∙ ; 𝑡𝑡) ∈ 𝒞𝒞  if 𝑧𝑧(∙ ; 𝑡𝑡)  and 𝑧̇𝑧(∙ ; 𝑡𝑡)  are bounded, 
and 𝑧̇𝑧(∙ ; 𝑡𝑡)  is continuous everywhere in Γ  except a finite 
number of points. Fig. 1 shows a sample 𝑧𝑧(∙ ; 𝑡𝑡) ∈ 𝒞𝒞 and its 
derivative. At 𝜏𝜏 = 𝐴𝐴, 𝑧𝑧(∙ ; 𝑡𝑡) is continuous but 𝑧̇𝑧(∙ ; 𝑡𝑡) is not. 
At 𝜏𝜏 = 𝐵𝐵 both functions are discontinuous.  

Theorems 4 and 5 state that if 𝑧𝑧(∙ ; 𝑡𝑡) ∈ 𝒞𝒞  then the 
convergence rate of 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) is at least 𝑂𝑂(𝑇𝑇2). If, in addition, 
𝑧𝑧(∙ ; 𝑡𝑡) is continuous in Γ then the convergence rate is 𝑂𝑂(𝑇𝑇3). 
Let 𝑑𝑑𝑚𝑚 ,𝑚𝑚 = 1, … ,𝑀𝑀  be the sequence of all points where 
𝑧𝑧(∙ ; 𝑡𝑡) is discontinuous in Γ. We define the jump Δ(𝑑𝑑𝑚𝑚) as 
Δ(𝑑𝑑𝑚𝑚) = lim+

𝜏𝜏→𝑑𝑑𝑚𝑚
𝑧𝑧(𝜏𝜏; 𝑡𝑡) − lim−

𝜏𝜏→𝑑𝑑𝑚𝑚
𝑧𝑧(𝜏𝜏; 𝑡𝑡). 



 
Fig. 1. Sample 𝑧𝑧(∙ ; 𝑡𝑡) ∈ 𝒞𝒞 and its derivative 𝑧̇𝑧(∙ ; 𝑡𝑡) 

 
Theorem 4: If 𝑧𝑧(∙ ; 𝑡𝑡) ∈ 𝒞𝒞 then 

limsup
𝑇𝑇→0

𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)}
𝑇𝑇2

≤
1
4
�Δ2(𝑑𝑑𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 

Theorem 5: If 𝑧𝑧(∙ ; 𝑡𝑡) ∈ 𝒞𝒞 is continuous in Γ then 

lim
𝑇𝑇→0

𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)}
𝑇𝑇3

=
1

12
� 𝑧̇𝑧2(𝜏𝜏; 𝑡𝑡)d𝜏𝜏

𝑡𝑡−𝑇𝑇𝐷𝐷

𝑡𝑡−𝑇𝑇𝐻𝐻

 

The proof of both Theorems is presented in the Appendix. 

III. NUMERICAL EXAMPLES 

A. Example 1 
We test DASP realization of a system whose impulse 

response is 

𝑔𝑔(𝑡𝑡) = 106sinc (106𝑡𝑡 − 6) × 1�10−6,   11×10−6�(𝑡𝑡) 

where 1𝑋𝑋(𝑡𝑡) is an indicator function of the set 𝑋𝑋. The system 
is implemented as described in this paper using strata of length 
𝑇𝑇 = 0.008μs, and then tested on an input signal  

𝑥𝑥(𝑡𝑡) = �𝑐𝑐𝑛𝑛𝑒𝑒−𝜋𝜋�𝑡𝑡−0.5×10−6𝑛𝑛�
2
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𝑛𝑛=0

+ 𝑒𝑒(𝑡𝑡) 

where the coefficients 𝑐𝑐𝑛𝑛  were selected randomly using 
Gaussian, 𝑁𝑁(0,1), random number generator, and then fixed 
for all repeated experiments. The disturbance 𝑒𝑒(𝑡𝑡)  is a 
sinusoid whose frequency comes from a wide, theoretically 
infinite, range. In this scenario, any use of a DSP filter with 
regular sampling could result in aliasing. In our tests, we used 
𝑒𝑒(𝑡𝑡) = 0.2 cos(2.3537 × 109𝑡𝑡). Owing to the use of random 
sampling, the outputs 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) differ from one experiment to 
another. To observe the level of variations we present the 
results of ten independently run simulations. We also show the 
target output of the filter, 𝑦𝑦(𝑡𝑡), obtained by convolving the 
signals 𝑔𝑔(𝑡𝑡) and 𝑥𝑥(𝑡𝑡) as well as the results of filtering 𝑥𝑥(𝑡𝑡) 
using a DSP discrete-time filter defined by 

𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑇𝑇 � 𝑥𝑥(𝑘𝑘𝑘𝑘)𝑔𝑔(𝑡𝑡 − 𝑘𝑘𝑘𝑘)

𝑘𝑘𝑓𝑓(𝑡𝑡)

𝑘𝑘=𝑘𝑘𝑏𝑏 (𝑡𝑡) 

 

Fig. 2 shows the results of the tests. Since some plots 
overlap each other, the inset shows a zoomed-in version of 
their small fragment. Additionally, Fig 3. Shows the errors 
𝜖𝜖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) − 𝑦𝑦(𝑡𝑡) and 𝜖𝜖𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) − 𝑦𝑦(𝑡𝑡). 

 
Fig. 2. The target output of the system 𝑦𝑦(𝑡𝑡) (thick dotted 

line), ten realizations of 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) (thin continuous lines) and 
𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) (medium dashdot line) 

 
Fig. 3. The output estimation errors of ten realizations of 

𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) (thin continuous lines) and of 𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) (medium 
dashdot line) 

It is clear from these plots, that DASP estimator provides 
much more accurate estimate of the output signal of the 
system than the DSP filter. Although the results for the DASP 
system differ from case to case, they are consistently similar. 
The implementations of DASP and DSP systems were 
prepared without prior knowledge of the disturbing sinusoid, 
which put the DSP solution in a disadvantage making it 
susceptible to aliasing, as observed in Fig. 3. 

B. Example 2 
In the second example, we test the convergence rates when 

𝑇𝑇 → 0. Consider a system with the impulse response  

𝑔𝑔(𝑡𝑡) = 𝑒𝑒−(𝑡𝑡−0.1)1[0.1,2.1](𝑡𝑡) 

and input 

𝑥𝑥(𝑡𝑡) = sin(2𝜋𝜋𝜋𝜋) 

We use DASP to estimate the output at 𝑡𝑡 = 2.35. Its target 
value is 𝑦𝑦(2.35) = ∫ sin (2𝜋𝜋𝜋𝜋)𝑒𝑒𝜏𝜏−2.252.25

0.25 
d𝜏𝜏 = 1−𝑒𝑒−2

(2𝜋𝜋)2+1 
≈

0.0214 . The plot of 𝑧𝑧(𝜏𝜏 ; 2.35)  on Fig. 4 reveals 
discontinuities at 0.25 and 2.25. To illustrate how they affect 
the convergence rate, we present two versions of this example. 
In each case we test thirteen different strata lengths taken from 
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[10−3, 10−1]. First, the lengths are 𝑇𝑇 = 0.25
𝑛𝑛 

, where 𝑛𝑛 takes 
whole values. This makes both discontinuities fall on the strata 
borders, masking their existence. Next, we select 𝑇𝑇 = 0.25

𝑛𝑛+0.5 
, 

which places both discontinuities exactly in the middle of their 
strata, maximizing their adverse effect on the size of the  
estimator variance. See the Appendix part “Case 𝑘𝑘 ∈ 𝑆𝑆3” for 
the justification of these claims. For each value of 𝑇𝑇, we derive 
an approximated variance of the estimator using the outcomes 
of 1000 simulations. We show the results in Fig. 5. 

 
Fig. 4 The plot of 𝑧𝑧(∙ ; 𝑡𝑡) considered in Example 2 

 
Fig 5. The relation between the stratum length 𝑇𝑇 and 

𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)}, when the discontinuities of 𝑧𝑧(∙ ; 2.35) are 
obscured (continuous line), and when they are present in the 

strata centers (dashdot line) 
 

The outcomes of this example confirm the theses of 
Theorems 4 and 5. When 𝑧𝑧(∙ ; 2.35) is continuous (in this case 
they fall on the strata borders), the convergence rate is 𝑂𝑂(𝑇𝑇3), 
but when 𝑧𝑧(∙ ; 2.35) is not continuous the rate drops to 𝑂𝑂(𝑇𝑇2). 

IV. CONCLUSIONS 
We presented preliminary results on DASP realization of 

continuous time systems defined by their impulse response. 
The proposed realizations are alias-free. The output of the 
DASP system is an unbiased estimator of the target output, of 
analogue system. The variance of the estimator can be pre-
assessed using the theoretical results from this paper. Its size 
can be controlled by selecting a suitable sampling scheme. 

Although in the presented analyses no constraints on the 
bandwidths of the impulse response or the input signal were 
imposed, we expect that, similarly to [7], technical 
imperfections of system implementation would introduce 
such limits. The sampling method and processing algorithm 
used here are similar to those in [8]. However, we have proven 
a stronger result by showing that in order to achieve the 𝑂𝑂(𝑇𝑇3) 
convergence rate, only the integrated function has to be 
continuous - but not its derivative. In addition, we showed a 
new result that if the integrated function is piecewise 
continuous, the convergence rate is not worse than 𝑂𝑂(𝑇𝑇2) 
rather than reaching the default 𝑂𝑂(𝑇𝑇). Future work will focus 
on testing other sampling schemes offering potentially faster 
convergence rates, and investigation into realization of 
systems with infinite impulse response.   

V. APPENDIX – PROOF OF THEOREMS 4 AND 5 
First, we show a useful property of the Riemann integral 

𝐼𝐼 = ∫ 𝑓𝑓(𝑡𝑡)d𝑡𝑡𝑏𝑏
𝑎𝑎 

. The standard approach to calculating 𝐼𝐼, is to 
divide [𝑎𝑎, 𝑏𝑏)  into 𝐾𝐾𝑛𝑛  subintervals 𝑇𝑇𝑘𝑘,𝑛𝑛  of lengths 〈𝑇𝑇𝑘𝑘,𝑛𝑛〉 
satisfying: lim

𝑛𝑛→∞
max
𝑘𝑘 
�〈𝑇𝑇𝑘𝑘,𝑛𝑛〉� = 0 , ⋃ 𝑇𝑇𝑘𝑘,𝑛𝑛

𝐾𝐾𝑛𝑛
𝑘𝑘=1 = [𝑎𝑎, 𝑏𝑏) , and 

𝑘𝑘1 ≠ 𝑘𝑘2 ⇒ 𝑇𝑇𝑘𝑘1,𝑛𝑛 ∩ 𝑇𝑇𝑘𝑘2 ,𝑛𝑛
= ∅ .  Next, we arbitrarily select 

𝑡𝑡𝑘𝑘,𝑛𝑛 ∈ 𝑇𝑇𝑘𝑘,𝑛𝑛  and calculate  𝐼𝐼 =  lim
𝑛𝑛→∞

∑ 〈𝑇𝑇𝑘𝑘,𝑛𝑛〉𝑓𝑓�𝑡𝑡𝑘𝑘,𝑛𝑛�
𝐾𝐾𝑛𝑛
𝑘𝑘=1 . We 

observe that if 𝑓𝑓(∙) is bounded, i.e. |𝑓𝑓(𝑡𝑡)| < 𝐷𝐷  then at any 
stage 𝑛𝑛, we can remove from the Riemann summation a fixed 
number of components (say 𝛱𝛱) and the sum of the remaining 
components still converges to 𝐼𝐼. In fact, let 𝒩𝒩𝑛𝑛  be a set of 𝛱𝛱 
indexes denoting the components removed from the 𝑛𝑛 th 
summation, 𝑆𝑆1,𝑛𝑛 = ∑ 〈𝑇𝑇𝑘𝑘,𝑛𝑛〉𝑓𝑓�𝑥𝑥𝑘𝑘,𝑛𝑛�𝑘𝑘∉𝒩𝒩𝑛𝑛 

 and  𝑆𝑆2,𝑛𝑛 =
∑ 〈𝑇𝑇𝑘𝑘,𝑛𝑛〉𝑓𝑓�𝑥𝑥𝑘𝑘,𝑛𝑛�𝑘𝑘∈𝒩𝒩𝑛𝑛 . Then 𝐼𝐼 = lim

𝑛𝑛→∞
𝑆𝑆1,𝑛𝑛 + lim

𝑛𝑛→∞
𝑆𝑆2,𝑛𝑛 . Since 

�𝑆𝑆2,𝑛𝑛� = �∑ 〈𝑇𝑇𝑘𝑘,𝑛𝑛〉𝑓𝑓�𝑥𝑥𝑘𝑘,𝑛𝑛�𝑘𝑘∈𝒩𝒩𝑛𝑛 � ≤ max
𝑘𝑘
�〈𝑇𝑇𝑘𝑘,𝑛𝑛〉� 𝛱𝛱𝛱𝛱 , therefore 

lim
𝑛𝑛→∞

𝑆𝑆2,𝑛𝑛 = 0, and ∫ 𝑓𝑓(𝑡𝑡)d𝑡𝑡𝑏𝑏
𝑎𝑎 = lim

𝑛𝑛→∞
∑ 〈𝑇𝑇𝑘𝑘,𝑛𝑛〉𝑓𝑓�𝑥𝑥𝑘𝑘,𝑛𝑛�𝑘𝑘∉𝒩𝒩𝑛𝑛 .  

Now, we are ready to prove Theorems 4 and 5. Without 
loss of generality, we assume that the strata length 𝑇𝑇 is so 
short that each stratum contains no more than one point where 
𝑧̇𝑧(∙ ; 𝑡𝑡)  is discontinuous. Let 𝒮𝒮1  comprises indexes of those 
strata where 𝑧̇𝑧(∙ ; 𝑡𝑡) is continuous, 𝒮𝒮2  those where 𝑧̇𝑧(∙ ; 𝑡𝑡) is 
not continuous but 𝑧𝑧(∙ ; 𝑡𝑡)  is, and 𝒮𝒮3  where 𝑧𝑧(∙ ; 𝑡𝑡)  is not 
continuous, hence containing one of the 𝑑𝑑𝑚𝑚  points. The 
numbers of strata in sets 𝒮𝒮2 and 𝒮𝒮3 do not change with 𝑇𝑇 and 
are denoted by 𝐿𝐿 and 𝑀𝑀  respectively. Set 𝒮𝒮1  comprises 𝑃𝑃 =
𝐾𝐾 − 𝐿𝐿 −𝑀𝑀 = 𝐻𝐻

𝑇𝑇
+ Λ − 𝐿𝐿 − 𝑀𝑀  strata. Hence 𝑃𝑃 = 1

𝑂𝑂(𝑇𝑇)
. For 

each stratum, we select  𝑐𝑐𝑘𝑘 ∈ Γ𝑘𝑘 . If 𝑘𝑘 ∈ 𝒮𝒮1  then  𝑐𝑐𝑘𝑘 = (𝑘𝑘 +
0.5)𝑇𝑇. Otherwise, 𝑐𝑐𝑘𝑘 is the discontinuity point of 𝑧̇𝑧(∙ ; 𝑡𝑡). In 
the strata belonging to 𝒮𝒮2 or 𝒮𝒮3 we form  

𝑧𝑧(𝜏𝜏 ; 𝑡𝑡) = �𝑧𝑧1
(𝜏𝜏 ; 𝑡𝑡) if 𝜏𝜏 < 𝑐𝑐𝑘𝑘

𝑧𝑧2(𝜏𝜏 ; 𝑡𝑡) if 𝜏𝜏 ≥ 𝑐𝑐𝑘𝑘
 (8) 

where 𝑧𝑧1(∙ ; 𝑡𝑡) and 𝑧𝑧2(∙ ; 𝑡𝑡) have continuous first derivatives 
in Γ𝑘𝑘. We calculate the variances of 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘 for different strata 
sets and use (6) to obtain 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)} . Within each 
stratum Γ𝑘𝑘, we form Taylor expansions of 𝑧𝑧(∙ ; 𝑡𝑡) (or 𝑧𝑧1(∙ ; 𝑡𝑡) 
and 𝑧𝑧2(∙ ; 𝑡𝑡)) about 𝑐𝑐𝑘𝑘. Let 𝑧𝑧𝑘𝑘 = 𝑧𝑧(𝑐𝑐𝑘𝑘; 𝑡𝑡), 𝑧̇𝑧𝑘𝑘 = 𝑧̇𝑧(𝑐𝑐𝑘𝑘; 𝑡𝑡), and, 
if needed, 𝑧𝑧𝑙𝑙,𝑘𝑘 = 𝑧𝑧𝑙𝑙(𝑐𝑐𝑘𝑘; 𝑡𝑡) , 𝑧̇𝑧𝑙𝑙,𝑘𝑘 = 𝑧̇𝑧𝑙𝑙(𝑐𝑐𝑘𝑘; 𝑡𝑡) , 𝑙𝑙 ∈ {1,2} . The 
respective expansions for 𝒮𝒮1, 𝒮𝒮2 and 𝒮𝒮3 are:  

𝑧𝑧(𝜏𝜏; 𝑡𝑡) = 𝑧𝑧𝑘𝑘 + (𝜏𝜏 − 𝑐𝑐𝑘𝑘)𝑧̇𝑧𝑘𝑘 + 𝑜𝑜(𝜏𝜏 − 𝑐𝑐𝑘𝑘) (9) 

 𝑧𝑧(𝜏𝜏 ; 𝑡𝑡) = 𝑧𝑧𝑘𝑘 + �
(𝜏𝜏 − 𝑐𝑐𝑘𝑘)𝑧̇𝑧1,𝑘𝑘 if 𝜏𝜏 < 𝑐𝑐𝑘𝑘
(𝜏𝜏 − 𝑐𝑐𝑘𝑘)𝑧̇𝑧2,𝑘𝑘 if 𝜏𝜏 ≥ 𝑐𝑐𝑘𝑘

+ 𝑜𝑜(𝜏𝜏 − 𝑐𝑐𝑘𝑘) (10) 
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 𝑧𝑧(𝜏𝜏 ; 𝑡𝑡) = �
𝑧𝑧1,𝑘𝑘 if 𝜏𝜏 < 𝑐𝑐𝑘𝑘
𝑧𝑧2,𝑘𝑘 if 𝜏𝜏 ≥ 𝑐𝑐𝑘𝑘

+ 𝑜𝑜((𝜏𝜏 − 𝑐𝑐𝑘𝑘)0) (11) 

Since each expansion is used only within the stratum Γ𝑘𝑘 we 
note |𝜏𝜏 − 𝑐𝑐𝑘𝑘| ≤ 𝑇𝑇 and replace 𝑜𝑜(𝜏𝜏 − 𝑐𝑐𝑘𝑘) and 𝑜𝑜((𝜏𝜏 − 𝑐𝑐𝑘𝑘)0) in 
(9) - (11) with 𝑜𝑜(𝑇𝑇) and 𝑜𝑜(𝑇𝑇0) respectively. For each type of 
strata we use (9)-(11) to calculate: 𝐼𝐼𝑘𝑘,  𝐼𝐼𝑘𝑘, error 𝜀𝜀𝑘𝑘 =  𝐼𝐼𝑘𝑘 − 𝐼𝐼𝑘𝑘, 
and variance 𝜎𝜎2� 𝐼𝐼𝐷𝐷𝐴𝐴𝑆𝑆𝑆𝑆,𝑘𝑘� = E{𝜀𝜀𝑘𝑘2}. We denote 𝑇𝑇1 = 𝑐𝑐𝑘𝑘 − 𝑘𝑘𝑘𝑘 
and 𝑇𝑇2 = (𝑘𝑘 + 1)𝑇𝑇 − 𝑐𝑐𝑘𝑘. 

A. Case 𝑘𝑘 ∈ 𝒮𝒮1 
We note 𝐼𝐼𝑘𝑘 = 𝑇𝑇𝑧𝑧𝑘𝑘 + 𝑜𝑜(𝑇𝑇2), 𝐼𝐼𝑘𝑘 = 𝑇𝑇𝑧𝑧𝑘𝑘 + 𝑇𝑇(𝜏𝜏𝑘𝑘 − 𝑐𝑐𝑘𝑘)𝑧̇𝑧𝑘𝑘 +

𝑜𝑜(𝑇𝑇2), and 𝜀𝜀𝑘𝑘 =  𝑇𝑇(𝜏𝜏𝑘𝑘 − 𝑐𝑐𝑘𝑘)𝑧̇𝑧𝑘𝑘 + 𝑜𝑜(𝑇𝑇2). The dominant part 
of 𝜀𝜀𝑘𝑘  is  𝑂𝑂(𝑇𝑇2) . Hence 𝜀𝜀𝑘𝑘2 = 𝑇𝑇2(𝜏𝜏𝑘𝑘 − 𝑐𝑐𝑘𝑘)2𝑧̇𝑧𝑘𝑘2 + 𝑜𝑜(𝑇𝑇4) 
and  𝜎𝜎2� 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘� = 𝑇𝑇 ∫ (𝜏𝜏 − 𝑐𝑐𝑘𝑘)2Γ𝑘𝑘

d𝜏𝜏 𝑧̇𝑧𝑘𝑘2 + 𝑜𝑜(𝑇𝑇4) = 𝑇𝑇4

12 
𝑧̇𝑧𝑘𝑘2 +

𝑜𝑜(𝑇𝑇4). The contribution of all 𝒮𝒮1 strata to 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)} is 

𝜎𝜎12 = ∑ �𝑇𝑇
4

12
𝑧̇𝑧𝑘𝑘2 + 𝑜𝑜(𝑇𝑇4)�𝑘𝑘∈𝒮𝒮1 . The size of 𝒮𝒮1  is 𝑃𝑃 = 1

𝑂𝑂(𝑇𝑇)
. 

Hence  𝜎𝜎12 = 𝑇𝑇3

12 
∑ 𝑇𝑇𝑧̇𝑧2(𝑐𝑐𝑘𝑘; 𝑡𝑡)𝑘𝑘∈𝒮𝒮1 + 𝑜𝑜(𝑇𝑇3) . By recalling our 

earlier observation about Riemann integration, we conclude 
that 

lim
𝑇𝑇→0

𝜎𝜎12

𝑇𝑇3
=

1
12

� 𝑧̇𝑧2(𝜏𝜏; 𝑡𝑡)d𝜏𝜏

𝑡𝑡−𝑇𝑇𝐷𝐷

𝑡𝑡−𝑇𝑇𝐻𝐻

 (12) 

Since 𝜎𝜎12 = 𝑂𝑂(𝑇𝑇3) we also note that 

 limsup
𝑇𝑇→0

𝜎𝜎12

𝑇𝑇2
= 0 (13) 

B. Case 𝑘𝑘 ∈ 𝒮𝒮2 

We note 𝐼𝐼𝑘𝑘 =  𝑇𝑇𝑧𝑧𝑘𝑘 −
𝑇𝑇1
2

2 
𝑧̇𝑧1,𝑘𝑘 + 𝑇𝑇2

2

2
𝑧̇𝑧2,𝑘𝑘 + 𝑜𝑜(𝑇𝑇2) , 𝐼𝐼𝑘𝑘 =

𝑇𝑇𝑧𝑧𝑘𝑘 + �
𝑇𝑇(𝜏𝜏𝑘𝑘 − 𝑐𝑐𝑘𝑘)𝑧̇𝑧1,𝑘𝑘 if 𝜏𝜏𝑘𝑘 < 𝑐𝑐𝑘𝑘
𝑇𝑇(𝜏𝜏𝑘𝑘 − 𝑐𝑐𝑘𝑘)𝑧̇𝑧2,𝑘𝑘 if 𝜏𝜏𝑘𝑘 ≥ 𝑐𝑐𝑘𝑘

+ 𝑜𝑜(𝑇𝑇2) , and  

𝜀𝜀𝑘𝑘 = �
�𝑇𝑇(𝜏𝜏𝑘𝑘 − 𝑐𝑐𝑘𝑘) + 𝑇𝑇1

2

2
� 𝑧̇𝑧1,𝑘𝑘 −

𝑇𝑇2
2

2
𝑧̇𝑧2,𝑘𝑘 if 𝜏𝜏𝑘𝑘 < 𝑐𝑐𝑘𝑘

𝑇𝑇1
2

2
𝑧̇𝑧1,𝑘𝑘 + �𝑇𝑇(𝜏𝜏𝑘𝑘 − 𝑐𝑐𝑘𝑘) − 𝑇𝑇2

2

2
�

 
𝑧̇𝑧2,𝑘𝑘 if 𝜏𝜏𝑘𝑘 ≥ 𝑐𝑐𝑘𝑘

+

𝑜𝑜(𝑇𝑇2) . Since 𝜀𝜀𝑘𝑘 ∈ 𝑂𝑂(𝑇𝑇2) , then 𝜀𝜀𝑘𝑘2 ∈ 𝑂𝑂(𝑇𝑇4)  and 
𝜎𝜎2� 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘� ∈ 𝑂𝑂(𝑇𝑇4) . The contribution of all 𝒮𝒮2  strata to 
𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)}  is  𝜎𝜎22 = ∑ 𝜎𝜎2� 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘�𝑘𝑘∈𝒮𝒮2 ∈ 𝑂𝑂(𝑇𝑇4) . 
Consequently 

lim
𝑇𝑇→0

𝜎𝜎22

𝑇𝑇3
= 0 (14) 

limsup
𝑇𝑇→0

𝜎𝜎22

𝑇𝑇2
= 0 (15) 

C. Case 𝑘𝑘 ∈ 𝒮𝒮3 
For strata in this set we get: 𝐼𝐼𝑘𝑘 = 𝑇𝑇1𝑧𝑧1,𝑘𝑘 + 𝑇𝑇2𝑧𝑧2,𝑘𝑘 + 𝑜𝑜(𝑇𝑇), 

𝐼𝐼𝑘𝑘 = �
𝑇𝑇𝑧𝑧1,𝑘𝑘 if 𝜏𝜏𝑘𝑘 < 𝑐𝑐𝑘𝑘
𝑇𝑇𝑧𝑧2,𝑘𝑘 if 𝜏𝜏𝑘𝑘 ≥ 𝑐𝑐𝑘𝑘

+ 𝑜𝑜(𝑇𝑇) , and 

𝜀𝜀𝑘𝑘 = �
𝑇𝑇2�𝑧𝑧1,𝑘𝑘 − 𝑧𝑧2,𝑘𝑘� if 𝜏𝜏𝑘𝑘 < 𝑐𝑐𝑘𝑘
𝑇𝑇1�𝑧𝑧2,𝑘𝑘 − 𝑧𝑧1,𝑘𝑘� if 𝜏𝜏𝑘𝑘 ≥ 𝑐𝑐𝑘𝑘

+ 𝑜𝑜(𝑇𝑇). Since 𝜀𝜀𝑘𝑘 ∈ 𝑂𝑂(𝑇𝑇) 

then 𝜀𝜀𝑘𝑘2 = �𝑧𝑧2,𝑘𝑘 − 𝑧𝑧1,𝑘𝑘�
2 × �𝑇𝑇2

2 if 𝜏𝜏𝑘𝑘 < 𝑐𝑐𝑘𝑘
𝑇𝑇12 if 𝜏𝜏𝑘𝑘 ≥ 𝑐𝑐𝑘𝑘

+ 𝑜𝑜(𝑇𝑇2) . We 

note that 𝑧𝑧2,𝑘𝑘 − 𝑧𝑧1,𝑘𝑘 is the jump of 𝑧𝑧(∙ ; 𝑡𝑡) at 𝑐𝑐𝑘𝑘, which in turn 
is one of the 𝑑𝑑𝑚𝑚  points. Therefore, 𝜀𝜀𝑘𝑘2 = Δ2(𝑐𝑐𝑘𝑘) ×

�𝑇𝑇2
2 if 𝜏𝜏 < 𝑐𝑐𝑘𝑘

𝑇𝑇12 if 𝜏𝜏 ≥ 𝑐𝑐𝑘𝑘
+ 𝑜𝑜(𝑇𝑇2). By taking the expected value of 𝜀𝜀𝑘𝑘2 

we get 𝜎𝜎2� 𝐼𝐼𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘� = 𝑇𝑇1𝑇𝑇2 × Δ2(𝑐𝑐𝑘𝑘) + 𝑜𝑜(𝑇𝑇2) . If the 
discontinuity point is aligned with the stratum border then 
either 𝑇𝑇1 = 0  or 𝑇𝑇2 = 0  resulting in 𝜎𝜎2� 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘� = 𝑜𝑜(𝑇𝑇2) . 
However, in the worst-case scenario when the discontinuity 
point is at the center of the stratum: 𝑇𝑇1 = 𝑇𝑇2 = 𝑇𝑇

2 
 and 

𝜎𝜎2� 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘� = 𝑇𝑇2

4
Δ2(𝑐𝑐𝑘𝑘) + 𝑜𝑜(𝑇𝑇2). The contribution of all 𝒮𝒮3 

strata to 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)} is 𝜎𝜎32 ≤
𝑇𝑇2

4
∑ Δ2(𝑐𝑐𝑘𝑘)𝑘𝑘∈𝒮𝒮3 + 𝑜𝑜(𝑇𝑇2), 

implying  

limsup
𝑇𝑇→0

𝜎𝜎32

𝑇𝑇2
≤

1
4
� Δ2(𝑐𝑐𝑘𝑘)
𝑘𝑘∈𝒮𝒮3

=
1
4
� Δ2(𝑑𝑑𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 (16) 

By using (13), (15) and (16) we get limsup
𝑇𝑇→0 

𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)}

𝑇𝑇2
=

limsup
𝑇𝑇→0 

𝜎𝜎1
2+𝜎𝜎2

2+𝜎𝜎3
2

𝑇𝑇2
= 1

4
∑ Δ2(𝑑𝑑𝑚𝑚)𝑀𝑀
𝑚𝑚=1 , which completes the 

proof of Theorem 4.  To finalize the proof of Theorem 5 we 
assume that 𝑧𝑧(∙ ; 𝑡𝑡) is continuous, which means that the set 𝒮𝒮3 
is empty. By (12) and (14): lim

𝑇𝑇→0 

𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
2 {𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)}

𝑇𝑇3
=

lim
𝑇𝑇→0 

𝜎𝜎1
2+𝜎𝜎2

2

𝑇𝑇2
= 1

12 ∫ 𝑧̇𝑧2(𝜏𝜏; 𝑡𝑡)d𝜏𝜏𝑡𝑡−𝑇𝑇𝐷𝐷
𝑡𝑡−𝑇𝑇𝐻𝐻

. 
□ 
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