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ABSTRACT We provide a mathematical formulation of flight-specific delay cost functions that enables
a detailed tactical consideration of how a given flight delay will interact with all downstream constraints
in the respective aircraft rotation. These functions are reformulated into stochastic delay cost functions to
respect conditional probabilities and increasing uncertainty related to more distant operational constraints.
Conditional probabilities are learned from historical operations data, such that typical delay propagation
patterns can support the flight prioritization process as a part of tactical airline schedule recovery. A case
study compares the impact of deterministic and stochastic cost functions on optimal recovery decisions
during an airport constraint. We find that deterministic functions systematically overestimate potential
disruption costs as well as optimal schedule recovery costs in high delay situations. Thus, an optimisation
based on stochastic costs outperforms the deterministic approach by up to 15%, as it reveals ‘hidden’
downstream recovery potentials. This results in different slot allocations and in fewer passengers missing
their connections.

INDEX TERMS Delay propagation, flight prioritization, schedule recovery, stochastic delay costs.

I. INTRODUCTION
At the tactical planning level, airlines are frequently required
to prioritize between their flights due to short-term changes
during the day of operations. These can be caused, for
example, by capacity constraints at airports or in airspace [1].
In this context, the flight prioritization process aims at
protecting the business utility of individual flights in the
airline’s network [2] by redistributing (assigned Air Traffic
Flow Management (ATFM)) delays from aircraft with cost-
intensive downstream constraints onto those which obtain
high absorption or recovery capacities throughout their
daily rotation. Cost-intensive downstream constraints may
be disrupted passenger transfers at the destination of a
delayed flight as well as crew duty time or airport curfew
infringements. However, the identification of all constraints
and potential recovery capacities as well as the estimation of
the associated costs is not straightforward, especially when
considering the low level of integration and automation in
airline operations control [3]–[5]. In addition, actual flight
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and ground times are subject to a variety of uncertainties.
For example, the uncertainty about a given primary delay
propagating to a particular downstream constraint naturally
increases with look-ahead time and the number of interme-
diate flights (air and ground segments). Due to the close
links in the air traffic system, a delay obtained by one flight
may spill onto several subsequent flights (reactionary delay)
and have a lasting impact on the efficiency of scheduled
operations.

A. STATUS QUO ON DELAY PROPAGATION
Reactionary delay has been reported to be the largest
contributor to departure delays in Europe [6], displaying an
approximate ratio of 45% for many years. Reactionary delay
is defined as the share of an arrival delay which cannot be
absorbed by scheduled buffers or slack time during aircraft
ground times, such that it propagates onto departure flights.
Within airline networks, delay can be propagated within
single aircraft rotations, i.e., rotational reactionary delay,
or onto different aircraft due to passenger or crew transfers,
i.e., non-rotational reactionary delay [7].
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Delay propagation has been studied mainly retrospectively
by building delay propagation trees with recorded timestamps
from actual operations. A common metric to determine the
impact of a schedule deviation in a given airline network is
the ‘‘delay multiplier’’ [8]. This parameter describes the ratio
of reactionary to primary delay and typically obtains higher
values for larger deviations and for those that happen during
morning operations.

Along with the delay multiplier as a measure of magnitude,
further metrics have been introduced to characterise the
impact of deviations on a flight-by-flight basis. These
measures are severity, which defines the number of addi-
tionally affected flights, and depth, which determines the
highest number of downstream legs impacted by propagated
delay [9]. Initial models that studied delay propagation in
airline networks considered a limited scope of resource
dependencies and assumed static block times (i.e., scheduled
flight time between off-block at origin and in-block at
destination). These limitations were overcome with the help
of Bayesian network models, that consider, for example,
stochastic, non-independent and identically distributed block
times when they analyse delay propagation trees at the
strategic planning level (up to six months before operations).
This enables the calculation of conditional probabilities for
specific resources to contribute to the delay of a given flight
and helps to eliminate them from future schedules [10], [11].

The magnitude and severity of a delay propagating through
an airline network further depend on the business model and
network strategy of the respective airline [12]. For instance,
low-cost carriers tend to have very tight rotations with short
turnaround times and few scheduled ground buffers, such
that delays may propagate with a higher depth to several
downstream flights of the same aircraft. At the same time,
other rotations are less impacted, given that crew pairings
typically follow the aircraft routing (i.e., few crew transfers)
and no passenger transfers are sold within one ticket [9].

Conversely, full-service network carriers schedule longer
ground times between their flights (at the airline hub
airport), partially due to more extensive aircraft servicing
activities [13], but also to increase the number of possible
connections between flights [14]. In case of deviations from
schedule or capacity constraints, such extended ground times
may provide more absorptive capacities (i.e., buffers) along
the aircraft rotation, which nevertheless incur high opportu-
nity costs arising from reduced aircraft utilisation [15]. These
opportunity costs drive airlines to continuously optimise their
flight schedules, such that there is a variety of studies aiming
at redistributing buffer capacities [16], [17] and synchronis-
ing aircraft, crew and passenger schedules to compensate for
frequent delays and limit delay propagation [18]–[21].

Furthermore, robust fleet assignment strategies have been
developed which aim at reducing the severity of a primary
delay. This is accomplished, e.g., by assigning aircraft to
fly so-called short cycles, which means that they directly
return to the hub after flying to an out-station [22]. This
limits the geographical scope in which a fleet is operating

and helps to contain disruptions within a predefined area of
the network [23]. However, it also triggers a phenomenon
called back-propagation, that describes the effect when an
airport is suffering from the reactionary delay that originated
at the same airport earlier in the day [24]. Given that
many hub airlines have implemented short cycles into
their schedules in recent years, back-propagation is mainly
experienced at major hub airports. Thereby, individual chain
effects from and to particular airports appear to be volatile
daily, considering frequently changing aircraft rotations and
passenger demand [24], [25].

B. STATUS QUO ON AIRLINE SCHEDULE RECOVERY
In general, hub-and-spoke networks induce a higher level
of complexity for tactical airline schedule recovery: First,
economies of scope in a hub network result in very heteroge-
neous flight utilities, given that customers frommanymarkets
and with multiple flight legs may fly together on the same
flight. This wide product scope often implies a wide range of
fares and potentially higher compensation and reimbursement
to be paid by the airline in case of schedule disruptions (see
EU Regulation 261 [26]). Second, many crew and passenger
transfer connections are likely to foster non-rotational delay
propagation. Thereby, determining the impact of a specific
delay on the entire network is particularly challenging if one
considers that the monitoring and control process within an
Airline Operations Control Center (AOCC) is still operated
manually. This means that separate solutions are calculated
for aircraft, crew and passenger recovery by applying general
‘rules-of-thumb’ with the help of database query systems.
These department-specific solutions are collected centrally
and it is up to the experience of the manager-on-duty
to assemble a feasible recovery decision that satisfies the
constraints of all involved departments and stakeholders [3].
Given a setting at major hub airports, where up to 100 aircraft
of the same airline are turned around during so-called hub-
banks within a time frame of about three hours, this can
be a highly iterative and lengthy procedure and is unlikely
to result in cost-minimal solutions. Consequently, many
research projects aim at integration and partial automation of
the decision-making process in an AOCC [27], [28].

Thus, some scholars see the highest potential to recover
delays in changing critical aircraft and crew assignments,
which may even include the cancellation of flight cycles
to mitigate schedule disruptions [3], [4], [29]–[33]. Some
studies further consider dynamic cost indexing, i.e., speeding
up the flight cruise segment to reduce arrival delays [33] and
some compare it to retiming the departure of other aircraft
to ensure passenger transfers [34]–[38]. Other approaches
have a local focus and consider recovery options mostly
during the turnaround at a major airport, which includes
the possibility to shorten or omit entire sub-processes,
or assign extra resources to speed up standard operating
procedures [5], [39]–[44].

The variety of approaches is also reflected by the
incorporated objectives, which aim at minimising flight
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and/or passenger delays [42], [44]–[46], while others set out
to optimise the associated cost of delay and recovery [5],
[30], [32], [33], [35], [43], [47]. The latter objective includes
the optimal assignment of recovery options to those flights
with the highest priority (business utility), which is reflected
by a progressive increase of costs at higher departure
delays [7], [46].

European airline delay cost reference values have been
modelled for different aircraft types, including, fuel, crew,
maintenance, passenger ‘hard’ costs (e.g., care, rebooking,
compensation) and ‘soft’ costs (e.g., market share attributable
to punctuality) [7], [48]. However, they are not intended for
prioritizing between particular flights, as they demonstrate
monotonic, increasing delay cost functions. Underlying cost
steps, largely driven by EU Regulation 261 [26], crew duty
time regulations [49] and airport curfew costs [48], are
smoothed by statistical fits and the effects of delay absorption
through schedule buffers [7]. Conversely, flight-specific cost
functions, which include cost steps for critical interdepen-
dencies between delays and downstream constraints, have
so far only be been modelled schematically [2], [50], [51],
e.g., for the validation of tactical flight prioritization
mechanisms, such as the User-Driven Prioritisation Process
(UDPP) [52]. Such schematic cost functions neglect detailed
scheduling relationships as well as uncertainties related to the
complexity and look-ahead time of downstream operations.
This simplification might be attributed to data confidentiality
reasons but also to the fact that forecasting delay impacts
onto future operations requires a vast amount of historical
data (categorised according to conditional probabilities) and
a complex time-space model to consider the entire airline
network for at least one day of operations [53]–[56].

C. FOCUS, CONTRIBUTION, AND STRUCTURE
From the status quo we derive two research gaps that
are focused on in this article: 1) local schedule recovery
models for the turnaround as well as recently proposed
UDPP mechanisms for the tactical prioritization of flights,
require airlines to have flight-specific delay cost models,
such that downstream operations can be considered without
having to model all processes explicitly; and 2) the delay
cost estimation for a flight needs to consider conditional
probabilities and increasing uncertainty associated with
operational constraints further into the future.

For the prioritization of flights, we provide a flight-
specificmathematical formulation for the cost of delay. To the
best of our knowledge, this is the first time that a delay
cost formulation is provided that considers all downstream
constraints and recovery capacities within an aircraft rotation
for an entire day of operations. This allows airlines to increase
the efficiency of their local schedule recovery at major
airports, such that constrained resources can be allocated
to critical aircraft turnarounds and inevitable delays can
be assigned to those flights that are least critical for the
downstream network. All this can be achieved without having
to model time-space relationship within the downstream

network explicitly, which reduces the complexity of the
studied process network.

The mathematical formulation is extended to describe
the novel concept of stochastic delay cost functions. These
functions provide a pro-active assessment of delay propa-
gation and its related costs under uncertainty. Considering
conditional probabilities and increasing uncertainty related to
more distant operational constraints is deemed more realistic
than a deterministic approach and this article studies whether
the application of stochastic costs may render some otherwise
needed recovery options unnecessary.

We structure this article as follows. Section II describes the
methodology for building deterministic and stochastic delay
cost functions. Section III describes how these cost functions
can be incorporated into an airline schedule recovery model.
Section IV demonstrates how deterministic and stochastic
delay cost functions are derived within an airline case study
network and defines scenarios that require their application in
the context of tactical schedule recovery. Section V presents
the results of the scenario analysis, from which Section VI
draws conclusions and discusses potential future research.

II. MODELLING OF DELAY COST FUNCTIONS
Flight-specific delay cost functions are necessary to incorpo-
rate downstream network constraints and recovery capacities
into the local optimisation context of schedule recovery, e.g.,
at an airline hub airport. This section details how these
constraints and recovery capacities can be considered to
respect succeeding flights in the aircraft routing, crew duty
time regulations, passenger transfer connections or night
curfews at subsequent airports.

A. DETERMINISTIC STEP COST FUNCTIONS
Let vAe be the arrival delay of a flight e from the set ARR of
all arrival flights of an airline to its hub airport. The delay of
this flight e ∈ ARR may propagate into departure delay vDf
of other flights f from the set of all departure flights DEP of
that same airline.

The costs of departure delay CD
f (v

D
f ) for a flight f ∈ DEP

can then be modelled as a function of vDf that includes flight
delay costs CDEP

f (vDf ) for flight f ∈ DEP; flight delay costs
CROF
g (vDf ) for all other flights g ∈ ROF operated by the

same aircraft as part of its rotation on that day; flight delay
costs CNRF

h (vDf ) for all flights h ∈ NRF that are not part of the
aircraft rotation but are connected to the delayed aircraft via
passenger (PAX) transfer connections; costs of cancellation
CCNX
x of any downstream rotational flight x ∈ DEP ∪ ROF

due to duty time, maintenance or curfew infringements; costs
for passengers (or crew)missing their connectionsCPAX

fh from
departure flight f to any flight h ∈ NRF – determined by
κfh ∈ {0, 1}; and costs of passengers (or crew) missing their
connections CPAX

gh from any other rotational flight g ∈ ROF
to any non-rotational flight h ∈ NRF – determined by κgh ∈
{0, 1} (1). Fig. 1 exhibits the corresponding relationships
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FIGURE 1. Sets of flights considered within each aircraft rotation.

within two example aircraft rotations.

CD
f (v

D
f ) = CDEP

f (vDf )+
∑
g∈ROF

CROF
g (vDf )

+

∑
h∈NRF

(
CNRF
h (vDf )

(
1− κfh(vDf )− κgh(v

D
f )
))

+

∑
x∈DEP∪ROF

CCNX
x (vDf )

+

∑
h∈NRF

(
CPAX
fh (atth) NPAX

fh κfh(vDf )
)

+

∑
g∈ROF

∑
h∈NRF

(
CPAX
gh (atth) NPAX

gh κgh(vDf )
)

(1)

Costs of flight delay consist of additional crew wage costs
CCRW,Aty
f (vDf ), additional maintenance costs CMRO,Aty

f (vDf )

and costs of passenger dissatisfaction CDIS,Aty
f (vDf ), which all

depend on the aircraft type Aty and can be all modelled as
(piece-wise) linear cost functions of the departure delay vDf
(2). Thereby, the piece-wise linearisation of passenger
dissatisfaction costs provides a good fit to the logit function
of marginal soft costs [57], such that the resulting flight
delay cost function is also piece-wise linear (see Fig. 2a).
Modelling the delay costs of all rotational flights CROF

g and
non-rotational flights CNRF

h as a function of vDf provides the
possibility to include scheduled buffers between flights, such
that flights with higher buffers induce costs only at higher
delays (see Fig. 2b and 2c). Note in Fig. 2c the dependency
of flight delay costs on the respective aircraft type.

The costs of passengers missing their transfer connections
CPAX
fh , CPAX

gh contain all monetary consequences for an
airline that may arise once a group of transfer passengers
NPAX
fh , NPAX

gh between flights f and g or h does not depart
and/or arrive as scheduled (due to reasons for which the
airline is liable). This includes basic administrative costs
CBAS,Distxh
xh (atth) and, according to EU Regulation 261 [26],

costs of care CCAR,Distxh,λ1
xh (atth), costs of compensation

CCOM,Distxh,λ2,λ4
xh (atth) (only if the airline is liable for

the delay and the passenger is not reimbursed), costs of
ticket rebooking CREB,Distxh,λ4

xh (atth), costs of reimbursement
CREI,Distxh,λ3,1−λ4
xh (atth) (only if passengers do not fly with

an alternative flight) and costs of lodging CLOD
xh (atth) in

case no alternative flight is available before the next day or
passengers abandon the journey. Most of these costs depend
on the combined trip distance Distxh of flights x ∈ DEP ∪
ROF and h ∈ NRF and the additional trip time atth with
alternative flights to h, which imply the arrival delay at the
final destination and need to be deducted to respect historical
claim ratios (λ1 − λ4 ∈ (0, 1)) [48], [57].

CDEP
f (vDf ) = CCRW,Aty

f (vDf )+ C
MRO,Aty
f (vDf )+ C

DIS,Aty
f (vDf )

(2)

CROF
g (vDf ) = CCRW,Aty

g (vDf )+ C
MRO,Aty
g (vDf )+ C

DIS,Aty
g (vDf )

(3)

CNRF
h (vDf ) = CCRW,Aty

h (vDf )+ C
MRO,Aty
h (vDf )+ C

DIS,Aty
h (vDf )

(4)

CPAX
xh (atth) = CBAS,Distxh

xh (atth)+ C
CAR,Distxh,λ1
xh (atth)

+CCOM,Distxh,λ2,λ4
xh (atth)+ C

REB,Distxh,λ4
xh (atth)

+CREI,Distxh,λ3,1−λ4
xh (atth)+ CLOD

xh (atth) (5)

Fig. 2d shows potential cost functions across all hauls,
when 80% of passengers would accept meal vouchers (λ1 =
0.80), 58% would apply for compensations (λ2 = 0.58),
50% would claim reimbursements (λ3 = 0.50), 80%
would opt for being rebooked (λ4 = 0.80), while 20%
are assumed to abandon the trip and are ineligible for
compensations [48].

As noted above, if a passenger transfer is rebooked, the
binary variables κfh(vDf ) or κgh(v

D
f ) take a value of 1. The

formulation of this variable as a function of the departure
delay vDf allows the incorporation of the slack time until a
transfer needs to be rebooked. Furthermore, it enables the
consideration of an additional waiting time which may be
predefined in the airline recovery policy, e.g., maximum
10 minutes delay per flight before downstream transfer
passengers are rebooked (see Fig. 2e). Finally, Fig. 2f displays
a flight-specific delay cost function with respect to the
number of passengers per transfer.

In order to include this function within a Mixed-Integer
Linear Programming (MILP) formulation, the total delay vDf
obtained by a flight f ∈ DEP is distributed across several
delay levels L, such that the delay rfl in each level l ∈ L
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FIGURE 2. Components of a flight-specific delay cost function.

incurs constant marginal (linear) delay costs CDl
fl and has

an upper bound UBfl and a lower bound LBfl (see Fig. 3).
Once the buffer time before critical downstream constraints
in an aircraft rotation is consumed, which is determined

by yfl ∈ {0, 1}; step costs CDs
fl are incurred in between

two delay levels. Although this formulation would allow
individual lengths for each delay level, a general version may
foresee standardised delay levels of five minutes.
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FIGURE 3. Mathematical representation of a step linear delay cost
function in the MILP.

B. STOCHASTIC DELAY COST FUNCTIONS
The stochastic cost model builds on the flight-specific
delay cost model and incorporates stochastic block and
ground times for and between the upcoming flight legs in
the respective aircraft rotation. These can be derived as
conditional probabilities from historical operations data, such
that they indicate how much of a given departure delay vDf
of flight f ∈ DEP at the hub is likely to propagate into
an arrival delay vAf at the out-station, a departure delay vDg
at the out-station and an arrival delay back at the hub vAg
of a subsequent flight g ∈ ROF in the aircraft rotation
(see Fig. 4). The latter was described as back-propagation
in Section I and may influence also further short-cycles
afterwards, which are more difficult to incorporate because of
frequently changing aircraft routings as further elaborated in
Section IV. Learning such probabilities from historic data can
reveal otherwise confidential airline data or delay influences
which are difficult to predict and depend on a range of
side factors, such as inherent block-time buffers, traffic, the
potential of dynamic cost indexing or ground operations
performance at an out-station [56].

In any case, the consideration of block and short-cycle
time variance is deemed more accurate than the common
assumption that departure delay propagates one-to-one into
arrival delay and is thereafter only absorbed by ground
buffers at the out-station [10]. Consequently, the stacked
deterministic delay cost function in Fig. 2f needs to be
unbundled once again, such that the individual cost factors
can be accurately assigned to the operational milestones (e.g.,
in-block IB or off-block OB) in the downstream aircraft
rotation. Thus, as detailed in Fig. 4, costs which arise from
the duty of care according to EU Regulation 261 are directly
attributable to departure delay at the hub. Costs for additional
fuel burn and maintenance expenses may appear if the airline
decides to mitigate part of the delay through dynamic cost
indexing. All other costs are only incurred in case that a
departure delay induces an arrival delay. Departure delay
costs at the out-station arise from the same factors as at the
hub, but only in case the arrival delay also propagates from
the first to the second flight leg. Finally, the second stage

of arrival delay costs depend on how much delay can be
absorbed during the second block time and how much is still
propagated back to the hub and further on.

Stochastic block-, ground or even entire short-cycle time
distributions can be fitted from field data, whereby they
are categorised depending on the amount of departure delay
vDf obtained at the origin airport of flight f . Fig. 5a shows
probability density functions for 10-minute categories of
departure delay between 0 and 60 minutes with a block
time standard deviation of 5 minutes. For each category,
the deterministic cost function of the respective downstream
milestone CA

f (v
D
f ), e.g., arrival delay of flight f , is integrated

with the conditional probability p(vAf | v
D
f ) of the departure

delay propagating to that milestone. Subsequently, the cost
integrals from all milestones need to be stacked to calculate
the stochastic delay costs SCD

f (v
D
f ) for this category of

departure delay. The entire stochastic delay cost function
exhibited in Fig. 5b may then be described by calculating the
summed integral for all delay categories and then fitting all
integral values with a piece-wise linear function (6) - (10).

SCD
f (v

D
f ) = CD

f (v
D
f )+

∫ (
p(vAf | v

D
f ) · C

A
f (v

A
f ) dv

A
f

)
+

∑
g∈ROF

(∫ (
p(vDg | v

D
f ) · C

D
g (v

D
g ) dv

D
g

))

+

∑
g∈ROF

(∫ (
p(vAg | v

D
f ) · C

A
g (v

A
g ) dv

A
g

))
(6)

CD
f (v

D
f ) = C

CAR,Distef ,λ1
ef (vDf ) (7)

CA
f (v

A
f ) = CDIS,Aty

f (vAf )+ C
CRW,Aty
f (vAf )

+CMRO,Aty
f (vAf )+ C

CNX
x (vAf )

+

∑
h∈NRF

(
CPAX
fh (atth) NPAX

fh κfh(vAf )
)

+

∑
h∈NRF

(
CNRF
h (vAf ) (1− κfh(v

A
f ))
)

(8)

CD
g (v

D
g ) = C

CAR,Distfg,λ1
fg (vDg ) (9)

CA
g (v

A
g ) = CDIS,Aty

g (vAg )+ C
CRW,Aty
g (vAg )

+CMRO,Aty
g (vAg )+ C

CNX
g (vAg )

+

∑
h∈NRF

(
CPAX
gh (atth) NPAX

gh κgh(vAg )
)

+

∑
h∈NRF

(
CNRF
h (vAg ) (1− κgh(v

A
g ))
)

(10)

Note that the generalised version depicted in Fig. 5
assumes normal-distributed block times with constant vari-
ance across all departure delay categories. This is inde-
pendent of the true stochastic nature of a particular flight,
where one may find best fits with, e.g., Beta- or Weibull-
distributions [58]. In any case, smaller standard deviations
result in stochastic delay cost functions that closely fit
the shape of the deterministic cost curves, whereas large
standard deviations smooth the curve along the x-axis
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FIGURE 4. Framework of stochastic delay costs. For an improved situational awareness during
tactical schedule recovery, downstream uncertainties are considered while modelling delay
propagating along an aircraft rotation. Dependencies from muted boxes are derived from field data.

(see Figs. 5c and 5d). If the scheduled block time comprises
buffer times, the stochastic cost curve is shifted towards
the right on the x-axis, whereas actual block times that
exceed the scheduled period cause a dislocation towards
the left (see Figs. 5e and 5f). Depending on the block-time
characteristics of a specific flight, multiple parameters can
interfere with another and distort the stochastic function in
the directions described.

III. IMPLEMENTATION INTO TACTICAL AIRLINE
SCHEDULE RECOVERY
As described, delay cost functionsmay support tactical airline
schedule recovery, such that ATFM slots or constrained
resources for the turnaround can be assigned preferably to
those aircraft from whose subsequent flights the airline is
likely to incur higher costs of delay. Thus, deterministic and
stochastic delay cost functions from the previous section
are implemented into a scheduling model for tactical airline
schedule recovery, described in full detail in [5].

A. AIRLINE SCHEDULE RECOVERY IN CONSTRAINTS
The schedule recovery model aims at assigning a limited set
of ATFM slots and ground handling standard and reserve
resources to a set of aircraft AC , such that tactical airline costs
within a given airport capacity constraint are minimised.

All slots for arrival flights of an airline during a constraint
are defined as set AS, while all slots for departure flights
are defined as set DS. The assignment of an aircraft a from
the set of all aircraft AC to an arrival slot s ∈ AS, is done
with zAes ∈ {0, 1}; whereas a departure slot s ∈ DS is
assigned with zDfs ∈ {0, 1}; Each slot defines a calculated
take-off time CTOTs and a required time of arrival RTAs,

which are calculated according to the Ration-by-Schedule
(RBS) principle for each flight of the airline within the
constraint considering all flights of other airlines [51]. In the
baseline instance, each flight is fixed to its assigned slot
respecting a First-Planned First-Served (FPFS)-sequence.
In case this is infeasible because there is not enough time
for the turnaround between assigned arrival and departure
slots, alternative slots are available after the last flight of
the airline in the constraint. For the scenarios introduced in
Section IV-D, the fixed assignment can be lifted.
The turnaround of each aircraft a ∈ AC is defined by

scheduled start and finishing times SIBTe and SOBTf , which
are adopted from the schedule. It consists of a network of sub-
processes P, in which each sub-process i ∈ P is characterised
by a related aircraft (RAi = a) and a related flight
(RFi = e, f ), has a variable starting time si and a duration Di
that corresponds to the median of a statistically-fitted time
distribution [45]. Links between turnaround sub-processes
are determined in the precedence matrix PMij ⊆ P × P.

Following the general Resource-Constrained Project
Scheduling Problem (RCPSP), each aircraft a needs to
be assigned to an airport stand p from the set ST with
χap ∈ {0, 1}, whereby we differentiate between contact
standsCS and remote stands RS, that are all equipped with the
necessary personnel and resources for a standard turnaround.
Thus, the in-block process i ∈ IB ⊂ P, as the first process of
each turnaround, can only be scheduled after the SIBTe and if
a stand is available which fulfils all operational requirements
for aircraft and flights. It further depends on the estimated
landing time eldte of the assigned slot and the average taxi-in
duration EXIT.
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FIGURE 5. Impact of block time variance and schedule parameters on delay cost function.

Downstream sub-processes can only start once all pre-
ceding processes are estimated to be completed. Thereby,
turnaround reserve resources enable schedule recovery
options, such as a quick turnaround (ωi ∈ {0, 1}), which
reduces the duration of specific turnaround sub-processes,

e.g., cabin cleaning i ∈ CL ⊂ P. These reserve resources
are limited by QTA and incur recovery costs CQTA

i by each
application. Another recovery option is stand reallocation
which considers that aircraft that are positioned at a remote
stands p ∈ RS have reduced durations for de-/boarding
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processes i ∈ DE,BO ⊂ P, given that passengers
can use front and rear doors [59]. It further considers that
the stand allocation of arrival and departure aircraft at an
airport directly influences the needed transfer time NTTpq for
connecting passengers. By applying these options, airlines
can influence the total duration along the critical path of a
turnaround but also time dependencies between aircraft along
transfer processes i ∈ PA ⊂ P. If a transfer would require
a departure flight to delay its off-block, the airline can either
rebook the transfer (κi ∈ {0, 1}) or accept the delay. The prior
decision would incur misconnection costs CPAX

i , similar as
described for downstream transfers in (5). In case the transfer
involved a crew, it can only be cancelled if a standby crew
is available. Delaying the departure of a flight incurs delay
costs as described in Section II.

The estimated delay is split across equally sized delay
levels l ∈ L in which the delay rfl has constant linear costs
CDl
fl . In case of deterministic cost functions, step costs CDs

fl
are incurred once the scheduled buffer or slack time before
a critical downstream event is consumed (determined by
yfs ∈ {0, 1}). The resulting estimated off-block time eobtf is
addedwith an average taxi-out durationEXOT to calculate the
estimated take-off time etotf , which needs to comply with the
CTOTs of the assigned departure slot s.

B. MATHEMATICAL FORMULATION

SETS
AC set of all aircraft
ARR set of all arrival flights to airline hub airport
DEP set of all departure flights from airline

hub airport
P set of all turnaround processes
IB ⊂ P set of aircraft in-block processes
DE ⊂ P set of deboarding processes
CL ⊂ P set of cleaning processes
BO ⊂ P set of boarding processes
OB ⊂ P set of aircraft finalization processes
PA ⊂ P set of passenger transfer processes
L set of delay levels
ST set of available stands at airport
RS ⊂ ST set of available remote stands on

airport apron
AS set of all initial arrival slots assigned to

the airline
DS set of all initial departure slots assigned

to the airline
A0 start and end node of routings

PARAMETERS

CQTA
i cost for reducing duration of process

i by quick-turnaround
CPAX
i cost of cancelling a local passenger

transfer i ∈ PA
CDl
fl linear delay cost of flight f ∈ DEP in delay

level l ∈ L

CDs
fl step cost of flight f ∈ DEP after delay

level l ∈ L
QTA number of available quick-turnaround units
SIBTe scheduled in-block time for

flight e ∈ ARR
SOBTf scheduled off-block time for

flight f ∈ DEP
LBfl lower bound of delay level l ∈ L

for flight f ∈ DEP
UBfl upper bound of delay level l ∈ L for

flight f ∈ DEP
Di duration of turnaround sub-process i ∈ P
NTTpq transfer time between stands p ∈ ST

and q ∈ ST
TT transition time between two stand assignments
α time reduction factor achieved by

quick-de/boarding
β time reduction factor achieved

by quick-turnaround
EXIT average taxi-in duration at hub airport
EXOT average taxi-out duration at hub airport
CTOTs calculated take-off time related to slot

s ∈ AS ∪ DS
RTAs required time of arrival related to slot

s ∈ AS ∪ DS
RAi related aircraft of turnaround

sub-process i ∈ P
RFi related flight of turnaround

sub-process i ∈ P
M parameter-specific big M

VARIABLES
si starting time of turnaround

sub-process i ∈ P
vDf total departure delay of departure

flight f ∈ DEP
rfl delay of flight f ∈ DEP in

delay level l ∈ L
yfl ∈ (0; 1) equal to 1 if delay of flight

f ∈ DEP exceeds level l ∈ L
eldte estimated landing time for arrival

flight e ∈ ARR
eobtf estimated off-block time for

departure flight f ∈ DEP
etotf estimated take-off time for

departure flight f ∈ DEP
χap ∈ (0; 1) equal to 1 if aircraft

a is assigned to stand p ∈ ST
ψabpq ∈ (0; 1) equal to 1 if aircraft

a and b are assigned to stands p and q
ωa ∈ (0; 1) equal to 1 if quick-turnaround

is assigned to aircraft a
κi ∈ (0; 1) equal to 1 if passenger

transfer i ∈ PA is cancelled
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zAes ∈ (0; 1) equal to 1 if flight e ∈ ARR is
assigned to arrival slot s ∈ AS

zDfs ∈ (0; 1) equal to 1 if flight f ∈ DEP is
assigned to departure slot s ∈ DS

xQab ∈ (0; 1) sequencing variable for
quick-turnaround procedures

xSabp ∈ (0; 1) sequencing variable for
aircraft a, b ∈ AC at stand p ∈ ST

min
∑
f ∈DEP

∑
l∈L

(
CDl
fl rfl + CDs

fl yfl
)
+

+

∑
i∈P

(
CQTA
i ωi + CPAX

i κi

)
(11)

s.t.

si ≥ SIBTe ∀ i ∈ IB | RFi = e (12)

si ≥ eldte + EXIT ∀ i ∈ IB | RFi = e (13)

eldte ≥ RTAs −M (1− zAes) ∀ e ∈ ARR; ∀ s ∈ AS

(14)

eldte ≤ RTAs +M (1− zAes) ∀ e ∈ ARR; ∀ s ∈ AS

(15)∑
s∈AS

zAes = 1 ∀ e ∈ ARR (16)∑
e∈ARR

zAes ≤ 1 ∀ s ∈ AS (17)

si ≤ SOBTf + vDf = eobtf ∀ i ∈ OB | RFi = f

(18)

vDf =
∑
l∈L

rfl ∀ f ∈ DEP (19)

rfl ≥
(
UBfl − LBfl

)
yfl ∀ f ∈ DEP; ∀ l ∈ L (20)

rfl ≤
(
UBfl − LBfl

)
yf (l−1) ∀ f ∈ DEP; ∀ l ∈ L

(21)

eobtf + EXOT = etotf ∀ f ∈ DEP (22)

etotf ≥ CTOTs −M (1− zDfs)

∀ f ∈ DEP; ∀ s ∈ DS (23)

etotf ≤ CTOTs +M (1− zDfs)

∀ f ∈ DEP; ∀ s ∈ DS (24)∑
s∈DS

zDfs = 1 ∀ f ∈ DEP (25)∑
f ∈DEP

zDfs ≤ 1 ∀ s ∈ DS (26)

sj ≥ si + Di ∀ i ∈ IB, ∀ j ∈ P | PMi,j = 1 (27)

sj ≥ si + Di(1− χap)+ αDiχap
∀ i ∈ DE ∪ BO,∀ j ∈ P |

PMi,j = 1;RAi = a; ∀ p ∈ RS (28)

sj ≥ si + NTTpqψabpq−Mκi
∀ i ∈ PA,∀ j ∈ P | PMi,j = 1,

RAi = a,RAj = b,∀ p, q ∈ ST (29)

χap + χbq ≤ 1+ ψabpq ∀ a, b ∈ AC; ∀ p, q ∈ ST

(30)

χap ≥ ψabpq ∀ a, b ∈ AC; ∀ p, q ∈ ST (31)

χbq ≥ ψabpq ∀ a, b ∈ AC; ∀ pq ∈ ST (32)∑
p∈ST

χap = 1 ∀ a ∈ AC (33)

∑
a∈AC∪A0

xSabp = χap ∀ b ∈ AC; ∀ p ∈ ST (34)∑
b∈AC∪A0

xSabp = χap ∀ a ∈ AC; ∀ p ∈ ST (35)

sj ≥ si + TT −M (1− xSabp)

∀ a ∈ AC; ∀ b ∈ AC ∪ A0;

∀ p ∈ ST ; ∀ i ∈ OB | RAi = a;

∀ j ∈ IB | RAj = b (36)

sj ≥ si + Di(1− ωi)+ βDiωi
∀ i ∈ CL,∀ j ∈ P | PMi,j = 1 (37)∑

b∈AC∪A0

xQab ≤ QTA ∀ a ∈ A0 (38)∑
a∈AC∪A0

xQab = ωb ∀ b ∈ AC (39)∑
b∈AC∪A0

xQab = ωa ∀ a ∈ AC (40)

sj ≥ si + TT −M (1− xQab)

∀ a ∈ AC; ∀ b ∈ AC ∪ A0;

∀ i ∈ OB | RAi = a

∀ j ∈ IB | RAj = b (41)

The objective function (11) minimises total costs of
delay and schedule recovery. This includes linear costs
across all delay levels, step costs once a critical delay
threshold is overrun (not in the stochastic model) and costs
related to schedule recovery during the turnaround or the
cancellation of transfer connections. Each turnaround can
only start after the scheduled in-block time (12) and after
the landing and taxi-in of the arrival flight (13), whereby
the estimated landing time must align with required time
of arrival of the assigned arrival slot (14)-(15). All arrival
flights that are part of an airport constraint need to be
assigned to exactly one arrival slot (16), while each slot
can be used by maximum one flight (17). According to
the assigned departure slot, departure delay is distributed
across predefined delay levels (18)-(19) and is translated
into an estimated take-off time (22). Each delay level in the
deterministic cost model is bounded such that delay can only
occupy upper levels by taking into account the related step
costs before them (20)-(21). Departure slot constraints (23)-
(26) are similar to arrival slot constraints (14)-(17).

Standard scheduling constraints (27) ensure that all
turnaround sub-processes following the in-block process can
only start once it has been finished. Similar scheduling
constraints are defined for processes starting after deboarding
and boarding (28), whereby the duration of both processes

VOLUME 10, 2022 21433



J. Evler et al.: Stochastic Delay Cost Functions to Estimate Delay Propagation Under Uncertainty

FIGURE 6. Flight-specific delay cost functions are defined with respect to the constraints
within an airline case study network, which includes one day of rotations for 17 aircraft
between three major hub banks in Frankfurt (morning, afternoon, evening) as well as
passenger and crew transfer connections between all flights. Spoke airports which are hub
airports of partner airlines and allow further passenger transfer connections are marked in
orange.

can be reduced by a factor α when an aircraft is positioned
at a remote stand p ∈ RS. Constraints (29) consider needed
transfer times for connecting passengers and crews between
the stands of their arrival and departure flights, which
directly influences their stand allocation. Note that for the
application of standard solvers, constraints (30)-(32) turn the
quadratic relationship between both stand allocation variables
into a linear formulation. Further note that transfer time
dependencies are omitted for all transfer connections which
are cancelled. Following the RCPSP, constraints (33) make
sure that each aircraft is allocated to exactly one stand,
whereby the Miller–Tucker–Zemlin (MTZ) formulation [60]
in constraints (34)-(36) defines the sequence among aircraft
which use equal stands and a dummy node A0, which marks
the start and end of each sequence.

The standard RCPSP formulation is extended by the
possibility to assign recovery resources to some turnaround
sub-processes (e.g., cabin cleaning) which then reduce the
respective durations by factor β (37). Considering that
turnaround recovery resources are limited (38), another
MTZ-formulation in constraints (39)-(41) builds a sequence
that ensures that only so many turnarounds can be prioritized
in parallel as recovery resources are available.

IV. APPLICATION
The schedule recovery model with deterministic and stochas-
tic delay cost functions is applied to an airline case study
network that is impacted by an airport capacity constraint
(e.g., weather events [61]). This section presents the case
study setting, exhibits the derived delay cost functions and

introduces the disruption scenarios in which the airport
operates with reduced runway capacity.

A. CASE STUDY SETTING
The airline case study network comprises 17 aircraft (four
wide-body aircraft and 13 narrow-body aircraft), which are
scheduled to operate 84 flights from and to the central
hub at Frankfurt airport (FRA). All 17 aircraft rotations
have been adopted from a publicly available Lufthansa
schedule as planned for a busy Friday during the summer
season 2019. This ensures that flight assignments adhere
to aircraft characteristics and allows to incorporate realistic
schedule buffers as optimised at the strategic planning
level. Rotations are selected such that they include strategic
destinations like hub airports of the Lufthansa Group and
Star Alliance members [62]. One aircraft has a scheduled
maintenance (MRO) event at FRA in the afternoon. Ten
long-haul intercontinental flights are operated by long-haul
aircraft (e.g., Boeing B748 and Airbus A388), whereas the
remaining 74 flights are assigned to Airbus A320, A20N,
A321 and A21N aircraft. The majority of aircraft meet during
three hub banks throughout the day, from which the morning
hub bank from 7:30 a.m. to 11:00 a.m. local time (highlighted
in pink in Fig. 6) will represent the core of the case study.
Consequently, parallel turnaround operations of 15 aircraft
will be studied, which includes 151 passenger transfer
connections and two crew transfers between their respective
arrival and departure flights. All 15 turnarounds need to be
operated at ten dedicated airport stands, of which eight are
located at the terminal and two on the apron (see Fig. 7).
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FIGURE 7. The analysis focuses on potential disruptions to aircraft ground times during the
morning hub bank.

Among the stands at the terminal, four have special customs
areas to operate Non-Schengen flights. Furthermore, each
stand is assigned with the necessary ground handling
resources and personnel to operate a standard turnaround,
while one extra unit of servicing agents is freely available
to perform quick-turnaround procedures. Furthermore, one
dedicated bus allows the operation of ramp direct services on
critical passenger connections, while one standby crew can
step into duty in case of disrupted crew pairings.

Another 155 passenger transfers and six crew transfers are
scheduled among downstream flights which will visit Frank-
furt airport later during the day. Furthermore, 67 passenger
itineraries include a transfer at the hub airport of a partner
airline (marked in orange in Fig. 6).

B. DELAY COST PARAMETERS
As explained in (1)-(5) in Section II, flight delay costs of
any flight f ∈ DEP include additional crew wage costs
for overtime in case the flight duty is scheduled to end
after the departure flight from the hub, as well as additional
maintenance costs and costs of passenger dissatisfaction. All
depend on the respective aircraft type as described by [48],
such that, e.g., one hour of overtime for an A320 flight crew
(captain and first officer) and cabin crew (purser and three
flight attendants) costs the airline 516 EUR, which splits into
8.6 EUR per minute of delay [63]. Additional maintenance
costs are only minor and incur 0.5 EUR per delay minute,
whereas passenger dissatisfaction costs are best modelled
with logit functions [7], such that different gradients per delay
level l ∈ L are assumed for the first 15 minutes (CDIS,A320

f 1 =

1 EUR), delays between 16 and 30 minutes (CDIS,A320
f 2 =

6 EUR), between 31 and 60 minutes (CDIS,A320
f 3 = 16 EUR),

between 61 and 90 minutes (CDIS,A320
f 4 = 18 EUR) and for

delays above 90 minutes (CDIS,A320
f 5 = 15 EUR).

Costs of passenger misconnections at downstream airports
CPAX
fh , CPAX

gh are estimated with their respective transfer
slack time as described in Section II. If a delay consumes
the duty time buffer of a crew pairing or a crew misses
its transfer to another flight, the costs of using a standby
crew are 1,000 EUR. Flight cancellation costs due to
maintenance constraints or night curfews include costs for

dissatisfaction, rebooking, reimbursement and compensation
for all passengers booked on the entire flight cycle (both
legs), which corresponds to roughly 25,000 EUR per flight
leg (CCNX

x = 50,000 EUR) as estimated by [4], [48].
Given that all mentioned cost-drivers on downstream

flights are calculated as a function of the departure delay
of departure flight f ∈ DEP from the hub, buffer times
between all flights before the actual event are accumulated
and added to the planned crew transfer, passenger connection
or curfew buffers (see Fig. 8). Thus, cost-drivers related to
flights that are planned during the afternoon and evening
hours may appear later on the delay cost function than events
with similar slack or planned buffer times which are related
to morning flights.

Note that some aircraft rotations do not contain any
maintenance, curfew or crew transfer constraints, while the
assigned crew pairings may have large duty time buffers,
such that flight cancellation costs may be neglected entirely.
Nevertheless, passenger transfer constraints and the related
cost steps need to be considered in every delay cost function,
given that each daily rotation includes at least one flight back
to the hub airport, where passengers can transfer to other
destinations. Thus, with an increasing number of downstream
flight cycles, more cost steps may be part of the delay cost
function, while also the slope increases due to more rotational
flights being impacted by the delay (see continuous stars in
Fig. 8). Further cost steps appear on rotations which include
flight cycles to hub airports of partner airlines, given that
passengers may have transfer connections to code-sharing
flights.

C. ESTIMATION OF DOWNSTREAM UNCERTAINTY
For the consideration of uncertainty in downstream opera-
tions, actual flight data are retrieved for all departure flight
rotations of the morning hub bank as operated during the
summer season 2019 (217 days). As documented exemplary
for the data set of aircraft 4 in Fig. 9, all data are filtered,
such that only rotations are included that were operated
by the same aircraft type as the first flight cycle on the
case study day. Furthermore, rotations are excluded which
had longer or shorter scheduled block or ground times
during the first flight cycle. Subsequently, the remaining data
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FIGURE 8. Cost-driving events (PAX rebookings, MRO events, crew changes, airport curfews) in downstream operations
of each aircraft impact the airline once buffer and slack times (marked in dashed arrows) are consumed by a given
primary delay.

FIGURE 9. Data filtering process.

sets are categorised according to the amount of departure
delay they obtained on their first flight out of the morning
hub bank. Based on this selection, the probability density
of the actual block time deviations from the scheduled
times is calculated for each 5 minute category as shown in
Fig. 10. The resulting distributions are integrated with the
deterministic cost functions from the previous subsection to
obtain a stochastic cost estimation at discrete grid points
every 5 minutes. These grid points are connected with a
piece-wise linear stochastic delay cost function as exhibited
in Fig. 10i.

Considering that there have been only a few flight cycles
with high departure delays, the probability density of the
penultimate category is also used for all 5 minute categories
above 40 minutes of delay. Here, the time horizon of the
underlying data set needs to be extended to get a more
comprehensive database per category. This is especially
true when one considers that higher delays are typically
associated with larger variances as will be further discussed
in Section VI. The same is valid for longer look-ahead times,
whereby the uncertainty estimation of milestones that are

further down in the respective aircraft rotation is based on
even smaller samples per delay category. As exhibited in
Fig. 9, not even half of all seasonal rotations include the same
set of flight cycles, both flying to LHR and back. Note here
that on other rotations not even 5% of all seasonal rotations
are equal to the ones observed on the day of the case study.
To still consider uncertainties comprised within the third,
fourth or even fifth downstream block time segments, the
same categorical probability densities are applied to these
flights as for the first flight cycle. In any case, this may easily
be updated in future research once a larger database would be
available.

Figs. 11 and 12 exhibit the resulting deterministic and
stochastic delay cost functions for all departure flights
of the morning hub bank. Note in Fig. 12 that several
cost functions start increasing up to ten delay minutes
after their deterministic counterparts, next to cost steps
being smoothed due to block time variances. Furthermore,
cumulative costs in higher delay levels, e.g., 120 minutes, are
significantly lower due to block time buffers and cruise speed
potential. The comparison with a reference cost function
of an A320 [7] validates that all cost functions are in
the right order of magnitude, given that the reference cost
function shows similarity to a regression curve of the flight-
specific cost functions. In any case, the heterogeneity of these
flight-specific cost functions underlines their advantageous
properties for tactical flight prioritization, which would be
hard to accomplish for aircraft of the same type based on
reference cost functions.

D. AIRPORT CONSTRAINT SCENARIOS
The nominal runway capacity at Frankfurt airport is defined
with AQ = 27 movements per period of PE = 15 minutes.
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FIGURE 10. The stochastic cost function is the piece-wise linearised result of an integration among a deterministic delay cost function and categorised
block time deviations as observed on the flight cycle to London (LHR) during the summer season 2019.

FIGURE 11. Deterministic delay cost function of all aircraft.

The planned capacity utilisation is marked by the green
line in Fig. 13 and was retrieved from the initial flight
plan data on Friday, 16 August 2019 – a day that did not
contain any capacity regulations at Frankfurt airport. Based
on this initial flight sequence, three constraint scenarios
are introduced, which each predict the runway capacity to

FIGURE 12. Stochastic delay cost function of all aircraft.

reduce to AQ = 15 while the length of the stress period
varies. All scenarios assume that all flights will be operated,
such that potential cancellations are neglected. The stress
period is estimated to start before the morning peak at
7:00 a.m. local time. In Scenario 1 (S1), it is estimated
to last for two hours, while in Scenario 2 (S2) it includes
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FIGURE 13. Airport constraint scenarios during the morning hub bank at
Frankfurt airport.

three hours and in Scenario 3 (S3) four hours. As demand
exceeds capacity during the entire stress period, slots are
assigned according to the RBS principle. This results in a
recovery period until 2:00 p.m. in S1 which also covers the
entire midday bank. Given that more flights are affected by
the stress period in S2, the recovery period covers almost
the entire afternoon bank until 5:30 p.m. In S3, it lasts for
another 75 minutes (see Fig. 13). Based on this initial slot
assignment, the required arrival times and calculated take-off
times per scenario are retrieved per flight of the case study
airline and define sets of arrival slots AS and departure slots
DS. Considering a typical cut-off time for the submission
of flight priorities, which is two hours before the start of
the constraint [2], we assume a look-ahead time of three
hours before the problem, such that there is one hour left
for the airline to define the priorities of their flights within
their assigned slots. Each scenario is run with two instances,
whereby the first one (S1/2/3-Step Cost) applies deterministic
step cost functions, and in the second one (S1/2/3-Stochastic),
stochastic cost functions are used to estimate the impact on
downstream operations.

Fig. 14 exhibits the initially assigned delays to the arrival
and departure flights of the same aircraft according to the
RBS principle. Note that delays increase on flights early in the
stress period, stagnate at the end of the stress period and begin
to decrease once free capacity is available during the recovery
period. Given the very heterogeneous ground times, which
are typical for a full-service carrier, the available turnaround
time between both slots is tighter for some aircraft than for
others.

For example, in S1, almost all arrival flights receive higher
delays than the respective departure flights of the same
aircraft. Thereby, the flights of aircraft 7 and 11 obtain the
largest difference (i.e., 25 minutes), which is critical for
aircraft 7, due to no scheduled ground buffer, but uncritical for
aircraft 11, which has 75 minutes ground buffer (see Fig. 7).
In S2, aircraft 11 to 15 have diverging arrival and departure
delays, whereas, in S3, only aircraft 14 and 15 are concerned.
Thereby, aircraft 12 to 15 have very little to no absorption
potential for arrival delays, given that their turnaround is
scheduled for 45 and 50 minutes. Thus, both departure flights
may require new departure slots, which are assumed to be
available at 12:00 p.m. and 12:30 p.m.

FIGURE 14. Assigned ATFCM delays per aircraft and scenario according to
the RBS principle.

FIGURE 15. Comparison of marginal delay costs per minute across all
flights within different types of delay cost functions.

V. ANALYSIS
The schedule recovery model was solved with IBM CPLEX
Version 12.10.0-0 on a 4-core CPUwith 32GBRAM. Results
have been analysed with regard to airline costs (objective
function), the underlying departure delay as the major driver
for downstream costs and the required recovery options to
achieve an optimal solution for the airline.

A. AIRLINE COSTS
Table 1 lists the resulting costs for all scenario instances,
comparing them between a ‘No Recovery’ instance with a
fixed slot assignment according to the RBS principle and a
’Schedule Recovery’ instance, where additional turnaround
resources are available and arrival as well as departure slots
can be swapped among each other. In S1, the baseline ’No
Recovery’ estimation with step costs exceeds the stochastic
one by only 500 EUR (+2%), while the offset increases to
67,000 EUR (+28%) in S3. As noted before in Section IV-C,
the generally lower stochastic cost estimations can be related
to the fact that stochastic cost functions are skewed along
the delay axis due to increasing block and ground time
uncertainties at higher look ahead times. Fig. 15 underlines
this by comparingmarginal costs per minute at different delay
levels across all flights. Thus, the assigned ATFM delays in
the ‘No Recovery’ instance cannot avoid extreme peaks in the
step cost functions, which do not appear to this extend within
the stochastic cost functions.
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FIGURE 16. Assigned departure delay per flight in comparison to the delay cost functions.

Despite the different cost bases, the ratio of cost reductions
through schedule recovery is similar with both types of
functions in S1. However, the optimal recovery decisions
to achieve such cost reductions differ when deterministic
and stochastic cost functions are applied. With increasing
delays in S2 and S3, the achieved cost savings with schedule
recovery differ significantly between delay cost instances,
such that the optimization based on deterministic costs scores
the highest cost savings of up to 58%, though counted from a
much higher baseline.

For a better comparative assessment, we evaluate another
instance per scenario in which the optimal recovery decisions
obtained with the step cost model are applied to the model
with stochastic cost functions. In S1, this would result
in 9,045 EUR, such that the optimal decisions based on
deterministic step cost functions result in 52% higher cost.
In S2, stochastic costs of deterministic optimal recovery
decisions are 59,473 EUR. This is 2% above the optimal costs
that could be achieve when considering stochastic costs in the
recovery process. In S3, optimal recovery decisions based on
deterministic costs would incur 167,691 EURwhen evaluated
with stochastic costs, which is 22,000 EUR (15%) higher than
a schedule recovery based on stochastic costs.

B. OPTIMAL DEPARTURE DELAY
Fig. 16 shows the optimal departure delay per flight in
comparison to the applied delay cost functions. It is obvious
that the optimal delay (and slot) assignment very much
mirrors the shape of the incorporated cost functions. Given
that all cost functions are still closely aligned with each other
at low delay levels, many of the assigned slots are similar

TABLE 1. Additional airline cost from airport constraints.

or even equal between instances in S1 and S2. Thereby, the
difference in the mean absolute deviation of optimal delays
from the ‘No Recovery’ baseline is 1.3 minutes in S1 and 3.1
minutes in S2.

Starting at delays above 45 minutes, the offset between
both types of cost functions becomesmore apparent, such that
it causes a larger heterogeneity among optimal delay values
per flight in S3. The mean absolute deviation of optimal
delays from the baseline ranges from 30.3 minutes with
step costs to 36.9 minutes with stochastic costs. Almost all
departure flights are swapped to another slot for an optimal
recovery solution, whereby 9 swaps are performed differently
between deterministic and stochastic instances (see Table 2).
Note how in the deterministic instances many delays are
assigned directly before larger step costs (see flights F12,
F52, F92, F112, F122, F132, F152 in Fig. 16). In comparison,
stochastic cost functions consider downstream recovery
potential and block time uncertainties, which smooths the
cost functions and allows some flights to obtain departure
delays slightly higher than a critical delay threshold – best
visible at flights F12, F52, F102 and F132. This frees up
time and resources which can be allocated to more critical
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TABLE 2. Optimal number of applied schedule recovery options per
scenario. Slot swap values in parenthesis mark the amount of differently
assigned swaps between step cost and stochastic instances of the same
scenario.

FIGURE 17. Potential change in marginal costs if the airline would
schedule no ground buffers between the flights in each aircraft rotation.

aircraft rotations (e.g., flight F62 can be held in a slot
before a downstream constraint that would incur more than
20,000 EUR).

C. SENSITIVITY OF OPTIMAL RECOVERY DECISIONS
As mentioned in Section V-A, different recovery decisions
are required to achieve optimal solutions on the basis of
deterministic and stochastic delay cost functions. Table 2
exhibits the optimal number of applied schedule recovery
options per scenario instance. Note in S1 with low delays and
deterministic step costs that the quick-turnaround procedure
is assigned towide-body aircraft 7 (F72) that would otherwise
miss its initially assigned departure slot. Throughout all other
instances, the quick-turnaround is assigned to aircraft 13
(F132) that is critical due to its scheduled maintenance event
with only 35 minutes of buffer time and very high delay costs
afterwards – which relate to a potential cancellation of the
flight cycle to Stockholm (ARN). The optimal number of
arrival and departure slot swaps increases with the magnitude
of delay from S1 to S3. Thereby, also the number of
differently performed swaps between instances of the same
scenario (marked in parenthesis in Table 2) increases at higher
delays. Finally, up to three passenger transfer connections
can be maintained when stochastic delay cost functions are
considered in the optimisation process. This might be related
to the fact that stochastic cost functions are able to incorporate
‘hidden’ downstream recovery potential into local decision
making, such that some aircraft can wait longer on stand for
critical transfers.

VI. CONCLUSION
This article describes how flight-specific delay cost functions
enable a detailed consideration of how a given primary
delay may interact with downstream constraints and recov-
ery potential within an airline network. When applying
our methodology to an airline case study, we find that
deterministic delay cost functions consistently overestimate
the potential costs arising from a disruption. Compared
to this, stochastic delay cost functions present a more
realistic estimation of the costs that may be caused by
delay propagation, given that they consider uncertainties
in the system and reveal ‘hidden’ downstream recovery
potential. This may benefit local schedule recovery and
flight prioritization processes when airport resources are
constrained. In the case study, optimal recovery decisions
based on stochastic delay costs result in different slot
allocations and include fewer missed passenger transfers
at the hub airport. Thereby, decisions of the stochas-
tic model outperform those generated on the basis of
deterministic delay costs by up to 15% in a high delay
scenario.

Note that the presented application in this article had
the aim to validate the methodology, such that the findings
need to be verified with a higher number of scenarios in
future work. Thereby, it will be essential to have access
to a comprehensive data base of historical operations data,
such that stochastic cost estimations can be generated with
conditional probabilities that are derived from larger data
samples (especially for high delays). For the presented case
study network, conditional probabilities of primary delays
propagating along aircraft rotations are derived from open-
access flight plan data of one season, while flight cancellation
at higher delays have entirely been neglected.

Future research may also extend the scope of the
researched disruption scenarios or apply delay cost functions
to other types of airline planning models. Thereby, it might
be worth investigating how the specific business model of
an airline and the related network or recovery strategies
influence the shape of its delay cost functions. Fig. 17
presents a sketched example in which all scheduled ground
buffers have been omitted from the aircraft rotations in the
airline case study network. It is clear that marginal delay costs
increase at lower delay levels and accumulate to even higher
peaks, given that the heterogeneity of aircraft ground times
and, thus, also the available connecting times for transfer
passengers, decrease.

Finally, further studies may assess the stability of optimal
schedule recovery decisions when stochastic delay cost
functions are applied. Given that step costs are smoothed
due to block time variances, the associated constraints
are less rigid. This may result in longer solution times
which might require appropriate solution methods [64].
Besides, optimal decisions based on stochastic costs might
be less stable when the duration of a capacity constraint
or the related flight delays change due to prediction
uncertainties [54], [65].
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