
Active Learning for Air Traffic Management Simulation Metamodeling
Christoffer Riis∗†, Francisco Antunes∗, Gérald Gurtner∗∗, Francisco Pereira∗, Luis Delgado∗∗ & Carlos Azevedo∗

∗Technical University of Denmark, ∗∗University of Westminster

DTU Management
Department of Technology,
Management and Economics

†Corresponding author: chrrii@dtu.dk

Motivation

Simulators are often the go-to tools to explore future scenarios or
new policies, but complex, stochastic simulators tend to be slow.
So how do we efficiently explore the simulator?

Scenario Simulator KPIs

Metamodel

Idea: Bypass the expensive simulator with another model

Approach

Integrate simulation metamodeling and active learning.

Training Data Simulation

Input Region

RequestResponse

Metamodeling

Active Learning

Training Prediction

Metamodel

Simulator

Specification of
Input/Output to Explore


Initial Training Data

Tr
ai

ne
d


M
et

am
od

el

Figure 1:Main steps of the proposed active learning metamodeling methodology.

Metamodeling
Approximate the simulator by another model - a metamodel

1 Generalize well from small data sets
2 Uncertainty quantification
3 Predicting super fast!

Active Learning
Choose what to simulate to get the most accurate metamodel

1 Efficient exploration of the simulation input space
2 Avoiding redundant simulations
3 Self-guided

Case Study

Simulator: Mercury
Stochastic event-driven micro-level agent-based model designed to
mimic the movements of both flights and passengers.

Policy Analysis
How the passenger compensation threshold and magnitude affect
delays and cost per flight.TABLE I. SUMMARY DESCRIPTION OF THE MERCURY INPUT/OUTPUT
SIMULATION VARIABLES USED FOR METAMODELING.

var name description values

x1 compensation_magnitude_long1
Compensation between first and second
thresholds for long-haul passengers in euros
(C).

[0, 500, 1000,. . . , 5000]

x2 first_compensation_threshold. Threshold of arrival time after which the pas-
sengers receive a compensation in minutes. [0, 60, 120,. . . , 480]

x3 fuel_price Price per kilogram of fuel in euros (C). [0, 0.5, 1,. . . , 5]

y1
arrival_delay_min_mean Average arrival delay per flight in minutes. real-valued

y2 departure_delay_min_mean Average departure delay per flight in minutes. real-valued

y3 total_cost_mean Average total cost per flight operation in
euros (C) real-valued, positive

y4 pax_tot_arrival_delay_mean Average total arrival delay per passenger in
minutes. real-valued, positive

y5 lcc_arrival_delay_min_mean Average arrival delay per flight for low cost
carriers in minutes. real-valued

y6 lcc_total_cost_mean Average total cost per flight for low cost
carriers in euros (C). real-value, positive

TABLE II. A RANDOM LABELED RAW SAMPLE SHOWING THE TYPE AND
STRUCTURE OF THE FEATURED DATA USED IN THIS WORK.

x1 x2 x3 y1 y2 y3 y4 y5 y6

500 0 0.0 0.47 10.81 11335.41 151.74 6.96 8286.44
3500 360 3.0 0.12 11.88 120072.96 255.78 4.84 34846.82
500 60 1.5 -2.97 11.25 60685.01 206.22 5.12 17844.80
200 60 1.5 -3.62 11.22 61143.59 195.51 6.37 17552.87

in the form of costs of delays (including passenger and non-
passenger related, reactionary, and curfews breaches costs),
fuel consumption, and airspace charges.

Mercury’s input data is essentially related to airline opera-
tions and flights, passenger itineraries, ATM operational data,
fuel cost, and other charges. In terms of outputs, departing and
arrival delays, taxi times, missed connections, and compen-
sations are just some examples of detailed metrics produced
per individual flight and passenger. After aggregation, different
KPIs of the modeled system are computed. For more extensive
details on the Mercury simulator, please refer to [20].

In this work, we focus on three input variables and six KPIs,
as summarized in Table I, and on a scenario encompassing
1000 flights and their associated passengers. Besides allowing
for the construction of an illustrative experimental design to
assess the proposed active learning strategies, the choice for
this set of variables originates from ongoing work regarding
the impact analysis of Regulation 261, which essentially
establishes common rules for passenger compensation and
assistance in case of denied boarding, flight cancellation or
long delays.

B. Metamodeling framework

We construct a metamodel consisting of six - due to the six
KPIs of interest - independent GPs with a SE-ARD kernel [8]
and a constant mean, all trained on the same data set. The
input data is normalized to the unit cube, whereas the output
data is standardized to have zero mean and unit variance.
It is worthwhile remembering that in our modeling context,
a labeled data point is a point from the simulation input
space concatenated with its corresponding simulation output
value. Conversely, an unlabeled data point corresponds to a
simulation input point whose output value is unknown.

As previously mentioned, we use an ‘offline’ pool-based
active learning approach and thus, we create a data set
consisting of all the 1089 combinations of values for the
inputs given in Table I. For each combination, we then run

the simulator six times, giving a data pool U of 6534 possible
data points. For the test set, we simulate each combination
twice and take the average, yielding a test set with 1089 robust
data points covering the full input space. The initial data set
consists of four (one per input dimension plus one [21]) data
points sampled by Latin Hypercube Sampling (LHS) from U .
Given the fact that we investigate six KPIs simultaneously, we
utilize the available hardware to parallelize the simulator runs,
querying six data points per iteration, and thereby cutting the
required simulation time by six.

We adopt three different active learning strategies laid out
in the following section. To benchmark the proposed method
and the strategies, we implement the well-known linear re-
gression with a degree of two as a metamodel and replace the
active learning with LHS sampling the number of data points
corresponding to that of the active learning framework. The
performance of all the strategies is averaged across 30 runs
and evaluated by the Relative Root Square Error (RRSE) on
a separate test set. The active learning is run for 20 iterations
corresponding to 120 simulations.

C. Active Learning Strategies

A central component in the active learning (AL) frame-
work is the AL strategy which specifies how to choose the
next points to be labeled by the oracle. Three different AL
strategies are explored: random sampling and two kinds of
variance-based sampling. The former consists of querying six
data points at random. The first variance-based strategy is
the common criterion when applying AL with a GP as the
metamodel [16]. For a single output, it uses the inherent
predictive variance (var) from the GP to query the data point
with the largest variance, i.e. xnew = arg maxx var(x) for
x 2 U . We extend this to multiple outputs by applying the
strategy for each output individually in each iteration.

However, some outputs may exhibit more variance than
others and are thus more interesting. Therefore, we propose to
allocate the available resources differently and therefore weigh
the different outputs according to their average variance, such
that for each data point to query, we choose, with a certain
probability, an output to which the variance-based criterion
described above is applied. In this way, the outputs with high
variance are favored, although the ones with low variance still
have a chance of affecting the process. The average variance is
computed by taking the mean of the predictive variance for all
the unique data points in the unlabeled data set U and for each
output dimension. Afterward, the average variance across all
the outputs is normalized such that they sum to 1, effectively
converting it into a probability distribution, which is then used
for choosing the output.

D. Results

The performances of the different AL strategies are shown
in Figure 2. For all outputs, the baseline consisting of the
linear regression with LHS is beaten by one of the approaches
with GPs and AL, and it is the worst-performing approach for
half of them. The outputs can be divided into two groups:

5

Results: Active Learning

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

RR
SE

Arrival Delay Total Cost LCC Total Cost

5 10 15 20
Iterations

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

RR
SE

Departure Delay

5 10 15 20
Iterations

Pax. Arrival Delay

5 10 15 20
Iterations

LCC Arrival Delay

Baseline Random Variance Variance w/ probs

Figure 2:Performance of the baseline and three active learning strategies, aver-
aged over 30 runs. The shaded regions show the ±1 standard deviations.

Results: Speed

Full system
We benchmark the framework against the traditional full system,
where we explore the simulator by running it multiple times for
specific scenarios (input combinations).

Simulation time = 10x · 20min/6

Conclusion

Scaling Analysis Accuracy

Conclusions

Using the state-of-the-art ATM simulator, Mercury, and employing
a Gaussian Process as a metamodel, we showed that active learning
are capable of increasing the modeling performances of simulation
metamodeling approaches in a more efficient way, alongside show-
ing that the metamodel is an accurate and scalable solution.

What does this mean from a policy perspective?
We can do. . .

• A more comprehensive policy analysis in the same time
• The ‘original’ policy analysis in a shorter time
• Policy analyses that otherwise would be infeasible to do in

practice due to long simulation times

Acknowledgements

This work was supported by NOSTROMO project funded by
SESAR Joint Undertaking through the EU’s Horizon 2020 research
and innovation programme under grant agreement No. 892517.


