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Case Study Results: Speed

Motivation

Simulators are often the go-to tools to explore future scenarios or
new policies, but complex, stochastic simulators tend to be slow.
S50 how do we efficiently explore the simulator?

Simulator: Mercury
Stochastic event-driven micro-level agent-based model designed to
mimic the movements of both flichts and passengers.

Full system
We benchmark the framework against the traditional full system,
where we explore the simulator by running it multiple times for

specific scenarios (input combinations).
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Figure 2:Performance of the baseline and three active learning strategies, aver-
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® LEfficient exploration of the simulation input space

® Avoiding redundant simulations
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