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Abstract 

A numerical method for the optimiZation of a Symmetrical 
lumped element lowpass end baodpass flters with 
Generalized Cheyshev response is considered. By 
exploiting the fad that a network based on generalized 
Chebyshev protolype has a prescribed number of turning 
points m the insidion loss and an identical number of 
iradependent parameters which can be assigned os 
variables to adjust their levels the method gives fast 
convergence. 
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1. INTRQDUCTIQN 

When a commofl approach to the design of filters d t s  
in a design passband which differs cousidembly from that 
which is specified, optimizatioSis required to tune the 
filter elements to achieve a design that meets certain 
requirements. Most RF and microwave filters have not 
yielded exact optimum synthesis. Taking into account 
parasitic effects, high fresuency operation, fresuency 
dependent elements, a narrow range of element values, 
and so on, a common approach to design provides, at besf 
only approximate answers. Not infrequenty, a common 
approach may be used to great advantage in providing the 
initial points for optimizatioa In this paper, we introduce 
an optirnizaton procedure based on equal ripple 
optimisation to Optimise filters based upon Generalized 
Chebyshev fimction prototype. 

Thismethodsearchesfortuningpointsinthefiltertransfer 
fundion and forces the ripple levels at these points to have 
quxifkd values. The method requires knowledge of the 
ater insettion orreann loss at these points. 
The method will generate a set of equations which are 
solved to give a new set of parameter values. The cycle is 
then npated, until the filter characteristic is within an 
arbitrarily close value to the daired specification. This 
technique quires less calculation of the eledrical 
paramden3 of filter discontinuity than generalised 
optimization routines so far applied [ 13. 

2 PROBLEM FORMULATIQN 

Figure 1. Generalised Chebyshev low pass 
P*totYpe 

This characteristic m tarns ofinsertion loss,L, is 
given by 

where the transmission zeros are of order (A) at 
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w=iwo and one at infinity. n is an oddnumber equal 

L 

and RL. is the minimum return loss level (a) in the 
passband 

A typical insertion loss respaase is illustrated in Figure 

insertion loss level in IIS stopbana and w, is the 
badedge fiequeasy oftbe stopband. 

la, W h  wm is the frequency of the mini" 

(3) 

(4) 

Em E,,, are also furactiaae of the m w - 1  pameter 
valuesofthesy"etli~1 filter. 

~ '0 ,  i,=1,2,3 .... pa . 

This is a system of m=n-I nonbear equations in 
m=n-l variables iix the sy"&d case. Solving (6) 
gives the pamnekr values of a filter rntisfvinp (5). 
The El (i = I ,  .... m) can be regarded as the 

canied out by equasiageacb ofthese annponents to 
zero (a vector process) nuber than " k i n g  the 
magnib& ofthe vectcr (a scalar process). Thus equal 
ripple optimizatioa c a n b e r e g a d e d a s a v e c t o r  

o f a u m d h " l e r n n v c ~ .  optirmzatlan is 

procedure whereas g d  purpose aptimipition 
routines are scaiar p e d r a e s  usuauy the 
convergence &on applied m galend puspose 
optimization routines is that the grad- Wih resped 
to the filter elemas, of the magnitude of the ernn 
vector is zero. However a zero p d k m t  may 
colrespoodto a local "utnandthe  e n m m a y  not 
betnr ly l l lhhkd  Theconv~~critaion8pplied 
m equal ripple o p h k t i m  isthateachcomponeaSof 
theerrorvectorhzeau.Tcmconvugeacetheemr 
is rpmrPn to zem. The problem of local minime does 
mt anise.. 

To apply an itehative nodkar equation solver it is 
neoessary for a given set of filter parameter values to 
know tbe insertion loss c d y  at tbe bandedge 
fiequea3cy,f, (minimum) ancl at the ripple "a, 
However, the frequencies at vvhich the ripple o w b a  
OOcLlt are MLaown aod als fimdons of the ater 
pat.ameter values. 

The Newton-Raphson m e d d  [4] is a rapidly 
convergent technique fbr tbe solution of a system of 
"U equations if a goodl initial y o n  
availabk. Tbe number of times the hchon IS 
e v a l d  m the process of firding its root is tbe usual 
measure of awlputational effbtt This includes 
fimction evaluations reqllired to calculate derivatives 
numerically. 

The Newton-Rilphsonmetbodl has the geaeml fom [s] 

 here R is the itmation lllsnl~r *1,2, ...I and J' is the 
mverse ofthe I x m  Jacobian matrix evaluated at 
2'.  he above ~ e s  the regions within the 
passband which need to be sampled m otder to 
calculate E&) (and J(i?)). 'h response aod emas 
a k e a c h i t e "  arecomputedagainwiththenew 
cmectedpa",  until the e" are judgedto be 
sufticiently small. 
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3 NUMERICAL RESULTS 

In ordm to illustrate our approach, a fifth order 
lumped element low-pass and band-pass filters 
have been designed. The low-pass filter can be 
d e s c r i i  by 4 parameters: inductors (Ll=U, 
L2=U, U) and capacitor (C24X) as marked in 
Figure 2. We used equal ripple optimization with 
L1, U, L3 and C2 as variables for filter shown in 
Figure 2. Figure 3a shows the calculated retum 
loss (dashed line) and insertion loss (solid line) of 
filter be& optimization. The return loss (dashed 
line) and insertion loss (solid line) calculated using 
the filter elements obtained on convergence are 
shown in Figure 3b. The band-pass filter can be 
described by 6 parameters: inductors (Ll=U, 
L2=L4, L3) and capacitors (C13C5, C2=C4, C3) as 
marked in Figure 4. We used equal ripple 
optimization with L1, L2, L3 and C1, C2, C3 as 
variables for filter shown in Figure 4. Figure 5a 
shows the calculated return loss (solid line) and 
insertion loss (dashed line) of filter before 
optimization. The return loss (solid line) and 
insertion loss (dashed line) calculated using the 
filter elements obtaind on convergence are shown 
in Figure 5b 
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Figure 3a. Simulated Insertion aod Return 
loss of generalized chebyshev lav pass lilter 
b e f o r e o p t h b i h  
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Pigure 3b. Simulated I” aod Return 
lossofgeneralizedchebysbev low pass filter 
afteroptimization 
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Figure4.Ge”d * Chebyshev 
band-pass filter 
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