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”I don’t pretend we have all the answers. But the questions are
certainly worth thinking about.”

Arthur C. Clarke (British science fiction author, 1917-2008)

ii



Affirmation

Herewith I declare that the work submitted is my own. Appropriate credit has

been given to thoughts that were taken directly or indirectly from other sources.

Gaurav Gupta

This thesis was created at the School of Electronics and Computer Science (ECS)

at University of Westminster between 2007 and 2012. During this time this work

was supported internally by the Computer Vision and Imaging Research Group

(CVIR).

iii



Acknowledgements
This thesis was made possible by an Overseas Research Student (ORS) scholar-

ship and maintenance funds awarded to me by the University of Westminster.

I am very grateful to my family, colleagues and friends for creating a wonderful

environment that allowed me to enthusiastically pursue my research. My studies

would not have been both fun and meaningful at the same time had it not been

for the amazing levels of freedom, flexibility and drive afforded me by my prima-

ry research supervisor Dr. Alexandra Psarrou, whose gentle guidance took me in

wonderful directions, by my employer Farnaz Fazaipour, whose support allowed

fascinating levels of multitasking, and by my second supervisor Dr. Alexander

Bolotov, whose calm logic was inspiring. A note of appreciation to Dr. Anastas-

sia Angelopoulou, whose initial guidance gradually transformed into an impor-

tant association and friendship that was crucial to the development of my research

ideas. Deeply felt gratitude specially to my mother, Jhuma Gupta, without whose

unwavering support this body of research would not have materialised.

The presence of close colleagues and friends also facilitated my progress. Nu-

merous discussions and enjoyable times with friends and collaborators Sardar Zo-

haib Khan and Jae Young Park helped maintain a level of enthusiasm that was

immensely helpful for my focus and drive. Miscellaneous thanks to Mehak Puri,

Karolina Juszczak, and Eleftheria Mpouthalaki. Additional thanks to Dr. Sophie

Triantaphillidou, Anastasia Tsifouti, Roger Campos, Aaron Licata, Tarek Shaaban

and Dora Hadjinaki.

Dedicated to my mother.

iv



Abstract

The ability to gain a conceptual understanding of the world in uncontrolled en-

vironments is the ultimate goal of vision-based computer systems. Technologi-

cal societies today are heavily reliant on surveillance and security infrastructure,

robotics, medical image analysis, visual data categorisation and search, and smart

device user interaction, to name a few. Out of all the complex problems tackled

by computer vision today in context of these technologies, that which lies closest

to the original goals of the field is the subarea of unsupervised scene analysis or

scene modelling. However, its common use of low level features does not provide

a good balance between generality and discriminative ability, both a result and a

symptom of the sensory and semantic gaps existing between low level computer

representations and high level human descriptions.

In this research we explore a general framework that addresses the fundamen-

tal problem of universal unsupervised extraction of semantically meaningful vi-

sual regions and their behaviours. For this purpose we address issues related to

(i) spatial and spatiotemporal segmentation for region extraction, (ii) region shape

modelling, and (iii) the online categorisation of visual object classes and the spa-

tiotemporal analysis of their behaviours. Under this framework we propose (a)

a unified region merging method and spatiotemporal region reduction, (b) shape

representation by the optimisation and novel simplication of contour-based grow-

ing neural gases, and (c) a foundation for the analysis of visual object motion prop-

erties using a shape and appearance based nearest-centroid classification algorith-

m and trajectory plots for the obtained region classes.
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Specifically, we formulate a region merging spatial segmentation mechanism

that combines and adapts features shown previously to be individually useful,

namely parallel region growing, the best merge criterion, a time adaptive thresh-

old, and region reduction techniques. For spatiotemporal region refinement we

consider both scalar intensity differences and vector optical flow. To model the

shapes of the visual regions thus obtained, we adapt the growing neural gas for

rapid region contour representation and propose a contour simplication technique.

A fast unsupervised nearest-centroid online learning technique next groups ob-

served region instances into classes, for which we are then able to analyse spatial

presence and spatiotemporal trajectories. The analysis results show semantic cor-

relations to real world object behaviour. Performance evaluation of all steps across

standard metrics and datasets validate their performance.
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Chapter 1

Introduction

This chapter discusses the motivation behind this body of research in unsuper-

vised scene analysis and briefly discusses relevant issues in the areas of spatial

and spatiotemporal segmentation, shape representation, similarity matching

and categorisation. The main contributions are identified and an outline of the

organisation of this thesis given.

1.1 Motivation

The question of how a machine can begin to learn a conceptual representation

of its environment and reason with it is a very old and difficult one with no defi-

nite solution, hence it is termed ill-posed. It has only been relatively recently that

rapidly increasing computational power and newer theories of unsupervised vi-

sion, learning, and reasoning have enabled new progress in this line of research.

Yet there still does not exist a general theory of sensor based autonomous concep-

tual learning. Given the difficulty of the problem [63, 74], this work addresses a

reduced version of it: semantic visual understanding.

1



CHAPTER 1. INTRODUCTION

Vision is a convenient source of information about the real world [160, 106], but

it presents large streams of raw sensory data that are complex and hard to analyse

computationally. Describing and categorising allow one to extract plausible pat-

terns from an input stream, resulting in fewer components and reducing the anal-

ysis space. Visual semantic analysis, or visual intelligence [32], requires several

processing steps. A feature extraction mechanism is required as the first subsym-

bolic level of abstraction. Features may be in the form of points or regions, spatial

regions arising out of image segmentation [94, 140, 43, 77] and/or motion regions

from motion segmentation [209, 199, 134]. Second, a matching/recognition scheme

[24, 146, 115] is required in order to distinguish between new and previously en-

countered features. Third, various properties of each feature must be analysed

and represented appropriately such that the abstract conceptualisation of different

classes is possible [121]. Finally, there should be a way to evaluate system per-

formance through its application [144] to one or more perceptual tasks and the

measurement of its success at those tasks. Also, in order to be fully unsupervised,

no training sets should be required to initialise shape categories.

A framework for the unsupervised semantic understanding of images and video

is presented in this work. An unsupervised colour segmentation mechanism [90]

is applied to spatially group pixels into regions. The spatial segments are further

grouped into spatiotemporal regions according to motion information. Motion

segments are comprised of multiple spatial segments linked together by their com-

mon fate of motion [188]. Similar spatiotemporal shapes are then categorised, with

respect to their contour representation descriptions, into region classes that form

the basis for visual behaviour analysis.

The segmentation step prepares us to carry out two levels of region behaviour

modelling, one based on localised appearance tracking of scalar motion segments

2



CHAPTER 1. INTRODUCTION

across frames while the other, relying on vector motion information and region

contour representation, produces shape-based spatiotemporal region class trajec-

tories. The first depends on localised region tracking, involving colour, size and

position features to describe each region. Between consecutive frames, these fea-

tures are compared and matched within a bipartite graph consisting of regions

discovered in each frame. We present this type of localised region recognition

to demonstrate the usefulness of the results that we obtain even with a simple

approach. The second, which is more representative of the main goals of this re-

search, groups region instances into classes, and trajectories consisting of all in-

stances within a class are established and analysed. This forms a primitive foun-

dation for visual intelligence [32]. Applications of this framework include query

by example [37, 152, 151] in extensions of content based image retrieval to video,

automated scene understanding [19, 32], autonomous robot operation [49, 136] and

visual learning [172, 79].

We begin with an overview of topics related to the design of such a framework.

1.2 Image segmentation

Splitting an image into a set of component parts is a first step without which much

of higher level visual processing cannot be done. This splitting is refered to as

image segmentation, for which which there exist many different computational

methods. Image segmentation works on a stream or a grid of raw information

and translates these to a smaller abstracted set of component regions. In general,

the fewer the regions the higher the level of abstraction. The goal is to achieve a

high level of abstraction by obtaining as few regions of homogeneity as possible

without sacrificing what may be useful detail.

3



CHAPTER 1. INTRODUCTION

Stating the goal in such fashion raises the important question of how the op-

timal level of intraregion homogeneity is to be decided. A single pixel itself is

perfectly homogeneous as is a group of pixels of exactly the same colour. Since

almost all real world objects appear to have different shades [117, 202] at different

locations on their surfaces this view of homogeneity would produce a very large

number of regions, most of which would be too small to be useful. On the other

hand, simply aiming to either minimise the number of regions or maximise aver-

age region size can give us the entire image as one big segment with large internal

colour variations. How to strike a balance between homogeneity and the number

of regions, or how to establish a stopping criterion [2], is a challenging question

with no certain answer as yet. There are information theoretic solutions to this

problem, but qualitative and quantitative evaluation of their segmentation results

show that we do not yet know the solution that most closely matches human visual

perception.

A related problem is what we define homogeneity in terms of. Since homo-

geneity is expressed as similarity between two sets of descriptive features1, select-

ing an appropriate set of features and an appropriate function of distance between

the feature sets should give us a suitable measure of homogenity. However, there

are many features that can be constructed from raw pixel data, such as colour in

different channels [139], texture, and measures of energy. While the most obvi-

ous solution is to use intensity or colour information and to measure distances

between them in Euclidean space, there is no certain answer as to what is the most

effective set of features nor what the optimal distance measure between feature

1While numerically different, it is convenient to think of feature similarity and feature distance

as effectively equivalent, that is, region similarity can be interpreted as lack of region dissimilarity

and vice versa.
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sets is. Segmentation results are tied to colour representations [114] and geomet-

ric distances [86]. Studies have shown that different colour representations show

different levels of perceptual uniformity [205]. Perceptual uniformity means that

a certain change in a colour value should produce an approximately proportional

change in visual importance. This poses a problem when we visually assess the

result of a segmentation which has used a perceptually non-uniform colour repre-

sentation and find that it does not match our expectations. Furthermore, various

statistical summary descriptors for regions can be fed into distance measure func-

tions to get different types of similarity values. The mean is the most common, but

other statistical measures can also be used, with varying results.

Once a suitable distance measure and colour representation are chosen, the next

question is how to select a threshold [162, 213] that decides whether a given dis-

tance is to indicate a merge or not. The threshold can be indepedent of the input,

such as fixed or time-varying, or can be decided based on information theoretic

measures [33], such as the ratio of intra-region homogeneity and inter-region het-

erogeneity.

1.3 Region growing

These and other questions influence the final result both in terms of quality and

computational complexity and must be explored with the aid of a specific image

segmentation tool. Out of the various approaches to segmentation, region grow-

ing [217] is the most intuitive procedure for grouping individual elements to for-

m bigger regions and is one that best addresses direct proximity relations within

immediate topological neighbourhoods. Due to its structure, which permits de-

tailed intra-process control, region merging allows us to test hypotheses regarding

5



CHAPTER 1. INTRODUCTION

merging order, the order in and rate at which primitive regions are examined and

merged, and varying thresholds.

Research into the human visual system has shown that our eyes jump briefly

from point to point when exploring an object [96], called saccades. Regions can be

grown by focusing on a specific pixel and growing a region around it as far as pos-

sible before moving on to another pixel, or smaller regions distributed around the

image can be grown at a common rate. Alternatively, the rate of region growth can

be equal for different image locations during a part of the region growing process

and unequal for another. Different strategies produce different quality of results.

Further variations in the region merging framework are of interest. One is a

changing region model [16]. When regions are pixel sized they are represented by

the feature vector of the pixel itself. For small primitive regions the region mod-

el may be taken as a summary descriptor of the feature vectors of all component

pixels. It is possible however, that when regions grow larger just a summary de-

scriptor of component pixels may not be a good representation. Large regions can

contain significant intra-region variation and most of the factors affecting further

merge decisions reside at the boundaries of the region instead of being distribut-

ed over the entire region. Not only is there a question of whether primitive and

more advanced regions should be represented using different region models, but

we must also consider whether feature distances for the two should be calculated

differently.

A segmentation typically stops when no more region changes are possible giv-

en a particular dissimilarity or distance measure and some threshold. Human

perception is however able to identify varying levels of detail given the context

and intention. Often when it may be possible to consider two regions as one, one

may still identify them as distinct segments. Similarly, we may consider a critical
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function for a region assuming a given intention and context [18, 119] which can

override other criteria. We may wish, for example, to preferentially preserve an

area of some type of detail even though regions within it may satisfy the default

merge criteria. This raises the question of whether certain visual details are salient

enough to be kept intact even if they demonstrate homogeneity with other image

features.

Region growing considers one primitive region and its immediate neighbour-

hood at a time. A merge decision between any two neighbours may therefore not

be optimal, if there exists a different better merge decision when looking at the

whole picture. Also, assuming a globally optimal merge over the entire physical

region space, there is the question of temporal optimality. Is it possible that an

inferior merge decision now may eventually lead to an overall better segmenta-

tion map? The characteristic of looking at very local regions in space and time

is termed a greedy search. A non-greedy search is one that truly discovers the

best current choice given all spatial and temporal outcomes. A fully non-greedy

search would however consume tremendous computational resources in a brute

force search fashion. A convenient and effective strategy may be to design a semi-

greedy search, one that assesses locally expanded spatial and temporal domains in

order to arrive at a decision that appears optimal for a region as well as its neigh-

bours.

1.4 Region restriction and region reduction

The growth of regions can be restricted using other information derived from the

original input stream, for instance edge locations. Edge detection [178, 113] indi-

cates pixel positions where boundaries are likely to exist, and this information can
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be used to prevent or discourage merges from taking place at these positions, de-

pending on edge strength. However, edge detectors operate by considering first

and/or second order derivatives of images, which are decided by local changes

between pixel values. Since a region growing procedure looks at pixel differences

to start with, it may be that edges can be modeled intrinsically to the process. If

this is the case, then hybrid techniques that use both edge and region information

could be unified into a single framework. This could then further be extended to

include other features such as corners and even salient points.

While region restriction enforces greater segment boundary accuracy by dis-

couraging merges over strong boundary features, region reduction works in the

opposite fashion, attempting to find some other common ground between region-

s not explained by the region model and the homogeneity criteria. For instance,

regions completely enclosing another can be permitted to absorb the inner region

if certain relaxed homogeneity conditions are met. Alternatively, occluded objects

may appear as two distinct regions in which some criteria can be implemented to

merge the two with the occlusion assumption.

Region reduction is a very important step. An accurate segmentation map can

contain thousands of regions and if, for example, one is to match shapes between

all regions in two image frames then the number of possible combinations is very

large. If we are able to apply region reduction to bring down the number of regions

to a few hundred then this task becomes much more tractable. It is also important

to note that producing fewer segments simply by relaxing either the merge criteria

or merge theshold is likely to indiscriminately violate local boundaries. While

region reduction also violates certain local boundaries, it does so by looking at a

larger context and is therefore more likely to be perceptually acceptable.
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1.5 Temporal information

The colour values for pixels are the most basic pieces of information about an im-

age, from which all spatial features are derived. Temporal data is an additional

source of derived spatial information1. Intensity values considered for two images

in a sequence, where one frame is some spatial transformation of the previous,

can be combined to obtain motion features. Motion features reflect spatiotemporal

coherence according to Gestalt principles of common fate [188].

Motion features can be obtained in two forms. Image differencing [157, 58]

produces a map of areas that have changed between frames. This kind of feature

set is incomplete and scalar in that one can tell which areas exhibit motion but not

in which direction. Additionally one is not sure if the areas identified represent the

complete set of motion pixels since non-textured object interiors do not respond to

this technique.

To obtain more complete motion information there exist methods to compute

optical flow [21], a set of vectors that show the estimated direction and magnitude

of motion at a set of points. The lack of motion response [193] in non-textured sur-

faces is of concern here as well. Some techniques to compute optical flow produce

sparse representations, that is not every pixel in the frame is guaranteed to have

a flow vector computed for it, typically only motion pixels of large displacement

[29] being included. Other methods however provide a dense optical flow map,

where dense means every pixel is assigned a flow vector. Dense optical flow meth-

ods must ‘guess’ harder if they are to come up with a flow vector for non-textured

1This research restricts itself to work with a single camera input, however other work in the

field using stereo imaging introduces yet another source of information: disparity between left and

right frames, from which another type of information, depth, can be obtained and integrated with

a region growing model.
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surfaces, and therefore one must treat dense flow vectors as at least partially unre-

liable, but they do provide a complete flow map where one is required.

Using a dense optical flow map as additional input to our region growing

framework allows us to estimate region similarity over the supplementary mo-

tion features. This is useful since in static images a computational algorithm can-

not know if two or more segments of very different appearance actually belong

together. By using the Gestalt principle of common fate, that is by saying that if

two regions move similarly then they may actually be parts of the same object, we

are able to further reduce the number of regions. This is a convenient approach

to grouping together complex objects that appear cohesive only when they move

relative to the viewing frame.

1.6 Shape representation and similarity

Using spatial and spatiotemporal segmentations one can extract meaningful re-

gions from image and video visual inputs. In order to make sense of these regions

one must represent them in terms of a set of discriminative properties. Much ef-

fort has been put into discovering invariants [135] such as scale invariant, transla-

tion invariant and rotation invariant properties, together termed shape invariants.

While each of these invariances is individually important, we ideally want a set

of properties that reflect each of these invariances such that it becomes possible to

differentiate between a variety of objects.

It has been found to be difficult to reliably describe and match regions using

such properties based on real visual data. There are two sources of this difficul-

ty: region representation and region description. One is forming accurate shape

representations in the presence of noise and the second is identifying a good set of
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discriminative properties that work for artificially generated exact shapes as well

as for real-world noisy regions.

The previously described steps of image and video segmentation are imperfect

processes prone to subjective interpretation. An innacurate set of region maps will

propagate errors to shape representation schemes. Thus one attempts to minimise

region segmentation inaccuracies and apply noise/outlier-tolerant shape represen-

tation methods. Shapes may be represented through the analysis of global or struc-

tural information, or of contour or region information [210]. A global representa-

tion is generally more tolerant to outliers than a structural one, since outliers can

be averaged or smoothed out over the entirety of the shape, but are less discrimi-

native because local details are ignored.

When we think about shapes we think about global properties such as size,

colour and symmetry, and we think about silhouettes or contours. Contours not

only describe important variations in region appearances, but they also provide

instructions for drawing the shapes of regions. Contour representations such as

chain codes and self-organising maps are information preserving and allow one

to reproduce approximations to object shapes in the absense of the original raw

data. Reproducability, an indicator of the preservation of useful shape informa-

tion, is much more difficult and computationally complex when performing shape

representation by methods such as polygon decomposition, where regions are rep-

resented as a collection of simple geometric shapes, because it is more challenging

to accurately and compactly describe a shape using polygons than it is to follow

its contour and identify features along it.

Given that our source of shape information are image segments, we need to ef-

ficiently obtain contour plots from segmented regions. There are well established

methods of obtaining such contours. Convex hulls [169], polygonal approximation
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[5], chain codes [76], skeletal graphs [25] and self-organising maps [166, 171] are the

most commonly applied techniques. Convex hulls calculate convex deficiencies

or concavities, and representation accuracy is dependant on the level of, almost

fractal-like, recursive analysis of these concavities to find greater detail. Polygonal

approximation attempts to represent a curve in terms of a set of connected line

segments. Chain codes use a fixed set of directions when following and represent-

ing a contour. Chain codes can encode a contour well when sharp, single pixel

boundary map has been obtained, but is heavily dependant on boundary thinning

to achieve this. Skeletal graphs work by thinning a solid shape down to a skele-

tal representation using an n-neighbour voxel distance heuristic. Convex hulls,

chain codes and skeletal graphs however are all computationally demanding to

generate and rely on intensive boundary or volumetric preprocessing. Additional-

ly, with respect to shape contours, chain codes are directionally restricted typically

to 8 directions, convex hulls are directionally more vague, and skeletal graphs sig-

nificantly lose contour reproducability. A method that can work with incomplete

boundary information and which is more balanced between degrees of direction-

al freedom and contour representation accuracy is useful. A self-organising map

(SOM) [108] is capable of this. As in the name, a SOM explores and discovers an in-

put space and adjusts itself to match, within approximation bounds. The growing

neural gas (GNG) [81] is specific self-organising map well adapted to this task.

The GNG can be used to quickly and efficiently encode a region boundary in

terms of nodes distributed along the boundary and edges connecting these nodes.

It is useful for shape representation since it is fast for small regions and obtains an

abstraction of a region silhouette which contains global as well as local curvature

information. The GNG has already been applied to polygonal approximation and

medial axis extraction [214]. A GNG contour representation can also be interpreted
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as a set of instructions to visually reproduce the silhouette. The GNG however has

two shortcomings. First, its convergence speed can drop significantly for large

regions, and second, in many cases there can be more than two edges for some

of the nodes. We will investigate methods that a) greatly speed up the network

performance with only slightly reduced topological correctness, and b) guarantee

a maximum of two edges for each node in any network.

At this point we are able to segment regions and obtain contour maps for them.

The next task is assessing the level of similarity between two or more such re-

gions. Like shape representation techniques, shape similarity measures can also

be global or structural, region or contour based. Apart from simple region prop-

erties, similarity measures are generally tied to the specific shape representation

method being used. The usual approach with a contour-based representation is

curvature analysis along the set of contour points. Curvature analysis however is

made complicated by the fact that complete contours curve in on themselves in a

closed loop of 360◦ [64], and therefore many summary statistics will smooth out

local variations over this complete turn. Thus, while a large variety of shape de-

scriptors can be found in the literature [130, 123, 192, 191, 210, 156, 104], one must

choose carefully from them.

1.7 Dynamic grouping and description

The next level of abstraction involves categorisation. After obtaining region ap-

pearance descriptions and choosing discriminative similarity measures, we can

group observed regions into different classes. These classes can then be used for

similarity searching within video sequences, or content matching paradigms such

as content based image retrieval (CBIR) [167, 190, 56], query by visual example
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(QBVE) [98], query by semantic example (QBSE) [152] and query by contextual ex-

ample (QBCE) [151]. An important consideration here is the classification speed.

A single image can yield hundreds of regions, going up to several thousands of

regions for even a short video. For a live system it is important to have a region

categorisation technique that is based on online classification, using every obser-

vation to both classify an instance as well as to refine its class descriptor. However,

many of the existing content based querying systems are based on offline or batch

learning.

Online classification methods can be divided into instanced based learning

[4, 57, 54] and eager learning systems, which comprise of all other learning system-

s. Instance based learning is refered to as lazy learning because it does not form

abstractions during a series of observations but simply stores instances and waits

until a new instance has to be classified at which point a local neighbourhood sim-

ilarity search and majority class label assignment is done. In contrast, eager learn-

ing systems diverts effort to forming abstractions of observed instances and com-

paring new instances to the set of abstracted classes. Since instance based learn-

ing consumes more and more computational resources when searching through a

growing set of observations, eager learning is more suitable for online systems that

must stay operational indefinitely. While eager learning spends more resources on

abstraction, it saves on both classification speed and on storage space. Both speed

and space are of critical concern when dealing with learning regions and shapes

from large video sequences, the total set of instances from which may rapidly be-

come very large due to the number of regions identified from each frame and the

overall number of frames. However, eager learning methods must commit to a s-

ingle global approximation at the time of observation, a shortcoming that instance

based learning does not share. While there have been attempts to combine instance
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based and eager learning methods into hybrid systems [97], these systems are also

characterised extended search times and large space requirements.

A popular eager learning approach is the nearest centroid method [142, 92, 120]

which is fast and simple. A variant of this is the nearest shrunken centroid method

[176, 120] which shrinks class centroids towards the overall centroid for all classes.

Shifting centroids towards the overall mean reduces the sensitivity of the method

to outliers.

1.8 Contributions

The contributions made in this body of research are as follows:

1. An efficient segmentation method via a novel region merging algorithm that

combines and adapts into a single framework techniques that are found sepa-

rately in previous literature. The adaptations include the more expensive best

merge and a time-expanding theshold that allows cascaded region growth

and simultaneously provides for the correction of errors inherent in a single

pass scan.

2. A new performance summary indicator, relative performance RP, that is able

to combine arbitrary sets of evaluation metrics into a single number, allowing

the instant comparison of performances for different labeling methods.

3. Region reduction through the consideration of region flow, the overall opti-

cal flow of each spatial region, by the use of dense optical flow information

derived from the sparse Lucas-Kanade flow estimation method. The compo-

nents of the reduced set of spatiotemporal regions are linked by the Gestalt

principle of common fate.
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4. The application of the growing neural gas modelling technique to shape con-

tour representation and the optimisation of the speed of its convergence as

well as network simplification by the elimination of multiple node linkages.

5. The identification of discriminative sets of appearance and shape based re-

gion descriptors.

6. A fast centroid-based online classification scheme which allows the general-

isation and categorisation of observed region instances into classes.

7. Three types of region class trajectory representations, spatial presence, hori-

zontal variation and vertical variation, which together model the behaviour

of instances in each region class as physical trajectories in the spatial and

temporal domains and are shown to be semantically correlated to simple

concepts of real-world object behaviour.

1.9 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 discusses the

relevant literature in each of the concerned areas, namely image segmentation

and region growing, dense motion estimation, shape representation and similarity

matching, and unsupervised scene analysis. Chapter 3 explores the various steps

and components of region merging as a colour image segmentation technique and

adapts them into a novel region merging framework. Region reduction methods,

including the use of dense optical flow to obtain regions of greater perceptual sig-

nificance, are presented. Chapter 4 shows the use of the growing neural gas for a

contour representation that facilitates curvature analysis. The growing neural gas

algorithm is simplified for greater speed as well as to guarantee a single linkage
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contour representation. Features based on this network contour model are used to

create information preserving region descriptions. Chapter 5 uses the region mod-

els in a fast online classification system that allows the abstraction of visual object

categories and use of these for region class trajectory analyses. Finally, chapter 6

closes with a summary of the presented work and a discussion of further continu-

ations to this research.
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Region extraction and analysis

Research in the cognitive sciences has produced terms such as dynamic group-

ing, neuronal synchrony, Gestalt principles, cascaded feature hierarchies, fea-

ture recognition, dynamic description, input mosaic, intermediate features and

higher features [200]. These terms describe many parallels between our under-

standing of human perception and our efforts to duplicate the same in comput-

ers. This section will review relevant literature for the areas that concern this

thesis: image segmentation and region merging, motion segmentation, shape

representation and matching, and scene analysis.

2.1 Preliminary considerations

Machine vision techniques rely on a certain quality of images coming in from

sensors to produce better processing results. In uncontrolled environments, faulty

exposure and noise are two critical limiting factors when acquiring images.

The limited dynamic range of most cameras and colour representation schemes

contribute to the effect known as overexposure or signal clipping, caused by an in-
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coming signal exceeding the maximum measurable or representable value, and

this effect is seen as patches of pure uniform white. While there exist software

methods to compensate for this effect [161, 189, 163], there is no real way to correct

clipping once it has occurred, and it is to the best interests of vision algorithms

to rely on higher fidelity hardware. Conversely, the reverse effect is called under-

exposure or crushed shadows. Either insufficient illumination, poor hardware re-

sponse to existing illumination, or a limitation of a colour representation scheme,

causes dark areas in an image to be zeroed out and therefore appear completely

black. Again there is no way to accurately correct this phenomenon once it has

occurred, and it is simply advisable to utilise the best available hardware possible

for vision related computational tasks.

Camera noise [26] is another factor that can contribute to difficulties in image

processing. Some noise or graininess is present in all devices that handle digital

signals. When intense enough to be noticeable, it appears as random speckles

on an image. This randomness can introduce anomalies when detecting motion

via image differencing, since the noise may appear to be tiny movements. While

various processing techniques [118, 129] are able to reduce noise, it is impossible to

completely fix a noisy image. Various smoothing filters such as the gaussian filter

are capable of reducing noise but have an adverse affect on edges. The median

filter is much better at preserving edges and is particularly effective for salt and

pepper noise, or impulsive noise.

Then there are other hardware related limitations, compared to the human vi-

sual system, such as camera jitter, sub-panoramic views, discrete instead of con-

tinuous signals, and resolution. There exists work attempting to compensate for

each of these via software, but it is important to see developments in hardware

technologies in these areas as well.
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2.2 Image segmentation

Image segmentation is commonly defined as the identification of homogeneous

regions within an image. The segmentation is then guided by the interpretation

of homogeneity, usually involving colour or spatial distribution or both. Popu-

lar approaches, reviewed in [94, 140, 43, 77, 59], include region-based method-

s, edge-based methods, hybrid techniques incorporating both regions and edges,

histogram-based methods, and graph-based methods.

Region-based methods [3, 38, 196, 46, 83] group pixels into segments based

on some pixel similarity measure and threshold values to indicate whether the

similarity test is passed. Edge-based methods [125, 103, 84], on the other hand,

find region boundaries by applying edge detection mechanisms, and are limit-

ed due to the high number of edges found and by the need to have an effective

mechanism to close edges and form contained regions. Histogram-based methods

[45, 42] analyse peaks in dominant colours in order to establish cluster centers to

which pixels are assigned. For true colour images, the histogram presents a huge

number of colour combinations. Although images typically use a much smaller set

of colours and methods such as non-parametric density estimation [111] can help

reduce the methods complexity, histogram methods do not prioritise topological

pixel relations. Hybrid methods [48, 66, 87] use both regions and edges but require

complex mechanisms to draw correspondences between the two. Graph methods

[174, 182, 72] represent pixels as nodes on a graph and pixel groupings as links

between nodes. Graph-based methods are usually computationally complex due

to the huge set of potential pixel relations.

Some of the leading approaches to image segmentation are graph or tree based

[164, 72, 60, 95, 148], probabilistic [6, 39, 133], statistical [50, 141, 23, 47], and other
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approaches such as using chain codes [150] and data compression [206].

Segmentation methods strive to achieve a balance between the resolution of the

results and the generic applicability of the method. Different segmentation tech-

niques, similar to different human operators [126], can be expected to segment a

particular image in different ways. At one end of this spectrum lie methods that

extract the primary salient regions of images. For instance, a salient region segmen-

tation algorithm [111] finds broad regions that are most likely to capture human

attention. The limitation of this is that the details contained in these broad regions

are lost. Conversely, methods such as [174, 83] produce greater detail but the per-

ceptual significance of each of their segments grows less obvious since objects that

may be considered whole segments by humans can be split into multiple regions.

Previous work on the resolution versus accuracy issue has involved changing

the merge criterion or distance threshold on the fly [159, 175, 40, 38] or applying

a regularisation factor [201] to eliminate tiny segments which leads to a bias to-

wards uniformly sized segments. We use a very computationally simple scheme

for adapting the distance threshold as the segmentation progresses, very similar to

the dynamic merge relaxation in [175], to allow the regions more time to move to-

wards their cluster centers in feature space before the distance threshold is raised.

A general survey of image segmentation methods is available in [44] and a

survey on unsupervised segmentation methods in [211].

2.3 Region merging

While the state of the art, with respect to both quality and speed of segmentation,

mainly revolves around the mean-shift [50], graph based [164, 72] and similar tech-

niques, one of the most commonly applied family of techniques is region merging,
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where pixels are step-wise grouped into larger and larger segments.

Region merging imposes direct topological constraints during the process of

building a segment map. Early work in region merging involved classical greedy

merging using local information and a simple L-shaped scan [27], the scan order,

the order in which pixels or regions are considered for merging, subsequently be-

ing recognized as an important factor [67, 75], there being an “inherent depen-

dence on (...) the order in which pixels and regions are examined” [44]. In contrast

to path-based labelling, seeded region growing [3, 67] segments images by estab-

lishing seed points at certain locations and then growing regions around these.

Further work included a statistically-based reinterpretation [138], enlarging the

search space of the classic greedy algorithm [34], and a reanalysis of the entire

region merging framework [33].

The calculation of all relevant merge costs at each iteration is an expensive op-

eration [53], either in terms of computer memory if a list of merge costs are main-

tained or in terms of processing speed if merge costs are recalculated at each step.

A suitable neighbourhood scanning procedure produces gains in resource utilisa-

tion. A simple blob colouring template [27], which goes left to right and top to

bottom through an image, considering only top and left neighbouring pixels for

each position is fast but misses any diagonal merges. It is much more common

to use 4 or 8 neighbourhood connectivity. For reasons of scan efficiency we use

a rectangular L-shaped neighbourhood in a typical row-wise rightward scan path

(see [75] for a discussion on paths).

The use of a single-pass row-wise scan leads to some trivial oversegmentation.

Some regions paths are at least partially unconnected after the first pass (segments

2 and 4 in Figure 2) and a second pass is required [186] to correct this.

Region merging, a form of agglomerative hierarchical clustering, lags behind
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the state of the art for the reason that it most commonly applies a greedy merge

mechanism which produces a lower quality segmentation caused by a tradeoff

between resolution and accuracy [9]. Attempts to adaptively change the threshold

or the merge criteria on the fly [38, 181] have improved the results to an extent, but

have not managed to match the best performing segmentation techniques. The

problem may be attributed in part to the greedy nature of merging schemes. The

best local merge is not guaranteed to be optimal in a global sense. However, greedy

merging is what gives the technique its speed, and applying extended merging

criteria [99, 33] reduces this advantage.

The region merging framework consists of three main components [33]: the re-

gion model, the merging criterion, and the merging order. Some common merging

criteria are given in [68] and [33] which also explores various options and combi-

nations of these components.

The work by Mignotte [132] compares the performance of several common

distance measures over their segmentation results on the Berkeley Segmentation

Dataset [127]. The measures compared are the Bhattacharya, Euclidean, Manhat-

tan, Chord, Kolmogorov, Histogram intersect, Kullback, and Shannon-Jensen dis-

tances. Their results show that the Bhattacharya and Manhattan distances perform

the best with respect to four important segmentation evaluation metrics, the PRI,

VOI, GCE and BDE. Of the two, the Bhattacharya distance involves the summing

of probabilities and is more complex to calculate than the Manhattan distance.

We improve this foundation by proposing a fast and effective novel region

merging method that outperforms other state-of-the-art algorithms. Our method

favours the best merge [203, 53] over the fast merge [38] and multiple merges can

occur over each iteration as opposed to methods such as hierarchical stepwise op-

timisation [22] and region based automatic segmentation [1]. The resulting seg-
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ments represent a first abstraction of the input as intermediate features according

to a Gestalt-like common fate of colour homogeneity.

The region growing method proposed in this paper, semi-greedy adaptive-

threshold method (SGAT), may be thought of as a refinement of the Beaulieu-

Goldberg hierarchical stepwise optimisation (HSWO) algorithm [22]. The merging

criterion used is the best merge [53] and the distance measure is the fast and effec-

tive [132] Manhattan distance. We preprocess the image with a median filter [154]

to reduce noise. We also use a simple scheme for adapting the distance threshold

as the segmentation progresses, similar to dynamic merge relaxation in [175], in

order to achieve a balance between data reduction and correctness.

Two region reduction techniques in previous work are the phagocyte and the

weakness heuristics [28]. The phagocyte heuristic acts so as to smoothen or shorten

region boundaries while the weakness heuristic joins regions based on the strength

of the boundary that separates them. The phagocyte heuristic is less general since

objects in real world images are not always expected to have smooth boundaries.

The weakness heuristic is more general in the sense that similar segments separat-

ed by a weak boundary are likely to belong together and thus may be merged. We

use the weakness heuristic to clean up the segmentation and reduce the number

segments.

2.4 Dense motion estimation

The literature broadly shows three approaches to motion segmentation. The first

clusters motion-based feature points [179, 147, 61, 195, 112, 13], the second estab-

lishes motion contours and then performs boundary completion to get closed mo-

tion regions [71], and the third combines feature points and clustering to perform
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region completion [88]. Problems faced by techniques in the literature include

difficulty dealing with multiple motion regions, sparse representation, a prior as-

sumption of low velocity motion, or high computational complexity.

Following the first approach, one such method [13] describes a motion super-

pixel adjacency graph on which graph cuts are applied to get a clustered set of

superpixels, each representing individual object motion. Its drawbacks are halo

effects and high complexity for more than two regions. A related method using

tensor voting [61] establishes tensor points and applies the graph cuts thereafter.

This has similar disadvantages, having a high complexity and additionally offer-

ing poor performance in low texture environments. Other recent examples of mo-

tion feature clustering [147, 112] follow the same general principle. Following the

second approach, establishing region enclosing motion boundaries, is for instance

the saliency based boundary completion scheme [71] which falters when there are

large gaps in the motion boundary or when the motion is detected at coarse scales.

The third approach, involving completion schemes to fill holes in motion features

and solidify regions, is for instance the spatial clustering approach [88] to link mo-

tion features.

These and other approaches [105, 179, 195] face one or more of the following

limitations: a) poor performance due to shadows/halos/outliers caused segmen-

tation errors, b) difficulty in dealing with multiple motion regions, c) motion repre-

sentation as clouds instead of solid regions, and d) high computational complexity.

The following general sources of problems are encountered in motion segmen-

tion (adapted from a list of background modelling problems [180]):

• Generalised aperture: Using small regions to identify motion reduces the

quality of the motion segmentation due to a lower signal to noise ratio and

insufficient spatial data for complete motion judgements. On the other hand,
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large regions may consist of more than one motion, but to identify these as

multiple motion we need the motion segmentation first.

• Waving trees: Constant periodic motion of background objects can blur the

boundaries of foreground motion, since the periodicity of motion may lead to

the background optical flow approximately coinciding with the foreground

optical flow at regular intervals.

• Camouflage: A foreground object’s pixels can sometimes have very similar

intensity or pattern as the background object making the object difficult to

detect. While this applies to the human visual system as well, the problem is

more pronounced in software.

• Foreground aperture: When a homogeneously colored object moves, changes

in interior pixels cannot be detected. Thus, the entire object may not appear

as foreground but only parts thereof, usually defined internal or external con-

tours.

• Sleeping person: When a foreground object stops moving it is hard to distin-

guish the motionless foreground object from other background objects using

pixel differences or optical flow. This is technically valid grounds to ‘lose’ a

motion object, however it is useful to be able to differentiate between when

an object stops moving because it has disappeared entirely and when it has

stopped moving and is simply hiding motionless with no pixel differencing

response.

• Walking person: When an object starts moving, both the object and its newly

exposed background appear as a motion response. Separating the response
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region into foreground and background is not easy using motion appear-

ances alone.

• Shadows: Moving objects often cast shadows and can result in identifying

the shadow regions as foreground. Again this is technically valid, since the

shadow is indeed moving as well, but it is convenient to be able to differen-

tiate between ‘solid’ motion and transparent shadowy motion.

These problems apply to both sparse and dense motion estimates, but partic-

ularly affect image differencing [157, 58] based schemes, which at the most basic

level simply subtract one image from another to get the scalar magnitude of inten-

sity change for each pixel between frames. Optical flow [21] is the set of techniques

that estimate both the magnitude as well as the direction of change for every pixel,

and thus gives more complete information than image subtraction.

Optical flow attempts to track points over frames. Two of the best known al-

gorithms are the classic Horn-Schunck [101, 102] and the Lucas-Kanade [124, 17]

optical flow methods, many variants of both of which are described in the liter-

ature. Both are differential methods, the most widely used technique in optical

flow. The Horn-Schunck algorithm is a global method which iteratively minimises

a energy functional by assuming brightness constancy or flow smoothness. While

it returns a fully dense flow field, it is sensitive to noise [20, 82] and its iterative

nature makes it slow. The Lucas-Kanade method is a local method that solves

flow equations for neighbourhood pixels using the least squares method. It also

assumes a local brightness constancy and additionally small motions, but is more

robust to noise has been generally1 seen to work better in practice [20, 82]. It is also

1Although careful parameter tuning with the Horn-Schunck method has been shown to produce

superior results in most cases [12]
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possible to produce very fast implementation of this algorithm. Due to reasons of

robustness to noise and faster performance, our optical flow technique of choice in

Section 3.4 will be a modified dense implementation of the Lucas-Kanade method.

2.5 Segmentation evaluation and benchmarking

Various reviews [212, 216, 215] on segmentation evaluation methods identify sev-

eral approaches to the evaluation of segmentation schemes. These approaches are

subjective evaluation, system-level evaluation, analytical methods, supervised e-

valuation, and unsupervised evaluation. The most widely used is subjective eval-

uation, human subjects being by far the best suited to the task of segmentation.

Subjective evaluation, while being intrinsically both time consuming and subjec-

tive, is commonly accepted as producing the highest-quality evaluation results.

Analytic methods evaluate properties of the algorithm independent of the actual

output produced, and are thus only applicable for algorithmic or implementation

properties. Supervised methods compare the discrepancy between a given seg-

mentation and its corresponding ground truth, usually obtained through manual

segmentation. These methods provide a direct comparison between segmentation

and ground truth and, while to a degree still being time consuming and subjec-

tive, is the most commonly used method for objective evaluation. Unsupervised,

or empirical goodness, methods do not require a ground truth but instead evalu-

ate properties of a segmentation according to certain mathematical characteristics

of a good segmentation defined by humans. Unsupervised methods are quantita-

tive and objective, but there is no guarantee that the mathematical property being

measured is both a sound and complete indicator of segmentation quality, as all

the measures developed so far have not been.
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There are three reasons why the available unsupervised evaluation measures

lack either or both properties of soundness and completeness. First, it is difficult

to devise a measure that is rich enough to capture the complex motivations behind

a human segmentation. Second, the various definitions of a good segmentation

are largely heuristically motivated. For instance, one element of a good segmen-

tation, in [94], is that region interiors should be simple and without holes. This

heuristic would fail if trying to segment an image of a slice of Swiss cheese, an

object which comes with lots of holes in it. Third, if there were to exist a sound

and complete evaluation measure of a segmentation then the perfect segmenta-

tion algorithm could be obtained by expressing the measure as some function of

pixels and simply optimising the function until the lowest error is achieved for a

given image. However, unsupervised evaluations are still useful in that they allow

some sort of comparison between methods, such as [170], even if it is true that one

can not conclude which algorithm is better for the task purely based on such an

evaluation.

Various unsupervised evaluation metrics are described in the literature, includ-

ing Zeb [36], FRC [155] and VCP [51], which compared to some other evaluation

metrics have been shown in [212] to be more balanced with respect to under-

segmentation and over-segmentation, with only small biases. However, much of

the recent work in various types of segmentation have used the following four

measures to quantitatively evaluate performance: probabilistic Rand index PRI

[149], variation of information V OI [131], global consistency error GCE [127] and

boundary displacement error BDE [78].

Quantitative measures are typically calculated over standardised benchmark

data sets so that different segmentation techniques can be compared, but there is

a limited set of publicly available largescale general benchmark databases with
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ground truths for segmentations on natural images and videos. The LabelMe

dataset [158] is a collection of annotated images of natural and cluttered scenes

from multiple views but it only provides rough boundary annotation for objects

instead of fine contours. The Caltech 101 data set [70] provides fine contour an-

notations for objects centered in the images and not in natural contexts. The LHI

Segmentation dataset [207] is a larger and more diverse dataset than the Caltech

101, following similar annotation principles but providing more diverity of views

and contexts while still being limited in the number of components per image. The

Caltech 256 [89] is a larger and more diverse version of the Caltech 101 but as of

the time of writing lacks annotations, thus making it unsuitable for segmentation

evaluation, but being suitable for semantic image interpretation since it consists

of groups of categorised objects. The Berkeley Segmentation Dataset [127], while

limited in scale and content, provides a well defined error control and benchmark

procedure and additionally has been used in the evaluation of several segmen-

tation algorithms making it easier to compare work. An advantage of this data

set is the large number of regions available in the images and identified by the

ground truth. The Hopkins 155 dataset [183] consists of motion sequence videos

and ground truth, providing annotated sparse motion clusters, and is popular for

the evaluation of feature tracking based motion segmentation. This however has

to be done indirectly for dense motion estimation since its annotations are sparse.

The Hopkins set is to the best of our knowledge the only publicly available motion

segmentation dataset of its size, annotation resolution and contextual variability.

Another motion segmentation dataset [122] provides an annotation tool for ob-

taining ground truths from videos, but also provides a few pre-annotated video

sequences. Another large data set is the Corel Stock Photos collection, although it

has no well-defined benchmark procedure or annotations.
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2.6 Shape representation and matching

Much of the literature in shape analysis treats the two tasks of representation

and similarity matching as one, as many of the review papers will demonstrate

[130, 123, 192, 191, 210, 156, 104]. We differentiate between shape similarity mea-

sures and shape representation methods. While the two are often linked, there

is a distinct difference between measures that numerically describe qualities of a

shape and methods that help approximate the actual shape itself. This differen-

tiation is pointed out by Mehtre [130] who classifies each approach as either un-

ambigious/information preserving (IP) or ambiguous/non-information preserv-

ing (NIP). The cited review papers provide an extensive exposition on the various

IP and NIP methods available.

Of particular interest to us are IP shape representations and those NIP measures

that can be used alongside them. A good IP representation is one that is compact

but which has high shape approximation accuracy. A compact representation re-

duces the data space, and it is then faster to calculate NIP measures from the re-

duced space. This is important since the demand for online image retrieval mech-

anisms places great emphasis on matching speed. The most prominent of IP shape

representation methods are convex hulls [169], polygonal approximation [168, 5],

chain codes [76, 204], medial axis transform or skeletal graphs [25, 173] and self-

organising maps [110, 109, 166, 171]. These allow contour approximation with var-

ious degrees of ease. In contrast to the few main IP methods, there exist hundreds

of NIP measures described in the literature. NIP measures are generally applied to

an already identified solid shape, contour or feature points, and therefore depend

on some prior segmentation mechanism. The following is an extensive, though by

no means comprehensive, list of NIP measures, the detailed description of which
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we leave to the cited literature [130, 145, 123, 192, 191, 156]: area, perimeter, other

size functions, circularity, squareness, triangularity, rectangularity, rectilinearity,

sigmoidality, chirality, eccentricity, ratio of principal axes, elongation, major axis

orientation, euler number, concavity tree, holes, shape number, convexity, symme-

try, compactness, circular variance, ellipticity, elliptic variance, bending energy, arc

height, moments (invariant, Zernike, pseudo-Zernike), spherical harmonics, prin-

cipal components, curvature scale space, voting schemes (geometric hashing, pose

clustering, alignment), transformation space subdivision (Hough transform, Walsh

transform, Wavelet transform, Fourier transform), boundary and region decompo-

sition (finite point sets, corner, break point, smooth join, crank, end, bump), mini-

mum weight matching, uniform matching, minimum deviation matching, distance

(Euclidean, Hausdorff, Frechet, Minkowski, Bottleneck, Earth mover’s, Chamfer,

etc.), area of symmetric difference (template metric), tangent, acceleration, tangent

angle, cumulative angle, periodic cumulative angle, other turning functions, sig-

nature function, affine arc length, reflection metric, shape histogram, and graph

spectra.

Many of the NIP measures described above use angular, tangential or other cur-

vature measures that rely on a connected point-based contour description. We had

previously identified the main IP methods as including polygonal approximation,

chain codes, skeletal graphs and self-organising maps. Out of these it is easiest

to obtain a contour representation of connected points using self-organising maps

(SOM). The SOM was introduced by Kohonen [108, 110, 109] and significantly later

applied to shape matching [166, 171].

SOMs are neural networks that adapt to a set of inputs by modifying their

connection weights, called training. To increase training flexibility the SOM was

adapted into the Neural Gas (NG) [128] and further to the Growing Neural Gas
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(GNG) [80, 81]. The GNG has only very recently been explicitly applied to the

tasks of shape modelling and registration [69, 10, 214].

2.7 Scene analysis

Most work related to the semantics of visual information comes from the area of

content based image retrieval (CBIR) [167, 190, 56]. While some formal languages

such as description logics [14] and autoepistemic temporal modal logics [165, 116]

attempt to model acquired information with respect to its semantics, they only

address knowledge representation and its manipulation, and not the acquisition

of such knowledge. CBIR, comprising any technology that helps organise visual

data by content, on the other hand indirectly addresses semantic representations

by using relatively low level feature comparisons to indicate the presence or ab-

sence of semantic similarity. These systems are split into three broad categories,

which display varying levels of semantic expressiveness. These are Query By Vi-

sual Example (QBVE) [98], Query By Semantic Example (QBSE) [152] and Query

By Contextual Example (QBCE) [151].

To assess similarity in CBIR, image or region features are extracted and com-

pared between images. The first task is the mathematical representation of images

or regions. Some features used colour, texture and/or simple shape-based infor-

mation. The second task is the process of estimating similarity between signatures

so as to maintain both abstract generality and discriminative ability. An exten-

sive list of shape similarity features, measures and representation methods have

been outlined in the previous section. Appropriate features make both tasks easier

and more accurate. Colour and texture are very low level metrics to judge sim-

ilarity by and therefore shape features are receiving more attention now. Shape-
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based abstract signatures are more capable of capturing abstraction and present

less computational load compared to texture scale selection and colour histogram

comparison.

Three prominent, although vaguely similar, architectures in region-based CBIR

systems are SIMPLIcity (Semantics-Sensitive Integrated Matching for Picture LI-

braries) [198], Blobworld [35] and FRIP (Finding Regions In Pictures) [107]. The

SIMPLIcity system first performs quick and approximate image segmentation and

then calculates mean features of regions for distance comparisons. It represents re-

gion signatures using colour, texture and shape. Three colour channel values, three

texture values, and shape indicators in the form of three orders of normalised in-

ertia, are used. Colour and texture are emphasised more than shape due to only

very simple shapes being used, and shape is ignored in particuular for textured im-

ages. The Blobworld system works comparably, using colour, texture and position

to describe segmented regions. While shape is not used directly, for texture mea-

surement a pixel-wise scale selection procedure selects that scale for which mean

contrast is very low. Region signatures, a mean of all the member pixel features,

are then comprised of three colour channel values, three texture measures and the

two position coordinates. The three texture measures are polarity, anisotropy and

the normalised texture contrast. The FRIP system works similarly as well, per-

forming a quick image segmentation and then computing features for each region.

FRIP features consist of thee colour channels, the Biorthogonal Wavelet Frame as

a texture measure, the normalised area, location and two shape descriptors, the

eccentricity and a Modified Radius-based Signature. As before, region signatures

are derived from the mean of all the pixel features contained in the region, and

regions are compared pair-wise.

Scene analysis and specifically content based image retrieval involve the classi-
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fication of visual components reached via segmentation and representation. Clas-

sification methods can be divided into instanced based learning [4, 57, 54] and ea-

ger learning systems, which comprise of all other learning systems. Instance based

learning is refered to as lazy learning because it does not form abstractions during

a series of observations but simply stores instances and waits until a new instance

has to be classified at which point a local neighbourhood similarity search and ma-

jority class label assignment is done. In contrast, eager learning systems diverts

effort to forming abstractions of observed instances and comparing new instances

to the set of abstracted classes. Since instance based learning consumes more and

more computational resources when searching through a growing set of observa-

tions, eager learning is more suitable for online systems that must stay operational

indefinitely. While eager learning spends more resources on abstraction, it saves

on both classification speed and on storage space. Both speed and space are of

critical concern when dealing with learning regions and shapes from large video

sequences, the total set of instances from which may rapidly become very large

due to the number of regions identified from each frame and the overall number

of frames. However, eager learning methods must commit to a single global ap-

proximation at the time of observation, a shortcoming that instance based learning

does not share. While there have been attempts to combine instance based and ea-

ger learning methods into hybrid systems [97], these systems are also characterised

extended search times and large space requirements.

A popular eager learning approach is the nearest centroid method [142, 92, 120]

which is fast and simple. A variant of this is the nearest shrunken centroid method

[176, 120] which shrinks class centroids towards the overall centroid for all classes.

Shifting centroids towards the overall mean reduces the sensitivity of the method

to outliers.
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2.8 Summary

In this chapter we have reviewed some of the relevant literature in image segmen-

tation, focusing on region merging methods and covering region reduction, dense

motion estimation, segmentation evaluation methods and benchmarks, shape rep-

resentation and shape similarity, and finally scene analysis.

In region growing, we find different sources sharing a common foundation but

focusing on different elements of the region merging paradigm, such as the best

merge and a time-varying threshold, and identify a need to combine some of these

different elements into a single model. Also, region reduction is found to usually

be expressed in very different terms than the core region growing step.

Motion information has often been used to group segmented regions, but which

we will express in later chapters as an extension of the main region reduction step.

In motion estimation, the literature shows the importance of dense motion calcula-

tion which offers more complete information than a sparse calculation, but dense

motion estimation methods are seen to be less reliable and more sensitive to noise

than sparse methods.

In shape similarity, we typically find the two tasks of shape representation and

shape matching being very closely linked, with the representation method decid-

ing the matching technique that is used. In scene analysis, the literature shows

mostly use of NIP measures as shape and image descriptors, with some appli-

cation of region information to the task, but little use of IP shape representation

methods to perform content based similarity searches.

36



Chapter 3

Segmentation by region merging

This chapter presents a generalised region merging framework, consisting of

multi-stage merging that incorporates adaptations such as the more expensive

best merge and a time-expanding theshold. The core of the framework is a hier-

archical parallel merging model and region reduction techniques. Based on the

general framework, a fixed-threshold region merging special case is discussed.

All segmentation results are qualitatively and quantitatively assessed across

standardised data sets and four evaluation metrics along with a proposed per-

formance summary indicator. The evaluation results demonstrate the superior

performance of the proposed segmentation framework.

3.1 Introduction

The region merging framework consists of three main components: the region

model, the merging criterion, and the merging order. We work on this founda-

tion and propose a fast and effective novel region merging method that outper-

forms other state-of-the-art algorithms. Our method favours the best merge [9, 10]
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over the fast merge [11] and multiple merges can occur over each iteration as op-

posed to methods such as [12] and [13]. The resulting segments represent a first ab-

straction of the input as intermediate features according to a Gestalt-like common

fate of colour homogeneity. The full spatial segmentation, applying a semi-greedy

adaptive-threshold path based merging scheme (SGAT) and region reduction tech-

niques, consists of the following phases: 1. Algorithmic region merging 2. Region

reduction (a) Weakness heuristic region reduction (b) Small segment reduction (c)

Enclosed region absorption.

The proposed system aims to obtain a set of regions that reflect regions of pri-

mary saliency in the input, but which also retains a level of detail where the visual

importance of localised zones is high. It is region-based for reasons of low com-

plexity and the need to prioritise topological proximity. The system’s two-stage

operation first quickly establishes class labels from neighbouring pixel colour dis-

tances, and then further merges the preliminary set of classes or segments. Since

we consider both colour and segment size in the second merging stage, fewer and

larger segmented regions are obtained except where significant local features force

the separation of smaller areas.

3.2 Preprocessing

Some problems are encountered, before the actual segmentation step, when at-

tempting to process natural images taken live from a web camera. For instance,

there is a some amount of noisy irregularity within captured images due to hard-

ware constraints. Illumination levels are also affected by changes in natural and

artifical lighting present at different times and by miscellaneous transient light

sources. Moreover, the colour space used to represent the input image plays a
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part in deciding the segmentation pathway, some formats being more perceptual-

ly uniform than others at the cost of computational efficiency and some separating

out information such as luminance and chrominance. We next discuss how we

deal with these problems.

The image is first convolved with a 3x3 median filter to reduce “shot” noise

and to provide some median blurring. This helps improve immediate neighbour

pixel grouping and, due to the edge preserving nature of the median filter, without

significantly reducing the separation between local zones of region dissimilarity.

The median filter [154] is represented as:

y(m,n;W ) = med{x(m− k, n− l), (k, l) ∈ W}, (3.1)

where W in this case is a 3x3 window or filter mask. The window size is kept

at the non-trivially smallest possible value so that shot noise reduction and very

localised smoothing occurs without affecting much of the image details.

At this stage we select a suitable colour space to work in. Among others ex-

perimented with, the primary candidates were RGB, CIE XYZ, HSV, CIE Luv and

CIE Lab. RGB is the most common format in use for documents, monitors and the

Internet. To deal with the problem of negative weights in the RGB colour mod-

el, CIE’s 1931 XYZ format was introduced. While RGB is considerd psycholog-

ically non-intuitive [177], both RGB and CIE XYZ lack perceptual uniformity in

Euclidean space. The HSV format is a linear transformation from RGB and is a

“phenomenal” colour space, being a natural way for humans to describe colours.

However it too is perceptually non-uniform, and additionally poses a poor corre-

lation between computed and perceived lightness [177]. Both CIE Luv and CIE

Lab were proposed by CIE as perceptually uniform colour spaces, the main differ-

ence between them being CIE Lab normalizes its values by division with the white

point while CIE Luv normalizes its values by subtraction of the white point [177].
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To convert an RGB image into either of these two perceptually uniform colour

spaces requires device dependency considerations, a reference white {Xr, Yr, Zr}

for the XYZ representation of the image, and a set of transformations involving

expensive operations such as divisions and a cube root. The extra computational

burden of transformations from RGB to CIE XYZ and then to CIE Luv/CIE Lab is

justified if it produces a noticeable difference in the quality of the results, but as

verified from our tests, this is not the case for the specific algorithms considered

in this research, and we therefore continue with the most commonly encountered

RGB colour space.

We therefore have a three component {R,G,B} feature vector, where feature

distances are calculated between individual pixels or groups of pixels. To keep the

complexity of the method low, an efficiently computed distance measure must be

established. We use the Manhattan distance,

dM =
n∑
i=0

|Ui − Vi|, (3.2)

where U and V are the feature vectors for the two sets of pixels being compared,

and n is the length the feature vector, which in our case is 3.

3.3 A generalised region merging framework

A number of region growing methods in the literature bear anywhere from a pass-

ing to a striking resemblance. The Beaulieu-Goldberg hierarchical stepwise opti-

misation (HSWO) [22] and the Adams seeded region growing (SRG) [3] methods

each start with a set of initial regions and iteratively merge pixels to them one at a

time based on the smallest neighbouring distance out of all the regions and their

immediate neighbours, the difference being HSWO starts with every pixel as a
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“seed” while SRG uses a smaller selection of seeds. SRG starting with 100% seed

density is nearly equivalent to HSWO. Bailey’s raster based method (RB) [15] is

similar to both HSWO and SRG, except it performs parallel merges at each iter-

ation. While HSWO and SRG indirectly perform a best merge [203, 53], since at

each iteration only the pair of regions with the overall minimum pairwise distance

are merged, RB uses a fast merge [38]. In fast fuzzy C-means (FFCM) [23] a very

similar procedure of scanning and labelling is followed to set up a JND (just no-

ticeable difference) histogram, after which histogram agglomeration (bin merging)

helps the algorithm to proceed. It too uses the fast merge distance measure for his-

togram computation, that is a colour is added to the first bin that it is similar to,

not the nearest bin. FFCM has similarities to HSWO, SRG and RB, the difference

being it operates in colour feature space while the other three algorithms work in

physical space with immediate neighbourhood constraints.

Consider also the following equivalence. Region merging using a region ad-

jacency graph (RAG) is described as follows [27]: “Task: Merge neighbouring re-

gions Ri and Rj . Phase 1. Update the region-adjacency graph. 1. Place edges

between Ri and all neighbouring regions of Rj (excluding, of course, Ri) that do

not already have edges between themselves and Ri. 2. Delete Rj and all its asso-

ciated edges”. Step 1 is equivalent to Ri adopting all the boundaries that Rj has,

which also incidentally means if Ri were to be previously connected to a third re-

gion of which both Ri and Rj are neighbours then Ri would now be disconnected

from it. Step 2 is then equivalent to finishing the Ri-Rj merger joining the interior

of Rj to Ri as well.

Brox’s multistage region merging (MRM) [30] also uses a RAG to perform merg-

ing, “the algorithm proceeds by continuously searching for the edge with the low-

est dissimilarity value and merging the two regions”. This is equivalent to a
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sequential minimum neighbouring distance merge algorithm along the lines of

HSWO and SRG. Brox however identifies some alternative distance measures for

the merge criterion. The graph based method in [62] uses a texture based variation

for the merge criterion.

Similar equivalences are seen to apply to tree based region growing [34, 60],

adaptive threshold region growing [38], and other approaches [73, 65], to name

a few. While many of them use different distance measures and merging crite-

ria, they share a very similar foundation. The aggressive region growing (ARG)

approach [41] is different in the sense that a single region is grown to its maxi-

mum extent before any others are considered. While such variations on a common

theme are expected, it is helpful to recognise them as variations that share a com-

mon foundation. This shared foundation motivates the formalisation of a single

general region growing framework.

We now propose a general region growing framework, semi-greedy adaptive-

threshold region growing (SGAT), which performs region merging on N clusters

by calculating at each iteration the distance measures Ci,j = d(Si, Sj) for all cluster

pairs (Si, Sj), with the most similar pair of clusters being merged and this pro-

cedure being repeated until a stopping criterion is satisfied. The merging criteri-

on used is the best merge [53] which requires the consideration of only a pixels

neighbours and its neighbours’ neighbours, thus allow multiple best merges to

take place during a single iteration. The distance measure is the fast and effective

[132] Manhattan distance, d(Si, Sj) =
∑n

i=0 |Ui−Vi|, where Ui and Vi are the feature

vectors for segments Si and Sj respectively, and n is the length the feature vector.

We preprocess the image with a 5×5 median filter to reduce noise, the window size

being determined by visually assessing the effect of various filter windows on the

overall noise level in the picture content when using the experimental hardware.
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3.3.1 Segmentation strategy

Using an L-neighbourhood1 row-wise scan offers up to L local merges, but a po-

tential merge (Si, Sj) for segment i may be suboptimal for neighbouring segment

j if there exists a neighbour k of j for which Cj,k < Ci,j is true, indicating a better

merge. Thus a merge over anL-neighbourhood should therefore also check the full

neighbourhood of the target of the merge, such semi-greedy behaviour resulting

in a more optimal merge.

a. b.

Figure 3.1: Neighbours of pixel t for row-wise rightward scans. a) Seeking labels

from {TL, T, TR, L}, b) Pushing labels onto {R,BL,B,BR}

We encode the eight possible neighbours for any pixel t as {TL, T , TR, L,R,BL,

B, BR}, (top left, top, top right, left, right, bottom left, bottom and bottom right

respectively). For computational efficiency and algorithmic correctness we wish

to have the smallest neighbourhoods that exhibit two characteristics: a) the neigh-

bourhood should contain either only already-labelled or only yet-unlabelled pix-

els, and b) the neighbourhood should not miss any possible merge pathways. An

L-shaped neighbourhood reduces scan redundancy while not missing any merge

pathways. The two minimum L-neighbourhoods for a row-wise scan are {TL, T ,

1An L-neighbourhood consists of some subset of the following immediate neighbours: top-left

(TL), top (T), top-right (TR), left (L), right (R), bottom-left (BL), bottom (B) and bottom-right (BR).
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TR, L} and {R,BL,B,BR}, see Figure 3.1. Given the usual row-wise nature of

image scans, the former set is suited for pull-labelling, in which the pixel current-

ly being considered seeks to adopt or pull a label from one of the L-neighbours,

while the latter set is suited for push-labelling, in which the current pixel seeks to

propagate or push its own label onto one or more of the L-neighbours. In our work

we use the 4-neighbourhood {TL, T, TR, L} to scan for a potential merge and the

8-neighbourhood {TL, T, TR, L,R,BL,B,BR} to check if it is the best merge for

both involved segments.

The feature distance d(Si, Sj) between two segments and the cost Ci,j of merg-

ing them are equivalent. Merges take place whenever d(Si, Sj) < dmax. We use a

simple scheme for adapting the distance threshold as the segmentation progresses,

similar to dynamic merge relaxation in [175], in order to achieve a balance between

data reduction and correctness.

The full segmentation consists of the following two phases:

1. Algorithmic region merging

2. Region reduction

(a) Weakness heuristic region reduction

(b) Small segment reduction

(c) Enclosed region absorption

The key controller of the row-wise scan is the variable twhich is the pixel index

currently being considered. Incrementing t has the effect of moving through the

image row-wise from left to right, the minimum L-neighbourhood resulting from

looking only at all the pixels already labeled in the past within the current iteration.

The variables involved are as follows:

1) Bi, the set of the segments adjacent to Si, called the neighborhood,

2) Di, the parameters that describe the segment Si, e.g. the segment R,G,B
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means,

3) Ci,j = C(Di, Dj), the cost of merging segment Si with Sj , where Sj is con-

tained in Bi,

4) dcurr, the distance threshold that restricts merges if the cost of merging is

greater than this value. The threshold grows after each iteration as dcurr = dcurr +

dstep.

5) dmax, the maximum allowable distance threshold such that: dcurr ≤ dmax.

The region merging algorithm is then defined as:

I. Initialise:

(i) Ind = {1, 2, · · ·n} (image pixel indices).

(ii) P 0 = {S1, S2, · · ·Sn} (initial partition).

(iii) Label(t), t ∈ Ind (segment label for pixel t).

(iv) k = 0, m = n and dcurr = 0.

(v) ∀Si ∈ P 0, calculate Di and Bi.

(vi) hasMerged = false

II. Merge, ∀t ∈ Ind, 4-neighbour scan {TL, T, TR, L}:

(i) i = Label(t).

(ii) calculate CSi = {Ci,j|Sj ∈ Bi}.

(iii) find Cu,v = Minimum(Ci,j) where Ci,j ∈ CSi, and Minimum(Cv,t) ≥ Cu,v

whereCv,t ∈ CSv in a full 8-neighbourhood {TL, T, TR, L,R,BL,B,BR}.

(iv) if Cu,v ≤ dcurr, do Merge(Su, Sv) as follows:

a) k = k + 1 and m = m+ 1.

b) P k = (P k−1 ∪ {Sm}) ∩ {Su, Sv}.

c) calculate Dm from Du and Dv.

d) Bm = (Bu ∪Bv) ∩ {Su, Sv}.

e) ∀Sj ∈ Bm, Bj = (Bj ∪ {Sm}) ∩ {Su, Sv}
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f) hasMerged = true

III. Stopping condition:

(i) if hasMerged == true, do the following:

a) hasMerged = false.

b) dcurr = Min(dcurr + dstep, dmax).

c) go to step II.

(ii) stop.

The following section discusses the region reduction post-processing that we

next apply.

3.3.2 Region reduction

We use the weakness heuristic [28] to clean up the segmentation and reduce the

number segments. The variables involved in the weakness heuristic region reduc-

tion step are as follows:

1) for two regions Si and Sj where Sj ∈ Bi, let Li = {li,1, li,2, · · · li,q} and Lj =

{lj,1, lj,2, · · · lj,r} be the set of all boundary pixels in Si and Sj respectively,

2) let Adjacent(li,u, lj,v) be a boolean function determining whether pixels li,u ∈

Li and lj,v ∈ Lj are adjacent. We find three adjacent pixels in Sj for every pixel in

Si along smooth boundaries, which we compensate for in the boundary strength

computation.

3) then Lji ⊂ Li, where ∃u ∈ Li, v ∈ Lj for which Adjacent(li,u,lj,v) = true.

4) d(r,s) is the feature distance between pixels r and s.

5) fi,j = |Lji |, the approximated length of the common boundary between Si

and Sj

6) ∀li,u ∈ Lji , mean boundary distance between segments Si and Sj , CTi,j =
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1
3

1
fi,j

∑
d(li,u, lj,v), where ∃u ∈ Li, v ∈ Lj such that Adjacent(li,u,lj,v) = true.

7) dweakness = α × dmax, where 0 < α < 1 is the weakness control factor, some

fraction of dmax since weak segments are more similar, that controls the merging of

weak segments.

In this step we use only a 1-neighbour TL scan for faster processing without

significant degradation in quality1. Since we proceed from the main segmentation

step, no initialisation is required for the region reduction post-processing phase,

which is given by the following:

I. Region reduction, ∀t ∈ Ind, 1-neighbour scan {TL}:

(i) hasMerged = false.

(ii) i = Label(t).

(iii) calculate Cu,v as CTi,j|Sj ∈ Bi.

(iv) if Cu,v ≤ dweakness, Merge(Su, Sv) as follows:

a) k = k + 1 and m = m+ 1.

b) P k = (P k−1 ∪ {Sm}) ∩ {Su, Sv}.

c) calculate Dm from Du and Dv.

d) Bm = (Bu ∪Bv) ∩ {Su, Sv}.

e) ∀Sj ∈ Bm, Bj = (Bj ∪ {Sm}) ∩ {Su, Sv}.

f) hasMerged = true.

(v) if hasMerged = true, repeat from step I.

Next we reduce the number of small segments by performing a single iteration

of the main region merging algorithm via a full 8-neighbour scan (to avoid missing

possible merge pathways) by setting dcurr = ∞ and considering i = Label(t) in a

1A 1-neighbour (top-left) row-wise scan using the weakness heuristic has a ‘blind spot’: segment

boundaries aligned at a perfect 45◦ on the left diagonal, which are unlikely to occur in natural

images.
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row-wise scan only for segments Si such that the segment size |Si| satisfies the

condition |Si| ≤ γ× |Ind|
|Pk−1| , where the total image size is represented by the number

of pixels contained |Ind| and the control parameter γ decides the smallness to be

merged in terms of some fraction of the ratio between image size and the number

of segments obtained thus far.

Finally, we extend the weakness heuristic to include regions completely en-

closed by another region, many of which represent less salient details that may

be merged away. We use a second weakness control factor β to reduce the cost

of merging such regions, leading to only salient enclosed regions remaining un-

merged. The main region merging algorithm is repeated for one iteration via a full

8-neighbour scan after setting dcurr = β × dmax and considering i = Label(t) in a

row-wise scan only for segments Si in which |Lji | = |Li|.

3.3.3 Results

Four commonly used segmentation evaluation metrics are the probabilistic Rand

index (PRI) [149], variation of information (VOI) [131], global consistency error

(GCE) [127] and boundary displacement error (BDE) [78], each having established

figures for results using important segmentation methods. Since we wish to com-

pare segmentation performances based on values for these four different metrics,

we propose a new performance summary indicator as a function of multiple eval-

uation measures. This performance indicator uses the results for human segmen-

tation as a baseline. In some evaluation metrics lower values show better perfor-

mance while for others higher values show better performance. We therefore use

a scheme that adds a positive term to the performance indicator for metric results

better than the baseline and penalises metric results worse than the baseline. We

also take into account the fact that different metrics produce varying ranges of val-
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ues and differences in some metrics may have less influence than others. We thus

normalise each metric result by the relative importance of that metric with respect

to the complete set of considered metrics.

Desirable properties of the performance indicator are:

1) the indicator should have a zero value when the baseline is compared against

itself.

2) the indicator should have a specific constant value when the same pair of

human and algorithm results are being compared, independent of the number of

algorithms compared.

We call this new indicator the relative performance (RP), which we now define.

Let Hi and Ai respectively be the baseline (human) and challenger (algorithm) re-

sults for metric i for n different metrics, also let λi = 1 when higher values are

better and λi = −1 when lower values are better for metric i. Then the relative

weight of each metric in terms of the baseline is given by Wi = Hi∑n
j=0Hj

.

Then RP is defined as:

RP =
1

n

n∑
i=0

λi × (Ai −Hi)

Wi

(3.3)

We benchmark the spatial and spatiotemporal segmentation methods against

the Berkeley Segmentation Dataset (BSDS) [127] according to the four evaluation

metrics of PRI , V OI , GCE, BDE and the summary indicator RP . We use these

measures to quantitatively evaluate our segmentation results against the figures

reported in [206, 95, 150, 133, 47, 39]. The segmentation methods compared against

are the following: Felzenszwalb & Huttenlocher Graph-based (FH) [72], Mean

Shift (MS) [50], Normalised Cuts (NC) [164], Multiscale NCut (MNC) [52], Markov

Chain Monte Carlo (MCMC) [185], Fusion of Clustering Results (FCR) [132], Com-

pression based Texture Merging (CTM) [206], Ultrametric Contour Maps (UCM)
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Performance Measures

Algorithms PRI ↑ VoI ↓ GCE ↓ BDE ↓ RP ↑

Human 0.8754 1.1040 0.0797 4.9940 0

FH [72] 0.7841 2.6647 0.1895 9.9497 -6.86

MS [50] 0.7550 2.4770 0.2598 9.7001 -8.08

NC [164] 0.7229 2.9329 0.2182 9.6038 -7.92

MNC [52] 0.7559 2.4701 0.1925 15.10 -8.49

MCMC [185] 0.768 2.261 - - -

FCR [132] 0.7882 2.3035 0.2114 8.9951 -6.42

CTMγ=0.1 [206] 0.7561 2.4640 0.1767 9.4211 -6.12

CTMγ=0.2 [206] 0.7617 2.0236 0.1877 9.8962 -5.82

UCM [11] 0.77 2.11 - - -

TBES [133] 0.807 1.705 - - -

HMC [95] 0.7816 3.8700 0.3000 8.9300 -10.87

MCSpec [208] 0.7357 2.6336 0.2469 15.40 -10.10

NormTree [197] 0.7521 2.4954 0.2373 16.30 -9.95

BW [35] 0.7138 2.6295 - - -

SWC [184] 0.7644 3.0266 - - -

SGAT[1] 0.7946 3.5026 0.1396 5.0237 -5.33

SGAT[2] 0.7886 2.8482 0.1911 5.2839 -5.53

Table 3.1: Quantitative comparison of SGAT segmentation results with other meth-

ods. Average performance on the BSDS shown. PRI [0, 1], higher is better. VoI

[0,∞], lower is better. GCE [0,∞], lower is better. BDE [0,∞], lower is better.

Figures not available are marked as ‘-’. RP [−∞, 0], values rounded to 2 decimal

places. The two best values for each measure are shown in bold, considering only

the better performer out of SGAT[1] and SGAT[2].
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[11], Texture and Boundary Encoding-based Segmentation (TBES) [133], Hierarchi-

cal Markov Clustering (HMC) [95], Multiclass Spectral Clustering (MCSpec) [208],

Normalised Tree Partitioning (NormTree) [197], Blobworld (BW) [35], Swendsen-

Wang Cuts (SWC) [184].

a b a b

Figure 3.2: Segmentation results on some BSDS images using SGAT[2]. a) Original,

b) Segmented

We have experimentally determined the following parameter values for SGAT

region merging to produce robust results:

SGAT[1]: dmax=35, dstep=3, α=0.55, γ=2, β=10.

SGAT[2]: dmax=45, dstep=3, α=0.50, γ=2, β=10.

As we can see from the RP column in Figure 3.1, the relative performance in-

dicator allows us to compare overall performance for an algorithm across several

metrics. Higher values (closer to zero) are better1. Both variations of the proposed

1A positive value for RP indicates a better performance than the baseline.
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SGAT method show better overall performance with respect to the available data

for the other methods. We also see that SGAT[1] produces better quantitative result-

s than SGAT[2], but both score higher on the overall performance indicator than the

other algorithms. All experiments were run on a 2.26 Ghz dual core laptop com-

puter. Average region merging frame rates on the 481× 321 BSDS images were 0.5

to 1 fps.

3.3.4 Segmentation special case

We now describe a special case of the general region framework framework de-

scribed in the previous section. The merging strategy consists of two broad stages:

a preliminary pixel-level class label assignment stage, followed by an iterative class

merging stage.

The merging procedure is dependent on two threshold values, the pixel merg-

ing distance dp and the segment merging distance ds. Experimental tuning sets

these parameters to dp = 10.5 and ds = dp ∗ r, where the segmentation factor (in-

versely proportional to the resolution of the segmentation) r = 15 ∗ 106 provides a

good segmentation of large salient regions while maintaining some smaller regions

of high importance.

Intially, a simple Canny edge detector with window size 3 and threshold values

80 and 240 is applied to the image to get a set of edge labels, E where Em,n = 1 in-

dicates pixel Pm,n has been identified as an edge, and Em,n = 0 indicates otherwise.

In stage 1, we carry out a preliminary class label assignment for each pixel

based on a threshold value between immediate neighbours. We start with an emp-

ty set S of class labels, and move through the entire image row-by-row from top

left to bottom right, using a label assignment strategy to populate S with possible

class labels si, where i is the label counter. On the very first pixel Pm,n,m = 1, n = 1,
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the label counter i is set to 1 and a new element s1 is inserted into S. Thus P1,1 is

assigned the class label s1. We then carry out the following steps until there are no

more image pixels to process:

I. Try to assume a neighbouring pixel label using the procedure Seek. If this

succeeds, move on to the next pixel.

II. If it fails, increment the label counter i and assign the new label si to the

current pixel, inserting this label into the set of labels S.

A k × l kernel window K, where k mod 2 6= 0, l mod 2 6= 0 and k > 1, l > 1,

is employed at several stages of the segmentation. We keep the window at the

smallest possible non-trivial size, which is k = 3, l = 3. When K is positioned over

pixel Pm,n of image I , the kernel window coordinates are represented by Kx,y.

Seek procedure: We center the kernel window K over the currently considered

pixel and proceed to compare the feature distance, dM (the Manhattan distance)

between the center pixel and other pixels of the kernel that lie within the image

region. Since our kernel is 3× 3, we have eight possible neighbours for each center

pixel considered, and thus eight neighbour distances dMc, c=1:8. For each of these

eight, the class label corresponding to the smallest dMc that falls within the allow-

able pixel merging threshold dp is assigned to the center pixel. If none of the dMc

values that satisfy the threshold already possess a class label then this procedure

fails.

By the end of this process, we get a label map for all the pixels in the image.

However, there remains a problem. Since we proceed from left to right, top to

bottom, there are cases when the class labelling splits what should be a single

segment into multiple classes. Figure 3.3 shows a simple example where the Seek

procedure assigns class labels 2 and 4 to pixels actually belonging to a single class.
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The Seek′ procedure corrects this and the label 2 is dropped from the set of labels,

the entire segment now being assigned the label 4.

a) b) c)

Figure 3.3: Label assignment: a) Image, b) Seek, c) Seek′

Using Seek′, we run through all the pixels on a second pass, this time merging

segments indicated by neighbouring pixels satisfying the pixel merging threshold

but with different class labels. Although this step could have been avoided by

making the first step more complex, we make significant performance gains by

having two low complexity passes instead of a single complex pass. Figure 3.4

shows the Seek′ pass correcting the initial label assignments established by the

Seek pass.

a b

Figure 3.4: Label correction between Seek (a) and Seek′ (b)

Seek′ procedure: We again center the kernel window K over the currently con-

sidered pixel and proceed to compare the feature distance, dM between the center
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pixel and other pixels of the kernel that lie within the image region. From the eight

neighbour distances dMc, c = 1 : 8, we eliminate those that correspond to pixels

with different class labels from the center pixel and get an updated set of neigh-

bour distances dM ′
c. Now considering this set, the class label corresponding to the

smallest dM ′
c that falls within the allowable pixel merging threshold dp is assigned

to the center pixel, using the Merge procedure. If none of the dM ′
c values that

satisfy the threshold already possess a class label then this procedure fails.

Merge procedure: When merging two pixels or pixel regions with classes u

and v, the pixels belonging to both classes are all set to u. Thus the two segments

previously identified by labels u and v are now identified by a single label u.

Next we move to stage 2 of the segmentation, which is similar to stage 1, with

three differences that redefine the functionality of the Seek′ procedure to get a new

procedure Refine. First, we now only consider the kernel window and pixel level

information in order to identify neighbouring segments. Neighbours are now de-

fined as, for kernel K centered at image coordinates Pm,n, segments for which K

contains pixels from each segment and at least one of the segments places a pixel

at the kernel center, K((m+1)/2,(n+1)/2). Secondly, the distance measure dM is now

between neighbouring segments instead of neigbouring pixels. The feature vector

for each segment is recomputed as the mean of the individual feature vectors of

their component pixels. The third difference is in the merging threshold, which

is now ds instead of dp. This threshold ds is further magnified by the sizes of the

particular segments being considered for the merge. The modified procedure is as

follows:

Refine procedure: For kernel K at Pm,n, if segment label sU at center pixel

K((m+1)/2,(n+1)/2) differs from that at another K(m,n), then sU and sV are neighbour-

ing segments. For each pair of neighbouring segments identified by an instance of
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K, we get a set of distance measures dMc. The distance measures are calculated as

the distance between the means of the feature vectors of all the pixels belonging

to each segment. Each distance measure is further multiplied by the number of

pixels in each of the two segments being considered, i.e. for segments sU and sV

with number of pixels Na and Nb respectively, dMc = dMc ∗Na ∗Nb.

Finally, the edges are factored in and if for either considered pixel the edge label

Em,n = 1, we apply a magnifying factor, experimentally determined to be optimal

at 500, to get dMc = dMc ∗ 500. The segment corresponding to the smallest dMc,

and which falls within the allowable segment merging threshold ds, is merged

using procedure Merge with the segment identified by the class label at the center

of K. The segment corresponding to the smallest dMc, and which falls within the

allowable segment merging threshold ds, is merged using procedure Merge with

the segment identified by the class label at the center of K.

a b c d

Figure 3.5: a: Original. b: Edges detected. c: Region growing segmentation. d:

Edge-enhanced region growing, with increased contour correctness.

For segments larger than 50 pixels we then insert a clause immediately before

the Seek, Seek′ and Refine phases which has the effect of lowering the pixel and

segment merging thresholds dMp and dMS for edge pixels. We use a threshold scaling

factor z to control this lowering effect. Assuming the edge map represents pixel

edge information Xi,j at pixel location i, j as 1 if it is an edge and 0 otherwise, the
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merging thresholds become

dMp =
dMp
z
, forXi,j = 1 (3.4)

and

dMS =
dMS
z
, forXi,j = 1 (3.5)

We set z to a high value between 7 and 10. Lowering z scales the merging threshold

less and makes it easier for boundary merges to occur, conversely setting it high

enough makes it impossible for any boundary merges to take place.

If none of the dMc values satisfy the threshold then this procedure fails. Thus,

starting at the top left of the image and proceeding row-by-row to the bottom right,

we iterate through the following steps until in any single run through the entire

image no segment merges occur:

I. For the current segment, try to assume a neighbouring segment label using

the new procedure Refine, modified in the three ways as described above.

Move to the next pixel if it fails.

II. If it succeeds, recompute properties global to the newly merged segment and

its feature vector as the mean of the feature vectors of its component pixels.

Move to the next pixel.

The segmentation is now complete. Figure 3.6 shows the two-stage results. For

r = 15 ∗ 106, we typically get within ten and twenty final segments. Note that

Figure 3.6-b represents the same processing stage as Figure 3.4-b.

In our system, segments represent zones of interest, and regions where multiple

segments are concentrated represent possible points of gaze fixation. Images in

which there are fewer and weaker dominant points of fixation are indicated by
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a b c

Figure 3.6: Segmentation stages: a) Original image, b) Oversegmented results after

Stage-1 Seek′, c) Final results after Stage-2 processing

a segmentation set consisting of fewer and larger regions, similar to the human

perception taking a little longer to identify something significant to look at in the

image.

As seen from the results, we sacrifice uniformly spread local detail in order

to gain global saliency zones. The system keeps intact localised small segments

only where it finds the visual importance of the segment to be very high. We note

however that once broad regions of interest are identified, it is possible to apply

the same system at higher resolutions to pick up greater detail from those regions.

In evaluating the performance of our algorithm, we use visual comparisons.

As pointed out in [85], benchmark-based segmentation evaluation usually suffers

from the trade-off between objectivity and generality. General-purpose segmen-

tations may not have parallel well-defined ground truths. While we have used

images from the Berkeley Segmentation Data Set [126], and obtained the corre-

sponding F-measure of the segmentation results (maximal F-measure of 0.512032),

“trivial segmentations, where each segment only contains one pixel or the whole

image is a single segment, always produce perfect 100% segmentation accuracy in

this benchmark” [85]. In this vein, increasing our resolution parameters provides

better quantitative results, but makes the output visually less pleasing. Therefore,

in our evaluation we visually compare some of our results against those of other
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popular algorithms.

Figure 3.7 shows some segmentation results presented alongside the results

from three other algorithms ( [100], [174] and [111]). The images chosen represent

medium to high complexity. As can be seen from the results, our segmentation

maintains the balance between saliency and detail, the visual quality of the results

being comparable in positive light against the results of the other algorithms.

We have presented a natural colour image segmentation method that is fast and

maintains a level of perceptual correlation with the input. The method produces

segments that signify salient image regions but which does not eradicate smaller

intra-object regions should they present sufficiently salient features.

3.4 Motion-based region reduction

The analysis of motion allows pixel grouping by a further Gestalt principle of sim-

ilar motion. That is, for video data, segmentation must be extended to consider

spatiotemporal or motion information. The simplest indicator of motion is inten-

sity differences between two frames of a video sequence. Motion regions thus

identified represent another level of intermediate features in the abstraction hier-

archy.

3.4.1 Scalar motion from image differences

Image differences between frames provide the most straightforward indication of

motion, and is thus used as the basis for almost all motion segmentation schemes.

While image differences are very easy to obtain, interpreting them is much more

involved. Three main characterstics contribute to this difficulty. From the list

of common motion segmentation problems identified earlier, these are foreground
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a b

Figure 3.7: Segmentation performance for difficult segmentation problems com-

pared against the performance of other algorithms. Column a) Other algorithms

(Row 1: [100], Row 2 [174], Row 3 [111], Row 4 [111], Row 5 [100]), Column b) Our

algorithm.
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aperture, sleeping person and walking person. The first of these, foreground aperture, is

an important property of image differences, describing how boundaries or salient

edges of a moving object primarily contribute to the difference image, with the ob-

ject interior appearing very similar to the other stationary areas of the image. The

second, sleeping person, simply represents the fact that once an object stops moving

or drops below the motion sensitivity threshold it can no longer be detected by im-

age differencing alone. The third, walking person, is conceptually a sort of reverse

of the aperture problem, appearing as motion response from both a moving object

as well as its immediate background which was vacated due to the motion.

These problems motivate the combination of image subtraction with spatial

segments, and also a single-step “memory” of previous frame motion and seg-

ment information. Solid spatial regions provide an opportunity to fill in the thin

contours arising from image subtraction, while motion memory provides the op-

portunity to retain a temporary lock on a motion segment even when it suddenly

stops moving.

The motion segmentation mechanism combines spatial segmentation with tem-

poral image differencing to help get past these problems. While any segmentation

technique can be used, the higher the perceptual correlation of the segments the

better the motion segmentation results. The following list summarises the motion

segmentation procedure, after which a more formal representation is provided.

I. For each frame, obtain a region-based spatial segmentation and a threshold-

ed image difference between the current and previous frames. A each time

step t complete information about the previous frame is retained, namely the

spatial segmentation, the image difference, and the calculated motion seg-

mentation.

61



CHAPTER 3. SEGMENTATION BY REGION MERGING

II. Calculate a measure of global spread of the motion response as the ratio of

the number of motion pixels to the total image size. Also calculate a derived

motion spread measure for the previous frame, calculated as the ratio of the

sum of all previous-frame motion segment sizes to the total image size.

III. Overlap the current image difference with the current segmentation to iden-

tify the strength of motion response, or segment motion spread, within each

segment. If the ratio of segment motion spread to segment size is greater

than the global spread ratio (considered also as segment motion threshold),

then mark the entire segment as exhibiting motion.

IV. To additionally stabilise the motion segmentation with regards to segmen-

t and motion memory of the previous frame, similarly to point 3, consider

derived segment motion spreads by taking current spatial segments and the

motion segments from the previous frame instead of current motion response.

Since with previous-frame motion information we expect motion responses

to be slightly displaced from segment locations, we shift the global spread

ratio closer to 1 to ensure greater correctness of overlaps, as a new segment

motion threshold, before checking whether the ratio of derived motion seg-

ment spread to segment size exceeds this threshold. If yes, these segments

are marked as derived motion segments.

V. The union of regular and derived motion segments forms the final motion

segmentation. In cases where the set of motion segments includes the en-

tire image, either due to camera motion or several large objects in near-view

moving simultaneously, we make the set of motion segments a null set and

clear previous frame motion memory, to avoid motion segments being the

entire image.

62



CHAPTER 3. SEGMENTATION BY REGION MERGING

A formal description of the above summary is now presented. The processing

starts with two sequential image frames It−1 and It, their region-based spatial seg-

mentations St−1 and St, and their image difference Dt(It, It−1). All references to

pixels pi indicate the location of the ith pixel as defined by i = ((y − 1) × w) + x,

where x and y are cartesian coordinates and w is the width of the image.

A spatial segmentation S(It) of image It[p1 : pm], where m is the number of

pixels in the image, is an n-dimensional vector S(It)[s
t
1 : stn], sti ∈ I , where n is the

number of segments discovered within the image at time t, and sti is a set of pixel

locations for spatial segment i.

The image difference D is taken to be a subset of image pixels as follows:

Dt(It, It−1) = pi|pi ∈ |It − It−1|, pi > φ (3.6)

The differencing threshold φ can be set to small non-zero value and is useful

since typically image differences are highly sensitive it may be desirable to ignore

very small pixel differences possibly caused by illumination fluctuations or noise.

An indicator of global motion spread Ag for image It, is calculated as:

Ag(It) =
|Dt|
|It|

(3.7)

For each si ∈ It, the segment motion spread As(s
t
i) is:

As(s
t
i) =

|sti ∩Dt|
|sti|

(3.8)

For each si ∈ It, regular segment motion flag mr
i (s

t
i) is established by consider-

ing segments crossing the threshold of the global motion spread:

mr
i (s

t
i) =

1 if As(sti) > Ag(It),

0 if As(sti) ≤ Ag(It).
(3.9)
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The total regular motion segmentation set then is:

M r
t = st1 ∪ st2... ∪ stn, where mr

i (s
t
i) = 1 (3.10)

For the previous frame It−1, the derived global motion spread Adg(It−1) con-

siders previous frame regular motion segments M r
t−1, instead of the raw motion

response Dt−1, and is represented by:

Adg(It−1) =

∣∣M r
t−1
∣∣

|It−1|
(3.11)

For each si ∈ It, the derived segment motion spread Ads(s
t
i) also considers pre-

vious frame regular motion segments M r
t−1 and is given by:

Ads(s
t
i) =

∣∣sti ∩M r
t−1
∣∣

|sti|
(3.12)

For each si ∈ It, the derived segment motion flag md
i (s

t
i) is established by con-

sidering segments crossing a modified threshold obtained from the global motion

spread:

md
i (s

t
i) =

1 if Ads(sti) >
Ag(It)+1

2
,

0 if Ads(sti) ≤
Ag(It)+1

2
.

(3.13)

Here the segment motion threshold is increased from Ag(It) as in equation 3.9

to Ag(It)+1

2
, since when combining previous frame motion pixels with current frame

spatial segments there is a greater possiblity of uncorrelated motion and segment

overlaps, therefore boosting the previously used segment motion threshold by half

the distance to its maximum value helps improve robustness.

The final motion segmentation is then:

M f
t = M r

t (sti) ∪Md
t (sti) (3.14)
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To avoid extended false positives based on motion memory, and also to avoid

motion segments equalling the entire image itself, one last step remains:

M f
t = Dt−1 = ∅ if

∣∣∣M f
t

∣∣∣ = |It| (3.15)

The complexity of the motion segmentation scheme is bounded by the efficien-

cy of the spatial segmentation, the remaining computation being of low complex-

ity. We obtain frame rates of 8Hz to 10Hz for 320 × 240 video images. Also in

addition to computational efficiency, the method improves five out of the seven

common motion segmentation problems identified earlier. The shadows problem is

indirectly addressed by the fact that moving objects and their shadows are usually

picked up as distinct spatial regions. Only the camouflage problem of the fore-

ground and background being similarly coloured or textured, which the human

visual system has difficulty solving as well, causes a deterioration of results.

The generalised aperture problem arises from a required balance between aper-

ture size and multiple motion differentiation ability. This cannot be termed a trade-

off since reducing aperture size only makes it more difficult to obtain an accurate

motion segmentation lock in the first place. The proposed approach addresses this

by using maximum aperture size at the outset and effectively sharpening focus on

the basis of spatial segments instead.

The waving trees problem is symptomised by failure to distinguish between

foreground and moving background. The presented method is capable of dis-

tinguishing between different objects moving independently due to its segment

based motion tracking. This would of course fail if the segmentation confused the

foreground and the background in the first place, but the selected segmentation

mechanism is seen to be fairly robust. Thus the final motion segmentation would

only merge foreground and background if both the following conditions were to

hold true: 1. the foreground and background appear very similarly coloured and
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textured, and 2. the foreground and background exhibit motion simultaneously.

Also, it is necessary for the appearances or motion characteristics of any two re-

gions to diverge only momentarily in order for us to be able to “remember” them

and pick out matches based on previous frame motion memory if the appearances

and motion do become indistinguishably similar for the subsequent frame.

The problem of foreground aperture arises from another trademark characteris-

tic of image differencing, that is the subtraction process fails to find differences on

most of the interior of a moving object, since between frames most locations on

the interior are likely to be occupied by another location still lying within the inte-

rior, thus yielding very similar features, except for highly textured local areas. In

other words, image differencing yields ghostly contours, with thicker contours for

faster moving objects since for any particular object more of the interior has had

the opportunity to be replaced by a previously exterior location. Also of impor-

tance is the fact that, again except for highly textured areas and a “wall” of hard-

ware/illumination noise, only objects contours that are non-parallel to the motion

will be detectable using image differencing. Moreover, the greater the angle of the

contour to the direction of motion, the greater the response to differencing. These

characteristics prove useful for potential future work in which a template based

recognition system can “know” the object concerned and thus infer the proper-

ties of the motion based on how prominent known contours are in the differenced

image, limited of course by object non-rigidity.

Our method addresses the problem of foreground aperture by using contours

active in the image difference to identify which whole regions from the spatial seg-

mentation correspond to motion, thus supplying the us with the “missing” motion

interior for intra-object untextured motion unresponsiveness.

Next we consider the sleeping person problem. This is a result of absence of de-
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tectable motion, which zeroes out the image differencing response, excluding mild

pervasive noise. An immediate solution is to directly reuse motion response from

an earlier frame instead of that from the current one, but this presents a problem.

An object may move very slightly so as to either not exceed any noise threshold

or such that the motion is beneath the sensitivity of the sensor hardware. In this

case an object may creep gradually across an otherwise static scene and never be

detected, since the current frame difference has a flat response and much older

motion information may be continually replacing the current motion response in

order to retain a lock on the target. There are two problems here. A false negative

would involve losing the object when it stops moving or moves very slowly, while

a false positive would involve assuming the existence of a previously detected seg-

ment when in reality the object of interest has by some means disappeared from

the image location.

The presented method addresses both these problems by considering its mem-

ory of the previous frame region and motion information. The use of previous

motion response pixels helps reduce false negatives by still picking up a motion

object even when its motion response in the current frame has dropped, provided

there exists a motion response in the previous frame. False positives are reduced

due to the consideration of motion response within entire segments. While an ob-

ject disappearing entirely will suddenly revealed background objects to suddenly

jump to attention, unrelated segments will not be positively identified. That is,

if an object disappears from in front of a smooth stretch of background wall, no

part of the entire wall will appear as a motion object since the motion response

is not spread over a large surface area of the wall. False positives can also come

about in rare cases if the motion memory persistently causes the motion object to

be retained due to actual motion in one frame and then noisy or random motion
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response in subsequent frames, but in this case we are able to differentiate between

regular motion segments and memory-derived motion segments.

Finally, the problem of walking person is dealt with as a direct result of the na-

ture of the spatial segmentation mechanism. When a foreground object starts to

move and reveals background differences as well, there is motion activity detect-

ed in both regions, the new location of the foreground and the newly revealed

background. In most cases the strength of motion response in the revealed back-

ground will not be strong enough compared to the size of the background segment,

and it will therefore not be identified as a motion segment. However, in the case

that both foreground and revealed background are detected as motion objects, we

know from the spatial segmentation that these are two distinct regions. From the

results in figure 3.8 we see that none of the segmented objects have a ‘motion trail’,

indicating that the revealed backgrounds from motion objects were successfully

ignored.

We have described a scalar motion segmentation method that addresses sever-

al of the main problems in foreground segmentation and yields very good results

at close range, provided the background is not extremely cluttered. The results

shown in Figure 3.9 were seen to hold steady over lengthy extended video seg-

ments, losing the foreground target very occasionally. In the left image we see

that the ears and spectacles existing as separate segments in the spatial segmen-

tation have been combined into a whole segment with respect to their common

motion. Similarly, in the right image the sets of segments representing the face,

hair, arms and body have all been merged into a single region. While this method

of motion segmentation is restricted to extracting only a single foreground motion

object from the image, thus limiting its applicability, the quality and stability of the

results at close range views potentially makes it worthwhile for webcam, green
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Original Spatial segments Image subtraction Motion segments

1

2

3

Figure 3.8: Motion segmentation from OpenVisor [194] sequences. 1: ISELab se-

quence Hermes Outdoor cam1, 2: ISELab sequence CVC Zebra, 3: Outdoor Uni-

more D.I.I. sequence seq01 cam1 300305 A

screen or other types of applications which share a close range viewing distance

and a relatively uncluttered background.

3.4.2 Vector motion from optical flow

While intensity differencing produces a dense map of pixel-level changes, this in-

formation is scalar, one does not know in which direction each pixel is likely to

have moved. The solution is to use optical flow, which attempts to track points

over frames. A popular and long used technique for estimating optical flow is

the Lucas-Kanade method [22], from which using mean region optical flow infor-

mation we apply our semi-greedy merging scheme to get a spatiotemporal seg-
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Figure 3.9: Scalar motion segmentation at webcam distance. Within each image,

top left shows the original input, top right shows the spatial segmentation, bot-

tom left shows scalar image differencing with respect to the previous frame, and

bottom right shows the spatiotemporal motion segmentation.

ment map. Using this, we now propose a spatiotemporal segmentation method

that is significant in the following ways: a) unrestricted by the number of motion

segments, b) dense representation, c) no assumption about velocity of motion, d)

low complexity, executes fast, e) fully unsupervised, f) fully online, no training

required, g) works with a minimum of only two frames.

The proposed method, segmentation by dense region flow (SDRF), involves

computing dense optical flow and combining this with region information from

the spatial segmentation to obtain region flow vectors which are then used to

merge regions that appear to exhibit similar motion. Quantitative and qualitative

evaluation of segmentation and shape matching results are given and an overall

evaluation measure, the relative performance (RP), proposed to summarise quan-

titative performance across multiple metrics.

The simplest indicator of motion is intensity differences between two frames
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of a video sequence. While intensity differencing produces a dense map of pixel-

level changes, this information is scalar, one does not know in which direction each

pixel is likely to have moved. The solution is to use optical flow, which attempts to

track points over frames. We use the Lucas-Kanade (LK) method [124] which is a

Gauss-Newton gradient descent non-linear optimization algorithm and is known

to produce an overall best performance [82]. While the LK method is described in

more detail in [17], we paraphrase a brief summary here.

The goal of the LK image alignment method is to align a template image T (x)

to an input image I(x), where x = (x, y)T is a column vector containing the pixel

coordinates. Let W(x; p) denote the parameterized set of allowed warps, where

p = (p1, ...pn)T is a vector of parameters. The warp W(x; p) takes the pixel x in the

coordinate frame of the template T and maps it to the sub-pixel location W(x; p) in

the coordinate frame of the image I . For 2D optical flow, the warps represent the

translations: W(x; p) =
(
x+p1
y+p2

)
.

The aim is to minimize the sum of squared error between two images, the tem-

plate T and the image I warped back onto the coordinate frame of the template:∑
x[I(W(x; p)) − T (x)]2. Warping I back to compute I(W(x; p)) requires interpo-

lating the image I at the sub-pixel locations W(x; p). The minimization of the ex-

pression
∑

x[I(W(x; p + ∆p))− T (x)]2 is performed with respect to p and the sum

is performed over all of the pixels x in the template image T (x). The algorithm

assumes that a current estimate of p is known and then iteratively solves for incre-

ments to the parameters ∆p as p← p + ∆p. These two steps are iterated until the

estimates of the parameters p converge to the threshold ‖∆p‖ ≤ ε.

We use the openCV1 function cvCalcOpticalF lowLK for LK flow estimation,

forcing the inclusion of every pixel as a feature, to get a dense flow map consisting

1Open Source Computer Vision Library, http://www.intel.com/research/mrl/research/opencv
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of flow vectors for each pixel in the first of a pair of frames.

After obtaining ∆p for each pixel, we are able to proceed to calculating the

region flow warp V(r,∆p′
r) for region r where ∆p′

r is the mean flow vector for r

calculated as the mean of all ∆p ∈ r, as ∆p′
r = 1

|r|
∑

[∆p ∈ r]. The cost CFi,j of

merging two regions Si and Sj based on flow information is thus given by CFi,j =

|∆p′
i − ∆p′

j|. The threshold dflow restricts region merges based on optical flow

information if the cost of merging is greater than or equal to this value. The rest

of the variables are similar to those applied in the spatial region reduction step

(Section 3.3.2).

I. Region reduction, ∀t ∈ Ind, 4-neighbour scan {TL, T, TR, L}:

(i) hasMerged = false.

(ii) i = Label(t).

(iii) calculate Cu,v as CFi,j|Sj ∈ Bi.

(iv) if Cu,v < dflow, Merge(Su, Sv) as follows:

a) k = k + 1 and m = m+ 1.

b) P k = (P k−1 ∪ {Sm}) ∩ {Su, Sv}.

c) calculate Dm from Du and Dv.

d) Bm = (Bu ∪Bv) ∩ {Su, Sv}.

e) ∀Sj ∈ Bm, Bj = (Bj ∪ {Sm}) ∩ {Su, Sv}.

f) hasMerged = true.

(v) if hasMerged = true, repeat from step I.

This completes the spatiotemporal segmentation. We next test the SDRF spa-

tiotemporal segmentation using the Berkeley Motion Segmentation Dataset (BMS-

DS) [31], which provides 26 video sequences with dense segmentation annotations

of moving objects in 204 of the frames across all sequences. We experimental-

ly find good values of threshold dflow to be in the range [0.3, 2.0]. From Figure
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Figure 3.10: Relative Performance (RP) of SDRF segmentation on the Berkely Mo-

tion Segmentation Dataset (BMSDS) with various values for a) initial dcurr, b) dmax,

and c) dflow. Parameter ranges: initial dcurr = {0, 3, 5, 10, 15, 30, 50, 70} respective-

ly for white, blue, red, yellow, magenta, cyan, green and black plots; dstep = 5;

dmax = dcurr + 5; region flow resolution dflow = {0, 0.3, 0.5, 1.0, 1.5, 2.0} on the x

axis.

3.10 we see that the best spatiotemporal segmentation relative performance is ob-

tained from the blue, red and white plots, which represent initial dcurr values of 3,

5, and 0 respectively. Within these plots the best relative performance is obtained

from spatiotemporal region flow resolution dflow values in the range [1.0, 2.0]. This

shows that using region flow to group spatial regions using optical flow informa-

tion works best with a high resolution spatial segmentation and moderate to high

values for the region flow threshold dflow. However, using lower spatial resolution
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gives more visually pleasing results.

A comparison between the spatial and spatiotemporal segmentations is found

on the Resolution axis in Figure 3.10, where Resolution = 0 marks the point on

each curve at which there is no spatiotemporal merging. We can see that, for every

curve, this point is not the highest on the RP scale. Only for three curves, cyan,

green and black, corresponding to high spatial merging thresholds, does any point

on the curve dip below the zero spatiotemporal resolution performance. For the

curves with the globally highest RP values, the white, blue and red curves, the

best RP is well above the RP at Resolution = 0. This clearly indicates the su-

perior performance of spatiotemporal merging, when temporal data is available,

compared to only spatial merging.

Figure 3.11 shows a comparison between a low resolution spatial segmentation

and its spatiotemporal counterpart. We can see that the spatiotemporal segmenta-

tion merges the spatial regions making up the rear wheel into one segment. Aver-

age spatiotemporal segmentation frame rates, in addition to spatial segmentation

time, on the 640× 480, 352× 288 and 532× 380 BMSDS frames were 5 to 10 fps.

Spatial Spatiotemporal

Figure 3.11: Spatial vs. spatiotemporal segmentations for BMSDS sequence cars1.

a) SGAT, b) SDRF. Parameters: dcurr = 70, dstep = 5, dmax = dcurr +dstep. Note single

segment rear wheel in b) as opposed to a).
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3.5 Discussion

In this chapter we have described a set of grouping techniques that allow us to

convert a sequence of input frames into a set of cohesive regions. We have identi-

fied median filtered XYZ images to be well suited to such grouping tasks. We have

demonstrated the effectiveness and speed of a Seek/Refine region merging mecha-

nism consisting of a pixel-based initial labelling followed by a region-based further

grouping of regions. Many considerations discussed separately in the literature af-

fect a segmentation outcome, such as initial seeding, scan order, grouping order,

neighborhoods and adjacency, parallel or sequential growing, fixed and varying

distance thresholds, optimality of local merges, and region reduction heuristic-

s. We combine these into a single region merging algorithm, SGAT (semi-greedy

adaptive-threshold) region growing, a crude approximation of which is the three

stage Seek/Refine segmentation previously described. We assess the performance

of the SGAT segmentation framework using four standard evaluation metrics, and

additionally propose a summary indicator, the relative performance RP, which

combines individual evaluation metrics into a single value that allows a quick

comparison between different segmentation methods.

We have explored two further ways of grouping regions by their common fate

using spatiotemporal or motion information. Based on the SGAT spatial segmen-

tation we have considered motion-based region reduction using two types of spa-

tiotemporal information, scalar information in the form of temporal intensity dif-

ferences and vector information in the form of pixel-level optical flow vectors. We

have then proposed a novel spatiotemporal segmentation by dense region flow

method (SDRF) which uses dense pixel-level optical flow information and com-

bines them using the basic SGAT mechanism to obtain overall region flow vectors
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for each segment, which are then used for further region merging. We have qualita-

tively and quantitatively assessed the performance of both spatiotemporal region

reduction mechanisms.
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Chapter 4

Matching shape appearances

From segmented regions we move on to region representation. This chapter

describes region contour modelling and the evaluation of contour-based shape

descriptors. Contour modelling is done using the growing neural gas, a type

of self-organising map, to which adaptations are made for improved execution

speed and for network simplification into a double-linkage single-chain repre-

sentation that facilitates shape analysis. While the growing neural gas has been

extensively applied to shape modelling, to the best of our knowledge it has nev-

er explicitly been used for region similarity comparison via contour description

and curvature analysis. A set of 30 descriptors, derived from the properties of

regions and their GNG shape representations, are evaluated and two sets of

descriptors are established using the methods of feature subset selection and

variable ranking.

4.1 Introduction

After obtaining segmented regions using spatial or spatiotemporal segmenta-
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tions, we need a way to represent, describe and compare their shapes and ap-

pearances. Shape analysis is a very difficult problem, motivating a large volume

of research, many of the concepts of which are described in various review papers

[130, 123, 192, 191, 210, 156, 104]. While various shape representations and descrip-

tors have been proposed, not all of them fit the general concensus of what a good

representation or descriptor should be. For instance, according to [130], “A 2-D

shape descriptor should be insensitive to: Translation, Scale changes (uniform in

both the X-coordinate and the Y-coordinate), Rotations”, and although it is debat-

able whether it is best if descriptors are completely insensitive to such changes or

whether they simply should be less sensitive, not all shape representation schemes

satisfy this condition.

The following are some other general criteria for shape evaluation [104]:

• Scope: Applicability to all types of shapes

• Uniqueness: Similar shapes should have similar descriptions that are differ-

ent from other types of shapes

• Stability: Minor changes in a shape should not affect its description much

• Sensitivity: Minor but salient changes in a shape should affect its description

• Efficiency: Descriptors should be computationally easy to calculate and com-

pare

• Multi-scale support: It should be possible to use a description to analyse a

shape at various levels of abstraction

• Local support: It should be possible to compute and effectively compare de-

scriptions when the input is either coarse or fine grained.
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From our experiments, described later, we see that the uniqueness and stability

factors are very difficult to balance. Unique descriptors, ones that vary noticeably

between different classes of shapes, also tend to vary within each class, appearing

to be both sensitive and unstable.

4.2 Contour modelling

In thinking about shapes the first few properties that come to mind are shape con-

tours as well as global properties such as size, colour, etc. Contours describe im-

portant variations in figure and also represent instructions for approximately re-

producing figures. To discover a contour, sets of boundary pixels need to be as-

similated algorithmically. An efficient way of doing this is through self-organised

learning, for which the self-organising map (SOM) [108, 110, 109] is a well-suited

tool. The SOM was later adapted to the neural gas (NG) [128] and subsequently to

the growing neural gas (GNG) [81]. We apply the topology preserving GNG to the

task of contour modelling and shape analysis.

There are very few cases of the application in shape representation of SOMs

in general, such as [166, 171], and the GNG in particular, such as [69, 10, 214, 9,

8, 7]. To the best of our knowledge, the GNG has previously never been applied

explicitly to the task of shape curvature analysis.

In order to proceed, we must first briefly define the GNG algorithm. The fol-

lowing are the steps of the original algorithm as described in [81]:

0. Start with two units a and b at random positions wa and wb in Rn.

1. Generate an input signal ξ according to p(ξ).

2. Find then nearest unit s1 and the second-nearest unit s2.
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3. Increment the age of all edges emanating from s1.

4. Add the squared distance between the input signal and the nearest unit in input

space to a local counter variable: ∆error(s1) = ‖ws1 − ξ‖
2.

5. Move s1 and its direct topological neighbours towards ξ by fractions εb and εn, re-

spectively, of the total distance: ∆ws1 = εb(ξ − ws1), and ∆wn = εn(ξ − wn) for all

direct neighbours n of s1.

6. If s1 and s2 are connected by an edge, set the age of this edge to zero, else create it.

7. Remove edges with an age larger than amax. If this results in points having no ema-

nating edges, remove them as well.

8. If the number of input signals generated so far is an integer multiple of a parameter

λ, insert a new unit as follows:

• Determine the unit q with the maximum accumulated error.

• Insert a new unit r halfway between q and its neighbour f with the largest error

variable: wr = 0.5(wq + wf ).

• Insert edges connecting the new unit r with units q and f , and remove the

original edge between q and f .

• Decrease the error variables of q and f by multiplying them with a constant α.

Initialise the error variable of r with the new value of the error variable of q.

9. Decrease all error variables by multiplying them with a constant β.

10. If a stopping criterion is not yet fulfilled go to step 1.
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4.2.1 Efficient contour representation with the growing neural gas

While the GNG is good at learning topologies through vector-quantised Hebbian

learning-based induced Delaunay triangulation to achieve Voronoi tesselation, it is

a neural network and, like all neural networks, tends to converge relatively slow-

ly. While parameter selection can optimise learning times, setting it to adapt very

rapidly can destroy the Delaunay triangulation completely. In the context of unsu-

pervised scene analysis, where we are faced with modelling contours of hundreds

of regions per frame within sequences which consist of thousands of frames, mod-

elling speed is extremely critical. We therefore describe certain modifications to

the original GNG algorithm that speed up its performance.

The first modification concerns the distance measure used. Every time a signal

is generated the GNG algorithm must compute the Euclidean distance between

the signal and all the nodes in order to the identify the two nodes nearest to the

signal. We propose the use of the faster Manhattan distance [132] instead.

The second modification deals with the stopping criteria. In order to ensure a

consistent number of nodes per local contour feature for every region, we express

the stopping criteria in terms of node density. Node density, expressed as a fraction

in the range [0, 1], is defined as the ratio of nodes to pixels. For instance, a node

density of 0.1 means the network will stop developing when, with N nodes, there

is at least 1 node for every 10 pixels of the input space.

The third modification involves the number of starting nodes and their con-

nectedness. The standard GNG starts off with two nodes connected by an edge

and grows gradually towards the final number of nodes. In order to try and speed

up network development we initialise with some fraction f , in the range [0, 1], of

the total number of nodes. The number of starting nodes is then nstart = bf×nstopc.
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These are connected sequentially1, that is, every nodei is connected to nodei−1 for

2 < i < nstart.

The following GNG parameter values were used in all experiments: λ = 700,

εb = 0.05, εn = 0.0006, amax = 30, α = 0.5, and β = 0.995, with the maximum

number of nodes N being selected as described above.

Changing the distance measure and the initial number of nodes and their con-

nectedness can have a direct impact on the Delaunay triangulation, which satisfies

the condition that no node is inside the circumcircle of a triangle formed by any

other set of nodes that are immediately connected to each other, and can thus affect

the topological correctness of the network. We test the potential loss in accuracy

both by visual comparison with the original GNG, shown in Figure 4.1, as well

as by quantitative measures, shown in Table 4.1. While we try to summarise the

quantitative gains by the mean and overall gain figures, assessing the individual

results shows marginally higher error rates, a nearly five-fold speedup, and nearly

identical2 network node distributions.

Two measures of topological correctness we use are the mean quantisation error

(qe) and the topological error (te) [187], shown in Equations 4.1 and 4.2 respective-

ly. There are N pixels, or data vectors ~xi, representing the input space in a GNG

network. The nodes, or prototype units, form the output space. The best match-

ing unit (BMU) m~xi for each data vector is the data vector nearest it in Euclidean

space, the first BMU. The second BMU is the data vector nearest the input vector

after excluding the first BMU. For the calculation of topographic error, there is a

function u(~xi) that is 1 if ~xi data vector’s first and second BMUs are adjacent and 0

1Full connectivity between all starting nodes is computationally expensive both in terms of ini-

tialisation as well as in the deleting of edges. We have experimentally found it to be slower than

sequential connectivity.
2Some variations are due to the random input distribution used in every run of the GNG
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a. b. c. d. e.

f. g. h. i. j.

Figure 4.1: Comparison of GNG network formation between the original algorithm

and our optimised implementation using 10 simple shapes. The optimisations pro-

duce a significant speedup and there is little difference in representation except on

very close inspection.

83



CHAPTER 4. MATCHING SHAPE APPEARANCES

Original Optimised

Shape Nodes Fps QE TE Fps QE TE

Circle 54 2.22 2.8016 0 7.94 2.8714 0

Cloud 97 0.61 2.6552 0 5.26 2.7275 0

Curve 42 4.20 3.0364 0 12.5 3.0789 0

Heart 70 1.38 2.9337 0 5.24 2.9648 0

Lightning 71 1.04 2.8138 0 6.99 2.9391 0

Rectangle 80 1.07 2.5235 0 6.25 2.5547 0

Star-4 71 1.16 2.6375 0 7.30 2.7551 0

Star-6 74 1.11 2.9073 0 6.06 2.9564 0.0014

Triangle 66 1.71 2.8816 0 7.14 2.9278 0

Arrow 72 1.11 2.7424 0.0014 6.67 2.7717 0.0014

Mean 1.56 2.7933 0.0001 7.14 2.8547 0.0003

Optimised/Original: gainfps, gainqe, gainte 4.58 1.0220 3.0000

Overall gain: gainfps/(gainqe × gainte) 1.49

Table 4.1: Original vs. optimised GNG with respect to frames per second (fps),

quantisation error (qe), and topographic error (te). Mean and overall gain shown

as a summary statistic. The optimised version produces a significant speed in-

crease, with little visual difference and a tolerable rise in error levels.
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otherwise.

qe =
1

N

∑
‖~xi −m~xi‖ (4.1)

te =
1

N

N∑
i=1

u(~xi) (4.2)

4.2.2 Simplifying the network

It is useful to obtain a contour composed solely of sequentially linked nodes, so

that angles of curvature can be analysed. In many cases, the GNG can be formed

with more than two edges emanating from some nodes, such as in Figure 4.1.b,

4.1.e, and 4.1.g. This can happen when there are either sharp corners or complicat-

ed junctions in the silhouette, particularly when the network is not given enough

time or sufficient number of nodes to model the contour more accurately. Even

when the GNG is allowed a long time to converge, through a high value for λ and

a high maximum number1 of nodes N , there is no guarantee that multiple con-

nections will be avoided, as this depends on the structure of the input space. As

explained previously, in online systems performance is critical, and therefore there

is greater reason to run the GNG with a short convergence cycle and fewer nodes.

Thus we need a method to convert a complicated network into one comprised only

of sequentially linked nodes.

The easiest procedure is to simply delete all nodes that have more than two

edges, but doing this leads to a contour mapping that is full of gaps, the network

being composed of a fragmented set of segments with many edges missing that

1A special case is when N equals the size of the input space, which means there is one node for

every pixel of input space.
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could otherwise have been preserved. The following is a straightforward algo-

rithm we use for the network simplication task that preserves as many edges as

it can while eliminating multiple connections as well as attempting to keep the

network as a single connected segment:

1. Begin with all edges unmarked.

2. Identify nodes which have two or less edges emanating from them and mark

their edges.

3. Delete all unmarked edges.

4. Delete all nodes which still have more than two edges.

5. Remove any ‘hanging’ edges, those without nodes at both ends.

6. Remove any ‘orphan’ nodes, those with no emanating edges.

7. For every node with a single edge, if its nearest other single-edged node is

less than half the distance to its second-nearest other single-edged node, then

connect the node to its nearest single-edged node. This step attempts to close

some gaps left by edges previously deleted.

Figure 4.2 shows the results of this network simplification algorithm on the

‘lightning’ shape. We see that the network preserves the contour with only a little

of the top right corner detail being lost. More importantly, all the multiple connec-

tions have been reduced to a sequence of double connected nodes. For the purpose

of a fast topological representation, running the simplification algorithm is less ex-

pensive than either using more nodes in the network or allowing the network more

time to converge.
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a. b.

Figure 4.2: Simplification of the GNG network to eliminate multiple connections

and to attempt to reduce the network to a single series of sequentially linked nodes:

a) Original, b) Our simplification algorithm.

4.3 Curvature based contour features

Now that we have arrived at a fast and effective contour representation method,

we next analyse shape-discriminative features that can be derived through con-

tour analysis. Since the GNG network consists of nodes connected by edges, we

can readily obtain angles of turn when going from node to node around a con-

tour. Given a set of nodes and edges, we are able to approximately reconstruct

the original contour, and therefore such a representation is information preserv-

ing and represents a set of instructions for the approximate reproduction of the

input space. Also, it is generally the case that a GNG network consists of roughly

even spacing between nodes, with only minor local variation. Thus by knowing

a set of angles of turn, and assuming a fixed spacing between nodes, we should

still be able to reconstruct a scale-varying but morphologically similar contour ap-

proximation. This guides the assumption that a set of curvature angles alone is

sufficient to differentiate between a large variety of shapes.
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We next test this hypothesis by calculating a large variety of statistics based

on the angles of curvature for shapes from a standard dataset and by measuring

intra-class variance for each statistic. A good shape-discriminative measure should

demonstrate high inter-class distance but low intra-class variance, and so statistics

for which intra-class variance is high can be discarded from consideration. We

thus model shapes from the COIL-100 [137] dataset, for which object categories

are known, using our optimised GNG and then apply many different statistical

measures to the angles of curvature. The goal is to identify the set of statistics

that display a low intra-class variance and, since each measure can be expect to

discriminate between certain types of shapes but not all, a moderate to high inter-

class distance.

The 100 object Columbia Object Image Library (COIL-100) dataset consists of

colour images of 72 different poses for each object. The poses correspond to 5◦

rotation intervals and the objects are captured against a dark background, making

the primary shape relatively easy to separate from the background without the

need for a full segmentation. This makes the COIL-100 dataset convenient for

shape analysis.

We perform a simple R,G,B threshold segmentation, with R > 40, B > 40

and G > 40, in order to separate the object from the background which is dark but

contains varying shades. In a few cases this fixed thesholding of the background

leads to the object shape being imperfect, either excluding a small portion of the

object or including a small portion of the background. This variation is within

acceptable limits and the imperfections actually help simulate the uncertainties

present in a full segmentation mechanism. Figure 4.3 shows some of the typical

shapes extracted in this way and their corresponding simplified GNG networks.

We also need to calculate the turning angles from node to node within a sim-
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1-0 b2-0 3-0 4-0 5-0

6-0 7-0 8-0 9-0 10-0

Figure 4.3: First shape of each of the first ten objects in COIL-100, showing the

original image, the thresholded region, and the GNG contour representation.
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plified GNG network representing a shape contour so that statistics based on the

curvature angles may be calculated and used as shape descriptors. We now de-

scribe the turning angle used in our shape representation experiments, and the

algorithm to calculate it for a set of sequentially connected contour nodes.

4.3.1 Calculating node-by-node turning angles

The exterior angle between any two sides of a polygon is the angle formed by the

first side and a line extended from the second side. This involves three nodes at

pointsA,B and C, our desired direction of travel being
−→
AB+

−−→
BC, with the angle of

turn being between
−→
AB and the the extended reversed length of the second vector

−−→
CB. This represents the vertically equivalent minimum turning angle to rotate the

vector
−→
AB to point in the direction of

−−→
BC. Locally convex sections of contours have

a positive turning angle while locally concave sections have a negative turning

angle.

The exterior angle ∠ABC defined between pointsA(ax,ay),B(bx,by) andC(cx,cy)

is calculated according to the following:

I. Perform vector subtractions to get vector between points.

(i) BAx = bx − ax and BAy = by − ay

(ii) CAx = cx − ax and CAy = cy − ay

II. dot = (BAx × CAx) + (BAy × CAy)

III. pcross = (BAx × CAy)− (BAy × CAx)

IV. Calculate angle in degrees: angle = atan2(pcross, dot)× 180
PI

V. If angle < 0, do angle = −180− angle, else angle = 180− angle
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The following algorithm describes the calculation of all turning angles starting

with a sequence of contour nodes connected by edges. We start with a set of nodes

ni defined by coordinates (xi, yi) and edges E(ns, nt), s 6= t, and aim to represent

these in terms of a sequence of lengths lj and turning angles θj . The distance be-

tween two nodes na and nb is their euclidean distance d(na, nb).

I. If ∃ni ∈ S : S = {E(ni, ny) ∪ E(ny, ni)}, |S| = 1, then the contour network

has hanging ends consisting of some nodes with only one emanating edge.

We select one of these as the starting node. If not, then every node ni has

two neighbours, the contour network being closed, and we arbitrarily select

some starting node ni. Starting this way guarantees we will pass through all

the nodes in the network by simply following the edge to the next neighbour

for the current node.

II. Initialise new representation with ns = ni, j = 0 and previously considered

node p = −1.

III. Set θj = 0 and lj = d(ni, ny).

IV. Set p = i and i = y.

V. Find new neighbour nz of node ni along edge E(ni, nz) such that z 6= p. If

i = s, stop.

VI. Increment j.

VII. Find the angle between nodes np, ni and nz according to the exterior angle

calculation function described above in Section 5. Set θj = Θ(np, ni, nz) and

lj = d(ni, nz).

VIII. Set y = z and unset z.
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IX. Repeat from Step 4.

At the end of this procedure we get a set of [lj, θj] that represent complete in-

structions for tracing a path all the way around a region contour. The first turning

angle θ0 is always set to 0 for a rotation invariant representation, that is in order to

represent the region at its original pose we simply need to additionally store the

angle that the first vector makes with repect to either axis. We also note that due

to the Voronoi tesselation properties of the GNG, most of the lj values are similar,

thus putting more importance on the sequence of turning angles, rather than the

length between turns, in the representation and analysis of region shape.

4.3.2 Shape features

We then determine an extensive set of statistics based on the curvature angles and

calculate intra-class variance, using the known COIL-100 object categories, for each

measure. To make the analysis of shape-discriminative statistics more complete,

we also include six global descriptors (1-4) that are unrelated to curvature angles

but are calculable from the GNG network. The measures we consider are the fol-

lowing:

1. Mean R,G,B: Mean region colour, the most basic visual descriptor.

2. Area: Region size in number of pixels.

3. Number of network nodes: An indicator of the amount of GNG resources

required to model the shape.

4. Number of network labels: An indicator of network complexity. The oc-

curence of several multiply connected nodes could result in a greater number

of network segments after the simplification process.
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5. Mean absolute angle: The overall turning tendency

6. Minimum absolute angle: The smallest turn in the network

7. Median absolute angle: Overall turning tendency, but more resilient to noise

8. Maximum absolute angle: The largest turn in the network

9. Variance, Standard deviation: Measures of angle spread.

10. Mean absolute deviation, median absolute deviation: Measures of spread of

absolute angles.

11. Angle range, interquartile range: Total range and midspread.

12. Number of inflexion points: Points of inflexion are points at which the cur-

vature changes sign, indicating ‘S’ shaped contour locations.

13. Mean absolute inflexion: Mean absolute change in curvature at the inflexion

points, indicating the overall strength of the ‘S’ shaped contour features.

14. First and second eigenvalues: Eigenvectors and eigenvalues represent im-

portant characteristics of matrices, being associated with image moments,

orientation and shape information, and it is possible that the eigenvalues of

a set of contour points could yield useful information.

15. Skewness: Absolute angle distribution asymmetry.

16. Mean - median: Central drift, also an indicator of skewness.

17. Kurtosis: Measure of extreme deviation of absolute angles.

18. Circularity: Shape roundness as described by curvature angles.
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19. Curvature acceleration: Mean rate of change of curvature angles.

20. Second central moment: Variance using divisor of n instead of n− 1.

21. Number of angles in the ranges [135, 179], [90, 134], [45, 89] and [0, 44]: Chain

code-like turn classification.

We compute descriptor values over all COIL-100 shapes and calculate the mean

intraclass variance and the mean interclass distance. Every descriptor has its own

range of values and for the purpose of comparison we first normalise all the data

according to the following formula, thereby bringing every descriptor value within

the range [0, 1]:

xi =
xi −min(x)

max(x)−min(x)
(4.3)

where xi is a descriptor value and max(x) and min(x) are calculated over all in-

stances of that descriptor.

Intraclass variance (ICV) and interclass distances (ICD) are also calculated for

three control variables which are the object ID (group), object instance (instance),

and a random number (rand). The summary measure ICV
ICD

indicates the discrimi-

native strength of the descriptor. Low values correspond to low intraclass variance

and high interclass distance, characterising effective descriptors, specially since

many of the thresholded shape segmentations are very noisy.

Table 4.2 shows all calculated quantities. As expected, the control variables

group and instance produce zero and infinite values for ICV
ICD

respectively, since

group is the ground truth itself and instance is unique for every object instance

within a group. Also as expected, the control variable rand shows the highest ICV
ICD

of all the other descriptors, indicating poor discriminative power.
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# Descriptor ICV ICD ICV
ICD

1 Object group++ 0 33.6667 0

2 Object instance++ 438 0 Inf

3 Mean B 0.0012 0.2771 0.0044

4 Mean G 0.0021 0.2278 0.0092

5 Mean R 0.0011 0.1856 0.0061

6 Pixel area 0.0114 0.1823 0.0625

7 Number of nodes 0.0038 0.1120 0.0338

8 Number of labels 0.0053 0.0938 0.0560

9 First eigenvalue of nodes eig1 0.0136 0.1668 0.0817

10 Second eigenvalue of nodes eig2 0.0082 0.0763 0.1070

11 Angle var 0.0081 0.0894 0.0907

12 Angle range 0.0264 0.1028 0.2565

13 Angle iqr 0.0054 0.0790 0.0686

14 Skewness 0.0215 0.1023 0.2104

15 Kurtosis 0.0256 0.1107 0.2309

16 Mean absolute angle 0.0091 0.1202 0.0753

17 Min absolute angle 0.0063 0.0423 0.1484

18 Med absolute angle 0.0068 0.0887 0.0766

19 Max absolute angle 0.0537 0.0765 0.7027

20 Mean−Med 0.0122 0.0995 0.1225

21 Angle std 0.0118 0.1120 0.1053

22 Inflexion points numInflex 0.0094 0.1006 0.0934

23 Mean absolute inflexion meanInflex 0.0081 0.0862 0.0943

24 Number of [135◦, 179◦] angles num135 0.0123 0.0283 0.4343

25 Number of [90◦, 134◦] angles num90 0.0148 0.0742 0.1988

26 Number of [45◦, 89◦] angles num45 0.0085 0.0920 0.0922

27 Number of [0◦, 44◦] angles num0 0.0068 0.0780 0.0876

28 Circularity 0.0025 0.0693 0.0359

29 Curvature 0.0068 0.1043 0.0650

30 Angle mad0 0.0081 0.1203 0.0674

31 Angle mad1 0.0067 0.0912 0.0739

32 Second central moment mom2 0.0135 0.0933 0.1447

33 Random number rand++ 0.0818 0.0354 2.3084

Table 4.2: Appearance and curvature descriptors and their ICV/ICD clustering

strength indicators calculated over the COIL-100 dataset. 30 descriptors (3 to 32)

and 3 control variables (1, 2 and 33) marked ++.
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From the ICV
ICD

values we establish that all the descriptors in Table 4.2, excluding

the three control variables, are at least partially capable of region contour discrimi-

nation. They all lie between 0, a perfect descriptor as indicated by the ground-truth

variable group, and 2.3084, a non-descriptor indicated by the random control vari-

able rand. Additionally, all the values occur very near the 0 (very discriminative)

end of the range, with the few exceptions being max, num135, range, skew and

kurt. These exceptions, while still being much smaller than the control rand value

of 2.3084, are significantly larger than the other ICV
ICD

values.

At this point, we need to shortlist a set of descriptors that are likely to perform

well when applied to a higher level computer vision task. There are two ways we

may do this, feature selection and variable ranking. Feature subset selection ide-

ally involves an exhaustive search through all possible descriptor combinations,

based on which selection procedures such as minimum-redundancy-maximum-

relevance (mRMR) [143] or correlation feature selection (CSF) [93] are run. We will

prefer to follow a related but simpler approach due to the sheer number of subsets

we can generate from our list of 30 descriptors. On the other hand, variable rank-

ing uses a set of input and output variables and a scoring function to empirically

determine an ordered ranking of decreasing variable usefulness. This method is

simple and scaleable but can lead to the selection of a redundant subset [91]. We

will experiment with feature selection in addition to variable ranking due to the

following observations presented in the work in [91]:

• Noise reduction and consequently better class separation may be obtained

by adding variables that are presumably redundant

• Very high variable correlation (or anti-correlation) does not mean absence of

variable complementarity
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• A variable that is completely useless by itself can provide a significant per-

formance improvement when taken with others

As mentioned, the exhaustive feature subset search approaches in the litera-

ture (see [55] and [93] for reviews) very quickly become intractable as the number

of features grows beyond a few variables. A subset selection procedure of greatly

reduced complexity is to select descriptors that fall within an acceptable perfor-

mance measure, for us ICV/ICD, range and then to refine these by eliminating

those that are closely correlated with, but slightly weaker than, one or more other

descriptors within the same set. The other approach, an extension of basic variable

ranking, is to create an ordered list according to ascending ICV/ICD values and

then to evaluate incrementally expanding sets starting with the best (at the top of

the list) and working our way down. As we keep evaluating expanding sets, the

point at which the evaluation measures indicate a peak in performance would in-

dicate a good descriptor set. Since we rely on experimental results from a higher

order vision task to perform feature set selection using variable ranking, we dis-

cuss this in further detail in Chapter 5, and establish a feature set here using the

first method of feature subset selection.

Following the subset selection approach, we set our initial selection criterion as
ICV
ICD

< 0.1, based on the observation that intuitively good non-shape descriptors

of B, G, R and area all satisfy this. Applying this initial selection condition to

the values in Table 4.2, we arrive at the following initial subset of 19 features: a)

B, b) G, c) R, d) area, e) nodes, f) labels, g) eig1, h) var, i) iqr, j) mean, k) med, l)

numInflex, m) meanInflex, n) num45, o) num0, p) circ, q) curv, r) mad0, s) mad1.

Some of the descriptors in this list may be redundant if there is a strong correlation

with one or more other descriptors. To reduce the effects of redundancy or feature

interdependence, we refine this list by simplifying strongly correlated groups of
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descriptors through a process of elimination of the weakest.

a b c d e f g h i j k l m n o p q r s
a -
b -
c -
d - x
e - x x
f x - x
g x - x
h - x x x x
i - x x x x x
j x x - x x x x x
k x x - x x x
l -

m x x - x x
n - x x
o x -
p x x -
q x x x x x x - x x
r x x x x x x x - x
s x x x x x -

Table 4.3: Correlations for region descriptors that satisfy ICV
ICD

< 0.1. a) B, b) G, c)

R, d) area, e) nodes, f) labels, g) eig1, h) var, i) iqr, j) mean, k) med, l) numInflex,

m) meanInflex, n) num45, o) num0, p) circ, q) curv, r) mad0, s) mad1.

For this purpose we analyse pairwise linear correlations and flag correlations

for which corr2 > 0.5 (a standard statistical test for strong correlation), shown in

Table 4.31, and select only one descriptor from each correlated group, the one with

the strongest discriminative ability as decided by the clustering performance mea-

sure ICV
ICD

. For instance, area and eig1 are correlated, as are nodes, labels and circ.

1See Table A.1 in Appendix A for the complete set of appearance descriptor correlations.
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We select area from the first group and nodes from the second, both of which have

lower ICV
ICD

than the others which we discard in their respective groups. Through

this subset selection mechanism1 we arrive at the following feature vector that con-

tains low redundancy:

Fcorr = {B,G,R, area, nodes, numInflex, num0, curve}

4.4 Summary

In this chapter we have applied a self organising neural network, the growing

neural gas, to shape contour modelling. We first propose a modification to the

GNG that allows faster modelling. We test to see if this optimisation causes any

noticeable loss in topology preservation of the map by calculating and comparing

the frame rate, quantisation error and topological error for ten different artificially

generated shapes. The optimised version is seen to produce a near fivefold speed

increase with negligible change in the quantisation error and a threefold increase

in the topological error. The overall speed increase to accuracy loss ratio is approx-

imately 1.5. Visual inspection of the generated contour maps using the optimised

GNG also show negligible differences. Since speed is critical in real-time segmen-

tation and region analysis, this gain of 1.5 justifies using the optimised version over

the original.

We then propose another modification to the GNG that simplifies the contour

to consist of only sequentially connected nodes. This facilitates extracting angles of

curvature, or turning angles, from lengthwise contour segments. We deal with the

problem of simplification where multiple connections exist between nodes, when

1See Appendix B for an algorithmic representation of the correlation-based subset selection pro-

cedure.
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this task is more difficult since one must then decide which edge to follow if faced

with several emanating edges. The simplification step consists of a combination

of marking single connected nodes to preserve them, deleting nodes with multiple

edges, and rejoining nearby hanging nodes.

Next, the shape discriminative strength of various turning angle statistical mea-

sures are evaluated. Optimised GNG maps with the contour simplification prce-

dure are used to model region shapes from the COIL-100 dataset. Based on the

region contour representations, a set of 30 appearance and shape descriptors are

established. The ground truth is used to calculate intraclass variance and inter-

class distances for these descriptors and the ICV
ICD

ratio is taken to indicate the shape

discriminative strength of each. Two feature selection approaches are considered,

subset selection and variable ranking. The first is used to draw up a descriptor

shortlist which will be tested in the following chapter against a different descriptor

set established using the second approach via experimental evaluation. Following

the subset selection approach, the initial selection criterion is set as a low value for

the ratio ICV/ICD, after which this initial list is refined by considering pairwise

feature correlations and setting up groups of correlated descriptors. Where high

correlation indicates feature interdependence within a group, the feature with the

lowest ICV
ICD

value is retained and the others discarded.

The following chapter combines the techniques discussed so far in this work

for the purpose of automatic shape categorisation and scene analysis.
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Chapter 5

Visual understanding via region

appearances

In this chapter we describe the application of a nearest-centroid based eager

learning method to automatically categorise observed shapes from image se-

quences or video. Using this categorisation technique and the COIL-100 dataset,

the classification performance of the initial list of shape descriptors previously

identified are compared against other descriptor sets established experimen-

tally according to the second feature selection approach defined in Chapter

4. The evaluation measures that were used to quantify spatial segmentation

performance are again applied to compare the class labels obtained by the pro-

posed categorisation technique to the ground truth. The methods previously

described in this work are also integrated to allow us to perform (a) localised

region tracking using segmentation and scalar motion information, and (b) re-

gion class behaviour analysis through the categorisation of visual regions and

with the aid of three types of trajectory plots and seven motion descriptors.
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5.1 Introduction

Various types of visual abstractions can be drawn from image sequences or

videos, such as object tracking, learning object classes and summarising video con-

tent. Our starting point is always a spatial/spatiotemporal segmentation of the

input frames, followed by appearance analyses of the segmented regions. In real

world situations, a spatial segmentation can represent complex objects as multiple

regions, which we can group using similar motion features. Chapter 3.4 discusses

two types of motion information, scalar and vector, that we can use. In simpler en-

vironments the use of scalar motion segmentation produces stable results at high

speeds, but is unstable when analysing complex motion. Vector-based spatiotem-

poral region formation may work better in these cases. Also, the required level of

region analysis is task dependent. Non-shape based region descriptors are more

appropriate to localised object tracking through sequential frames that have a sep-

aration between motion components, while shape based region abstraction is more

likely to contribute to the learning of the environment through the categorisation

of observed visual regions.

An important factor in visual abstraction is the learning mechanism used to

build a set of categories. This chapter begins with a non-shape based region track-

ing application and, to allow for more advanced shape based visual understand-

ing, goes on to describe a fast eager learning method using region class centroids

and shape-centric region descriptors, with which region classes are learnt from

the COIL-100 dataset. The effectiveness of the class learning method and and the

performance of sets of shape descriptors are evaluated through the classification

accuracy achieved. Finally, shape-based region class trajectory analysis is applied

to demonstrate the potential for a higher level scene understanding framework.
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5.2 Non-shape appearance based object tracking

In this section we demonstrate a form of scene understanding using only spatial

segmentation, scalar motion-based region reduction, and a primitive set of region

descriptors. A region growing segmentation (Section 3.3.4) is first performed on

each frame of the video and the number of regions reduced by merging regions

further according to scalar motion information (Section 3.4.1). The regions are then

tracked as follows:

I. Initialise tracker variable c = 0 and frame position t = 0.

II. Perform spatial segmentation to get a set Rt of regions.

III. Perform region reduction using scalar motion information to get a reduced

set of regions R′t.

IV. Assign new tracking label for each region, or transfer over the existing label

for regions detected to have existed in the previous frame t− 1.

(i) If t = 0, for every region r ∈ R′0 assign tracking value c, incrementing c

after each assignment. Thus c is incremented |R′0| times.

(ii) If t > 0, ∀rt ∈ R′t, ∀rt−1 ∈ R′t−1: calculate the tracking distance us-

ing standard Manhattan (L1) distances as d(rt, rt−1) = ||y(rt)− y(rt−1)||,

where y is a region descriptor feature vector composed of the x coor-

dinate, y coordinate, size, and {B,G,R} colour channels, defined by

y = {X, Y, SIZE,B,G,R}. All six components of the feature vector are

scaled to the interval [0, 255] in order to give them equal weight in the

Manhattan distance calculation. The tracking is controlled by a thresh-

old dtrack, experimentally set to a value of 60. If ∃rt, rt−1 : d(rt, rt−1) <
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dtrack assign tracking label for rt−1 to rt, else assign assign tracking label

c to rt and increment c.

V. Increment t and repeat from step 2 until the end of the video sequence is

reached.

At the end of this procedure, all regions with the same tracking label corres-

pond to the same tracked object. Some results are summarised in figure 5.1. Three

frames from the Video Surveillance Online Repository (VISOR) [194] HighwayII

video of cars moving down a highway are shown, below which are some of the

regions or ‘objects’ segmented and tracked over several frames.

Figure 5.1: Local tracking of regions using non-shape descriptors. Top: Three ex-

ample frames from the VISOR HighwayII sequence. Bottom: Some objects seg-

mented and tracked via region similarity comparison.
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In this experiment we assume a continuous existence of an object across sev-

eral frames and also relatively small object translations from frame to frame. In

this type of sequence all the moving objects of interest, the cars, are rectangular

blobs, however because of the stated assumptions we are able to perform track-

ing without considering region shapes. In principle, not accounting for errors, this

approach allows one to both track and count the number of different occurences

of a certain type of object within a video sequence. From Figure 5.1 we can see

that a number of different classes of vehicles are separately tracked across several

frames, even though the video is noisy and of low resolution. Additionally, near

real-time performance is achieved, an approximate average frame rate of 5 being

achieved for the entire segmentation and tracking procedure.

5.3 Bootstrapping categories

Image sequence abstraction and summarisation tasks require the explicit learning

of object categories. The nearest-centroid learning method is an eager learning

approach, in which observations are abstracted and stored while the details are

immediately discarded. This approach results in low storage requirements and

rapid recall rates, while more effort is spent in the learning of classes. Shape des-

criptors using GNG contour representation and curvature analysis, as described in

the previous chapter, are calculated and are used to learn shape categories.

5.3.1 Centroid classification

The centroid classification method [142, 92, 120] uses cluster means to determine

the class of a new observed sample. The first observation sets up a single cluster

center which is the sample point itself. If the next observation lies outside a given
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threshold distance from the existing cluster center or centroid, a new centroid is set

up and the observation allocated to it. If not, the point is assigned to the existing

cluster and the cluster mean updated. All subsequent observations xi are tested

for proximity to any of the existing centroids Cj and where the proximity function

is satisfied the cluster mean µCj
is updated to include the new sample point.

A cluster center Cj is defined as the arithmetic mean of its sample point mem-

bers:

µCj
=

1

|Cj|
∑
xi∈Cj

xi (5.1)

Cluster membership for a new observation is decided by a distance function

d(x, y):

C(x) = argmin
Cj

d
(
µCj

, x
)

(5.2)

We use a modified version of the Manhattan (L1) distance for the distance func-

tion:

d(µ, x) = ||µ− x||AND (5.3)

where,

||y||AND =


∑N

1 |y(i)| ∀i : yi < dt

∞ ∃i : yi ≥ dt

(5.4)

y(i) being the value of the ith feature, and dt being a fixed threshold.

This distance measure is more effective for classifying high dimensional fea-

ture vectors since each the distance between each dimension must be within the
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defined threshold otherwise the distance is set to infinity. In contrast to using vec-

tor means, this distance calculation ensures any differences are distributed in small

amounts across all features instead of being concentrated in large amounts in a few

channels.

The number of cluster centers grows as new instances are observed and similar

shapes are grouped together. Every new instance must be compared against all

the existing cluster centers in order to decide membership. This comparison can

involve many expensive logical operations since we use a logical AND connecting

individual feature distances. To reduce this, we can expand the distance calcula-

tion to first check the absolute difference between the mean feature value of the

new instance and the cluster center being compared against. If the test of similari-

ty of means fails then we no longer require additional checks for individual feature

distances. This helps prune the set of distance calculations involved in classifying

any new instance, being particularly useful when the number of existing cluster

centers has already grown large.

The difference of feature means between an observed instance and a cluster

mean is:

dmean(µ, x) =
1

N

∣∣∣∣∣
N∑
1

(µi − xi)

∣∣∣∣∣ (5.5)

The extended distance measure, replacing Equation 5.3, is then calculated as:

d(µ, x) =

||µ− x||AND dmean(µ, x) < dt

∞ dmean(µ, x) ≥ dt

(5.6)

The choice of dt affects the number of clusters we obtain, with higher values

producing fewer clusters with greater intraclass variance and lower values pro-

ducing a larger number of more homogeneous clusters. We apply this learning
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mechanism with various values for dt to learn object types from the COIL-100

dataset in an unsupervised fashion.

5.3.2 Feature sets and classification performance

In order to facilitate quantitative evaluation of the categorisation results we treat

the set of labelled instances as a segmentation of the data space, thus allowing us

to evaluate performance using the evaluation measures described in Chapter 3.3.3.

For each dt, we quantify the performance of the labelling correctness using mea-

sures used for the spatial segmentation evaluation, namely PRI, VOI, GCE, BDE,

and additionally the proposed summary indicator RP . As described in Chapter

3.3.3, these measures assess the extent to which a certain labelling conforms to the

ground truth, and are easily adapted for this evaluation task. We use the term RP

in this chapter to indicate RPPRI,V OI,GCE,BDE .

We first apply the proposed online categorisation technique to COIL-100 shapes

using the descriptor set Fcorr initially shortlisted in Chapter 4. The results are pre-

sented numerically in Table 5.1 and summarised graphically in Figure 5.3. We see

that overall accuracy RP = −3.4492 peaks at dt = 0.05 for which the number of

clustersNc = 3668. From the ground truth we know that there are 100 object types,

and Nc should therefore ideally be 100. However, when we force Nc ≈ 100, such as

at dt = 0.26 where Nc = 102, then overall accuracy drops to RP = −22.3632. The

implication of this is that the learning mechanism combined with the shortlisted

shape descriptors is able to group together small sets of similar shapes, but that the

error increases significantly when a larger merging threshold forces bigger clusters

to be formed.

Compression ratio, C, is a measure of the reduction in data representation size

and can be used to compare the grouping power of classification mechanisms.
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dt Nc (≈ 100) PRI (↑) VOI (↓) GCE (↓) BDE (↓) RPPRI,V OI,GCE,BDE (↑)

0 7200 0.99014 6.1699 0 0.00013889 -4.3335

0.005 7169 0.99014 6.1606 0 6.94E-005 -4.3186

0.01 7039 0.99015 6.1187 0 6.94E-005 -4.2516

0.02 6465 0.9902 5.9059 0.00013889 1.39E-004 -3.9147

0.03 5718 0.99027 5.6395 0.0051731 6.94E-005 -3.6005

0.04 4993 0.99036 5.3934 0.019978 6.94E-005 -3.5348

0.05 3668 0.99058 4.8831 0.052965 1.39E-004 -3.4492

0.06 3047 0.99066 4.714 0.096301 0 -4.1377

0.07 2362 0.99075 4.5199 0.15474 6.94E-005 -5.1203

Table 5.1: Performance evaluation of region descriptor set Fcorr: {B, G, R, area,

nodes, numInflex, num0, curve}. Clustering threshold dt vs. number of clusters

Nc and evaluation measures PRI , V OI , GCE, BDE and RP . Desired values in

parentheses.

Compression ratio is given by C = Compressed size
Uncompressed size . The data compression ratio

obtained using the descriptor set Fcorr with the optimal dt indicated by best RP is

C ≈ 0.51.

We now proceed, due to insufficient clustering strength using Fcorr, to test the

categorisation performance of different descriptor sets following the variable rank-

ing approach previously discussed. Rearranging the descriptors in Table 4.2 ac-

cording to the scoring function as ICV/ICD, where lower values are better, we

get the following ordering of the best seven1 along with their respective ICV/ICD

values:

{B,R,G, numNodes, circ, numLabels, curv}

{0.0044, 0.0061, 0.0092, 0.0338, 0.0359, 0.0560, 0.0650}
1We will not require any more than this, since we will locate the optimal set within the first

seven descriptors.
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Starting with a set containing only the best descriptor and incrementally adding

subsequent ones, we obtain evaluation measures for a range of dt values for each,

keeping tracking of each maximum RP value to see for which descriptor set it

is the best. The expanding ranked descriptor sets start with the set 1, {B}, and

incrementally add to it the descriptors R, G, numNodes, circ, numLabels and curv,

to get seven different sets 1 through 7, each of which is one element bigger than

the previous and the final set has all top seven descriptors. While our experiments

have involved the full range of expanding descriptor sets and a larger range of dt

values, for the sake of concisenes we only show the RP results for sets 3 to 7 since

this range clearly shows at which set the optimal RP value is reached.

Figure 5.2: Performance summary indicator RP vs. ranked expanding descriptor

sets.

According to the data we thus obtain1, we summarise in Figure 5.2 the effec-

1See Appendix B for the complete set of evaluation statistics for expanding descriptor sets using

variable ranking.
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dt Nc (≈ 100) PRI (↑) VOI (↓) GCE (↓) BDE (↓) RPPRI,V OI,GCE,BDE (↑)

0 7200 0.99014 6.1699 0 0.00013889 -4.3335

0.005 5783 0.99028 5.6536 0.00034722 6.94E-005 -3.5163

0.01 3405 0.99075 4.6062 0.012469 2.08E-004 -2.1107

0.02 1661 0.99153 3.6118 0.067515 6.94E-005 -1.7386

0.03 1003 0.9918 3.2483 0.13583 1.39E-004 -2.669

0.04 638 0.99186 3.0686 0.22047 1.39E-004 -4.2542

0.05 440 0.99115 3.0555 0.30196 0 -6.0377

0.06 328 0.98988 3.2813 0.39515 1.39E-004 -8.4626

0.07 246 0.98859 3.3213 0.46168 0.00013889 -10.0011

Table 5.2: Performance evaluation of region descriptor set Frank: {B, R, G,

numNodes, circ}. Clustering threshold dt vs. number of clusters Nc and evalu-

ation measures PRI , V OI , GCE and BDE. Desired values in parentheses.

t on RP of gradually expanding the ranked descriptor set. When using set 5,

{B,R,G, numNodes, circ}, RP reaches a clear maximum of −1.7386, for which

dt = 0.02 and the number of classes Nc = 1661, as Figure 5.2 shows. At this dt,

we obtain a data compression ratio of C ≈ 0.23, a large increase in compression

compared to the feature set arrived at through subset selection. After this point,

adding more descriptors to the set results in a steady decrease inRP . Thus, feature

selection by variable ranking gives us the following optimal set of descriptors:

Frank = {B,R,G, numNodes, circ}

It is interesting to find that the most useful descriptors thus established consist

of three intuitively good non-shape variables R, B and G, a property of the GNG

contour network numNodes that implies both the size and irregularity of a shape

(complex shapes with more extending “arms” requiring a larger number of nodes
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to represent than another simpler shape of exactly the same visual surface area),

and only a single shape descriptor circ.

Figure 5.3: Performance characteristics curves for descriptor sets Fcorr (left) and

Frank (right). Threshold dt vs. evaluation measures normalised to [0, 1] to allow

simultaneous visual comparison. Black: Nc. Red: PRI . Green: V OI . Blue: GCE.

Cyan: BDE. Magenta: RP . The yellow vertical line marks the dt value that cor-

responds to best RP where the magenta curve peaks, while the dashed grey line

marks the dt value at which Nc ≈ 100, the ideal number of clusters.

Figure 5.3 normalises the values for number of class centroids Nc and the eval-

uation measures, PRI , V OI , GCE, BDE and RP , according to Equation 4.3, for

both descriptor sets Fcorr and Frank in order to superimpose them on a single plot

for comparison. This comparison plot includes a full range of dt values in order

to show the characteristic response of each curve through the complete range of

clustering resolutions. Also, since we favour lower values for V OI , GCE, BDE

and Nc, we have inverted their plots using the transformation xi = max(x) − xi

before the values are normalised to [0, 1]. Visually, therefore, higher points along
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the curves indicate better performance. The distance between the yellow vertical,

line marking the point of best performance, and the dashed grey line, marking the

point at which the ideal number of clusters is obtained, is smaller for descriptor set

Frank than for set Fcorr. In terms of performance evaluation metrics, Frank outper-

forms Fcorr. However, we will see if these findings are supported when both are

applied to the higher level task of scene component modelling, which we present

in the next section.

We also note that the measureRP depends on a baseline score across the evalu-

ation metrics considered, and since there are no baseline figures for such a classifi-

cation task, we use the image segmentation baseline values. A segmentation task

is clearly very different from an object classification task, both in terms of ambigui-

ty and complexity, nonetheless by using its baseline figures we are able to calculate

the performance summary indicator RP . The effect of adopting the segmentation

baseline values for the classification task is that, while we are unable to compare

classification accuracy against human performance for the same task, it still allows

us to compare visual region classification performance with different threshold dt

settings and using different descriptor sets.

5.4 Region-based visual understanding

We now analyse region occurrences and region class behaviours over time for more

sophisticated visual understanding. While the localised appearance-based region

tracking demonstrated in Section 5.2 followed each region between consecutive

frames as single trajectories, in this section we follow the behaviour of different

region classes, as determined by shape categorisation, over arbitrary frames with-

in a video segment. The region behaviour analysis starts with a segmentation of
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regions from video sequences, with each grouped region then being modelled by

our modified growing neural gas and the shapes for all frames being categorised

according to the online centroid based learning described earlier. Region classes

need not occur in sequential frames in order to be followed, since shape categorisa-

tion occurs over the content of all frames in a sequence. Instances belonging to the

same region class are connected together, in order of temporal occurrence, on three

different graphical plots: (i) spatial presence, and temporal presence consisting of

a (ii) horizontal variation (x plot), and (iii) vertical variation (y plot).

The spatial presence graph plots the mean x versus the mean y coordinate of

each class member, indicating the locations of instantiation, or existence, of differ-

ent region classes. The horizontal and vertical variation graphs plot time versus

region instance x position and time versus region instance y position respectively,

showing the nature of horizontal and vertical class behaviours over time. A set of

visual regions or instances belonging to a particular region class are represented

on the graphs as dots, and these dots are connected by lines in order of temporal

occurence. Instances in the same class occuring at the same time step are connected

arbitarily.

We intuitively expect individual trajectories for videos in which primarily hor-

izontal activity occurs to (i) be broader on the spatial presence plot, (ii) be taller

on the horizontal variation plot, and (iii) be flatter on the vertical variation plot.

Conversely, we expect trajectories for primarily vertical activity sequences to be

(i) taller on both the spatial presence and vertical variation plots and (ii) flatter on

the horizontal variation plot. Additionally, the density of points on each graph

indicates the level of busyness that a scene contains.

We expect the set of semantics we may conclude from region class trajectory

plots to include the following:
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I. Frequency of occurrence: A lower density of dots on a given trajectory at

earlier time steps connected to a higher density of dots at later time steps

conceptually indicates a more steady later reocurrence of a type of visual ob-

ject, whether due to a genuine steadiness of existence or due to segmentation

or classification error1.

II. Divergence and convergence: A single dot at a certain time step connected

to multiple dots at another fixed time step would indicate the divergence,

splitting, or multiplication, of instances from a region class, while multiple

siimultaneous dots joined to fewer later dots would indicate a convergence,

merging or elimination of instances from a region class.

III. Direction of motion: Steeper trajectories on the x plot indicate a primarily

horizontal activity, while steeper trajectories on the y plot indicate a primarily

vertical activity.

IV. Harmonic motion: A regular pattern exhibited by a trajectory in either the

horizontal or vertical plots would indicate a repeated characteristic behaviour

of a region class, this behaviour having its own amplitude and wavelength.

V. Steady component: Plots with the most dense horizontal trajectories at a

fixed point on both the x and y plots indicate the existence of a set of steady

background or foreground objects, dependent on whether the video is static

and contains foreground movement, or is moving along with a foreground

that is fixed relative to the camera. Steady components on the spatial pres-

ence plot are indicated by connected dots concentrated around small localised

1In general, the more dots there are on a given line, the more certain we may be of the validity

of the information the trajectory represents, since occasional system errors are likely to randomise

a pattern rather than strengthen it.
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regions.

VI. Relative location of activity: Regions of varying density of dots at different

x and y coordinates indicate the localisation of motion activity relative to

the viewing window. We can get a visual summary of this from the spatial

presence plot as the degree and type of spread of the surface area covered by

different connected sets of components.

VII. Relative length of activity: The length on the time axis of connected compo-

nents in the x and y plots shows the temporal existence of different region

classes.

While these are very simple concepts that humans process with barely any no-

ticeable conscious thought, it would be a firm step in generalised scene under-

standing if we were able to establish a procedure to recognise them from within

arbitrary video sequences. In the analysis that follows we refer to both weak and

strong examples of conceptual abstraction of semantic video content from various

video sequences from the UCF50 [153] standard motion activity dataset. Due to the

complexity of the various algorithmic components interacting to provide the final

result, we were unable to automate the procedure to obtain graphical results for all

the videos contained in that dataset, however we have selected from this dataset a

diverse set of examples, containing a mixture of noisy and clear videos containing

either random or clearly defined motion, and representing semantically different

types of activities. We make the assumption that higher densities of points repre-

sent stronger data than sparsely filled areas of points since outlier errors are more

likely to randomise a pattern rather than emphasise it.

Figure 5.4 compares the spatial presence trajectories resulting through process-

ing spatiotemporal (left) and spatial (right) regions respectively. We present this
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Figure 5.4: Region class x vs. y trajectories. Left: Spatiotemporal analy-

sis. Right: Spatial analysis. UCF50 sequences: v Drumming g13 c01 (top),

v HorseRace g01 c01 (middle), and v BenchPress g01 c01 (bottom).
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to show that the region reduction effect of spatiotemporal grouping greatly sim-

plifies the region class trajectory plots to the point at which only the most salient

moving regions are extracted. We compare only the spatial presence plots because

their complexity are also representative of the level of activity present in the other

two types of trajectory information. With respect to the low resolution dataset we

use here, the spatiotemporal grouping reflects the filtering out motion components

that are less certain, and combined with the stronger grouping tendency of the de-

scriptor set Frank, this leads to very simplistic trajectory information. The result is

fewer trajectory components than would allow us to draw up generalisations re-

garding the characteristics of such plots. Bearing in mind the poor resolution and

high levels of noise, spurious visual effects and artefacts in these video sequences,

we observe that the spatiotemporal analysis would be the prefered application

method on visual systems of an acceptable standard of hardware quality and once

we have developed sufficiently robust rules of trajectory characterisation. At this

stage we are yet unaware of such rules, and to the best of our knowledge no such

work is shown in the literature. We must uncover these rules through the analysis

of the spatial trajectories which are dense and therefore allow us to detect patterns

more easily. The primary target in this chapter is to uncover rudimentary rules

governing the characteristics of region class trajectories, to form the foundation

of trajectory analysis allowing automation of scene modelling and comparison in

the future. All subsequent figures therefore refer to trajectory analyses based on

spatial grouping.

To facilitate visual comparison in each case we present the spatial presence in-

formation superimposed over a mean of all frames in each sequence. The mean

image provides an indication of the overall extent and range of motion activity

within the videos, to which the spatial presence information can then be related.
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In each mean image, blurred local regions indicate areas of most motion activity,

to which corresponding sets of dots (region instances) should appear, their con-

necting lines implying region instance translocation or multiple occurrences of a

region class. The horizontal and vertical trajectory variation information relate to

physical space only in one dimension each, and we are unable to superpose such

data on the original frames. We interpret the data for these two plots as indicating

the extent and direction of translation in one dimension over time (as the video

progresses).

Figure 5.5 and 5.6 show the trajectory plots for two UCF50 drumming videos.

A summary inspection shows some immediately observable common characteris-

tics. The spatial presence plots for both contain sharp angular (triangular or polyg-

onal) connections between dense sets of instances, which are steady components,

focused around small localised regions. The steady components are also seen in

the x and y plots as narrow bands of instance occurrences.

The trajectories for both drumming sequences show neither a preference to

horizontal or vertical activity, which coincides with the nature of drumming as

an activity. Both sequences also show dense intricate trajectories, signifying a

complex motion pattern (although sequence v Drumming g11 c01 is simpler than

v Drumming g13 c01), and the sharp angles between connected trajectory compo-

nents coincide with rapid changes in motion direction.

Figures 5.7 and 5.8 show the trajectories for two UCF50 pull-up videos. Se-

quence v Pullup g10 c01 shows interesting trajectory patterns, partially attributable

to the video being relatively clear and free of camera shake. On the spatial pres-

ence plot we see clear instance occurrences at x ≈ 140 marking the motion of the

lower body of the subject (dark coloured dots) and a part of the upper body (pink

dots). Also, the central steady components on the x plot show two undulations of
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Figure 5.5: UCF50 video sequence v Drumming g13 c01. Top left: Mean of video

frames with spatial trajectories superimposed. Top right: Spatial trajectories, x vs.

y. Bottom left: x trajectories vs. time. Bottom right: y trajectories vs. time.
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Figure 5.6: UCF50 video sequence v Drumming g11 c01. Top left: Mean of video

frames with spatial trajectories superimposed. Top right: Spatial trajectories, x vs.

y. Bottom left: x trajectories vs. time. Bottom right: y trajectories vs. time.
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Figure 5.7: UCF50 video sequence v Pullup g10 c01. Top left: Mean of video

frames with spatial trajectories superimposed. Top right: Spatial trajectories, x

vs. y. Bottom left: x trajectories vs. time. Bottom right: y trajectories vs. time.
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increasing intensity at time ≈ 50 and time ≈ 130, corresponding to the subject’s

legs swinging forth on the first pull-up and swinging forward again with greater

intensity on the second pull-up, where greater physical effort presumably necessi-

tates a larger swing. Similarly, on the y plot, the steady components resembling a

sine wave clearly mark out both pull-ups as the subject goes up and down twice.

Figure 5.8: UCF50 video sequence v Pullup g06 c01. Top left: Mean of video

frames with spatial trajectories superimposed. Top right: Spatial trajectories, x

vs. y. Bottom left: x trajectories vs. time. Bottom right: y trajectories vs. time.
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Sequence v Pullup g06 c01 shows mostly noise, caused by very rapid motion

and by intense camera shake. We observe that when there is significant camera mo-

tion then the system locks on to textured background objects since relative to the

camera the background is indeed moving. In this sequence, dark objects of similar

appearance on the wall form the majority of the steady components and perceived

motion regions. This is also supported by the series of nearly vertical lines on the x

and y plots, representing not genuine activity, due to the limitations of the system

preventing it from detecting any real very fast motion, but the multiple occurrence

of region class instances at physically separated but static locations. While its spa-

tial presence plot shows an angular set of component connections very different

from the first pull-up sequence and slightly resembling the drumming videos, it

can be differentiated from the drumming sequences by the lack of dense central

steady components.

Figures 5.9 and 5.10 show the trajectories for two UCF50 horse race videos. Se-

quence v HorseRace g02 c01 is busier than v HorseRace g01 c01 but both share

divergences from the central components on the x and y plots as expected due to

the spreading of the pack of horses. In the first sequence, three locations of sep-

arate activity are represented, corresponding to the spectator lane at the top, the

central raceway, and the text caption at the bottom. The plots for both sequences

share larger variations in the x plot than the y plot, which matches the semantic

understanding of horse racing as typically describing horizontal motion. In se-

quence v HorseRace g02 c01, the smaller length of the red steady components in

both plots represent the shorter temporal existence of the text caption compared to

the horses.

The following are some general observations we can make about the proper-

ties of region class trajectory plots. Vertical or nearly vertical lines in literal terms
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Figure 5.9: UCF50 video sequence v HorseRace g02 c01. Top left: Mean of video

frames with spatial trajectories superimposed. Top right: Spatial trajectories, x vs.

y. Bottom left: x trajectories vs. time. Bottom right: y trajectories vs. time.
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Figure 5.10: UCF50 video sequence v HorseRace g01 c01. Top left: Mean of video

frames with spatial trajectories superimposed. Top right: Spatial trajectories, x vs.

y. Bottom left: x trajectories vs. time. Bottom right: y trajectories vs. time.
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show large fluctuations in region locations, however in real video sequences these

are more likely the co-occurrence of similar shapes at different locations rather

than regions moving about at high speeds. Also helping us differentiate between

angular components of motion are dense horizontal steady components appearing

in one plot that correspond to scattered trajectories in the other. Horizontal steady

components in either an x or y plot indicate that the coordinate holds steady over

time, while the corresponding trajectories in the other plot indicate that the other

coordinate is changing, thus indicating horizontal or vertical movement of regions.

The mean gradient of any single region class trajectory indicates the level of change

with respect to either the x or y coordinates, and thus taking a ratio of x trajecto-

ry mean gradient to y trajectory mean gradient gives us the overall “flatness” or

“tallness” of a particular visual subevent.

There are more details describing a motion that can be found when looking

at individual trajectory components. Harmonic motion, for instance a regular up

and down movement, can be identified as a set of alternating gradients in one or

both of the temporal activity plots. While harmonicity is hard to reliably extract

with the present system configuration, there are other descriptors describing the

characteristics of motion that we can compute. Based on our visual analysis of

trajectory plots, we propose the following set of motion descriptors:

I. Instance Busyness MIB: number of region instances or dots on any of the

three plots

II. Class Busyness MCB: number of trajectories, equivalent to the number of

region classes

III. Fragmentedness MF : the lack of connectedness calculated as the ratio of dots

to lines, equivalent to the average size of connected trajectories
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IV. OrientationMO: mean of absolute x and y gradients from the spatial presence

plot

V. Orientation Variation MOV : variability of trajectory orientation means, calcu-

lated as the ratio of standard deviation of x and the standard deviation of y

from the spatial presence plot

VI. Turn Sharpness MTS : average absolute angle of trajectory turn

VII. Turn VariabilityMTV : standard deviation of means of absolute turning angles

for individual trajectories

Motion descriptors

Sequence MIB MCB MF MO MOV MTS MTV

v TrampolineJumping g01 c01 307 68 4.5147 2.9157 10.3202 0.90175 0.39055

v TrampolineJumping g02 c01 155 29 5.3448 1.2553 1.1957 0.59718 0.37837

v Pullup g10 c01 136 35 3.8857 0.81646 0.72387 0.90607 0.36443

v Pullup g06 c01 279 51 5.4706 0.94654 0.82011 1.337 0.60844

v BenchPress g01 c01 265 54 4.9074 1.6455 2.8025 1.3215 0.42347

v BenchPress g20 c01 196 34 5.7647 0.50679 0.56948 1.1331 0.39187

v Fencing g09 c01 148 28 5.2857 1.3676 1.2094 1.0249 0.62173

v Fencing g18 c01 175 35 5 1.0286 0.87877 0.97323 0.5201

v HorseRace g01 c01 180 38 4.7368 7.023 6.8331 0.61938 0.23832

v HorseRace g02 c01 497 105 4.7333 3.2697 2.3557 0.94484 0.48666

v Billards g01 c01 126 36 3.5 1.5461 2.3588 0.93952 0.1708

v Billards g05 c01 710 132 5.3788 1.4367 1.0999 1.3844 0.6599

v Drumming g13 c01 1492 202 7.3861 1.2942 1.3862 1.0066 0.67922

v Drumming g11 c01 954 141 6.766 1.5367 1.3361 0.99201 0.61149

Table 5.3: Motion descriptors calculated on 14 sequences from the UCF50 dataset.
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We calculate values for these descriptors several UCF50 video sequences, shown

in Table 5.3. The values show patterns particularly in sequences that show better

defined visual patterns in the trajectory plots. For instance, both drumming se-

quences have very similar values for MF , MO, MOV , MTS and MTV , also true for

both fencing sequences. The pull-up sequences are also similar over the same set

of descriptors excluding MTV .

In order to test whether video classification using these descriptors produces

meaningful results over a standard dataset, we run an action recognition experi-

ment by selecting 5 video classes, Drumming, Billiards, HorseRace, BenchPress

and Pullup, from the UCF50 dataset, and select 50 videos per class. We follow the

processing steps required to obtain for each video the 7 motion descriptors listed

above, normalising all values to within the range [0, 1] to allow for fair cluster-

ing distance computations. Then we use the mean shift clustering [50] to group

together points from the data cloud. Mean shift follows a gradient ascent pro-

cedure to find the modes of local estimated density and has no embedded as-

sumptions on the shape of the distribution nor the number of clusters. We run

the mean shift algorithm using the Gaussian kernel and a range of bandwidth-

s {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, since we are dealing with the range [0, 1]. In all

cases we find that the computational grouping has very weak correlation to the

ground truth, however this is not surprising. Our identification of motion descrip-

tors has been targeted for the differentiation of certain semantic content that is not

always reflected by the grouping of the sequences within the dataset. The UFC50

dataset groups together videos of different motion intensity, direction, angle of

view, etc. as long as the contained objects and general activity type are the same,

while our motion descriptors are designed to represent “textural” properties of

contained actions. Thus the values we obtain will not necessarily correspond to
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the dataset grouping, but may indicate other similarities that correspond to our

observations about the video content. For example, the MCB values identify se-

quences Drumming 13, Drumming 11, Billards 05 and HorseRace 02, to be rela-

tively busier in terms of motion activity, and this can be confirmed through visual

assessment.

Having discussed the relationship between the plotted region class trajectory

information and the semantic content of each of the video sequences, we conclude

that region class trajectory characteristics and a set of appropriately selected mo-

tion descriptors can provide indications of semantic content and future work into

the formal specification of the algorithmic analysis of such trajectories can lead to

a well developed theory of fully unsupervised and general scene understanding.

The implementation we use to obtain experimental results, such as those above,

is prone to errors, due to spurious visual content such as information dialogues

and text, lighting effects, and pixelation, as well as due to imperfections that are

cascaded through the individual algorithmic stages of segmentation, shape repre-

sentation and region categorisation. However, despite such difficulties we have

demonstrated the ability of the framework to represent simple physical concepts

differently and to differentiate between types of observed activity with respect to

semantic content.

5.5 Summary

In this chapter we have presented an online unsupervised centroid based cate-

gorisation method, that needs no training and refines its categories as each new

instance of data becomes available, and established optimal values for its classifi-

cation parameter dt for descriptor sets Fcorr and Frank, of which Frank proves supe-
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rior. Optimal classification settings are identified according to best accuracy and

classification power over well known evaluation metrics and using data from the

standard COIL-100 dataset. We have then demonstrated the ability to track spatial

regions using simple appearance and locality information, and have gone on to

extend this to shape-based region behaviour analysis.

Through the online learning mechanism, we have performed region categori-

sation using visual segments as the input. Regions in the same category are graph-

ically plotted as region class trajectories in order to demonstrate correlation be-

tween trajectory characteristics and video semantic content. Shape-based region

behaviour analysis is more generalised in applicability than localised appearance-

based spatial region tracking since trajectories are no longer limited to consecutive

frames, and the trajectories represent greater abstraction in that they represent the

behaviour of region classes rather than region instances. We propose three types

of graphical plots that aid the visual analysis of region class trajectories and, based

on our analysis of these over several UCF50 video sequences, we propose a set of

seven motion descriptors for which we present values for each sequence.
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Conclusions

This chapter concludes with a discussion of the step-by-step approach to the

unsupervised identification of semantic concepts from visual scenes that we

have demonstrated in this thesis. Each stage reduces the data space through

data generalisation, allowing the next to work on the abstracted information

to form higher level generalisations. Spatial segments generalise pixels as re-

gions according to mean colour properties, spatiotemporal segments generalise

groups of spatial regions as motion objects according to mean motion prop-

erties, GNG contour networks generalise region shapes as structures of nodes

and edges, learnt region classes generalise visual instances according to colour,

size and shape, and finally region class trajectories generalise visual object

classes with respect to their appearance and motion.

6.1 A visual abstraction framework

The presented work consists of multistage information abstraction starting with

raw pixels and ending with visual trajectories and their characteristics. Spatial seg-
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mentation combines collections of pixels into regions, to which spatiotemporal re-

gion reduction is applied to obtain larger regions. Region shapes are then modelled

using the GNG, reducing shape contour data space. Finally, a nearest-centroid

online classification method groups visual regions into classes, the instance-wise

physical trajectories of which are then followed over the length of video sequences

and characterised by motion descriptors, representing the highest level of visual

information abstraction. We have described a multi-component framework using

which we achieve this extraction of abstract semantic concepts from video data.

The input is first broken up into regions in Chapter 3 via a spatial colour image

segmentation method SGAT (Section 3.3), which consists of multi-stage merging,

the stages being region formation, refinement and reduction. The segmentation

method describes an efficient region merging algorithm that combines and adapts

into a single framework techniques that are found separately in previous literature.

The adaptations include the more expensive best merge and a time-expanding

theshold that allows cascaded region growth and simultaneously provides for the

correction of errors inherent in a single pass scan. A new performance summary

indicator, relative performance RP (Section 3.3.3), is also proposed. RP is able to

combine arbitrary sets of evaluation metrics into a single number, allowing the in-

stant comparison of performances for different labeling methods, of which image

segmentation is a type. Quantitative and qualitative evaluations of SGAT segmen-

tation prove its superiority to other leading segmentation methods.

For video sequences, spatial regions from each frame are placed in temporal

context (Section 3.4) using two types of motion information: scalar intensity dif-

ferences and vector optical flow. Further region reduction is carried out based on

mean motion information for spatial segments. Grouping regions using scalar mo-

tion information (Section 3.4.1) provides stable results for the segmentation of a
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set of non-adjacent foreground objects in front of a low to medium cluttered back-

ground, particularly when the foreground object is to be held steady even when

they briefly stop moving, such as in webcam applications. However, it is vector

motion information (Section 3.4.2) that is applied towards the later stage of se-

mantic video analysis, due to its ability to discriminate between adjacent spatial

segments of different motion directions. Optical flow vectors are computed for ev-

ery pixel using a dense Lucas-Kanade flow estimation technique. The mean optical

flow vector for every spatial segment, called region flow, is calculated and used as

the basis of further region reduction to achieve spatiotemporal segmentation.

To allow the inclusion of shape as an element of appearance, Chapter 4 ex-

plores region modelling and description. Visual region contours are modelled us-

ing an optimised GNG shape representation (Section 4.2) and the resulting GNG

networks simplified through a novel procedure. The optimisations to the original

GNG, concerning the distance measure, stopping criterion and starting configura-

tion, produce a nearly five-fold speedup in network convergence with only a min-

imal effect on topology correctness. The novel network simplification technique,

via the elimination of complex sets of edges connections and the rejoining of hang-

ing network segments, also aids performance by reducing the contour represen-

tation to one or more chain-like structures for which many curvature features are

easily established. The discriminative power of 30 appearance and contour-based

shape descriptors are then experimentally evaluated (Section 4.3). A complete set

of inter-descriptor correlations are assessed and subset selection performed in or-

der to identify a low redundancy feature set.

Chapter 5 moves on to the final stage of visual scene understanding. Section

5.2 shows a method for tracking and extracting objects of interest from video se-

quences using only non-shape appearance and location properties of scalar motion
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segments, a natural extension of scalar temporal segmentation for basic scene anal-

ysis which assumes sequential existence of objects. However, for more advanced

scene understanding we require the ability to identify the discontinuous existence

of types of visual objects or region classes. To this end, a rapid centroid-based

learning scheme (Section 5.3) then categorises all the observed regions into classes.

Three types of trajectory representations are proposed: spatial presence, horizon-

tal variation and vertical variation. These representations model the behaviour of

instances in each region class as physical trajectories in the spatial and temporal

domains, and are a higher level of abstraction describing the original input. Tra-

jectory analyses (Section 5.4) allow us to draw conclusions regarding scene content

in terms of some simple semantic concepts relating to the physical world, such as

direction and intensity of object motion, motion regularity, and spatiotemporal lo-

cations of heightened activity.

As with all algorithmic systems, there are limitations in each processing step.

The spatial segmentation is reliant on parameter settings, but is also robust to small

parameter changes, as seen from the SGAT1 and SGAT2 performance statistics

shown in Figure 3.2. In addition to parameters intrinsic to the algorithm, there are a

number of extrinsic variables as well. The median filtering preprocessing step can

affect the outcome depending on the size of the filter mask. For edge-based merge

restriction, the spatial resolution of edge detection is another such variable, which

is heavily scene dependent and impossible to select a single generic value for. In

the spatiotemporal segmentation, the algorithm for which is similar in principle to

the spatial segmentation, the choice of optical flow computation method can also

influence the final result. Also, in comparison to a sparse optical flow computation,

there are more statistical errors resulting from forcing a dense flow map given

uncertain localised motion information. Finally, the output of each processing step
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heavily influences the performance of the next. For contour representation and

shape learning, a poor segmentation severely limits perceptual correlation to real

world objects and hence the calculation of useful motion trajectories.

In summary, the framework we have proposed for automatic semantic abstrac-

tion of visual sensory streams is dependent on a series of cascaded algorithmic

steps, starting with segmentation and ending with the analysis of region trajec-

tories. While dependent, the framework also displays a robustness to variations

within each of the steps, such as variations in segmentation resolution, the extent

of region reduction, the convergence characteristics of the GNG, as well as to vari-

ations in the centroid based region class learning parameters. An aspect of this ro-

bustness can be seen from the useful trajectory information that is present whether

directly analysing the spatial segmention or whether including the spatiotemporal

region reduction.

While such dependencies and corresponding robustness are open to further ex-

ploration, we already see that there emerges within this framework a redundancy

and flexiblity comparable to primitive biological systems. It is a plausible hypoth-

esis that multistage cascaded levels of information abstraction from raw inputs

leads to a capacity for generic functioning that is tolerant to noise, unpredictabil-

ity and the diversity generally present in real world visual events that biological

entities are regularly required to process.

Applications of the framework include surveillance and alert systems via cate-

gorisation of visual events and the general advancement of computational visual

understanding. Individual components of the framework are also highly applica-

ble to current science and industry. Image segmentation is frequently used for a

wide range of vision tasks, where performance speed and perceptual correlation to

human perception are of importance. The scalar motion segmentation can be ap-
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plied to the manipulation of entire backgrounds in a range of situations including

video conversations over digital devices, interactive gaming, movie editing, etc.

Shape representation and analysis itself finds further applications in a variety of

areas such as gesture and pose recognition, behaviour modelling, and the general

tasks of object detection and recognition.

The following section highlights possible directions of future research that may

shed further light on the intricacies of region merging, spatiotemporal grouping,

appearance modelling, unsupervised visual understanding, and multi-component

abstraction-forming systems in general.

6.2 Future Work

Each component of the proposed scene understanding framework has the poten-

tial to be improved further as we work to get a better understanding on the mech-

anisms underlying each technique. While the possiblities for improvement are

seemingly endless, we highlight in the following paragraphs a few of the most

prominent considerations that became apparent during the course of our research.

In region merging we need to gain a better understanding of what characterises

a good “region” to the human visual perception system, and to carry out experi-

ments to identify better region descriptors that can then be used in the calculation

of inter-region distances for merging purposes. Some possibilities include textural

information, region boundary statistics and lateral multi-interaction between de-

scriptors for neighbouring segments. Identifying a region description that includes

the properties of neighbouring regions would possibly indicate a default merging

stopping criterion as one in which further merges would violate the integrity of

a region’s description. However, it is possible that an information theoretic stop-
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ping criterion established along these lines would depend on feedback from high-

er level processes of abstraction, such as contextual scene understanding, that help

confirm or reject automatic region hypotheses triggered at the merging level. This

relates to the question of whether human perception of objects is sensitive to con-

tour changes or more reliant on higher level appearance abstractions. It would

also be useful to improve and extend our proposed relative performance summ-

ary indicator to work with extended sets of diverse evaluation metrics in order to

be better indicative of overall segmentation quality.

We also propose further research into whether motion information is best anal-

ysed at a low level, such as computing optical flow between frames, or whether it is

a result of higher order processes such as the categorisation of region class and re-

gion instance trajectories, or a combination of both low and high level mechanisms.

Since the proposed trajectory plots cover entire sequences of visual frames, motion

information deduced from these would be drawn from considerations global to not

only a single frame or a pair of frames but indeed global to the entire sequence.

This points to the question of how to split a continuous video input stream into

separate sequences, however individual video sequences from standard datasets

allow the assumption of a pre-split video stream.

Finally, a natural extension of the work presented here would be to establish

descriptors for the region class trajectories themselves, and then categorise these

to obtain abstractions about groups and types of observed physical events. The

work presented here lays a promising foundation for the development of a fully

unsupervised generic scene understanding system. For this to happen we must

first formalise a theory of semantic conceptualisation from spatial and spatiotem-

poral trajectories, starting with simple physical concepts and gradually expanding

to more sophisticated or even compound semantics. While a few clear patterns in
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the trajectory plots corresponding to basic semantics of video content are apparent

to the human observer, we do not yet have a precise set of rules guiding the algo-

rithmic detection and interpretation of such patterns. Nor are we certain whether

other patterns exist in the trajectory plots that are not apparent to the human ob-

server but which may be algorithmically detected and included within a future

framework of automatic scene interpretation. Sufficiently developed conceptual

understanding mechanisms could find applications in event detection systems for

monitoring and security and also allow further developments in generalised com-

putational visual understanding.
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Shape descriptor correlations

This appendix shows the complete pairwise linear correlation figures for 30

region appearance features combining colour and size information with shape

descriptors calculated from the GNG network applied to region contours.

A.1 Region appearance descriptor correlations

In Chapter 4 we had started with a list of candidate region appearance descriptors

and tested their discriminative performance. Items from this list were then dis-

carded according to their pairwise correlations, and Chapter 4 shows the pairwise

correlation values for the shortlisted feature set. In order to get a more complete

picture of the interdependence between each of the features, we present in this ap-

pendix the complete set of pairwise descriptor correlations. Pairs that satisfy the

standard test of correlation strength, corr2 > 0.5, are marked.

Table A.1 shows pairwise correlations between all 30 appearance descriptors (3

to 32) as well as the three control variables (1, 2 and 33). The three control vari-

ables are group, instance and rand, which are present for verification purposes.

140



APPENDIX A. SHAPE DESCRIPTOR CORRELATIONS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
1 -
2 -
3 -
4 -
5 -
6 - X
7 - X X
8 X - X
9 X - X
10 -
11 - X X X X X X X
12 X - X X X
13 - X X X X X
14 - X
15 X -
16 X X - X X X X X X X
17 -
18 X X - X X X
19 X - X X
20 - X X
21 X X X X - X X X X
22 -
23 X X X - X X
24 X -
25 -
26 - X X
27 X -
28 X X -
29 X X X X X X X - X X X
30 X X X X X X X X - X X
31 X X X X X -
32 X X X X X X X X -
33 -

Table A.1: Correlations for region descriptors: 1. group++, 2. instance++, 3. B, 4.

G, 5. R, 6. area, 7. nodes, 8. labels, 9. eig1, 10. eig2, 11. var, 12. range, 13. iqr,

14. skew, 15. kurt, 16. mean, 17. min, 18. med, 19. max, 20. mean −med, 21. std,

22. numInflex, 23. meanInflex, 24. num135, 25. num90, 26. num45, 27. num0, 28.

circ, 29. curv, 30. mad0, 31. mad1, 32. mom2, and 33. rand++. Control variables are

marked with ++.
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Four other variables, B, G, R and area are non-shape appearance descriptors, and

are independent of the GNG contour representation. The non-shape descriptors

are nonetheless present in both tables in order to observe any correlation with the

shape descriptors. Rows with no markings represent independent variables. Leav-

ing aside the three control variables, the set of appearance descriptors contain four

variables B, G, R and numInflex that are independent of all the others.
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Descriptor set evaluation and

selection

This appendix discusses the feature subset and variable ranking methods for

descriptor selection. The selection precodures are described and performance

evaluation statistics presented for each method.

B.1 Fcorr

In Chapter 4 we had identified 19 region descriptors, out of the 30 we had consid-

ered, to satisfy the selection criterion ICV/ICD < 0.1, based on the observation

that this criterion holds for the four most intuitively relevant features, B, G, R

and area in Table 4.2. The 19 descriptors were: a) B, b) G, c) R, d) area, e) nodes,

f) labels, g) eig1, h) var, i) iqr, j) mean, k) med, l) numInflex, m) meanInflex, n)

num45, o) num0, p) circ, q) curv, r)mad0, s)mad1. Many of these are correlated (see

Table 4.3) and this set therefore contains high redundancy. To minimise such re-

dundancy we identify strongly correlated feature subgroups and select from each
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dt Nc (≈ 100) PRI (↑) VOI (↓) GCE (↓) BDE (↓) RPPRI,V OI,GCE,BDE (↑)

0 7200 0.99014 6.1699 0 0.00013889 -4.3335

0.005 7169 0.99014 6.1606 0 6.94E-005 -4.3186

0.01 7039 0.99015 6.1187 0 6.94E-005 -4.2516

0.02 6465 0.9902 5.9059 0.00013889 1.39E-004 -3.9147

0.03 5718 0.99027 5.6395 0.0051731 6.94E-005 -3.6005

0.04 4993 0.99036 5.3934 0.019978 6.94E-005 -3.5348

0.05 3668 0.99058 4.8831 0.052965 1.39E-004 -3.4492

0.06 3047 0.99066 4.714 0.096301 0 -4.1377

0.07 2362 0.99075 4.5199 0.15474 6.94E-005 -5.1203

0.08 1884 0.99066 4.4746 0.22175 0.000069444 -6.5307

0.09 1587 0.99058 4.4189 0.2685 0.00020833 -7.4763

0.1 1188 0.99037 4.4549 0.33669 0.00013889 -9.0427

0.2 209 0.9812 5.8103 0.76461 6.94E-005 -20.6933

0.26 102 0.9738 6.5965 0.78265 9.03E-004 -22.3632

0.3 59 0.96115 6.841 0.74912 0.00090301 -22.0374

0.4 31 0.94269 7.6556 0.77471 0.0021534 -23.9424

0.5 18 0.90487 7.8726 0.74775 0.005906 -23.77

0.6 16 0.89255 7.9715 0.72899 0.011687 -23.5396

0.7 11 0.84233 7.7259 0.65332 0.030844 -21.5812

0.8 4 0.62567 7.163 0.41249 0.11801 -15.8213

0.9 1 0.0098625 6.6439 0 6.5917 -9.3923

0.95 1 0.0098625 6.6439 0 6.5917 -9.3923

Table B.1: Clustering performance of descriptor set Fcorr: {B, G, R, area, nodes,

numInflex, num0, curve}. Clustering threshold dt vs. number of clusters Nc and

evaluation measures PRI , V OI , GCE, BDE and RP . Desired values in parenthe-

ses. dt ≈ 0.05 at best RP , dt ≈ 0.26 at best Nc.
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subgroup only that feature with the best ICV/ICD value, discarding the rest. By

this process we reduce the set of 19 features to a set of 8, which gives us descriptor

set Fcorr = {B,G,R, area, nodes, numInflex, num0, curve} with low redundancy.

Table B.1 shows extended clustering performance evaluation statistics using Fcorr

to learn categories from the COIL-100 dataset.

B.2 Frank

From the 30 features considered in Chapter 4, we use a variable ranking approach

to establish an alternate descriptor set Frank against which the performance of the

previously determined set Fcorr may be compared. To do this, we first rank all

30 features in ascending ICV/ICD order. We start with the feature at the top of

the list, to get a feature vector of size 1, and evaluate clustering performance for

a range of dt values, noting the maximum RP achieved, and setting this also as

the globally best RPbest. Then we add the second feature in the list to the first

and evaluate this new feature vector of size 2 through the same range of dt. If the

maximum RP for any dt in this set is greater than RPbest, then this replaces the

existing RPbest value. We continue adding one feature at a time from the ranked

list and evaluate each incrementally expanding feature set, updating RPbest as we

proceed. At the end of this process, the feature set for which the maximum RP

equals RPbest is considered the optimal variable ranked descriptor set Frank.

We find the global optimum for RPbest across the full set of 30 descriptors to oc-

cur at the seventh variable ranked incremental set, and we thus present clustering

evaluation statistics for sets 3 to 7 (Tables B.2, B.3, 5.2, B.5 and B.6). These allow us

to observe the peak in RPbest which gives us the variable ranked descriptors Frank:

{B,R,G, numNodes, circ}, for which extended evaluation statistics are given.
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dt Nc (≈ 100) PRI (↑) VOI (↓) GCE (↓) BDE (↓) RPPRI,V OI,GCE,BDE (↑)

0 7200 0.99014 6.1699 0 0.00013889 -4.3335

0.005 4656 0.9904 5.2707 0.017424 0.00013889 -3.2823

0.01 1940 0.99113 3.9897 0.074528 0.00013889 -2.4983

0.02 758 0.99187 3.12 0.16199 6.94E-005 -3.0427

0.03 441 0.99181 2.9253 0.25134 6.94E-005 -4.7085

0.04 284 0.9912 2.9658 0.34468 6.94E-005 -6.8396

0.05 201 0.98928 3.0348 0.42703 0 -8.7753

0.06 156 0.98729 3.258 0.5199 1.39E-004 -11.1905

0.07 117 0.98564 3.4965 0.57951 6.94E-005 -12.8937

Table B.2: Performance evaluation of region descriptor set: {B, R, G}. Clustering

threshold dt vs. number of clusters Nc and evaluation measures PRI , V OI , GCE

and BDE. Desired values in parentheses.

dt Nc (≈ 100) PRI (↑) VOI (↓) GCE (↓) BDE (↓) RPPRI,V OI,GCE,BDE (↑)

0 7200 0.99014 6.1699 0 0.00013889 -4.3335

0.005 5702 0.99027 5.6402 0.0015741 0.00013889 -3.522

0.01 3252 0.99079 4.5563 0.018034 0.00020833 -2.154

0.02 1538 0.99149 3.6066 0.077328 1.39E-004 -1.9475

0.03 908 0.99181 3.2203 0.1498 6.94E-005 -2.9333

0.04 599 0.99184 3.0553 0.22391 6.94E-005 -4.3094

0.05 410 0.99108 3.056 0.31202 0 -6.2611

0.06 299 0.99013 3.1389 0.39052 6.94E-005 -8.1322

0.07 239 0.98896 3.3666 0.46134 0.00020837 -10.0652

Table B.3: Performance evaluation of region descriptor set: {B, R, G, numNodes}.

Clustering threshold dt vs. number of clusters Nc and evaluation measures PRI ,

V OI , GCE and BDE. Desired values in parentheses.
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dt Nc (≈ 100) PRI (↑) VOI (↓) GCE (↓) BDE (↓) RPPRI,V OI,GCE,BDE (↑)

0 7200 0.99014 6.1699 0 0.00013889 -4.3335

0.005 5783 0.99028 5.6536 0.00034722 6.94E-005 -3.5163

0.01 3405 0.99075 4.6062 0.012469 2.08E-004 -2.1107

0.02 1661 0.99153 3.6118 0.067515 6.94E-005 -1.7386

0.03 1003 0.9918 3.2483 0.13583 1.39E-004 -2.669

0.04 638 0.99186 3.0686 0.22047 1.39E-004 -4.2542

0.05 440 0.99115 3.0555 0.30196 0 -6.0377

0.06 328 0.98988 3.2813 0.39515 1.39E-004 -8.4626

0.07 246 0.98859 3.3213 0.46168 0.00013889 -10.0011

0.08 205 0.98655 3.666 0.5362 0.00013891 -12.2045

0.09 173 0.98456 3.9177 0.59581 6.94E-005 -13.9292

0.1 146 0.98246 3.9716 0.61054 0.00020837 -14.3453

0.12 103 0.9764 4.3462 0.60777 0.00041676 -14.8948

0.2 49 0.95687 5.7714 0.66303 0.001251 -18.4333

0.3 23 0.92525 6.5411 0.62654 0.0029182 -18.9194

0.4 14 0.8919 7.027 0.62907 0.0068797 -19.8203

0.5 12 0.88425 7.7269 0.69814 0.0085417 -22.4822

0.6 14 0.85969 7.8579 0.6834 0.014655 -22.417

0.7 12 0.86988 7.9181 0.69035 0.01263 -22.6456

0.8 7 0.68911 7.4159 0.49597 0.15033 -17.9557

0.9 4 0.41842 7.1604 0.32042 1.8782 -14.819

0.95 1 0.0098625 6.6439 0 6.5924 -9.3926

Table B.4: Performance evaluation of region descriptor set Frank: {B, R, G,

numNodes, circ}. Clustering threshold dt vs. number of clustersNc and evaluation

measures PRI , V OI , GCE and BDE. Desired values in parentheses. dt ≈ 0.02 at

best RP , dt ≈ 0.12 at best Nc.
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dt Nc (≈ 100) PRI (↑) VOI (↓) GCE (↓) BDE (↓) RPPRI,V OI,GCE,BDE (↑)

0 7200 0.99014 6.1699 0 0.00013889 -4.3335

0.005 6089 0.99024 5.7616 0.00034722 1.39E-004 -3.6888

0.01 4307 0.99063 4.9808 0.0088877 6.94E-005 -2.63

0.02 2764 0.99117 4.2268 0.055305 0.00E+000 -2.4515

0.03 2058 0.99136 3.9032 0.11222 2.08E-004 -3.1934

0.04 1580 0.99118 3.8752 0.19124 6.94E-005 -4.8973

0.05 915 0.99088 3.5863 0.2747 2.08E-004 -6.2831

0.06 698 0.98995 3.6474 0.36611 0.00013891 -8.4047

0.07 529 0.98916 3.7669 0.43157 6.94E-005 -10.0455

Table B.5: Performance evaluation of region descriptor set: {B, R, G, numNodes,

circ, numLabels}. Clustering threshold dt vs. number of clustersNc and evaluation

measures PRI , V OI , GCE and BDE. Desired values in parentheses.

dt Nc (≈ 100) PRI (↑) VOI (↓) GCE (↓) BDE (↓) RPPRI,V OI,GCE,BDE (↑)

0 7200 0.99014 6.1699 0 0.00013889 -4.3335

0.005 6911 0.99016 6.0761 0.00018519 6.94E-005 -4.1876

0.01 5986 0.99025 5.7306 0.001412 6.94E-005 -3.6628

0.02 4493 0.99049 5.156 0.02769 1.39E-004 -3.326

0.03 3531 0.99072 4.7717 0.068272 1.39E-004 -3.6097

0.04 2773 0.99081 4.5401 0.13068 1.39E-004 -4.6203

0.05 1727 0.99093 4.1555 0.20068 0.00E+000 -5.5543

0.06 1379 0.99049 4.1588 0.28002 0 -7.3158

0.07 1049 0.99018 4.1729 0.35372 1.39E-004 -8.9695

Table B.6: Performance evaluation of descriptor set: {B, R, G, numNodes, circ,

numLabels, curv}. Clustering threshold dt vs. number of clusters Nc and evalua-

tion measures PRI , V OI , GCE and BDE. Desired values in parentheses.
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Publications

This thesis includes work that was authored or coauthored and published exter-

nally within the duration of its creation, presented below in reverse chronological

order.

2012

G. Gupta and A. Psarrou. Semi-Greedy Adaptive-Threshold Region Merging via

Path Scanning. In IEEE International Conference on Image Processing, ICIP’12, 2012.

G. Gupta, A. Psarrou, and A. Angelopoulou. Image Segmentation based on Semi-

Greedy Region Merging. In IET Conference on Image Processing, IPR’12, pages 1-4,

ISBN: 978-1-84919-632-1, 2012.

2010

A. Angelopoulou, A. Psarrou, J. Garcı́a, and G. Gupta. Tracking Gestures us-

ing a Probabilistic Self-Organising Network. In International Joint Conference on
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Neural Networks (IJCNN’10), IEEE WCCI’10, pages 1–7, IEEE Catalogue Number:

CFP10IJS-DVD, ISBN: 978-1-4244-6917-8, 2010.

2009

G. Gupta, A. Psarrou, and A. Angelopoulou. Generic colour image segmentation

via multi-stage region merging. In 10th International Workshop on Image Analysis for

Multimedia Interactive Services, WIAMIS’09, pages 185–188, IEEE Xplore, 2009.

2008

A. Angelopoulou, A. Psarrou, G. Gupta, and J. Garcı́a. Active-GNG: Model Ac-

quisition and Tracking in Cluttered Backgrounds. In ACM Workshop on Vision

Networks for Behaviour Analysis, VNBA’08, in conjunction with the ACM Multimedia,

pages 17–22, 2008.

2007

A. Angelopoulou, A. Psarrou, G. Gupta, and J. Garcı́a. Nonparametric Modelling

and Tracking with Active-GNG. In IEEE International Workshop on Human Comput-

er Interaction, ICCV-HCI’07, in conjunction with the ICCV 2007, LNCS 4796, pages

98–107, Springer, 2007.

A. Angelopoulou, A. Psarrou, G. Gupta, and J. Garcı́a. Robust Modelling and

Tracking of NonRigid Objects Using Active-GNG. In IEEE Workshop on Non-rigid

Registration and Tracking through Learning, NRTL’07, in conjunction with the ICCV

2007, IEEE Xplore, 2007.
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”Instead of trying to produce a programme to simulate the
adult mind, why not rather try to produce one which simulates
the child’s? If this were then subjected to an appropriate
course of education one would obtain the adult brain.”

Alan Turing (British computer scientist, “Computing Machinery

and Intelligence”, 1912-1954)
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