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ABSTRACT 1	
  

In humans, recognition of others’ actions involves a cortical network that comprises, among other 2	
  

cortical regions, the posterior superior temporal sulcus (pSTS), where biological motion is coded and the 3	
  

anterior intraparietal suclus (aIPS), where movement information is elaborated in terms of meaningful goal-4	
  

directed actions. This action observation system (AOS) is thought to encode neutral voluntary actions, and 5	
  

possibly some aspects of affective motor repertoire, but the role of the AOS’ areas in processing affective 6	
  

kinematic information has never been examined. Here we investigated whether the action observation system 7	
  

plays a role in representing dynamic emotional bodily expressions. In the first experiment, we assessed 8	
  

behavioural adaptation effects of observed affective movements. Participants watched series of happy or 9	
  

fearful whole-body point-light displays (PLDs) as adapters and were then asked to perform an explicit 10	
  

categorization of the emotion expressed in test PLDs. Participants were slower when categorizing any of the 11	
  

two emotions as long as it was congruent with the emotion in the adapter sequence. We interpreted this effect 12	
  

as adaptation to the emotional content of PLDs. In the second experiment, we combined this paradigm with 13	
  

TMS applied over either the right aIPS, pSTS and the right half of the occipital pole (corresponding to 14	
  

Brodmann’s area 17 and serving as control) to examine the neural locus of the adaptation effect. TMS over 15	
  

the aIPS (but not over the other sites) reversed the behavioural cost of adaptation, specifically for fearful 16	
  

contents. This demonstrates that aIPS contains an explicit representation of affective body movements. 17	
  

SIGNIFICANCE STATEMENT: In humans, a network of areas – the action observation system (AOS) - 18	
  

encodes voluntary actions. However, the role of these brain regions in processing affective kinematic 19	
  

information has not been investigated. Here we demonstrate that the aIPS contains a representation of 20	
  

affective body movements.  Firstly, in a behavioural experiment, we found an adaptation after-effect for 21	
  

emotional PLDs, indicating the existence of a neural representation selective for affective information in 22	
  

biological motion. To examine the neural locus of this effect, we then combined the adaptation paradigm 23	
  

with TMS. Stimulation of the aIPS (but not over pSTS and control site) reversed the behavioural cost of 24	
  

adaptation, specifically for fearful contents, demonstrating that aIPS contains a representation of affective 25	
  

body movements. 26	
  

 27	
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Introduction 28	
  

Perception of movements of other living beings is crucial for survival in most species, to the extent 29	
  

that many vertebrate species have specialized neural systems for action observation. In humans, a 30	
  

widespread network of interconnected brain areas (known as the action observation system - AOS) underlies 31	
  

the comprehension of conspecifics’ body movements and actions. This network includes the posterior 32	
  

superior temporal sulcus (pSTS) (Puce and Perrett, 2003), and two mirror system areas, the putative human 33	
  

anterior intraparietal area (aIPS) and the ventral premotor/caudal inferior frontal gyrus complex (PMv/cIFG) 34	
  

(Cattaneo and Rizzolatti, 2009). Several TMS studies have demonstrated that stimulating the pSTS, the aIPS 35	
  

and the PMv/cIFG regions produces selective impairment in visual recognition of neutral actions (Candidi et 36	
  

al., 2008; Cattaneo et al., 2010; Grossman et al., 2005; van Kemenade et al., 2012; Pobric and Hamilton, 37	
  

2006). But is the AOS also important for the encoding of the emotional aspects of biological motion?  38	
  

The perception of affective stimuli, irrespective of stimulus type, generally enhances the neural 39	
  

response of core affective systems, situated within the limbic system (Adolphs, 2002; Phillips et al., 2003) 40	
  

but emotional body movements are complex and their perception activates also a more widespread network 41	
  

of subcortical and cortical regions, related to analysis of visual body features and more generally to action 42	
  

observation and preparation (de Gelder et al., 2006, 2010, 2015; Tamietto and de Gelder, 2011). It is thus 43	
  

crucial to understand whether the activation within the AOS is a mere side-effect of the type of stimuli (body 44	
  

actions), independent from their content or whether AOS activity is causally linked to emotional recognition. 45	
  

This issue has been explored in the literature in only two TMS studies; these found that perturbation of pSTS 46	
  

(Candidi et al., 2011) and IPL (Engelen et al., 2015) selectively improved the recognition of fearful body 47	
  

images. However, a limitation of both of these studies was that participants observed static images; human 48	
  

bodies are dynamic in nature and the brain substrates used in processing static postures are likely to differ 49	
  

from those engaged in perception of body movements. Furthermore, while conventional TMS paradigms can 50	
  

reveal the causal role of cortical regions in cognitive functions, they do not inform us about the neural 51	
  

representations in those regions.  52	
  

Here we examined whether specific regions of the action observation network contain 53	
  

representations of affective body movements. This was accomplished by the use of state-dependent TMS 54	
  

which enables the selectivity of neural representations in a cortical region to be assessed (Romei et al., 2016; 55	
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Silvanto et al., 2008). This approach has been previously used to examine the selectivity of neural 56	
  

representations in various cognitive functions such as colour and motion perception (Silvanto et al., 2007; 57	
  

Cattaneo and Silvanto, 2008), numerical cognition (Kadosh et al., 2010) and action observation (Cattaneo et 58	
  

al., 2011, 2010; Jacquet and Avenanti 2015; Sato et al. 2011). In order to examine the role of AOS in 59	
  

encoding the emotional aspects of dynamic biological motion, we used point-light displays (PLDs), also 60	
  

referred to as biological motion (BM) stimuli (Johansson, 1973), which allow isolation of motion signals 61	
  

from others visual cues. Kinematic information contained in PLDs is sufficient for detection of emotional 62	
  

content of human movements (Alaerts et al. 2011; Atkinson et al. 2004, 2007, 2012; Chouchourelou et al., 63	
  

2006; Clarke et al., 2005; Dittrich et al. 1996). In Experiment 1, we examined behavioural adaptation effects 64	
  

of observed affective PLDs. We found an adaptation-like bias with incongruent stimuli recognized faster 65	
  

than congruent ones. In Experiment 2, we used the TMS-adaptation paradigm to examine the cortical locus 66	
  

of adaptation effects observed in Experiment 1. TMS over the aIPS – but not over pSTS nor over a visual 67	
  

control area - reversed the behavioural adaptation for fearful stimuli, indicating that this region contains 68	
  

neural representations selective for the fearful characteristics of human movements. 69	
  

 70	
  

Material and methods 71	
  

Visual stimuli and validation of emotional valence. A total of 20 PLDs were presented, depicting 10 72	
  

different expressions of happiness and fear, respectively. These stimuli are part of a wider dataset created by 73	
  

Atkinson and collaborators (Atkinson et al., 2004, 2012). The PLDs consisted of 2 second-long digitalized 74	
  

video clips (see Atkinson et al. 2012 for details), displaying a single actor represented as 13 white dot-lights 75	
  

moving on a black background. The dots were positioned over the head and the main joints (one dot over 76	
  

each ankle, knee, hip, elbow, shoulder, and hand) of the actor. Examples of the stimuli can be viewed at 77	
  

http://community.dur.ac.uk/a.p.atkinson/Stimuli.html. We selected happy and fearful stimuli because they 78	
  

are roughly equally arousing emotions, with opposite emotional valence (positive or negative). Prior to the 79	
  

main experiments, we ran a pilot study to validate the PLDs in terms of quantity of movement contained in 80	
  

the PLDs and of type and intensity of portrayed emotion. Sixteen healthy adults took part in this pilot 81	
  

experiment (13 females, mean age = 29.63 (SD = 7.65)). All the participants provided informed consent 82	
  

before taking part in the experiment. They were seated in front of a 24-inch monitor at a distance of about 60 83	
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centimetres.  The stimuli were presented foveally. Each PLD was presented once, and for each video 84	
  

participants were asked to recognize the conveyed emotion among 4 options (Fear, Happiness, Neutral and 85	
  

Other) by pressing the corresponding button on the keyboard. The response options (appearing on the screen 86	
  

after each stimulus) were indicated with a label placed over the keys “F, G, H, J” and were randomized 87	
  

across participants. After the emotion recognition task, participants were asked to rate the “Intensity of the 88	
  

emotion” and the “Quantity of movement” on a scale from 1 to 5, using the numeric keys on the top of the 89	
  

keyboard. Stimuli were presented and responses recorded with E-Prime 2.0® (Psychology Software Tools, 90	
  

Inc.). For each individual PLD we calculated the accuracy of emotion categorization, the rated intensity of 91	
  

the emotion and the rated quantity of movement. Data distribution was tested for normality with Shapiro-92	
  

Wilk test. Accuracy, Intensity and Movement were not normally distributed, so they were analysed using a 93	
  

non-parametric test for paired data, the Wilcoxon signed rank test with continuity correction. Significance 94	
  

thresholds were Bonferroni-corrected for 3 multiple comparisons (for each variable, we compared results 95	
  

between the three emotional valences, hence the critical alpha was set as p < .017). There were no significant 96	
  

differences between the happy and fearful movements for Accuracy, Movement, and Intensity, while – 97	
  

predictably - the neutral movements were rated as less intense compared with the two emotions (Table 1). 98	
  

This implies that the stimuli used in Experiment 1 and 2 (i.e. fearful and happy PLDs) do not differ in terms 99	
  

of: i) recognizability between the emotional categories, ii) intensity of the expressed emotion or iii) quantity 100	
  

of movement contained in the stimuli. 101	
  

Insert Table 1 102	
  

 103	
  

Experiment 1: behavioural assessment of adaptation to observed emotional body movements. 104	
  

Participants. Twenty-six healthy adults (14 females and 12 males, age mean = 23.58 years (SD = 105	
  

2.95 years)) took part in the behavioural study (Experiment 1). All participants had normal or corrected-to-106	
  

normal vision. Prior to the experiment, all participants provided written informed consent, in accordance 107	
  

with the Declaration of Helsinki.  108	
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Design and procedure. Participants were seated in a comfortable chair in front of a 24-inch computer 109	
  

screen at a distance of around 60 cm. E-Prime version 2.0 (Psychology Software Tools, Inc.) software was 110	
  

used for stimulus presentation and response recordings. The study consisted of 12 adaptation blocks (6 with 111	
  

happy and 6 with fearful adapters), consisting of a 1 minute adapting period followed by 8 test trials. Each 112	
  

trial began with a white central fixation cross over a black background, lasting for 10 seconds. This was 113	
  

followed by an adaptation period in which the same PLD was repeated 30 times (for a total duration of 60 114	
  

sec). Participants were asked to simply watch the stimuli and focus on the emotion expressed by the actor. 115	
  

The order of adaptation blocks was randomized. At the end of adaptation, a screen appeared asking 116	
  

participant to “Get ready for the task”, after which 8 test stimuli (4 fearful and 4 happy PLDs) were 117	
  

presented. Half of the test stimuli were emotionally congruent and half were emotionally incongruent with 118	
  

the adapter, and their order was randomized. The test stimuli and the adapter stimuli belong to the same 119	
  

dataset, i.e. the same stimulus could be used as an adapter in one block or as a test stimulus in another block. 120	
  

However, in single blocks, the adapter stimulus was always different from the test stimuli presented 121	
  

thereafter. In other words, every stimulus could appear randomly as adapter or as a test in different blocks, 122	
  

but not in the same block. The movie clip was presented centrally. Simultaneously with the stimulus 123	
  

presentation, the question “Which emotion?” appeared on the upper part of the screen, and the two response 124	
  

options (“Fear” and “Happiness”) were presented on the lower part of the monitor. For each test stimulus, 125	
  

participants were asked to categorize the expressed emotion as fast as possible by key-press. The response 126	
  

options were indicated with a label placed over the keys “G” and “H”, and the key-emotion correspondence 127	
  

was randomized across participants. Participants were asked to respond using the index and the middle finger 128	
  

of their right hand. The PLD was presented for a maximum of 2 seconds, while the question and the response 129	
  

period lasted until participants responded. Accuracy and response time (RTs) were recorded. 130	
  

Data analyses. The dependent variable was mean response times (RTs). Only correct responses were 131	
  

included in the analyses (the overall error rate was 4.43%). Data distributions failed the normality (Shapiro-132	
  

Wilk’s test) and homoscedasticity of variance (Bartlett’s test) tests. To normalize the distribution, the 133	
  

averaged RTs were log-transformed prior to analyses (logRT). A two-way repeated-measures ANOVA was 134	
  

conducted with emotional content of the test stimuli (“emoTest”: Fear or Happiness) and emotional 135	
  

congruence between test and adapter stimuli (congruent or incongruent) as within-subject factors. Post hoc 136	
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comparisons were performed with two-tailed paired-samples t-tests with correction of the significance 137	
  

threshold for multiple comparisons whenever appropriate. All analyses were performed using R, version 138	
  

3.3.1 (R Development Core Team, 2016). 139	
  

 140	
  

Experiment 2: Effects of TMS on perceptual adaptation  141	
  

Participants. Seventeen healthy adults (11 females and 6 males, mean age = 25.63 (SD = 5.17)) 142	
  

participated in the TMS experiment (Experiment 2). Three participants were excluded from the analysis 143	
  

because of difficulties in determining their resting motor threshold. In these participants, the TMS 144	
  

stimulation over M1 did not produce any visible hand twitch, and no motor sensation was perceived. Hence, 145	
  

the final analyses were performed on a total of 14 participants. Participants in the TMS experiment were 146	
  

screened for MRI and TMS contraindication prior to the experiment and received a £ 15 voucher refund for 147	
  

their participation. All participants had normal or corrected-to-normal vision. Prior to the experiment, all 148	
  

participants provided written informed consent. The protocol was approved by the University of 149	
  

Westminster’s ethical committee, in accordance with the Declaration of Helsinki. 150	
  

Neuronavigation and identification of stimulation sites on individual anatomy. We used MRI-guided 151	
  

neuronavigation (BrainInnovation BV, the Netherlands) for accurate positioning of the TMS coil. For each 152	
  

participant, a high resolution T1-weighted MPRAGE scan (176 partitions, 1 x 1 x 1 mm, flip angle = 7°, TI = 153	
  

1,000 ms, TE = 3.57 ms, TR = 8.4 ms) was acquired before the TMS experiment. Structural MRI images 154	
  

were obtained with a 1.5 T whole-body TIM Avanto System (Siemens Healthcare), at the 155	
  

Birkbeck/University College London Centre for NeuroImaging (BUCNI), with a 32-channel head coil. A 3D 156	
  

reconstruction of the gray matter surfaces and the scalp was created for each participant, which were co-157	
  

registered to the participant’s head in order to position the coil over the site of stimulation and to control coil 158	
  

position throughout the experiment. In each participant, three different sites in the right hemisphere were 159	
  

stimulated: the posterior part of the right superior temporal sulcus (pSTS), the anterior part of the right 160	
  

intraparietal sulcus (aIPS) and a posterior occipital control area located next to the midline. The three loci 161	
  

were identified on the basis of macro-anatomical landmarks. Specifically, pSTS was targeted over the 162	
  

transition between its posterior segment and its horizontal segment (see Ochiai et al. 2004 for an overview of 163	
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STS anatomy). We defined the aIPS as the most rostral part of the IPS at the intersection between the 164	
  

postcentral gyrus and the IPS (Caspers et al., 2006). Control TMS was applied to a site corresponding to a 165	
  

secondary visual area not primarily implied in coding for emotional aspect of visual stimuli, located between 166	
  

BA 17 and BA 18 (see Figure 1) 167	
  

TMS. Biphasic TMS pulses were applied with a figure-of-eight coil (D70mm coil) connected to a 168	
  

Magstim Rapid2 stimulator (Magstim Co Ltd, Whitland, UK). At first we searched in each participant the 169	
  

visually assessed resting motor threshold (rMT), defined as the stimulator’s output intensity necessary to 170	
  

obtain a visible twitch in the contralateral intrinsic hand muscles in exactly 50% of trials in a series of at least 171	
  

eight consecutive pulses (Rossini et al, 1994). The intensity of stimulation in the actual experiment was set to 172	
  

120% of the individual’s rMT with a maximum of 65% maximal stimulator output due to coil overheating 173	
  

and limiting discomfort to participants. The coil was attached to a Magstim coil stand and placed tangentially 174	
  

to the scalp. Coil orientation was medial-lateral with the handle pointing laterally and slightly posteriorly 175	
  

(70° from the midline) for the aIPS position, in order to induce a current in the underlying cortical tissue 176	
  

roughly perpendicular to the IPS. A similar orientation was used for the stimulation of pSTS, but with the 177	
  

coil handles pointing upwards. Due to pSTS proximity to the ears, in some participants the coil orientation 178	
  

was changed to minimize discomfort. For the occipital (control) stimulation, the coil was positioned 179	
  

perpendicular to the midline with the handle pointing outward. TMS was delivered in triplets. In every trial 180	
  

participants received three 10 Hz pulses time-locked to the onset of the PLD, starting synchronously with the 181	
  

visual stimulus. 182	
  

 183	
  

Insert Figure 1 184	
  

 185	
  

Procedure. The TMS paradigm was identical to that used in Experiment 1 described above. Every 186	
  

block consisted of 1 minute of adapting period followed by 8 test trials. A total of 12 adapter stimuli (6 187	
  

happy and 6 fearful PLDs) and 96 test stimuli were presented for each of the three sites of stimulation. The 188	
  

order of adaptation blocks was randomized. During the adaptation period the same PLD was repeated 30 189	
  

times (for 60 sec). Participants were asked to simply watch the adapter stimuli and focus on the emotion 190	
  

expressed by the actor. At the end of adaptation, 8 test stimuli (4 fearful and 4 happy PLDs) were presented. 191	
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Half of the test stimuli were emotionally congruent (i.e. same emotion) and half were emotionally 192	
  

incongruent (i.e. different emotion) with the adapter, and their order was randomized. Participants were 193	
  

asked to categorize the expressed emotion (Fear or Happiness) as fast as possible by key-press, using the 194	
  

index and the middle finger of their right hand. Accuracy and response time (RTs) were recorded. The three 195	
  

stimulation sites (right pSTS, right aIPS and the control site) were stimulated on the same day, with 30 196	
  

minutes of delay between sessions. The order of stimulation sites was counterbalanced between participants. 197	
  

Participants wore earplugs and were seated in a comfortable chair in a quiet room, in front of a 24-inch 198	
  

computer screen at a distance of 60 cm, with their head on a chin-rest.  199	
  

 200	
  

Insert Figure 2 201	
  

 202	
  

Data analyses: All analyses were performed using R, version 3.3.1 (R Development Core Team, 203	
  

2016). The dependent variable was the mean of response time (RTs). Only correct responses were included 204	
  

in the analyses. Data were tested for normality (Shapiro test) and homoscedasticity of variance (Bartlett test). 205	
  

To normalize the distribution, the averaged RTs were log-transformed prior to analyses (logRT). A three-206	
  

way repeated-measures ANOVA (3x2x2) was performed. The site of TMS stimulation (“stimSite”), the 207	
  

emotional valence of the test stimuli (“emoTest”) and the emotional congruence between test and adapter 208	
  

stimuli (“congruence”) were entered as within-subject factors. Post hoc comparisons were performed with 209	
  

two-tailed paired-samples t-tests. The significance threshold for the p-values was corrected for multiple 210	
  

comparisons when appropriate. As a measure of the effects size, the Generalized Eta squared (η2) is reported 211	
  

when appropriate. In addition, we calculated the Cohen’s d for the significant comparisons using bootstrap 212	
  

resamples method (Gerlanc and Kirby, 2015). The number of bootstrap resamples (R) was set at 2000. 213	
  

Bootstrap Cohen’s d effect size measures and their corresponding 95% confidence intervals (CIs) are also 214	
  

reported when appropriate.  215	
  

 216	
  

Results 217	
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Experiment 1: behavioural evidence of perceptual adaptation to the emotional content of PLDs. 218	
  

In Experiment 1, the overall error rate was 4.43%. A summary of the results of Experiment 1 is 219	
  

presented in Table 2 and in Figure 3. The two-way ANOVA showed a significant main effect of  220	
  

“Congruence” (F(1,25) = 7.31, p-value = .012) with incongruent stimuli being recognized faster than congruent 221	
  

ones, while the interaction between “emoTest” and “Congruence” was not significant (F(1, 25) = 0.856, p-value 222	
  

= .364; η2 = 0.014; Cohen’s d = -0.236, C.I. = -0.660; 0.166).  223	
  

 224	
  

Insert Table 2. 225	
  

 226	
  

Insert Figure 3. 227	
  

 228	
  

Experiment 2: state-dependent effects of TMS over aIPS on explicit categorization of fearful PLDs.  229	
  

In Experiment 2 the overall error rate was 3.87%. The three-way ANOVA showed a significant main 230	
  

effect of “Congruence” (F(1,13) = 14.994, p-value = .002), with congruent stimuli being recognized slower than 231	
  

incongruent ones (mean RTs: congruent = 1194 ms; incongruent = 1148 ms), suggesting the presence of an 232	
  

adaptation after-effect for affective PLDs and confirming the results of the behavioural experiment 233	
  

(Experiment 1). More importantly, we found a significant three-way interaction between “stimSite, emoTest 234	
  

and Congruence” (F(2,26) = 3.546, p-value = .043). To better understand this interaction, we performed three 235	
  

2x2 repeated measures ANOVAs in the three stimulation sites separately, with “emoTest” and “Congruence” 236	
  

as within factors. We found a significant main effect of “Congruence” in the control site (F(1,13) = 9.329; p-237	
  

value = .009; η2 = .017) and in pSTS (F(1,13) = 9.393; p-value = .009; η2 = .029), showing that the adaptation 238	
  

after-effect persisted and hence suggesting that TMS stimulation did not have any effect on those two brain 239	
  

areas. On the contrary, ANOVA in aIPS showed a significant interaction between “emoTest and 240	
  

Congruence” (F(1,13) = 8.474; p-value = .012; η2 = .022), but no significant main effects. In particular, the 241	
  

adaptation after-effect was still present for happy test stimuli (p-value = .009; Cohen’s d = -0.311, C.I. = -242	
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1.114, 0.459) with incongruent stimuli recognized faster than congruent ones. Conversely, the adaptation 243	
  

after-effect was completely abolished for fearful test stimuli, to the point that we observed a trend towards an 244	
  

inversion of the adaptation effects, i.e. congruent test stimuli were recognized faster than congruent ones (p-245	
  

value = 0.066; Cohen’s d = 0.267, C.I. = -0.459, 1.075).  246	
  

Insert Figure 4 247	
  

 248	
  

DISCUSSION 249	
  

Perceptual adaptation to emotional content of PLDs. In the first experiment, we examined 250	
  

behaviourally whether adaptation to the emotional content of PLD produces perceptual aftereffects. When 251	
  

categorizing an affective PLD, participants’ performance was markedly biased (slower RTs) by their 252	
  

previous exposure to congruent emotions. Adaptation aftereffects for features contained in PLDs have been 253	
  

reported previously. For example, prolonged exposure to human actions conveying gender characteristics 254	
  

generates an aftereffect that biases the perception of gender in subsequently observed actions (Troje et al., 255	
  

2006). Similar adaptation-like aftereffects have been observed for action category (de la Rosa et al., 2014; 256	
  

van Boxtel & Lu, 2013) and for spatial components of the observed bodily trajectories (Jackson and Blake 257	
  

2010; Theusner et al., 2011). Also judgments about the interaction between a human hand and an object have 258	
  

been shown to be susceptible to visual adaptation, with viewing the grasping of a light object biasing 259	
  

subsequent grasped objects to appear heavier (Barraclough et al., 2009). Besides, a number of studies 260	
  

reported adaptation aftereffect to affective facial (Fox and Barton, 2007; Russell and Fehr, 1987; Webster 261	
  

and MacLeod, 2011; Webster et al., 2004) and vocal expressions (Skuk and Schweinberger, 2013; 262	
  

Bestelmeyer et al., 2014). However, the extent to which emotional bodily expression can produce adaptation 263	
  

aftereffects has remained unexplored so far. Our study fills this gap, providing the first evidence that 264	
  

perception of emotional whole body movements can undergo selective perceptual adaptation. The finding is 265	
  

indicative of the existence of a neural representation selective for affective information in biological motion. 266	
  

Absence of state-dependent effects of TMS on the early visual cortex (control condition). 267	
  



11	
  
	
  

The aim of Experiment 2 was to examine the neural locus of this adaptation effect for affective dynamic 268	
  

bodily expressions. We found adaptation after-effects similar to those observed in Experiment 1 following 269	
  

control stimulation, consisting in a behavioural disadvantage in recognizing PLDs emotionally congruent 270	
  

with the adapter sequences (Figure 4). Given the assumptions of TMS-adaptation paradigms, we did not 271	
  

expect any effect of TMS on this region, because the adapted features (bodily movements) are not supposed 272	
  

to be coded in the early visual cortex. The earliest visual body representation to be found along the visual 273	
  

pathways is in the lateral occipital complex, way more rostral than the area that we chose as control 274	
  

(Downing et al., 2001). Studies in blindsight patients suggest that the processing of emotional information 275	
  

can efficaciously occur in spite of lesions of the early visual areas, either when conveyed by faces (de Gelder 276	
  

et al., 1999; Morris et al., 2001) or by body postures (De Gelder and Hadjikhani, 2006). Accordingly, in 277	
  

another study, TMS perturbation of V1 impaired the discrimination of neutral – but not emotional - body 278	
  

postures, supporting the hypothesis that the encoding of the emotional content does not depend on V1 279	
  

(Filmer and Monsell, 2013).  280	
  

Absence of state-dependent effects of TMS on the pSTS. 281	
  

In contrast to the early visual cortex, the pSTS is tuned to biological motion. However, to our 282	
  

surprise, no state-dependent effects of TMS were found. We interpreted this finding in the light of the 283	
  

functional specialization of the pSTS. The integrity of STS is fundamental to biological motion identification 284	
  

(Vaina et al., 1990; Grossman et al., 2005; Saygin, 2007), it encodes low-level pictorial aspects of BM 285	
  

(Cattaneo et al., 2010), and it represents bodily movements separately for different body parts (upper limb, 286	
  

face, whole body, gaze) (Hein and Knight, 2008), probably in a viewpoint-invariant manner (Grossman et 287	
  

al., 2010). In one TMS study, stimulation of pSTS improved the visual match of body forms specifically for 288	
  

fearful body postures (Candidi et al, 2011). However this type of task relies on pictorial analysis likely 289	
  

encoded in pSTS, while we asked to recognize the emotional meaning of dynamic PLDs, potentially related 290	
  

to higher level of action representation implemented in aIPS (Cattaneo et al., 2010; Fogassi et al., 2005; 291	
  

Shmuelof and Zohary, 2005; Hamilton and Grafton, 2006). Similarly, another study (Tseng et al., 2010) 292	
  

showed that the specific effects of static fearful facial displays as distracters in a visual search task could be 293	
  

disrupted by anodal transcranial direct current stimulation (tDCS) over the right pSTS. 294	
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State-dependent effects of TMS on the aIPS. 295	
  

TMS stimulation over aIPS reduced significantly the cost of adaptation, and even produced a 296	
  

reversal of the cost of this effect, turning it into behavioural advantage. According to the TMS-adaptation 297	
  

assumption, this finding is diagnostic for the presence neurons that were affected by adaptation changes in 298	
  

the stimulated area (Silvanto, 2008). Interestingly, the effects of TMS over aIPS were limited to fearful 299	
  

PLDs, and were virtually absent for happy PLDs. What do we know about action representation in the aIPS? 300	
  

Several lines of evidence in both human (Arfeller et al., 2013) and nonhuman primates (Borra et al., 2008; 301	
  

Matelli and Luppino, 2001; Nelissen et al., 2011; Rizzolatti et al., 2014) indicate that the action 302	
  

representation is hierarchically organized between a low-level pictorial representation in pSTS, and a more 303	
  

abstract high-level representation of action goal and intention in the parieto-frontal system (Cattaneo et al. 304	
  

2010). Notably, among the AOS, the coding of action goals occurs exactly in the aIPS (Tunik et al., 2007). 305	
  

The aIPS cortex generalizes actions across effectors (Cattaneo et al. 2010) and is capable of encoding action 306	
  

invariants such as action end-points, action outcomes, and environmental changes produced by actions 307	
  

(Hamilton and Grafton, 2006; 2008). In Experiment 2, we found evidence that the explicit recognition of the 308	
  

emotional component of body movements relies in part on the parietal node of the AOS. Visual observation 309	
  

of emotional body movements produces activity in several brain networks, such as visual regions, the limbic 310	
  

network, and the AOS (de Gelder et al. 2004, 2010; Meeren et al. 2013; Pichon et al. 2008; Tamietto et al. 311	
  

2007; van de Riet et al. 2009). There are several different neural mechanisms by which the human brain can 312	
  

identify and categorize observed affective displays. The capacity to recognize non-verbal affective 313	
  

communications generally relies on a core system that is likely to be located within the limbic system 314	
  

(Adolphs & Tranel, 2003; LeDoux, 1996; Ohman & Mineka, 2001). However, our findings indicate that 315	
  

(limitedly to explicit processes) some subtypes of emotional body movements may be encoded as purposeful, 316	
  

goal-directed actions in the aIPS. Conversely, the pSTS, being the site of simple movement representation, 317	
  

does not seem to contain a specific representation of affective movements. 318	
  

Dissociation between fear and happiness in the aIPS. 319	
  

State-dependent effects of TMS in aIPS were specific to fearful PLDs (Figure 4). Why do fearful 320	
  

stimuli seem to be predominantly represented in the aIPS compared to happy stimuli? A possible explanation 321	
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is that the affective state of fear itself is represented in the aIPS. Alternatively, it is possible the motor pattern 322	
  

expressing fear has characteristics that are best encoded by the aIPS, which preferentially processes goal-323	
  

directed, purposeful movements (Cattaneo et al., 2010). The fearful bodily movements represented in our 324	
  

stimuli were in most cases directed towards a position in space as they depicted self-protective or avoidance 325	
  

body movements directed away from specific threatening agents (See example videos at 326	
  

http://community.dur.ac.uk/a.p.atkinson/Stimuli.html). On the contrary, happy stimuli (e.g. exulting, 327	
  

clapping hands, joyful hopping) were not directed towards or away from specific sectors in space. Therefore, 328	
  

the fear-happiness dissociation could be explained by a higher goal-directed or space oriented in fearful 329	
  

movements, compared to happy ones. From an evolutionary point of view, the emotional movements are 330	
  

communicative in nature, and our brain’s prompt reactions to them is essential for the survival ( Darwin, 331	
  

1872; Ekman, 1957; Grèzes et al., 2007). In this sense, each emotional subtype has an own identity, and its 332	
  

affective state is not dissociable from its stereotyped communicative motor behaviour. The effective 333	
  

communication of fearful content is more likely relied on goal-directed and spatially-oriented actions than 334	
  

happiness. We therefore favour the hypothesis that fearful movements have a more “praxic” and “goal-335	
  

directed” quality compared to happiness. In line with that, several studies has reported that the motor system 336	
  

is specifically tuned to fearful body movements as shown by changes in corticospinal excitability in response 337	
  

to fearful body postures (Borgomaneri et al., 2012; Borgomaneri et al., 2015), fearful facial expressions 338	
  

(Borgomaneri et al., 2014), and negative natural complex scenes (Schutter et al., 2008). However, the role of 339	
  

activity in the corticospinal system in action comprehension remains unclear.   340	
  

 341	
  

Conclusions 342	
  

We conclude that, while performing explicit categorizations (i.e. high-level cognitive task), the 343	
  

human brain considers fearful emotional body movements as goal-directed actions. This conclusion is 344	
  

supported by the specific recruitment of the cortical network that is specialized in processing actions. The 345	
  

AOS therefore contains representations of affective movements, as long as these are interpreted as finalistic, 346	
  

goal-directed, meaningful actions. On the contrary, the pSTS is known to encode biological motion 347	
  

according to its characteristic kinematic, distinguishing it from non-human motion and is apparently not 348	
  

encoding  specifically neither fearful nor happy bodily actions. 349	
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Legend of Figures 532	
  

Figure 1 p. 10 533	
  

Figure 1. Representation of stimulation sites and respective anatomical landmarks. Right panel: 534	
  

individual renderings of the gray-white matter border in each of the 14 participants. Left panel: the same 535	
  

brains as in the right panel are shown with the main anatomical landmarks used for localization of TMS 536	
  

targets. Blue: central sulcus; green: postcentral sulcus; yellow: intraparietal sulcus; purple: Silvian fissure; 537	
  

red: superior temporal sulcus. The 3 stimulation sites (aIPS, pSTS and control) are represented with white 538	
  

spots. 539	
  

 540	
  

Figure 2 p. 11 541	
  

Figure 2: Timeline of TMS Experiments.  542	
  

 543	
  

Figure 3 p. 13 544	
  

Figure 3. Visualization of results in Experiment 1. The performance of each participant is represented 545	
  

with a black bar. The grey columns represent the mean of RTs in congruent and incongruent conditions. 546	
  

Main analysis revealed an adaptation after-effect for affective PLDs, with congruent stimuli being 547	
  

recognized significantly slower than incongruent ones. 548	
  

 549	
  

Figure 4 p. 14 550	
  

Figure 4: Visualization of Results of Experiment 2. Mean RTs are shown, classified according to emotion 551	
  

in the test PLD (happiness or fear); congruence with the adapter sequence (congruent or incongruent); and to 552	
  

the site of TMS (aIPS, pSTS or occipital control). The vertical bars represent the standard errors. 553	
  

 554	
  

Legend of Tables 555	
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Table 1 p. 6 556	
  

Table 1. Results of comparisons between the three emotional valences of PLDs for Accuracy, 557	
  

Intensity and Movement assessed in the pilot study. V is the value of the test statistic (Wilcoxon Signed-558	
  

Rank Test for paired samples).  559	
  

 560	
  

Table 2 p. 12 561	
  

Table 2: Mean and Standard Errors of RTs in all the conditions in Experiment 1.  562	
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Table 1 564	
  

 

Accuracy Movement Intensity 

 

V p-value V p-value V p-value 

Fearful vs Happy 30 0.39 12.5 0.139 26 0.919 

Fearful vs Neutral 21 0.034 31 0.759 55 0.002 

Happy vs Neutral 28.5 0.154 45 0.083 55 0.002 

 565	
  

Table 2 566	
  

emoTest Congruence Mean RT (ms) SE (ms) 

Fear Congruent 1317 50.32 

Fear Incongruent 1219 46.75 

Happiness Congruent 1267 43.92 

Happiness Incongruent 1252 36.84 

 567	
  


