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Certifying proofs are automated deductive proofs obtained as outcomes of a formal 
verification of temporal properties, where model checking is one of the most prominent 
approaches. The satisfiability problem for the Computation Tree Logic (CTL) cannot be 
reduced to the CTL model checking problem. Hence model checking algorithms for CTL
cannot be adapted for testing CTL satisfiability. However, any decision procedure of CTL
satisfiability can perform model checking tasks. Our context-based tableau approach to
CTL satisfiability introduces a tree-style one-pass tableau that does not require auxiliary 
constructions or extra-logical rules for branch pruning. As a consequence this method 
brings the classical duality between tableaux and sequent calculi in temporal logic. For 
any input formula, a closed tableau represents a formal sequent proof that certifies the 
unsatisfiability of the input, whereas an open tableau provides at least a model certifying 
the satisfiability of the input formula. Hence, in this framework the satisfiability test can 
be performed and complemented with certifying proofs and models. This is also true in 
relation to more expressive branching-time logic, Extended CTL (ECTL), which enriches
CTL with simple fairness formulae. This paper continues the development of dual systems 
of tableau method and sequent calculi, introducing these techniques for CTL and ECTL. 
We prove the soundness and completeness of both methods and define algorithms for 
obtaining systematic tableaux which produce models and formal proofs (as certificates) 
depending on whether the input formulae are satisfiable or not. We also describe the 
implementation of this technique and provide experimental results.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Temporal logic is nowadays essential for the specification and verification of concurrent and reactive systems. There are 
two types of temporal logics in relation to the treatment of the future of a given moment of time. When each moment of 
time has a unique possible future we have timelines as linear sequences of these moments (or states). Thus linear temporal 
logic extends classical propositional logic by future time temporal operators such as  - ‘at the next moment of time’,  -
‘eventually in the future’,  - ‘always in the future’ U - ‘from now until’, and R - ‘releases’. When each moment of time 
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is allowed to have several possible futures (or paths) we have branching temporal logics. The language of branching-time 
logics extends the language of linear temporal logic with paths quantifiers A - ‘for all paths’ quantifier, and E - ‘there exists a 
path’ quantifier. Thus, in linear temporal logics, the underlying models of time are discrete, linear sequences of states, finite 
in the past and infinite in the future. For branching temporal logics the underlying models of time are trees (or computation 
trees) where each branch is a discrete, linear sequence of states, finite in the past and infinite in the future. Recall that the 
formulation of temporal logic with the future-time temporal operators only is based on the remarkable Gabbay’s separation 
result [17,18].

The method of semantic tableaux, invented in the 1950’s by Beth and Hintikka and later perfected by Smullyan [35] and 
Fitting [16], is nowadays well established in the field of Automated Deduction. It brings together the proof-theoretical and 
the semantic approaches to the presentation of a logical system as a set of inference rules. A tableau is a tree-like structure 
designed to make semantic reasoning fully systematic to decide whether a set of formulae is satisfiable or not. The con-
struction of a tableau is guided by a set of rules that decompose formulae according to the semantics of its logical operators. 
Temporal tableaux, first introduced in [36], tackling the problem that formulae must be analysed in a infinite sequences of 
states, introduce a mechanism which controls repeated appearances of formulae and identify periodic situations in finite 
time. Later, we explain the two options to cope with this problem. For the survey of the tableau method for temporal logic 
we refer an interested reader to [24].

The hierarchy of CTL-type family of Branching-time logics (BTL) is defined by releasing restrictions on the concatenations 
of temporal operators and paths quantifiers which define classes of admissible state formulae distinguished for these logics. 
As in Computation Tree Logic (CTL) [10] every temporal operator must be preceded by a path quantifier, this logic cannot 
express fairness which requires at least the concatenation of  and . These are tackled by Extended Computation Tree 
Logic (ECTL) [14] which enables simple fairness constraints but not their Boolean combinations. ECTL+ [15] further extends 
the expressiveness of ECTL allowing Boolean combinations of temporal operators and ECTL fairness constraints (but not 
permitting their nesting). The logic ECTL# [7] extends ECTL+ by allowing the combinations (AU B) or AU B , referred 
to as modalities U and U . The logic CTL� , often considered as the full branching-time logic’ overcomes all these 
restrictions on syntax allowing any arbitrary combinations of temporal operators and path quantifiers.

Model checking (MC) [5,12] is one of the most developed and applied approaches to formal verification of temporal 
properties. In this paper we continue our investigation of deductive techniques for temporal logic targeting their potential 
application in MC. Our particular interest is in so called certified model checking (CMC) [30]. This type of model checking aims 
to

• generate proofs as certificates of the properties that are verified,
• produce counterexamples for those properties that are invalidated.

Certification of proofs is the process of obtaining automated deductive proofs as outcomes of a formal verification process. 
Traditional model checkers integrate some deductive methods for generating proofs, however, typically for invariant proper-
ties only. This idea has been recently extended to the certification of general linear-time properties [25]. It is known that for 
linear temporal logic both satisfiability and MC are PSPACE-complete [34] and can be reduced to each other. However, the 
MC problem for CTL is known to be P-complete [11], while the satisfiability problem for CTL is EXPTIME-complete [14]. As 
a consequence, an MC algorithm for CTL properties (for example implemented in NuSMV [9]) cannot be adapted for testing
CTL satisfiability. However, any decision procedure of CTL satisfiability can be used to perform MC tasks and if based on a 
deductive system, such procedure enables certifying proofs. More precisely, if ϕS is the formula that characterises the com-
putation tree of a system S ,2 then the verification problem S |= ψ for some property ψ reduces to the (un)satisfiability 
problem of the formula ϕS ∧ ¬ψ , where a model of the formula ϕS ∧ ¬ψ is a counterexample of the former verification 
problem. At the same time the proof of the unsatisfiability of ϕS ∧ ¬ψ (i.e. its refutation proof) certifies that S |= ψ .

There are two known ways to build tableau constructions for temporal logic formulae. Two-pass constructions check the 
validity of the given tableaux input in two passes - in the first pass a tableau graph is obtained and the second ‘pass’ checks 
the fulfillment of all eventualities. The one-pass tableau method [33] checks the fulfillment of eventualities on-the-fly along 
the construction on the branches using an extra-logical mechanism. This mechanism prevents the formulation of a sequent 
calculus dual to the tableau method. More recently, [19,7,3] introduced the context-based tableau method as a one-pass 
method that does not require any extra-logical auxiliary construction and therefore keeps the mentioned classical duality. 
Therefore it enables not only to certify satisfiability results by means of a model of the input set, but also the construction 
of certifying sequent proofs of the unsatisfiability of the input. The core context-based tableau construction is based on the 
concept of a context of an eventuality, which is a set of formulae that ‘accompanies’ the eventuality in the label of a node of 
a tableaux graph. Our specific tableau rules that involve context force the earliest fulfilment of eventualities.

This paper continues the development of (one-pass) context-based tableau method for temporal logics [19,7,2,3]. We aim 
at the formulation of a ‘generic’ approach to CMC for a variety of branching-time logics based on context-based tableaux 
method and dual sequent calculi. Here the crucial aspect of the developments of deductive techniques is that the same 
reasoning mechanism applies for both tasks - providing certificates and generating counterexamples. In previous works 

2 In the sense that the set of Kripke models of ϕS exactly represents the set of all possible computations of the system S (see e.g. [8]).
2



A. Abuin, A. Bolotov, M. Hermo et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100828
this context-based tableaux approach has been developed for propositional linear-time temporal logic, PLTL [19], and for 
the branching-time logic ECTL# [7]. The latter formalism specifically allows to reason about a richer than ECTL+ class of 
branching-time fairness constraints utilising the ‘until’ temporal operator. It has also been shown how, in the linear-time 
case, the method, being mingled with a SAT solver, can be invoked as part of the certified model checking for PLTL [2]. For 
the branching-time case, the developed context-based tableaux for ECTL# has quite complex rules. We also note that the 
distinguished (and unavoidable) feature of context-based technique for ECTL# is the utilisation of two types of contexts: 
the so-called ‘outer’ (similar to PLTL) context which is a collection of state formulae, is complemented by so called ‘inner’ 
context, a collection of path formulae. The context-based tableau methods for CTL and ECTL, similarly to the one for
PLTL, only need the “outer” context, yet, similarly to ECTL#, the generated tableaux are AND-OR trees. Subsequently, the 
application of a model checking procedure for CTL simply based on the existing technique for ECTL# would become far too 
‘non-intuitive’.

Hence, the development of a simpler context-based method for CTL and ECTL is an important task. This paper extends 
our earlier work [3] where context-based tableaux methods for CTL and ECTL were introduced. Our results provide a 
more intuitive tableau algorithm for CTL and ECTL, along with the dual sequent calculi and the extension of the tableau 
algorithm that constructs both the proof certificates and also the countermodels. We prove soundness and completeness of 
the method, and illustrate its practical implementation that produces certificates and counterexamples. All these bring us 
one step closer to the formulation of a ‘generic’ approach to certified model-checking applicable to a variety of branching-
time logics based on context-based tableaux method and dual sequence calculi –the same reasoning mechanism applies for 
both tasks– providing certificates and generating counterexamples.

A useful comparison of five satisfiability procedures for CTL can be found in [23] (two of these procedures are tableau-
based). The first method [6] is a two-pass tableau which, in the first pass creates a cyclic graph. In this graph, a ‘bad loop’ 
is a loop containing some eventuality that is not fulfilled along it. Therefore, in the second pass, ‘bad loops’ are pruned. 
The second method [1,22] is a single-pass tableaux decision procedure based on Schwendimann’s one-pass procedure for
PLTL [33]. This tableau method uses an additional mechanism for collecting information on the set of formulae in the nodes 
and passing it to subsequent nodes along branches. The information on previously generated nodes helps detecting ‘bad 
loops’ without constructing the whole graph.

To evaluate the feasibility of our approach we have implemented a prototype, called MomoCTL, of our tableau method 
for CTL that returns sequent proofs for unsatisfiable inputs, as well as models for satisfiable ones. MomoCTL has been 
tested against the benchmarks used in [23].3 We also compare our results with another, unique, one-pass tableau for CTL
which was introduced in [1] and, in turn, compared in [23] with other methods. Finally, we note that, to the best of our 
knowledge, there has been no explicit formulation of a tableau (one or two pass) method for ECTL.

Outline of the paper. In §2 we define the syntax and the semantics of CTL and ECTL as sublogics of CTL� . The formulation of 
the tableau method is presented in §3, where we first give some preliminaries and then overview the tableau construction 
as an AND-OR tree and provide examples. A systematic tableau construction and illustrative examples are presented in §4. 
Soundness and completeness of the tableau method for CTL are proved in §5. In §6 we introduce the dual sequent calculus 
for CTL. In §7, we describe our implementation that tests the satisfiability of a set of CTL formulae, and returns a formal 
proof (refutation certificate) for an unsatisfiable input and, otherwise, a model. In §8 we introduce further extension of the 
method for the logic ECTL. In §9 we draw the conclusions and prospects of future work that the presented results open.

2. Syntax and semantics of CTL and ECTL as sublogics of CTL�

As all logics we are interested in are subsumed by CTL� , for the sake of generality, we first present the CTL� syntax and 
then, by restricting it, derive the syntax for each of ECTL#, ECTL+ , ECTL and CTL. In §2.2.1 we introduce the syntax and 
semantics of CTL� . In §2.2.2 we discuss a hierarchy of sublogics of CTL� . In §2.2.3 and §2.2.4, we respectively define the 
grammars and the sets of modalities for CTL and ECTL formulae in negation normal form.

2.1. The logic CTL�

Definition 2.1 (Syntax of CTL�). Given Prop is a fixed set of propositions, and p ∈ Prop, we define sets of state (σ ) and path 
(π ) CTL� formulae over Prop as follows:

σ ::= T | p | ¬σ | σ1 ∧ σ2 | Eπ
πCTL� ::= σ | ¬π | π1 ∧ π2 |π | π1U π2

Two observations are needed here. Definition 2.1 above introduces the minimal CTL� grammar: we only use one path 
quantifier - E, and two temporal modalities -  and U . From this combination we can derive a richer syntax, which is often 
more appropriate to use when we speak about the intuitive interpretation of formal specification of targeted systems: the 

3 Available in http://users .cecs .anu .edu .au /~rpg /CTLComparisonBenchmarks/.
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other path quantifier - A and the remaining temporal operators (,  and R). In particular, the ‘falsehood’ constant F ≡ ¬T

and the classical disjunction operator is defined as follows: ϕ1 ∨ ϕ2 ≡def ¬(¬ϕ1 ∧ ¬ϕ2) (here and below we will use the 
notation ϕ1 ≡def ϕ2 to abbreviate that the structure ϕ1 is defined as ϕ2). The ‘for all paths’ quantifier Aϕ ≡def ¬E¬ϕ and 
the remaining temporal operators are defined as follows: ϕ ≡def TU ϕ , ϕ ≡def ¬¬ϕ , and ϕ1Rϕ2 ≡def ¬(¬ϕ1U ¬ϕ2).

Second, observe that in Definition 2.1 for the set of path formulae, πCTL� , we deliberately used an index CTL� to indicate 
that this grammar introduces a set of path formulae specifically for CTL� . At the same time we did not use any index for 
the set of state formulae. This reflects the tradition in defining the grammar for BTL logics in a way that the grammar for 
the path formulae determines relevant changes in the grammar for the set of state formulae. For CTL� , ‘no restrictions’ on 
the construction of path formulae determine ‘no restriction’ on the construction of the arguments of the ‘path’ quantifiers. 
For each of CTL� sublogics that we will define later, CTL and ECTL, their specific restrictions on the construction of path 
formulae will determine relevant classes of their state formulae (however, the grammar scheme to generate state formulae 
remains as presented here for CTL� formulae).

For interpreting CTL� formulae, we invoke Kripke structures that are labelled directed graphs corresponding to Emerson’s 
R-generable structures, i.e. the transition relation R is suffix, fusion and limit closed [13].

Definition 2.2 (Labelled Kripke structure). A Kripke structure, K , is given by a quadruple (S, R, I, L) where S �= ∅ is a set 
of states, R ⊆ S × S is a total binary relation, called the transition relation, I is a finite non-empty set of initial states, and 
L : S → 2Prop is a labelling function.

A path x through a Kripke structure K is an infinite sequence of states si, si+1, si+2 . . . (i ≥ 0) such that (s j, s j+1) ∈ R for 
any j ≥ i. Note that the totality of the transition relation R causes the infinity of paths. It is possible that a path in a Kripke 
structure, from some point onward, contains a repetitive sequence of states - a cycle. Later, in Definition 2.7, we introduce 
the notion of a cyclic Kripke structure that we will essentially use in this paper. A fullpath x through a Kripke structure K
is an infinite sequence of states s0, s1, s2 . . . , where s0 ∈ I . By fullpaths(K ) we denote the set of all fullpaths in K . Given a 
fullpath x ∈ fullpaths(K ) such that x = s0, s1 . . . , the state si (0 ≤ i) is denoted by x(i).

Given a path x = si, si+1, . . . and k ≥ 0, we denote by x<k a finite prefix of x of length k and by x≥k we denote its infinite 
suffix starting at state si+k . Hence x<k = si, si+1 . . . , si+k−1 and x≥k = si+k, si+k+1, . . . . Note that, x = x<k, x≥k (which means 
that this path x starts with prefix x<k to the k-th state and then, from this k-th state, continues with the suffix x≥k).

Given a Kripke structure K = (S, R, I, L) and a state s ∈ S , let K ′ = (S ′, R, {s}, L) be a Kripke structure obtained from 
K by restricting S to S ′ such that S ′ is the set of all states of S that are R-reachable from s, we will denote K ′ by K �s. 
Note that if I �= {s} then K � s is a proper substructure of K with the unique initial state s. Intuitively, K � s represents 
the behaviour of a system from state s ‘forward’. The set I helps modelling systems whose initial state is not definitely 
determined, for each s ∈ I , K �s represents the behaviour of the system for the initial state s.

For a given x ∈ fullpaths(K ) such that x = s0, s1 . . . , and given i ≥ 0, K �x(i) is the Kripke structure that allows us to 
express path’s fusion closure: if y ∈ fullpaths(K �x(i)) then x≤i−1, y ∈ fullpaths(K ).

For the convenience of the subsequent presentation (as we will be presenting the context-based tableaux and the dual 
sequent calculi for the sublogics of CTL�), in Definition 2.3 below we introduce the evaluation of CTL� state and path 
formulae constructed with the extended grammar - with both classical F and ∨, with both path quantifiers, and the full 
set of temporal operators - , , , U and R . In our formulation of the CTL� semantics below we will also label the 
conditions related to the evaluation of state CTL� formulae by ‘s’ followed by the reference to the relevant constraint (for 
example, ‘(s¬)’ labels the condition evaluating a state formula ¬σ in some state). Similarly, we label the conditions related 
to the evaluation of path CTL� formulae by ‘p’ followed by the reference to the relevant constraint (for example, ‘(p∨)’ 
labels the condition evaluating a path formula π1 ∨ π2 along some path). Recall that any CTL� state formula is also a path 
formula and that any rule (pσ ) applies when the path formula is really an state formula.

Definition 2.3 (Models). Given the structure K = (S, R, I, L), the relation |=, which evaluates path formulae in a given path 
x and state formulae at the state index i of the given path x, is inductively defined as follows.

(sT) K , x, i |= T

(sF) K , x, i �|= F

(sprop) K , x, i |= p iff p ∈ L(x(i)).
(s¬) K , x, i |= ¬σ iff K , x, i |= σ does not hold.

(s∨) K , x, i |= σ1 ∨ σ2 iff K , x, i |= σ1 or K , x, i |= σ2.

(s∧) K , x, i |= σ1 ∧ σ2 iff K , x, i |= σ1 and K , x, i |= σ2.

(sE) K , x, i |= Eπ iff there exists y ∈ fullpaths(K �x(i))
such that K , y |= π.

(sA) K , x, i |= Aπ iff K , y |= π holds for all y ∈ fullpaths(K �x(i)).
(pσ ) K , x |= σ iff K , x,0 |= σ .

(p¬) K , x |= ¬π iff K , x |= π does not hold.

(p ) K , x |= π ∨ π iff K , x |= π or K , x |= π .
∨ 1 2 1 2
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(p∧) K , x |= π1 ∧ π2 iff K , x |= π1 and K , x |= π2.

(p) K , x |=π iff K , x≥1 |= π.

(p) K , x |=π iff there exists j ≥ 0 such that K , x≥ j |= π.

(pU ) K , x |= π1U π2 iff there exists k ≥ 0 such that K , x≥k |= π2 and
K , x≥ j |= π1 for all 0 ≤ j < k.

(p) K , x |=π iff K , x≥ j |= π holds for all j ≥ 0.

(pR) K , x |= π1Rπ2 iff either K , x≥k |= π2 holds for all k ≥ 0, or there
exists some k ≥ 0 such that K , x≥k |= π1 ∧ π2

and K , x≥ j |= π2 for all 0 ≤ j ≤ k.

Given a Kripke structure K = (S, R, I, L). For a state formula ϕ , we say that K |= ϕ (in words, K models ϕ) if and 
only if K �s0 |= ϕ for all s0 ∈ I . For a set of state formulae �, K |= � if and only if K |= ϕ holds for every ϕ ∈ �. Mod(ϕ)

(resp. Mod(�)) denotes the set of all models of ϕ (resp. �).

To illustrate the semantics, we will consider the following CTL� formula

A(p ∧ E¬p) (1)

To show that this formula does not have a model, let us reason by contradiction assuming that there exists a model, say 
K , for this formula. We will show that this assumption leads us to a contradiction when trying to build such a model. 
To start with, we pick a state s0 from the set of the initial states of K and assume that formula (1) is true at K � s0. 
Note that fullpaths(K �s0) ⊆ fullpaths(K ). This means that for any fullpath, x ∈ fullpaths(K ), K , x |=(p ∧ E¬p). Now 
pick a path from fullpaths(K ), say x1. Among the states of x1, let x1(i) (i ≥ 0) be the first state satisfying the condition 
K , x≥i

1 |=p ∧ E¬p. This state must exist following the CTL� semantics. Therefore, both p and E¬p are satisfied 
along x≥i

1 . This means that p itself is satisfied at the state x1(i + 1), i.e. at the successor of x1(i) on the path x1. Since 
K , x≥i

1 |= E¬p there should be a path starting at state x1(i) such that ¬p is satisfied along this path. As ¬p can not be 
satisfied at the state x1(i +1) ∈ x≥i

1 where p has been already satisfied, this new path, call it x2, to satisfy ¬p should differ 
from x≥i

1 . Now we invoke the fusion closure property which we have already discussed in this section (after Definition 2.2). 
Due to the fusion closure property there is a fullpath in K with the prefix x<i

1 and the suffix x2, namely y1 = x<i
1 , x2. Since 

in the given formula (1), (p ∧ E¬p), is in the scope of the A path quantifier, any fullpath, hence, also y1, must satisfy 
(p ∧ E¬p). Hence, we must have a state x2( j) such that j > i and K , y≥ j

1 |=p ∧ E¬p. Considering this state 
x2( j), we invoke the same reasoning as we applied to the state x1(i) evaluating E(p ∧ E¬p) on the path x1. This leads 
us to the analogous conclusion, that there must be another path x3 starting at x2( j) such that ¬p is true along it. Again, 
the path y2 = x<i

1 , x< j
2 , x3 should satisfy the property E(p ∧ E¬p), hence we must have a state x3(k) such that k > j

and K , y≥k
1 |=p ∧ E¬p. Therefore (due to limit closure), there exists y ∈ fullpaths(K ) formed by the finite prefixes 

x<i
1 , x< j

2 , x<k
3 . . . , such that K , y �|=(p ∧ E¬p). So, our assumption on the satisfiability of (1) was wrong. Note that 

limit closure of the underlying Kripke structures was important for the above proof. Without the limit closure, for example, 
for so called bundled structures [21], the situation would have been different as we would not be able to assemble this new 
path y.

The following Definition 2.4 introduces notions of satisfiability, validity and equivalence for CTL� formulae and gen-
eralises satisfiability and validity for the sets of CTL� formulae. These are based on the concept of Mod introduced in 
Definition 2.3.

Definition 2.4 (CTL� satisfiability, validity and logical equivalence).

• A state formula ϕ is satisfiable (denoted Sat(ϕ)) whenever Mod(ϕ) �= ∅, otherwise ϕ is unsatisfiable (denoted UnSat(ϕ)).
• A state formula ϕ is valid whenever K |= ϕ for all K .
• A set of state formulae � is satisfiable (denoted Sat(�)) if Mod(�) �= ∅. Otherwise � is unsatisfiable (denoted UnSat(�)).
• A set of state formulae � is valid whenever K |= � for all K .
• State formulae ϕ and ϕ′ are logically equivalent if Mod(ϕ) = Mod(ϕ′) (denoted as ϕ ≡ ϕ′).

2.2. Sublogics of CTL�

For each of the BTL logics - ECTL#, ECTL+ , ECTL and CTL- which are sublogics of CTL� , we define its syntax over 
a fixed set of propositions Prop, preserving the definition of state formulae from CTL� (Definition 2.1) and formulating 
in Definition 2.5 the specific restrictions for these logics on the CTL� grammar that generate corresponding sets for path 
formulae. Note that similarly to the CTL� grammar, we also utilise here the minimal set of operators, for the sake of 
consistency of the presentation and its rigour.
5
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Table 1
Classification of context-based tableaux systems for CTL-type logics and relevant difficult cases of concatenations of tem-
poral operators and path quantifiers.

BTL Logic Eq E(q
∧¬q)

A((pUq)

∨(sU¬r))
A(p

∧E¬p)

Dual T & SC

B(U ,) (CTL) X X X X This paper
B(U ,,) (ECTL)

√
X X X This paper

B+(U ,,) (ECTL+)
√ √

X X
√

B+(U ,,U) (ECTL#)
√ √ √

X
√

B�(U ,) (CTL�)
√ √ √ √

X

Definition 2.5 (Path formulae for ECTL# , ECTL+ , ECTL and CTL).

logic inherited | characteristic

πECTL# ::= πECTL+ | σ1U (σ2 ∧ (TU σ3)) |
¬(TU ¬(TU (¬σ1 ∧ (TU ¬σ2)))) |
σ1U ¬(TU ¬σ2) | ¬(TU ¬(σ1U σ2))

πECTL+ ::= πECTL | π1 ∧ π2
πECTL ::= πCTL | ¬(TU ¬(TU ¬σ)) | TU ¬(TU ¬σ)

πCTL ::= σ | ¬π |σ | σ1U σ2.

Our aim is to highlight different kinds of path formulae that are generated in each sublogic of CTL� and those characteris-
tic to it. For example, for ECTL, the characteristic path formulae are those expressing linear-time fairness - ¬(TU ¬(TU ¬σ))

and TU ¬(TU ¬σ). Now, if, similar to the case of CTL� , we extend this minimal grammar by the derivable constraints, these 
fairness constraints are read as σ and σ . The characteristic path formulae for ECTL+ are π1 ∧π2 - those that allow 
Boolean combination of linear-time temporal operators and fairness constraints. Finally, the characteristic path formulae for 
ECTL# are σ1U (σ2 ∧σ3), (σ1 ∨σ2), σ1U (σ2) and (σ1U σ2).

It is important to note that the nesting of ‘pure path formulae’, totally unrestricted in CTL� , is restricted in its sublogics 
by relevant grammar cases for path formulae. Below, for each of the logics CTL� , ECTL#, ECTL+ , ECTL and CTL, we will 
provide an example of a formula which is expressible in this logic but is not expressible in its sublogic. The structures of 
these formulae reflect the characteristic path formulae for the considered sublogic. Hence, we will refer to these formulae as 
characteristic formulae for a dedicated logic under consideration. For example, an indicative CTL� formula A(p ∧E¬p)

mentioned above (1) is not an ECTL# formula. Rewriting it as A(TU (p ∧ E¬p)) we can see that p ∧ E¬p, the right-
hand side argument of the U operator, does not meet the ECTL# criteria: it is neither a state formula of the form σ1 ∧σ2

nor σ . Recall that the validity of (1) is directly linked to the limit closure property [13]. If we consider an ECTL# formula

A((pUq) ∧ (sU¬q)) (2)

we can see that this is not an ECTL+ formula because ECTL+ only allows Boolean combinations of the fairness constraints. 
In this ECTL# formula, pU q and sU ¬q, hence their conjunction, are not admissible ECTL+ formulae. Further, an 
ECTL+ formula (3) that does not belong to ECTL is

E(q ∧¬q) (3)

as q ∧¬q is not an admissible ECTL path formula.
Finally, the fairness constraint (4) which is expressible in ECTL cannot be constructed in CTL syntax as every temporal 

operator

Eq (4)

in a CTL formula must be preceded by a path quantifier. Obviously, writing, for example, an E quantifier before the q we 
obtain an admissible CTL structure EEq. However, comparing EEq with Eq, we can see that the latter requires 
a model where there exists a path, along which q is satisfied, while the former requires a model where there exists a 
path where each state gives rise for a path along which q is satisfied.

Note that it is important to distinguish the problem if a formula of a superlogic belongs to a sublogic and the problem if 
a formula of a superlogic can be expressed in a sublogic. For example, E(q ∨¬q), similarly to formula (3) does not 
belong to ECTL but unlike (3), it is expressible in this logic, as E(q ∨¬q) ≡ Eq ∨ E¬q which is an ECTL
formula if we define ∨ via ∧.

In Table 1, following the notation initially proposed in [13] and further tuned in [29], we represent BTL logics (listed in 
the first column) classified by their expressiveness using ‘B’ for ‘Branching’, followed by the set of only allowed modalities 
as parameters; B+ indicates admissible Boolean combinations of the modalities and B� reflects ‘no restrictions’ in either 
6
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concatenations of the modalities or Boolean combinations between them. Columns 2-5 of Table 1 illustrate the indicative 
formulae for the logics under considerations as follows:

• for ECTL, column 2: Eq, formula (4)
• for ECTL+ , column 3: E(q ∧¬q), formula (3)
• for ECTL#, column 4: A((pU q) ∧ (sU ¬q)), formula (2)
• for CTL� , column 5: A(p ∧ E¬p), formula (1)

Writing the ‘
√

’ in Table 1 against the listed logics we indicate if a logic meets these grammar rules. For example, 
column 2 now illustrates which of the logics can express the property Eq: while this property is not expressible in CTL, 
it becomes expressible in ECTL and any of its extensions. In this respect, ECTL has those minimal grammar requirements 
enabling to express the property, hence, we can treat Eq as ECTL indicative formula.

The last column in this table reflects the development of the dual system of context-based tableaux (T) and sequent 
calculus (SC) for CTL-type logics. The method has been developed for ECTL# [7] where the motivation was to cope with 
more complex cases of fairness. We note that this method developed for ECTL# is obviously applicable to all weaker logics. 
However, it only tackles one weaker logic - ECTL+- efficiently, introducing unnecessary complications for other ECTL#

sublogics. This is based upon the fact that ECTL+ and ECTL# have similar cases of the Boolean combinations of eventualities 
in the scope of A and E: disjunctions of the eventualities in the scope of the A quantifier and conjunctions of eventualities 
in the scope of the E quantifier, see [7] for details. Thus, Table 1 also reflects syntactical cases of concatenations of temporal 
operators and path quantifiers that are difficult for context-based tableaux.

To manage these cases, in addition to α- and β-rules, that are standard to the tableaux, we introduce novel β+-rules 
which use the context to force the eventualities to be fulfilled as soon as possible. As ECTL# is more expressive than 
ECTL+ in allowing new type of fairness constraints that use the U operator, the relevant rules introduced in [7] cover all 
difficult concatenations of operators in ECTL+ . However, simply treating the case of context-based tableaux for the other 
two sublogics of ECTL#–ECTL and CTL– as solved by the relevant development for a richer logic ECTL#, would introduce 
extra unnecessary complexity in the construction of dual system of relevant tableaux and sequent calculi. Hence, for both
ECTL and CTL, simpler context-based tableaux methods are required. In this paper we concentrate on bridging this gap in 
our roadmap in supplying BTL logics by this technique, and develop the method for CTL and ECTL.

Subsequently, we proceed by defining the CTL and ECTL semantic conditions in Definition 2.6. These are derived from 
the CTL� semantic evaluation rules given in Definition 2.3.

Definition 2.6 (CTL and ECTL semantics).

• The semantics for logic CTL is obtained from the CTL� semantics given in Definition 2.3 by preserving the evaluation 
conditions (sT ) - (sA) and (p) - (pR) and setting π, π1 and π2 to be a state formula.

• The semantics for logic ECTL is obtained from the above CTL� semantics by deleting the evaluation conditions (p∨)

and (p∧) and also restricting π in the following rules as follows:
– in the (p) rule π is a state formula,
– in the (p) rule π is a state formula or a formula σ ,
– in the (p) rule π is a state formula or a formula σ , and
– in the (pU ) and (pR) rules π1, π2 are state formulae.

For technical convenience, we will use the fact that cyclic Kripke structures have the ability to characterise satisfiability 
in branching temporal logics.

Definition 2.7 (Cyclic sequence, path and Kripke structure). Let K = (S, R, I, L) be a given Kripke structure. Let z be a finite 
sequence of states z = s0, s1, . . . , s j in S such that (sk, sk+1) ∈ R for every 0 ≤ k < j. Then

• z is a cyclic sequence if and only if there exists si, 0 ≤ i ≤ j such that (s j, si) ∈ R . In this case, the subsequence si, . . . , s j
of z is called a loop denoted as 〈si, . . . , s j〉ω .

• If z is a cyclic sequence, then the path

s0, s1, . . . , si−1〈si, si+1, . . . , s j〉ω
is denoted by path(z) and is called cyclic.

A Kripke structure K is cyclic if every fullpath is a cyclic path over a cyclic sequence of states.

The fact that branching-time satisfiability can be reduced to the interpretation over cyclic models only, is derived from 
the existence of the finite model property [14], see also [26]. In particular, for any CTL (ECTL) formula ϕ , such that 
7
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Mod(ϕ) �= ∅, there always exists a model K ∈ Mod(ϕ) such that K is cyclic. Therefore, when speaking about the satis-
fiability in CTL (hence ECTL) we can consider cyclic Kripke structures. Cyclic paths are also known as ultimately periodic
paths.

2.3. Negation normal form grammars for CTL and ECTL

In this section, we introduce the grammars for CTL and ECTL formulae in negation normal form (shortly, nnf). Along the 
rest of this paper we only deal with formulae in this normal form.

From now on, we abbreviate by Q either of the path quantifiers A or E.

Definition 2.8 (Syntax of CTL and ECTL in nnf). Let Prop be a fixed set of propositions, then the sets F CTL
nnf of CTL formulae 

and F ECTL
nnf of ECTL formulae in nnf (over Prop) are given by the grammar (where the elements of Lit are called literals):

Lit := F | T | p | ¬p where p ∈ Prop
σCTL := Lit | σ1 ∧ σ2 | σ1 ∨ σ2 | Qσ | Qσ | Q(σ1U σ2) | Qσ | Q(σ1Rσ2)

σECTL := σCTL | Qσ | Qσ

Proposition 2.9 (Closure under negation). For any ϕ ∈ F CTL
nnf , we also have nnf(¬ϕ) ∈ F CTL

nnf . For any ϕ ∈ F ECTL
nnf , we also have 

nnf(¬ϕ) ∈ F ECTL
nnf .

Proof. By structural induction on the formulae, using the following well-known equivalences (e.g. [13]):

¬T ≡ F ¬Aϕ ≡ E¬ϕ ¬A(ϕRψ) ≡ E(¬ϕU ¬ψ)

¬F ≡ T ¬Eϕ ≡ A¬ϕ ¬E(ϕRψ) ≡ A(¬ϕU ¬ψ)

¬¬ϕ ≡ ϕ ¬Aϕ ≡ E¬ϕ ¬Aσ ≡ E¬σ
¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬Eϕ ≡ A¬ϕ ¬Eσ ≡ A¬σ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬A(ϕU ψ) ≡ E(¬ϕR¬ψ) ¬Aσ ≡ E¬σ
¬Aϕ ≡ E¬ϕ ¬E(ϕU ψ) ≡ A(¬ϕR¬ψ) ¬Eσ ≡ A¬σ
¬Eϕ ≡ A¬ϕ

The following result (e.g. [28]) is easily established using the above equivalences and the semantics of the constraints 
used in nnf.

Proposition 2.10 (nnf preserves satisfiability and unsatisfiability). For any σ ∈ F CTL
nnf it holds that Mod(σ ) = Mod(nnf(σ )). Similarly, 

for any σ ∈ F ECTL
nnf it holds that Mod(σ ) = Mod(nnf(σ )).

For simplicity, we will write ∼ϕ instead of nnf(¬ϕ). Also, for a finite set � = {ϕ1, . . . , ϕn}, we let ∼� = nnf(¬ 
∧n

i=1 ϕi).
For the formulation of our tableaux technique we will need a concept of a consistent (inconsistent) set of formulae, 

which is introduced in the following definition.

Definition 2.11 (Syntactically consistent and inconsistent sets of formulae). A set � of state formulae of CTL and ECTL in nnf is 
(syntactically) inconsistent (denoted Incons(�)) if and only if F ∈ � or {σ , ∼σ } ⊆ � for some σ . Otherwise, � is said to be 
consistent.

2.4. ECTL and CTL basic modalities

Next, we introduce a concept of a basic modality which reflects the restrictions on forming the basic admissible combi-
nations of temporal operators in the scope of a path quantifier. We consider a basic modality of CTL or ECTL logic to be 
of the form QT, where T is a temporal operator. The structure QT is generated by the grammar rules for these logics in 
Definition 2.5. We can identify all basic modalities in a given formula ϕ by finding its most embedded modality(es), say 
M1, then looking at the next basic modality in which M1 is embedded, etc. For example, a basic modality for CTL is any 
admissible combination of Q and a temporal operator, i.e. Q, Q, QU , Q, and QR , while ECTL basic modalities are 
those identified above for CTL and, additionally, the modalities that appear due to new admissible combinations  and 
 in the scope of a path quantifier –Q and Q. If we analyse a CTL formula EAp then the most embedded 
basic modality, M1, would be Ap, which is embedded as EM1. These are generalised in Definition 2.12.

Definition 2.12 (ECTL and CTL basic modalities).

MCTL ::= c | QM | QM | Q(MU M) | QM | Q(MRM).

M ::= M | QM | QM.
ECTL CTL

8
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where c stands for a purely classical formula (we can consider a purely classical formula as a zero-degree basic modality) 
and M stands for any basic modality of CTL in the definition of MCTL and of ECTL in the definition of MECTL .

In what follows, every CTL modality QU or Q is called eventuality and (Q)i stands for i consecutive occurrences of 
a basic modality Q.

CTL tableau rules are based on fixpoint characterisation of its basic modalities: (in the equations below μ and ν stand 
for ‘minimal fixpoint’ and ‘maximal fixpoint’ operators, respectively)

Eϕ = νρ(ϕ ∧ Eρ) E(ϕRψ) = νρ(ψ ∧ (ϕ ∨ Eρ))

Aϕ = νρ(ϕ ∧ Aρ) A(ϕRψ) = νρ(ψ ∧ (ϕ ∨ Aρ))

Eϕ = μρ(ϕ ∨ Eρ) E(ϕU ψ) = μρ(ψ ∨ (ϕ ∧ Eρ))

Aϕ = μρ(ϕ ∨ Aρ) A(ϕU ψ) = μρ(ψ ∨ (ϕ ∧ Aρ))

(5)

This fixpoint characterisation of basic CTL and ECTL modalities as maximal or minimal fixpoints give rise to their analytical 
classification as α- or β-formulae which are associated, in the tableau with α- and β-rules: Q, and QR as maximal 
fixpoints are classified as α-formulae while Q and QU as minimal fixpoints are β-formulae. This is also reflected in the 
known equivalences:

Eϕ = ϕ ∧ EEϕ E(ϕRψ) = ψ ∧ (ϕ ∨ EE(ϕRψ))

Aϕ = ϕ ∧ AAϕ A(ϕRψ) = ψ ∧ (ϕ ∨ AA(ϕRψ))

Eϕ = ϕ ∨ EEϕ E(ϕU ψ) = ψ ∨ (ϕ ∧ EE(ϕU ψ))

Aϕ = ϕ ∨ AAϕ A(ϕU ψ) = ψ ∨ (ϕ ∧ AA(ϕU ψ))

(6)

3. Context-based tableau method for CTL

The tableau method determines whether a given set of CTL state formulae, �, is satisfiable or not. In addition, in the 
affirmative case a model (Kripke structure) of � can be generated from the tableau, whereas in the negative case we can 
generate a proof in the dual sequent calculus. In this section, we introduce the tableau method: we define the set of 
tableau rules and a general view and intuitions on how tableaux are constructed. In §4 we provide a precise algorithm for 
constructing tableaux in a systematic way. The generation of models and proofs will be explained in §7. Recall that we 
assume that every formula is in nnf.

We precede the formal introduction of the technique by its informal overview. The main concepts are informally intro-
duced here and technically defined later in this section or in §4. A tableau for a set of CTL formulae is a graph, namely an 
AND-OR-Tree (for the account on AND-OR-Trees we refer an interested reader to [27]), where nodes are labelled by sets of
CTL formulae. The initial node (or root) of the tableau is labelled by some given set of CTL formulae whose satisfiability we 
want to check. Non-terminal nodes are further expanded by applications of the tableau rules to their labelling sets. There 
are two kinds of terminal nodes. First, any node labelled by an inconsistent set of formulae (see Definition 2.11) is terminal. 
The second type are the so-called loop-nodes. Intuitively, we say that a branch (i.e. a path from the root to some node n) has 
a loop (or lasso) when the label of n (or some superset of it) has already appeared in this branch. In this case, n is called a 
loop-node. Loop-nodes are terminal whenever some precise eventuality fulfilment conditions hold in the branch. Intuitively, 
such conditions ensure that the (systematic) tableau for any satisfiable set of formulae represents a model of this set.

For the node expansion, we have the following types of tableau rules: α- and β-rules, the ‘next-state’ rule, which reflects 
a ‘jump’ from a ‘state’ to a ‘pre-state’, and, finally, characteristic to our approach, β+-rules, where the use of the context 
(of an eventuality) is essential (recall that the context is a collection of state formulae accompanying the eventuality in the 
label of the node). The use of the context forces the soonest fulfillment of eventualities, preventing their useless delays. In 
our procedure, the application of β+-rules to eventualities is essential to detect ‘bad’ loops. Only if β+-rules have already 
been applied to every eventuality in the branch and there is no inconsistent node in this branch, then we can establish if 
all the eventualities have been fulfilled. When this check for fulfilment of eventualities is positive we have a ‘good loop’ and 
this branch would be part of a model of the input formula. Otherwise, when there is at least one unfulfilled eventuality, we 
choose one to which a corresponding β+-rule has not been applied.

Next we proceed with formally defining the construction of the tableaux and introducing necessary concepts and tableau 
rules.

Definition 3.1 (Tableau, consistent and incons. Node, closed and open branch). A tableau for a set of CTL state formulae � is a 
labelled tree 〈T , τ , �〉, where T is a tree, and τ is a mapping of the nodes of T to sets of state formulae, such that the 
following two conditions hold:

• The root is labelled by the set �.
• For any other node m ∈ T , its label τ (m) is a set of state formulae obtained as the result of the application of one of 

the rules in Figs. 1, 2 and 3 to its parent node n. When the applied rule is R, we term m an R-successor of n.
9
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(∧)
�,σ1 ∧ σ2

�,σ1,σ2
(Q)

�,Qσ

�,σ ,QQσ

(∨)
�,σ1 ∨ σ2

�,σ1 | �,σ2
(QU )

�,Q(σ1U σ2)

�,σ2 | �,σ1,QQ(σ1U σ2)

(QR)
�,Q(σ1Rσ2)

�,σ2,σ1 ∨ QQ(σ1Rσ2)
(Q)

�,Qσ

�,σ | �,QQσ

Fig. 1. α- and β-rules.

Let �, A, E be an elementary set of formulae where

• � is a set of literals,
• A is a possibly empty set of A formulae {Aσ1, . . . , Aσ�}, and
• E is a non-empty set of E formulae {Eσ ′

1, . . . , Eσ ′
k}.

(E)
�,A,E

A↓, σ ′
1 & . . . & A↓, σ ′

k

(A)
�,A
A↓

where A↓ = {σ1, . . . , σ�}. Hence, A↓ is empty if and only if A is empty.

Fig. 2. Next-state rules (‘&’ joins AND-successors in the conclusion of (E)).

A node n of a tree T is consistent if its label, τ (n), is a (syntactically) consistent set of formulae (see Definition 2.11), else n
is inconsistent. If a branch b of T , contains an inconsistent node, then b is closed else b is open.

Fig. 1 follows the standard for the tableaux classification of rules into α-rules and β-rules - this is based on the analytic 
classification of CTL modalities and reflects their interpretation as fixpoints (see equations (6)) of the formula (in the node 
label) that is ‘designated’ for the rule application. In the systematic tableau construction, at each node, the designated 
formula is chosen following some strategy that we specify later (in 4). An α- or β-rule is applied to a node labelled by a set 
of formulae �, ϕ , where ϕ is a designated formula that determines the rule (to be applied), and � is a possibly empty set 
of formulae that accompany ϕ in the label of the node. Then, if ϕ is an α-formula - ∧, Q, or QR - then a corresponding 
α-rule applies, while if ϕ is a β-formula - ∨, QU , or Q- then a corresponding β-rule applies. These applications of α-
and β-rules generate the set of formulae in the conclusion of the rule as label(s) for the successor node(s): one successor in 
case of an α-rule, or two successors in case of a β-rule. In β-rules we use | to emphasise that successors are OR-siblings.

When a node n is labelled by an elementary set of formulae – i.e. a set which is exclusively formed by literals and formulae 
of the form Qσ – then this structure is analogous to a ‘state’ in the terminology of [36]; it enables us to construct the 
successors of n corresponding to ‘pre-states’ [36].

According to the next proposition we are guaranteed to reach such a tree structure, where the last node of every branch, 
at this stage of the construction, is a state.

Proposition 3.2. Any set of CTL state formulae has a tableau T such that the last node of every branch is labelled by an elementary set 
of state formulae.

Proof. Repeatedly apply to every expandable node any α- or β-rule until all expandable nodes are labelled by elementary 
sets of formulae. Then, the appropriate next-state rule must be applied to every expandable node depending on the number 
of formulae starting by E appearing at the node.

Proposition 3.2 enables the application of the so-called ‘next-state rules’ depicted in Fig. 2. Applying rule (E) we split 
the current branch at node n where the set

�,Aσ1, . . . ,Aσ�,Eσ ′
1, . . . ,Eσ ′

k (7)

is satisfied, 0 ≤ l and k ≥ 1, into k branches: the number of branches is equal to the number of E constraints, where the 
successors of n along these branches, say m1, . . . , mk are AND-successors of n. We label each AND-successor m j (1 ≤ j ≤ k)

in the following way. As any constraint Aσi (1 ≤ i ≤ l) in the premise of the rule would propagate σi to any successor 
node, then each of these successor nodes, m j should have the set σ1, . . . , σl as part of its label. The next part of the label 
of m j is coming from the corresponding Eσ ′

s (1 ≤ s ≤ k) as this existential constraint only determines the label for one of 
the AND-successors. Thus, each AND-successor m j of n has its label of the form σ1, . . . , σl, σ ′

s . The rule (E) splits branches 
10
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(QU )+ �,Q(σ1U σ2)

�,σ2 | �,σ1,QQ((σ1∧ ∼�′)U σ2)
(Q)+ �,Qσ

�,σ | �,QQ((∼�′)U σ)

where �′ = � \ {(A)iAσ ∈ � | i ≥ 0}

Fig. 3. β+-Rules.

E(pU q) ,A(FR¬q)

q,A(FR¬q) p,E E((p ∧ E(TU q))U q) ,A(FR¬q)

(EU )+

Fig. 4. Application of rule (EU )+ .

in a ‘conjunctive’ way, and we use the symbol & to represent the generation of AND-successors of node n. Thus, the graphs 
generated with the application of the ‘next-state’ rule (E) are indeed AND-OR trees. When k = 0 in the elementary set of 
formulae that labels node n (7), the rule (A) is applied. The application of both rules (E) and (A) represents a ‘jump’ 
to the next state, hence the set of literals � in (7) disappears in every child produced by these rules.

Next we extend our set of tableau rules with the new two rules named as β+-rules (Fig. 3). Note that the (Q)+ rule 
can be derived from the application of the (QU )+ to the CTL formula TU σ . These rules, similarly to β-rules, also split 
a branch into two branches. Moreover, whenever a β+-rule -(Q U )+ or (Q)+- is applicable, so is the respective β-rule 
-(Q U ) or (Q). Which rules, β-rules or β+-rules are applied at each step of the tableau construction, does not affect 
the correctness. However, for completeness, some strategy is required. It is easy to see that the extension with β+-rules 
preserves the property given in Proposition 3.2.

These β+-rules are the only rules in our system that make use of the context -their application forces the eventualities to 
be satisfied as soon as possible (from the point of the tableau construction where an eventuality is selected to be expanded 
with a β+-rule). The context is given by the possibly empty set � that accompanies the designated formula, which in 
this case is an eventuality. Inside one of formulae of the right-hand child of each β+-rule we add a conjunct ∼�′ that 
is calculated by deleting some specific formulae from � (the context). In particular, if � is empty, then so is �′ and the 
formula ∼�′ is the constant F.

In what follows, any formula of the form Q((σ1∧ ∼�′)U σ2) (respectively, Q((∼�′)U σ)) is called the contextualised 
variant of Q(σ1U σ2) (resp. Qσ ) provided that QQ((σ1∧ ∼�′)U σ2) (respectively, QQ((∼�′)U σ)) has been obtained 
by the application of the corresponding β+-rule to a formula Q(σ1U σ2) (resp. Qσ ) with a context �. Note that the 
contextualised variants will appear after one application of the rule (E) or (A), which removes all Q prefixes.

Recall that ∼�′ is the nnf of the negation of the conjunction of all formulae in �′ that are left from � after performing 
the set-theoretical difference constraint indicated in the formulation of the rule. The idea now is that ∼�′ should also be 
satisfied until σ2 becomes satisfied. This prevents the repetition of the context while σ2 is ‘delayed’. Note that �′ does not 
include the A constraint (prefixed by any sequence of the A constraints) because these formulae would be necessarily 
repeated along any branch - indeed, if we use ∼� instead of ∼�′ we will generate a branch for each A that will be 
immediately closed.

Example 3.3. Consider � = {q, E¬p, Aa} to be the context of the formula Ap. Then, �′ = {q, E¬p} and ∼�′ is the 
formula ¬q ∨ Ap. Consequently, the contextualised variant A((¬q ∨ Ap)U p) of Ap, preceded by A, is introduced 
in the branch where Ap is delayed. This variant says that p should be fulfilled (in all branches) after the next state, 
but while p is not fulfilled some formula in the context {q, E¬p, Aa} should be ‘violated’. Since Aa is a formula that 
cannot be violated in any branch (it is in the initial node), then either ¬q or ¬E¬p (in nnf, Ap) should be satisfied in 
all path until p is satisfied. If the context of eventuality Ap was empty or, for example, {Aa}, then the contextualised 
variant of Ap would be A(FU p).

Next, we illustrate in Example 3.4 the application of the β+-rule (EU )+ to a node labelled by {E(pU q), A(FR¬q)}. 
A tableau for {E(pU q), A(FR¬q)} is also exhibited in [1,22]. In Section 4 we will use this tableau as a running example, 
complete its construction, and compare it with the tableau presented in [1,22]. From now on, we highlight with the gray 
colour the formula (or subformula) to which the β+-rule is (or will be) applied.

Example 3.4. In Fig. 4, the context of the eventuality E(pU q) in the root is the formula A(FR¬q). The rule (EU )+
splits the tableau into two branches. In the right-hand successor the middle formula EE((p ∧ E(TU q))U q) contains the 
contextualised variant of the eventuality E(pU q) that is constructed by the conjunction of p and nnf(¬A(FR¬q)) = E(TU q)

as new left-hand component of the until formula. The effect is that along the future states (from the next one), while q is 
not satisfied, not only p should be satisfied, but also the negation of the current context (i.e. E(TU q)) should be satisfied.
11
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AA(FR¬q),EE(pU q) ∧ E¬q

AA(FR¬q),EE(pU q),E¬q

E(pU q),A(FR¬q) A(FR¬q),¬q

F ∨ AA(FR¬q),¬q

F,¬q AA(FR¬q),¬q

A(FR¬q)

(∧)

(E)

Closed Tableau (Fig. 7) (AR)

(∨)

⊗ (A)

Fig. 5. A closed tableau for {AA(FR¬q),EE(pU q) ∧ E¬q}.

4. Systematic tableau construction

In this section we define a recursive algorithm, A sys , that constructs a fully expanded systematic tableau for a given set 
of formulae �. Intuitively, ‘fully expanded’ means that we ‘complete’ the formation of the tableau in the sense that every 
expandable node has been already expanded. In §7 we explain how this algorithm, with more parameters and results, 
returns a model when the resulting tableau is open or, otherwise, a proof in the dual sequent calculus that corresponds 
with the closed tableau. We first define all the main concepts involved in the algorithm.

A branch is a finite linear structure – formed by the successive nodes, from the root to a leaf– inside the tree-shaped 
structure of the tableau. When the leaf of a branch has occurred previously in the branch, it is called a loop-node, and 
the sequence of nodes finitely represents an infinite loop branch. We will load the current branch by ‘stages’ instead of 
‘node-by-node’ mode.

Definition 4.1 (Stage). Given a branch b of a tableau T , a stage in b is every maximal subsequence of successive nodes 
ni, ni+1, . . . , n j in b such that τ (nk) is not a (E)-child or (A)-child of τ (nk−1), for all k such that i < k ≤ j. We denote 
by Stages(b) the sequence of all stages of b. The successor relation on Stages(b) is induced by the successor relation on b. 
The labelling function τ is extended to stages as the union of the original τ applied to every node in a stage.

When the input is a satisfiable set of formulae, the systematic tableau aims to obtain one loop-node since it represents 
a cycle in a cyclic Kripke structure that could be part of a model of the input set of formulae.

Definition 4.2 (Loop-node). Let b = n0, n1, . . . , ni (where i > 0) be a tableau branch and Stages(b) = s0, s1, . . . , sm (where 
m > 0 and ni ∈ sm). Then, ni is a loop-node if there exists some 0 ≤ j < m such that τ (ni) ⊆ τ (s j). We say that s j is the 
companion stage of the node ni and s j, . . . , sm are the stages in the loop.

Example 4.3. To illustrate the notions of stage and loop-node, let us consider the tree (tableau) in Fig. 5, which contains our 
running example as a sub-tree. Note that the application of rule (E), at step 2, generates two AND-successors (AND-edges 
are denoted with a big circle). The left successor is our running example and will be fully expanded later (Fig. 7). The right-
most branch is formed by five nodes. This branch has three stages, the first one is formed by the first two nodes, hence its 
label is the union of their labels, i.e. the set {AA(FR¬q), EE(pU q) ∧ E¬q, EE(pU q), E¬q}. The second stage in 
that branch is labelled by {A(FR¬q), ¬q, AA(FR¬q)}. The last node A(FR¬q) is a loop-node because it is included in the 
second stage, which is its companion stage.

When a loop-node is found, the fulfilment of eventualities along the branch must be ensured. When this fulfillment 
condition holds we say that the branch is eventuality-covered. It is obvious that universal eventualities (AU or A) should 
be fulfilled in all branches that go across the node where these eventualities appear, as reflected by rules (Q). However, 
as a consequence of the distribution of existential formulae in different branches performed by the rule (E), an existential 
eventuality (EU or E) should be fulfilled only along the branch it belongs to after the (E) splitting, but not in the 
other branches. Indeed, more than one existential eventuality could appear in the stages of a tableau branch b, however not 
all of them should be fulfilled in b but, on the contrary, some of them could be ‘delayed’ and then, by an application of rule 
(E), could be ‘sent’ to a different tableau branch.

Example 4.4. For example, in Fig. 5 after the splitting by (E) in two AND-successors, the existential eventuality E(pU q)

goes to the left subtree, hence it could not be satisfied in the right subtree, where E¬q forces to satisfy ¬q.
12
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Hence, the notion of eventuality coverage (in branches) differentiates existential eventualities from universal ones es 
explained above.

Definition 4.5 (Eventuality fulfillment and eventuality-covered branch). Let b be a tableau branch such that Stages(b) =
s0, . . . , sn . An eventuality Q(σ1U σ2) (resp. Q(σ)) is fulfilled in the branch b if and only if σ2 ∈ τ (sk) (resp. σ ∈ τ (sk)) 
for some 0 ≤ k ≤ n. The branch b is eventuality-covered if and only if the following two conditions hold:

• Every eventuality AU or A that occurs at some stage of b is fulfilled in b.
• For every eventuality ϕ = E(σ1U σ2) (resp. ϕ = Eσ ) that occurs in some stage of b either ϕ is fulfilled in b or 

Eϕ /∈ sk for some 0 ≤ k ≤ n.

We only need to check the above two conditions for those eventualities that have not been selected in the branch, 
because loops cannot contain an unfilled eventuality that has been selected at some point.

In the next example we have a branch with two existential eventualities.

Example 4.6. Consider a branch of five nodes labelled by the following sets:

1. ¬p, ¬q, Ep , Eq

2. ¬p, ¬q, E E((p ∨ q ∨ A¬q)U p) , Eq

3. ¬p, ¬q, E E((p ∨ q ∨ A¬q)U p) , EEq

4. E((p ∨ q ∨ A¬q)U p)

5. p

This branch would be generated by successively applying the rules (E)+ to the selected eventuality Ep in 1, (E)

to eventuality Eq in 2, (E) in 3, and (E)+ in 4, and taking only one of the children at each step. This branch is 
eventuality covered, though Eq is not fulfilled in the branch. Indeed the application of the rule (E) at item 3 generates 
two AND-branches and the other branch starts with node Eq.

Since (E)-children are AND-siblings, whenever one of them does not have a possible model, the parent node is unsat-
isfiable. On the contrary, to ensure the satisfiability of a node where (E) is applied it should have a collection of satisfiable 
branches that includes all the (E)-successors of any node labelled by an elementary set of formulae. These collections of 
branches are called bunches. Next, we define the notion of a bunch and how bunches determine whether a tableau is open, 
closed and fully expanded.

Definition 4.7 (Bunch, closed bunch and closed tableau). A bunch H is a collection of branches which is maximal with respect 
to (Q)-successors, i.e. every (A)-successor and every (E)-successor of any node in H is also in H . A bunch H is closed
if and only if at least one of its branches is closed, otherwise it is open. A tableau is closed if, and only if, all its bunches 
are closed.

Definition 4.8 (Fully expanded bunch and tableau). A branch b is fully expanded if and only if either b is closed (see Defini-
tion 3.1) or the last node in b is a loop-node and b is eventuality-covered. A bunch is fully expanded if all its branches are 
fully expanded. A tableau is fully expanded if all its bunches are fully expanded.

Example 4.9. The tableau in Fig. 5 is closed in spite of the open sub-tableau at the right (E)-successor of the second 
node. Any bunch in this tableau should include at least one branch across the left node {E(pU q), A(FR¬q)} and at least 
one branch across the right node {A(FR¬q), ¬q}. Independently of the branch chosen in the right-hand tree (the closed or 
the open one), any branch in the left-hand subtree is closed (the details of the closed tableau for {E(pU q), A(FR¬q)} are 
given later). Therefore, any bunch in the tableau of Fig. 5 is closed.

Any open tableau has at least one open bunch, formed by one or more open branches. Open branches are ended in a 
loop-node. Open bunches represent models, specifically cyclic models as defined in Definition 2.7.

Example 4.10. In Fig. 6 we depict an open tableau that is a slight modification of the closed tableau in Example 4.3 (Fig. 5). 
This tableau has three open branches. One open branch is crossing the left-hand (E)-child of the second node. Two open 
branches cross the right-hand child of that node. Hence, there are two possible open bunches, depending on which of the 
latter two branches we choose.

Next, we introduce the recursive Algorithm 1, called A sys , that constructs a fully expanded systematic tableau for any input 
� and returns a Boolean value saying if such tableau is closed. The current branch of the tableau construction is passed 
13
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AA(pR¬q),E¬p ∧ E¬q

AA(pR¬q),E¬p,E¬q

A(pR¬q),¬p

¬q, p ∨ AA(pR¬q),¬p

¬q, p,¬p ¬q,AA(pR¬q),¬p

A(pR¬q)

A(pR¬q),¬q

p ∨ AA(pR¬q),¬q

p,¬q

∅

AA(pR¬q),¬q

A(pR¬q)

(∧)

(E)

(AR)

(∨)

⊗ (A)

(AR)

(∨)

(A) (A)

Fig. 6. An open tableau for {AA(pR¬q),E¬p ∧ E¬q}.

through the recursive calls. We can see the branches as lists of stages, which in turn are lists of formulae. Hence, in the first 
call the branch that receives A sys as input is [[�]]. We illustrate the steps of the algorithm with details of the construction 
of the tableaux in Figs. 5, 6 and 7.

Algorithm 1: A sys . 
Input = �: set of formulae, b: Branch. 
Output = is_closed: boolean, b′: Branch.

1 if � = ∅ then
2 is_closed, b′ := False, b;
3 else if Incons(�) then
4 is_closed, b′ := True, b;
5 else if � ⊆ τ (s) for some stage s in b & Ev_Covered(b) then
6 is_closed, b′ := False, b;
7 else if β+_is_applicable(�) then
8 select_eventuality(�) ;
9 is_closed, b′ := apply_β+_rule(�, b)

10 else if α_β_is_applicable(�) then
11 is_closed, b′ := apply_α_β_rule(�, b)

12 else // � is an elementary set
13 Let � = �, A(�), Eσ1, . . . , Eσk , � is a set of literals and k ≥ 0.
14 if k ≥ 1 then
15 Let �i = �, σi for all 1 ≤ i ≤ k;
16 n := k;
17 else
18 �1, n := �, 1
19 end
20 i, is_closed :=0, False;
21 while is_closed = False & i < n do
22 is_closed, b′ := A sys(�i, b + [[�i]]);
23 i := i + 1 ;
24 end
25 end

Lines 1-6 give the three non-recursive (or simple) cases of A sys . Lines 1-2 deal with the case of the empty input which 
is trivially satisfiable. Note that by application of the rule (A) when A is empty we could get this case. Indeed, this is 
a special case of loop-node labelled by the empty set, whose companion is itself. In Fig. 6 there is a node {p, ¬q} where 
(A) is applied and the loop on the empty set is produced. Lines 3-4 deal with the terminal nodes by inconsistency. For 
example, the four terminal nodes in Fig. 7 correspond to this case. Three of their labels contain q, ¬q or F or both. The 
fourth (right-most) terminal node contains the inconsistent set {E(TU q), A(FR¬q)}.

In line 5, Algorithm 1 detects a ‘good loop’. An example of this is the last node in the right-most branch in Fig. 5.
Otherwise, there is either a ‘bad loop’ (i.e. a loop in a non-eventuality-covered branch) or not a loop, and the algorithm 

tries to apply (if possible) a β+ rule to some selected eventuality. This is the goal of lines 7-9.
Line 7 stands for the first checked case whenever some tableau rule must be applied to �. The rules α, β could really be 

applied in any order. However, next-state rules can only be applied to elementary sets of formulas. For generating simplest 
contextualised variants, we just prioritised the application of the β+-rules. Note that at each stage at most one eventuality 
can be selected, and at most one β+ rule is applied. More precisely, the call select_eventuality(�) selects an unfulfilled 
eventuality to force its fulfilment by application of the corresponding β+-rule. Since β+-rules keep the contextualised vari-
14
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E(pU q) ,A(FR¬q)

q,A(FR¬q)

q,¬q, F ∨ AA(FR¬q) p,E E((p ∧ E(TU q))U q) ,A(FR¬q)

p,E E((p ∧ E(TU q))U q) ,¬q, F ∨ AA(FR¬q)

p,E E((p ∧ E(TU q))U q) ,¬q, F

p,E E((p ∧ E(TU q))U q) ,¬q,AA(FR¬q)

E((p ∧ E(TU q))U q) ,A(FR¬q)

q,A(FR¬q)

q,¬q, F ∨ AA(FR¬q)

p ∧ E(TU q),E E((p ∧ E(TU q))U q) ,A(FR¬q)

p,E(TU q),E E((p ∧ E(TU q))U q) ,A(FR¬q)

(EU )+

(AR)

⊗ (AR)

(∨)

⊗

(E)

(EU )+

(AR)

⊗

(∧)

⊗
Fig. 7. A closed tableau for {E(pU q),A(FR¬q)}.

ant as selected, the predicate call β+_is_applicable(�) gives true if and only if either there is already a selected eventuality 
QU ∈ � or else, both of the following hold: there exists a not selected QQU ∈ � and there exists a (non-fulfilled) even-
tuality to be selected. In the former case, select_eventuality(�) keeps the selection. In the latter case, it does perform a 
selection.

Example 4.11. For example, in Fig. 7 the eventuality E(pU q) is selected in the root, and its contextualised variant E((p ∧
E(TU q))U q) is kept selected along the right-most branch.

The application of a specific β or a β+ rule R , inside the calls of the procedures apply_β+_rule(�, b) or apply_α_β_rule
(�, b), produces two R-children, namely �1 and �2, that are OR-siblings. Hence, in these cases, lines 9 and 11, first do the 
recursive call is_closed, b′ := A sys(�1, b1). Then, only if is_closed is true, do the call is_closed, b′ := A sys(�2, b2). The above 
branches b1 and b2 stand for the adequate actualisation according to �1 and �2. As an example, in Algorithm 2, we provide 
the details for applying the rule (EU )+ to input �, E(σ1U σ2). Note that branches are conveniently updated in recursive 
calls. In fact, function update(b, �) adds to the last stage of b the formulae in � that previously did not occur in that stage.

Algorithm 2: Apply (EU )+ to � = �, E(σ1U σ2).

1 � := � \ {E(σ1U σ2)};
2 is_closed, b′ := A sys(�1, b1) where �1 = � ∪ {σ2} and b1 = update(b, �1);
3 if is_closed = True then
4 is_closed, b′ := A sys(�2, b2) where �2 = � ∪ {σ1, E((σ1∧ ∼�′)U σ2)}
5 and b2 = update(b, �2);
6 end

Example 4.12. In the tableau of Fig. 7, the first application of (EU )+ to the root node, calls A sys(�1, b) for �1 =
{q, A(FR¬q)} which returns true in is_closed after the construction of the left-most sub-tree. Then, the call A sys(�2, b)

where �2 contains the contextualised variant, constructs the right sub-tree to return also true. Hence, the whole tableau is 
closed. Note that, in Fig. 7, there is a second call to apply (EU )+ that works in a similar way. At this second application the 
selected eventuality E((p ∧ (E(TU q))U q), which is kept selected from the previous nodes in the branch, has the same con-
text that at the first application. Therefore, as we simplify ϕ ∧ ϕ to ϕ , the contextualised variant for the next step becomes 
unchanged.

For each rule that splits branches (i.e. β or β+) there is an application algorithm similar to Algorithm 2. For the α-rules, 
that enlarge the branch with one node, a recursive call to A sys on the only one child suffices.

In line 10, the algorithm checks and applies applicable α- or β-rules. When no α- or β-rules are applicable, it means 
that � is an elementary set of formulae (line 12). Therefore, in lines 13-23, the rule (E) or (A) is applied, by iterating 
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p,AE¬p,AEp, A¬p

p,AE¬p,AEp,¬p p,AE¬p,AEp,A A(¬pU ¬p)

p,E¬p,Ep,AAE¬p,AAEp,A A(¬pU ¬p)

¬p,AE¬p,AEp, A(¬pU ¬p)

¬p,AE¬p,AEp

¬p,AE¬p,AEp,A A((¬p ∧ p)U ¬p)

¬p,E¬p,Ep,AAE¬p,AAEp,A A((¬p ∧ p)U ¬p)

¬p,AE¬p,AEp, A((¬p ∧ p)U ¬p)

¬p,AE¬p,AEp

¬p,AE¬p,AEp,¬p ∧ p,A A((¬p ∧ p)U ¬p)

¬p,AE¬p,AEp, p,A A((¬p ∧ p)U ¬p)

p,AE¬p,AEp, A((¬p ∧ p)U ¬p)

p,AE¬p,AEp,¬p

p,AE¬p,AEp, (¬p ∧ p),A A((¬p ∧ p)U ¬p)

p,AE¬p,AEp,¬p,A A((¬p ∧ p)U ¬p)

p,AE¬p,AEp, A(¬pU ¬p)

p,AE¬pAEp,¬p

p,AE¬p,AEp,¬p,A A(¬pU ¬p)

(A)+

⊗ (A) + (A)

(E)

(AU )+

(A) + (A)

(E)

(AU )+

(∧)

⊗

(AU )+

⊗

(∧)

⊗

(AU )+

⊗

⊗

Fig. 8. A closed tableau for {p,AEp,AE¬p,A¬p}.

recursive calls to A sys(�i, b + [[�i]]) for each child labelled by �i . Note that, each application of a tableau rule (Q)

produces a recursive call for a (Q)-child �i , where the current branch b is actualised to include a new stage containing 
just �i (this is expressed in the algorithm by b + [[�i]]). Let us also observe that (E)-children are AND-siblings, hence 
the iteration on the (E)-children terminates as soon as one of them is closed. On the contrary, if every (E)-child is 
open the tableau should have a collection of open branches including all the (E)-successors of any node labelled by an 
elementary set of formulae, i.e. and open bunch. Any open bunch of the systematic tableau, constructed by the algorithm 
A sys introduced in this section, enables the construction of a model for the initial set of formulae.

Example 4.13. For example, in Fig. 5, if the left-most sub-tableau (i.e. the closed tableau in the figure) is firstly constructed, 
then its right-hand child would not be constructed, since any bunch would be necessarily closed (see Example 4.3). In 
Example 4.10 we show an open tableau that contains two open bunches.

Example 4.14. The call A sys with input � = {E(pU q), A(FR¬q)} constructs the closed tableau in Fig. 7 as explained along 
this section. A tableau for the same input � is also exhibited in [1,22]. Note the direct correspondence between our context-
based tableau (Fig. 7) and the one in [1,22] – they have exactly the same nodes. The right-most branch, in our case, closes 
by (syntactical) inconsistency, likewise all the other branches. The difference is that, in this branch, the inconsistency comes 
from the use of the context in the selected eventuality. The corresponding branch in the tableau in [1,22] is closed by the 
detection of a “bad loop” using information loaded during the construction of the previously constructed branches.

Let us recall that in [7] some (subsumption-like) simplification rules were introduced to ensure the termination of the 
tableau method for the logic ECTL#. The method for CTL (and also for ECTL) requires the following simplification rule:

(�QU ) {Q((σ1 ∧ χ)U σ2),Q(σ1U σ2)} −→ {Q((σ1 ∧ χ)U σ2)} (8)

By means of this rule, any contextualised variant of an eventuality ϕ subsumes the original eventuality ϕ that could repeat-
edly appear otherwise. Our algorithm systematically performs these simplifications in nodes.

To complete this section, we provide an example of systematic tableau construction involving a universal eventuality A
where bunches should cross along the two applications of (E).

Example 4.15. Fig. 8 presents a closed fully-expanded tableau for the unsatisfiable set of formulae {p, AEp, AE¬p,
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A¬p}. The systematic construction starts by selecting the unique eventuality and applying the rule (A)+ . The successive 
contextualised variants of this eventuality are kept selected and the rule (AU )+ is applied to them after each application 
of the next-state rule (E). The rules (A) and (∧) are applied to reach the elementary sets where (E) is applied. For 
saving space, we sometimes represent two applications of the rule (A) in the same step.

It is worth noting that, in spite of the two open branches (see the two loops in Fig. 8), every bunch in the figure is 
closed. Indeed, any bunch should contain branches for crossing the four (E)-nodes (underlined in Fig. 8). It is easy to see 
that any bunch contains at least one closed branch. The “bad loop detection approach” ([1,22]) would create a “bad loop” 
branch similar to the largest branch of our tableau in which p is satisfied. For that, the information of the other branches 
(where p is satisfied) should be used.

5. Soundness and completeness

The logics CTL and ECTL are sublogics of ECTL# and the tableau method presented here is the adaptation of the method 
in [7]. In this section we essentially adapt to CTL the soundness and completeness proofs developed in [7]. In §8 we extend 
both results to ECTL. To prove the soundness of the tableau method for CTL (Theorem 5.2), we show that every tableau 
rule in Figs. 1, 2 and 3 preserves satisfiability in the sense of the next Lemma 5.1.

Lemma 5.1 (Soundness of the tableau rules for CTL). Consider all the rules in Figs. 1, and 2 and 3.

1. For any α-rule of the form 
�

�1
, we have Sat(�) if and only if Sat(�1).

2. For any β-rule and any β+-rule of the form 
�

�1 | �2
, we have Sat(�) if and only if Sat(�1) or Sat(�2).

3. If � is a consistent set of literals, then
(a) Sat(�, ∪{Aσ1, . . . , Aσ�, Eσ ′

1, . . . , Eσ ′
k}) if and only if

Sat({σ1, . . . , σ�, σ ′
i }) for all 1 ≤ i ≤ k.

(b) Sat(� ∪ {Aσ1, . . . , Aσ�}) if and only if Sat({σ1, . . . , σ�}).

Proof. All these statements follow very easily from the ‘systematic’ application of the semantic definitions of the temporal 
modalities, except the ‘if’ direction’ for the β+-rules. Next we prove the ‘if’ direction of the rules (QU )+ for Q = E and 
Q = A, because this proof entails the proof for the rules (Q)+ as particular cases (using the abbreviation σ = TU σ ).

For the ‘if’ direction of the rule (EU )+ , let K |= �, E(σ1U σ2) and let x be the path in K such that K , x |= �, σ1U σ2. 
Then, let j be the least i ≥ 0 such that K , x, i |= σ2. If j = 0, then K , x, 0 |= �, σ2. Otherwise, if j > 0 then K , x, m |= σ1, 
for all 0 ≤ m < j. Consider k to be the greatest of those m such that K , x, m |= �. Hence, K , x, h |=∼�, for all h such that 
k + 1 ≤ h < j. In particular, by definition of �′ (obtained from �) it is easy to see that K , x, h |= σ for every σ ∈ (� \ �′). 
Therefore, K , x, h |=∼�′ , for all h such that k + 1 ≤ h < j. Consequently,

K , x,k |= �,σ1,EE((σ1∧ ∼�′)U σ2).

For the ‘if’ direction of rule (AU )+ , let us suppose that

UnSat(� ∪ {σ2}) and UnSat(� ∪ {σ1,AA((σ1∧ ∼�′)U σ2)}).
We will show that UnSat(� ∪ {A(σ1U σ2)}). For that, let us consider any arbitrary K such that K |= � to show that 
K �|= A(σ1U σ2). By the above unsatisfiability hypothesis, if K |= �, then both K �|= σ2 and K �|= σ1 ∧ AA((σ1∧ ∼
�′)U σ2). Then, there are two possible cases. First, if K |= ¬σ1 ∧ ¬σ2, then it is obvious that K �|= A(σ1U σ2). Second, if 
K |= ¬σ2 ∧ ¬AA((σ1∧ ∼�′)U σ2), then there exists x1 ∈ fullpaths(K ) and i1 > 0 that satisfy both K , x1, j |= ¬σ2 for all 
j such that 0 ≤ j ≤ i1, and K , x1, i1 |= ¬σ1 ∨ �′ . Since all the formulae in � \ �′ are satisfied in all states along all paths, 
indeed K , x1, i1 |= ¬σ1 ∨ �. Therefore, if K , x1, i1 |= ¬σ1, then obviously K �|= A(σ1U σ2). Otherwise, if K , x1, i1 |=
�, applying the same reasoning for K � x1(i1) as we did above for K , we can conclude that there should be a path 
x2 ∈ fullpaths(K �x1(i1)) and some i2 > 0 such that either K �x1(i1), x2, j |= ¬σ2 for all j such that i1 ≤ j ≤ i2 and K �
x1(i1), x2, i2 |= ¬σ1 ∨ �. Hence, if K �x1(i1), x2, i1 |= ¬σ1, then trivially K �|= A(σ1U σ2). Otherwise, K �x1(i1), x2, i1 |= �. 
Hence, there are two possible scenarios: 1.) After a finite number of iterations we get a path y = x<i1

1 , x<i2
2 , · · · , x<ik

k · · · such 
that K , y, j |= ¬σ2 for all j such that 0 ≤ j ≤ ik and K , y, ik |= ¬σ1. 2.) The infinite iteration of the second case yields 
a path y = x<i1

1 , x<i2
2 , · · · , x<ik

k , · · · (that exists by the limit closure property) such that K , y, i |= ¬σ2 for all i ≥ 0. In both 
scenarios we have K �|= A(σ1U σ2) holds for any arbitrary K that satisfies �. Thus, UnSat(� ∪ {A(σ1U σ2)}).

According to Lemma 5.1 and the definition of the closed tableau, we prove the following result.

Theorem 5.2 (Soundness of the tableau method for CTL). Given any set of state formulae �, if there exists a closed tableau for � then 
UnSat(�).
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Proof. In a closed tableau for �, at least one leaf in each bunch must have an inconsistent set of formulae that labels it. 
Therefore, this set is unsatisfiable. Then, by (the converse of) Lemma 5.1, the label of the root node, �, is unsatisfiable.

Next, we prove the refutational completeness of the tableau method for CTL (Theorem 5.7). For that, we firstly define 
the notion of a saturated stage and prove some auxiliary properties of the stages and bunches of the systematic tableau. 
These properties are necessary to prove that every open bunch in the systematic tableau represents a model of the initial 
set of formulae � (Lemma 5.6).

Definition 5.3 (αβ+-saturated stage). We say that a stage s = ni, . . . , n j in the tableau A sys for � is αβ+-saturated if and 
only if it satisfies the following conditions:

1. For all σ1 ∧ σ2 ∈ τ (s): {σ1, σ2} ⊆ τ (s).
2. For all Qσ ∈ τ (s): {σ , QQσ } ⊆ τ (s).
3. For all σ1 ∨ σ2 ∈ τ (s): σ1 ∈ τ (s) or σ2 ∈ τ (s).
4. For all Q(σ1Rσ2) ∈ τ (s): {σ2, σ1 ∨ QQ(σ1Rσ2)} ⊆ τ (s).
5. For all Q(σ1U σ2) ∈ τ (s): σ2 ∈ τ (s) or {σ1, QQ(σ1U σ2)} ⊆ τ (s) or

{σ1, QQ((σ1∧ ∼�′)U σ2)} ⊆ τ (s), where
�′ = (τ (ni) \ {Q(σ1U σ2)}) \ {(A)iAϕ | i ≥ 0 and (A)iAϕ ∈ τ (ni)}.

6. For all Q(σ) ∈ τ (s): σ ∈ τ (s) or {QQ(σ)} ⊆ τ (s) or
{QQ((∼�′)U σ)} ⊆ τ (s), where
�′ = (τ (ni) \ {Qσ }) \ {(A)iAϕ | i ≥ 0 and (A)iAϕ ∈ τ (ni)}.

The construction of the systematic tableau applies exactly one β+-rule to exactly one selected eventuality (if any) at the 
first node of the stage, and then applies exhaustively all the applicable α- and β-rules to the formulae in the stage, until 
the branch closes, or its leaf is labelled by an elementary set, or it contains a loop-node. Consequently, the following result 
can be trivially proved by construction.

Proposition 5.4. Given any set of state formulae �, the systematic tableau A sys for � is fully expanded.

Proof. It is trivial, by construction, that every stage in A sys is αβ+-saturated.

Next we prove a crucial property of the systematic tableau management of eventualities by means of the selection policy.

Proposition 5.5. Let b be an open branch of the tableau A sys for �.

1. If a formula Q(σ1U σ2) is selected at some stage si ∈ Stages(b), then there exists some stage sk ∈ Stages(b) (for some k ≥ i) such 
that σ2 ∈ τ (sk) and σ1 ∈ τ (s j) for all j ∈ {i, . . . , k − 1}.

2. If a formula Q(σ) is selected at some stage si ∈ Stages(b), then there exists some stage sk ∈ Stages(b) (for some k ≥ i) such 
that σ ∈ τ (sk).

Proof. We will prove item 1. Item 2 is the particular case where σ1 = T and σ2 = σ . If Q(σ1U σ2) is the selected formula 
at stage si ∈ Stages(b), by Algorithm 1, the set labelling the first node at each stage s j ( j ≥ i) of b has the form

�s j ,Q((σ1 ∧ (∼�si ∧ · · ·∧ ∼�s j−1))U σ2)

where each �s j is the context of the selected formula containing the contextualised variant of Q(σ1U σ2) at the first node 
of each stage s j . Since no other β+-rule is applied each �s j is a subset of the finite set formed by all state formulae that are 
subformulae of some formula in �si and their negations. Hence, there are a finite number of different �s j . Therefore, after 
finitely many applications of the β+-rule, �sh = �s j , for some h >= i, for some j ∈ {i, . . . , h − 1}, and σ1 ∧ (∼�si ∧ · · ·∧ ∼
�sh−1 ) ∈ τ (sh). In particular, ∼�sh ∈ τ (sh), hence, �sh must be inconsistent. Since b is open, this is a contradiction. This 
means that, for some k ≥ i the application of the corresponding β+-rule should force that σ2 ∈ τ (sk). In addition, by 
Proposition 5.4 and Definition 5.3(5), σ1 ∈ τ (s j) for all j ∈ {i, . . . , k − 1}.

Lemma 5.6 (Model existence). Let � be any set of formulae. For any fully expanded bunch H of the tableau A sys for �, there exists a 
Kripke structure KH such that KH |= �.

Proof. Let H be any fully expanded bunch of A sys . We define KH = (S, R, L) such that S = ⋃
b∈H Stages(b) and for any 

s ∈ S: L(s) = {p | p ∈ τ (n) ∩ Prop for some node n ∈ s}. R is the relation induced in Stages(b) for each b ∈ H . Any branch in 
b ∈ H is open, hence b ends in a loop-node. Moreover, every eventuality has been selected in some stage of b. Therefore, 
18



A. Abuin, A. Bolotov, M. Hermo et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100828
there exists a (possibly empty) set �� such that for some i ≥ 0: b = s0, s1, . . . , si−1, si, si+1, . . . , s j, n� , where each sh stands 
for a stage and n� is a non-expandable loop-node labelled by �� whose companion node is the first node at stage si . We 
are going to prove the following fact:

KH , sa,0 |= σ for any a ∈ {0, . . . , j} and any formula σ in L(sa)

by structural induction on the formula σ .
The base of the induction, for σ = p ∈ Prop, follows by definition of KH . The cases where σ has one of the forms 

σ1 ∧ σ2, Qσ , σ1 ∨ σ2 and Q(σ1Rσ2) are trivial by Definition 5.3 and the induction hypothesis. Hence, to complete the 
inductive proof we will show that KH , sa, 0 |= Q(σ1U σ2) for any Q(σ1U σ2) ∈ L(sa). The case for all Qσ ∈ L(sa) follows 
as a particular case by σ ≡ TU σ . Consider any Q(σ1U σ2) ∈ L(sa). Since b is eventuality-covered and n� is a loop-
node, Q(σ1U σ2) must be the selected eventuality at some node between the states sa and s j . Hence, by Proposition 5.5
and the definition of KH , there should be a state sk ∈ S (for some a ≤ k ≤ j) such that σ2 ∈ L(sk) and σ1 ∈ L(sz) for all 
z ∈ {a, . . . , k − 1}. Then, by induction hypothesis, KH , sk, 0 |= σ2 and KH , sz, 0 |= σ1 for all z ∈ {a, . . . , k − 1}. Therefore, 
KH , sa, 0 |= Q(σ1U σ2).

To complete the proof, we show that the successor relation between states in KH is well-defined. For that, consider any 
tableau node in any stage sa that is labelled by an elementary set

{�,Aσ1, . . . ,Aσn,Eσ ′
1, . . . ,Eσ ′

k}
where � is a consistent set of literals, by rule (E), sa has (in KH ) a successor state si

a+1, for each i ∈ {1, . . . , k}, such that 
L(si

a+1) = {σ1, . . . , σn, σ ′
i }. We can assume (by the above proved fact) that KH , si

a+1, 0 |= {σ1, . . . , σn, σ ′
i } for all i ∈ {1, . . . , k}. 

Therefore, we can infer that KH , sa, 0 |= {�, Aσ1, . . . , Aσn, Eσ ′
1, . . . , Eσ ′

k}.

Next, we prove the refutational completeness of the tableau method.

Theorem 5.7 (Refutational completeness for CTL). For any set of state formulae �, if UnSat(�) then there exists a closed tableau for 
�.

Proof. Suppose the contrary, i.e. there exists no closed tableau for �. Then the systematic tableau A sys for � is open. 
Hence, there is at least one fully expanded bunch H in A sys . By Lemma 5.6, there exists a Kripke structure KH such that 
KH |= �. Consequently, Sat(�).

Finally, we prove the completeness of our tableau method for CTL, and the first step here is to show that the method 
terminates.

Theorem 5.8 (Termination of the tableau method for CTL). For any set of state formulae �, the construction of the fully expanded 
tableau A sys for � terminates.

Proof. Tableau rules produce a finite branching, hence König’s Lemma, applies. Therefore, it suffices to prove that every 
branch is finite. By Proposition 5.5, the application of a β+-rule to a selected formula stops after a finite number of steps. 
Since the number of selectable eventualities in any open branch is finite, any open branch is eventuality-covered after a 
finite number of eventuality selections. Recall that we assume the eventuality selection strategy to be fair.

Theorem 5.9 (Completeness of the tableau method for CTL). For any set of state formulae �, if � is satisfiable then there exists a 
(finite) open fully expanded tableau for �.

Proof. By Theorems 5.2 and 5.8, and the fact that the fully expanded systematic tableau A sys for � is finite and cannot be 
closed.

6. The dual sequent calculus for CTL

In this section we introduce a sequent calculus for CTL, called C� , that is dual to the tableau method presented in 
previous sections. Indeed, the sequent calculus, given in Fig. 9, is simply a reformulation of the tableau rules as a one-sided 
sequent calculus, the right-hand side of every sequent is the constant F.

The calculus C� contains classical rules, such as (∧) and (∨) for Booleans, and (Ctd) and (F) for contradictions. The last 
two rules correspond to the branch closing conditions of the tableau method and they are premise-free, while all the other 
rules have at least one premise.

In the rules (QR), (Q), (QU ), (Q), (QU )+ , and (Q)+ , the symbol Q again denotes either of the path quantifiers,
E or A. Therefore, each of these rules stands for a pair of analogous rules for each path quantifier, which correspond directly 
to the tableau rules of the same name.
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(∧)
�,σ1, σ2 � F

�,σ1 ∧ σ2 � F
(∨)

�,σ1 � F | �,σ2 � F

�,σ1 ∨ σ2 � F
(Ctd)

�,σ ,∼σ � F
(F)

�, F � F

(QR)
�,σ2, σ1 ∨ QQ(σ1Rσ2) � F

�,Q(σ1Rσ2) � F
(Q)

�,σ ,QQσ � F

�,Qσ � F

(QU )
�,σ2 � F �,σ1,QQ(σ1U σ2) � F

�,σ1U σ2 � F
(Q)

�,σ � F �,QQσ � F

�,Qσ � F

(QU )+ �,σ2 � F �,σ1,QQ((σ1∧ ∼�′)U σ2) � F

�,Q(σ1U σ2) � F

(Q)+ �,σ � F �,QQ((∼�′)U σ) � F

�,Qσ � F

(E)
�,σ � F

�0,A�,Eσ � F
(A)

� � F

�0,A� � F

Fig. 9. The Sequent Calculus for C� . In (QU )+ and (Q)+ , �′ = � \ {(A)iAσ ∈ � | i ≥ 0}. In (E) and (A), �0 is a set of literals.

(Ctd)

q,¬q, F ∨ AA(FR¬q)) � F

(AR)

q,A(FR¬q) � F

(F)

p,ψ,¬q, F � F

See Fig. 11

p,ψ,¬q,AA(FR¬q) � F

(∨)

p,ψ,¬q, F ∨ AA(FR¬q) � F

(AR)

p,EE((p ∧ E(TU q))U q)︸ ︷︷ ︸
ψ

,A(FR¬q) � F

(EU )+
E(pU q),A(FR¬q) � F

Fig. 10. Sequent proof for {E(pU q),A(FR¬q)}.

Note that the children of an elementary set with more than one formula starting by E are AND-siblings, so that in 
the calculus it is enough to refute one of this AND-children. This corresponds to the tableau notion of a closed bunch 
(Definition 4.7).

The soundness and completeness of C� easily follows from its duality with the tableau method for CTL presented in the 
previous sections.

Theorem 6.1 (Soundness). For any set of CTL formulae �, if there exists a sequent proof of � � F, then UnSat(�).

Proof. By induction on the length of the sequent calculus proof, it suffices to prove that every sequent rule is correct in 
the sense that if the set of formulae in the left-hand-side of each premise is unsatisfiable then the set of formulae of the 
conclusion is unsatisfiable. For the rules (Ctd) and (F) is trivial. For the rest of the sequent rules the proof is similar to the 
proofs of the analogous tableaux rules in Lemma 5.1.

Theorem 6.2 (Completeness). For any set of CTL formulae �, if UnSat(�), then there exists a sequent proof of � � F.

Proof. If UnSat(�), then the tableau A sys for � is fully expanded and closed. Each leaf of A sys corresponds to an axiom 
obtained by application of the sequent rule (Ctd) or (F). A sequent proof of � � F is obtained from axioms by an application 
of the sequent rule corresponding to a tableau rule in the construction of A sys .

Example 6.3. In Fig. 10, we show the sequent proof that corresponds to the closed tableau in Fig. 7.

7. MomoCTL: implementation and experimentation

In this section we describe our implementation of the context-based tableau for CTL, called MomoCTL, and also compare 
its performance results with Gore’s CTL-prover [1,22], called TreeTab. The benchmarks used were presented in [23] and they 
are available in http://users .cecs .anu .edu .au /~rpg /CTLComparisonBenchmarks/.
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(Ctd)

q,¬q, F ∨ AA(FR¬q) � F

(AR)

q,A(FR¬q) � F

(Ctd)

p,E(TU q),ψ,A(FR¬q) � F

(∧)

p ∧ E(TU q),ψ,A(FR¬q) � F

(EU +)

E((p ∧ E(TU q))U q),A(FR¬q) � F

(E)

p,ψ,¬q,AA(FR¬q) � F

Fig. 11. Sequent proof for {p,ψ,¬q,AA(FR¬q)} where ψ = EE((p ∧ E(TU q))U q).

Algorithm 3: E . 
Input = �: set of formulae, b: Branch, P: Proof, M: Model. 
Output = is_closed: boolean, b′: Branch, P’: Proof, M’: Model.

1 if � = ∅ then
2 is_closed, b′ := False, b;
3 M ′ := EmptyLeaf _Model;
4 else if (F) applies to � then
5 is_closed, b′ := True, b;
6 P ′ := Proof Leaf ((F), �);
7 else if (Ctd) applies to � then
8 is_closed, b′ := True, b;
9 P ′ := Proof Leaf ((Ctd), �);

10 else if � ⊆ τ (s) for some stage s in b & Ev_Covered(b) then
11 is_closed, b′ := False, b;
12 M ′ := ModelLeaf (s, b);
13 else if β+_is_applicable(�) then
14 select_eventuality(�) ;
15 is_closed, b′, P ′, M ′ := apply_β+_rule(�, b, P , M)

16 else if α_β_is_applicable(�) then
17 is_closed, b′, P ′, M ′ := apply_α_β_rule(�, b, P , M)

18 else // � is an elementary set
19 Let � = �, A(�), Eσ1, . . . , Eσk where k ≥ 0;
20 if k ≥ 1 then
21 Let �i = �, σi for all 1 ≤ i ≤ k ;
22 n := k;
23 else
24 �1, n := �, 1
25 end
26 i, is_closed :=0, False;
27 ListModels := EmptyList ;
28 while is_closed = False & i < n do
29 i := i + 1 ;
30 is_closed, b′, Pi, Mi := E (�i, b + [[�i]], P , M);
31 if is_closed = False then add(Mi, ListModels);
32 end
33 if is_closed = True then
34 if k = 0 then P ′ := Proof Node((A), �, [Pi]) ;
35 else P ′ := Proof Node((E), �, [Pi]) ;
36 else
37 M ′ := ModelNode(Atoms(�), ListModels)
38 end
39 end

7.1. Implementation

Recall that our aim was to develop deductive techniques for branching-time logics with a reasoning mechanism capable 
of providing both certificates and counterexamples. Thus, we have implemented a prototype that, given a set of formulae �
as input, decides whether � is satisfiable or unsatisfiable and returns either a Kripke structure that certifies the satisfiability 
of � or a sequent calculus proof that refutes �.

First we extend the algorithm A sys (see Algorithm 1) to E (see Algorithm 3), so that depending on the value of is_closed, 
E is able to return either a proof or a model, but not both.

We can easily construct a model from an open tableau. Models are represented as trees. Each branch of the tree cor-
responds to a branch of the open tableau, which ends with a leaf pointing to some ancestor in the branch. Each non-leaf 
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node in a branch of the tree is the set of atoms appearing in one of the stages of the corresponding branch in the tableau. 
Example 7.1 displays the model returned by E when executed over a set of formulae.

The representation of a proof is also a tree whose nodes are steps of the proof. Thus, each leaf contains the inconsistent 
sequent and the name of the premise-free rule (Ctd) or (F) that applies to it. Non-leaf nodes contain the sequent � and 
the name of the rule (R) that applies to prove that � � F. Its children contain the proofs of the subgoals that result from 
applying (R) to � � F. In the initial call to algorithm E , the proof and the model are both empty, therefore to decide the 
satisfiability of a set � and generate a proof or a model, we call E (�, [[�]], Empty Proof , EmptyModel). Note also that the 
branch contains just one stage that consists of �.

Lines 1-12 are the non-recursive cases. In line 3, the algorithm returns a model of the empty set of formulae, which is a 
linear model that consists of an empty state (every atom is false in it) that is infinitely repeated. In lines 6 and 9, it returns 
just one sequent which is a proof by one of the premise-free rules (F) and (Ctd), respectively. In line 10, the algorithm 
detects that � gets an eventuality-covered loop at the stage s in the current branch b. Therefore, the algorithm creates a 
branch of the potential model with the atoms that are loaded (as formulae) at each stage of b from s to the current node. 
This branch terminates by a leaf which is just a pointer to stage s.

Recursive constructions of proofs and models, are performed in lines 15, 17 and 26-36 of Algorithm 3.

Algorithm 4: Apply (EU )+ to � = �, E(σ1U σ2) that returns a proof, when it exists.

1 � := � \ {E(σ1U σ2)};
2 is_closed, b′, P1, M ′ := E (�1, b1, P , M) where
3 �1 = � ∪ {σ2} and b1 = update(b, �1);
4 if is_closed = True then
5 is_closed, b′, P2, M ′ = E (�2, b2, P , M) where
6 �2 = � ∪ {σ1, E((σ1∧ ∼�′)U σ2)} and
7 b2 = update(b, �2);
8 if is_closed = True then
9 P ′ := Proof Node((EU )+, �, [P1, P2]);

10 end
11 end

The calls to apply_β+_rule and apply_α_β_rule apply the corresponding rule to a designated formula in the node label, 
and recursively call E with the children produced by the applied rule. For example, see Algorithm 4, to apply the β+-rule 
(EU )+ to � = �, E(σ1U σ2). The procedure E is called on parameters �1 = � ∪ {σ2}, the extended branch b1, with the 
proof P , and the model M . Both P and M where the parameters of the call apply_β+_rule(�, b, P , M) (in line 15). If this 
recursive call returns in is_closed the value true, E is called with �2 = � ∪ {σ1, E((σ1∧ ∼�′)U σ2)} and the value of this 
call is assigned to is_closed.

The recursive calls for �1 and �2 also construct either a proof or a model depending on the value of is_closed. When 
both calls report that is_closed is true, then P1 contains a proof for the sequent �1 and P2 contains a proof for the sequent 
�2, then Algorithm 4 (line 9) returns in P ′ a proof for � whose last step is the application of the rule (EU )+ to the 
sequents proved by P1 and P2. Consequently, when at least one of the two calls (for �1 and �2) reports that the tableau is 
not closed, the tableau for � is open and Algorithm 4 returns the model M ′ .

The application of α, β and β+ rules does not construct models, they only load atoms in stages that will be collected 
and structured according to the application of the next-state rules when a cycle is detected. In lines 26-36 of Algorithm 3, 
one next-state rule is applied to an elementary set � with a number k ≥ 0 of formulae Eσi . If k = 0 then n := 1 and, 
depending on the value of is_closed for the only recursive call, the algorithm constructs a proof for � from the returned 
proof P1 of �1 whose last step is the application of the rule (A). Otherwise, if k > 0, then n := k and there is a recursive 
call for each AND-child of �, namely �1, . . . , �n . If some of these calls for �i returns in is_closed the value true, then it also 
returns in Pi a proof for �i . Therefore it constructs in P ′ a proof for � that applies the rule (A). Otherwise, it collects a 
list of models M1, . . . , Mn , one for each of the n ≥ 1 calls with respective parameters �1, . . . , �n . Note that each call returns 
that is_closed is false. Then, this list of n ≥ 1 models is used to compose a model of � whose root contains the atoms of �
and this root has n children M1, . . . , Mn . Recall that the leaves of our models are either empty leaves (line 3) or pointers to 
some previous stage in the branch (line 12).

Example 7.1. Let � be the following set of formulae.

{ A(a → ¬(b ∨ c)), A(b → ¬(a ∨ c)), A(c → ¬(b ∨ a)),

EAa, EAb, EAc }
Our prototype returns the following Kripke structure as a model of � that certifies its satisfiability.

State 0: {}
Subtree 1 of State 0
---State 1: {c} --> cycle to State 1
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c ba

Fig. 12. Graphic representation of the Kripke structure returned by the prototype.

Subtree 2 of State 0
---State 1: {b} --> cycle to State 1
Subtree 3 of State 0
---State 1: {a} --> cycle to State 1

Fig. 12 shows a graphical representation of this model.

Algorithm 3 is the basis of our implementation, however, we have implemented some improvements mainly aimed at 
the efficiency and the usability in CMC. The formulae of the form Aϕ , that we call global invariants, are the most common 
in a model checking problem. In model checking, the formula that characterises a computation tree of a system is a (usually 
large) conjunction (collection) of global invariants. To provide shorter, clearer and readable proofs in CMC applications, we 
take advantage of the fact that, for each invariant Aσ , either this formula itself or AAσ are in the node of the tableau, 
and both formulae are at every stage. Hence, proofs are easier to follow if we discharge all global invariants (and all (Aϕ)

where ϕ is a global invariant). Indeed, the user could consult the system specification to follow the reasoning, though we 
specify in the proof when a rule is applied to an invariant formula (see sequent 2 in Example 7.2). Moreover, we do not 
load global invariants along the stages of the current branch.

Example 7.2. Consider the set of formulae � = {p, A(p → Ap), E¬p}. In the model checking framework the first 
formula could be seen as the initial state condition, the second formula as the model specification, and the third as the 
negation of the property Ap, which the user is asking to check. Our prototype on this input � returns the expected 
result – that � is unsatisfiable (therefore, the property Ap holds in any model of {p, A(p → Ap)}) and also gives the 
following ‘detailed’ proof as certificate:

0.E¬p, p. apply (E+)

-1.¬p, p. by (Ctd)

-2.E(E(¬pU ¬p)), p. apply (A) to Inv: A(¬p ∨ Ap)

--3.¬p ∨ Ap,E(E(¬pU ¬p)), p. apply (∨)

---4.E(E(¬pU ¬p)),¬p, p. by (Ctd)

---5.E(E(¬pU ¬p)),Ap, p. apply (E)

----6.E(¬pU ¬p), p. apply (EU +)

-----7.¬p, p. by (Ctd)

-----8.E(E(¬pU ¬p)),¬p, p. by (Ctd)

It is worth to note that sequent 2 is derived by the application of (E+) to sequent 0. In 0, the context of E¬p is just 
{p}. This context cannot be repeated from the next-state onwards until the eventuality would be fulfilled. Therefore, the 
contextualised variant E(¬pU ¬p) (of E¬p) should be fulfilled from the next-state on.

Our prototype provides proofs with two grades of granularity: small-step proofs and big-step proofs. A small-step proof 
includes all rule applications (as the proof in Example 7.2). A big-step proof includes only the sequents before the application 
of a next-step rule, i.e. the elementary sets that have been refuted. In particular, the big-step version for Example 7.2 consists 
of just one elementary sequent:

---5. E(E(¬pU ¬p)),Ap, p.

Big-step proofs are useful when proofs are very long and especially in the CMC, when the user wants just to see the 
evolution of the system that leads to contradiction. In the previous example, the unique sequent informs that the system 
evolves to satisfy p, Ap while it should satisfy EE(¬pU ¬p) (to satisfy the initial eventuality E¬p), and that this 
leads to contradiction. Next, we show the big-step version of a larger proof.

Example 7.3. The following set of formulae is obtained by substituting in Example 7.1 the formula EAa by AEAa, 
which makes it unsatisfiable

{ A(a → ¬(b ∨ c)), A(b → ¬(a ∨ c)), A(c → ¬(b ∨ a)),

AEAa, EAb, EAc }
The small-step proof provided by our prototype has about 350 sequents, however the big-step proof contains the following 
five sequents:
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--76.EE(FU Ab),E(EAa),AAc,¬b,¬a, c
---145.EE((AE¬b)U Ac),EEAa,AAb,¬c,¬a,b
--240.EE((AE¬b)U Ac)),EEAb,EEAa,¬c,¬b,¬a
----278.EE((a ∨ b)U Aa),AAc,¬b,¬a, c
-----345.EE(FU Ac),EEAa,AAE¬b,¬c,¬b,¬a

Since all sequents of a big-step proof are elementary sets of formulae, to which the appropriated next-state rule is applied, 
we do not report that implicit information. In the proof above, (E) is applied to the indicated five sequents because all 
these sequents have one or more E formulae. The two first lines (steps 76 and 145) show that constructing a path to 
fulfill Ab, while Ac is satisfied, is not possible. The last three lines (steps 240, 278 and 345) show that constructing a 
path to fulfill Ac is also impossible, because once Ac is fulfilled, Aa cannot be fulfilled.

We have implemented the sets of formulae by ordered sequences of formulae. For that we have defined an ad-hoc or-
dering on formulae (in nnf) to quickly detect a selected eventuality and to check if a sequence is elementary by just looking 
at the first element. In addition, we exploit the ordering to detect more quickly that a sequence is not a subsequence of 
another sequence, hence branches also keep ordered sequences of stages, in particular to detect cycles. We have also imple-
mented some rules of subsumption (such as ϕ subsumes ϕ ∨ ψ ) in sequences and in the construction of the contextualised 
variants of eventualities –the latter is very important for the feasibility of our method. Of course, we have implemented the 
subsumption-like simplification rule (8) (See §4) by which any contextualised variant subsumes the original eventuality.

Our systematic tableau construction produces many repetitions of subtrees. We prevent to repeat the refutation (closed 
tableau) of any sequent that is a child of an elementary sequent. When one of them is refuted, it is loaded in a set called 
‘As Proved Above (APA)’. In the output proofs, we use the word APA to indicate that a sequent has been previously refuted. 
Moreover, we consider as refuted any sequent that is a superset of another sequent, already refuted. In other words, if a 
sequent � ∈ APA and � ⊆ �′ , then the sequent �′ is immediately classified as refuted. Since loading all refuted sequents is 
really costly, we choose some sequents as candidates to be loaded in APA. This choice clearly determines the efficiency of 
the prototype. In the current prototype, we only add to APA the sequents produced after the application of the next-state 
rule. Further experimentation is needed to evaluate and compare the performance of the implementation with different 
selection criteria of the sequents-candidates for the APA.

Most of the code (written in Java) is automatically generated from the language Dafny [32]. Though Dafny is a program 
verifier of functional correctness, we note that our implementation is only partially verified, i.e. only some crucial properties 
have been verified by the time of writing this paper. For example, the ordering in formulae has been proved to be total. The 
methods that exploit this ordering to perform more efficient operations in sequences (e.g. insertion, deletion) have been 
proved to preserve the order. Other methods that decide properties of sequences more efficiently thanks to the order (e.g. 
elementarity check) have also been proved correct. The verification of the functional correctness of our prototype remains 
as an encouraging and challenging future work.

7.2. Experimental results

In order to assess the feasibility of our context-based tableau, we have tested the prototype MomoCTL on the collection 
of benchmarks, namely GBext, borrowed from http://users .cecs .anu .edu .au /~rpg /CTLComparisonBenchmarks/ that was created for 
the comparison of various CTL-provers made in [23]. In this section we report on our performance results and compare 
them with the other one-pass tableau for CTL ([1]) that is called TreeTab in [23]. It is worth noting that our current Java 
code has been automatically generated from Dafny, therefore it is not an optimised Java code. GBext is very well elaborated 
and gives a comprehensive, fair, and objective collection of CTL theorem-proving problems. We expect that an in-depth 
analysis of our results will allow us to identify what type of heuristics, strategies, etc. are convenient to improve MomoCTL.

In GBext there are three logically equivalent versions of each formula, which indicates that in [23], the comparison 
performed takes into account the syntactic form of the input. As expected, when translated to our input format –a set of 
formulae in nnf– the three versions give similar performance result. Therefore, we really use one version of each benchmark 
in GBext and this reduced set is called GB. We have automatically translated each unique formula in each file in GB to a 
file with the logically equivalent set of formulae in nnf. The obtained collection is denoted as MB. Both GB and MB collec-
tions are divided into different classes, some of which are further divided into subclasses for satisfiable and unsatisfiable 
instances or for different types of formula patterns. MB and MomoCTL are available at https://github .com /alexlesaka /MomoCTL. 
The executable (.JAR) runs full MomoCTL when it is called with a single file .ctl (i.e. it returns certificates). However, when 
that .JAR runs over a folder of benchmarks files, it runs the version of MomoCTL that returns just SAT/UNSAT values.

Both TreeTab and MomoCTL have been applied, respectively, to GB and MB. To make a fair comparison, we have run 
the version of MomoCTL that does not return certificates. We know that the delay between this simplified version and full 
MomoCTL is about 2%. These experiments were performed with an Intel Xeon Dual core 2.60 GHz CPU with 64 GB RAM 
computer. As the authors of [23] did, we imposed a stack limit of 512 MB and a 1000 seconds time limitation for each 
problem instance.

In the rest of this section, we compare MomoCTL and TreeTab performance results on the most significant classes and 
subclasses of MB and GB, which are: Alternating Bit Protocol (abp), Business Processes (busproc), Exponential Formulae (exp_sat 
and exp_unsat), Montali’s Formulae (montali_sat and montali_usat), Pattern_AE, and Reskill.
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Fig. 13. Percentage of solved instances (by class) within time limit.

Fig. 14. abp and busproc formulae.

In Fig. 13, we show the percentage of files in each class that are solved within the time limit, i.e. those that return a 
value –satisfiable or unsatisfiable– and do not produce timeout or some error –e.g. lack of memory. We use gray colour
for TreeTab and black colour for MomoCTL. Instances are ordered by the increasing complexity. As we will detail below, for 
MomoCTL it takes longer than for TreeTab to solve smaller instances, but the former solves (in 1000 s.) greater instances 
–in classes abp, exp_sat, exp_unsat, montali_sat– that TreeTab cannot solve (in 1000 s.). TreeTab solves more instances than 
MomoCTL in busproc and montali_unsat1. Next, for each class, we compare the running times of both CTL-provers and analyse 
possible causes of their differences. In the plots, the abscissa is the number of different variable symbols in the input and 
the ordinate is the running time in milliseconds. The plots are given using a logarithmic scale (the same scale used in [23]).

1. Alternating Bit Protocol (abp). This class has three instances that encode whether three different properties are valid for 
a protocol specification (see [23]). All instances are unsatisfiable and the problem is quite difficult for CTL-provers based 
on tableaux. Tableaux methods necessarily should produce a huge number of closed branches. In the simplest problem 
(abp5), each branch contains four eventualities and a releases-formula that cannot be fulfilled in any order, therefore 120 
combinations should be tested. The other two instances (abp8 and abp9) add to abp5 one extra eventuality with the releases-
formula included in it, which increases the combinations up to 720. As shown in Fig. 14, only the simplest instance (abp5) 
is solved by TreeTab in 0.081 s. while MomoCTL is able to solve the three instances in 0.249 s., 11.952 s., and 13.370 s. 
respectively.

2. Business Processes (busproc). This class arises from a synthesis problem ([4]). All the instances have a huge amount of 
different models that exponentially increases with the input size. For tableau methods, to find just one model it suffices 
to decide the satisfiability. Consequently, (as showed in [23]) tableau methods perform better than other approaches for 
satisfiable inputs. However, CTL models of busproc problems are non-linear Kripke-structures. Fig. 14 compares TreeTab and 
MomoCTL. TreeTab solves the three first instances –busproc1 in 0.139 s., busproc2 in 0.762 ms. and busproc3 in 34.991 
s. MomoCTL only solves busproc1 and busproc2 in 6,226 s. and 326,316 s. respectively. In the case of busproc1, (the full 
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Fig. 15. Exponential satisfiable and unsatisfiable formulae.

Fig. 16. Montali’s satisfiable and unsatisfiable formulae with depth 3.

version) returns a model of depth five with four branches. For this construction, MomoCTL collected about 400 refuted 
sequents, hence in the tableau there are many closed branches that are constructed before the first model is found.

Analysing these refuted sequents (for busproc1 and other benchmarks with many models), we saw that most of them are 
attempts to fulfill an eventuality at some state where it can not be fulfilled, although there are many possibilities to explore 
to get to decide it. We conclude that MomoCTL strategy of forcing eventualities to be satisfied “as soon as possible” does not 
work very well with satisfiable problems with a big amount of models. Indeed, contexts could produce a big explosion of 
tableau OR-branches when the selected eventuality is delayed to the next step. We think that MomoCTL should be equipped 
with some heuristics for eventuality selection. The class busproc is a useful collection of problems for our further work.

3. Exponential Formulae. Both satisfiable and unsatisfiable exponential formulae have a similar difficulty for TreeTab and 
MomoCTL. The subclass of satisfiable instances has models with exponentially larger paths. The tableau for unsatisfiable 
instances builds an exponentially increasing number of non-repeated tableau branches that are closed.

In Fig. 15 we can see that MomoCTL has an exponential growth of the running time from small instances in both 
subclasses, while TreeTab does not. Nevertheless TreeTab runs out of memory from size 12, whereas MomoCTL is able 
to solve the instance of size 13 inside the time limit. Allowing more time, MomoCTL solves the unsatisfiable instance of 
size 14 in 1,551 s. This is thanks to the strategy of not repeating refutations that have been made previously. To solve 
the satisfiable instance of size 14, MomoCTL needs 6,000 s. because the model of this formula is extraordinarily large. 
Therefore, MomoCTL solves more difficult instances as the time increases. This is one of the main features of our prototype 
which makes it different from the TreeTab.

4. Montali’s Formulae. These formulae are CTL-reformulations of LTL-specifications of business processes ([31]) that has 
been used for comparing LTL-provers ([20]). Montali’s formulae are parameterised by n and m.

ϕ i
1 = Api ϕ i

m = A(pi ∧ Aϕ i
m−1) ϕn = ∧n−1

i=0 A(¬pi ∨ AApi+1)

Satisfiable instances are of the form ϕ0
m ∧ ϕn , whereas unsatisfiable instances have the form ϕ0

m ∧ ϕn ∧ ¬ϕn
m .

Fig. 16 shows the results for satisfiable and unsatisfiable subclasses where m = 3 and n is in the abscissa. For m =
1, 2, 4, 5 the plots are very similar. In the case of satisfiable formulae, MomoCTL finds a model in the first (leftmost) branch 
when doing the depth-first search.

Regarding unsatisfiable formulae, MomoCTL is able to respond more (until size 33) but it requires more time than 
TreeTab, which runs out of memory at size 23. Note the similarity of the plots for montali_unsat and exponential formulae. 
As we mentioned above, MomoCTL can solve larger and larger instances as time increases. The main reason is that the 
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Fig. 17. Pattern_AE and Reskill formulae.

systematic forcing of eventualities takes more advantage as the number of eventualities grows – they produce always-
formulae that reduce the search space.

5. Pattern_AE and Reskill. In [23], the authors introduce these two classes and show that methods based on BDDs and 
resolution perform badly on inputs containing many conflicting E temporal formulae (in the case of pattern_ae) and 
when there are many potential resolution-steps in a satisfiable formula (in the case of reskill). The class pattern_ae contains 
formulae of the form

(

n∧

i=0

AEpi) ∨ (

n∧

i=0

AE¬pi).

while the class reskill contains these kinds of formulae

¬p ∧ (¬p ∨ (p ∧ A(

n−1∧

i=0

Aqi ) ∧
n−1∧

i=0

A( ¬qi ∨
n−1∨

j=0, j �=i

Eq j ) ∧

n−1∧

i=0

A( ¬qi ∨
n−1∨

j=0, j �=i

¬q j)))

The instances of both classes are satisfiable. Fig. 17 shows that both –TreeTab and MomoCTL– run very fast on the two 
classes of formulae. In pattern_ae, MomoCTL is faster than TreeTab in small instances until n = 25. MomoCTL performs with 
a moderate increase of time, while TreeTab is more constant with some insignificant increase or decrease of the number of 
steps. The model returned by MomoCTL to pattern_ae of size n is:

State 0: {p0,. . .,pn−1} --> cycle to State 0

Both MomoCTL and TreeTab perform extremely fast on the class reskill because they are able to find the simplest model, 
which is returned by MomoCTL as follows:

State 0: {}
---State 1: {} --> cycle to State 1

Finally, we again remark that MomoCTL does not run out of memory on any benchmark. Indeed, with unlimited exe-
cution time, MomoCTL solves some benchmarks, on which TreeTab runs out of memory. We believe that these errors of 
TreeTab are due to the fact that the branches it produces are too large. We know that the way how we use contexts to han-
dle eventualities prevents the generation of such extra large branches. However, the price we pay is the increased number 
of the shorter branches to analyse. This makes MomoCTL run slower than TreeTab for some not very complex problems. We 
are convinced that a more intelligent eventuality selection procedure, in addition to different heuristic strategies could solve 
this problem and improve notably MomoCTL’s performance.

8. Extending the tableau method and the sequent calculus to ECTL

In this section we explain a (relatively easy) way to extend the CTL tableau method and its dual sequent calculus to the 
more expressive logic ECTL. This is achieved by adding the new tableau rules given in Fig. 20 and their dual sequents rules 
in Fig. 21. These rules correspond to the following logical equivalences for the basic modalities that extend CTL to ECTL:

Eσ ≡ Eσ ∧ EEσ Eσ ≡ Eσ ∨ (Eσ ∧ EEσ)

Aσ ≡ Aσ ∧ AAσ Aσ ≡ Aσ ∨ (Aσ ∧ AAσ)
(9)
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p,Ep,Ap

p,Ep,Ap

p, Ep ,EEp,Ap

p,EEp,Ap

p,EEp,AAp

Ep,Ap

p,E E(¬p U p) ,EEp,Ap

p,E E(¬p U p) ,EEp,AAp

p, E(¬p U p) ,Ap

p,Ap p, EE(¬p U p) ,Ap

p, EE(¬p U p) ,AAp

E(¬p U p) ,Ap

p,Ep,Ap

p,Ep, Ap ,AAp

(A)

(E)

(E)+

(A)

(E)

(A)

(E)

(EU )+

(A) (A)

(E)

Fig. 18. ECTL systematic tableau for {p,Ep,Ap}.

p

Fig. 19. Graphic representation of the model for {p,Ep,Ap}.

(Q)
�,Qσ

�,Qσ ,QQσ
(Q)

�,Qσ

�,Qσ | �,Qσ ,QQσ

Fig. 20. Additional tableau rules for ECTL.

The rule (Q) is added to the set of α-rules and the rule (Q) is added to the set of β-rules. There are no 
additional β+-rules. Indeed the eventualities Qσ introduced by the rules in Fig. 20 are CTL-modalities that are handled 
by the β+-rules of the method for CTL.

Next, we illustrate that issue with an example of systematic tableau for an ECTL input where additional rules for ECTL
are applied, along with CTL rules.

Example 8.1. Fig. 18 partially shows an open tableau with the application of two of the rules added to extend CTL to ECTL. 
We just outline some branches to illustrate how the ECTL-rules (A), and (E) (in Fig. 20) are applied. The tableau 
for the right-most node, which is also open, is not depicted for space reasons. Note that our algorithm constructs just the 
left-most branch to decide that the label of the root is satisfiable and returns a very simple model depicted in Fig. 19, which 
is a cyclic Kripke structure with the single fullpath {p}w .

We extend soundness and completeness results (for CTL) to ECTL. Firstly, we extend Lemma 5.1 to the rules in Fig. 20.

Lemma 8.2. For any ECTL set of state formulae � and any state formula σ :

1. Sat(� ∪ {Qσ }) if and only if Sat(� ∪ {Qσ , QQσ }).
2. Sat(� ∪ {Qσ }) if and only if Sat(� ∪ {Qσ }) or

Sat(� ∪ {Qσ , QQσ }).

Proof. It follows by ‘systematic’ application of the semantic definitions of the modalities Q and Q given by the 
equivalences (9) in §8.
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(Q)
�,Qσ ,QQσ � F

�,Qσ � F

(Q)
�,Qσ � F �,Qσ ,QQσ � F

�,Qσ � F

Fig. 21. Additional sequent rules for ECTL.

As a consequence of Lemma 8.2, the soundness Theorem 5.2 easily extends to ECTL. For refutational completeness of
ECTL, we firstly extend Definition 5.3 with the following additional conditions for a stage to be αβ+-saturated:

Definition 8.3. We say that a stage s = ni, . . . , n j in the ECTL systematic tableau for � is αβ+-saturated if and only if it 
satisfies the conditions in Definition 5.3 and the following two additional conditions:

1. For all Qσ ∈ τ (s): {Qσ , QQσ } ⊆ τ (s).
2. For all Qσ ∈ τ (s): {Qσ } ⊆ τ (s) or {Qσ , QQσ } ⊆ τ (s).

It is obvious that the conditions 7. and 8. are satisfied in any stage of the systematic tableau by construction. Using 
these conditions, it is routine to prove that KH , as defined in Lemma 5.6, satisfies the fact that: KH , sa, 0 |= σ for any 
a ∈ {0, . . . , j} and any formula of the form Qσ , Qσ that belongs to L(sa). Therefore, refutational completeness (i.e. 
Theorem 5.7) extends to ECTL. Finally, for the termination result (see the proof in Theorem 5.8), it suffices to ensure that the 
rules in Fig. 20 do not affect the behaviour of the β+-rules on the selected eventualities in the sense that Proposition 5.5
is preserved. Furthermore, although each application of a rule in Fig. 20 introduces a new Qσ , the simplification rule 
(�QU ) (see (8) in Section 8) ensures that any occurrence of an eventuality is subsumed by its contextualised variant. 
Therefore, Proposition 5.5 holds and hence Theorem 5.8 extends to ECTL.

The calculus C� is also extended by adding the sequent rules that are dual to the tableau rules in Fig. 20. These additional 
sequent rules are given in Fig. 21 and the duality of the extended tableau and sequent calculus for ECTL is trivial.

9. Conclusion

We introduced sound and complete systems of tableaux and sequent calculus for temporal logics CTL and ECTL, illus-
trating the methods on a number of examples, and reporting on their implementation MomoCTL and experimental results. 
MomoCTL is available at https://github .com /alexlesaka /MomoCTL.

The distinctive feature of the tableau methods presented in the paper, is that the core tableau construction is based on 
the concept of a context of an eventuality. The method developed in the paper is much simpler than the analogous technique 
obtained earlier (see [7]) for a richer logic - ECTL# where two types of contexts (both outer and inner contexts) are 
used. Indeed, the construction presented in this paper only uses the “outer” context, however, similar to ECTL#, generates 
tableaux as AND-OR trees. Our context-based approach to deduction systems for branching-time temporal logics preserves 
the classical duality of tableaux and sequent calculus, enabling a framework where both certifying proofs and models can 
be constructed as byproducts of the satisfiability test. This makes our approach specifically important in the area of CMC.

The methods presented in this paper have double-exponential time worst case complexity. Indeed, a trivial adaptation 
of [19] allows us to say that the so-called closure –the set of all formulae that could appear in a tableau– has in the worst 
case size O (2O (2n)), where n is the size of the input (this complexity characterisation matches the one of [1,22]). However, 
in practice the worst case is very unusual. For example, when the context of an eventuality mostly contains modalities A
–which is typical in reactive systems specifications and model checking practical problems– the number of possible contexts 
is much smaller and consequently the overall performance of the technique developed is much better.

Our experimentation with MomoCTL on a large and interesting suite of benchmarks (http://users .cecs .anu .edu .au /~rpg /
CTLComparisonBenchmarks/) has given encouraging results and many ideas for future improvements. We plan to perform 
more experimentation and efficiency improvements, before extending the prototype to cover the methods for logics ECTL, 
ECTL+ , and ECTL# [7].

Future work also includes the mechanical check of proof certificates extending the ideas in [2], the graphical represen-
tation of models, and the correspondence of the one-side sequent calculus with a two-side sequent calculus (in line with 
what is done in [19] for the linear temporal logic). The formal verification of the complete functional correctness of the 
presented algorithms in Dafny is also in our plans.
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