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ABSTRACT

Medical imaging data is typically 3D, causing scan sizes and databases to grow 
cubically with resolution, unlike the quadratic growth in standard computer vision 
tasks. Com- pressing scan dimensionality is essential for deep learning, as raw data 
often exceeds GPU memory limits. Autoencoders are commonly used for data-specific 
non-linear compression, balancing compactness and fidelity. However, they are 
limited to the resolution of the training data. Inspired by Neural Fields, we propose an 
autoencoder with a fully-connected network as its decoder,  and train it on the UK 
Biobank abdominal MRI dataset. Beyond more fidelity in the reconstruction, our 
encoding is a continuous function of 3D coordinates rather than 3D rasters like the 
original data, which enables our architecture to be utilized in a variety of applications 
such as super-resolution, in-painting and extrapolation. We show that this change of 
paradigm in representation leads to higher and better compression, with better 
properties, and enables the use of such imaging databases for deep learning in their 
compressed state.

Index Terms— Continuous function, Implicit representation, Latent space

1. INTRODUCTION

Current deep learning research in style transfer, multilabel segmentation, and super-
resolution for high-resolution 3D medical imaging faces key challenges as these tasks 
require extensive GPU memory and large labeled datasets, both limited by data 
scarcity and privacy regulations. Developing high-quality synthetic data that mirrors 
real medical imaging is crucial to address these limitations, reduce privacy concerns, 
and enable more robust studies.

Although techniques like Generative Adversarial Net- works (GANs), often focused on 
style transfer [1], have been popular for data synthesis, they face challenges in 



handling the vast amounts of data associated with volumetric medical imaging data. 
More recently, techniques like diffusion have emerged but are still limited in effectively 
representing and managing large heterogeneous datasets. Hence, there is an 
increasing demand for alternative approaches to efficiently represent such data at 
manageable sizes, facilitating analysis and training across large databases of medical 
scans.

Recent work on diffusion models in magnetic resonance imaging (MRI) of the brain 
utilized compressed latent codes [2] instead of the raw 3D data. Images of the brain 
follow a very regular structure and tools for segmentation and registration are widely 
available, which is not necessarily the case when it comes to other anatomical regions 
of interest. Whole-body imaging comes with a much larger degree of data variability, 
as well as potentially larger image volumes, despite lower resolution. As a result, fewer 
works dealing with whole-body imaging exist, one such example is Mensing et al. [3] 
in which the group uses conditional GANs to generate whole-body data, but are 
restrained by GPU memory issues, and improvements would rely on larger models 
and/or higher resolution data which would both come with higher GPU memory 
requirements.

An emerging encoding technique for 2D or 3D data, from the field of computer vision, 
is implicit representations [4, 5], which summarise imaging data as continuous 
functions, breaking away from standard imaging grids and enabling powerful 
compression. Standard Convolutional Neural Networks (CNNs) reason via the 
relationship between neighboring pixels (inherently tied to the training resolution) and 
translation-invariant filters, which is an appropriate representation for tasks like 
texturing and object detection or classification. However, CNNs still operate in the 
discrete pixel domain, with local filters, inherently limiting the reconstruction 
expressiveness and ability, and inheriting un- desirable grid artifacts. Coordinate-
based fully-connected networks on the other hand have shown great capacity for 
encoding signals and by design inherit all the advantages of switching to a continuous 
domain. In early works, small neural networks such as a Multi-Layer Perceptron (MLP) 
were overfit to a single instance of the database, but subsequent works have 
investigated how to generalize across a database, either through the use of 
hypernetworks [6] or the use of an additional modulation MLP [7]. Implicit 
representations are also beginning to be applied to medical imaging data as shown in 
a recent review article [8], with a majority using them for image reconstruction.

In this research paper, we propose a novel architecture combining a 3D CNN-based 
encoder and a modulated SIREN-based decoder [7], to learn continuous 
representations of whole-body MRI in order to efficiently compress large volumes in 
preparation for tasks such as data synthesis. Through our investigation, we seek to 
contribute to the ongoing efforts to leverage deep learning for whole-body MRI.

2. METHODOLOGY



2.1. Image pre-processing

In our experiments, we used data from the UK Biobank abdominal MRI protocol [9], 
specifically the in-phase channel of the 3D Dixon MRI acquisition. The positioning of 
each participant during scanning is subject to random factors, including the accuracy 
of neck placement by the radiographer, centering, as well as the degree of alignment 
along the axis of the scanner. These random factors result in varying degrees of 
inclusion of arms and legs. The protocol covers 1.1m from the neck downwards. This 
results in clipping of the knees when the neck positioning is too high or when the 
subject is tall.

As for all encoding tasks, removing unwanted variance from the database is crucial. 
Standardizing the alignment of scans within the grid is of particular importance for 
coordinate-based models that operate in a canonical unit space. We want our model 
to spend its representational power on learning and explaining aspects of the data that 
are relevant to subsequent research tasks; shifts in position within the volume, for 
instance, are of no relevance to the database and should be minimized in the curating 
phase.

We hence shifted the data such that the centre of the hips is in the centre of the volume 
and the top of the image at the height of the middle point between the shoulders, 
guided using the bone-joint landmarks computed using [10]. The final image size was 
set to 128 × 128 × 192, resulting in no sudden boundary at the top or bottom of the 
image.

2.2. Baseline CNN Auto-Encoder

Convolutional auto-encoders have established themselves as the standard non-linear 
dimensionality reduction technique for data that is arranged on regular grids, typically 
images. A convolutional encoder compresses the image into a latent code, which the 
convolutional decoder decompresses back into a grid of pixels. The training is self-
supervised, since the output of the compression-decompression is optimized to match 
the input as closely as possible. At inference time, in- stances can be compressed by 
passing them through the encoder and stored in their compressed code version. 
Similarly, the latent space can be explored by interpolating between la- tent codes of 
known inputs, for example.

For 3D data, such as MRI scans, the convolutions use 3D filters. Because of the added 
dimension, the size of the data, the filters, gradients and intermediate representations, 
now grows cubically rather than quadratically, which limits the practicability of 
convolutional architectures. We propose to use a completely different paradigm for the 
decoder instead of using a symmetric architecture, where the decoder is com- posed 
of deconvolutions of the same size and stride as the encoder.



2.3. Proposed Model

We propose to replace the decoder with a fully-connected architecture parametrized 
on grid coordinates. A schematic of the architecture is shown in Figure 1. The encoder 
remains the same standard CNN but we replace the decoder with a modulated SIREN 
architecture [7].

Rather than outputting a 3D tensor of identical shape to the input, as is common with 
convolutional architectures, our decoder is parametrized on input coordinates (x,y,z) 
and outputs a single value for the given point.  Points can be batched to predict the 
entire volume, but fundamentally the decoder learns the mapping from a position to its 
corresponding value, as a continuous function. The coordinates are fed into a SIREN 
[5] architecture which consists of fully- connected layers with sine activations. The 
latent code is fed to the modulator network, which is fully-connected with skip 
connections and ReLU activations. The modulator can adapt the SIREN’s predicted 
density field to the relevant shape and appearance based on the scan’s latent code 
by outputting element-wise multipliers for the internal SIREN activations at every layer.

During training, we minimise a combination of Kullback- Leibler (KL) divergence, on 
the latent codes, and mean squared error on the final output, compared to the high 
resolution ground truth. The computed KL divergence is used as a loss function on the 
latent space, which is commonly encountered in variational autoencoders (VAEs) or 
similar models [2].

For our proposed model, we compute the MSE loss on a sparse set of points (75,000, 
equivalent to 2.38% of the data contained in the ground truth volume) within the 3D 
unit cube, as it would be too memory-expensive to feed the entire volume forward and 
backward. Random sampling of the 3D volume spreads points equally in space, 
resulting in many samples of the background, the empty space around the body. 
Sampling randomly in polar coordinates (angle and radius from the center) results in 
samples concentrating more towards the center, but only provides samples within the 
unit sphere. We use this polar sampling in the XY-plane, and random sampling of the 
Z coordinate, then remap the XY coordinates to stretch the samples to cover the entire 
square volume, as shown on the right in Fig. 2. This is done by simply scaling the 
radius of each generated point by the length of the segment that intersects the square. 
The final sampling scheme is more appropriate for our body scans after centering. A 
new random set of points is generated at every training iteration.

2.4. Training Details

The final model was trained on an NVIDIA A5000 GPU with 24GB memory using data 
of 1,000 UK Biobank participants, for 450 epochs using the Adam optimizer with a 
learning rate of 10−4, with a batch size of 4 and 75,000 random point samples per 
epoch. We used the same 3D convolutional encoder for both the baseline CNN and 



our architecture, compressing the input to a latent vector of 3072 elements. Our 
modulated SIREN decoder has 5 hidden layers of 1024 neurons.

3. RESULTS AND ANALYSIS

We compare several reconstruction metrics on an unseen test set of 300 scans to 
highlight the differences between the CNN baseline and our modulated SIREN 
decoder. Both architectures are trained on the same data, for the same number of 
epochs, and compress the scans to the same length latent vector (3072 elements). 
This corresponds to a 4694× compression ratio compared to the original data or a 
1024× compression with regards to the pre-processed, aligned and cropped scans. 
Table 1 shows that our model outperforms a standard CNN autoencoder in terms of 
data fidelity for the same task, however these quantitative metrics do not necessarily 
reflect the substantial visual improvement, as a lot of image volume is just background. 
Fig. 2 provides a visual comparison, where our model recovers more crisp details from 
the encoded scans versus the output from a standard CNN.

3.1. Latent Space Exploration – Participant Interpolation

Fig. 3 shows an example of linearly traversing the latent space between the projected 
codes of two participants. The intermediate reconstructions display details and a 
plausible evolution between the two participants, demonstrating that the latent space 
is well-behaved and the decoder has learned a realis- tic model of the human body.

3.2. Scan Extrapolation and Inpainting

Continuous sampling enables querying data anywhere in 3D space. This property 
could be used to extend the field-of-view for tall participants, or positioning errors, and 
therefore help homogenize scans across large databases. Fig. 4 shows 4 such 
examples, the second example shows clipped lungs being re- covered. Fig. 5 shows 
a motivating example when acquisition of parts of the scan have been omitted or 
corrupted. We initialize the latent code to zeros and optimize it, supervising the 
reconstruction with only half the input signal, and it manages to reconstruct a body 
that is very similar to the ground truth.

4. CONCLUSION

We describe a novel architecture combining CNNs and modulated Siren for implicit 
representations of abdominal MRI scans. In addition to showcasing improved 
quantitative and qualitative results for extreme compression over standard CNN 
autoencoders, which have shown great promise in highly heterogeneous data such as 



the brain [2], implicit representations directly unlock exciting new applications on top 
of facilitating research through data compression.
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Tables

Table 1. Quantitative evaluation for 300 held out test datasets.
MSE (↓) SSIM

(↑)
PSNR (↑)

Baseline CNN 0.242 0.723 19.45 (dB)

Ours 0.218 0.731 20.03 (dB)



Figures

(a) Symmetric encoder-decoder

(b) Our custom decoder architecture

Fig. 1. Typically, the decoder architecture is the symmetric of the encoder and the output is a tensor of 
identical shape to the input (a). Our decoder instead learns the data as a continuous function of the 3D 
coordinates inside the MRI volume (b).



Fig. 2. Example reconstructions from the test set.



Fig. 3. Examples of linear interpolation in the latent space between 2 projections.



Fig. 4. Extrapolation outside the scan volume coordinates (highlighted by red dashed lines on top and 
bottom)



Fig. 5. Inpainting for missing data.


