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Competing for pixels: a self-play algorithm for
weakly-supervised semantic segmentation

Shaheer U. Saeed, Shiqi Huang, João Ramalhinho, Iani J.M.B. Gayo, Nina Montaña-Brown, Ester Bonmati,
Stephen P. Pereira, Brian Davidson, Dean C. Barratt, Matthew J. Clarkson, Yipeng Hu

Abstract—Weakly-supervised semantic segmentation (WSSS)
methods, reliant on image-level labels indicating object pres-
ence, lack explicit correspondence between labels and regions
of interest (ROIs), posing a significant challenge. Despite this,
WSSS methods have attracted attention due to their much lower
annotation costs compared to fully-supervised segmentation.
Leveraging reinforcement learning (RL) self-play, we propose a
novel WSSS method that gamifies image segmentation of a ROI.
We formulate segmentation as a competition between two agents
that compete to select ROI-containing patches until exhaustion of
all such patches. The score at each time-step, used to compute the
reward for agent training, represents likelihood of object presence
within the selection, determined by an object presence detector
pre-trained using only image-level binary classification labels of
object presence. Additionally, we propose a game termination
condition that can be called by either side upon exhaustion of all
ROI-containing patches, followed by the selection of a final patch
from each. Upon termination, the agent is incentivised if ROI-
containing patches are exhausted or disincentivised if a ROI-
containing patch is found by the competitor. This competitive
setup ensures minimisation of over- or under-segmentation, a
common problem with WSSS methods. Extensive experimenta-
tion across four datasets demonstrates significant performance
improvements over recent state-of-the-art methods.
Code: https://github.com/s-sd/spurl/tree/main/wss

Index Terms—Self-Play, Weak Supervision, Segmentation.

I. INTRODUCTION

Segmentation is a fundamental task in computer vision
with demonstrated applications in e.g., medical image pro-
cessing [67], [76], autonomous driving [19], and robotics [63].
Fully supervised segmentation systems, trained using human-
annotated data, have widely been proposed, however, they
are limited by the expensive pixel-level annotation acquisition
for datasets of increasing sizes [63]. Tasks or datasets, where
annotation cost is high or where these labels are not readily
available, are especially hindered by this requirement [63] e.g.,
in the medical domain where expert time may be restricted.
Weakly supervised semantic segmentation (WSSS) aims to
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Fig. 1. Competitive self-play for segmentation using only weak signals
generated by an object presence detector (itself trained using only image-level
classification labels). At inference the trained agent plays against a dummy
opponent to segment the image.

directly address these challenges by utilising weak labels for
training, such as image-level classification labels (i.e., binary
labels of object presence) [112].

We propose a WSSS method in which we gamify segmen-
tation such that two opposing agents compete to segment a
region-of-interest (ROI), where each move is scored by a weak
signal derived from a pre-trained object presence detector. This
detector is a classifier of object presence, trained only using
image-level classification labels. This weak signal is similar
to classifiers used in recent WSSS methods [112] and ensures
discriminative features, able to distinguish object existence
from non-existence, are learnt only using image-level labels.
The framework is based on reinforcement learning (RL) self-
play where the competitive setup encourages minimisation of
over- or under-segmentation, a common problem with WSSS
[11], [111].

In our framework, an image is first divided into patches
using a grid of a pre-defined size, where the patches are akin to
playing-cards in a card game. An agent from each competing
side (two sides in this case) selects, without replacement,
a patch that it deems most likely to contain a part of a
ROI. The game is turn-based and thus prevents selection of
the same patch by opposing sides. Each patch is scored by
the pre-trained object presence detector, using the unbounded

https://github.com/s-sd/spurl/tree/main/wss
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classification probability, or logits, and the agent with a higher
score wins the turn and is given a positive reward signal. This
is repeated until one of the agents delivers a termination signal,
which indicates when an agent considers all ROI-containing
patches to be exhausted. The final patches from each side
are then scored by the object presence detector and if the
patch from the side that delivered the terminal signal is scored
higher, then that side wins the game - leading to a high positive
reward signal. The main idea is summarised in Fig. 1. This
may be similar to an innate self-play-style approach within the
human brain, where object presence likelihood for parts of the
field-of-view (FOV) may be decided before localisation [103].

Learning to maximise the score/ reward using RL, in this
competitive setup, ensures that under-segmentation is min-
imised as it is not beneficial to terminate the game early. This
is because early termination may mean that the opponent could
potentially select a more object-like patch, or the opponent’s
selected patch may be scored higher simply based on chance
e.g., if one part of the object is more object-like than the
other. It also ensures that over-segmentation is minimised, as
timely termination is rewarded, once ROI-containing patches
are exhausted. If the game is not terminated appropriately and
both sides keep selecting patches with no ROIs, the opposing
side may win the game based on chance as one part of the
background may be more object-like compared to another.
Over thousands of games, these early or later termination
cases, lead to reduced expectation for the reward, compared to
an effective termination strategy which terminates only when
ROI-containing patches are exhausted. Thus RL, which learns
by maximising the expectation of reward learns an effective
termination strategy. In practice, limiting numbers of turns
(by discouraging termination beyond the specified range) and
selecting patch sizes sufficiently smaller than approximate ROI
size were sufficient constraints to learn effective segmentation.
Once trained, an agent may select patches without opposition
to get a segmentation with resolution equal to patch-size.

Using self-play not only improves performance, by ensuring
that over- or under-segmentation are minimised through an ef-
fective termination strategy, but also proves more time-efficient
compared to scoring all patches using the object presence
detector as non-selected patches do not need to pass through
the detector. It also avoids the need for empirical thresholds
for classification probability for patch-based segmentation. If
pixel-level segmentation is required, the grid can be shifted
over by half the patch-size and the game repeated, where the
final segmentation may be obtained using a majority vote. This
still proves more time-efficient compared to a sliding windows
approach where the object-presence detector must score all
patches.

A. Summary of contributions

1) We propose a gamified competitive self-play framework
for image segmentation which minimises over- or under-
segmentation, a common problem for other WSSS methods; 2)
We propose to train this WSSS framework using RL where the
reward is based solely on an object presence detector trained
only using image-level classification labels of object presence;

3) We evaluate our proposed approach using two benchmarks
datasets for WSSS (PASCAL VOC 2012 and MS COCO 2014)
as well as two real-world medical datasets, representing real-
world applications where pixel-level human annotations are
expensive to acquire and curate (liver tumour and prostate
gland segmentation).

B. Summary of motivation

Over- and under-segmentation of ROIs are known common
problems with WSSS methods [11], [111] (refer to literature
review in Sec. II-B for further details). CAM- and MIL-based
techniques, reliant on object classifiers, are prone to under
segment due to classifiers activating only highly-discriminative
object features as opposed to entire objects, where these
features may be under-specific for full object segmentation.
Other common WSSS approaches, based on erasure of highly
discriminative features so classifiers can activate other less
discriminative features [12], [30], [41], [42], [45], [84], [93],
[94], [106], aim to overcome these problems but are prone
to over-segment with a high sensitivity to hyperparameters,
often even requiring per-image tuning, such as the the number
of times of erasure, area of erasure etc. Methods based on
an aggregation of tasks or images for learning discrimintive
features face similar problems with high sensitivity to hyper-
parameters to control the aggregation (e.g., number of tasks
or images to use, how to aggregate features etc.).

We propose to gamify segmentation in a competitive set-
up where two agents compete to segment a ROI. The com-
petitive set-up ensures that over- and under-segmentation are
minimised by means of a termination condition that ensures
all ROI-containing pixels/ patches of a given image are ex-
hausted. We design a reward signal for training the competing
agents, based on object presence likelihood in patches of an
image where appropriate termination is rewarded. The object
presence likelihood itself is learnt solely using image-level
labels. The game termination can be triggered by either of the
competing sides and, upon termination, each side presents a
final patch, for which object presence likelihood is quantified.
If the game is terminated too early by the agent (under-
segmentation), the competitor can select an object-containing
patch with a higher object presence likelihood, and thus a
negative reward is delivered to the agent that called the termi-
nation. This negative reward minimises under-segmentation.
If the game is terminated too late (over-segmentation), and
all object-containing patches are already exhausted, then both
competitors are likely to select patches with no object within.
This may mean that, by chance, the opposing side can select
a patch that has a higher object presence likelihood than the
agent that called termination. The higher object presence like-
lihood, for the competitor’s patch, in this case is likely to be
based on random chance, with object presence likelihood for
both patches being near-zero as all object-containing patches
have already been exhausted. A negative reward is delivered
to the agent that called the termination in this case as well. As
some of these cases of over- or under-segmentation are based
on random chance, they may not occur on every iteration.
However, the average expectation for the reward for these over-
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or under-segmented cases would be lower than an optimum
termination, that leads to an optimum segmentation. We train
the agents using RL, which maximises the expectation of
reward and thus learns an appropriate termination strategy that
minimises over- and under-segmentation.

Our approach differs from previous work by posing seg-
mentation as an auto-competing process where the signals
derived from the competition, and the competitive pressure
by means of the designed termination-based reward, prove
sufficient to minimise segmentation errors i.e., over- and
under-segmentation, common with other WSSS methods.

II. RELATED WORK

A. Reinforcement learning self-play

Self-play describes a special class of multi-agent problems
in RL where two or more agents compete to accomplish a
task, often set-up as a zero-sum game [15], [78]. In self-
play, an agent competes with itself, or a copy of itself, to
improve without the need for any direct supervision e.g.,
human labels. Rather, a reward signal, often based on the win/
loss conditions of a game, guides learning where both copies
of the agent compete to maximise the reward, or in other
words to win the game. This promotes learning competitive
behaviours such as developing counters to effective opposing
high-reward strategies or developing defensive strategies [15],
[79], [80]. Perhaps, the main benefit of self-play comes from
acquiring multiple sets of experiences that can be used to train
a single agent [28], [29], [79], [80]. This not only promotes
faster learning compared to learning against a hand-crafted
strategy, but also allows higher diversity in experiences for
potentially improved generalisability [3], [4], [28], [29], [79],
[80]. Self-play also aids learning by allowing a near-perfect
adversary, since the agent plays against an opponent that is
equally skilled, a copy of itself, and improves as the opponent
improves [44].

Thus far, the focus for self-play research has mostly been
to use learning in the context of existing zero-sum games e.g.,
Chess [80], Go [79], Poker [29] and Hide and Seek [5]. These
games and self-play research in general can be classified by
information-completeness based on the comparative informa-
tion accessible to each of the players [15], [79], [80]. Chess,
where both players have the same information, and are fully
aware of the opposition’s payoffs and actions, are known as
information-complete. Any games where an aspect of the game
dynamics is hidden from any of the players are known as
information-incomplete e.g., Hold’em Poker where the player
is unaware of the observed state (card selection) for opposing
players. Self-play has been extensively validated for both types
of games.

Roots of self-play are grounded in game theory, however,
RL self-play was popularised by works that proposed general
algorithms that enabled learning in information-complete envi-
ronments such as Go [79], [80] and Othello [86]. They showed,
for the first time, that RL self-play starting from random
play, could outperform handcrafted strategies and sophisticated
search techniques without any domain knowledge, except
game rules. These techniques were built upon and applied to

various complex information-complete computer games such
as Tennis and Soccer [59].

Concurrently, research into using RL self-play for
information-incomplete games also gained popularity through
its use in games e.g., Poker [28], [29]. Further developments
led to the application and extension of RL self-play to more
challenging environments such as Capture the Flag [85],
DouDizhu [104] and Robotic Soccer [23].

The goal with self-play applied to any game or competi-
tive task is to reach a Nash equilibrium, whereby an agent
will learn a perfect policy from which it will not deviate
[4], [28], [29], [66], [75], [79], [80]. However, in practice,
reaching Nash equilibrium is often not feasible due to the
large action and observation spaces in modern games, unless
human knowledge is used to abstract domains to manageable
sizes [29]. Nonetheless self-play using RL (without injecting
any expert knowledge) has managed to learn near-optimal
solutions to classical information-complete games [79], [80].
Several opponent sampling curricula have been proposed for
efficient learning in an attempt to get closer to Nash equilibria
in more complex environments.

In ‘vanilla self-play’, often described as the ‘best response’
curriculum, the current most up-to-date version of the agent
is used as an opponent. This opponent has been trained on
the most experience against itself, and thus may offer the
best response to an average response of the opposing player
[29]. This insight prompted the use of a mixture of average
response and best response as an opponent instead of only
the best response, as using only marginally weaker opponents
may promote learning [7], [29], [44], [49], [66], [88]. The key
insight from practical experiments being that a new mixed
curriculum may lead to more generalisable agents due to the
larger breadth of collected experience and also to avoidance
of cyclic learning and local optimas common in vanilla self-
play, where improvements are not made [7], [28], [49], [75],
[88]. This method of learning with an opponent with mixed
responses (mixture of best and average responses) is known
as ‘fictitious self-play’. In recent practice, in RL self-play, this
may be implemented by randomly sampling past versions of
agents (including the current agent itself) to act as opponents
[59], [66], [88], [91]. This holds theoretically as an expectation
of randomly sampling all past responses is equivalent to the
average response. Any curriculum that uses non-uniform sam-
pling distributions over all past versions of the agent may be
classed as ‘prioritised fictitious self-play’ [88]. This often leads
to faster learning, dependant on the sampling distribution, as
only limited amounts of experience are collected against very
weak opponents i.e., experience collection time is not wasted
on much weaker opponents that pose no challenge to the
current agent [88]. Developments in competitor sampling have
enabled various real-world applications.

In recent years, self-play research has focused on finding
competitive gamified formulations for a variety problems (that
are not pre-existing games) to find effective novel solutions
in various domains. Kajiura et al. [37] demonstrated the
use of RL self-play in image re-targeting by proposing a
competition between agents to select optimal image operators,
to adjust images to arbitrary sizes without information loss,
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within reasonable times. Self-play found effective strategies,
with processing times three orders of magnitude less than
previous multi-operator methods. Hammar et al. [24] showed
that by gamifying infrastructure security attacks e.g., denial
of service and cross-site scripting, and defence, e.g., firewalls,
effective intrusion prevention strategies, that outperform tested
baselines, could be learnt with RL fictitious self-play without
expert knowledge. Recently, Wang et al. [91] proposed RL
prioritised fictitious self-play for protein engineering to mutate
sequences towards desired properties, similar to playing pieces
in a game, which led to the discovery of proteins with 7.8-
fold bio-luminescence improvement compared to naturally
occurring sequences.

B. Weakly supervised semantic segmentation
Instead of full pixel-level annotations, WSSS utilises weak

labels to guide segmentation, e.g., image-level [2], [35], [94],
patch-level [14], [47], [55], [64], [81] or pointers and sparse
free-hand annotations [56], [57], [69], [87]. In this work, we
focus on weak signals derived from image-level labels as they
are often most time-efficient to obtain and are already available
in many real-world applications e.g., medical imaging diag-
nostic tasks [112]. Furthermore, many works assume image-
level labels as a pre-requisite for freehand-, or patch-based
WSSS, because labelling e.g., patches or points, automatically
leads to a binary annotation of object presence [112]. Missing
image-level classification to ROI correspondence in WSSS, in
ground truth data, remains a challenging task to overcome with
previously proposed solutions being based mainly on class
activation maps (CAM) [2], [35], [53], [94], or multi-instance
learning (MIL) [34], [50], [96], [99].

Methods for WSSS based on CAM, extract ROIs from
internal activations of a classification neural network, trained
to classify object presence [74]. These methods, however,
may be prone to under-segment since classifiers are driven
to activate only small portions of the image with strong
discriminative capabilities [11], [111]. Solutions employ a
number of techniques. Region growing extrapolates the initial
map, with or without external information [32], [40], [90].
The so-called erasure-based methods remove highly discrimi-
native features from images such that classifiers activate other
less discriminative features [12], [30], [41], [42], [45], [84],
[93], [94], [106]; erasure area, number of erasures, are all
hyperparameters to be tuned, often per image. Background
modelling creates maps of the background with the help of
external saliency maps [38], [48], [97], [100] or using a class-
wise discriminator re-trained for every class [17]. Information
aggregation accumulates information from multiple images
to build object representations [18], [60], [83], [111]. Self-
supervised learning uses auxiliary tasks to build supervisory
signals [8], [11], [77], [90]. However, a general solution to
WSSS using only image-level classification labels remains an
active research area.

MIL has been proposed for WSSS due its ability to cap-
ture correspondence between bags of multiple instances, with
available annotations, and single instances, to-be-labelled [21].
For WSSS, works aim to pose images as bags with image-
level classification labels available and pixels as instances, to

be labelled [34], [50]. Some solutions define bags as patches
with labels available [25]. Others incorporate clustering [99],
or redefine instances as lattice patches to obtain coarse seg-
mentation [96], which may increase inference time due to the
need to infer for all patches. Due to a focus on discriminative
features as in CAM, possibly sufficient for classification but
under-specific for full-object segmentation, these formulations
also tend to under-segment.

It should be noted that, more broadly, weakly supervised
segmentation, dealing with guiding segmentation using image-
level labels, may be categorised into semantic, instance and
panoptic segmentation. While this work only focuses on
semantic segmentation that assigns a class-label to each pixel
in an image, other weakly supervised segmentation approaches
use similar algorithmic approaches. Weakly supervised in-
stance segmentation (WSIS) aims to distinguish between dif-
ferent instances of the same class within an image. Similar to
WSSS, WSIS can use CAMs, where peaks in the activation
can be used to distinguish between different object instances
[33]. Often WSSS approaches can also be used to generate
pseudo-labels to train WSIS systems [22], [39], [113]. Weakly
supervised panoptic segmentation aims to solve both WSSS
and WSIS simultaneously and assigns class labels to each
pixel while simultaneously identifying different instances of
objects, using largely similar algorithmic approaches to WSIS
and WSSS [51].

This work focuses on WSSS and evaluates the approach for
commonly used WSSS benchmarks.

III. METHODS

In this work, we propose a gamified formulation for WSSS
where two agents compete to select ROI-containing patches
until exhaustion of all such patches. The game score at each
time-step is determined by an object presence detector which
indicates the likelihood of a patch containing the ROI. The
game score is used as a reward signal to train the agents using
RL, and the object presence detector is pre-trained using only
image-level object presence classification labels. The game
may be terminated by either of the competing agents, once
they consider all ROI-containing patches to be exhausted. If,
post-termination, the opposing side is able to select a patch
with higher likelihood of object presence (determined by the
object presence detector), a negative reward signal is delivered
to the side that called the termination signal, otherwise a
positive reward is delivered. This competitive set-up ensures
minimisation of over- or under-segmentation, as described in
Sec. I and outlined in the following subsections.

This formulation involves two types of functions: 1) object
presence detector - a classifier trained using binary image-
level classification labels of object presence, to classify object
presence within an image or patch; and 2) the agent - respon-
sible for patch selection such that a segmentation map may
be generated, trained using RL self-play with rewards derived
from the trained object presence detector. We first formalise
our proposed prioritised fictitious self-play and then describe
the set-up for WSSS.
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Fig. 2. Overview of the gamified WSSS segmentation using RL self-play.

A. Competing functions and the environment

In the form of self-play of interest in this work, two
opposing agents compete to achieve a goal in a zero-sum
game. The problem formulation is described in this section.
Single agent reinforcement learning: RL involves learning
optimal policies for decision-making under Markov decision
process (MDP) environments. The environment may be de-
fined as (S,A, p, r, π, γ).

States, actions and the policy: An agent or policy, in-
teracting with an environment, from time-step t, π(·; θ) :
S × A → {0, 1} represents the probability of performing
action at ∈ A to influence the environment, given observed
state st ∈ S , where A and S are the action and state spaces,
respectively, and the weights are θ. An action is sampled using
at ∼ π(·|st; θ). The state transition distribution conditioned on
state-action pairs is p : S ×S ×A → [0, 1], where probability
of the next state st+1 given the current state-action pair st, at
is p(st+1|st, at).

Rewards: The reward function, which indicates the value of
performing a given action when within a given current state,
is defined as r : S × A → R, which, at step t, produces a
reward Rt = r(st, at).

Trajectories: Following the state transition distribution for
sampling next states, the policy for sampling actions and
the reward function for sampling rewards, we can collect a
trajectory of state-action-reward triplets over multiple time-
steps τ = (s1, a1, R1, . . . , sT , aT , RT ).

Policy optimisation: The policy π(·; θ), modelled as a
neural network, with parameters θ, predicts parameters of a
categorical distribution from which an action is to be sampled
at ∼ π(·|st; θ). For a policy followed to collect a trajectory,
return is given by R(τ) =

∑T
k=0 γ

kRt+k, which indicates
return over trajectory τ . γ is a discount factor for future
rewards. The central optimisation problem to find optimal
policy parameters θ∗ then becomes:

θ∗ = argmax
θ

E
τ∼π(·;θ)

[R(τ)] (1)

Expectation over trajectories is computed using multiple
trajectories from agent-environment interactions, where τ ∼
π(·; θ) denotes trajectory sampling using policy π.
Multi-agent self-play environments: In self-play, if observed
states for the two competing agents are of the same form, from
the point-of-view of the competitors, then sampling an action
for an observed state for the competitor may also be achieved
using at ∼ π(·|st; θ).

At this point, we introduce subscripts ta and tb where a and
b indicate the agent a or the competitor agent b, respectively.
In this case, the states, actions and rewards for agent a may
be denoted as sta , ata , Rta and those for agent b as stb , atb ,
Rtb . Trajectories for agents a and b are denoted as τa and τb.
The optimisation problem is then modified:

θ∗ = argmax
θ
{ E
τa∼π(·;θ)

[R(τa)] + E
τb∼π(·;θ)

[R(τb)]} (2)

After each termination, two trajectories τa and τb are
collected, one from each side. Using experience from both
sides leads to a diverse range of experiences (from both the
winning and losing side), potentially aiding generalisability.
Competitor sampling: While, the section above describes
vanilla self-play, fictitious self-play may use a historic version
of the policy denoted πh(·; θh), where h denotes the training
iteration from which the historic policy is sampled, when the
current iteration is denoted as H , i.e., h ∈ {0, 1, 2, . . . ,H},
where H is incremented by one on each training iteration.
So agent a is always denoted as πH(·; θH), using the most
up-to-date policy or best response.

For fictitious self-play, the competitor agent b is denoted
as πh(·; θh), where h ∼ ρ(h) and ρ(h) = 1/H specifying a
uniform distribution between 0 to H , over all historic policies.
That is to say that a competitor is chosen randomly from all
past versions of the policy.

For prioritised fictitious self-play, we propose to use a trun-
cated normal distribution for competitor sampling from his-
toric policies. The competitor agent b is denoted as πh(·; θh),
where h ∼ ρ(h), where ρ(h) takes the form:
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ρ(h) =
4

H
·

ψ
(
4h−2H

H

)
Φ (−1)− Φ (−2)

(3)

Where ψ(v) = 1√
2π
e−

1
2 v

2

; and Φ(v) = 1
2 (1 + erf(v/

√
2));

and erf(v) is the Gauss error function.
This is our proposed prioritised fictitious self-play. The

distribution that we use is more commonly referred to as a
truncated Gaussian distribution, where we use H/2 as the
mean, H/4 as the standard deviation and 0 and H as the
bounds. This strategy is likely to select opponents that are
weaker than the agent but still allows much weaker or the best
response to be sampled for a wide range of experiences to be
collected. At the same time, a large amount of collection time
is not dedicated to much weaker opponents as in fictitious self-
play and cyclic learning / local optima, encountered in vanilla
self-play, are avoided as collection time for nearly equally
skilled opponents is also reduced.
Agent optimisation: Optimisation for both fictitious or pri-
oritised fictitious self-play are the same as vanilla self-play,
with the only difference being that for vanilla self-play, for
trajectory τa and τb collection, the actions for both agent
a and agent b are sampled using ata ∼ πH(·|sta ; θH) and
atb ∼ πH(·|stb ; θH), respectively (i.e., using the most recent
or best-response policy), with states for each still being
sampled using the state transition distribution p and rewards
for each also still computed using the reward function r.
For fictitious or prioritised fictitious self-play, actions for
agent a and agent b are sampled using ata ∼ πH(·|sta ; θH)
and atb ∼ πh(·|stb ; θh), respectively (i.e., using the most
recent or best-response policy for agent a and sampling a
competitor agent b from historic policies), where h ∼ ρ(h),
and ρ(h) is defined based on whether self-play is fictitious
when a uniform distribution over historic policies is used,
or prioritised fictitious when a non-uniform distribution over
historic policies is used.

B. Gamified segmentation using self-play

An overview of gamified segmentation: Gamified segmen-
tation consists of two agents that select patches from within
an image, such that all ROI-containing patches are selected,
where the object presence detector acts as a mechanism to
score the patch selection by opposing agents. The score is
based on the raw classification probability of the patch, from
the object presence detector, which serves as a proxy for
likelihood of ROI presence within the patch. The game is
terminated by means of a termination signal delivered by
one of the agents, when it deems all ROI-containing patches
to be exhausted. Rewards are given for each move, where
the winning patch at each step is determined by the object
presence detector, as well as at termination to determine the
winning side based on if the opponent can present a patch with
a higher score or not, as determined by the object presence
detector.
Object presence detector: The object presence detector
f(·;w) : X → [0, 1] predicts object or ROI presence (zero
for absence and one for presence) within an image or image

Data: Image-label pairs) {xi, yi}Ni=1

Result: Trained RL policy π(·; θ∗)
Train object presence detector using image-label pairs

(eq. 4) to get f(·;w∗);
Set current policy number H = 0

while not converged do
Randomly sample an image xi;
Start at t = 0;
Divide image xi into patches {xi,p}Pp=1;
Set agent a to have policy πH(·; θH);
Sample policy πh(·; θh) for agent b (eq. 3);
Set the initial state as s0 = {xi,p}Pp=1;
Sample action a0a ∼ πH(·|s0) for agent a;
Select patch xi,pa,0 and erase to update s0;
Sample action a0b ∼ πh(·|s0) for agent b;
Select patch xi,pb,0 and erase to update s0;
Compute reward R0a for agent a (eq. 5);
Compute reward R0b for agent b (eq. 5 with

inverted inequalities);

for t← 1 to tmax do
Carry st = st−1 from previous iteration ;
Sample action ata ∼ πH(·|st) for agent a;
Select patch xi,pa,t and erase to update st;
Sample action atb ∼ πh(·|st) for agent b;
Select patch xi,pb,t and erase to update st;
Compute reward Rta for agent a (eq. 5);
Compute reward Rtb for agent b (eq. 5 with
inverted inequalities);

Break iterating t if at,term = 1; set t = tend;
end

Once Rta=1:tend and Rtb=1:tend collected, update
policy using gradient ascent (eq. 2);

Update current policy number H = H + 1
end

Algorithm 1: RL self-play for WSSS.

patch x ∈ X , where X is the domain of images and w
are the weights. The only training data used to train f are
image-label pairs {xi, yi}Ni=1. Binary cross-entropy loss is
used for training: Lf (yi, f(xi;w)) = (yi) log(f(xi;w)) −
(1−yi) log(1−f(xi;w)). And the optimisation problem is to
find optimal weights w∗, by means of gradient descent:

w∗ = argmin
w

E [Lf (y, f(x;w))] (4)

After training, the classifier predicts raw classification
probability for the binary object presence classification task
f(xi;w

∗) = [0, 1] for image xi, which is a proxy for likelihood
of object presence. Note that while training, only images and
image-level classification labels of object presence are used,
however, inference may be on image patches that can be
interpolated to the image size used for training, regardless
of patch size. This enables quantification of the likelihood of
object presence within an image patch, which we will use
as a reward generator to train our RL self-play segmentation



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 20XX 7

framework, as outlined in the following sections. This kind of
task-based reward for RL is inspired by previous works [13],
[70]–[73], [102], [110].
The environment: The gamified segmentation environment
encapsulates the image to-be-segmented xi ∈ X and the object
presence detector f(·;w∗) with pre-trained weights w∗. All
states, actions and rewards are defined from the perspective of
agent a, however, definitions may be adapted to agent b e.g.,
by inverting inequalities defined in rewards. Subscripts a are
omitted from some terms for readability, however, are added
where ambiguous or where both agents a and b are involved.
A single time-step t encompasses moves from both sides, i.e.,
one patch selection action each (see Algo. 1).

States: The observed state for the environment is an image
xi divided into P patches using a grid of pre-defined size,
st = {xi,p}Pp=1, where xi,p is a patch of image xi.

Actions: We use a P -dimensional discrete action space for
patch selection at,patch ∈ {1, 2, . . . , P}, which selects one of
P patches, and a 2-dimensional discrete action space for the
termination action at,term ∈ {0, 1} (one for termination and
zero otherwise). The final action space is then given by at =
[at,patch, at,term]

⊤ ∈ A. The patch number selected by agent a
is defined as pa and for agent b as pb, otherwise a subscript
of a or b at the action, state or reward indicates the respective
agent that is responsible.

Patch selection At any time-step t, a patch selected by
agent a is denoted as xi,pa,t, which once selected, is replaced
by a zero-intensity patch (pixel values equal to zero) to
update observed state st, i.e., xi,pa,t = O. This is similar to
commonly-used erasure-based WSSS works [12], [30], [31],
[41], [45], [101], such that selecting that patch again is not
advantageous in terms of score, since the object presence
detector is likely to produce a low score for any zero-intensity
patch, in addition to an explicit reward dis-encouraging such
selections (see below). The observed state is modified twice
at each time-step, once by each of the two agents. After this
erasure of selected patches, the updated state is used as the
next state st+1.

Rewards: Reward at each time-step has four parts:
1) the patch reward:

Rt,patch =

{
+1 if f(xi,pa,t;w

∗) ≥ f(xi,pb,t;w
∗)

−1 otherwise
Which indicates the winning patch at each time-step, as

scored by the object presence detector, where the higher raw
classification probability for a patch wins the turn. Note that
the game is sequential turn-based where one agent plays before
another to prevent selection of the same patches by the two
agents. This makes the setup a zero-sum game.

2) the terminal reward:

Rt,term =


0 if at,term = 0

otherwise:
+ 1 if f(xi,pa,t;w

∗) ≥ f(xi,pb,t;w
∗)

− 1 if f(xi,pa,t;w
∗) < f(xi,pb,t;w

∗)
Which decides the final game winner at termination such

that if a termination signal is delivered by agent a and agent
a loses the turn, a negative reward is given otherwise if agent a
wins the terminal time-step, a positive reward is delivered. The

terminal reward plays an important role in preventing over- and
under- segmentation otherwise encountered with image-level
supervision (see Sec. II-B and I).

3) the repetition reward:

Rt,rep =

{
−1 if xi,pa,t = O

0 otherwise
Which discourages selection of an already selected patch as

these are replaced by zero-intensity patches O in state st.
4) the iteration bounding reward:

Rt,iter =

{
−1 if tmin < t < tmax and at,term = 1

0 otherwise
Which prevents early termination before tmin and also late

termination after tmax.
In practice Rt,rep and Rt,iter act as shaping to make learning

faster, however, are not necessary (see Table IV).
The final reward for the time-step t is thus formed using all

four components in a weighted manner:

Rt = Rt,patch + 100Rt,term +Rt,rep +Rt,iter (5)

Where the weights were tuned on a small subset of the
PASCAL VOC 2012 train set (see Sec. IV-A).
Agent-environment interactions: The above-described states,
actions and rewards are used to train a policy (eq. 2). An
overview is outlined in Algo. 1 and Fig. 2. At inference, we run
the policy without opposition, or with a fixed opponent policy
which always selects an artificially-placed zero-intensity patch.
Inference to obtain a a final segmentation map is done via
the agent selecting patches containing the object without
opposition. The grid of patches can be shifted by one pixel,
or more, in order to run inference again to conduct a majority
vote over pixel selections to get a pixel-level segmentation
map.

IV. EXPERIMENTS AND RESULTS

A. Datasets for evaluation
PASCAL VOC 2012 (VOC) [16] has 20 classes with 1,464,
1,449 and 1,456 images in the train, validation and test sets. As
common practice [11], [32], [111], the train set was augmented
with 10,582 images [26], with 1024 used for monitoring
performance, and the validation and test sets were held out
and used to report results (test results obtained from evaluation
server).
MS COCO 2014 (COCO) [58] has 80 classes with 80k and
40k images in the train and validation sets (20k images used
from train set for monitoring performance). Validation set was
held out and used to report results, as common practice [11],
[111].
Male Pelvic Structures (CMPS) [54] has 8 classes with 471
and 118 samples in the train and test sets (64 samples from
train set used for monitoring performance). Test set was held
out and used to report performance. We use 2D slices with
each 3D sample containing approximately 20-40 slices.
Liver Tumour (LiTS) [6] has 1 class (tumour) with 107 and
24 samples in the train and test sets (24 images from train set
used for monitoring performance). The test set was held out
and used to report performance. We use 2D slices with each
3D sample containing approximately 200-400 slices.
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Fig. 3. Left: VOC; Right: CMPS. ’Heatmap’: object presence detector score heatmap. Bottom: VOC; time-points at inference. RLSP uses pixel-level majority
vote by running inference thrice.

1) Monitoring performance: Performance can be moni-
tored during RL training by examining the obtained rewards
from agent a. We used trials of 32 episodes (each episode
being ta from 1 to tend) to train and 8 episodes to compute
rewards for performance monitoring. This trial-based training
and reward computation was performed until convergence. We
observed an increase in the performance-monitoring-rewards
until a plateau and set a convergence criterion to stop training
(e.g., minimum-delta of 1e− 5 across a moving average with
window size of 16 trials, for VOC). Additionally, performance
can be monitored while training the object presence detector
by setting a convergence criterion on the performance metric
(e.g., minimum-delta of 1e − 6 across 4 consecutive epochs
on mIoU on the performance-monitoring-samples, for VOC).

B. Network architectures and hyper-parameters

We use ResNet38 [27], [95] as a backbone for our object
presence detector and agent. We train a separate network
for identifying object presence or absence, for each class
(threshold 0.5 used at inference, to decide classes present in
the image). Hyper-parameter values are summarised in Table
I.

The object presence detector is trained as a binary clas-
sification network (of object presence) for each class that
requires segmentation, when there are more than two classes
in a dataset. The training data is split into positive and
negative images where the positive samples are the ROI-
containing samples belonging to the class-of-interest and the
negative samples are all other samples in the dataset. For
efficient training of the object presence detector for each class,
20% data from each of the remaining classes were randomly
sampled and used as negative samples for training. This was
done for large datasets including VOC and COCO, to reduce

overall training time and maintain a class-balance between
positive and negative samples [52]. Each class that is to-
be-segmented requires a separate object presence detector.
This training mechanism ensures that the object presence
detector, for each class, can learn to identify object presence vs
absence, which serves as a reward signal for our proposed self-
play segmentation approach. At inference, we use the object
presence detector to get binary object presence decisions per-
image, for every class. Subsequently, we only run self-play
with an object presence detector from a specific class if the
class probability for the sample is greater than 0.5, otherwise
we assume no object of the specific class is present within an
image.

We also refer the readers to the open-source repository for
further implementation details.

TABLE I
HYPER-PARAMETER VALUES.

Hyper-parameter Value

Object presence detector
Input-size 256×256

Architecture ResNet38
Batch-size 64
Optimiser Adam

Self-play
RL algorithm Policy Gradient

Input-size 256×256
Architecture ResNet38
Batch-size 128
Optimiser Adam
Gamma γ 0.96

tmin 4
tmax 1024

Patch-size 6×6
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TABLE II
SEGMENTATION RESULTS. VOC, COCO (MIOU); CMPS, LITS (MDSC).

Method Backbone VOC
(val)

VOC
(test)

COCO CMPS
(RE)

LiTS
(RE)

SEC [40] VGG16 - - 22.4 - -
IRN [1] ResNet50 63.5 64.8 32.6 - -
IAL [89] VGG16 - - 27.7 - -
ICD [17] ResNet101 64.1 64.3 - - -
SCE [8] ResNet101 66.1 65.9 - - -

SEAM [92] ResNet38 64.5 65.7 31.9 - -
BES [10] ResNet101 65.7 66.6 - - -

MCIS [83] ResNet101 66.2 66.9 - - -
CONTA [108] ResNet101 66.1 66.7 33.4 - -

LIID [61] ResNet101 66.5 67.5 - - -
A2GNN [105] ResNet101 66.8 67.4 - - -
AdvCAM [46] ResNet101 68.1 68.0 - - -

CDA [82] ResNet38 66.1 66.8 - - -
ECS [84] ResNet38 66.6 67.6 - - -
CSE [42] ResNet38 68.4 68.2 36.4 - -

CPN [109] ResNet38 67.8 68.5 - - -
USAGE [65] ResNet38 71.9 72.8 44.3 - -
CDL [107] ResNet101 72.4 72.9 48.7 - -

MIL (RE) [50] VGG16 67.9 - 37.9 52.1 67.4
RCA [111] ResNet38 72.2 72.8 36.8 53.9 68.8
SIPE [11] ResNet38 68.2 69.5 43.6 53.7 66.1
MCT [98] ResNet38 71.9 71.6 42.0 54.1 67.1
ACR [43] ResNet38 72.4 71.9 45.3 53.7 67.9

MARS [36] ResNet101 77.7 77.2 49.4 54.2 68.6
RLSP (ours) ResNet38 78.9 78.7 49.9 58.8 70.7

C. Comparisons with the state-of-the-art

We compare our proposed RL self-play (RLSP) against
multiple proposed CAM or MIL-based WSSS works that
utilise only image-level labels for training (citations provided
where appropriate). Re-implemented methods are denoted with
a suffix ‘RE’.

Previous works do not report measures of spread so statis-
tical tests were not conducted. For re-implemented methods,
we report t-test results (significance α = 0.05).

We report the commonly used overlap measures mean
intersection over union (mIoU), for VOC and COCO, or mean
binary Dice score (mDSC), for CMPS and LiTS, dependant
on what compared methods have reported.

Table II shows that our method outperformed recent state-
of-the-art (SOTA) WSSS methods that only use image-level
classification labels for training, on all tested datasets. We
observe improvements of 1.2 mIoU points on VOC (validation
set), 1.7 mIoU points on VOC (test set), 0.5 mIoU points on
COCO, 4.6 mDSC points on the CMPS, and 1.9 mDSC points
on the LiTS dataset. For the CMPS and LiTS datasets, differ-
ences are statistically significant (p-values<0.001). Modifying
the backbone of our method for VOC did not substantially im-
pact performance i.e., changing from ResNet38 to ResNet101
or VGG16 marginally reduced performance, by 0.5 or 1.2
mIoU points, respectively.

We observe that our proposed method performs best under
scenarios where the ROI is smaller than (less than half) the
whole FOV of the image (qualitative samples in Fig. 3 and 4).

Training and inference times varied with the number of
classes and approximate ROI size in the dataset e.g., for
VOC, we used approximately 450 GPU hours for training
on an Nvidia Tesla V100 GPU (48 hours pre-training object
presence detector), and 2.5 seconds for inference per image.

Performance improvements across a wide variety of datasets
demonstrate the applicability of our framework.

D. Ablation studies

Table III shows impact of increasing patch-size. This leads
to improved performance, until a plateau, which is intuitive as
our classifier tends to perform well when input FOV matches
the training FOV i.e., as the input patches get larger and
closer to whole images. Future development could explore
an adaptive object presence detector that is trained together
with the agents for optimal performance for a given patch
size. However, since VOC had a wide variety of FOVs in the
training data, impact of patch size was limited.

TABLE III
RESULTS FOR VARYING PATCH SIZE. VOC (VAL) (MIOU).

Patch size VOC
2 × 2 76.4
4 × 4 76.6
6 × 6 78.9
8 × 8 78.3

10 × 10 78.4
12 × 12 78.8
16 × 16 78.7

Table IV, shows impact of removal of components from our
proposed framework. Non-self-play variants are trained with a
reward based on a threshold 0.8 in place of agent b, i.e., setting
f(xi,pb,t;w

∗) = 0.8. Omission of shaping refers to repetition
and/ or iteration bounding rewards i.e., Rt,rep = 0 and/ or
Rt,iter = 0. We observe significant negative impact without
self-play, however, impact is limited when shaping rewards
are omitted. Note that reward shaping reduced training times
by approximately 8 hours.
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TABLE IV
RESULTS FOR ABLATION STUDY. VOC (VAL) (MIOU).

SP SR VOC
Rt,rep | Rt,iter

✗ ✗ ✗ 68.8
✗ ✓ ✓ 70.3
✓ ✗ ✗ 75.7
✓ ✓ ✗ 76.4
✓ ✗ ✓ 77.7
✓ ✓ ✓ 78.9

E. Comparisons to baselines

Table V, shows comparisons to various baseline models
such as a fully-supervised network (trained with pixel-level
ground truth), sliding window approach (using the object
presence detector with a commonly used threshold of 0.5 for
segmentation), and a single-agent formulation denoted as non-
SP, with varying thresholds used for selecting patches. We
demonstrate superior performance of our proposed framework
compared to all tested variants trained with weak image-level
labels. Furthermore, we report results for different seeds and
show that our training scheme is robust to seed selection with
a variance (standard deviation) of 0.47 over 8 random seeds.
Given that patch-size has limited impact and that compared
to sliding window approach without any RL, we obtain a
higher performance for RLSP, combined with results from the
ablation study, we conclude that self-play is the largest positive
contributor towards performance in our proposed framework.

TABLE V
COMPARISONS TO BASELINES. VOC (VAL) (MIOU).

Variant VOC
Fully-supervised 81.2

Non-SP (f(xi,pb,t;w
∗) = 0.8) 70.3

Non-SP (f(xi,pb,t;w
∗) = 0.5) 69.8

Non-SP (f(xi,pb,t;w
∗) = 0.2) 68.5

Sliding-window 64.9
RLSP (seed 1) 78.9
RLSP (seed 2) 77.9
RLSP (seed 3) 78.5

Performance improvements in overlap measures (mIoU and
mDSC) compared to other methods (see Table II), or variants
(see Table V) with sliding windows or omitted self-play,
indicate the ability of our proposed method to provide effective
segmentation. These overlap measures are reduced by over-
or under-segmentation and thus we conclude that our method,
with the highest overlap measure amongst tested WSSS meth-
ods, learns an effective termination strategy which minimises
over- or under-segmentation compared to other methods and
tested variants.

F. Quantifying over- and under-segmentation

Additionally, in Table VI we quantify over- and under-
segmentation by reporting the proportion of true-positive (TP),
true-negative (TN), false-positive (FP) and false-negative (FN)
pixel values, averaged over the set (normalised to a sum
of 100). The higher TP and TN and lower FP and FN for
our method further indicate that over- and under-segmentation
were minimised compared to other tested methods.

TABLE VI
COMPARING OVER-/ UNDER-SEGMENTATION. VOC (VAL).

Method mIoU TP TN FP FN
Sliding-window 64.9 63 15 10 12

Non-SP 70.3 65 15 10 12
MARS [36] 77.7 67 17 8 8

RLSP 78.9 69 18 6 7

G. Impact of network architectures and RL training algo-
rithms

Table VII shows variants of RLSP with different network
architectures used as the backbones for the object presence
detector and RL agents and different RL algorithms used for
training.

TABLE VII
IMPACT OF NETWORK ARCHITECTURES AND RL ALGORITHMS USED FOR

TRAINING SHOWING ACCURACY OF THE OBJECT PRESENCE DETECTOR
AND SEGMENTATION PERFORMANCE (MIOU) FOR RLSP.

Detector Self-play RL algorithm Accuracy VOC (mIoU)

Testing different backbones
ResNet38 ResNet38 PG 89.7 78.9
ResNet101 ResNet101 PG 87.5 78.4

VGG16 VGG16 PG 86.4 77.7
AlexNet AlexNet PG 80.9 72.3

Testing different RL algorithms
ResNet38 ResNet38 PG 89.7 78.9
ResNet38 ResNet38 PPO 89.7 78.7
ResNet38 ResNet38 DDPG 89.7 77.8

Testing different backbone combinations
ResNet38 ResNet38 PG 89.7 78.9
AlexNet ResNet38 PG 80.9 73.5

ResNet101 ResNet38 PG 87.5 78.8
ResNet38 AlexNet PG 89.7 77.5
ResNet38 ResNet101 PG 89.7 78.6

The results in Table VII show that our method is not only
robust to various backbone networks but also to different
RL algorithms, which indicates that the developed reward
mechanisms provide a consistent robust supervision signal to
train a WSSS system.

H. Using pseudo ground truth for segmentation network train-
ing

In addition to the predictions from RLSP used for evaluation
so far, i.e., obtaining segmentation directly as an output from
the proposed self-play mechanism, it is also possible to train
a segmentation network using the output of RLSP as pseudo
ground truth labels, similar to previous work [20]. This can
allow for inference time to be reduced while maintaining the
weakly-supervised nature of the proposed approach, as the
segmentation labels used to train the segmentation network are
derived from the WSSS RLSP as opposed to being manually
defined by a human observer. We use 50% of the validation
set pseudo labels to train the segmentation network and the
remaining 50% to report performance, as summarised in Table
VIII.

These results, from Table VIII, show that training a segmen-
tation network using pseudo ground truth labels from RLSP
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TABLE VIII
RESULTS FOR USING PSEUDO GROUND TRUTH LABELS FROM RLSP TO

TRAIN A SEGMENTATION NETWORK. VOC (VAL) (MIOU).

Segmentation Net Inference Time / s VOC (val)
None (simple RLSP) 2.500 78.5

ConvNet [62] 0.120 75.2
UNet [68] 0.150 77.8

DeepLab v3 [9] 0.180 78.0

Fig. 4. VOC test set segmentation results (left to right: image; ground truth;
proposed).

has the potential to reduce inference time while retaining
a majority of the performance benefit compared with other
WSSS methods. Although the inference time for RLSP itself
is higher than previous methods, the comparative performance
improvements and ability to reduce inference time via segmen-
tation network training using RLSP as pseudo-labels opens up
real-time applications at deployment.

V. DISCUSSION AND CONCLUSION

The results presented in Sec. IV demonstrate the effective-
ness of our proposed method, trained only using weak image-
level classification labels, by showing improved performance
compared to competing methods, ablated variants and other

baselines. The tasks on which our framework is evaluated
demonstrate a wide range of applications including two multi-
class segmentation computer-vision datasets and two medical
imaging datasets, showing applicability to various types of
images and ROIs.

Direct comparisons to other methods, in terms correct clas-
sifications of pixels containing ROIs, using true-positive, true-
negative, false-positive and false-negative ratios, also demon-
strate the ability of the method to reduce over- or under-
segmentation as it shows higher true-negative and -positive
rates and lower false-negative and -positive rates compared to
other tested methods.

The task-based rewards, in the self-play set-up, proposed
in this work, open up potential avenues for future work
where weak supervision signals may be derived for tasks
such as image-alignment, object localisation in 3D space,
or anomaly detection. Moreover, extending our task-based
rewards holds promise for facilitating meta-learning within
a self-play context. In such set-ups two task networks may
engage in competitive interactions supervised by an outer-level
network, all trained simultaneously, enhancing the modelling
of intricate interdependencies across these functions. In con-
clusion, our novel self-play framework opens up further av-
enues for research into supervisory signals and meta-learning
configurations.

In this work, we propose a gamified WSSS such that
competing agents segment a ROI from an image trying to
minimise over- or under-segmentation. The weak supervision
signals used during training are derived only from an object
presence detector, which is able to classify object presence
within a selected image patch, and itself is trained only using
image-level binary classification labels of object presence.
Extensive experiments on four datasets show that our proposed
framework outperforms recently proposed SOTA methods on
two well-known WSSS benchmarks as well as on two real-
world medical datasets.
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