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Abstract—Accurate electricity price forecasting is an 
alarming challenge for market participants and managers owing 
to high volatility of the electricity prices. Price forecasting is also 
the most important management goal for market participants 
since it forms the basis of maximizing profits. These markets are 
usually organized in power pools and administrated by the 
independent system operator (ISO). The aim of this study is to 
examine the performance of asymmetric neuro-fuzzy network 
models for day-ahead electricity price forecasting in the ISO New 
England market. The implemented model has been developed 
with two alternative defuzzification models. The first model 
follows the Takagi–Sugeno–Kang scheme, while the second the 
traditional centre of average method. A clustering scheme is 
employed as a pre-processing technique to find out the initial set 
and adequate number of clusters and ultimately the number of 
rules in the network. Simulation results corresponding to the 
minimum and maximum electricity price indicate that the 
proposed network architectures could provide a considerable 
improvement for the forecasting accuracy compared to 
alternative learning-based schemes. 

Keywords—Electricity price forecasting; neurofuzzy systems; 
neural networks; clustering; prediction  

I. INTRODUCTION 
During the past two decades we have seen widespread 

electricity sector liberalization and deregulation in all EU 
countries. With the introduction of restructuring into the 
electric power industry, the price of electricity has become the 
focal point of all activities in the power market [1]. Electricity 
price forecasting is a challenging task and is very important in 
competitive electricity market. The problem of electricity price 
forecasting is related yet distinct from that of electricity load 
forecasting. Although the load and the price are correlated, 
their relation is mainly non-linear. Power load is influenced by 
the factors such as non-storability of electricity, consumers’ 
behavioral patterns, and seasonal changes in demand. Price, on 
the other hand, is affected by those aforesaid factors as well as 
additional aspects such as financial regulations, competitors’ 
pricing, dynamic market factors, and various other macro and 
micro economic conditions. As a result, the price of electricity 
is a lot more volatile than the electricity load. Interestingly, 
when dynamic pricing strategies are introduced, prices become 
even more volatile, where the daily average price changes by 
up to 50% while other commodities may exhibits about 5% 
change [2].  

Both market players and the regulators are concerned much 
about the price evolution. Market price prediction is vital 
information for the producers’ production arrangement and 
bidding strategies. There are various methods adopted for the 
forecasting of future market price. One approach to predict the 
market behaviours is regression. The basic idea is the usage of 
historical prices, quantity and other information such as load 
forecast, and temperatures to predict the market-clearing price 
(MCPs). However, a simple linear regression model is unable 
to describe the complicated relation between load and 
electricity prices, because their relation is commonly dynamic 
and nonlinear [3]. Traditional ARMA models are able to find 
inherent rules of a time series by utilizing history data, but 
again they do not take into account the effect of other factors 
on electricity prices.  Much work has been done on electricity 
price forecasting with the Auto Regressive Integrated Moving 
Average (ARIMA) method [4]. In particular, the ARIMA 
method has been extended to include error correction for the 
worse market conditions with high price volatility [5]. 
Techniques that are based on the wavelet transform and 
ARIMA model have been applied to Spanish power markets in 
order to improve the accuracy of price forecasting [6].  

Due to their simplicity and flexibility, Neural Networks 
(NNs) have typically received much attention recently. While 
the majority of the studies refer to day-ahead predictions, the 
MLP network has been utilized in hour-ahead time framework 
[7]. In order to improve the accuracy of such methods for 
forecasting, different techniques have been combined with 
NNs. A feature selection technique, a relief algorithm, has been 
combined with NNs, while particle swarm optimization has 
been used for NN training [8-9]. K-Means clustering method 
has been used to find clusters for the number of neural 
networks. The wavelet and NN models have been fitted 
together for greater price forecasting accuracy [10]. RBF is 
another type of NNs that is utilized in the work of [11]. An 
RBF network includes a hidden and an output layer. This type 
of NNs is able to simulate complex relationships underlying 
the data and can adapt fast to possible changes of these 
relationships. Support Vector Machines (SVMs) provide a non-
linear mapping of the original data into high dimensional 
space. The boundaries of the new space are demarcated using 
linear function. SVMs provide a global solution to a problem 
unlike MLPs who can operate within local minima of their 
objective function. This fact has been also recognized in many 
research studies related to the load and price forecasting area 
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[12]. Genetic algorithms, in combination with LSSVM (Least 
Square Support Vector Machine), have been proposed. It has 
been proven that the forecasting is more accurate than the 
original SVM forecasting [13]. 

One of the first applications of fuzzy logic to electricity 
price forecasting was performed by Hong [14], who utilize 
fuzzy c-means for classifying historical data into three clusters 
(peak, medium and off-peak), and then employ a recurrent 
network for forecasting. Another approach in price forecasting 
is the synergetic operation of Fuzzy Logic (FL) and NNs. This 
part of the literature can be further classified into two 
categories: Studies that utilize FL and NN in the same system 
(i.e. neuro-fuzzy systems like ANFIS) and the studies where 
FL and NN are separated forecasters that are combined into a 
two-part forecaster. An adaptive-network-based fuzzy 
inference system (ANFIS) has been investigated and results 
proved that such scheme is superior to MLP approaches [15]. 

In most of the price forecasting case studies, especially in 
the hourly price forecasting utilizing learning-based 
algorithms, only one model is built to forecast the 24 hourly 
prices of the next day. However, it is a rather difficult task to 
associate all the characteristics of 24 different hourly prices by 
one single model. Thus, the model may become under-fitting 
for some hourly prices; but at the same time, it may become 
over-fitting for some others, which leads to unsatisfactory 
results. An obvious disadvantage of this approach however is 
related to the high complexity of the network structure (i.e. a 
system with 24 output nodes) in terms of training time and 
performance. Alternatively, a recurrent structure could provide, 
in theory, similar characteristics, however in practice its 
performance would be deteriorated due to the feedback error 
accumulation. An alternative approach has been proposed in 
recent past [16] and it has been adopted also in this paper. The 
core of the proposed modular forecasting system is the 24 
multi-input-single-output (MISO) modelling blocks. One of the 
flexibilities of the proposed module system is its possible use 
also for long-range forecasting schemes. 

In this paper, neurofuzzy models are considered to compute 
the forecasted price in ISO New England market. The ISO 
New England market is coordinated by an independent system 
operator (ISO) (http://www.iso-ne.com). It has been observed 
that although the daily power demand curves having similar 
pattern, but the daily price curves are however volatile. 
Therefore, forecasting of Locational Marginal Prices (LMPs) 
become more important as it helps market participants not only 
to determine the bidding strategies of their generators, but also 
in risk management. In this work, the training/testing data set 
was created from the period 2006-2007. Both training and 
testing sets were classified into 24 time series, each one 
corresponding to a different hour of the day. More specifically, 
600 data were allocated to training subset, while 123 data for 
the testing one. Two Asymmetric Gaussian Fuzzy Inference 
Neural Networks (AGFINN) utilizing a Takagi–Sugeno–Kang 
(TSK) and a centre of average defuzzification structures 
respectively have been considered as identification models for 
electricity price forecasting. Unlike the ANFIS system, 
AGFINN includes a clustering component which reduces the 
number of fuzzy rules, minimizing thus the “curse of 

dimensionality” problem. A fuzzy c-means (FCM) clustering 
algorithm is applied for the sample data in order to organize 
feature vectors into clusters such that points within a cluster are 
closer to each other than vectors belonging to different clusters. 
In the following result section, only results that correspond to 
hours with the maximum (22:00 h) and minimum (04:00 h) 
electricity prices are illustrated. The proposed modelling 
scheme is compared against ANFIS, AFLS, Wavelet network 
(WNN) and MLP NN forecasting schemes utilized for the 
same case study in order to evaluate its performance as an 
efficient prediction scheme. 

II. ASYMMETRIC NEUROFUZZY MODEL  

In this section, the proposed Asymmetric Gaussian Fuzzy 
Inference Neural Network (AGFINN) concept is presented as 
an alternative neurofuzzy modelling approach. Initially, 
AGFINN has been implemented as a MIMO neurofuzzy (NF) 
network which incorporates a clustering pre-processing stage. 
The architecture of the proposed scheme shown in Fig 1 
includes also a FCM clustering scheme for structural / 
initialization purposes. In spite of the extensive use of the 
standard symmetric Gaussian membership functions, 
AGFINN utilizes an asymmetric function acting as input 
linguistic node. Since the asymmetric Gaussian membership 
function’s variability and flexibility are higher than the 
traditional one, it can partition input space more effectively 
[17]. In this paper, AGFINN has been optimized through the 
gradient descent learning algorithm, while “centre average” 
(CA) defuzzifier has been used as defuzzification method. 
This technique is more efficient in terms of implementation 
compared to the traditional, for fuzzy logic systems, “centroid 
of area” approach [18]. 

 
Fig. 1. Structure of AGFINN-CA system 

Many neuro-fuzzy schemes are following the TSK 
defuzzification style, where only one output is enabled. 
ANFIS is a well-known representative of TSK-based neuro-
fuzzy systems. However, ANFIS’s main limitation is the 
exponential growth of rules subjected to the number of input 
variables. Generally, TSK-based models allow us to model 
nonlinear behaviour with relatively fast training speed. Thus, 
it would be interesting to investigate a TSK-based version for 
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AGFINN and explore any possible improvement against 
ANFIS. Similarly to previous AGFINN-CA scheme, 
AGFINN-TSK has been built around five layers, utilising the 
same learning training algorithm. The architecture for 
AGFINN-TSK is shown in Fig 2.The first three layers L1, L2 
and L3 correspond to IF part of fuzzy rules whereas layer L5 
contains information about THEN part of these rules and 
perform the defuzzification task. In layer L4 a normalization 
process is performed for all rules derived from L3. 

 
Fig. 2. Structure of AGFINN-TSK system 

A. FCM Clustering Algorithm 
Fuzzy c-means (FCM) clustering is the most prominent fuzzy 
unsupervised clustering algorithm which is based on 
minimizing an objective function that represents the distance 
from any given data point to a cluster centre weighted by that 
data point’s membership value. Given n data patterns,

1 2 nx , x ,..., x fuzzy clustering means partitioning the data 
patterns into c clusters which centred at ic . The objective 
function for FCM is defined by 

c n
m 2
ij ij

i 1 j 1
d ,    1 i c

= =

µ ≤ ≤∑∑     (1) 

where ijµ  is the degree of membership of object j  in cluster 

i , m  is the weighting exponent varying in the range [ ]1,∞  
and ijd  denotes the Euclidean distance between jx  and ic . 
The membership ijµ  and the cluster centres ic  are calculated 
by the following equations:  
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FCM clustering is an interactive procedure which updates ic
using the last iteration’s membership values. This algorithm 
moves objects between clusters until the objective function 

cannot be decreased further. The result is a set of clusters that 
are as compact and well-separated as possible. In the present 
study, cluster centres have been utilized as initial values for 
the centres of Gaussian membership functions, while the 
number of if–then rules for AGFINN modelling is equal to the 
number of clusters obtained through FCM clustering 
approach. The spread values for each membership functionσ ij  
are initialized according to  

1
2

2

1 1
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= =

 
 
 
 

= −∑ ∑
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These values are calculated based on the matrix U , where its 
elements correspond to the fuzzy memberships of input kx  in 

the thi  cluster and have centre values obtained again from 
FCM.  

 

B. Feed-forward analysis of AGFINN  
The clustering algorithm gives the fuzzy c-partition of the 
sample data. This result helps us to generate fuzzy rules base 
for AGFINN schemes. Fuzzy IF-THEN rules can be written in 
the following form: 

1 1 0 1 1IF (  is  AND....AND  is ) THEN ( .. )= + + +i i i i i
q q q qx U x U y w w x w x        (5) 

where U  are fuzzy sets defined based on c-partition of 
learning data X. The structure of AGFINN schemes is 
explained below layer by layer: 

• Layer 1: This layer is simply the input layer. Nodes in this 
layer pass on the input signals 1 2, ,..., nx x x  to L2. 
Layer 2: This layer is the fuzzification layer, and its nodes 
represent the fuzzy sets used in the antecedent parts of the 
fuzzy rules. A fuzzification node receives an input and 
determines the degree to which this input belongs to in the 
node’s fuzzy set. The outputs of this layer are the values of 
the asymmetric Gaussian membership function (MF) for 
the input values.  
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From the above equation, it is obvious that the proposed 
MF utilizes two spreads, namely left

ijσ and right
ijσ

respectively. Both of these parameters transform the 
traditional Gaussian function to a more asymmetric style 
which can provide greater flexibility from the original one. 
A schematic of the proposed MF is shown in Fig. 3. 
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Fig. 3. Structure of AGFINN-TSK system 

• Layer 3: This layer is the firing strength calculation layer. 
Since each fuzzy rule’s antecedent part has AND 
connection operator, the firing strengths are calculated 
using the product T-norm operator. In this case, the 
multiplication has been used, and the output of this layer 
has the following form: 

( )=∏
n

j ji i
i

R A x              (7) 

• Layer 4: This layer is the normalization layer. Each node 
in this layer calculates the normalized activation firing of 
each rule by:  

1=

=

∑
i

i c

j
j

R
R

R
   (8) 

• Layer 5: This layer is related to the defuzzification /output 
part of the AGFINN. Each node at this layer combines the 
output of each node in L4 by algebraic sum operation after 
being multiplied by the output weight value jf or ijw : 

1 1

  ( )     or     ( )
= =

= =∑ ∑
c c

i ij j j j
j j

O w R CA O f R TSK  (9) 

where j j1 1 jn n j(n 1)f w x ... w x w += + + +  represent the 
“consequent parameters” of the TSK-style defuzzification 
scheme. 

The learning algorithm of AGFINN involves the use of the 
gradient descent (GD) method to optimize the various network 
parameters. During, the backward “training” passes, the error 
signals are calculating from the output layer backward to the 
premise (i.e. membership) layers, and parameters at both 
defuzzification and fuzzification sections are fine-tuned.  

III. RESULTS & DISCUSSION 
Electricity price is a nonlinear function of many input 
variables, including their past values as well as past and 
forecasted values of any exogenous variables such as load 
consumption. To deal with this fact, three different models 

have been considered for this study, in order to extract safe 
conclusions about the forecasting approach that needs to be 
followed for the specific dataset. In the majority of forecasting 
problems, historical values of the parameter under study have 
always been considered as input candidates. In electricity 
price analysis, the most influential external variable is 
considered to be the load. In this study, we assume that next 
day’s forecasted load is available. There is an analogy 
between price and load values. While the load level rises, a 
constant increase of price is also observed.  

A. Model A 

The objective of this model is to examine a simple 
configuration, used by various researchers, where electricity 
prices at previous days and hours, as well as forecasted (for 
the targeted hour/day) load demand are utilized as input 
variables. Thus, for electricity price modelling for a specific 
hour (i) and day (j), the following five input variables have 
been considered:  

Target:  
• Price(i,j): electricity price at the ith hour on the 

(j)th day,  
Inputs: 

• Price(i, j-1): price at the ith hour on the (j-1)th day, 
• Price(i, j-2): price at the ith hour on the (j-2)th day, 
• Price(i-1, j-1): price at the (i-1)th hour on the (j-

1)th day, 
• Price(i-2, j-1): price at the (i-2)th hour on the (j-

1)th day, 
• Load(i,j): electricity load at the ith hour on the jth 

day, 

Based on this configuration, AGFINN models have been 
involved in forecasting the maximum (22h) and minimum 
(04h) price respectively. Best results were produced by 
including 20 fuzzy rules for the case of 22h, while 15 rules 
were adequate for the case of 04h. Although the classic 
gradient method utilized as a learning scheme, the training 
time was completed in less than 1000 epochs, much faster 
from the equivalent time used to train the MLP neural 
network. The performance of the forecasting model was 
determined by the root mean squared error (RMSE), the Mean 
absolute percentage error (MAPE) (%) and finally and the 
standard error of prediction (SEP). 

 
TABLE I 

PERFORMANCE INDICES 
 

Statistical index for AGFINN  

(Model A) 

Testing Datasets 

(TSK) 

Testing Data sets 

(CA) 

22h 04h 22h 04h 

Root mean square error (RMSE) 7.9028 3.3783 8.110 4.0542 

Mean absolute percentage error (MAPE) 
(%) 

5.0385 7.0090 4.9384 7.7738 

Standard error of prediction (SEP) (%) 6.5310 7.5578 6.7022 9.0700 
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The complete results for the hours with minimum and 
maximum electricity price are illustrated in Table I. The 
RMSE index is calculated between the desired and output 
values and then averaged across all data and it can be used as 
an estimation of the goodness of fit of the models. It can also 
provide information about how consistent the model would be 
in the long run. The MAPE term is the average absolute 
percent error for each time period or forecast minus actual, 
divided by actual. The SEP index is determined as the relative 
deviation of the mean prediction values and it has the 
advantage of being independent on the magnitude of the 
measurements. Based on these indices, the AGFINN scheme 
achieved a very good performance, especially for the case of 
maximum price. In order to evaluate the goodness of the 
current performance of the proposed AGFINN schemes, a 
comparison against NN, WNN and neurofuzzy models that 
have been employed for the specific datasets has been carried 
out. Table II provides a summary of those statistical 
performances. More specifically, AGFINN schemes have been 
compared against a multilayer perceptron (MLP), wavelet NN 
and neurofuzzy (NF) ANFIS and AFLS systems. 

 
TABLE II 

PERFORMANCE INDICES – COMPARISON 
 

Statistical index (22h) AFLS ANFIS WNN MLP 

Root mean square error (RMSE) 8.6060 10.3569 9.2798 12.8880 

Mean absolute percentage error 
(MAPE) (%) 

5.4587 6.3012 6.1393 7.4165 

Standard error of prediction (SEP) (%) 7.1122 8.5591 7.6690 10.6508 

  

Statistical index (04h) AFLS ANFIS WNN MLP 

Root mean square error (RMSE) 4.6194 7.5882 8.7796 10.4905 

Mean absolute percentage error 
(MAPE) (%) 

9.4320 13.6217 10.6214 21.3592 

Standard error of prediction (SEP) (%) 10.3345 16.9763 19.6418 23.4693 

The “Adaptive Fuzzy Logic System” (AFLS) model is an 
advanced MIMO NF systems which includes a prototype 
defuzzification scheme, while differs from conventional fuzzy 
rule-table approaches that utilize the “look-up table” concept 
[19]. The AFLS scheme does not follow TSK’s architecture, 
as the number of memberships for each input variable is 
directly associated to the number of rules, hence, the “curse of 
dimensionality” problem is significantly reduced. The 
fuzzification component in AFLS is similar to AGFINN, with 
the exception of the FCM clustering step as well as the 
absence of asymmetric MFs. For this specific case study, 20 
fuzzy rules for the case of 22h, and 15 rules for the case of 
04h were used as a final configuration. Results shown at Table 
II reveal that AFLS could be considered as the closest to 
AGFINN-CA in terms of performance. An MLP network was 
also constructed for this case study, using the same input 
vector. After a few trials, utilizing different internal structures, 
a NN was implemented with two hidden layers (with 20 and 8 
nodes respectively). Although AGFINN, AFLS and MLP 
share the same learning training algorithm, the different 

“philosophy” in building the neurofuzzy architecture, allowed 
those systems to achieve a superior performance. An ANFIS 
NF model has been constructed, utilising 32 fuzzy rules. As 
the number of MFs in AGFINNs is equal to the numbers of 
rules, the proposed architecture has advantages over the 
classic ANFIS model. An interesting finding from this 
simulation is related to the performance of WNN, which 
outperformed ANFIS for the case of 22h. More specifically, 
20 Morlet wavelet functions were utilised in the construction 
of WNN [20]. 

B. Model B 
Research has indicated that current hour electricity price shows 
a high correlation with those of hour h-24 and h-168, a fact that 
indicates daily and weekly periodicity. The objective of this 
model is to investigate this issue. No exogenous input variables 
are considered in this specific case study. Thus, for electricity 
price modelling for a specific hour (i) and day (j), the following 
six input variables have been considered:  

Target:  

• Price(i,j): electricity price at the ith hour on the (j)th 
day,  

Inputs: 

• Price(i, j-1): price at the ith hour on the (j-1)th day, 

• Price(i, j-2): price at the ith hour on the (j-2)th day, 

• Price(i, j-3): price at the ith hour on the (j-3)th day, 

• Price(i, j-7): price at the ith hour on the (j-7)th day, 

• Price(i-1, j-1): price at the (i-1)th hour on the (j-1)th 
day, 

• Price(i-2, j-1): price at the (i-2)th hour on the (j-1)th 

day, 

The complete results for the hours with minimum and 
maximum electricity price, for the AGFINN case are illustrated 
in Table III. The information related to weekly periodicity 
indeed resulted in an improved forecasting performance 
compared to Model A. Best results were produced by including 
25 fuzzy rules for the case of 22h, while 20 rules were 
adequate for the case of 04h.  

TABLE III 
PERFORMANCE INDICES 

 
Statistical index for AGFINN  

(Model B) 

Testing Datasets 

(TSK) 

Testing Data sets 

(CA) 

22h 04h 22h 04h 

Root mean square error (RMSE) 7.3320 3.3089 7.6515 3.7748 

Mean absolute percentage error (MAPE) 
(%) 

4.5763 6.2654 4.5552 7.5610 

Standard error of prediction (SEP) (%) 6.0593 7.4027 6.3233 8.4450 

 

All statistical performance indices were improved at this case 
study, compared to Model A. This was due to the expansion of 
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input variables vector by adding additional past electricity 
prices on the same hour. In fact, the assumption that electricity 
prices “contain” a periodicity effect was verified by this 
simulation. Results shown at Table IV illustrate results from 
alternative methods. For this case study, an AFLS model was 
constructed with 25 rules for the case of 22h, while 20 rules 
were used for the case of 04h. The MLP NN retained the same 
network configuration, while under these conditions, ANFIS 
performed satisfactory, its performance however was achieved 
with a high computational cost, by utilizing two membership 
functions for each input variables and 64 fuzzy rules.  

TABLE IV 
PERFORMANCE INDICES – COMPARISON 

Statistical index (22h) AFLS ANFIS WNN MLP 

Root mean square error (RMSE) 7.9278 9.8380 8.5303 11.6525 

Mean absolute percentage error 
(MAPE) (%) 

4.8062 6.1757 5.4173 6.9578 

Standard error of prediction (SEP) (%) 6.5517 8.1302 7.0496 9.6298 

  

Statistical index (04h) AFLS ANFIS WNN MLP 

Root mean square error (RMSE) 4.5427 6.0034 6.755 8.7796 

Mean absolute percentage error 
(MAPE) (%) 

9.5050 12.3199 12.140 10.6214 

Standard error of prediction (SEP) (%) 10.163 13.4307 14.121 19.6418 

 

ANFIS is a classic representative of TSK-based neuro-fuzzy 
systems. Generally, in this type of models, an input space is 
divided into 1 2 nK K .... K× × × fuzzy subspaces, where iK , 

1 2i , ,..,n= is the number of fuzzy subsets for the thi input 
variable. As one fuzzy rule is normally assigned for each one 
of these subspaces, their main drawback is that the number of 
fuzzy rules increases exponentially with respect to the number 
of inputs n . Results from this case study, indicate that may 
ANFIS scheme is not a suitable identification model for cases 
with large input vectors. The WNN however, reveal a 
remarkable robustness against ANFIS, resulting in a similar 
performance with only 20 wavelet MFs.  

C. Model C 
The objective of this model is to expand Model B, by adding 
the exogenous input of the forecasted electricity load. Thus, for 
electricity price modelling for a specific hour (i) and day (j), 
the following seven input variables have been considered: 

Target:  

• Price(i,j): electricity price at the ith hour on the 
(j)th day,  

Inputs: 

• Price(i, j-1): price at the ith hour on the (j-1)th day, 
• Price(i, j-2): price at the ith hour on the (j-2)th day, 
• Price(i, j-3): price at the ith hour on the (j-3)th day, 
• Price(i, j-7): price at the ith hour on the (j-7)th day, 
• Price(i-1, j-1): price at the (i-1)th hour on the (j-

1)th day, 

• Price(i-2, j-1): price at the (i-2)th hour on the (j-
1)th day, 

• Load(i,j): electricity load at the ith hour on the jth 
day, 

The complete results for the hours with minimum and 
maximum electricity price, for the AGFINN case are 
illustrated in Table V.  

TABLE V 
 PERFORMANCE INDICES 

 
Statistical index for AGFINN  

(Model C) 

Testing Data sets 

(TSK) 

Testing Data sets 

(CA) 

22h 04h 22h 04h 

Root mean square error (RMSE) 6.8514 2.9988 7.5032 3.5844 

Mean absolute percentage error (MAPE) 
(%) 

4.2418 5.4832 5.0097 6.9741 

Standard error of prediction (SEP) (%) 5.6621 6.7089 6.2007 8.0189 

The information related to weekly periodicity as well as the 
exogenous load parameter resulted in an improved forecasting 
performance compared to previous case studies. Best 
AGFINN results were produced by including 25 fuzzy rules 
for the case of 22h, while 20 rules were adequate for the case 
of 04h. All statistical performance indices were improved at 
this case study, compared to Models A and B. This was due to 
the expansion of input variables vector by adding additional 
past electricity prices on the same hour. In fact, the 
assumption that electricity prices “contain” a periodicity effect 
was verified also by this simulation.  

 
TABLE VI.  

PERFORMANCE INDICES – COMPARISON 

 
Statistical index (22h) AFLS ANFIS WNN MLP 

Root mean square error (RMSE) 7.7340 9.1584 8.0368 11.4835 

Mean absolute percentage error (MAPE) 
(%) 

4.4775 5.3308 4.9288 6.0115 

Standard error of prediction (SEP) (%) 6.3915 7.5686 6.6417 9.4901 

  

Statistical index (04h) AFLS ANFIS WNN MLP 

Root mean square error (RMSE) 4.3667 5.4409 5.4184 8.0055 

Mean absolute percentage error (MAPE) 
(%) 

7.6772 8.3168 10.3565 16.5878 

Standard error of prediction (SEP) (%) 9.7692 12.1724 11.622 17.9098 

 

Similarly, to previous case study, AFLS, ANFIS, WNN and 
MLP NN have been applied to this specific case study and 
their performances are presented at Table VI. ANFIS’s 
performance was achieved however with a huge 
computational cost, by utilizing 128 fuzzy rules. It seems the 
only comparable method to AGFINN is the AFLS scheme. 
Even WNN approach outperformed ANFIS in this specific 
case study, revealing ANFIS’s deficiencies.  
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Figures 4 and 5 illustrate the testing performances for 
minimum and maximum electricity price forecasting using 
Model C, using AGFINN-TSK scheme. 

 
Fig. 4. Forecasting for Electricity Price at 22:00, (AGFINN-Model C) 

Comparison of the proposed two AGFINN-based models 
indicates that TSK version is far superior to model utilising CA 
defuzzification scheme. AFGINN-TSK has also advantages 
over AFLS as well as TSK-based schemes like ANFIS.  

 
Fig. 5. Forecasting for Electricity Price at 04:00, (AGFINN-Model C) 

IV. CONCLUSIONS 
An approach is proposed in this paper for short-term electricity 
prices forecasting, based on an asymmetric neuro-fuzzy 
identification model. The application of the proposed approach 
to electricity prices forecasting on the New England market is 
novel in terms of network architecture and forecasting 
performance. The effectiveness of this approach has been 
thoroughly assessed by comparing it with alternative neural or 
neurofuzzy techniques, via three case studies. Future research 
includes the incorporation in the modelling process additional 
exogenous parameters, as well as the adoption of recursive 
least squares algorithm for the optimization of the consequent 
component at AGFINN-TSK model. 
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