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A STACKELBERG GAME THEORETIC MODEL FOR OPTIMIZING PRODUCT 

FAMILY ARCHITECTING WITH SUPPLY CHAIN CONSIDERATION+

Danping Wang1, Gang Du*, 1, Roger J. Jiao2, Ray Wu3, Jianping Yu1, Dong Yang4

Abstract: Planning of an optimal product family architecture (PFA) plays a critical role in defining an 

organization's product platforms for product variant configuration while leveraging commonality and 

variety. The focus of PFA planning has been traditionally limited to the product design stage, yet with 

limited consideration of the downstream supply chain-related issues. Decisions of supply chain 

configuration have a profound impact on not only the end cost of product family fulfillment, but also how 

to design the architecture of module configuration within a product family. It is imperative for product 

family architecting to be optimized in conjunction with supply chain configuration decisions. This paper 

formulates joint optimization of PFA planning and supply chain configuration as a Stackelberg game. A 

nonlinear, mixed integer bilevel programming model is developed to deal with the leader-follower game 

decisions between product family architecting and supply chain configuration. The PFA decision making 

is represented as an upper-level optimization problem for optimal selection of the base modules and 

compound modules. A lower-level optimization problem copes with supply chain decisions in accordance 

with the upper-level decisions of product variant configuration. Consistent with the bilevel optimization 

model, a nested genetic algorithm is developed to derive near optimal solutions for PFA and the 

corresponding supply chain network. A case study of joint PFA and supply chain decisions for power 

transformers is reported to demonstrate the feasibility and potential of the proposed Stackelberg game 

theoretic joint optimization of PFA and supply chain decisions.  
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1. INTRODUCTION

Product family architecting aims at optimal planning of an underlying architecture of an organization's 

product platform based on commonality and planned variability, such that various product variants can be 

derived through module configuration. The challenge of product family decision making resides with how 

to reuse product components and structures throughout the product family while differentiating product 

variety with decreased costs and time (Jiao and Tseng, 1999). From the perspective of product design and 

development, a product architecture defines how the functional elements of a product are arranged into its 

physical units and how these units interact with one another (Ulrich and Eppinger, 1995). A product family 

architecture (PFA), on the other hand, deals with configuration of modules according to a given product 

architecture by distinguishing what are the common modules and structural design to be shared among 

product variants, and by optimizing product differentiation while leveraging upon the performance of the 

entire family (Jiao and Tseng, 2000).

The focus of PFA has been traditionally limited to the product design stage, yet with limited 

consideration of the downstream supply chain-related issues (Jiao et al., 2007). The fulfillment of product 

families is enacted through assembly-to-order production, which nowadays more and more involves 

globally distributed operations and manufacturers (Jiao et al., 2009), leading to such supply chain concerns 

as facility locations and node selection in a manufacturing supply chain network (Elmaraghy and 

Mahmoudi, 2009). Supply chain decisions affect not only the end cost of product family designed, but also 

the decision models of module configuration within a PFA (Huang et al., 2005). For example, product 

family configuration must take into account the implications and consequence of different outsourcing 

policies of PFA modules in the supply chain (Lamothe et al., 2006). The corresponding supply chain 

decisions to a PFA constitute a supply chain architecture (SCA) that addresses how to configure a supply 

chain for the product families, involving such configuration decisions as the selection of supply options at 

each echelon of the supply chain and the placement of inventory at each supply chain echelon (Truong and 

Azadivar, 2005). Therefore, optimal PFA planning is coupled with supply chain configuration and in turn 

joint decision making is deemed to be imperative (Shahzad and Hadj-Hamou, 2013).

Existing decision models for joint optimization of product families and supply chain configuration are 

originated from a basic assumption that the PFA and SCA decisions can be integrated into one single 

optimization problem by aggregating two different types of objectives into a single-level objective function 

through certain coordinated protocol, e.g., a weighted sum (Fujita et al., 2013). However, such an “all-in-
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one” approach neglects the complex tradeoffs underlying two different decision making problems and fails 

to reveal the inherent coupling of PFA and SCA (Jiao and Tseng, 2013). In practice, PFA decisions are 

mostly made by a company’s designers, whereas SCA decisions are often attributed to many other 

companies in the supply chain that play their individual roles as suppliers, manufacturers, assembly plants, 

or distribute centers (DCs). Different priorities of decision making between the PFA and the SCA lead to 

many conflicting goals and constraints that must arrive at equilibrium solutions among diverse decision 

makers. Such joint optimization of product families and supply chain issues necessitates a non-cooperative 

game, which entails a leader-follower decision structure between the PFA and the SCA.

To handle the inherent interactions and hierarchical characteristics of joint decision making between 

two self-interested roles of PFA and SCA, we propose a Stackelberg game theoretic optimization model 

for coordinated product family architecting and supply chain configuration. Moreover, the existing 

literature on product family design mainly focuses on optimization of module configuration based on a 

given PFA, in which the modular architecture is already established, and thus contains a fixed number of 

decision variables. To the contrary, PFA planning is about how to design such a PFA by determining an 

optimal modular architecture. Due to the fact that the modular architecture is unknown before PFA 

planning concludes, PFA planning must deal with an uncertain number of decision variables.   

The paper proceeds as follows. The state-of-the-art research is reviewed in Section 2. Section 3 defines 

the problem context of supply chain issues in PFA planning. The optimization problems of PFA planning 

and supply chain configuration are elaborated in Sections 4 and 5, respectively. Section 6 presents a bilevel 

optimization model that coincides with the game theoretic decision making process between a leader and 

a follower. The leader problem represents PFA planning for optimal combinations of product variants and 

the common modular structure. The follower problem deals with SCA decisions by observing the results 

of PFA planning and meanwhile possesses the autonomy in determining appropriate facility locations and 

operational variables for the suppliers, manufacturers, assembly plants and DCs. Consistent with the bilevel 

optimization model, a nested genetic algorithm is developed in Section 7 to derive near optimal solutions 

of PFA and SCA. Section 8 reports a case study of joint PFA and supply chain decisions for power 

transformer products, along with performance analysis of the proposed Stackelberg game theoretic joint 

optimization model.    

2. RELATED WORK

2.1 Product Family Architecting
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Any product family exhibits a certain form of an architecture that impacts on product performance, 

product upgrades, product variety, component standardization, manufacturability, and product change 

(Ulrich, 1995). Jiao and Tseng (2000) review the fundamental issues of PFA planning, including 

modularity and commonality, functional and technical variety, and multiple views of a PFA. Based on 

function analysis, Stone et al. (2004) propose a module assembly heuristic for product architecture 

conceptualization. Rodriguez and Ashaab (2005) develop a knowledge driven collaborative product 

development system to facilitate knowledge supply in product architecting. Zhu et al. (2010) apply rough 

sets and neural networks to predict performance of new product family configuration.

Towards the goal of optimal product variant configuration with limited resources, PFA planning calls 

for extensive applications of optimization techniques. For a balance of versatility and performance among 

product variants, D'Souza and Simpson (2003) use formal experiment design to identify important factors 

of product family design and develop a multi-objective genetic algorithm for product variant performance 

optimization. Fujita (2002) proposes a hybrid method that uses genetic algorithm, mixed integer 

programming and constrained nonlinear programming, respectively. Jiao and Zhang (2005) propose a 0-1 

mathematical programming model for portfolio planning of a PFA that emphasizes customer-engineering 

interaction. Huang et al. (2005) propose to integrate product platform, process and supply chain decisions 

to minimize total supply costs and improve supply chain efficiency. Li and Huang (2009) consider PFA 

planning as a multi-objective optimization problem, considering product performance, product family 

penalty function, and degree of commonality in the objective function, leading to a multilayer evaluation 

method for product family analyses at different levels, i.e. product, module, component, and parameter. 

Cao et al. (2011) consider the life cycle costs in the optimization process, through mathematical 

programming models to reduce performance loss within the product range. Fujita et al. (2013) propose a 

mathematical model for simultaneous design of product families and the global supply chain configuration, 

through selecting of manufacturing sites, product assembly and distribution. 

2.2 Product Family and Supply Chain Coordination

 Lee et al. (2009) point out that companies need to integrate the supply chain and share the product 

information. Cheng (2011) shows that customization drives manufacturers using modular design model for 

managing their supply chain. Verdouw et al. (2010) observe that changes in product structures can 

influence the dynamics of supply chains, such as outsourcing and transferring production of more 

components to suppliers and combination of first-tier suppliers into mega suppliers. Doran (2003) also 
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shows consequences of coupled product architecting and supply chain decisions, including reorganization 

of value creation activities where some former first-tier-suppliers become value-added second-tier supplier, 

suppliers becoming more powerful with an increased bargaining power because of the larger role as a full 

service supplier, and formation of more strategic alliances or partnerships between the OEMs and their 

suppliers. 

More consensuses on focusing on product development and supply chain relationships at the product 

architecting stage have been reported in recent years. Pero et al. (2010) report case studies indicating that 

the performance of supply chain depends upon the matching between product development and supply 

chain decisions. Chiu and Okudan (2011) propose to combine design for assembly and supply chain 

configuration during the product development stage. Likewise Ulku and Schmidt et al. (2011) study how 

to the level of product modularity and supply chain configuration.

One of the recent focuses has been geared towards joint decision making of various stages in both 

product families and supply chains using an integrated approach. Shahzad and Hadj-Hamou (2013) adopt 

a general bill-of-product and a general supply-chain-structure to represent product families and supply 

chain issues. Zhang et al. (2008) apply linear optimization to design of product platforms concurrently with 

supply chain configurations. Du et al. (2013) establish a bilevel optimization model for product family 

configuration considering such supply chain issues as external module suppliers, internal manufacturing 

methods, and transportation in the supply chain configuration. Yang et al. (2015) formulate a bilevel joint 

optimization model for configuration of a product family and its supply chain, in which supply chain 

configuration determines the supply network and inventory policies for the suppliers, manufacturers, 

assemblers, DCs, and retailers.

2.3 Bilevel Programming

Bilevel programming basically instantiates a Stackelberg game to be a mathematical program that 

contains a sub-optimization problem in its constraints (Bracken et al., 1973). Since the upper level of the 

bilevel model contains the optimal solution or optimal value of the lower level, bilevel programs are 

generally non-smooth optimization problem, in which the feasible region of the upper level may not be 

connected. Even a linear bilevel programming is NP-hard (Jeroslow, 1985). 

Stackelberg games entail a leader-follower decision structure (Von Stackelberg, 1952), which contains 

an upper-level optimization problem (referred to as a leader), along with one or more lower-level 

optimization problems (referred to as followers). The leader holds a powerful position in the hierarchical 
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decision problem and the followers react rationally to the leader’s decision (Gibbons, 1992). The leader-

follower Stackelberg game formulation has been applied in a number of fields, such as design and 

maintenance (Hernandez et al., 2002), homogeneous product duopoly market research (Krishnendu, 2005), 

a two-stage supply chain with one manufacturer and one distributor (Qin, 2012).

Recent applications of bilevel programming in engineering design have indicated the potential of 

leader-follower decision making. For instance, Shabde and Hoo (2008) employ bilevel programming to 

find the optimal design of process control within a hierarchical decision making framework. Hernandez et 

al. (2002) formulate a leader–follower game-theoretic model for collaborative product design and 

maintenance management. Nonetheless, there is little application of bilevel Stackelberg games to PFA 

planning with supply chain consideration. 

Common solution methods of bilevel programming method include the K times best for linear bilevel 

programming (Bard and Falk, 1982), using K-T conditions to replace the lower level and converting the 

problem to a single-level program (Fortuny and McCarl, 1981), using a dual-gap structure penalty function 

to convert the problem to a single-level problem (Anandalingam, 1990), and intelligent algorithms 

(Mathieu, 1994). Sakawa and Nishizaki (2012) review the interactive fuzzy methods for multilevel 

programming problems. Fliege and Vicente (2006) propose a multi-criteria method to bilevel 

programming. Colson et al. (2005) consider the approximation of non-linear bilevel mathematical 

programs by solvable programs of the same type. However, these methods not only are technically 

inefficient, but also lead to a paradox that the follower’s decision power could dominate the leader's (Lai, 

1996). 

2.4 Genetic Algorithms

Genetic algorithms (GAs) have also been demonstrated potential for bilevel programming. Liu (1998) 

formulates a Stackelberg-Nash equilibrium with GAs for multilevel optimization. Niwa et al. (1998) adopt 

double strings in GAs for two-level 0-1 programming. Oduguwa and Roy (2002) propose a bilevel GA to 

encourage limited asymmetric cooperation between two players. Li and Wang (2008) incorporate a GA 

with Lemke algorithm. However, these efforts have to assume the follower's problem to be a convex 

quadratic programming problem so as to transform the bilevel model to a single-level problem using KKT 

conditions.

3. PFA PLANNING WITH SUPPLY CHAIN DECISIONS

The traditional task of product family configuration emphasizes the derivation of product variants by 
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selecting optional modules based on a given PFA (Yang et al., 2015), whereas the focus of this paper is on 

PFA planning, that is, how to establish such a PFA. The critical issue of PFA planning is to identify the 

common modules and structures (i.e., product platform) to be shared among product variants by optimizing 

product differentiation while leveraging upon the performance of the entire product family. Fig. 1 illustrates 

the architecture of product family configuration, in which a product platform is exemplified by 

combinations of compound modules. Each compound module is composed by certain base modules and 

all the compound modules form the common modular structure to be shared by a product platform. The 

base modules are identified by clustering similar module instances that are to be fulfilled through the supply 

chain. 

Assume that a product family serves a number of  market segments. The i-th market segment is I

associated with customer group  and characterized by annual demand , where . Let  (Si Qi i = 1,…,I mB
k

) denote a base module and  stand for the l-th module instance of base module  that k = 1,…,K m *
kl mB

k

contains a total number of  instances. Introduce a decision variable , to indicate the total number of Lk R

compound modules,  ( ), to be identified through grouping base modules with similar module mC
r r = 1,…,R

instances. The PFA planning involves another decision variable , which determines an appropriate number J

of product variants  ( ), that should be contained in a product family in terms of different  Pj j = 1,…,J

configurations of compound modules. The base modules with different instances are either made in house 

by specific manufacturing plants or purchased from suppliers. Therefore, configuring a product variant is 

enacted through the choice of compound and base modules per se. As a result, critical PFA planning 

decisions is about optimization of the number of product variants, identification of compound modules, 

and choosing of base modules. 
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Fig. 2: Coupled decisions between a PFA and an SCA

Fig. 2 illustrates the fulfillment of a product family is achieved through a supply chain architecture 

(SCA), which addresses how to configure a supply chain in terms of selection of suppliers for the base 

modules, choice of manufacturing and assembly plants for the compound modules, and selection of 

distribute centers (DCs) for delivery of the final product variants, along with inventory and operations 

policies at each stage of the supply chain. It is assumed that all the suppliers, manufacturing and assembly 

plants, and DCs possess the right capabilities for order fulfilling in terms of quality, creditability, etc. 

Consider a general case of assembly-to-order for product family configuration, in which the base 

modules are supposed to be purchased from the suppliers. Assume that each instance of a base module, 

, can be acquired from a number of  possible suppliers, and thus supply chain decisions for  are m *
kl Skl m *

kl

all about supplier selection. Likewise, assume each compound module, , can be produced by a number mC
r

of  possible manufacturers, for which selection of a best candidate manufacturer for  necessitates Mr mC
r

SCA decisions for compound modules. Similarly, fulfillment of a product variant configuration requires 

selection of a best candidate out of a number of  possible assembly plants that are all capable of APj

assembling product variant . To deliver  to the customer, it is necessary select the right DC from a Pj Pj

number of  candidate DCs.Dj

4. OPTIMIZATION OF PRODUCT FAMILY ARCHITECTING

The upper-level optimal PFA planning problem needs to determine the number of product variants, the 

number of compound modules, and the selection of base modules for every product variants. Let each 
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design variable, , define a particular product variant , Xj = (Xj1,…,Xjr) = (xj111,…,xj1kl,…,xjr11,…,xjrkl) Pj

where  implies that the l-th instance of the k-th base module is selected for compound module  in xjrkl mC
r

product variant . Note that  is a binary variable, such that  indicates that a compound module Pj xjrkl xjrkl = 1

contains a module instance; and  means not. Hence  represents a choice decision vector of xjrkl = 0 Xjr

compound module  for product variant . Then  represents the decision vector of a mC
r Pj X = (X1,X2,…,XJ)

product family, where the number of product variants  and the number of compound modules  are J R

decision variables to be optimized. 

The upper-level objective function should be consistent with the ultimate goal of PFA planning towards 

maximal customer satisfaction while leveraging enterprise profitability (Kaul and Rao, 1995). Customer 

satisfaction is usually evaluated according to the utility of product offerings. The utility of the i-th market 

segment for the j-th product variant is denoted as . It can be derived by a linear function of the part-Uij

worth utilities of the attribute levels of , i.e , where  denotes  Pj Uij = ∑
k ∈ K

∑
l ∈ Lk

wjkuiklxjkl + πij + εij uikl

the utility of the l-th instance of the k-th base module as perceived by the customers of market ;  stands i wjk

for the weight of the k-th base module in product variant ;  relates to the composite utility of  by Pj πij Pj

customers in market ; and  is an error term for each segment-product pair. There are a number of methods i εij

available to estimate regression utility weights and the constant through a given set of observed consumer 

choice data, for example, full-profile conjoint analysis, adaptive conjoint analysis, and experimental choice 

analysis (Lewis et al., 2006), 

Evaluation of the manufacturer’s profitability is essentially originated from fulfilment costs across 

multiple echelons of the supply chain. Jiao and Tseng (2004) propose a method for modeling the costs of 

providing variety based on variation of process capabilities. A process capability index thus lends itself to 

be an effective instrument for handling the sunk costs related to product families and the shared resources. 

A cost function, denotes as , can be formulated by aggregating respective cost elements of the supply TC

chain, that is, , where  is the total cost associated with TC = (1 + αΨ(Y,Z))(TCS + TCM + TCAp + TCD) TCs

the suppliers;  is the total cost of manufacturing plants involved in the supply chain;  is the total TCM TCAp

cost of assembly plants;  is the total cost of DCs, is a lower-level profit rate used in the upper-level TCD α 
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problem; and  is the associated variable function determined by technology, quality, reliability, and Ψ(Y,Z)

other factors in the supply chain. Therefore, the mathematical model of PFA optimization can be 

formulated as a leader problem, as the following: 

max    F(xjrkl,J,R) =
U

TC
(1.0)

s.t.  U = ∑I

i = 1
∑J

j = 1(∑k ∈ K
∑

l ∈ Lk
wjkuikl(∑R

r = 1
xjrkl) + πij) (1.1)

TC = (1 + αΨ(Y,Z))(TCS + TCM + TCAp + TCD) (1.2)

 ∑R

r = 1
∑Lk

l = 1
xjrkl ≤ 1 (1.3)

 ∑K

k = 1
∑Lk

l = 1
|∑R

r = 1
xjrkl - ∑R

r = 1
xj'rkl| > 0 (1.4)

xjrkl ∈ {0,1} (1.5)

J,R ∈ N + (1.6)

∈∈ (0,1) (1.7)

Ψ(Y,Z) ∈ (0,1) (1.8)

j = 1,…,J,r = 1,…,R,k = 1,…,K,l = 1,…,Lk (1.9)

Eq. (1.0) describes the objective function for PFA planning by the utility per cost measure of all 

planned product variants in a family with respect to . Eq. (1.1) defines the total utility of a planned (xjrkl,J,R)

product family based on conjoint analysis. Eq. (1.2) determines the total fulfillment cost of all product 

variants by aggregating the costs of associated modules to be purchased, manufactured, assembled, and 

distributed through the supply chain. Eq. (1.3) constrains the XOR relationships between a base module 

and its instances. Eq. (1.4) enables difference in planned product variants. Eqs. (1.5-1.9) enforce all the 

decision variables and parameters within the range of the decision space. 

For practical problems, specific technical compatibility constraints may be introduced as well. A 

common issue in PFA configuration is about compatibility constraints, which can be defined by restricting 

selection variable . For instance, the incompatibility between two base modules  and  can be xjrkl m B
k1

 m B
k2

expressed as:  Similarly, for the case where two base modules  and  must ∑Lk1
l = 1

xjk1l + ∑Lk2
l = 1

xjk2l ≤ 1. m B
k3

m B
k4

be included together in a product variant, an AND selection constraint can be introduced as: ∑Lk4
l = 1

xjk4l ≤

∑Lk3
l = 1

xjk3l.

5. OPTIMIZATION OF SUPPLY CHAIN CONFIGURATION
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To fulfill each product variant in a PFA, the supply chain decision model deals with such optimal 

choice of suppliers for acquiring specific base modules, manufacturers for producing compound modules, 

assembly plants for assembling the product and DCs for delivering the product. The lower-level 

optimization model is formulated to address the respective supplier selection, manufacturer selection, 

assembly plant selection and DC selection problems. 

5.1 Supplier Decision Model

The candidate suppliers for each specific base module (i.e., module instance, ) are identified a priori m *
kl

through a company’s supply contracting efforts. Corresponding to a module instance to be selected for a 

product variant configuration, the SCA decides a particular supplier for the module instance who runs an 

economic order quantity policy to maintain inventory supply for the module instance (Yang et al., 2015). 

Since the candidate suppliers differ in their operations, each supplier exhibits varying figures of raw 

material cost, inventory holding cost, transportation cost, and ordering cost. Therefore, the supplier 

selection problem is formulated according to the total inventory cost to be minimal, as the following,

min       TCS =

Skl

∑
s = 1

K

∑
k = 1

Lk

∑
l = 1

(C s
kldm *

kl

+ RC s
kl

d
m *

kl

z s
kl

+
HC s

klz
s
kl

2
+ TCP s

kldm *
kl)y s

klf(y s
kl) (2.0)

s.t.  y s
kl ≤ 1 - ∏J

j = 1(1 - ∑R

r = 1
xjrkl) (2.1)

 ∑
s ∈ Skl

y s
kl = N s

kl (2.2)

 d
m *

kl

= ∑I

i = 1
∑J

j = 1
pijQi(∑R

r = 1
xjrkl) (2.3)

d
m *

kl

≤ W s
kl (2.4)

0 ≤ z s
kl ≤ d

m *
kl

(2.5)

z s
kl ≤ y s

klM  M is a sufficiently large constant (2.6)

z s
kl + 1 > y s

kl (2.7)

y s
kl ∈ {0,1} (2.8)

where for the -th supplier,  is the material cost per unit of base module instance ;  is the s  C s
kl m *

kl RC s
kl

ordering cost;  is the inventory holding cost per unit of ;  is the transportation cost per unit HC s
kl m *

kl TCP s
kl

of ;  denotes the number of suppliers selected for supplying ;  is the supply capacity for ; m *
kl N s

kl m *
kl  W s

kl m *
kl
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 is the demand of  proportionally allocated to the -th supplier; and is the probability of demand f(y s
kl) m *

kl s  pij 

of market segment  for product variant ; i Pj

Constraint Eq. (2.1) indicates whether or not a base module instance should be supplied. A specific 

base module is assumed to be supplied by a selected number of suppliers, as shown in constraint Eq. (2.2). 

Constraint Eq. (2.3) defines the total demand of . Constraint Eq. (2.4) restricts the demand for  to m *
kl m *

kl

be supplied within the capacities of the selected suppliers, whereas constraint Eq. (2.5) makes sure that a 

supplier’s supply of  is not more than the demand. Constraints Eq. (2.7-2.8) describe the compatibility m *
kl

between the choice variable of suppliers and the amount of supply with respect to the actual production - 

whenever the selection variable assumes a zero value, the supply amount must be zero; otherwise if the 

selection variable becomes one, the supply amount must be larger than zero. 

5.2 Manufacturer Decision Model

The supply chain decisions for manufacturer selection account for the production of compound 

modules from base module instances. It is reasonable to assume that supply chain configuration at this 

echelon is enacted within established manufacturing plants. As for how to set up a new plant or develop 

vendors of manufacturing, it is not within the scope of supply chain configuration. Assume each compound 

module can be produced by more than one manufacturer. While all are capable to produce a compound 

module, these alternative manufacturers may perform differently in terms of operational costs, as well as 

material handling and logistics costs. It is common that the manufactures adopt a just-in-time strategy for 

their inventory management, in which the inventory-related costs are minimized (Yang et al., 2015). The 

manufacturers can also implement a vender managed inventory policy to include inventory costs through 

selling prices. The decision model for manufacturing plant selection can thus be formulated as:

min  TCM =

R

∑
r = 1

Mr

∑
m = 1(Cm

r +

J

∑
j = 1

(
K

∑
k = 1

Lk

∑
l = 1

(PCm
kldmC

r

xjrklt
m
kl(zm

r )) + TCPm
r d

mC
r ))ym

r f(ym
r )

(3.0)

s.t.  ∑Mr
m = 1

ym
r = Nm

r (3.1)

 d
mC

r

= ∑I

i = 1
pijQi (3.2)

 d
mC

r

≤ Wm
r (3.3)
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zm
r ∈ {0 or production methods set} (3.4)

zm
r ≤ ym

r M    M is a sufficiently large constant (3.5)

zm
r + 1 > ym

r (3.6)

ym
r ∈ {0,1} (3.7)

where for manufacturer ,  is the annual fixed cost allocated to compound module ;  is the unit m Cm
r mC

r PCm
kl

variable cost for manufacturing a compound module ;  is the unit logistics cost of  handling mC
r TCPm

r

compound module from manufacturer  to the assembly facility;  is the time of producing  mC
r    m tmkl(zm

kl) mC
r

by manufacturer ;  is the total demand proportionally allocated to manufacturer ;  is the  m f(ym
r )  m Nm

r

maximal number of manufacturers selected for production of ;  is the annual demand for ; and  mC
r djr mC

r Wm
r

is the production capacity of manufacturer  to produce .m mC
r

Constraint Eq. (3.1) indicates that the production of a compound module can be assigned to more than 

one manufacturing plant. While constraint Eq. (3.2) defines the demand for a compound module, 

constraints Eq. (3.3) makes sure that the capacity of each plant can satisfy the demand. Constraint Eq. (3.4) 

provides options of production capability. Constraint Eq. (5) guarantees that the selection variable for 

manufacturer  takes a zero value when it is not assigned to produce . Constraint Eq. (3.6) enforces m   mC
r

that a selected manufacturer must produce at least one type of compound module. Constraint Eq. (3.7) m

ensures that every compound module will be produced.

5.3 Assembly Decision Model

The advantage of product family configuration lies in assembly-to-order production that enables mass 

customization. The assembly plants could be independent from manufacturing by outsourcing module 

manufacturing to vendors. Among multiple alternatives, one assembly plant needs to be selected for 

assembling of compound modules from manufacturing plants into end-product variants. Different 

candidate plants for assembling may possess different capacities in terms of processing time, labor cost, 

and the like. The total cost at an assembly plant comprises the operational fixed and variable costs, along 

with the transportation cost. Therefore, the decision model for assembly deals with these cost components 

subject to engineering constraints, that is,  
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   (4.0)min TCAp = ∑APj
Ap = 1

∑J

j = 1(CAp
j + ∑R

r = 1(PCAp
jr dPj

tAp
r (zAp

j ))TCPAp
j dPj

)yAp
j f(yAp

j )

s.t.  ∑
Ap ∈ APj

yAp
j = NAp

j (4.1)

 dPj
= ∑I

i = 1
pijQi (4.2)

 dPj
≤ WAp

j (4.3)

zAp
j ∈ {0 or production methods set} (4.4)

zAp
j ≤ yAp

j M     M is a sufficiently large constant (4.5)

zAp
j + 1 > yAp

j (4.6)

yAp
j ∈ {0,1} (4.7)

The above assembly decision model is defined for each assembly plant , for which is the annual Ap CAp
j  

fixed operational cost allocated to product variant ;  is the unit variable cost for product variant ; Pj PCAp
jr Pj

 is the unit transportation cost of product variant to be moved from  to the DC;  is TCPAp
j  Pj Ap tAp

r (zAp
j ) 

the processing time for assembling a unit of product variant ;  denotes the demand proportionally  Pj f(yAp
j )

allocated to ;  indicates the number of assembly plants selected in the supply chain;  is the annual Ap NAp
j dj

demand for product variant ; and  is the production capacity of assembly plant  for producing . Pj WAp
j Ap Pj

Constraint Eq. (4.1) restricts the number of selected assembly plants, whilst constraint Eq. (4.2) defines 

the total demand of product variant . Constraint Eq. (4.3) denotes the capacity limit of each assembly Pj

plant and Eq. (4.4) indicates the selection of a production method (i.e., assembly planning). Constraint Eq. 

(4.5) guarantees that when an assembly plant is not selected, the corresponding production method should 

be null. Eq. (4.36) is constraint that makes sure when an assembly plant is selected, the corresponding 

production must be greater than zero. 

5.4 Distribution Center Decision Model

The final echelon of the product family supply chain is associated with DCs for the end-product 

variants to be delivered to retailers. The decision model for DCs aims to minimize total transportation and 

inventory costs occurring at DCs, which include the setup cost of DCs, the inventory costs at each DC and 

the transportation cost from on DC to the retailers. Assume that all the DCs have the capabilities to deliver 
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any of product variants in a product family. Then the decision model for DCs can be formulated as the 

following: 

 min     TCD = ∑D

d = 1(∑J

j = 1(RCd
j

dPj

zd
j

+ TCPd
jdPj

+
HCd

jz
d
j

2 ))ydf(yd) (5.0)

s.t.  ∑
d ∈ D

yd = ND
(5.1)

 dPj
= ∑I

i = 1
pijQi (5.2)

 dPj
≤ Wd

j (5.3)

0 < zd
j ≤ dj (5.4)

yd ∈ {0,1} (5.5)

where the decision variables are the selection variable  from a set of DC alternatives and the optimal yd

order quantity . In addition,  is the ordering cost of product variant  at the -th DC;  denotes zd
j RCd

j Pj d TCPd
j

the unit transportation cost of product variant  to be delivered from  to retailers; and  represents the  Pj d HCd
j

unit inventory holding cost for  at the -th DC. Eq. (5.1) restricts the number of DCs selected for the Pj d

product family to be capped at . Constraint Eq. (5.2) represents the total demand of product variant . Nd Pj

Constraint Eq. (5.3) expresses the capacity limit at DCs. Eqs. (5.4) and (5.5) enforce the parameters ranges 

of two decision variables.

6. STACKELBERG GAME MODEL FOR LEADER-FOLLOWER JOINT OPTIMIZATION

Both PFA planning and SCA decisions involve many different problem domains and are associated 

with multiple decision makers that have to compromise for conflicting goals in order to maximize each 

individual’s own payoffs. While the goal of optimal PFA planning is mainly geared toward maximal 

customer-perceived utility per cost (Jiao et al., 2007), SCA optimization aims at minimal costs at each 

echelon of the supply chain. As such, coupling of PFA and SCA issues leads to a non-cooperative game 

that needs to arrive at equilibrium solutions between two different configuration optimization problems. 

For joint optimization of PFA and SCA configuration, the PFA planning problem plays a dominant role 

and the SCA problem acts as the feedback, exemplifying a paradigm of leader-follower game theoretic 

decision making. Fig. 3 illustrates the decision variable structure of the one leader-four follower 

optimization model, in which the upper-level problem controls the lower-level problems through PFA 

decision variables  and the lower-level problems feedback the upper level through the respective supple X
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chain decision variables , , , and . (YS,ZS) (YM,ZM) (YAP,ZAP) (YD,ZD)

Given Upper-level find and Lower-level input 

1 k KBase Module ... ...

Module Instance 1 L1 ... ... ...1... 1 LK... Lk

Upper-Level Optimization Problem

: Product Family Decision

1

j

APj

Product Variant

Assembly Plant

...

...

...

... ...

: Assembly Plant  Selection

DC 1 D...

Product Family

: DC Selection

Lower-Level Optimization Problems

: Supplier Selection

Supplier 1 S1... ... 1 S1...
Module Instance

… k

...
...
...

1...
…

... Lk

Base Module

1

r

Mr

Compound Module

Manufacturer

...

...

...

... ...

:Manufacturer Selection

Fig. 3: Model decision variable structure

In line with Stackelberg game theoretic decision making, joint optimization of product family 

architecting and supply chain configuration can be formulated as a leader-follower bilevel optimization 

model. The PFA planning optimization problem acts as a leader, constituting an upper-level optimization 

model. The supply chain configuration problem comprises the supplier, manufacturer, assembly, and DC 

decision models. Each of these decision models performs as a follower and entails a specific lower-level 

optimization model. Both the leader for PFA planning and the follower for SCA configuration possess their 

own strategies (in terms of decision variables) and payoffs (in terms of objective functions). The joint 

optimization process is initiated by the leader for PFA planning who enforces its strategies on the lower-

level problems. The followers responds to the upper-level PFA planning decisions by choosing its own 

strategies to optimize its own objective function regarding the respective supplier, manufacturing, 
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assembly and DC decisions. Such a 1-leader-4-follower bilevel joint optimization model can be 

summarized as follows:

max         F(xjrkl,J,R) =
U

TC
(6.0)

 s.t.                          Constraint Eqs.(1.1) - (1.9) (6.1)

min        TCs(y s
kl,z

s
kl) (6.2)

  s.t.     Constraint Eqs.(2.1) - (2.8) (6.3)

min    TCM(ym
r ,zm

r ) (6.4)

  s.t.      Constraint Eqs.(3.1) - (3.7) (6.5)

min         TCAP(yAp
j ,zAp

j ) (6.6)

  s.t.      Constraint Eqs.(4.1) - (4.7) (6.7)

min        TCD(yd,zd
j) (6.8)

  s.t.       Constraint Eqs.(5.1) - (5.5) (6.9)

Fig. 4 illustrates the interactive decision making process of the bilevel joint optimization model. First, 

PFA planning makes optimal decisions about the number of product variants, the number of compound 

modules and selection of base module instances, embodied by decision variables , , and , J R xjrkl

respectively. These results of PFA planning decisions then become the parameters for lower-level 

optimization of supply chain configuration through minimizing total supply chain-related costs. By such a 

parametric optimization process, the supply chain configuration problem responds to the upper level by 

providing feedback on the fulfillment costs of a product family including sourcing costs of base module 

instances, manufacturing costs of compound modules, assembly costs of product variants, and delivery 

costs of end-products. The impact of supply chain decisions on product family architecting is achieved 

through the upper-level optimization problem to adjust its PFA planning decisions according to the lower-

level supply chain configuration feedback on the fulfillment costs of product variants while maximizing 

the customer-perceived utility of the overall product family. The bilevel joint optimization process 

proceeds in an iterative manner until Stackelberg equilibrium solutions are reached for both the leaders and 

the followers. 
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Fig. 4: Interaction decision making between the upper- and lower-level optimization problems 

7. MODEL SOLUTION

7.1 Nested Genetic Algorithms 

The bilevel joint optimization model entails a nonlinear, mixed integer program that is NP-hard.  

Existing bilevel optimization solutions are generally categorized as direct and indirect methods. The 

indirect approach aims to convert the original bilevel problem to a single-level program, such as KKT 

conditions and penalty function methods. The direct approach on the other hand is aligned with the bilevel 

decision mechanism, such as satisfactory solution methods. However, it becomes challenging for direct 

solution methods to tackle large size optimization problems. For instance, the larger the number of supply 

chain nodes for fulfilling modules and its instances, the less efficient of the direct solution methods. 

Product family and supply chain configuration problems essentially entail combinatorial optimization, 

for which genetic algorithms are proven to be advantageous for large and complex problems (Oliveto et 

al., 2007). In our model Eqs. (6.0)-(6.9), each of the upper-level and lower-level optimization problems is 

associated with different engineering characteristics, which makes the assumptions of KKT conditions 

hardly hold. We thus propose to employ a nested scheme of multiple GAs to address the interactive decision 

making between the upper- and lower-level problems, whilst solving each individual leader’s or follower’s 

problem with one specific GA. The nested GA process reveals the underlying coupling between the leader 

and the followers through the dominant and feedback variables that are solved by satisfying all constraints 

of the bilevel model and limiting the optimal solutions within the feasible region of the design space. 

As shown in Fig. 5, the nested GA solution process starts with the upper-level GA by generating an 

initial population (minimal values of J and R, along with module selection X) that is feasible for the leader’s 

problem. To propagate this initial solution for the dominant variables to the followers’ problems, each 
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decision vector X from the upper level becomes parameters of each individual lower-level GA that is to be 

solved locally within the design space of each lower-level optimization problem for supplier selection (YS

 and ), manufacturer selection (  and ), assembly selection (  and ), or (X) ZS(X) YM(X) ZM(X) YAp(X) ZAp(X)

DC selection (  and ). All the lower-level optimal solutions, (YS*, YM*, YAp*, YD*) and (ZS*, ZM*, YD(X) ZD(X)

ZAp*, ZD*), then perform as the feedback variables to re-run the upper-level GA and in turn to adjust the 

upper-level solution (J* and R*). This process iterates until both and leader and followers reach a 

Stackelberg game equilibrium. 

Upper-Level GA

Lower-Level GAs

Return (X*, (YS*, YM*, YAp*, YD*), (ZS*, ZM*, ZAp*, ZD*))

NO

Set Fitness
Value=0
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Start
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Fig. 5: Nested GA solution for leader-follower bilevel joint optimization 

7.2 GA Encoding and Operators 

The critical issue of GAs is the encoding of the semantics of each decision variable of bilevel 

optimization by a string of digits, namely a chromosome. As illustrated in Fig. 6, we propose to encode a 

product family using a generic chromosome that comprises fragments (i.e., sub-string), such that each 

fragment represents a product variant of the product family. Likewise, each fragment can be further 

fragmented such that each sub-fragment corresponds to a compound module. Every element of the string, 

namely a gene, then denotes a particular base module. 
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Selection of base module instances can be encoded in a similar fashion. As show in Fig. 7, all the based 

modules are listed as fragments of the chromosome, whilst each fragment represents all the instances of a 

base module and the length of the fragment corresponds to the total number of instance of that particular 

base module. A binary decision vector, , can be introduced to represent the XOR v = [v11,…,vkl,…vKLK
]

selection of one instance for every based module. Each gene denotes the selection ( ) or not ( ) vkl = 1 vkl = 0

of a base module particular instance ( ). m *
kl

Supplier selection for sourcing of a particular base module instance can be encoded similarly using a 

fragmented chromosome and a selection decision vector , as shown in Fig. 8. Using the same [YS,ZS]

method of generic encoding, three separate GAs can be constructed to represent the manufacturer, assemble 

and DC decision models, respectively.

3 ... 0 ... 1 ... ... 0 ... 4 ... 0 ... ... ... 1 ... 0 ... 2 0 ... 1 ... 0... ...],...,,...,,[ 21 Jj XXXXX =

( )jRjrjj xxxX
∈∈∈

,...,,...,1=

3 ... 0 ... 1( )jrKjrkjrjr xxxx ,...,,...1=∈

3 ... 0 ... 1 ... ... 0 ... 4 ... 0

Fig. 6: Product family chromosome encoding

111 1 1,..., ,..., ,...,
KL K KLv v v v   1 ... 0 ... ... 0 ... 0 ... ... 0 ... 1

Fig. 7: GA encoding of base module instance selection

[ ] ],...,,...,,,...,,...,[, 11 KkKk
SS zzzyyyZY

∈∈∈∈∈∈= 3 ... 0 ... 1 ... ... 1 ... 0 ... 2 0 ... 1 ... 0... ...

1 ... 1 ... 2( )
kkLklkk yyyy ,...,,...,1=∈

134 ... 23 ... 256( )
kkLklkk zzzz ,...,,...,1=∈

300 ... 205 ... 12 ... ... 134 ... 23 ... 256 110 ... 231 ... 180... ...

Fig. 8: Supplier selection chromosome encoding 

Product Variant 1 Product Variant 2 Product Variant 3

CompoundModule 1 CompoundModule 2 CompoundModule 1 CompoundModule 2 CompoundModule 1 CompoundModule 2

3 0 0 2 1 0 0 2 1 0 0 4 2 0 0 1 1 0 0 1 3 0 0 2 1 0 0 2 1 0 0 2 3 0 0 3

2 0 0 1 1 0 0 3 2 0 0 1 3 0 0 1 2 0 0 3 1 0 0 4 2 0 0 3 1 0 0 1 3 0 0 2

Crossover

Parent Chromosome 1

Parent Chromosome 2

3 0 0 2 1 0 0 2 1 0 0 4 2 0 0 1 1 0 0 3 1 0 0 4 2 0 0 3 1 0 0 1 3 0 0 2

2 0 0 1 1 0 0 3 2 0 0 1 3 0 0 1 2 0 0 1 3 0 0 2 1 0 0 2 1 0 0 2 3 0 0 3

Offspring Chromosome 1

Offspring Chromosome 2

Fig. 9: GA encoding scheme for crossover node selection 

Considering convergence performance the configuration compatibility constraints of the bilevel model, 
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the nested GAs adopt a multi-point crossover operator, so as to always encapsulate the genes of a compound 

module always as one unit. Fig. 9 illustrates how the multi-point crossover method manages to control the 

nodes of crossover operation to coincide with the boundaries of chromosome fragments for compound 

modules. 

A standard mutation process of generating offspring after crossover is adopted for the nested GAs. The 

mutation process randomly picks a gene within each string using a small probability (referred to as mutation 

rate) and alters the corresponding attribute levels at random. This process enables a small amount of 

random search, and thus ensures that the nested GA search does not quickly converge at a local optimum. 

The processes of crossover and reproduction are repeated until all the upper- and lower-level populations 

converge or all the GAs reach a pre-specified number of generations. The threshold for each GA can be 

specified a priori based on the specific contexts of the problem domain, or determined through experiment 

studies of computational performance of the algorithms.

8. CASE STUDY

8.1 Power Transformer Product Family and Supply Chain

A case study of power transformer product family architecting is conducted in a company that 

involves assembly-to-order production through a multi-site manufacturing supply chain, as shown in Fig. 

10. The focus is oil-immersed power transformers that typically consist of a tank body (core, windings, 

insulation, and power leads), transformer oil, conservator, cooling tubes, breather, explosion vent, bushing, 

etc. Table 1 summarizes the base modules that are to be acquired from the suppliers. For the product family 

under study, there are multiple instances for each base module and specific modules instances are coded in 

Table 1. 

Utility

Suppliers      Manufacturer               Assembly          Distribution Center  Customer

DC d1 Utility

Utility

Utility

DC d2

Tap Changer s1

Tap Changer s2

Tap Changer s3...

Monitor s1

Monitor s2

Tank Body m1

Tank Body m2

...

Accessorym1
Utility

DC d8

...

Product1 a1

Product1 a2

Product J a1

Product J a2

... ...

Fig. 10: Multi-site manufacturing supply chain for power transformer product family 

Table 1: Power transformer base modules and their instances

ID Base Instanc ID Base Module Instanc ID Base Instanc
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Module e e Module e

m11 m4 Tank shell m41 m8 Oil 

conservator

m81

m12 m42 m82

m13 m43 m9 Monitor m91

m1 Iron core

m14 m5 Transformer 

oil

m51 m92

m2 Winding m21 m6 Cooling unit m61 m93

m31 m62 m94

m32 m63

m33 m7 m71

m1

0

Standard 

Accessories

m101

m3 Tap 

changer

m34 m72

m73

High/low-

voltage 

bushing

m74

8.2 PFA Planning 

For illustrative simplicity without losing generality, we consider one leading market for the product 

family, i.e. . Also assume that  and  are of equal choice probabilities. Based on the I = 1 Q1 = 10000 pij

company’s market research, the initial number of product variants can be set as , and the number J = {2,3}

of compound modules is set as . To specify utility function  in the upper-level optimization R = {2,3,4} Uij

model,  is obtained based on the company’s market survey;  is determined through conjoint analysis; wjk uikl

and  is derived from the composite utility of  by . The upper level allocates a profit to the lower level πij Pj Si

by a profit rate, , whereas the lower level sets associated variable function as .α = 0.1 Ψ(Y,Z) = 0.9

Customization of the transformers are defined through the specification of functional attributes and 

options for the attribute values. Table 2 summarizes the mapping relationships between various attribute 

options to the corresponding base module instances. Customer-perceived utilities of different attribute 

options of the transformers are determined by compiling partworth utility of each based module instance 

that is established through conjoint analysis. The partworth utilities of based module instances are 

summarized in Table 3. Given various options of 8 voltage ratings * 3 tank materials * 3 cooling unit * 4 

monitor * 4 top changer * 2 oil conservator, transformer customization encompasses a total number of J = 

9216 possible combinations. Using the Taguchi Orthogonal Array Selector provided in SPSS software, a 

total number of 20 orthogonal product profiles are generated for experiment setup of conjoint analysis, as 

shown in Table 4. With these profiles, a fractional factorial experiment is designed to explore customer 

preferences, for which 40 customers are invited as the respondents. 

Table 2: Mappings of transformer attributes to based module instances

Attributes Attribute 
Value

Base Module Instance

Table 3: Partworth utilities of module instances

Base 
Module

Module 
Instance

Partwort
h Utility 



23

Low-voltage m11
Middle-voltage m12
High-voltage m13
Special-
voltage

m14

Low-voltage m31 UBB
Low-voltage m32 UCG
High-voltage m33 LTC

Rated voltage / 
Rated capacity

Special-
voltage

m34 UCL

… … …
Oil circulation 
way

Non m81

Have m82
m51

uikl

m11 1.85
m12 1.48
m13 1.59

m1

m14 1.63
m2 m21 3.89
… … …

m91 1.46
m92 -0.85
m93 -0.66

m9

m94 2.3
m10 m101 4.6

Optimal PFA planning requires domain experience to specify the maximal number of compound 

modules, which essentially involves a granularity issue of modular design (Jiao et al., 2007). Once the 

granularity of compound modules are specified a priori, the grouping of based modules can be accordingly 

determined. Tables 5, 6 and 7 show the corresponding results of grouping based modules into different 

compound modules depending on the pre-specified numbers of compound modules at R=2, 3, and 4, 

respectively. In practice, identification of compound modules is much domain dependent, subject to 

engineering requirements, functionality, as well as module compatibility constraints.  

Table 4: Orthogonal setup of product profiles for conjoint analysis

ID Iron 
cor
e

Windi
ng

Tap 
change
r

Tank 
shell

Transfor
mer oil

Cooling 
unit

High/low-
voltage 
bushing

Oil 
conservat
or

Monitor Standard 
accessori
es

1 sma
ll

same UBB Steel 
materi
al

same self-
cooling

EW02 Non the status of 
Tap Changer

same

2 sma
ll

same UBB Steel 
materi
al

same air cooling RK-S06 have the status of 
Tap Changer

same

... ... ... ... ... ... ... ... ... ... ...
32 uns

et
same LTC Steel 

materi
al

same air cooling RK-S06 have the status of 
cooling 
functions

same

Table 5: Identification of compound modules (R=2)
Compound 
model

Base model

Tank body Iron core, winding, Tank shell is must to choice, the other is obtained by 
optimization

Other 
attachments

Cooling unit, oil conservator is must to choice, the other is obtained by 
optimization

Table 6: Identification of compound modules (R=3)
Compound 
model

Base model

Tank body Iron core, winding is must to choice, the other is obtained by optimization
Oil tank Tank shell, Transformer oil is must to choice, the other is obtained by 

optimization
Other 
attachments

Cooling unit, oil conservator is must to choice, the other is obtained by 
optimization
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Table 7: Identification of compound modules (R=4)
Compound 
model

Base model

Tank body Iron core, winding is must to choice, the other is obtained by 
optimization

Oil tank Tank shell, Transformer oil is must to choice, the other is obtained by 
optimization

Outlet device High/low-voltage bushing is must to choice, the other is obtained by 
optimization

Other 
attachments

Cooling unit, oil conservator is must to choice, the other is obtained by 
optimization

8.3 Supply Chain Configuration 

The supply chain data of the transformer product family are listed in Tables 8, 9, 10, and 11 for the 

related suppliers, manufacturers, assembly plants, and DCs, respectively. It is practical to select more than 

one supply chain entity for fulfilling the corresponding order (i.e., to reserve backup). Based on the 

company’s supply chain performance study, Table 12 summarizes the numbers of backups planed for 

selection of the suppliers, manufacturers, assembly plants and DCs, respectively. In addition, order 

fulfillment at manufacturing and assembly is associated with options of process alternatives as well, as 

summarized in Tables 13 and 14.   

Table 8: Available suppliers for module instances 

ID SC 
echelon

Module 
instance

Options Capacity Material 
cost 

Ordering 
cost

Inventory 
cost

Transportati
on cost

1 40000 250 85 0.16 7S11 Supplier m11

2 20000 234 97 0.15 5
1 34000 270 90 0.2 8
2 26000 289 99 0.16 6

S12 Supplier m12

3 37000 276 110 0.17 8
… … … … … … … … …

1 56000 230 140 0.17 6S94 Supplier m94

2 34000 225 150 0.18 7
1 35000 395 480 0.21 6
2 49000 381 500 0.23 6

S101 Supplier m101

3 20000 379 530 0.2 10

Table 9: Available manufacturers for producing compound modules

ID SC echelon Compound 
module

Optio
ns

Capacity Operational 
cost

Processing 
cost

Transportation 
cost

M1 Manufactur
er

M1 1 72000 6700 430 9

2 36000 7500 440 7
3 43000 6900 410 8

… … … … … … … …
M4 Manufactur

er
M4 1 32000 8200 430 7

2 53000 7600 460 5
3 56000 7900 480 9

Table 10: Available assembly plants for producing product variants 

ID SC echelon Product Optio Capacity Fixed Processing Transportation 
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variant ns cost cost cost
AP1 Assembly 

Plant
P1 1 5300 5000 440 7

2 5700 6500 430 5
3 5900 5400 470 9

AP2 Assembly 
Plant

P2 1 5500 6700 470 6

2 5700 7000 430 7
3 6100 6600 500 5

AP3 Assembly 
Plant

P3 1 5800 8300 490 8

2 5300 7700 470 6

Table 11: Available DCs for delivering the end-products 

ID SC echelon Option
s

Capacity Ordering cost Inventory cost Transportation cost

D DCs 1 12000 95 0.3 20
2 17000 90 0.32 24
3 14000 112 0.3 18
4 18000 86 0.31 22
5 16000 103 0.35 19
6 21000 100 0.32 24
7 19500 88 0.35 27
8 20000 105 0.33 24

Table 12: Backup plan for selection of supply chain entities

Name/ID Numb
er

Name/ID Numb
er

Name/ID Number Name/ID Numb
er

Supplier 
S11

1 Supplier 
S41

1 Supplier S73 1 Manufacturer M1 2

Supplier 
S12

1 Supplier 
S42

1 Supplier S74 1 Manufacturer M2 2

Supplier 
S13

1 Supplier 
S43

1 Supplier S81 2 Manufacturer M3 1

Supplier 
S14

1 Supplier 
S51

3 Supplier S91 1 Manufacturer M4 1

Supplier 
S21

2 Supplier 
S61

1 Supplier S92 1 Assembly Plant 
AP1

2

Supplier 
S31

1 Supplier 
S62

1 Supplier S93 1 Assembly Plant 
AP2

1

Supplier 
S32

1 Supplier 
S63

1 Supplier S94 1 Assembly Plant 
AP3

1

Supplier 
S33

1 Supplier 
S71

1 Supplier S101 3 DC 3

Supplier 
S34

1 Supplier 
S72

1

Table 13: Alternative process plans at each manufacturer

ID SC echelon Compound 
module

Options Process plan Processing time

M1 Manufactur
er

M1 1 w1 4.3

w2 5.1
2 w1 4.4

w2 4,8
3 w1 4.1

w2 5.2
… … … … … …
M4 Manufactur

er
M4 1 w1 4.3

w2 5.15
2 w1 4.6
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w2 4.92
3 w1 4.8

w2 5.35

Table 14: Alternative assembly plans at each assembly plant

ID SC echelon Options Assembly 
plan

Processing time

AP1 Assembly 
Plant

1 w1 4.4

w2 3.7
2 w1 4.3

w2 3.6
3 w1 4.7

w2 3.2
AP2 Assembly 

Plant
1 w1 4.7

w2 6.1
2 w1 4.3

w2 3.15
3 w1 5.0

w2 4.75
AP3 Assembly 

Plant
1 w1 4.9

w2 6.25
2 w1 3.1

w2 4.7

8.4 Results of Stackelberg Game Joint Optimization

The near-optimal solutions for joint transformer PFA planning and supply chain configuration are 

determined by running the nested GAs. For computational efficiency and meaningful problem contexts, 

the population size is capped at as 100 and the GAs adopt a crossover probability of 0.8 and a mutation 

probability of 0.01. The optimal values are obtained by enumerating all possible  as shown in Table (J,R)

15. 

Fig. 11 shows the convergence of the upper-level GA with respect to different settings of . The (J,R)

best upper-level fitness is achieved corresponding the scenario of  and . Fig. 12 shows the J = 3 R = 3

tradeoffs between the upper-level GA fitness for utility-to-cost ratio and the lower-level GAs for the 

supplier, manufacturing, assembly and DC costs. Upon convergence at around 130-th generation, the 

nested GAs return the optimal results of transformer product family architecting and the corresponding 

supply chain configurations. Table 16 shows the results of joint optimization. The corresponding results of 

transformer PFA and the supply chain configuration are interrupted in Tables 17, 18, and 19. 

Table 15: Optimal values corresponding to different settings of  (J,R)

(J ,R ) J=2∈R=2 J=2∈R=3 J=2∈R=4 J=3∈R=2 J=3∈R=3 J=3∈R=4

Utility/Cost(10-4) 26.4773 27.8323 29.1658 33.3930 34.1027 33.2482

TCS  (107) 3.5447 3.3337 3.1470 2.9101 2.7992 2.9705

TCM  (107) 2.1123 2.9603 3.0573 2.5283 2.2134 2.3442
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TCAP  (107) 2.3411 2.4002 2.3947 2.3140 2.3247 2.4346

TCD   (107) 1.6363 1.9853 1.8385 1.9847 1.8296 1.9343

Fig. 11: Upper-level GA fitness with respect to different settings of (J, R)

Fig. 12: Convergence of nested GAs corresponding to (J=3, R=3)

Table 16: Optimal solutions of transformer product family and supply chain configuration (J=3, R=3)

PFA X=[3 1 2 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 3 3 1 2 1, 1 1 3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 2 4 2 3 1, 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 ]

Utility/Cost 34.1027×10-4

Suppliers [Y, Z] =[1 1 2 0 1 3 2 3 1 0 2 1 1 1 2 3 0 1 3 1 0 2 3 1 2 2 0 0 3 1 2 3 271 351 321 0 712 707  234 
315 267 0 259 278 265 712 659 693 0 365 277 357 0 315 273 345 521 472 0 0 481  765 691 735 
]

Supplier Cost 2.7992×107

Manufacturers [Y, Z]=[1  1  0  0  1  1  0  1  0 , 0  1  0  1  1  0  0  2  1  0  0  0]
Mfg. Cost 2.2134×107

Assembly Plats [Y, Z]=[1  0  1  0  1  0  0  1 , 1  0  0  1  1  0  1  0 ]
Assembly Cost 2.3247×107

DCs [Y, Z]=[0  1  0  0  1  0  1  0 , 631  589  674 ]
DC Cost 1.8296×107
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Table 17: Optimal plan for transformer PFA 

Product Variant P1 P2 P3
CompoundModule1
(Tank Body)

Iron core m13
Winding
Tap changer UCG

Iron core m11
Winding
Tap changer LTC

Iron core m12
Winding
Tap changer UBB

CompoundModule2
(Oil tank )

Tank shell Steel material
Transformer oil

Tank shell Steel material
Transformer oil

Tank shell Steel material
Transformer oil

CompoundModule3
(Other 
attachments)

Air cooling
High/low-voltage bushing RK-
S06
Without oil conservator
A monitoring component for 
detecting the temperatures of 
the body
Standard Accessories

Water cooling 
High/low-voltage bushing DW-
N6
With oil conservator
A monitoring component for 
detecting the status of cooling 
functions
Standard Accessories

Self-cooling
High/low-voltage bushing EGL02
With oil conservator
A monitoring component for 
detecting the status of Tap 
Changer
Standard Accessories

Table 18: Optimal configuration for the suppliers and DCs

Name/ID
Numb
er

Optimal 
choice

Order quantity Name/ID
Numb
er

Optimal 
choice

Order quantity 

Supplier S11 1 1 271 Supplier S62 1 1 365
Supplier S12 1 1 351 Supplier S63 1 3 277
Supplier S13 1 2 321 Supplier S71 1 1 357
Supplier S14 1 0 0 Supplier S72 1 0 0
Supplier S21 2 1 3 712 707 Supplier S73 1 2 315
Supplier S31 1 2 234 Supplier S74 1 3 273
Supplier S32 1 3 315 Supplier S81 2 1  2 345 521
Supplier S33 1 1 267 Supplier S91 1 2 472
Supplier S34 1 0 0 Supplier S92 1 0 0
Supplier S41 1 2 259 Supplier S93 1 0 0
Supplier S42 1 1 278 Supplier S94 1 3 481

Supplier S43 1 1 265
Supplier 
S101

3 1 2 3 765 691 735

Supplier S51 3 1 2 3 712 659 693 3 2 5 7 631 589 674
Supplier S61 1 0 0

Distribute 
Center D

Supplier S51 3 1 2 3 712 659 693 3 2 5 7 631 589 674
Supplier S61 1 0 0

Distribute 
Center D

Table 19: Optimal configuration for the manufacturing and assembly plants

Name/ID
Numb
er

Optimal 
choice

Process plan Processing time

Manufacturer  M1 2 1  2 2  2 5.1  4.8
Manufacturer  M2 2 2  3 1  2 4.3  5.3
Manufacturer  M3 1 2 1 4.5
Manufacturer  M4 1 0 0 0

Name/ID
Numb
er

Optimal 
choice

Assembly plan Processing time

Assembly plant  
AP1

2 1  3 1  2 4.4  3.2

Assembly plant  
AP2

1 2 1 4.3

Assembly plant  
AP3

1 2 1 3.1

8.5 Performance Analysis

Performance of the proposed leader-follower Stackelberg (LFS) game decision model is shown in 

Table 20, in terms of the achieved utility-to-cost ratio of the PFA and the associated supplier, 
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manufacturing, assembly and DC costs. To demonstrate the advantages of the LFS model, computational 

experiments are set up to compare its performance with two traditional optimization methods: (1) non-joint 

optimization (NJOP) - independent optimization without considering the supply chain, and (2) an 

integrated method by “all-in-one” (AIO) multi-objective optimization. 

The NJOP model first optimizes product family architecting alone to the maximal benefit, and then at 

the second stage minimizes the supply chain cost at each echelon independent of the results of the first 

stage. It basically treats PFA planning and its supply chain configuration as two separate optimization 

problems and solves them in isolation. The performance of the NJOP model is shown in Table 21. The 

AIO model optimizes PFA planning and supply chain configuration simultaneously by aggregating these 

two optimization problems into one single-level objective function. Table 22 shows the performance of the 

AIO model. Comparison of these results suggests that both the LFS and NJOP models achieve the optimal 

solutions given the same number of product variants and compound modules contained in the product 

family. 

In terms of PFA performance by the utility-to-cost ratio measure, Fig. 13 shows the LFS model 

outperforms the NJOP model by 8.9% (0.00341 vs. 0.00338), and the AIO model by 26.9% (0.00341 vs. 

0.00249). The rational lies in that the NJOP model deals with PFA planning according to the costs of 

modules that are estimated from historical product design data, which cannot take advantage of certain 

cost-effective modules through supply chain configuration. Consequently, optimal PFA planning can 

substantially benefit from joint optimization of supply chain configuration. Fig. 14 compares the supply 

chain costs of three models. While the AIO model results in the highest supplier, manufacturing, assembly 

and DC costs, the LFS marks the lowest cost figures of all supply chain entities. This echoes the importance 

of coordinated product family and supply chain decisions.  

Table 20: Performance resulted from the bilevel model

Objective Optimal value
Utility/Cost 34.1027×10-4

Supplier Cost 2.7992×107

Manufacturing cost 2.2134×107

Assembly cost 2.3247×107

DCs cost 1.8296×107

Table 21: Performance resulted from the NJOP model

J=3 R=2 J=3 R=3 J=3 R=4
Utility (104) 28.0289 28.0180 28.0191
TCS(107) 3.8447 4.2103 4.5423
TCM(107) 2.6123 2.9131 3.2135
TCAP (107) 2.9411 3.1342 3.3132
TCD(107) 1.8363 2.1134 2.3421
Utility /Cost (10-

4)
24.9497 22.6481 20.8926

Table 22: Performance resulted from the AIO model

J=2 R=2 J=2 R=3 J=2 R=4 J=3 R=2 J=3 R=3 J=3 R=4
Utility /Cost (10-4) 26.3273 27.7513 29.0326 32.7437 33.8123 33.0937
TCS(107) 3.6712 3.4135 3.2613 3.0732 2.9032 3.1217
TCM(107) 2.2321 2.8697 3.1043 2.8014 2.4038 2.5046
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Fig. 13: Performance comparison for PFA planning Fig. 14: Performance comparison for the supply chain

9. CONCLUDING REMARKS

Product family architecting deals with how to establish a PFA by optimal planning of compound 

modules and product variant configuration. It differs from product family configuration that is enacted 

within a given PFA. Recognizing the importance of coordinated product family and supply chain decisions, 

this paper proposes a joint optimization model for PFA planning with supply chain considerations. 

Decisions of supply chain configuration have a profound impact on not only the end cost of product 

families, but also the architecture of module configuration within a product family.

This paper reveals leader-follower Stackelberg game theoretic decisions underlying joint optimization 

of PFA planning and supply chain configuration. Product family architecting plays a leader’s role for 

maximization of the customer-perceived utility per cost. Supply chain configuration acts as a follower that 

responds to the leader’s decision regarding product variants, compound modules and base module 

instances, while providing feedback on the fulfillment costs to refine the leader’s PFA decisions. 

Compound modules represent the common structures to be shared among product variants and selecting a 

combination of compound modules is consistent with product variant configuration, thus facilitating 

modeling of PFA planning with mathematical optimization models. 

The power transformer case study verifies the reasonableness and superiority of the leader-follower 

bilevel optimization model. It indicates that bilevel programming with a leader-follower game excels in 

leveraging conflicting goals of competing optimization problems to arrive equilibrium solutions. The 

nested GAs are demonstrated to be an effective solution for this type of bilevel models.

The paper emphasizes formulation of the unique problem context and the case study is geared towards 

illustration of the research questions through conceptual findings. The reported work is limited to 

computational results and practical insights. In this regard, derivation of analytical results for the leader-

follower joint optimization suggests itself to be an important avenue for future research. Since decision 
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making in the real world usually involves multiple goals, extending the model to a multi-objective model 

with appropriate formulation would be one direction for future research. Further work can also focus on 

the computational efficiency of the bilevel model for large problems. More practical applications would 

shed light on validity of leader-follower bilevel optimization methods.
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