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SUMMARY

Recently, there has been a lot of interest in using Java for parallel programming. Efforts have been hindered
by lack of standard Java parallel programming APIs. To alleviate this problem, various groups started
projects to develop Java message passing systems modelled on the successful Message Passing Interface
(MPI). Official MPI bindings are currently defined only for C, Fortran, and C++, so early MPI-like
environments for Java have been divergent. This paper relates an effort undertaken by a working group
of the Java Grande Forum, seeking a consensus on an MPI-like API, to enhance the viability of parallel
programming using Java. Copyright  2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND BACKGROUND

A likely prerequisite for parallel programming in a distributed environment is a good message passing
API. Java comes with various ready-made packages for communication, notably an easy-to-use
interface to BSD sockets, and the Remote Method Invocation (RMI) mechanism. Interesting as these
interfaces are, it is questionable whether parallel programmers will find them especially convenient.
Sockets and remote procedure calls have been around for approximately as long as parallel computing
has been fashionable, and neither of them has been popular in that field. Both of these communication
models are optimized for client-server programming, whereas the parallel computing world is mainly
concerned with a more symmetric model, where communications occur in groups of interacting peers.

This peer-to-peer model of communication is captured in the successful Message Passing Interface
(MPI) standard, established in 1994 [1]. MPI directly supports the Single Program Multiple Data
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(SPMD) model of parallel computing, wherein a group of processes cooperate by executing identical
program images on local data values. Reliable point-to-point communication is provided through
a shared, group-wide communicator, instead of socket pairs. MPI allows numerous blocking, non-
blocking, buffered or synchronous communication modes. It also provides a library of true collective
operations (broadcast is the most trivial example). An extended standard, MPI-2 [2], allows for
dynamic process creation and access to memory in remote processes.

The MPI standard documents provided a language-independent specification as well as language-
specific (C and Fortran) bindings [1]. While the MPI-2 release of the standard added a C++ binding [2],
no Java binding has been offered or is planned by the MPI Forum. With the evident success of Java
as a programming language, and its inevitable use in connection with parallel as well as distributed
computing, the absence of a well-designed language-specific binding for message-passing with Java
will lead to divergent, non-portable practices. Indeed MPI-like bindings for Java were developed
independently by several teams. These will be briefly reviewed in the next section.

Over the last three years supporters of theJava Grande Forum[3] have been working actively to
address some of the issues involved in using Java for technical computation. The goal of the forum
has been to develop consensus and recommendations on possible enhancements to the Java language
and associated Java standards, for large-scale (‘Grande’) applications. Through a series of ACM-
supported workshops and conferences the forum has helped stimulate research on Java compilers and
programming environments. The Message-Passing Working Group of the Java Grande Forum was
formed in the Fall of 1998 as a response to the appearance of the various APIs for message-passing.
An immediate goal was to discuss a common API for MPI-like Java libraries. An initial draft for a
common API specification was distributed at Supercomputing ’98 [4]. Since then the working group
met in San Francisco and Syracuse, and a Birds of a Feather meeting was held at Supercomputing ’99.
Minutes of meetings are available [5,6]. To avoid confusion with standards published by the original
MPI Forum the nascent API is called MPJ (Message Passing interface for Java).

2. EARLIER WORK

At the time the working group was created there were several known efforts towards the design of early
MPI-like interfaces for Java with three fully functional but different implementations—mpiJava [7],
JavaMPI [8], and MPIJ [9]. The implementation of mpiJava is based on the use of native methods to
build a wrapper to existing MPI library (MPICH). A comparable approach has been followed in the
development of JavaMPI, but the JavaMPI wrappers were automatically generated by a special-purpose
code generator. A large subset of MPI-like functions called MPIJ is implemented in pure Java within
the DOGMA system for Java-based parallel programming. MPI Software Technology, Inc. announced
a commercial effort to develop a message-passing framework and parallel support environment for Java
capped JMPI [10]. Some of these ‘proof-of-concept’ implementations have been available since 1997
with successful ports on clusters of workstations running Solaris, Windows NT, Irix, AIX, HP-UX,
MacOS, and Linux, as well as the IBM SP2, SGI Origin-2000, Fujitsu AP3000, and Hitachi SR2201
parallel platforms.

2.1. The mpiJava wrapper

The mpiJava software [7] implements a Java binding for MPI proposed late in 1997. The API is
modelled as closely as practical on the C++ binding defined in the MPI 2.0 standard, specifically
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supporting the MPI 1.1 subset of that standard. In some cases the extra runtime information available in
Java objects allows argument lists to be simplified relative to the C++ binding. In other cases restrictions
of Java, especially the fact that all arguments are passed by value in Java, forces some changes to
argument lists. But in general mpiJava adheres closely to earlier standards.

The implementation of mpiJava is through JNI wrappers to native MPI software. Interfacing Java to
MPI is not always trivial. We often see low-level conflicts between the Java runtime and the interrupt
mechanisms used in MPI implementations. The situation is improving as JDK matures, and the mpiJava
software now works reliably on top of Solaris MPI implementations and various shared memory
platforms. A port to Windows NT (based on WMPI) is available, and other ports are in progress.

Other work in progress includes development of demonstrator applications, and Java-specific
extensions such as support for direct communication of serializable objects.

2.2. JavaMPI—automatic generation of MPI wrappers

In principle, the binding of existing MPI library to Java using JNI amounts to either dynamically linking
the library to the Java virtual machine, or linking the library to the object code produced by a stand-
alone Java compiler. Complications stem from the fact that Java data formats are in general different
from those of C. Java implementations will have to use JNI, which allows C functions to access Java
data and perform format conversion if necessary. Such an interface is fairly convenient for writingnew
C code to be called from Java, but is not adequate for linkingexistingnative code.

Clearly an additional interface layer must be written in order to bind a legacy library to Java. A
large library like MPI has over a hundred exported functions, therefore it is preferable to automate the
creation of the additional interface layer. TheJava-to-C interface generator(JCI) [11] takes as input
a header file containing the C function prototypes of the native library. It outputs a number of files
comprising the additional interface: a file of C stub-functions; files of Java class and native method
declarations; shell scripts for doing the compilation and linking. The JCI tool generates a C stub-
function and a Java native method declaration for each exported function of the MPI library. Every C
stub-function takes arguments whose types correspond directly to those of the Java native method, and
converts the arguments into the form expected by the C library function.

As the JavaMPI bindings have been generated automatically from the C prototypes of MPI functions,
they are very close to the C binding. However, there is nothing to prevent from parting with the C-style
binding and adopting a Java- style object-oriented approach by grouping MPI functions into a hierarchy
of classes.

2.3. MPIJ—MPI-like implementation in pure Java

MPIJ is a completely Java-based implementation of MPI which runs as part of the Distributed Object
Group Metacomputing Architecture (DOGMA) system. MPIJ implements a large subset of MPI-like
functionality including all modes of point-to-point communication, intracommunicator operations,
groups, and user-defined reduction operations. Notable capabilities that are not yet implemented
include process topologies, intercommunicators, and user-defined datatypes, but these are arguably
needed for legacy code only.

MPIJ communication uses native marshaling of primitive Java types. On Win32 platforms this
technique allows MPIJ to achieve communication speeds comparable to, and in some instances
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Figure 1. Principal classes of MPJ.

exceeding, native MPI implementations [12]. Our performance evaluation experiments show that Java
communication speed would be greatly increased if native marshaling were a core Java function.

A key feature of a pure Java MPI-like implementation is the ability to function on applet-based
nodes. In MPIJ, this provides a flexible method for creating clusters of workstations without the need
to install any system or user software related to the message-passing environment on the participating
nodes.

3. THE MPJ API SPECIFICATION

3.1. Rationale

The MPI standard is explicitly object-based. The C and Fortran bindings rely on ‘opaque objects’
that can be manipulated only by acquiring object handles from constructor functions, and passing the
handles to suitable functions in the library. The C++ binding specified in the MPI-2 standard collects
these objects into suitable class hierarchies and defines most of the library functions as class member
functions. The draft MPJ API specification follows this model, lifting the structure of its class hierarchy
directly from the C++ binding.

The initial specification builds directly on the MPI-1 infrastructure provided by the MPI Forum,
together with language bindings motivated by the C++ bindings of MPI-2. The purpose of this phase
of the effort is to provide an immediate, ad hoc standardization for common message passing programs
in Java, as well as to provide a basis for conversion between C, C++, Fortran 77, and Java. Eventually,
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support for other parts of MPI-2 also belongs here, particularly dynamic process management.† The
position of the working group was that the initial MPI-centric API should subsequently be extended
with more object-oriented, Java-centric features, although the exact requirements for this later phase
have not yet been established.

The major classes of the MPJ specification are illustrated in Figure1. The classMPJ only has
static members. It acts as a module containing global services, such as initialization, and many global
constants including the default communicatorCOMMWORLD. The most important class in the package
is the communicator classComm. All communication functions in MPJ are members ofCommor its
subclasses. As usual in MPI, a communicator stands for a ‘collective object’ logically shared by a group
of processors. The processes communicate, typically by addressing messages to their peers through the
common communicator. A class that will be important in the following discussion is theDatatype
class. This describes the type of the elements in the message buffers passed to send, receive, and all
other communication functions.

3.2. Example and data types

In general the point-to-point communication operations are realized as methods of theCommclass. The
basic point-to-point communication operations aresendandreceive. Their use is illustrated in Figure2.
Consider, for example, the MPJ analogue of the operationMPI SEND. The method prototype is:

void Comm.send(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

buf send buffer array
offset initial offset in send buffer
count number of items to send
datatype data type in each item in send buffer
dest rank of destination
tag message tag

The data part of the message consists of a sequence ofcount values, each of the type indicated
by datatype . The actual argument associated withbuf must be an array with elements of
corresponding type. The valueoffset is a subscript in this array, defining the position of the first
item of the message.

The elements ofbuf may have primitive type or class type. If the elements are objects, they must
be serializable objects. If thedatatype argument represents an MPI-compatible basic type, its
value must be consistent with the element type ofbuf . Thus, the basic data type values included
in the MPJ API specification areMPJ.BYTE, MJP.CHAR, MPJ.SHORT, MPJ.BOOLEAN,
MPJ.INT, MPJ.LONG, MPJ.FLOAT, MPJ.DOUBLE , and MPJ.OBJECT. If the datatype
value isMPJ.OBJECT the objects in the buffer are transparently serialized and unserialized inside
the communication operations.

Thedatatype argument is not redundant in the current specification of MPJ, because the proposal
includes support for an analogue of MPIderived types. The derived types of MPJ are restricted to

†Given its spartan implementation in the non-Java space, we may not need the whole of MPI-2.
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import mpj.*;

class Hello {
static public void main (String [] args) {

MPJ.init(args) ;

int myrank = MPJ.COMM_WORLD.rank() ;
if(myrank == 0) {

char [] message = "Hello, there".to CharArray() ;
MPJ.COMM_WORLD.send(message, 0, message.length, MPJ.CHAR, 1, 99) ;

}
else {

char [] message = new char [20] ;
MPJ.COMM_WORLD.recv(message, 0, 20, MPJ.CHAR, 0, 99) ;
System.out.println("received:" + new String(message) + ":") ;

}

MPJ.finish() ;
}

}

Figure 2. Example MPJ program.

have a uniquebase type, one of the nine types enumerated above. If thedatatype argument of
a communication function represents an MPJ derived type, its base type must agree with the Java
element type of the associatedbuf argument. Alternatively, if it was decided to remove derived types
from MPJ,datatype arguments could be removed from many functions, and Java runtime inquiries
could be used internally to extract the element type of the buffer.‡

3.3. MPJ as an MPI-like language binding

MPJ does not have the status of an official language binding for MPI. But, as a matter of interest, this
section will compare some surface features of the Java API with standard MPI language bindings.

All MPJ classes belong to the packagempj . Conventions for capitalization, etc., in class and member
names generally follow the recommendations of Sun’s Java code conventions [13]. In general these
conventions are consistent with the naming conventions of the MPI 2.0 C++ standard. Exceptions to
this rule include the use of lower case for the first letters of method names, and avoidance of underscore
in variable names.

With MPI opaque objects replaced by Java objects, MPI destructors can be absorbed into Java object
destructors (finalize methods), called automatically by the Java garbage collector. MPJ adopts this
strategy as the general rule. Explicit calls to destructor functions are typically omitted from the Java

‡Or methods likesend could be overloaded to accept buffers with elements of the nine basic types. The disadvantage of this
approach is that it leads to a major proliferation in the number of methods
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user code. An exception is made for theCommclasses. In MPI the destructor for a communicator is a
collective operation, and the user must ensure that calls are made at consistent times on all processors
involved. Automatic garbage collection would not guarantee this. Hence the MPJCommclass has an
explicitly free method.

Some options allowed for derived data types in the C and Fortran bindings are absent from MPJ.
In particular, the Java virtual machine does not support any concept of a global linear address space.
Therefore, physical memory displacements between fields in objects are unavailable or ill-defined. This
puts some limits on the possible uses of any analogues of theMPI TYPESTRUCTtype constructor.
In practice the MPJstruct data type constructor has been further restricted in a way that makes it
impossible to send mixed basic data types in a single message. However, this should not be a serious
problem, since the set of basic data types in MPJ is extended to include serializable Java objects.

Array size arguments are often omitted in MPJ, because they can be picked up within the function by
reading thelength member of the array argument. A crucial exception is for message buffers, where
an explicit count is always given. Message buffers aside, typical array arguments to MPI functions
(e.g. vectors of request structures) are small arrays. If subsections of these must be passed to an MPI
function, the sections can be copied to smaller arrays at little cost. In contrast, message buffers are
typically large and copying them is expensive, so it is worthwhile to pass an extra size argument to
select a subset. (Moreover, if derived data types are being used, the required value of thecount
argument is always different to the buffer length.) C and Fortran both have ways of treating a section of
an array, offset from the beginning of the array, as if it was an array in its own right. Java does not have
any such mechanism. To provide the same flexibility in MPJ, an explicit integeroffset parameter
also accompanies any buffer argument. This defines the position in the Java array of the first element
actually treated as part of the buffer.

The C and Fortran languages define a straightforward mapping (or ‘sequence association’) between
their multidimensional arrays and equivalent one-dimensional arrays. In MPI a multidimensional array
passed as a message buffer argument is generally treated like a one-dimensional array with the same
element type. Offsets in the buffer (such as offsets occurring in derived data types) behave like offsets in
the effective one-dimensional array. In Java the relationship between multidimensional arrays and one-
dimensional arrays is different. An ‘n-dimensional array’ is equivalent to a one-dimensional array of
(n−1)-dimensional arrays. In the MPJ interface message buffers are always treated as one-dimensional
arrays. The element typemaybe an object, whichmayhave array type. Hence, multidimensional arrays
can appear as message buffers, but the interpretation and behavior is significantly different.

Unlike the standard MPI interfaces, the MPJ methods do not return explicit error codes. Instead, the
Java exception mechanism is used to report errors.

3.4. Complete draft API

The Appendix of this paper lists the public interfaces of all the classes. Of course this only defines
syntax. A more complete description of the semantics of all methods is available in [4].

4. OPEN ISSUES

The API described in [4] is not assumed to be ‘final’. It was originally presented as a starting point for
discussion. In this section we will mention some areas we consider to be open to improvement.
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4.1. Derived data types

It is unclear whether a Java interface should support MPI-like derived data types. A proposal for a Java-
compatible subset of derived types is included in the draft specification document [4], but deleting it
would simplify the API significantly. In particular,datatype arguments for buffers could be dropped.

One factor in favor of including MPI-like derived data types in MPJ is the support for legacy MPI
applications. The possible need to interact with native code that uses derived data types is probably
best supported by including derived data types in the MPJ API specification.

It has been argued that the functionality of derived data types is already provided by Java objects,
and supporting both only adds unneeded complexity. But in fact there are good reasons to retain some
additional functionality of derived data types. Any scientific code, written in Java or otherwise, will
benefit from the ability to efficiently and conveniently sendsections(subsets) of program arrays. In
MPI, this is one of the most useful roles of the so-called derived data types, and MPJ object data types
do not address this requirement. The discussion of whether derived data types are to be supported in
MPJ should therefore be closely linked with the discussion of how true ‘scientific’ (multi-dimensional)
arrays, allowing Fortran-90-like sectioning operations, should be handled.

4.2. Multidimensional array

Some specific support for communicating multidimensional arrays would be desirable. In the current
proposal, sending a multidimensional array involves either sending one row at a time or using Java
object serialization, both of which will introduce performance bottlenecks. For instance, our experience
has shown that MPIJ sends a 200× 200 array of doubles over Fast Ethernet much faster when
multidimensional array support is included than when individual rows are sent. More detailed analysis
of this problem is presented in [12,14].

Trying to fix the problem for standard Java multidimensional arrays is probably the wrong approach.
There is a deeper problem that the Java ‘array-of-arrays’ model for multidimensional arrays is not
especially well-suited for ‘scientific’ computation. This issue is being actively addressed by other
groups in the Java Grande Forum. In particular the work by IBM on the Array package [15], which
has been adopted by the Java Grande Numerics working group, is very relevant. A more complete
MPJ specification should probably include mechanisms for efficiently communicating standardized
‘scientific’ arrays, and their sections.

In fact, if a standard like the Array package were adopted, and if it supported description of array
sections (without copying elements), it is quite likely that the remaining arguments in favor of keeping
an MPI-like derived data type mechanism would go away.

4.3. Overloaded communication operations

It has been suggested that many of the communication operations should be overloaded to provide
simplified variants that omit arguments likeoffset , count (and possiblydatatype ). This
suggestion is not included in the current proposal, but it could be added. The primary argument in
favor is that it simplifies user code. For instance,

MPJ.COMM_WORLD.send(message, 0, message.length, MPJ.CHAR, 1, 99) ;
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becomes

MPJ.COMM_WORLD.send(message, MPJ.CHAR, 1, 99);

The obvious counter-argument is that this very significantly increases the total number of methods in
the API. A possible compromise is to provide overloaded versions only of specific common functions
such as point-to-point communication functions (the argument against this, in turn, is that it looks
inconsistent).

4.4. Other issues

The current draft MPJ specification supports all MPI-like error handling using the Java exception
model. An alternative suggestion that has been put forward is that all MPJ exceptions be derived
from two classes:MPJException andMPJRuntimeException . Subclasses ofMPJException
would represent errors that the user would be required to catch, whereas subclasses of
MPJRuntimeException would represent uncommon or unusual errors. It has also been suggested
that certain MPJ exceptions could carry subexceptions when the cause of the error is another exception.
Whether or not to utilize MPI-like user-defined and predefined error handlers is also an open question.
In principle, these error handlers could still serve a purpose in addition to the exception mechanism
mentioned above.

It has been suggested that the specification of user-defined operations could be simplified. In the
current proposal, which is modelled after a procedural approach, a more complex or unique operation
can be created in two phases. Initially users define functions and then create a new operation class
(Op). This results in the creation of an extra class (UserFunction ) which is not really necessary.
An alternative approach would be to simply have users define subclasses of the classOpwith a named
method (for example,call ). This design would also eliminate the overhead associated with method
invocation.

A profiling interface for MPJ has not yet been defined. A possible general design approach is for
profiling class and method names to exactly match those of the non-profiling classes and methods.
Implementors would then place the compiled binary files in different locations. As Java linking
is always dynamic, this would allow users to enable or disable profiling by simply selecting the
appropriate codebase (e.g. by changing the CLASSPATH environment variable).

5. DISCUSSION AND CONCLUSION

An initial goal of the Java Grande Message Passing working group was to promote a standardized MPI
binding for Java. It became apparent that this road was likely to produce a collision of interest with the
existing MPI community, and the name of the new API was changed to MPJ. MPJ was designated an
‘MPI-like’ specification. The current specification is available in [4]. This specification is essentially
complete and self-contained, but as discussed in Section4, it is not necessarily considered ‘final’.

Because the proposed API was designed on object-oriented principles, most of the original MPI
specification actually maps very naturally into Java. So long as one accepts the Java Grande premise
that Java is an excellent basis for technical computing, an MPI-like approach to parallel computing
seems very promising—more promising than some have assumed. But there remain non-obvious issues
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about supporting basic MPI functionality. Some of the more difficult ones boil down to the lack of a
good model of scientific arrays in Java. This issue is somewhat outside the purview of this working
group, but is being actively discussed by the Java Grande Numerics working group [16].

Reference implementations of the MPJ specification are currently (March 2000) under development.
An implementation based on JNI wrappers to native MPI will be created by adapting the mpiJava
wrappers [7]. While this is a good approach in some situations, it has various disadvantages and
conflicts with the ethos of Java, where pure-Java, write-once-run-anywhere software is the order of
the day. A design for apure-Javareference implementation of MPJ has also been outlined [17]. In this
case, design goals were that the system should be as easy to install on distributed systems as we can
reasonably make it, and that it be sufficiently robust to be useable in an Internet environment.

Back in 1994, MPI-1 was originally designed with relatively static platforms in mind. To better
support computing in volatile Internet environments, modern message passing designs for Java will
have to support (at least) features such as dynamic spawning of process groups and parallel client/server
interfaces as introduced in the MPI-2 specification. In addition, a natural framework for dynamically
discovering new compute resources and establishing connections between running programs already
exists in Sun’s Jini project [18], and one line of investigation is into MPJ implementations operating in
the Jini framework.

Closely modeled as it is on the MPI standards, the existing MPJ specification should be regarded
as a first phase in a broader program to define a more Java-centric high performance message-
passing environment. In future a detachment from legacy implementations involving Java on top of
native methods will be emphasized. We should consider the possibility of layering the messaging
middleware over standard transports and other Java-compliant middleware (like CORBA). In a sense,
the middleware developed at this level should offer a choice of emphasis between performance or
generality, while always supporting portability. We note an opportunity to study and standardize aspects
of real- time and fault-aware programs, drawing on the concepts learned in theMPI/RT activity [19].
For performance, we should seek to take advantage of what has been learned since MPI-1 and MPI-2
were finalized, or ignored in MPI standardization for various reasons—for instance drawing on the
body of knowledge completed within the MPI/RT Forum. From here we may at least glean design
hints concerning channel abstractions, and the more direct use of object-oriented design for message
passing than was seen in MPI-1 or MPI-2. The value of this type of messaging middleware in the
embedded and real-time Java application spaces should also be considered.

Of course, a primary goal in the above mentioned, both current and future work, should be the aim to
offer MPI-like services to Java programs in an upward compatible fashion. The purposes are twofold:
performance and portability.

A. APPENDIX: PUBLIC INTERFACE OF CLASSES IN MPJ DRAFT SPECIFICATION

A.1. MPJ

public class MPJ {
public static Intracomm COMM_WORLD;

public static Datatype BYTE, CHAR, SHORT, BOOLEAN, INT, LONG,
FLOAT, DOUBLE, OBJECT, PACKED, LB, UB ;
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public static int ANY_SOURCE, ANY_TAG ;

public static int PROC_NULL ;

public static int BSEND_OVERHEAD ;

public static int UNDEFINED ;

public static Op MAX, MIN, SUM, PROD, LAND, BAND,
LOR, BOR, LXOR, BXOR, MINLOC, MAXLOC ;

public static Datatype SHORT2, INT2, LONG2, FLOAT2, DOUBLE2 ;

public static Group GROUP_EMPTY ;

public static Comm COMM_SELF ;

public static int IDENT, CONGRUENT, SIMILAR, UNEQUAL ;

public static in GRAPH, CART ;

public static ErrHandler, ERRORS_ARE_FATAL, ERRORS_RETURN ;

public static int TAG_UB, HOST, IO ;

// Buffer allocation and usage

public static void bufferAttach(byte [] buffer) throws MPJException {...}

public static byte [] bufferDetach() throws MPJException {...}

// Environmental Management

public static String [] init(String[] argv) throws MPJException {...}

publicat static void finish() throws MPJException {...}

public static String getProcessorName() throws MPJException {...}

public static double wtime() throws MPJException {...}

public static double wtick() throws MPJException {...}

public static Boolean initialized() throws MPJException {...}

...

}

A.2. Comm

public class Comm {
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// Communicator Management

public int size() throws MPJException {...}

public int rank() throws MPJException {...}

public Group group() throws MPJException {...} // (section "Group management" of spec)

public static int compare(Comm comm1, Comm Comm2) throws MPJException {...}

public Object clone() {...}

public void free() throws MPJException {...}

// Inter-communication

public Boolean testInter() throws MPJException {...}

public Intercomm createIntercomm(Comm localComm, int localLeader,
int remoteLeader, int tag) throws MPJException {...}

// Caching

public Object attrGet(int Keyval) throws MPJException {...}

// Blocking Send and Receive operations

public void send(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public Status recv(Object buf, int offset, int count,
Datatype datatype, int source, int tag) throws MPJException {...}

// Communication Modes

public void bsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public void ssend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public void rsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

// Nonblocking communication

public Request isend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public Request ibsend(Object buf, int offset, int count,
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Datatype datatype, int dest, int tag) throws MPJException {...}

public Request issend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public Request irsend(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public Request irecv(Object buf, int offset, int count,
Datatype datatype, int source, int tag) throws MPJException {...}

// Probe and cancel

public Status iprobe(int source, int tag) throws MPJException {...}

public Status probe(int source, int tag) throws MPJException {...}

// Persistent communication requests

public Prequest sendInit(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public Prequest bsendInit(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public Prequest ssendInit(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public Prequest rsendInit(Object buf, int offset, int count,
Datatype datatype, int dest, int tag) throws MPJException {...}

public Prequest recvInit(Object buf, int offset, int count,
Datatype datatype, int source, int tag) throws MPJException {...}

// Send-receive

public Status sendrecv(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,
int dest, int sendtag,
Object recvbuf, int recvoffset, int recvcount, Datatype recvtype,
int source, int recvtag) throws MPJException {...}

public Status sendrecvReplace(Object buf, int offset, int count, Datatype datatype,
int dest, int sendtag,
int source, int recvtage) throws MPJException {...}

// Pack and unpack

public int pack(Object, inbuf, int offset, int incount, Datatype datatype,
byte [] outbuf, int position) throws MPJException {...}

byte [] pack(Object, inbuf, int offset, int incount, Datatype datatype)
throws MPJException {...}
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public int unpack(byte [] inbuf, int position,
Object outbuf, int offset, int outcount, Datatype datatype)

throws MPJException {...}

public int packSize(int incount, Datatype datatype) throws MPJException {...}

// Process Topologies

int topoTest{} throws MPJException {...}

// Environmental Management

public static void errorhandlerSet(Errhandler errhandler) throws MPJException {...}

public static Errhandler errorhandlerGet() throws MPJException {...}

void abort (int errorcode) throws MPJException {...}

...

}

A.3. Intracomm and Intercomm

public class Intracomm extends Comm {

public Object clone() {...}

public Intracomm create(Group group) throws MPJException {...}

public Intracomm split(int colour, int key) throws MPJException {...}

// Collective communication

public void barrier() throws MPJException {...}

public void bcast(Object buffer, int offset, int count,
Datatype datatype, int root) throws MPJException {...}

public void gather(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset, int recvcount, Datatype recvtype,
int root) throws MPJException {...}

public void gatherv(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset, int [] recvcounts, int [] displs,
Datatype recvtype, int root) throws MPJException {...}

public void scatter(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset, int recvcount, Datatype recvtype,
int root) throws MPJException {...}

public void scatterv(Object sendbuf, int sendoffset, int [] sendcount, int [] displs,
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Datatype sendtype,
Object recvbuf, int recvoffset, int recvcount, Datatype recvtype,
int root) throws MPJException {...}

public void allgather(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset, int recvcount, Datatype recvtype)

throws MPJException {...}

public void allgatherv(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset, int [] recvcounts, int [] displs,
Datatype recvtype) throws MPJException {...}

public void alltoall(Object sendbuf, int sendoffset, int sendcount, Datatype sendtype,
Object recvbuf, int recvoffset, int recvcount, Datatype recvtype)

throws MPJException {...}

public void alltoallv(Object sendbuf, int sendoffset, int [] sendcount, int [] sdispls,
Datatype sendtype,
Object recvbuf, int recvoffset, int [] recvcount, int [] rdispls,
Datatype recvtype) throws MPJException {...}

public void reduce(Object sendbuf, int sendoffset, Object recvbuf, int recvoffset,
int count, Datatype datatype, Op op, int root) throws MPJException {...}

public void allreduce(Object sendbuf, int sendoffset, Object recvbuf, int recvoffset,
int count, Datatype datatype, Op op) throws MPJException {...}

public void reduceScatter(Object sendbuf, int sendoffset,
Object recvbuf, int recvoffset,
int [] recvcounts, Datatype datatype,
Op op) throws MPJException {...}

public void scan(Object sendbuf, int sendoffset, Object recvbuf, int recvoffset,
int count, Datatype datatype, Op op) throws MPJException {...}

// Topology Constructors

public Graphcomm createGraph(int [] index, int [] edges,
Boolean reorder) throws MPJException {...}

public Cartcomm createCart(int [] dims, Boolean [] periods,
boolean reorder) throws MPJException {...}

...

}

public class Intercomm extends Comm {

public Object clone() {...}

// Inter-communication

public int remoteSize() throws MPJException {...}
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public Group remote Group() throws MPJException {...}

public Intracomm merge(boolean high) throws MPJException {...}

...

}

A.4. Op

public user Op {
Op(UserFunction function, boolean commute) throws MPJException {...}

Void finalize() {...}

...

}

A.5. Group

public class Group {

// Group Management

public int size()throws MPJException {...}

public int rank()throws MPJException {...}

public int [] translateRanks(Group group1, int [] ranks1) throws MPJException {...}

public static int compare(Group group1, Group group2) throws MPJException {...}

public static Group union(Group group1, Group group2) throws MPJException {...}

public static Group intersection(Group group1, Group group2) throws MPJException {...}

public static Group differences(Group group1, Group group2) throws MPJException {...}

public Group incl(int [] ranks) throws MPJException {...}

public Group excl(int [] ranks) throws MPJException {...}

public Group rangeIncl(int [] [] ranges) throws MPJException {...}

public Group rangeExcl(int [] [] ranges) throws MPJException {...}

public void finalize() {...}

...

}
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A.6. Status

public class Status {

public int index ;

// Blocking Send and receive operations

public int getCount(Datatype datatype) throws MPJException {...}

public int getSource() throws MPJException {...}

public int getTag() throws MPJException {...}

//Nonblocking communication

public int getIndex() throws MPJException {...}

//Probe and Cancel

public boolean testCancelled() throws MPJException {...}

//Derived datatypes

public int getElements(Datatype datatype)throws MPJException {...}

...

}

A.7. Request and Prequest

public class Request {

//Nonblocking communication

public Status wait() throws MPJException {...}

public Status test() throws MPJException {...}

public Request() throws MPJException {...}

public void finalize() {...}

public boolean isVoid() throws MPJException {...}

public static Status waitAny(Request [] arrayOfReqquests) throws MPJException {...}

public static Status testAny(Request [] arrayOfReqquests) throws MPJException {...}

public static Status [] waitAll(Request [] arrayOfReqquests) throws MPJException {...}

public static Status [] testAll(Request [] arrayOfReqquests) throws MPJException {...}
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public static Status [] waitSome(Request [] arrayOfReqquests) throws MPJException {...}

public static Status [] testSome(Request [] arrayOfReqquests) throws MPJException {...}

// probe and cancel

public void cancel() throws MPJException {...}

...

}

public class Prequest extends Request {

// Persistent communication requests

public void start{} throws MPJException {...}

public static void startAll(Request [] arrayOfRequests) throws MPJException {...}

...

}

A.8. Datatype

public class Datatype {

//Derived datatypes

public Datatype contiguous(int count) throws MPJException {...}

public Datatype vector(int count, int blocklength, int stride) throws MPJException {...}

public Datatype hvector(int count, int blocklength, int stride) throws MPJException {...}

public Datatype indexed(int [] arrayOfBlocklengths,
int [] arrayOfDisplacements) throws MPJException {...}

public Datatype hindexed(int [] arrayOfBlocklengths,
int [] arrayOf Displacements) throws MPJException {...}

public static Datatype struct(int [] arrayOfBlocklengths,
int [] arrayOfDisplacements,
Datatype [] arrayOfTypes) throws MPJException {...}

public int extent() throws MPJException {...}

public int size() throws MPJException {...}

public int lb() throws MPJException {...}

public int ub() throws MPJException {...}
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public void commit() throws MPJException {...}

public void finalize() {...}

...

}

A.9. Classes for virtual topologies

public class Carcomm extends Intracomm {

public Object clone() {...}

//Topology Constructors

static public dimsCreate(int nnodes, int [] dims) throws MPJException {...}

public CartParms get() throws MPJException {...}

public int rank(int [] coords) throws MPJException {...}

public int [] cords(int rank) throws MPJException {...}

public ShiftParms shift(int direction, int disp) throws MPJException {...}

public Cartcomm sub(boolean [] remainDims) throws MPJException {...}

public int map(int [] dims, boolean [] periods) throws MPJException {...}
}

public class CartParms {

// Return type for Cartcomm.get()

public int [] dims ;
public booleans [] periods ;
public int [] cords ;

}

public class ShiftParms {

// Return type for Cartcomm.shift()

public int rankSource ;
public int rankDest ;

}

public class Graphcomm extends Intracomm {

public Object clone() {...}

// Topology Constructors

public GraphParms get() throws MPJException {...}

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1019–1038



1038 B. CARPENTERET AL.

public int [] neighbours(int rank) throws MPJException {...}

public int map (int [] index, int [] edges) throws MPJException {...}
}

public class GraphParms {

// Return type for Graphcomm.get()

public int [] index ;
public int [] edges ;

}
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