
 

 
 
 

WestminsterResearch 
http://www.westminster.ac.uk/research/westminsterresearch 
 
 
Biosynthesis of polyhydroxyalkanoates for cardiac tissue 
engineering applications 
 
Andrea V. Bagdadi 
 
School of Life Sciences 
 
 
 
This is an electronic version of a PhD thesis awarded by the University of 
Westminster.  © The Author, 2013. 
 
This is an exact reproduction of the paper copy held by the University of 
Westminster library. 
 
 
 
The WestminsterResearch online digital archive at the University of 
Westminster aims to make the research output of the University available to a 
wider audience.  Copyright and Moral Rights remain with the authors and/or 
copyright owners. 
Users are permitted to download and/or print one copy for non-commercial 
private study or research.  Further distribution and any use of material from 
within this archive for profit-making enterprises or for commercial gain is 
strictly forbidden.    
 
 
Whilst further distribution of specific materials from within this archive is forbidden, 
you may freely distribute the URL of WestminsterResearch: 
(http://westminsterresearch.wmin.ac.uk/). 
 
In case of abuse or copyright appearing without permission e-mail 
repository@westminster.ac.uk 



Biosynthes is  of  polyhydroxyalkanoates 
for cardiac t i ssue engineer ing 

appl icat ions 

Andrea V. Bagdadi 

A thesis submitted to the University of Westminster in candidature for the award of the 
degree of Doctor of Philosophy 

June 2013 



ii	  

AUTHOR’S DECLARATION 

I declare that the present work was carried out in accordance with the Guidelines and 

Regulations of the University of Westminster. The work is original except where 

indicated by special reference in the text. 

The submission as a whole or part is not substantially the same as any that I previously 

or am currently making, whether in published or unpublished form, for a degree, 

diploma or similar qualification at any university or similar institution. 

Until the outcome of the current application to the University of Westminster is known, 

the work will not be submitted for any such qualification at another university or 

similar institution. 

Any views expressed in this work are those of the author and in no way represent those 

of the University of Westminster. 

Signed: Andrea V. Bagdadi Date:  June, 2013  



iii	  

ACKNOWLEDGMENTS 

I would like to first say a very big thank you to my supervisor Dr. Ipsita Roy for all the 

support, encouragement and constant feedback she gave me during this project. I also thanks 

to Professor Aldo Boccaccini for being such a supportive co-supervisor and Professor Tajalli 

Keshavarz for his advice.  

I would like to thank all of Dr. Roy’s collaborators in whose laboratories I have performed 

some of the experiments described in my thesis.  

I am also indebted to the technical staff Neville, Thakor, Vanita, Glen, Luisa, Harry, 

Dr. Nicola Mordan, Dr. George Gergiou and Dr. Graham Palmer. 

I also thank all the members of the lab, both past and present, for their friendship and for the 

great time we had in our group. Pooja, thank your patience in the hardest moments. Thank 

you Anu, Ranjana and Lydia for all your guidance and for all your help. Thank you also to 

Maryam, Ketki, Bijal and Prachi.  

My sincerest thanks are extended to Professor Carlos Amorena for his invaluable advice, 

support, encouragement, and faith he has in me. 

Last but not least, I wish to thank my family for supporting me during these four years I was 

far from home following my dreams. Thank you mum and dad for always taking care of me 

and for your unconditional love. Thanks to my sister Marcia and my brother Javier for always 

making sure that I am happy wherever I am.  

I would like to dedicate this thesis to Mariano, who has lived every single minute of this 

project with me. Thank you for always being by my side and for being so supportive with this 

project I always wanted to carry out. This work would not have been possible without his 

huge financial generosity.  



iv	  

ABSTRACT 

As a result of the enormous clinical need, cardiac tissue engineering has become a prime 

focus of research within the field of tissue engineering. In this project, Poly(3-

hydroxyoctanoate), P(3HO), a medium chain length (mcl-PHAs) biodegradable, 

biocompatible and elastomeric polyhydroxyalkanoate, was studied as a potential material for 

cardiac tissue engineering. Mcl-PHAs are an alternative source of polymers produced by 

Pseudomonas sp. As Gram-negative bacteria, Pseudomonas sp. contains lipopolysaccharides 

in the membrane, which are co-purified with PHAs and may cause immunogenic reactions. 

This limits the biomedical applications of the mcl-PHAs in several cases. In this work, the 

Pseudomonas mendocina PHA synthase gene (phaC1) was expressed in the LPS free, GRAS, 

Gram-positive microorganism, Bacillus subtilis so as to produce LPS-free mcl-PHAs. Our 

results showed that the recombinant Bacillus subtilis containing the phaC1 gene produced 

poly(3-hydroxybutirate), P(3HB), with a maximum yield of 32.3 % DCW, an unexpected 

result. This result thus revealed the unusually broad substrate specificity of the PHA synthase 

from P. mendocina, which is able to catalyse both medium and short chain length PHAs 

biosynthesis depending on the metabolic pool available in the host organism. Sequence 

comparison of this PHA synthase with stringent mcl-PHA synthases revealed possible 

residues influencing the substrate specificity of PHA synthases.  

As studies on mcl-PHAs remain limited mainly because of the lack of availability of mcl-

PHAs in large quantities, the capacity to scale-up P(3HO) production from 2 L to 20 L and 

72 L pilot plant bioreactors, based on constant oxygen transference, was studied.  

The interaction of freshly isolated rat cardiomyocytes with the P(3HO) polymer, during 

contraction, was studied when cells were stimulated at a range of frequencies of electrical 

pulses or calcium concentrations. These results showed that P(3HO) did not have any 

deleterious effects on the contraction of adult cardiomyocytes.  P(3HO) cardiac patches non-

porous, porous or with P(3HO) electrospun fibres deposited on their surface were developed. 

Our results showed that the mechanical properties of the final constructs were close to that of 

the cardiac structures, with a Young’s modulus value of 0.41±0.03 MPa. Myoblast (C2Cl2) 

cell proliferation was studied on the different constructs showing an enhanced cell adhesion 

and proliferation when both porous and fibrous structures were incorporated together.   

Finally, for further enhancement of the cardiac patch function, VEGF and RGD peptide were 

incorporated. Results obtained in this project showed that the P(3HO) multifunctional cardiac 

patches were potentially promising constructs for efficient cardiac tissue engineering.  
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1.1.Cardiovascular diseases 

Cardiovascular diseases (CVDs) are the leading cause of death throughout the world 

(Morosco et al., 2002, Perry et al., 2003). According to the World Health Organization, an 

estimated 17.3 million people died from CVDs in 2008 and it is predicted that by 2030 

almost 25 million people will die from CVDs. CVDs, including coronary heart disease, 

hypertension, peripheral artery disease, rheumatic heart disease and congenital heart disease 

among others, are caused by disorders in the cardiac tissue and blood vessels. Myocardial 

infarction is the main cause of death in patients with CVDs. Myocardial infarction is an 

irreversible necrosis of the cardiac tissue produced by an imbalance in the oxygen and 

nutrient supply to a portion of the myocardium. The acute loss of myocardium triggers a 

cascade of cell signals activating a ventricular remodelling process, which can be divided in 

two phases: early remodelling and late remodelling. The early ventricular remodelling 

process includes the formation, thinning and elongation of a fibrotic scar that cause elevation 

of diastolic and systolic wall stresses. An increased wall stress leads to a late remodelling 

characterized by myocytes hypertrophy and production of interstitial collagen with an 

increased wall mass and chamber enlargement (Figure 1.1) (Sutton and Sharpe 2000). 

Myocardial infarction may eventually lead to the deterioration of systolic or diastolic function 

and to increased predisposition to arrhythmias and other long-term complications. 

Figure 1.1. Schematic representation of post-myocardial infarction remodelling. The 

infarction of a specific part of the tissue leads to the formation, thinning and elongation of a 
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fibrous scar followed by myocytes’ hypertrophy and production of interstitial collagen with 

an increased wall mass and chamber enlargement (Konstam et al., 2011). 

 

1.2. Anatomy of the heart 

The heart is the organ responsible for blood supply by repeated rhythmic contractions to all 

parts of the body. The heart cavity is divided into a right and a left heart, which are further 

subdivided into two chambers. The upper chambers are called right and left atrium and they 

receive the blood entering the heart. The lower chambers are called right and left ventricle 

and they pump the blood out of the heart. The right and left heart are considered as two 

separate pumps as they are in charge of the pulmonary and peripheral circulation, 

respectively. As each chamber contracts, blood is forced into the ventricles and out of the 

heart for re-circulation. In particular, the right atrium receives blood from the different organs 

via the vena cava and blood passes through the tricuspid valve to the right ventricle where it 

is pumped out through the pulmonary artery to the lungs. Blood is oxygenated in the lungs 

and returned via the pulmonary veins to the left atrium. Oxygenated blood is passed to the 

left ventricle responsible for pumping blood around the whole body (Laizzo et al., 2009). 

Figure 1.2 illustrates the anatomy of the heart. 

 

 

Figure 1.2. Schematic representation of the heart anatomy (Taken from Mader 1999). 
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The heart wall is composed of the endocardium, myocardium, and epicardium layers 

(Kierszenbaum et al., 2002). The myocardium is the tissue responsible for the alternating 

contractions and relaxations cycles induced by electrical impulses, allowing pumping of 

blood. The myocardium consists of cardiomyocytes, extracellular matrix and blood vessels.  

The cardiomyocytes are terminally differentiated cells responsible for the contraction and 

relaxation cycles. On the other hand, the extracellular matrix, mainly composed of type I and 

type III collagen, provides a framework that couples and aligns adjacent myocytes to 

optimize and distribute force development in the ventricular walls and avoids deformation 

(Sutton and Sharpe 2000). The epicardium, also known as the visceral pericardium, is mainly 

composed of connective tissue and it provides an outer protective layer to the heart. The 

endocardium is a thin layer of endothelium and connective tissue that lines the chambers of 

the heart (Kierszenbaum et al., 2002). 

 

1.3. Cardiac contraction 

Cardiac excitation–contraction cycle is initiated by an action potential. Here, the 

cadiomyocytes’ membrane is depolarized when ions enter through connexin channels from 

an adjacent cadiomyocyte inducing the entry of Na+ through voltage gated-sodium channels. 

After a rapid depolarization of the membrane, inactivation of Na+ channels and activation of 

Ca2+ and K+ channels occur. Ca2+ influx triggers Ca2+ release from the sarcoplasmic 

reticulum (SR) through the ryanodine channels (RyR). Both Ca2+ influx and Ca2+ released 

from the sarcoplasmic reticulum raises cytosolic free Ca2+, which binds to the troponin 

complex (TnC) that switches on the myofilaments in a cooperative manner, activating the 

contraction. Cardiomyocyte relaxation occurs when Ca2+ dissociates from troponin after Ca2+ 

is removed from the cytosol by calcium uptake pumps in the sarcoplasmic reticulum and by 

Na+/Ca2+ exchange pumps present in the cell membrane (Knollmann et al., 2008). Figure 1.3 

illustrates the mechanisms involved in cardiac contraction and relaxation cycles. 
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Figure 1.3. Schematic representation of cardiac contraction and relaxation mechanisms 

(Bers, 2000). 

1.4. Cardiac therapies 

As cardiac tissue lacks significant regenerative capacity to replace lost cells, the cardiac 

tissue injury is permanent. Different pharmacological or interventional therapies are currently 

applied to patients with cardiac failure. Pharmacological therapies aim to reduce the load of 

the cardiac tissue or to increase the strength of the heart muscle contraction. Among the most 

common drugs utilized are: angiotensin-converting enzyme (ACE) inhibitors, β-blockers, 

aldosterone antagonists and angiotensin II receptor antagonist (ARB). Interventional 

therapies include the implantation of pacemaker/defibrillator devices to synchronize the 

electrical and mechanical pulses of the heart or surgery to replace the infarcted tissue with a 

“cardiac patch” that reinforce the organ. Although in some patients these therapies have 

served to achieve a significant prolongation of life, additional improvement is needed to 

adequately control the progression of the disease to the end stage, in majority of the patients 

(Krumholz et al., 2000). Cardiac transplantation has become the last viable treatment option 

for patients with end stage cardiac disease. However, due to the lack of organ donors and the 

post-operative complications including infection, sepsis, organ rejection and side effects of 

the immunosuppressive medication, new strategies need to be developed to treat infarcted 

hearts (Bishay, 2011). 
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1.4.1. Cardiac tissue engineering 

Recently, cardiac tissue engineering has provided a promising alternative method to treat 

heart disease. Much research has been carried out in the development of engineered tissues 

that can replace the infarcted myocardium. In a first approach, studies involving the injection 

of several cell sources directly into damaged areas or intravenously were carried out. To this 

end, several cells types were explored including cardiomyocytes, embryonic stem cells and 

bone marrow-derived mesenchymal stem cells (Ye et al., 2011). Although some studies 

reported significant improvement in myocardial function, this improvement was not clinically 

relevant and only transient (D’Alessandro et al., 2010). Investigations to date have shown 

that the main limitations of this technique include poor cell integration, cell loss and cell 

death. Additionally, some cell sources showed a negative effect by inappropriate electrical 

integration leading to occurrences of arrhythmia (Prabhakaran et al., 2011). Fernandes et al., 

(2010) studied the effect of intramyocardial injection of embryonic stem cell-derived 

cardiomyocytes after chronic infarction in rats for three months. Results showed that 

implanted cells were insufficient to restore heart function or alter adverse remodelling. 

Additionally, different groups have focused on the integration between host and injected cells 

by studying cell junctional expression molecules, including connexin 43 and cadherin. 

Results showed no significant cell integration after injection (Nunes et al., 2011). 

In a second approach several naturally derived and synthetic polymers were proposed to 

replace the non-contractile infarcted tissue. Among the natural derived biomaterials were 

collagen, fibrin, chitosan, gelatine and decellularized extracellular matrix (Pok et al., 2011). 

One of the major advantages of many naturally occurring polymers is the non-immunogenic 

nature as they mimic the native extracellular matrix well, facilitating cell adhesion, growth 

and proliferation. However, most of these materials fail as cardiac patches due to their poor 

mechanical properties or high degradation rates. One example is collagen, the most abundant 

constituent of the extracellular matrix, which as expected, showed good cell adhesion 

properties but poor mechanical support (Atala et al., 2001). Among the decellularized 

extracellular matrix are porcine small intestine submucosa (SIS) and bovine pericardium. 

Badylak et al., (2002) showed promising results with good myocardial cell infiltration and 

spontaneous contraction after SIS membrane implantation in pigs and dogs. However, other 

studies showed difficulty in finding large portions of SIS with homogeneous properties and in 

vivo xenogenic rejection after implantation (Keith et al., 2005, Tottey et al., 2011). On the 

other hand, although bovine pericardium showed reliable consistency, durability, easy 
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handling, good cell migration and proliferation, xenogenic rejection was observed due to the 

transplantation of bovine proteins/DNA along with the membrane into the host (Li et al., 

2011). In contrast, several synthetic biomaterials were developed. Among the most used are: 

poly(lactic acid) (PLA), poly(glycolicacid) (PGA), polycaprolactone (PCL), poly(lactic-

glycolic acid) (PLGA) and poly(glycerol-sebacate) (PGS). The main advantages of synthetic 

polymers are the capacity to produce them in large quantities and the ability to regulate the 

microstructure, mechanical properties and degradation rate. However, many of these 

materials present acidic degradation products and showed reduced cell adhesion properties in 

contrast to naturally derived materials (Pok et al., 2011). For instance, the intermediate 

degradation products of PLGA are lactic and glycolic acid, which reduce the local pH, 

causing not only an inflammatory reaction but also accelerating the polymer´s degradation 

rate (Liu et al., 2006). 

The combination of a natural or synthetic biomaterial with relevant cells and growth factors 

ex vivo is currently receiving much attention as an alternative for cardiac tissue engineering 

treatments (Giraud et al., 2007) (Figure 1.4). The final goal will be the selection of an 

appropriate cell type and the development of a biocompatible flexible material that stimulates 

cell growth and guides and supports tissue regeneration in order to replace formed scar tissue 

with functioning cardiac muscle tissue. The material’s physical and mechanical 

characteristics should be similar enough to those of the natural myocardium in order to 

support the organ during the regeneration process, and its composition should allow it to 

degrade as the new tissue takes over its function (Jawad et al., 2008). Bioabsorbable 

polymeric materials provide an extracellular matrix where growing cells can localize and 

interact to form new tissue. An ideal biomaterial should possess five special characteristics. 

First, the material should be biocompatible. Second, the material mechanical properties 

should be similar to the host tissue to provide mechanical support to the cells until new 

extracellular matrix is synthesized by the cells. As previously described, myocardial 

infarction normally results in wall thinning and ventricular dilatation that cause a significant 

stress in the heart wall. Overstressed wall leads to a progressive ventricular remodelling with 

an end stage of heart failure (Sutton and Sharpe 2000). In order to prevent an overstressed 

wall with a negative ventricular remodelling, the material’s mechanical properties should 

allow reducing the heart wall stress (Chen et al., 2007). Third, the material should possess an 

appropriate shape and size to guide and organize the cells and to repair at the implant site. 

Fourth, the chemistry of the material’s surface should allow cell attachment, differentiation 
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and proliferation. Fifth, the composition of the material should allow biodegradation in vivo 

at rates appropriates for tissue regeneration (Williams et al., 1999).     

Figure 1.4. A schematic diagram illustrating the principle of myocardial tissue engineering 

1.4.1.1. Biomaterials used in myocardial tissue engineering 

Several synthetic and naturally occurring materials combined with different cell sources have 

been explored for myocardial tissue engineering applications. Among the natural polymers, 

collagen, gelatine and alginate have been under intensive investigation. Kofidis et al., (2002a) 

seeded neonatal rat cardiomyocytes in vivo in a commercially available collagen matrix. 

Results showed good cell attachment and continuous rhythmic contractions for up to two 

weeks. However, insufficient size, inadequate geometry, low viability, weak physical 

properties such as elasticity, integrity and plasticity, low biocompatibility and high 

production costs were reported. Li et al., (1999) also observed good cell proliferation and 

spontaneous and regular contraction of the grafts after subcutaneous implantation of a 

gelatine mesh seeded with cells derived from foetal rat ventricular muscle. However, grafts 

underwent significant degradation and showed high thrombogenicity. Leor et al., (2000) 

isolated and grew foetal cardiac cells within 3D porous alginate scaffolds for the implantation 

in rat myocardial scar tissue in vivo. Although results showed that the grafts attenuated left 

ventricular dilatation and heart function deterioration, presence of macrophages, lymphocytes 

infiltration and low myocardial mass in the graft was observed. In addition to natural 
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polymers, among the most investigated synthetic polymers were PGA, PCL, PLA and PLGA. 

Xing et al., (2012) developed myocardial grafts by seeding bone marrow mesenchymal stem 

cells on scaffolds consisting of 50% polylactic acid (PLA) and 50% polyglycolic acid (PGA). 

Results showed that PLGA scaffolds implanted in rat peritoneal pocket could form 

engineered myocardial tissue with structural and functional features resembling those of 

native tissue. However, the function of the engineered graft in the ischemic heart model 

should be studied to determine the construct capacity to regenerate and support the organ 

during regeneration. Shinoka et al., (2005) seeded bone marrow cells in PCL/PLLA scaffolds 

and resulting constructs were implanted as patches to repair congenital heart defects in 19 

patients, ages from 1 to 24 years. No complications such as thrombosis, stenosis, or 

obstruction of tissue engineered autografts were observed. However, long term analysis is 

needed to determine the capacity of the graft to support the organ in the long term. Several 

studies on creating beating engineered synthetic constructs have been reported recently 

showing that the stiffness of the scaffold impeded the contractions (Shin et al., 2004). 

Additionally, due to the myocardial tissue cyclic and constant beating, a plastic deformation 

and failure is expected when thermoplastic polymers such as PGA, PLA and PCL and their 

copolymers are exposed to long term cyclic strain. Table 1.1 shows the most important 

mechanical properties of some materials explored for myocardial tissue engineering. These 

data show that most natural materials are weaker than myocardial structures in contrast to 

synthetic materials, which are much stiffer than the human myocardium.  

Table 1.1. Mechanical properties of materials proposed for myocardial tissue engineering 

Polymer Young’s modulus Tensile strength References 

Collagen 2-22 KPa 1-9 KPa Roeder et al., 2002 

Alginate 10-50 KPa 10-40 KPa Drury et al., 2004 

PGA 7-10 GPa 70 MPa Webb et al., 2004 

PCL 343.9-364.3 MPa 10.5-16.1MPa Eshraghi et al., 2010

PLA 1-4 GPa 30-80 MPa Garlotta et al., 2001 

PLGA 67 MPa 4 MPa Lin et al., 2011 

Myocardium (human) 0.2-0.5 MPa 3-15 KPa Watanabe et al., 2006 
Nagueh et al., 2004 
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1.4.1.2. Cells applied in myocardial tissue engineering 

As the type and source of cells will have an enormous influence on the success of the tissue 

engineered constructs, much research has been carried out to determine the most suitable 

cells to use in myocardial tissue engineering applications. Based on the cell source, cells can 

be classified into autologous (patient origin), allogeneic (human origin, not patient) and 

xenogeneic (animal origin). Autologous cells are preferred since no immunosuppressive 

therapy is required compared to allogeneic and xenogeneic cells. However, difficulty in 

harvesting a sufficient amount of cells, mainly from aged or diseased patients leads to the use 

of allogeneic or xenogeneic cell sources (Ikada et al., 2006). Additionally, cells can be 

classified according to the extent of differentiation (Figure 1.5). Fertilized ovum creates a 

totipotent cell, zygote, which is capable of developing into all the specialized cells that make 

up the body. As cells proliferate, they differentiate into two lineages, the pluripotent inner 

cell mass and the trophoectoderm. Pluripotent cells can be isolated and propagated in vitro in 

an undifferentiated state as embryonic stem cells. Pluripotent cells proliferate into the three 

major germ layers: endoderm, mesoderm or ectoderm. These three multipotent layers 

proliferate and differentiate to progenitor cells, which form the organs (Shoukhrat et al., 

2009). Adult stem cells, which reside in organs, are defined as multipotent as they have the 

capacity to differentiate into restricted number of cell lineages. 

Figure 1.5. A schematic diagram illustrating the different stages of cells differentiation 

(Taken from Ikada et al., 2006). 
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The optimal cell source to create a myocardial patch should be non-immunogenic, easy to 

isolate, proliferative, and with the capacity to differentiate into functional cardiomyocytes 

(Leor et al., 2005). Different cells were proposed for myocardial tissue engineering including 

foetal cardiomyocytes, skeletal myoblasts, mesenchymal stem cells, smooth muscle cells, 

endothelial progenitor cells, bone marrow cells, fibroblasts and human embryonic stem cells 

(Li et al., 1999, Kamelger et al., 2004, Krupnichk et al., 2001, Matsubayashi et al., 2003, 

Ryu et al., 2005, Kadner et al., 2004, Levenberg et al., 2003). It is expected that the most 

suitable cells for myocardial tissue regeneration are cardiomyocytes, due to their natural 

electrophysiological, structural, and contractile properties. However, healthy cardiomyocytes 

capable of contracting at high pacing rates are difficult to obtain, to expand, and can be 

maintained in culture for only up to 36–48 hr (Pinz et al., 2011). The alternatives to 

cardiomyocytes are cardiac adult stem cells or embryonic stem cells, which are able to 

differentiate to cardiomyocytes in vitro under appropriate conditions. One of the problems 

associated with adult stem cells is the difficulty in harvesting a sufficient amount of cells, 

especially when the patient is aged or diseased. On the other hand, it was demonstrated that 

embryonic stem cells could generate spontaneously contracting engineered heart tissue 

(Eschenhagen et al., 2005). For this reason, embryonic stem cells are one of the best 

alternatives for myocardial tissue engineering applications. Table 1.2 shows some advantages 

and disadvantages of different cell types used in myocardial tissue engineering. 

 

 

  

 

 

 

 

 

 



INTRODUCTION	  

12	  

Table 1.2.  Advantages and disadvantages of different cell types proposed for myocardial 

tissue engineering applications (adapted from Chen et al., 2010, Galvez-Monton et al., 2013 

and Leor et al., 2005). 

Cell type Advantages Disadvantages 
Fetal 

cardiomyocytes 
Cardiomyocytes phenotype Limited availability 

Low survival 
Host immune response 

Ethical problems 
Embryonic 
stem cells 

Multipotent Limited availability 
Ethical problems 

Adult stem 
cells 

Autologous 
Easily isolated 

Multipotent 
Low immune response 

Low survival 
Limited availability 

Mesenchimal 
stem cells 

Autologous 
Easy isolated 
Multipotent 

Non authentic 
cardiomyocytes 

lineages 
Skeletal 

myoblasts 
Easily isolated 

High rate of proliferation 
Hypoxia-resistant 

Autologous 

High incidennce of 
arrhythmias 

Fibroblasts Easily isolated 
High rate of proliferation 

Autologous 

No cardiac myogenesis 
No clinical experience 

Smooth muscle 
cells 

Easily isolated 
High rate of proliferation 

Autologous 

No cardiac myogenesis 
No clinical experience 

1.4.1.3. Active molecules used in myocardial tissue engineering 

There are a range a proteins produced by the cells in the body that play key role in cell 

adhesion, proliferation, migration and differentiation. Several reports have shown an 

enhanced response of the engineered construct by the addition of these bioactive agents 

(Epstein et al., 2001, Richardson et al., 2001, Yamoto et al., 2003). Among the most 

frequently used growth factors are basic fibroblast growth factor (bFGF), vascular endothelial 

growth factor (VEGF) and transforming growth factor-b (TGF-b) (Ikada et al., 2006). These 

growth factors assist cellular proliferation, differentiation, migration and vascularization 

(Jakowlew et al., 2006, Neufeld et al., 1999). As the contractile nature of the cardiac tissue 

demands readily available high oxygen and nutrient concentrations, delivery of angiogenic 

growth factors from the engineered graft is a key factor to encourage the rapid development 
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of the vascular network. Several studies have confirmed the capacity of these angiogenic 

factors to facilitate blood vessel growth when they are incorporated into bioengineered 

tissues. Perets et al., (2003) proved that the local release of bFGF incorporated into alginate 

scaffolds enhanced the rate and extent of vascularization, when implanted into rat 

peritoneum. Singh et al., (2012) showed that VEGF simulated angiogenesis, after 

encapsulation in PCL scaffolds, when implanted subcutaneously in mouse.  

One critical aspect in the application of these angiogenic growth factors in tissue engineering, 

due to their short biological half-life and high tumorigenic potential, is the delivery of these 

factors to the site of action in a sustained and controlled manner (Faranesh et al., 2004). 

Shankha et al., (2004) investigated the effect of intramyocardial and intracoronary 

administration of bFGF in chronically ischemic porcine myocardium. Results showed that 

direct intramyocardial injection results in significant improvement in regional myocardial 

blood flow, in contrast to intracoronary perfusion. In order to allow direct release at the site, 

several groups have been working towards the incorporation of growth factors in 

biodegradable polymers to provide localized and sustained release. The incorporation of these 

growth factors in biodegradable polymers not only allows a localized release but also allows 

adjusting the magnitude of the release by altering the polymer degradation rates. Growth 

factors can be incorporated into engineered constructs by two main approaches. The first 

approach involves the mixing of the factor before processing the polymer into the final 

construct. The second approach involves pre-encapsulation of a factor in microspheres and 

the incorporation of these microspheres in the final construct. Richardson et al., (2001) 

showed a much-controlled release when VEGF was incorporated into PLGA microspheres 

than direct incorporation into the engineered PLGA constructs. 

One important problem in the application of different biomaterials in tissue engineering is the 

inadequate interaction of the construct with the cells, leading to foreign body reactions, 

infections, implant encapsulation, thrombosis and embolization (Thull et al., 2001). In order 

to address this issue much research is been carried out in the immobilization of cell 

recognition motifs to obtain controlled interaction between the cells and the material 

(Hubbell, 1999). Among the most explored proteins that allow efficient host cell recruitment 

and adhesion are fibronectin and arginine-glycine-aspartic tripeptide sequence (RGD peptide) 

(Hersel et al., 2003, Ota et al., 2005, Yoon et al., 2003). Matsuzaka et al., (2004) showed that 

the number of rat bone marrow cells adhering to a fibronectin immobilized polystyrene disk 

increased after 1 or 2 hr incubation compared with non-immobilized surfaces. Shachar et al., 
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(2011) investigated the effect of neonatal rat cardiac cells on RGD-immobilized or 

unmodified alginate scaffolds. Results showed that RGD immobilized surfaces promoted cell 

adherence to the matrix accelerating cardiac tissue regeneration and that within 6 days 

myofibres composed of multiple cardiomyocytes in a typical myofibre bundle were formed. 

 

1.4.1.4. Techniques for the fabrication of engineered constructs 

The main goal in tissue engineering is the fabrication of a matrix that restores and maintains 

the lost biological function of the host tissue (Langer et al., 1993). Much research is carried 

out to design engineered structures that can mimic the natural extracellular matrix of the 

tissue to support the native tissue until host cells can repopulate and resynthesize a new 

natural extracellular matrix. A number of fabrication technologies were developed for the 

production of engineered structures including: (I) Porogen leaching such as solvent cast 

particle leaching (SCPL), compression moulding (Wu et al., 2005) and gas foaming (Leatrese 

et al., 1998); (II) Phase transitions, including solvent evaporation (Park et al., 2011), phase 

separation (Tu et al., 2003) and gel casting (Chopra et al., 2012); (III) Rapid prototyping such 

as stereolithography (Dhariwala et al., 2004) and fused deposition modelling (Zein et al., 

2002) and (IV) fibre deposition, including electrospinning (Zong et al., 2005) and bonded 

fibre meshes (Mikos et al., 1993). Figure 1.6 shows an example of some of the structures 

obtained with the most used methods from the four mentioned processing techniques. 
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Figure 1.6. SEM images of the different structures obtained by SCPL, freeze drying 

emulsions, stereolithography and electrospinning (Flaibani et al., 2012, Lu et al., 2004, 

Sultana et al., 2012).  

1.4.1.4.1. Solvent cast particle leaching 

The SCPL method is a technique widely used in the design of constructs for tissue 

engineering to incorporate porous structures due to its easy operation and capacity to 

precisely control number and size of pores. The particle leaching technique involves the 

addition of water-soluble particles to a polymer solution follow by casting of the films and 

porogen removal (Ikada et al., 2011). This technique is simple, low cost and can be used for 

many soluble polymers. The size of porous structures can vary from 30-300 µm and the 

porosity that can be obtained is 20-50% (Chen et al., 2007). Figure 1.7 illustrates the different 

steps involved in the solvent cast particle leaching technique.   
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Figure 1.7. Schematic diagram of the solvent cast particle leaching technique (adapted from 

Chung et al., 2007) 

1.4.1.4.2. Freeze-drying emulsions 

In the freeze-drying emulsions method water is emulsified in a polymer solution until 

homogeneity is achieved (Figure 1.8). The obtained emulsion is immediately poured into a 

metal mould, frozen and freeze-dried, creating porous structures. This technique was 

developed by Whang et al., (1995) for the fabrication of porous biodegradable scaffolds with 

PLGA. The resulting scaffolds porosities obtained were greater than 90% with median pore 

diameters ranging from 15-35 µm and larger pores greater than 200 µm. 

Figure 1.8. A schematic diagram of the freeze-drying emulsions method (adapted from 

www.powderpro.se). 
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1.4.1.4.3. Stereolithography 

The stereolithography method requires a computer model of the desired scaffold architecture 

for the production of an accurate structure (Figure 1.9). In this technique an ultraviolet laser 

bean guided by a computer is focused on the surface of a liquid photopolymer tank drawing a 

slice of the structure and converting the thin layer of liquid plastic to a solid piece. The layer 

is immersed in the tank and covered with liquid photopolymer and in the following step the 

laser beam draws a layer over the previous one (Lanza et al., 2011). This technique allows 

the production of 100% interconnected porous structures ranging from 45-150 µm pore sizes 

(Chen et al., 2007).  

 

 

Figure 1.9. Schematic diagram of the stereolithography setup (adapted from 

www.rpc.msoe.edu). 

 

1.4.1.4.4. Electrospinning 

Electrospinning allows the fabrication of micro- and nano- structures that recreate the natural 

three-dimensional environment of the tissue for better cell organization, survival and function 

(Zong et al., 2005). Micro- or nano- fibres based matrix are fabricated for multiple 

biomedical applications, including production of scaffolds in tissue engineering, drug 

delivery and medical implants (Boland et al., 2001, Min et al., 2004, Khil et al., 2003). In this 

technique, a polymer solution is loaded and pumped through a syringe fitted with a nozzle 

connected to a voltage source. The suspended droplet created by gravity and mechanical 

pumping at the tip of the nozzle, is electrically charged creating a repulsion force directly 
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opposite to the surface tension. As the intensity of the electric field is increased, the surface 

of the droplet elongates to form a conical shape called Taylor cone (Taylor 1969). When the 

electric charges overcome the surface tension of the droplet a charged jet is ejected from the 

tip of the Taylor cone. As the jet is ejected from the droplet and travel through the air, the 

solvent evaporates and fibre is deposited on a grounded collector. Figure 1.10 shows the 

experimental setup for the electrospinning technique. 

 

Figure 1.10. Schematic diagram of the electrospinning technique (adapted from Khan et al., 

2008) 

Electrospinning is a simple, low cost technique, suitable for many soluble polymers. Fibrous 

structures are obtained with pores ranging from 20-100 µm and porosity higher than 95% 

(Chen et al., 2007). Different parameters were described to have an effect in the size and 

shape of the produced fibres including the solution properties, the controlled variables and the 

ambient parameters. Among the solution properties are viscosity, conductivity and surface 

tension. On the other hand, the controlled variables include pump flux, electric potential and 

the distance between the nozzle tip and the collector. Finally, the ambient parameters are 

temperature, humidity and air velocity (Doshi et al., 1995). By appropriately varying one or 

more of the above parameters different non-woven, porous and nano/micro-scale fibre based 

matrix were obtained with different synthetic and natural materials. Among the most used 

materials are PLGA, PLLA, poly(vinyl alcohol) (PVA), poly(ethylene oxide) (PEO), 

poly(caprolactone) (PCL), collagen, silk protein and fibrinogen (Smith et al., 2009). Duan et 

al., (2007) observed good cell attachment of fibroblast cells to a 275 ± 175 nm PLGA–

chitosan/PVA composite fibers. Chen et al., (2007) found that cell adhesion and growth are 

significantly affected as a function of fibre diameter and that in the range of 428-1051 nm 

fibres, cell adhesion and growth decreased with increasing fibre diameter. On the other hand, 
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Lu et al., (2012) studied the effect of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-

co-3HV), fibre orientation on the growth behaviour of bone-marrow-derived mesenchymal 

stem cells, showing that random-oriented nanofibrous scaffold are most favourable for cell 

growth, compared to aligned fibre scaffold. 

 

1.5. Polyhydroxyalkanoates 

In this project we proposed Poly-3-hydroxyoctanoate, P(3HO), a medium chain length 

biodegradable and biocompatible polyhydroxyalkanoate, as the biomaterial to deliver cells to 

the injured tissue and to support the organ during its regeneration process. PHAs are 

polyesters composed of several units of hydroxyalkanoate monomers linked to each other 

through ester linkages. Figure 1.11 represents the PHA’s general formula where ‘n’ is the 

number of monomer units in each polymer chain, which varies between 100 and 30000, ‘R1’ 

and ‘R2’ the side chain that includes alkyl groups with 1 to 13 carbons and ‘x’ in the main 

chain which ranges from 1 to 4. 

 

 

                                                                                                                                n 

Figure 1.11. General formula for PHAs. R1/R2: Alkyl groups C1-C13, x: 1-4, n: 100-30000.  

Numerous microorganisms synthesize PHAs by the fermentation of a carbon source and then 

accumulate them as intracellular carbon reserve inclusion bodies. In order to accumulate 

PHAs in most bacteria an excess supply of carbon and limitation of nitrogen, phosphorus, 

oxygen or magnesium is required. These elements are essential for the cell growth i.e. 

nitrogen is one of the main constituents of aminoacids, nucleic acid, nucleotides and 

coenzymes, phosphorous constitutes nucleic acids, nucleotides and phospholipids and 

magnesium is cofactor for certain enzymes reactions. These unfavorable growth conditions 

result in a decrease in cell growth and division, and a redirection of their metabolism towards 

the biosynthesis of the PHAs (Jurasek et al., 2004). The stored PHA can be degraded by 

intracellular depolymerases and metabolized as carbon and energy source when needed 

(Byrom et al., 1994). 
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The properties of PHAs vary depending on the distance between ester groups in the molecule, 

the structure of the side groups and the number of monomer units in the polymer chain. For 

example, the length of the side chain and its functional group has a direct effect on the 

polymers physical properties such as flexibility, crystallinity, melting point and glass 

transition temperature (Volvoa et al., 2004). The nature and proportion of the PHA 

monomers are influenced by the type and relative quantity of carbon sources supplied to the 

growth media, the organism used and the culture conditions provided (Ojumu et al., 2004).  

For instance, based on growth conditions and the used microorganism, the molecular weight 

of the polymers can vary from 2 × 105 to 3×106 Daltons (Byrom et al., 1994). 

PHAs can be either thermoplastic or elastomeric materials with variable mechanical, thermal 

stability and durability properties. They are water insoluble and impermeable to oxygen 

(Chen et al., 2010). Due to the stereospecificity of the PHA synthase, all the 

hydroxyalkanoate monomers incorporated in the polymer are in the R(-) configuration, 

resulting in an optically pure polymer (Zinn et al., 2005). Additionally, they are 

biodegradable; hence, they can be degraded and metabolized by microbes and by enzymes 

within the human body; biocompatible, they do not generate toxic by-products and some of 

them are piezoelectric, a property known to stimulate cell growth (Philip et al., 2007).  

Based on the number of carbon atoms in the monomer units PHAs can be divided in two 

main different groups: the short chain length polyhydroxyalkanoates (scl-PHAs), which 

consist of C3-C5 atoms, and the medium chain length polyhydroxyalkanoates (mcl-PHAs) 

consisting of C6-C14 atoms (Ojumu et al., 2004). Also, it has been observed that some 

organisms produce copolymers including both scl and mcl monomers, these are referred to as 

scl-mcl PHAs. These groups are a consequence of the PHA synthase substrate specificity, 

which accepts precursors of a certain range of carbon length (Rehm et al., 2001).  

Poly(3-hydroxybutyrate), P(3HB), the simplest and most common example of the scl-PHAs, 

is a highly crystalline, brittle, stiff and piezoelectric material with a melting temperature of 

177 °C, glass transition temperature of 4 °C, tensile strength of 40 MPa and elongation at 

break of 6 %. Its biological properties include, complete biodegradability, water resistance, 

high biocompatibility and a suitable substrate for tissue engineering which enhances cell 

adhesion, migration, proliferation and differentiation functions (Saad et al., 1999). The mcl-

PHAs such as poly(3-hydroxyhexanoate), P(3HHx), or P(3HO) are thermoplastic elastomers 

with melting point, Tm, ranging between 40-60 °C and glass transition temperature, Tg 
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ranging between -50 to -25 °C. The mcl-PHAs have lower crystallinity with higher flexibility 

and softness. They are more thermally stable than scl-PHAs, with an elastomeric nature, 

which increases with the length of the side chain. These are also biodegradable, water 

resistant and biocompatible, which could be utilized in medical implants, such as scaffolding 

for the regeneration of arteries and nerve axons (Witholt et al., 1999). Table 1.3 describes the 

physical properties of P(3HB), a scl-PHA, P(3HO), a mcl-PHA, and polypropylene, a 

commonly used synthetic polymer. The crystallinity and tensile strength of P(3HB) are 

similar to those of propylene, however, the elongation to break is significantly lower than that 

of propylene. On the other hand, the Young’s modulus and elongation to break values for, 

P(3HO) are comparable to those of propylene and dissimilar in terms of crystallinity and 

tensile strength. The scl-mcl PHA copolymers have properties intermediate between scl and 

mcl PHAs (Nomura et al., 2004). Nowadays, most of the studies focus in the development of 

different types of copolymers for the production of tailor made materials to suit different 

applications. For example, one of the most commonly produced copolymers that is 

commercially available is P(3HB-co-3HV). This copolymer is more ductile, elastic and 

flexible than P(3HB), due to the presence of the hydroxyvalerate groups (El-Hadi et al., 

2002). Moreover, it has been reported that the increment in hydroxyvalerate units results in a 

melting temperature, crystallinity and tensile strength reduction, but an increment in 

flexibility, impact strength and ductility of the material (Conti et al., 1996). These approaches 

make PHAs suitable for a wider range of applications and a promising class of new emerging 

biomaterial (Akaraonye et al., 2010).  

Table 1.3. Comparison of the physical properties of P(3HB), a scl-PHA, P(3HO), a mcl-PHA 

and polypropylene (Ojumu et al., 2004, Rai et al., 2010). 

Properties scl –PHAs (P(3HB)) mcl-PHAs (P(3HO)) Polypropylene 

Melting point (°C) 175 49 176 

Glass-transition temp (°C) 15 -36 -10 

Crystalline (%) 81 30 70 

Young’s modulus (GPa) 3.5 0.01 1.7 

Tensile strength (MPa) 40 1.8 34.5 

Elongation to Break (%) 6 276 400 
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1.5.1. Biodegradability of PHAs 

One of the most valuables properties of PHAs is their biodegradability in natural 

environments. PHAs are degraded completely to carbon dioxide and water under aerobic 

conditions and lead to methane formation under anaerobic conditions (Volvoa et al., 2006). 

PHAs can be degraded by depolymerases present in microorganisms and enzymes present in 

the blood and animal tissues (Jendrossek et al., 2002). It has been demonstrated that the main 

factors that influence PHA biodegradation are the stereoconfiguration of the monomers, the 

crystallinity, the molecular mass and the chemical composition of the polymer. Only ester 

linkages of monomers in the (R)- configuration are hydrolysed by the depolymerases (Volvoa 

et al., 2004). In terms of the molecular mass, high molecular mass polymers are degraded 

more slowly than low molecular mass polymers. For instance, Quinteros et al., (1999) studied 

the relation between alkyl side chain length and biodegradability, showing an increment in 

the degradation rates with the polymer length. Additionally, Abe et al., (1999) reported that 

an increment in the polymer crystallinity resulted in a reduction of the degradation rate and 

that the depolymerases first hydrolyse polymer chains in the amorphous phase, followed by 

crystalline phases, with a depolymerisation rate 20 times higher in amorphous than the 

crystalline phase. Volvoa et al., (2004) described PHA biodegradation based on data obtained 

from different PHAs as follows: In the first week, the amorphous phase of the polymer is 

eroded. Then, a disruption of the polymer chain results in the formation of tetramers, dimers 

and monomers with a decrease in the molecular mass. Finally, the polymer loses it mass and 

this process can take from months up to 2-3 years, depending to the polymer properties and 

environmental conditions. Weng et al., (2011) studied the influence of chemical structure on 

the biodegradability of P(3HB-co-3HV). Results showed that an increment in the 

hydroxyvalerate subunits resulted in an increment in the biodegradation and that the 

biodegradation occurred by enzyme catalysed erosion from the surface to the interior. Rai et 

al., (2011a) studied the degradation behaviour of the P(3HO) homopolymer films. In contrast 

to other amorphous polymers such as PLGA, which showed bulk degradation, P(3HO) films 

showed only around 15% of degradation on DMEM media after 3 months and this could be 

due to the semicrystalline structure of the polymer .    
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1.5.2. Biocompatibility of PHAs 

One of the fundamental requirements for a material to be suitable for medical applications is 

that it should display adequate biocompatibility. In response to the material composition and 

degradation products, the host body can release either pro- or anti-inflammatory mediators, 

which can eventually cause initial acute inflammation, followed by chronic inflammation and 

possible ultimate rejection of the biomaterial. In addition to the chemical and molecular 

structure, different parameters were reported to have an influence on the biocompatibility of 

the material such as the size, porosity, shape and surface topography of the material (Zhao et 

al., 2003). Among the different parameters, the haemocompatibility of the material is one of 

the main aspects that will determine the suitability of the material for medical applications. 

The material should not cause thrombosis, embolisms, antigenic response and destruction of 

plasma proteins. The haemocompatibility of a material can be evaluated by the haemostasis 

system, which can be studied by different parameters such as the morphology of the attached 

platelets and complement activation. Sevastianov et al., (2001) studied the 

haemocompatibility of P(3HB) and P(3HB-co-3HV) films produced from R. eutropha 

through the determination of relative number and morphology of adherent platelets, 

complement activation and coagulation system activation. PHA films in contact with blood 

did not activate the haemostasis system at the level of cell response, but they did activate the 

coagulation system and the complement reaction. Further experiments, which included 

purification of the produced polymers showed that resulting P(3HB) and P(3HB-co-3HV) 

were suitable to be used in contact with blood and that the presence of lipopolysaccharides 

from the producer bacteria was the factor activating the haemostasis systems ((Sevastianov et 

al., 2003). One of the main reasons of PHA biocompatibility is the presence of some PHA 

monomer units in human blood and tissues. It has been demonstrated that the monomer 

present in the P(3HB) polymer, (R)-3-hydroxybutanoic acid, is present at concentrations of 3-

10 mg in 100 ml of blood in healthy humans. Additionally, the presence of low molecular 

weight forms of P(3HB) have also been detected in lipoprotein fractions of human tissues 

(Hocking et al., 1994, Nelson et al., 1981). However, although a material can be 

biocompatible, the presence of impurities derived from the method of production and 

extraction can affect the final biocompatibility of the material, as previously described by 

Williams et al., (1996). Several reports have shown that cell adhesion and proliferation are 

highly affected by the surface structure of the polymers. Bellino et al., (2013) demonstrated 

that it is possible to modify cell adhesion and proliferation of a human osteoblastic cell line 
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by modifying the nanopore size of titania and silica film coating. Rebollar et al., (2008) 

showed that surface laser modification of polystyrene films resulted in a significant 

enhancement of human embryonic kidney cell adhesion and proliferation compared to 

unmodified structures. 

 

1.5.3. Biosynthesis of PHAs 

PHA biosynthesis has been intensively studied over the years. Different metabolic pathways 

were described and the particular pathway used for PHA production was found to depend on 

the particular metabolic pathways that are operating in a particular microorganism and the 

carbon source provided. PHA biosynthesis can be divided in two main steps. The first step 

involves the synthesis of hydroxyacyl-CoA, the PHAs activated monomer units for PHAs. 

The second step involves a reaction catalysed by the PHA synthase, which use the 

hydroxyacyl-CoA units as substrates and catalyse their polymerization into PHAs with the 

concomitant release of CoA (Rehm et al., 2001). The synthesis of the 3-hydroxyacyl CoA 

units can occur mainly by three different pathways (Figure 1.12) (Kim et al., 2007, Doi et al., 

1990, Poirier et al., 1995, Steinbüchel et al., 1991). Two of the pathways involve the 

production of PHAs using carbohydrates as a carbon source and a third using fatty acids.  

In the first pathway, PHA biosynthesis occurs from carbohydrates unrelated in structure to 

the final PHA monomer unit (Kazunori et al., 2001). Three key enzymes are implicated: β-

ketothiolase, NADPH-dependent acetoacetyl-CoA reductase, and PHA synthase. The β-

ketothiolasecatalyses the condensation of two acetyl-CoA molecules from the tricarboxylic 

acid cycle. The resulting acetoacetyl-CoA subunits are then converted to 3-hydroxybutyryl-

CoA and the PHA synthase catalyzes the esterification of these subunits leading to the 

formation of P(3HB) (Philip et al., 2007). This pathway can also be utilised for the synthesis 

of P(3HB-co-3HV). 

The second pathway involves the production of PHAs via the fatty acid degradation pathway. 

In this case, the resulting monomers in the polymer chain were similar in structure to the 

carbon source or shortened by 2, 4 or 6 carbon atoms (Huisman et al., 1989). In this pathway 

the fatty acids are first converted to the corresponding acyl-CoA which are then oxidised by 

the ß-oxidation pathway via enoyl-CoA, (S)-3-hydroxyacyl-CoA and 3-ketoacyl-CoA 

precursors. Finally, enzymes like the enoyl-CoA hydratase, hydroxyacyl-CoA epimerase, and 
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β-ketoacyl-CoA reductase connect the β-oxidation pathway to the medium-chain length PHA 

biosynthesis through the PHA synthase (Rehm et al., 2009).  

The third pathway involves mcl-PHA production via the fatty acid de novo biosynthesis 

metabolic pathway. This pathway is of significant interest due to the ability of producing 

mcl-PHAs from carbohydrates that are structurally unrelated to the carbon source and are 

inexpensive (Kazunori et al., 2001). In this pathway, the carbohydrates are first oxidized to 

acetyl-CoA molecules that enter into the fatty acid de novo biosynthesis. The fatty acid de 

novo biosynthesis leads to the formation of R-3-Hydroxyacyl-ACP precursor, which is then 

linked to the PHA synthase for the mcl-PHA biosynthesis via the (R)-3-hydroxyacyl-ACP-

CoA transacylase (Chen, 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12. Metabolic pathways involved in the biosynthesis of PHAs from related and 

unrelated carbon sources (adapted from Kazunori et al., 2001). 
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1.5.4. PHA biosynthetic genes 

The PHA synthase gene and the genes encoding other proteins related to the metabolism of 

PHAs have been studied in a variety of microorganisms. In particular, PHA synthases are the 

key enzymes of PHA biosynthesis. They are encoded by the phaC gene and use coenzyme A 

(CoA) thioesters of HA as substrates to catalyse the polymerization of HAs into PHAs with 

the release of CoA (Rehm et al., 2002). According to their primary structure, substrate 

specificities of the enzymes and subunit composition, PHA synthases can be divided into four 

major classes. Class I and class II PHA synthase enzymes consisting of only one type of 

subunit (phaC), and class III and class IV PHA synthases include two subunits, phaC, similar 

to class I and II PHA synthases, and one subunit with no similarity (phaE and phaR, 

respectively). In vivo substrate specificity studies showed that class I PHA synthases (e.g. 

present in C. necator) preferably utilize coenzyme A thioesters of scl-3-hydroxyalkanoate 

subunits (containing from 3 to 5 carbon atoms in the alkyl side chain). On the other hand, 

class II PHA synthases (e.g. present in P. aeruginosa) preferentially utilize coenzyme A 

thioesters of mcl-3-hydroxyalkanoate subunits (containing more than 5 carbon atoms in the 

alkyl side chain). Finally, class III (e.g. present in Aeromonascaviae) and class IV PHA 

synthases (present in Bacillus megaterium) include enzymes consisting of two subunits. Both 

subunits preferably utilize coenzyme A thioesters of scl-3-hydroxyalkanoate subunits 

(containing from 3 to 5 carbon atoms in the alkyl side chain) (Rehm et al., 2003). Table 1.4 

illustrates the four different classes of polyester synthases.  

Table 1.4.The four classes of PHA synthases (Rehm et al., 2003). 

Class Subunits Size Substrate Species 

I (60-73 KDa) 3HASCL C. necator 

II (60-65 KDa) 3HAMCL P. aeruginosa 

III (40 KDa)-(40KDa) 3HASCL A. caviae 

IV (40 KDa)-(22KDa) 3HASCL B. cereus SPV 
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The PHA genes that encode for the biosynthetic proteins, and genes related to the PHA 

metabolism are often clustered together in the bacterial genomes. For instance, Steinbuchel et 

al., (1991) showed that C. necator contains PHA synthase gene (phaC), β-ketothiolase 

(phaA) gene and NADPH-dependent acetoacetylo-CoA reductase (phaB) gene, which 

comprise the three individual steps in the P(3HB) biosynthetic pathway, organized in a single 

operon. Rehm et al., (1999) reported that Pseudomonas sp. possess two different PHA 

synthase genes (phaC), separated by another gene, phaZ, that encodes an intracellular PHA 

depolymerase. Downstream of the second phaC gene are the phaD, phaI and phaF genes. 

PhaD plays a role in the regulation of the size and number of PHA granules formed, phaF 

codes for a regulatory protein which is associated with PHA granules and controls the 

expression of the phaC and phaI genes and phaI codes for a newly identified granule-

associated protein (Prieto et al., 1999). Hein et al., (2002) compared both PHA synthases 

(phaC1 and phaC2) from Pseudomonas mendocina by creating knock-out mutants. Results 

provide evidence that phaC1 is the major enzyme for PHA synthesis, whereas phaC2 

contributes to the accumulation of PHAs to only a minor extent. Levergiesell et al., (1992) 

showed that C. vinosum and all bacteria that possess two component PHA synthases (phaC 

and phaE) contain both enzymes and all PHA metabolism genes in the same operon.  

 

1.5.5. PHA producing microorganisms 

1.5.5.1. Wild type producing microorganisms 

More than 250 strains were described as PHAs producers, however, only a few of them are 

usually employed for PHA production. Among the most used are Cupriavidus necator, 

Alcaligenes latus, Bacillus megaterium, Pseudomonas oleovorans and Pseudomonas putida 

due to their capacity to grow in a range of substrates and their ability to synthesize a wide 

range of PHAs depending on the carbon source and the cultivation condition utilized (Chen et 

al., 2010). P(3HB) is the most common and widely studied PHA (Lemoigne et al., 1926). 

Since then, various bacterial strains among Gram positive and Gram negative bacteria have 

been identified to accumulate P(3HB) both aerobically and anaerobically. Awareness of the 

cost of production of PHAs and the need of industrialization encouraged several groups to 

work intensively in reducing production costs. In 1990, Hangii reported A.latus as the main 

candidate for P(3HB) production due to the fast growth and the ability to use cheap carbon 

sources. However, since then, many different strains and strategies were developed for the 
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P(3HB) production. Yu et al., (2008) achieved a 57% P(3HB) dry cell weight (DCW) yield 

under appropriate C/N ratios in C. Necator. Omar et al., (2001) reported P(3HB) content of 

cells of up to 50% when B. megaterium was fed with date syrup and beet molasses. 

Akaraonye et al., (2011) obtained 67% DCW yield of P(3HB) using Bacillus cereus SPV in 

the presence of sugarcane molasses. 

Among the mcl-PHA producer microorganisms P. oleovorans was the first bacteria reported 

to produce a mcl-PHA copolymer containing P(3HO) when grown on n-octane as the sole 

carbon source (De Smet et al., 1983). After this finding, Haywood et al., (1989) examined 

various Pseudomonas species for grow and polymer accumulation with different alkanes, 

alcohols and alkanoic acids as the sole carbon source and proved that mcl-PHA production 

were not only restricted to P. oleovorans but also to P. aeruginosa, P. putida, P. fluorescens, 

and P. testosterone. Later, it was found that mcl-PHAs are accumulated mainly by 

Pseudomonas belonging to rRNA-DNA homology group I and that a number of strains in this 

group were able to produce scl- and mcl-PHA copolymer (Kabilan et al., 2012). Mcl-PHAs 

and copolymers attracted a lot of attention due to their flexible and elastomeric properties for 

industrial and particularly biomedical applications, where flexible biocompatible biomaterials 

are required. Liu et al., (2011) produced Poly(3-hydroxydecanoate-co-dodecanoate), P(3HD-

co-HDD), copolymer when P. putida was grown on dodecanoic acid as a single carbon 

source. Mechanical characterization of the polymer properties showed the flexible nature of 

the material. Rai et al., (2011a) reported the production of an absolute homopolymer of 

P(3HO) when P. mendocina was grown in octanoate, in contrast to other well studied 

organisms such as P. putida, P. oleovorans, P. aeruginosa, P. resinovorans and P. stutzari, 

which accumulate copolymers. Mechanical, thermal, and chemical analysis carried out on the 

P(3HO) produced homopolymer revealed the flexible, elastomeric and semicrystalline 

structure of the material (Rai et al., 2011a).   

1.5.5.2.     Recombinant PHA producer microorganisms 

One of the most popular strategies for enhancing the type, quality or quantity of the produced 

PHAs consists in the homologous or heterologous expression of the PHA biosynthetic 

enzymes in different microorganisms including PHA or non-PHA producers. Several used 

strategies aim to reduce the cost of the polymers by developing recombinant strains able to 

utilize cheap carbon sources and free of PHA degradative pathways to accumulate high 
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amounts of PHAs. For example, Park et al., (1997) over expressed the PHA biosynthetic 

genes from a plasmid on C. necator showing increased levels of P(3HB) and reduced 

fermentation times. Povolo et al., (2010) converted C. necator, a strain unable to grow on 

lactose, into an organism capable of growing on lactose contained in waste material, by 

cloning the Escherichia coli lac genes into the PHA depolymerase gene. Higher PHA yield 

was obtained compared to the wild type strain. 

Other strategies have focused on the development of novel PHAs by introducing new PHA 

biosynthetic pathways or genes into different strains. Li et al., (2011) cloned PHA 

biosynthetic genes from Aeromonas caviae into P. putida allowing the recombinant bacteria 

to produce a scl-mcl-PHA copolymer consisting of 3HB, 3-hydroxyvalerate, 3HV, and 3-

hydroxyheptanoate, 3HHp. The resulting copolymer, P(3HB-co-HV-co-3HHP), was shown 

to have highest tensile strength and stiffness compared with other commercially available 

PHAs. Ma et al., (2009) showed that when the 3-hydroxyacyl-CoA dehydrogenase gene was 

partially or completely deleted in P. putida, the produced copolymer composed of P(3HD-co-

3HDD) showed the highest melting temperature and Young’s modulus among all the studied 

PHAs.   

Escherichia coli is one of the most widely used hosts for the production of heterologous 

PHAs as it has shown outstanding results in standard recombinant expression applications 

and a capacity for large scale production, to meet commercial demands (Sorensen et al., 

2005). Zheng et al., (2011) worked on the development of an E.coli capable of synthesising 

PHAs and succinate from a mixture of glycerol, glucose and fatty acids (by-products of the 

biodiesel production process) by overexpressing the phaC1 gene from P. aeruginosa. The 

resulting strain was able to synthesize succinate and a copolymer composed of P(3HO) and 

P(3HD). However, the presence of toxic lipopolysaccharides present in all Gram-negative 

stains, which are co-purified with PHAs, limited the use of these polymers in medical 

applications.  

Singh et al., (2009) described Bacillus subtilis as a potential host for the production of PHAs. 

Gram-positive bacteria lack LPS and hence they are preferred hosts for the production of 

PHAs for biomedical applications (Valappil et al., 2007). In particular, B. subtilis is generally 

recognized as a safe (GRAS) organism by Food and Drug administration (FDA) and is 

among the most studied and widely used microbes for large-scale production of recombinant 

proteins, amino acids and chemicals. In addition, B. subtilis subsp. subtilis was described as a 
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non-PHA producer like E.coli, and hence it can also be used for the expression and study of 

PHA biosynthetic genes (Singh et al., 2009). Wang et al., (2006) have worked on the 

expression of the phaC1 gene from Pseudomonas aeruginosa in B. subtilis DB104, in the 

presence of glucose as a carbon source. Results showed that recombinant bacteria were able 

to produce P(3HD-co-3HDD). Furthermore, the incorporation of the phaA gene, encoding the 

β-ketothiolase and the phaB gene encoding the acetoacetyl-CoA-reductase from R. eutropha 

resulted in the production of a Poly(3-hydroxybutyrate-co-3-hydroxydecanoate-co-3-

hydroxydodecanoate, P(3HB-co-3HD-co-3HDD), when malt waste was used as carbon 

source. 

1.5.6. Production of PHAs by fermentation 

PHA production in bioreactors was carried out in batch, fed-batch and continuous processes 

(Jung et al., 2001, Sun et al., 2007, Suwannasing et al., 2011). In a batch process, the 

bioreactor is supplied with fresh media and inoculum. At the end of the fermentation process, 

the content of the bioreactor is harvested and the polymer is extracted. In fed-batch processes, 

fresh nutrient is continuously supplied in the bioreactor during the fermentation process. In 

this case, cells are allowed to grow exponentially until stationary phase. At this point, specific 

substrates were added to promote the production of specific PHAs. In some cases, when cells 

grow exponentially and nutrients start to be consumed, specific carbon sources are supplied 

to allow an increment in the cell concentration, the production phase and the final product.  

Continuous processes are based on a continuous feed and withdrawal of nutrients and culture 

from the system. In this case, a high cell concentration is achieved by a continuous 

circulation of media, allowing to maintain a substrate concentration at one desirable level, 

followed by a product formation phase with nutrient depletion (Rehm et al., 2009). 

Based on the culture conditions required for PHA synthesis, bacteria can be divided into two 

major groups. One group requires an excess supply of carbon and limitation of nitrogen, 

phosphorus, oxygen or magnesium such as C. necator and P. oleovorans, while the second 

group do not require nutrient limitation for PHA accumulation such as A. latus, A. vinelandii 

and recombinant E. coli. These characteristics are important to be considered for deciding the 

fermentation strategy for PHA production. The fermentation condition should be designed to 

allow cells to grow to a high density for high productivity and then to stop growing or 

dividing and redirect their metabolism to the accumulation of PHAs (Jurasek et al., 2004). 
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Generally, when processes involve a complete depletion of a nutrient, fed-batch 

fermentations were utilized with PHA accumulation occurring during the nutrient depletion 

stage (Kim et al., 1997; Lee et al., 2000; Diniz et al., 2004). 

As different strains require different growth conditions, the fermentation strategy used for 

PHA accumulation varies with the organism used. Additionally, physiological conditions 

used have a direct effect in PHA subunit composition, cellular PHA content, specific PHA 

synthesis rate and overall volumetric productivity (Sun et al., 2007). Page et al., (1989) 

reported that when A. vinelandii was grown in batch culture, under an oxygen limiting 

condition, a reduction in the activity of the tricarboxylic acid cycle, and the redirection of 

acetyl-CoA molecules resulted in P(3HB) production. Later, Chen et al., (1997) reported 

higher yield of PHAs when A. vinelandii was growth in fed-batch cultures, with high aeration 

during the first stage and low aeration in the second stage, prompting P(3HB) formation. 

Presuting et al., (1991) studied the mcl-PHA production with P. oleovorans showing that the 

specific mcl-PHA accumulation rate is strongly dependent on the specific growth rate of the 

strain and is highest when it grows at 0.2 h-1, which is less than half of the maximum specific 

growth rate. Jung et al., (2001) worked on the production of mcl-PHAs in two-stage 

continuous cultivation with a dilution rate of 0.2 and 0.16 h-1 in the first and second stage, 

respectively. Under these conditions, P. oleovorans cells contained 63% DCW PHAs, which 

was one of the highest PHA yield obtained in P. oleovorans. Hence, as optimal conditions for 

PHA production are not the same in all the cases, it is necessary to assess the optimal 

condition for different bacteria, carbon source or media composition employed.  

One of the main limitations in the PHA production is the production cost. For example, it has 

been reported that PHA production is 10 times more expensive than polyethylene production 

(Kasemsap et al., 2007). The most important limitation factors in the production of PHAs are 

the special growth conditions required, the media utilized, the fermentation process and the 

PHA recovery. Hence, several groups have focused in developing systems that allow a high 

volumetric productivity. This parameter will define the size of a product needed to meet 

market demands. Currently, one of the main PHA produced at industrial scale, is the 

copolymer P(3HB-co-3HV) by C. necator, due to the cost effectiveness of the process 

(Verlinden, 2007).  

It is well known that trying to reproduce results obtained in shaken flask, in bioreactors is a 

difficult task and in many cases the variables involved are not very well understood. For this 
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reason, there is a need to find the optimal growth conditions when bioreactors are used (Peña 

et al., 2011). Once the optimal growth condition for a specific strain and media composition 

is achieved, PHA production can be scaled-up. Scale-up studies based on the constant power 

input or constant oxygen transfer parameters have been carried out. The constant power input 

scaling-up criteria is based on a constant amount of energy required to maintain fluid motion 

within a vessel, in a given period of time. Power input is often referred to as volumetric 

power consumption and is representative of the turbulence degree and media circulation in 

vessels, and influences heat and mass transfer, mixing and circulation times (Marques et al., 

2010). On the other hand, the constant oxygen transfer technique is based on keeping the 

same oxygen transfer rate (OTR) at different scales. The dissolved oxygen concentration in a 

suspension depends on the rate of the oxygen transfer from the gas phase to the liquid phase, 

the rate at which oxygen is transported into the cells and on the microorganism oxygen 

uptake rate. In stirred tank bioreactors, different variables affect the mass transfer, however, 

the main ones are the stirrer speed, type and number of stirrers and gas flow rate used. The 

correct measurement of the OTR is a crucial step for the prediction of the conditions for 

larger scales (Garcia-Ochoa et al., 2009).    

 

1.5.7. Applications of PHAs 

As discussed earlier, PHAs are a family of biodegradable polyesters produced by the bacterial 

fermentation of a carbon source. According to the monomer content, PHAs properties can 

range from rigid and stiff to flexible and elastomeric material. Several bacterial strains, 

carbon sources and growth conditions have been explored and more than 150 PHA monomer 

subunits have been incorporated into PHA polymers allowing the development of a range of 

PHAs (Chen 2010). As a result, tailor made materials have been developed for different 

applications ranging from packaging material to biomedical applications.  

 

1.5.7.1. Bulk applications 

PHAs have attracted a lot of attention as materials for various applications for substitution of 

oil-derived polymers, due to their capacity to be produced from a renewable source, their 

biodegradable characteristics which allow them to degrade without generation of toxic by-

products and the ample range of monomer compositions appropriate for different kinds of 

applications. Initially, PHAs were used in packaging films such as bags, containers, paper 
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coatings and disposable items including razors, utensils, diapers, feminine hygiene products 

and cosmetics. The first consumer product made from PHAs was shampoo bottles launched 

by Wella® (Germany) in 1990 (Chen 2010). However, they have not had a wide application 

mainly because of their production costs. For this reason, currently, only a few PHAs are 

available in the market. Although, at present, petrochemical plastics are a more economically 

feasible choice than biodegradable ones, future lack in oil supply will result in a drastic 

increase in the petrochemical plastic production costs. On the other hand, further research on 

microbial strains, inexpensive substrate sources, diverse fermentations strategies, polymer 

recovery and purification can substantially reduce the production cost and make PHAs 

commercially relevant.  

 

1.5.7.2. Medical applications 

PHAs are attractive materials for biomedical applications because of their natural origin, 

enhanced biocompatibility, biodegradability, and their ability to support cell growth and 

proliferation (Valappil et al., 2006). The biological response of a biomaterial in vivo is the 

main property that will determine the material use in the medical field. For example, 

Shishatskaya et al., (2002) tested the toxicity of P(3HB) and P(3HB-co-HV) threads 

implanted in Wistar rats during a period of six months. Results showed no adverse changes in 

physiological and biochemical parameters. Williams et al., (1999) reported the effect of a 

subcutaneous poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate),P(3HO-co-HHx), implant 

for 40 days in mice with no infiltration of macrophages and a minimal reaction to the 

implants, which were encapsulated, with a thin layer of fibroblasts during the 40 days 

experiment. From all the produced PHAs, only some of them are currently in sufficient 

quantities to be evaluated as potential material for different applications, including P(3HB), 

P(3HB-co-3HV), poly-4-hydroxybutyrate, P(4HB), poly(3-hydroxybutyrate-co-3-

hydroxyhexanoate), P(3HB)-co-HHx, and P(3HO) (Byrom, 1992, Chen et al., 2001, Hrabak, 

1992). These PHAs have been utilized to develop devices for different biomedical 

applications such as wound dressing, orthopaedic pins, slings, adhesion barriers, stents, 

articular cartilage, bone marrow scaffolds, nerve guides, tendon repair devices and 

cardiovascular patches (Chen et al., 2005). In addition to this, the potential use of PHAs in 

drug delivery has been evaluated in a number of studies as subcutaneous implants, 
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compressed tablets for oral administrations and microparticulate carriers for intravenous use 

(Williams et al., 1996). 

 

1.5.7.2.1. Cardiovascular applications 

As many synthetic materials were unable to repair and regenerate cardiac tissue and some of 

them show high risks of immune responses, several groups have been focused on finding 

alternative materials for cardiac tissue engineering applications (Smaill et al., 2000).  Malm 

et al., (1992) studied the effect of P(3HB) as a pericardial patch after the pericardium was 

excised and replaced with the polymer in 18 sheep. Patches were removed between 2 and 30 

months after operation and examined for adhesions, infection and inflammatory responses. 

No adhesion was observed between the heart and the sternum in 14 of the treated animals. 

After 24 months post-operation, polymer remnants were still present on the animals. 

Although some macrophages were still found at 30 months, no platelet aggregates were 

detected. Duvernoy et al., (2007) evaluated the effect of P(3HB) patches in 50 human 

patients admitted for bypass surgery or valvular replacement. Results showed a low incidence 

of postoperative adhesions between the patch and the cardiac surface in patients treated with 

the patches. Malm et al., (1994) worked on the implantation of P(3HB) transannular patches 

into the right ventricular outflow tract and pulmonary artery of 13 sheep. Dacron patches 

were implanted in the control groups. Implanted patches were analyzed 3 to 24 months later 

showing no aneurysm formation. Comparable amounts of native arterial tissue of neointima 

and neomedia were obtained with the test group but not with the control group. Dacron 

implants presented a collagen layer and dense lymphocytes infiltration due to the 

inflammatory reaction of the material. In contrast, P(3HB) patches were phagocytated by 

macrophages and no platelet aggregates were observed. Furthermore, the P(3HB) regenerated 

vessel showed structural and biochemical qualities in common with the native pulmonary 

artery. Shum-Tim et al., (1999) evaluated the elastomeric polymer P(3HO-co-3HHx) as a 

copolymer with PGA for the production of tissue engineered vascular grafts seeded with 

autologous cells. Resulting constructs were placed in lambs aortic segments. Results showed 

no aneurysms formation and an insignificant inflammatory response, with increased cell 

density, collagen formation and mechanical properties that resemble those of the native aorta. 

Stock et al., (2000) showed good vascular cell growth, no thrombus formation and good 

mechanical properties when P(3HO-co-3HHx) films were blended with PGA and used to 
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replace pulmonary valve leaflet in lambs, in contrast to results obtained with PGA-PLA 

blends implants which show high stiffness and rigidity. 
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AIMS AND OBJECTIVES 

The aim of this project was to synthesise P(3HO), a unique mcl-PHA homopolymer and its 

use in the production of cardiac patches.       

The specific objectives to be met in order to fulfil the above overall aim include: 

 

1- An attempt towards the development of a Gram-positive recombinant strain for the 

production of LPS-free P(3HO). At present, Gram-negative bacteria are the only industrial 

source of mcl-PHAs. However, the membrane of Gram-negative bacteria species contain 

lipopolysaccharides (LPS), which are co-purified with PHAs and cause immunogenic 

reactions. Consequently, part of this study was aimed to express the Pseudomonas mendocina 

PHA synthase gene (phaC1) in the LPS-free Gram-positive microorganism Bacillus subtilis. 

The produced polymer was characterized in terms of mechanical, thermal, wettability and 

surface topography properties. 

2- Production and characterization of P(3HO) using Pseudomonas mendocina. P(3HO) 

homopolymer was produced from P. mendocina in 2 L bioreactors. The obtained polymer 

was fully characterized in terms of mechanical, thermal, wettability and surface topography 

properties. Its effect on contraction and viability of fresh rat isolated cardiomyocytes was 

assessed.  

3- Large scale production of P(3HO). Optimization of P(3HO) production was carried out in 

2 L bioreactors. Optimized conditions were scaled-up for the production of P(3HO) in the   

20 L bioreactor and the 72 L pilot plant bioreactor.   

4- Construction of P(3HO) cardiac patches. P(3HO) cardiac patches were designed using the 

solvent casting, particle leaching technique and electrospinning. Resulting constructs were 

characterized in terms of mechanical, thermal, wettability and surface topography properties. 

Biocompatibility of the P(3HO) cardiac patches was assessed using C2C12 myoblast cell 

line.  

5- Functionalisation of the cardiac patches. The arginine-glycine-aspartic acid (RGD) 

tripeptide sequence was immobilized on the surface of the P(3HO) films to allow efficient 

host cell recruitment and adhesion. Vascular endothelial growth factor (VEGF) was 

incorporated in the films to assist cellular proliferation, differentiation, migration and 

vascularisation. Additionally, VEGF was incorporated in P(3HB) microspheres produced 
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using the recombinant B. subtilis created in the first part of the project. The VEGF release 

profile was assessed. In vitro cell culture work was carried out with C2C12 myoblast cell line 

to assess the biocompatibility of the final functionalised cardiac patches. 
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Materials and Methods 
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2.1. MATERIALS 

2.1.1. Bacterial strains 

Pseudomonas mendocina was obtained from the National Collection of Industrial and Marine 

Bacteria (NCIMB) and the Bacillus subtilis 1604 was bought from Bacillus Genetic Stock 

Centre (BGSC). All the Escherichia coli strains were obtained from the culture collection of 

University of Westminster, London, UK.  

 

2.1.2. Cell line and cell culture materials 

C2C12 myoblast cell line was purchased from Sigma-Aldrich, Dorset UK. 

 

2.1.3. Plasmid vector used for cloning and expression 

The pHCMC04 vector, extracted from Escherichia coli ECE 189, is 8089 base pairs in size.  

It is a B. subtilis-E. coli shuttle vector that replicates as theta circles and it contains a PxylA 

promoter, which is functional in the presence of xylose in the media (Nguyen et al., 2005). 

The genes that compose the pHCMC04 are described in Table 2.1. 

 

 

Figure 2.1. Genetic and restriction map of the pHCMC04 expression vector (taken from 

Bacillus Genetic Stock Centre manual). 
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Table 2.1. pHCMC04 genetic map description 

GENE FUNCTION 

Rep replication initiation protein from theta replication plasmid pBS72. 

Cat encodes chloramphenicol acetyl transferase; selectable in either E. coli or  

B. subtilis (chloramphenicol 5 µg/ml) 

Bla encodes β-lactamase; selectable in E. coli only (ampicillin 100 µg/ml) 

ORF unknown function 

xylR represses transcription from the PxylA promoter; xylose relieves repression 

 

2.1.4. Chemicals proteins and kits 

The chemicals used in this study were purchased from Sigma-Aldrich (Dorset, England) and 

VWR (Poole, UK). The Wizard Genomic DNA Purification Kit, the 1-Kb step ladder, the Pfu 

DNA polymerase master mix and all the primers were purchased from Promega 

(Southampton, UK). The gel extraction and miniprep kits were obtained from QIAGEN 

(Sussex, UK). The restriction enzymes were acquired from New England Biolabs 

(Hertfordshire, UK). The VEGF ELISA kit was purchased from Invitrogen (Paisley, UK). 

 

2.1.5. Reagents 

2.1.5.1. Agarose gel 

• Tris-borate-EDTA buffer (g/L) (5X): 54 g of Tris-Base, 27.5 g of Boric acid and 20 ml of 

0.5 M EDTA (pH=8). 

• Loading dye (6X): 30 % Glycerol, 0.25 % Bromophenol blue and 0.25 % Xylene Cyanol 

FF. 

 

2.1.5.2. Miniprep plasmid extraction 

• Solution I: 50 mM Glucose, 25 mMTris-HCl pH 8 and 100 mM EDTA 

• Solution II: 0.2 N NaOH and 1% SDS 
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• Solution III: 60 % of 5 M Potassium acetate and 11.5 % Acetic acid glacial. 

 

2.1.5.3. SDS-PAGE 

• Resolving gel (12%): 4.9 ml of 1.5 M Trizma base pH 8.8, 100 µl 10 % SDS, 3 ml of     

40 % Acrylamide, 100 µl of 10 % Ammonium persulfate, 20 µl of TEMED and 4.9 ml 

water.  

• Stacking gel (4%): 625 µl of 0.5 M Trizma base pH 6.8, 50 µl 10 % SDS, 500 µl of 40 % 

Acrylamide, 50 µl of 10 % Ammonium persulfate, 10 µl of TEMED and 3.6 ml water. 

• Sample buffer (4x): 6 ml of Trizma base 0.5 M pH 6.8, 9.6 ml of 10 % SDS, 2.4 ml of β-

mercaptoethanol, 2.4 ml of 10 % Bromophenol blue, 4.8 ml of Glycerol and 4.8 ml of 

water. 

• Running buffer (10x): 25 mM of Trizma base, 192 mM of Glycine and 0.1 % of SDS. 

• Staining solution: 0.25 g/L of Brilliant Blue R and 10 % of Acetic acid glacial. 

• Destaining solution: 10 % Acetic acid. 

 

2.1.5.4. Krebs-Henseleit solution (mmol/L): NaCl 119, KCl 4.7, MgSO4 0.94, KH2PO4 1.2, 

NaHCO3 25 and glucose 11.5. 

 

2.1.6. Bacterial growth media composition 

2.1.6.1. Pseudomonas mendocina growth media 

• Mineral salt medium production media (MSMPM) (g/L): (NH4)2SO4 0.50, MgSO4 0.40, 

Na2HPO4 3.80, KH2PO4 2.65 and trace elements (PM) solution 1 mL/L. 

• Mineral salt medium production media (MSM2nd seed) (g/L): (NH4)2SO4 0.50, MgSO4 

0.40, Na2HPO4 3.80, KH2PO4 2.65 and trace elements (PM) solution 1 mL/L. 

• Trace elements (PM) (g/L): CoCl2 0.22, FeCl3 9.70, CaCl2 7.80, NiCl3 0.12, CrCl6.H2O 

0.11, CuSO4.5H2O 0.16. 

 

2.1.6.2. Bacillus subtilis growth media 

• Ramsay media (g/L): Na2HPO4.7H203.7, KH2PO40.83, (NH4)2SO4 2.0, MgSO4.7H2O 0.2, 

ferrous ammonium citrate 60, CaCl2 .2H2O 10 and trace elements (BS) solution 1 mL/L. 

• Trace elements (BS) (g/L): 0.3 g/L H3BO3, 0.2 g/L CoCl2.6H2O, 0.1 g/l ZnSO4.7H2O,  
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• 30 mg/L MnCl2.4H20, 30 mg/L NaMoO4.2H2O, 20 mg/L NiCl2.6H20, and 10 mg/L 

CuSO4.5H20). 

• Kannan and Rehacek media (g/L): Yeast extract 2.5, Potassium chloride 3, Ammonium 

sulphate 5 and Soybean dialysate 100 mL/L 

• Soybean dialysate: Dialysis of 10 g of defatted soybean flour in 1L of distilled water for 

24 hr at 4oC. 

 

2.1.7. Bioreactors 

2.1.7.1. 2 L Bioreactor 

The 2 L bioreactor used in this study was a stirred tank with 2 Rushton turbine impellers and 

buffers. The vessel was a 200 series Fer mac® (Electrolab) and total volume was 2 L. The 

ratio of impeller to vessel was 2. The vessel temperature was controlled with a wrap-around 

heating belt and the pH and dissolved oxygen tension (DOT) were controlled with Bradley 

James® electrodes. The bioreactor sterilization was carried out in an autoclave at 132 ºC for 

30 minutes. 

 
 

Figure 2.2. The 2 L stirred tank bioreactor used in this study 

 

2.1.7.2. 20 L Bioreactor 

The 20 L bioreactor was a stirred tank with 2 Rushton turbine impellers and buffers. The 

vessel was a 2000 series LH® and total volume was 20 L. The ratio of impeller to vessel was 

3.28. The vessel temperature was controlled with a heat exchanger and the pH and dissolved 

oxygen tension (DOT) were controlled with Mettler Toledo® electrodes. The bioreactor 

sterilization was carried out in place with live steam at 132 ºC for 30 minutes.  
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Figure 2.3. 20 L stirred tank bioreactor used in this study 

 

2.1.7.3. 72 L Bioreactor 

The 72 L bioreactor was a stirred tank with 2 Rushton turbine impellers and buffers. The 

vessel was a 1075 series LH® and total volume was 72 L. The ratio of impeller to vessel was 

3.09. The vessel temperature was controlled with a heating jacket and the pH and dissolved 

oxygen tension (DOT) were controlled with Mettler Toledo® electrodes. The bioreactor 

sterilization was carried out in place with live steam at 132 ºC for 30 minutes.  

	  

	  

	  

	  

	  

	  

	  

 

 

 

Figure 2.4. 72 L stirred tank bioreactor used in this study 
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2.2. EXPERIMENTAL METHODS 

2.2.1. Construction of recombinant Bacillus subtilis strain 

For the construction of the recombinant Bacillus subtilis strain containing the phaC1 gene,   

P. medocina genomic DNA was extracted and the phaC1 gene was amplified by PCR. The 

phaC1 gene was ligated to the pHCMC04 B. subtilis-E. coli shuttle vector and E. coli XL1 

blue competent cells were transformed with ligation products for plasmid amplification. The 

phaC1-pHCMC04 plasmid was isolated and the phaC1 sequence integrity was confirmed by 

sequencing. B. subtilis 1604 was transformed with the phaC1-pHCMC04 plasmid. Figure 2.5 

shows a schematic representation of the steps followed for the cloning of the phaC1 gene into  

B. subtilis 1604. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Schematic representation of the strategy used for the cloning of phaC1 into        

B. subtilis 1604. 
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2.2.1.1. P. mendocina phaC1 amplification 

A Pseudomonas mendocina single colony was used to inoculate 10ml of nutrient broth and 

the culture was grown at 30 ºC and 200 rpm overnight. After the centrifugation at 2500 g for 

10 minutes, the bacterial genomic DNA was extracted from the pellet using the Wizard 

Genomic DNA Purification Kit. The phaC1 gene from P. mendocina was amplified in an 

Eppendorf® Mastercycler PCR using the P. mendocina genomic DNA as template and 04F 

and 04R primers (Table 2.2). The product size was 1.68 Kbp.  

 

Table 2.2. Primers designed for the cloning of phaC1 into pHCMC04 vector 

Addition 5’ Forward primer sequence Addition 3’ Reverse primer sequence 

EcoRV 
GATATC 	  

O4F: 

5’ATGAGTGACAAGAATAACG
AAGACC3’	  

BamH1 
GGATCC 	  

O4R:  

5’TCAGCGTTCGTGTAC
ATAGG3’	  

 

The primers were designed using the known sequence of P. mendocina to include EcoRV and 

BamHI restriction sites and to facilitate the cloning of the PCR product. PCR was carried out 

with the Phusion Flash high-Fidelity PCR master mix and the mix consisting of primers, 

template and master mix was made up to 100µl with MiliQ water. The PCR program used is 

shown in Table 2.3.  

Table 2.3. PCR program used for the amplification of the phaC1 gene 

 Temperature (ºC) Time (min) 

Initial denaturation 95ºC 2 

Denaturation 95ºC 1 

Annealing 60ºC 1.4 

Extension 72ºC 1 

Final extension 72ºC 1 

 

 

30 cycles 
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2.2.1.2. phaC1 purification  

The phaC1 gene was isolated by electrophoresis and purified from the agarose gel. For 

electrophoresis, the phaC1 PCR product was loaded onto a 0.8 % agarose gel and run in Tris-

borate-EDTA buffer (2.1.5.1.) at 100V for 1 hour. The resulting band was excised from the 

gel and purified using a QIAGEN gel extraction kit. 

 

2.2.1.3. pHCMC04 purification  

An E. coli ECE 189 single colony was used to inoculate 10 ml of Luria Broth (LB) media and 

the culture was grown at 37 ºC and 200 rpm, overnight. The resulting culture was centrifuged 

at 2500 g for 10 minutes and the plasmid DNA was extracted from the pellet by the miniprep 

plasmid extraction protocol. For this, the cells were lysed with 350 µl of Solution I (2.1.5.2), 

following by the addition of 5 µl of RNase and 300 µl of Solution II (2.1.5.2). After 

incubating the sample on ice for 5 minutes, 300 µl of Solution III (2.1.5.2) were added and 

the sample was centrifuged for 5 min at 7000 g. The supernatant was isolated and the same 

amount of Phenol-Chloroform was added. After vortexing, the sample was centrifuged at 

7000 g for 12 min and the upper phase was kept. For the DNA precipitation, 600 µl of 

isopropanol was added followed by centrifugation at 7000 g for 20 minutes at 4 ºC. The 

resulting pellet was washed twice with 500 µl 70 % ethanol and dissolved in 30 µl of MiliQ 

water.  

 

2.2.1.4. phaC1 and pHCMC04 restriction enzyme treatment 

Restriction enzyme digests were carried out to prepare the purified vector pHCMC04 and 

PCR amplified phaC1 insert for the ligation. For this, 25 µl of each product were double 

digested with BamH1 and EcoRV enzymes in NEB restriction buffer 3, containing BSA, for 

2.5 hours at 37 ºC. The final volume of the reaction was 70 µl. In order to avoid self-ligation 

the vector was treated with 0.5 µl of Calf intestine phosphatase (CIP), 20 minutes prior to the 

end of the reaction. 
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2.2.1.5. phaC1 and pHCMC04 ligation 

For the phaC1 and pHCMC04 ligation reaction, one part of restricted phaC1 product and 

seven parts of the restricted pHCMC04 vector were ligated together using T4 DNA ligase in 

ligase buffer for 4 hours at room temperature. 

 

2.2.1.6. Transformation of the Escherichia coli XL1 blue competent cells 

The phaC1-pHCMC04 construct was used for E.coli XL1 blue heat shock transformation. 

Competent Escherichia coli XL1 blue cells were designed for high efficiency transformation. 

For this, E. coli XL1 blue was grown at 37 ºC and when the OD600 reached 0.3-0.4, 10 ml of 

the culture were centrifuged at 2500 g for 10 minutes. The resulting cell pellet was 

resuspended in 0.1 M ice-cold MgCl2 solution and centrifuged at 2500 g for 10 min at 4 ºC. 

Then, the obtained pellet was resuspended in 0.1 M ice-cold CaCl2 solution and again 

centrifuged at 2500 g for 10 min at 4ºC. The cell pellet was dissolved in 6 ml of a 50 % 

glycerol solution in 0.1 M CaCl2 and stored at -80 ºC. 

The E.coli XL1 blue heat shock transformation was carried out by mixing 7 µl of the phaC1-

pHCMC04 ligation product with 50 µl of competent Escherichia coli XL1 blue cells. After 

the reaction was incubated on ice for 5 minutes, 750 µl of LB broth were added. The cells in 

LB broth were incubated at 37 ºC for 1 hour with shaking and the transformed colonies were 

selected in LB agar containing 100 µg/ml of ampicillin. 

 

2.2.1.7. phaC1-pHCMC04 plasmid purification and sequencing 

Ampicillin resistant colonies were grown in LB broth containing 100 µg/ml of ampicillin at 

37 ºC and 200 rpm. The overnight culture was centrifuged and plasmid DNA was extracted 

using the QIAGEN miniprep kit. Digests were carried out using EcoRV and BamHI enzymes 

and phaC1 gene presence was confirmed by running the resulting product in a 0.8 % agarose 

gel. In order to confirm the lack of sequence changes in the phaC1 insert due to PCR, the 

pHCMC04-phaC1 product was sequenced using the automated DNA sequencer at the 

Wolfson Institute, University College London, UK. 

 

 



 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  MATERIALS	  AND	  METHODS	  
	  

 
	  

48	  

2.2.1.8. Transformation of Bacillus subtilis 1604 

Bacillus subtilis 1604 was transformed with pHCMC04-phaC1 plasmid by electroporation.  

B. subtilis 1604 was grown in 10 ml of LB broth at 30 ºC and when the OD600 reached 0.8, 

the culture was incubated on ice for 20 minutes and centrifuged at 2500 g for 15 minutes. 

Following centrifugation, the cell pellet was resuspended in 10 ml of chilled water and 

centrifuged for 5 minutes at 2500 g at 4ºC. Then, the cell pellet was resuspended in 10 ml of 

10% glycerol and again centrifuged for 5 minutes at 2500 g at 4 ºC. This procedure was 

repeated thrice. The cell pellet was incubated on ice for 15 minutes and 200 µl were 

transferred into a cold eppendorf. After the addition of 1 µl of the phaC1-pHCMC04 plasmid, 

the reaction was transferred into a cold 2 mm Bio-rad® Gene-pulser cuvette and the cells 

were transformed in a Bio-rad® Micro Pulser electroporator with a pulse of 2.5 KV. 

Following the transformation, 500 µl of LB broth were added and the cells were incubated at 

37 ºC for 1 hour. Transformed colonies were selected in LB agar containing 5µg/ml of 

chloroamphenicol. The plasmid was extracted and the presence of the phaC1 insert was 

confirmed by PCR with primers flanking the phaC1 sequence.  

 

2.2.2. Expression of phaC1 in B. subtilis phaC1-pHCMC04 

2.2.2.1. Determination of early mid-log phase, mid-log phase and late mid-log phase for 

xylose induction in LB broth media 

Transformed Bacillus strains were grown in LB media containing 5 µg/mL of 

chloramphenicol at 30 °C and 200 rpm and the early mid-log phase, mid-log phase and late 

mid-log phase were determined by measuring the absorbance at 600 nm in a standard 

Novaspec II® visible spectrophotometer at different time points. At these time points, cultures 

were induced with different xylose solutions, i.e. 0.2%, 0.5%, 0.8% and 1.1%. Samples were 

taken at 15, 30, 60, 120 and 180 minutes after induction and centrifuged at 2500 g for 15 min. 

The obtained pellets were prepared for SDS-PAGE. 

 

2.2.2.2. SDS-PAGE 

The phaC1 protein expression profile was analysed using SDS-PAGE. The cell pellet was 

disrupted in 4x Sample buffer (2.1.5.3.), boiled for 10 minutes and allowed to cool down. 

Samples were loaded on a 12%/4 % resolving/stacking acrylamide gel (2.1.5.3.) and 
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electrophoresis was carried out at a constant voltage of 200 V in Running buffer (2.1.5.3.) 

using a Bio-Rad®Mini-Protean II electrophoresis system. For protein size estimation, a Bio-

Rad® reference protein ladder was used. In order to add a reference band closer to the sample 

size, to facilitate the size estimation, Bovine serum albumin (BSA) was added to the marker. 

The gels were stained with Staining solution (2.1.5.3) to fix and stain proteins, destained and 

stored in destaining solution (2.1.5.3). 

 

2.2.3. PHA production from B. subtilis phaC1-pHCMC04  

The PHAs production in recombinant B. subtilis was carried out using a two stage seed 

culture preparation. Briefly, the first culture was inoculated with a single colony of the 

recombinat strain. The culture in mid-log phase was then used for inoculating the PHAs 

production media. PHAs production was induced with a xylose solution when the culture in 

PHAs production media reached mid-log phase. After 30 hr cells were harvested and cells 

pellet was dried by freeze-drying. PHAs were extracted from lyophilised cells. Figure 2.6 

shows a schematic representation of the steps followed for PHAs production in recombinant 

B. subtilis strain. 

 

Figure 2.6. Schematic representation for the PHA production in B. subtilis phaC1-

pHCMC04. 

 

2.2.3.1. Production of PHAs in B. subtilis 1604 phaC1-pHCMC04 from carbohydrates 

The PHA polymer production was carried out in Ramsay media (2.1.6.2.) in two stages using 

sucrose as a sole carbon source. To this end, a B. subtilis 1604 phaC1-pHCMC04 single 

colony was used to inoculate LB broth and the culture was grown at 30 ºC and 200 rpm until 

mid-log phase was reached. This culture was then used to inoculate the PHA production 

media with 20 g/l of sucrose. The growth of the organism was monitored by measuring the 

OD at 600 nm and a solution of 0.5 % xylose was used to induce the culture when mid-log 

phase was reached. The culture was grown for 30 hr at 30 ºC and 200 rpm.  
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2.2.3.2. Production of PHAs in B. subtilis 1604 phaC1-pHCMC04 from fatty acids 

The PHA production was also carried out with a range of oils (groundnut oil, corn oil and 

coconut oil) and fatty acids (from 3 to 12 carbons) in Ramsay media and Kannan and 

Rehacek media (2.1.6.2.). The fatty acid concentration used in this study was always 20 mM. 

The procedure used was the same as described in section 2.2.3.1. 

 

2.2.3.3. Extraction of PHAs in B. subtilis 1604 phaC1-pHCMC04 

The PHA extraction was carried out using the dispersion of chloroform and sodium 

hypoclorite method (Rai et al., 2011). For this, the cells were harvested and the cell pellet 

lyophylised. Dried cell were incubated at 30 ºC and 150 rpm with a solution of 80 % sodium 

hypochlorite and chloroform (1:4).  After 2 hours of incubation, the solution was centrifuged 

for 18 min at 3680 g and the lower layer containing the polymer and chloroform was 

concentrated in a Bűchi®rota vapour (R-114) and precipitated in cold methanol.  

 

2.2.4. Structural characterization of PHAs from B. subtilis 1604 phaC1-pHCMC04 

The structural characterization of the polymer obtained from B. subtilis phaC1-pHCMC04 

was carried out by FTIR, GC-MS and NMR. 

 

2.2.4.1. Fourier transform infrared spectroscopy (FTIR) 

FTIR analysis was carried out to determine the presence of the PHA functional groups in the 

sample. A Perkin Elmer series 2000 FTIR spectrometer with a spectral range 4000 to         

400 cm-1 was used at the Department of Biomaterials and Tissue engineering, Eastman 

Dental Institute, University College London, UK. For both, the whole cell analysis and 

extracted PHA polymer, 2 mg of lyophilised cells or polymer were used. 

 

2.2.4.2. Gas Chromatography-Mass spectroscopy (GC-MS) 

The monomer content of the extracted PHA was identified by GC-MS. Before the analysis, 

the polymer was methanolysed as described by Wang et al., (2006). For this, 15 mg of 

polymer were added to 1 ml of the esterification solution containing 3 ml of 95–98% H2SO4, 

0.29 g of benzoate, and 97 ml of methanol. Then, 1 ml of chloroform was added and the 
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mixture was heated at 100 °C for 4 hr. After the 4 hours, the mixture was cooled and 1 ml of 

MiliQ water was added and vortexed for phase separation. The lower phase was extracted, 

dried over anhydrous Na2SO4, neutralized by Na2CO3, filtered and sent to the School of 

Chemistry, University of Southampton, UK, for the GC-MS analysis.   

2.2.4.3. Nuclear magnetic resonance (NMR) 

The extracted PHA monomer structure was confirmed by NMR. The analysis was carried out 

on 30 mg of polymer dissolved in 1 mL of the deuterated chloroform (CDCl3). The 1H and 
13C spectra were obtained in a Bruker® AV400 (400 MHz) spectrometer at the Chemistry 

Department, University College London, UK. 

2.2.5. Sequence analysis 

Protein sequences for phaC1 from P. mendocina (phaC1P.mendocina) and 9 other Pseudomonas 

sp. were retrieved from NCBI or UniProt database.    

2.2.5.1. Sequences alignment 

Multiple sequence alignment of the protein sequences were performed using Clustal Omega 

(Goujon et al., 2010) and pair wise alignments were performed on Jalview (Waterhouse et 

al., 2009), a fast Java based multiple alignment editor and analysis tool. 

2.2.5.2. Phylogenetic analysis 

A phylogenetic tree based on the multiple sequence alignment of the 10 phaC1 amino acid 

sequences was constructed using ClustalW Phylogeny from the ClustalW2 package at the 

EBI using the neighbour joining clustering method. 

2.2.6. Production of mcl-PHAs from Pseudomonas mendocina 

2.2.6.1. Cell growth 

P. mendocina was used for the production of poly-3-hydroxyoctanoate, a mcl-PHA. The 

polymer production was carried out in three steps according to Rai et al., 2011. For the seed 

culture production, a P. mendocina single colony was grown in nutrient broth at 30 ºC at 
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200 rpm for 24 hr. The second seed was produced by inoculating the Mineral salt medium 

production media (MSM2nd seed) (2.1.6.1) containing 20 mM of sodium octanoate as a carbon 

source with the seed culture and grown at 30 ºC at 200 rpm until the OD450 was 1.6. The 

resulting culture was used to inoculate the PHA Mineral salt medium production media 

(MSMPM) (2.1.6.1) containing 20mM of sodium octanoate. The volume of the inoculums 

used in all the cases was 10 % of the final production media working volume.  

 

2.2.6.2. P(3HO) extraction  

The P(3HO) polymer extraction was carried out as described in section 2.2.3.3. 
 

 

2.2.6.3. P(3HO) purification 

The P(3HO) polymer purification was carried out by dissolving and precipitating the polymer 

in a series of solvents (Rai et al., 2011). In the first step, the polymer was dissolved in 

chloroform and precipitated in an ice-cold methanol: ethanol solution (50:50). In the second 

step the polymer was dissolved in acetone and precipitated in ice-cold methanol. For the last 

step, the polymer was again dissolved in chloroform and precipitated in ice-cold methanol. 

 

2.2.7. Production of mcl-PHAs in Bioreactors 

The P(3HO) production was optimized in 2 L bioreactors and scaled-up to 20 L and 72 L. In 

all cases the MSMPM (without magnesium) was sterilized with the bioreactors and the 

sterilized magnesium, trace elements and sodium octanoate solution were added to the 

bioreactor before the inoculation. The bioreactor was inoculated with 10 % of second seed 

inoculum. 

 

2.2.7.1. Optimisation in a 2 L Bioreactor 

The P(3HO) polymer production was optimised by varying the carbon:nitrogen ratio and pH 

in the production media. The working volume in the 2 L bioreactor was 1.4 L. The pH of the 

medium was maintained using 2 M NaOH and 2 M H2SO4. Table 2.5. shows the four 

conditions tested in this study.  
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Table 2.5. Fermentation conditions tested for the optimisation studies 

2.2.7.2. Scaling-up 

The P(3HO) production was scaled-up from the 2 L to the 20 L and 72 L bioreactors. The 

scaling up was based on a constant oxygen transfer coefficient, kLa. By employing the 

gassing out method, the kLa values were calculated at different sets of impeller speeds and 

airflow rates. Briefly, the bioreactor was filled with distilled water and the concentration of 

O2 in the water was lowered by gassing the liquid out with nitrogen gas. Aeration was then 

initiated at a constant airflow rate and the increase in dissolved oxygen tension (DOT) was 

recorded at different time points.  The rate of oxygen transfer from the air bubble to the liquid 

phase can be described by the equation 2.1: 

dC/dt = kLa (C*-C) (2.1) 

where C* is the saturated dissolved oxygen concentration, C is the recorded concentration of 

dissolved oxygen in the bioreactor and dC/dt is the change of the oxygen concentration over a 

period of time. The kLa of each bioreactor at each stirrer speed and airflow rate was 

determined from the slot of the plot of ln (C*-C) vs. time. 

In a stirrer tank reactor, the efficiency of oxygen absorption in a liquid is expressed in terms 

of kLa and it is a measure of the aeration capacity of a reactor. In this case, the kLa is 

dependent on the airflow rate and stirrer speed, and the relation is described by the equation 

2.2: 

kLa = FxNy (2.2) 

Where F is the airflow rate, N is the stirrer speed and x and y are constants. 

C:N pH Stirrer speed (rpm) 

Condition 1 20:1 7.15 200 

Condition 2 15:1 7.5 200 

Condition 3 15:1 6.8 200 

Condition 4 10:1 7.15 200 
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The kLa of the 2 L bioreactor at the optimized C:N condition, pH and stirrer speed was 

determined. As it was not possible to keep the pH constant in both 20 L and 72 L bioreactors, 

the optimised pH was used to initiate the fermentations in the scaling-up study. To determine 

the kLa, the 2 L bioreactor was filled with 1.4 L of distilled water and the oxygen was 

lowered with nitrogen supply. When the DOT reached 10, the air supply was switched on and 

the DOT was recorded every 30 seconds until 90 seconds. The obtained kLa was the chosen 

parameter to be kept constant as the scale increases. The kLa of the 20 L and 72 L bioreactor 

was determined in a similar way at a range of stirrer speeds and airflow rates. The total 

volume vs. working volume ratio used in the 2 L bioreactor was kept constant in the 20 L and 

72 L bioreactors (for the 20 L and 72 L bioreactor the working volume used was 14 L and 50. 

4 L, respectively). Due to the fact that the stirrer speed can be regulated with more precision, 

the aeration rate was kept constant and the estimation of the stirrer speed for a constant 

oxygen transfer in the 20 L and 72 L bioreactors was obtained from the extrapolation of the 

Log kLa vs. Log rpm. 

	  

2.2.8. P(3HO) characterization 

2.2.8.1. Fourier transform infrared spectroscopy (FTIR) 

The sample preparation and analysis was carried out as described in section 2.2.4.1. 

 

2.2.8.2. Gas Chromatography-Mass spectroscopy (GC-MS) 

The sample preparation and analysis was carried out as described in section 2.2.4.2. 

 

2.2.8.3. Nuclear magnetic resonance (NMR) 

The sample preparation and analysis was carried out as described in section 2.2.4.3. 

 

2.2.9. P(3HO) cardiac patches 

2.2.9.1. Plain and porous film fabrication 

The plain and porous films fabrication was carried out by dissolving 0.5 g of P(3HO) in 10 

ml of chloroform and casting the solution on 60 mm diameter glass petridishes. For the 
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porous film, 50 mg of sucrose particles between 250 and 300 µm of size were added to the 

dissolved polymer. The polymer was dried at room temperature for 7 days and then freeze 

dried for 10 days.  

 

2.2.9.1.1. Porosity measurements 

The porosity of the films was determined using equation 2.3.      

Porosity (%) =    Vm-Vp  x 100 = Vm-(Wρ/ρ) x 100                                                          (2.3) 

                               Vm                        Vm 

where Vm is the volume of the plain films (cm3), Vρ is the volume of the porous film (cm3), 

and Wρ and ρ is the mass and density of the porous film, respectively. Porosity 

measurements were taken in quadruplicates. 

 

2.2.9.2. Electrospinning 

The electrospinning technique was used for the fabrication of P(3HO) microfibres. For this, 

the following P(3HO) solutions were produced in acetone: 0.2 wt%, 0.5 wt%, 0.6 wt%, 0.7 

wt%, 1 wt% and 1.2 wt%. A syringe was loaded with the polymer solution and pumped by a 

Harvard® syringe pump through silicone tubing connected to a 330 µm inner diameter nozzle. 

The conductive steel nozzle was connected to a positive terminal of a Glassman Europe® high 

voltage supply source. The electric potential and the pump speed were adjusted for each 

concentration until a stable cone-jet was obtained. A distance of 15 cm between the needle 

and collector was used in all the conditions tested. A range of collection times were assessed 

in each condition (from 1 second to 10 minutes) and one collection time was selected in each 

case. The fibre collection was carried out on plain and porous P(3HO) films and glass slides.  

 

2.2.9.2.1. Fibre measurements 

The size and shape of the fibres obtained by electrospinning was assessed by optical 

microscopy. Image tool® software was used to measure the size of the fibres. An average of 

the fibres size was calculated in each condition from the measurement of 30 fibres. 
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2.2.9.3. Human vascular endothelial growth factor (VEGF) incorporation within the 

P(3HO) film 

The VEGF film fabrication was carried out by dissolving 0.5 g of the P(3HO) polymer in 10 

ml of chloroform. Then, 2 µl of a 1 µg/µl human VEGF solution in MiliQ water were added 

into the polymer solution. The resulting solution was vortexed for 5 minutes and cast in 60 

mm petridishes. Films were dried at 4 ºC for 21 days. 

 

2.2.9.4. Arg-Gly-Asp (RGD) peptide film immobilization 

The RGD peptide immobilization protocol used in this project was adapted from Yoon et al., 

(2003). The immobilization was carried out in two stages. First, the P(3HO) material was 

aminated and films were cast. Then, the surface immobilization of the RGD peptide was 

carried out on one side of the aminated solvent cast films. Figure 2.7 shows the synthetic 

scheme for the RGD peptide immobilization in PHAs. 

 

Figure 2.7. Synthetic scheme of the RGD peptide immobilization. 
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2.2.9.4.1. Preparation of aminated P(3HO) 

In order to attach a terminal amine group to the P(3HO), the carboxylic acid terminal group 

was activated and reacted with hexaethyleneglycol-diamine. For this, 1 g of P(3HO) was 

dissolved in 10 ml of methylene chloride. 0.22 mmol of dicyclohexylcarbodiimide (DCC) 

and 0.22 mmol of N-hydroxysuccinimide was added into the polymer solution with stirring. 

The reaction was stirred for 12 hr at room temperature. Insoluble dicyclohexylurea was 

removed by filtration, and the carboxylic group activated polymer was isolated by 

precipitation in DMSO and dried for two days at room temperature. The activated P(3HO) 

was reacted with an excess of  hexaethyleneglycol-diamine (75 mg) in 10 ml of methylene 

chloride for 12 hr at room temperature with stirring. The aminated P(3HO) was precipitated 

into cold ethanol. 

 

2.2.9.4.2. Surface immobilization of RGD peptide on aminated P(3HO) films 

The film casting was carried out by dissolving 0.25 g of aminated P(3HO) with 0.25 g of 

non-aminated P(3HO) (50:50) in 10 ml of methylene chloride. After 5 minutes of vortexing, 

the solution was cast in a glass petridish and dried for 4 days at room temperature. Dried 

films were pre-wetted in 70 % ethanol and washed in distilled water. Resulting films were 

hydrated in PBS for 4 hr. In order to introduce amine reactive groups onto the film surface, 

films were soaked in 20 ml of PBS containing 100 nM ethyleneglycol-bis-

succinimidylsuccinate (EGS) and agitated for 4 hr at room temperature. Films were washed 

with PBS three times and soaked into 20 ml of PBS containing 30 nmoles of the RGD 

peptide. The solution was stirred for 12 hr at 4 ºC. The peptide immobilized films were 

washed with PBS and distilled water and then freeze-dried.   

 

2.2.9.4.3. Confirmation of the RGD peptide immobilization on P(3HO) films 

The presence of the RGD peptide on the constructs surface was confirmed by FTIR (2.2.4.1.), 

and contact angle analysis (2.2.5.4.). 
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2.2.10. P(3HO) films characterization 

2.2.10.1. Dynamic mechanical analysis (DMA) 

The mechanical properties of the polymer were analysed using a Perkin–Elmer®dynamic 

mechanical analyser at the Department of Biomaterials and Tissue engineering, Eastman 

Dental Institute, University College London, UK. The analysis was carried out under static 

conditions on polymer strips of 10 mm length and 4 mm width. The initial load was set to 1 

mN and then increased to 6000 mN at the rate of 200 mN min-1 and the stress and strain were 

measured. The Young’s modulus, tensile strength and elongation at break were calculated 

from the stress vs. strain plot. 

 

2.2.10.2. Differential scanning calorimetry (DSC) 

The thermal properties of the polymer were determined using a Perkin Elmer®Pyris Diamond 

DSC at the Department of Biomaterials and Tissue Engineering, Eastman Dental Institute, 

University College London, UK. For the analysis, approximately 8 mg of sample were placed 

in aluminium pans and the samples were cooled down to -57 ºC. Then, samples were heated, 

cooled and heated again at a heating rate of 20 ºC min-1 from -57 ºC to 175 ºC, and the glass 

transition temperature (Tg), melting temperature (Tm) and crystallization temperature (Tc) 

were determined.     

 

2.2.10.3. Contact angle analysis  

The water contact angle of the fabricated films was analysed on a KSV Cam 200® optical 

contact angle meter at the Department of Biomaterials and Tissue Engineering, Eastman 

Dental Institute, University College London, UK. For this, a Hamilton® syringe was loaded 

with MiliQ water and a drop of water was dispensed on the film. A series of photos were 

taken every second to record the shape of the drop over 20 seconds. The water contact angle 

was measured using a KSVCam® software. 

 

2.2.10.4. Scanning electron microscopy (SEM) 

The surface of the films was examined under a JEOL 5410LV Scanning electron microscope 

(Hertfordshire, UK) at the Department of Biomaterials and Tissue Engineering, Eastman 
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Dental Institute, University College London, UK. The samples were placed on Agar 

Scientific® Carbon conducting tabs and then coated with gold-palladium using a Quorum 

Technologies® Polaron E5000 Sputter Coater (East Sussex, UK) for 2 minutes. The SEM 

images were taken with an acceleration voltage of 10 kV at 15 cm working distance. 

 

2.2.10.5. Surface roughness analysis 

Surface roughness studies were carried out on a UBM laser scanning profilometer at the 

Department of Material Science and Engineering, University of Erlangen-Nuremberg.  An 

area of 2 mm x 2 mm (± 500 µm) was scanned by the machine in two directions. Graphic 

representation of the scans and average roughness values were recorded.  

 

2.2.10.6. Protein adsorption study 

The protein adsorption study was carried out by measuring the protein concentration after 

soaking the P(3HO) films in Foetal Bovine Serum (FBS). To this end, 1 cm2 films were 

incubated with 400 µl of FBS at 37 ºC for 24 hr. For a negative control, films were incubated 

only in PBS. For the collection of the adsorbed proteins, films were washed three times with 

PBS and incubated in 1 ml of 2 % SDS in PBS for 24 hr, at room temperature, with shaking. 

The amount of protein in the solution were quantified using a ThermoScientific® 

bicinchoninic acid (BCA) reagent kit. The experiment was carried out in triplicates of each 

sample. 

 

2.2.11. In vitro cell culture studies 

2.2.11.1. Cardiomyocytes viability 

In vitro biocompatibility studies were performed using adult fresh rat isolated cardiomyocyte 

cells. The cell viability on the P(3HO) UV sterilized films were studied over a period of 0, 1, 

2, 3, 24, 25 and 26 hours. The number of live vs. dead cells was determined by counting the 

cells with rod shape (live cells) vs. cells with round shape (dead cells) under the optical 

microscope. The viability studies were also carried out on standard tissue culture plastic as a 

control. The study was carried out in triplicates for each sample. 
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2.2.11.2. Cardiomyocyte contraction experiments 

Fresh adult rat beating cardiomyocytes were seeded on a P(3HO) coated cover slip. The 

cardiomyocytes were superfused at 37 ◦C in a Krebs-Henseleit solution (2.1.5.4) containing 

1 mM CaCl2 and bubbled with a mixture of 95 % O2 5 % CO2. For the study, rod shaped 

cardiomyocytes with regular and no spontaneous contraction without stimulation were 

selected. Cells were stimulated with pulses of 50 V for 2 ms with 2 second intervals. 

Contraction amplitude (% shortening), ‘time to peak 90 %’ and ‘time to relaxation 50 %’ 

were recorded with a IonOptix® video based system. Figure 2.8. shows an illustration of the 

time to peak and time to relaxation parameters analysed for each peak during the 

cardiomyocyte contraction. 

Figure 2.8. An illustration of the time to peak and time to relaxation of a cardiomyocyte. 

Arrows in red show the time to peak 90% and time to relaxation 50% assessed during the 

contraction measurements.   

The myocyte contraction was studied at a range of frequencies of electrical pulses of 50 V for 

a period of 2 ms. Starting from 2 second interval pulses, the intervals were increased to 5 

seconds, and then decreased to 2 seconds, 1 second and 0.5 seconds. Following this, the 

effect of the calcium increment was studied. With a 2 second interval pulse of 2 ms at 50 V, 

the CaCl2 concentration of the solution was increased from 1 mM to 2 mM, and then 3 mM 

and 4 mM. A stabilization period was allowed in each condition. The contraction studies 

Time to peak 
Time to relaxation 

Time to peak 90% Time to relaxation 50% 
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were also carried out on uncoated cover slips as controls. The contraction experiments were 

carried out in quadruplicates. 

 

2.2.11.3. C2C12 myoblast proliferation 

The C2C12 myoblast cell line was used to assess cell proliferation in the P(3HO) constructs 

by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric 

assay and SEM.  

 

2.2.11.3.1. C2C12 cell growth 

C2C12 myoblast cells were grown in DMEM supplemented with 10 % of foetal calf serum, 

1% w/v penicillin and 1 % w/v streptomycin solution and grown at 37 ºC with 5 % of CO2. 

Media was pre-warmed at 37 ºC and filter sterilized prior to use. Cell passages were carried 

out before confluence, every one or two days. For the passages, cells were detached from the 

flask using a 5 % trypsin at 37 ºC for 2.5 minutes and the reaction was stopped by adding 

equal volume of supplemented DMEM. Samples were centrifuged at 400 g for 10 min and 

the resulting pellet was dissolved in freshly supplemented DMEM. Cells were seeded in 

sterile 75 cm2 tissue culture flasks.  

 

2.2.11.3.2. Sample preparation 

P(3HO) film constructs were cut in to 1 cm2 squares and sterilized under the UV light for 30 

minutes each side. P(3HO) films were soaked in supplemented DMEM for 12 hr prior to cell 

seeding. Cell culture studies were performed in triplicates. 

 

 

 

 

 



 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  MATERIALS	  AND	  METHODS	  
	  

 
	  

62	  

2.2.11.3.3. C2C12 cell seeding 

C2C12 myoblast cells in 70 % confluence were used for the cell seeding. Scaffdex® cell 

crowns were used to hold the cells on the well’s surface. Around 20,000 cells were seeded on 

the pre-wetted constructs in a 24 well plate. As a positive control, cells were seeded in the 

wells without films. For the negative control, films were incubated in supplemented DMEM 

without cells. Plates were incubated at 37 ºC with 5 % of CO2 and media was changed every   

2 days. Cell proliferation was assessed at 24 hr.  

 

2.2.11.3.4. C2C12 MTT assay 

The MTT assay was performed on the constructs containing the cells at 24 hr. For this,      

100 µl of a 5 mg/ml MTT solution in distilled water were added to each well at 24 hr and the 

plates were incubated for two hours at 37 ºC with 5 % of CO2. After this, films were 

transferred to new 24 well tissue culture plates and 500 µl of DMSO were added. After a 5 

minute incubation, 100 µl of the resulting solution were transferred to 96 well plates and the 

absorbance at 540 nm was measured on a Thermomax®microtitre plate reader. The 

absorbance of the samples were normalised with respect to the positive control. The 

difference in the surface areas of the tissue culture plate wells and the films were considered 

for the calculation of the % cell viability on the films. 

 

2.2.11.4. C2C12 myoblast SEM 

At 24 hr constructs containing the cells were visualized using SEM. To this end, cells were 

fixed in 0.1 M cacodylate buffer containing 3 % glutaraldehyde for 12 hr at 4 ºC and 

dehydrated in a series of ethanol solutions (50 %, 70 %, 90 % and 100 %) for four times, 

incubating 10 minutes in each solution. Samples were air dried, coated and examined under 

the SEM, as described in section 2.2.5.5. 
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2.2.12. P(3HB) microspheres 

2.2.12.1. P(3HB) microsphere production 

The microspheres were produced using the P(3HB) polymer obtained from B. subtilis phaC1-

pHCMC04 as described by Francis et al., 2011. Briefly, 1 g of polymer was dissolved in 8 ml 

of chloroform. The polymer solution was slowly added in the form of drops into 40 ml of 1 % 

polyvinylalcohol (PVA) water solution, stirred at 1000 rpm for 3 minutes. The solution was 

then poured into a second 0.5 % PVA solution stirred at 800 rpm for 4 hours. The resulting 

microspheres were isolated by centrifugation at 3680 g for 5 minutes, washed with distilled 

water three times and air dried.   

 

2.2.12.2. Microspheres porosity 

The porosity of the microspheres was measured using the liquid displacement method (Chen 

et al., 2005). For this, 5ml of ethanol were weighed in a measuring cylinder. Then, the 

microspheres were immersed in the ethanol and sonicated to ensure the ethanol penetration 

through the pores. The sample porosity was calculated according to equation (2.4). 

Porosity =    Vf__   =   W2 –W3-Ws_x 100                                                                       (2.4) 

                     Vs+Vf            (W1-W3) 

Vf =          W2 –W3-Ws_  

                        ρe 

Vs =         W1 –W2+Ws_  

                        ρe 

where W1 is the weight of the cylinder + ethanol, W2 is the weight of the 

cylinder+ethanol+sample after removing the excess of ethanol above 5 ml, W3 is the weight 

of ethanol+ cylinder after removing the microspheres sample saturated with ethanol and Ws is 

the weight of the microsphere sample used in the experiment. 

 

 

2.2.12.3. Encapsulation of VEGF in P(3HB) microspheres 

VEGF was encapsulated within P(3HB) microspheres. For this, 5 µl of a 1 µg/µl VEGF 

solution in water were added to 1 g of polymer dissolved in 8 ml of chloroform. The solution 
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was vortexed for 5 minutes and the microsphere production was carried out as described in 

section 2.2.13.1. 

 

2.2.12.3.1. Determination of VEGF encapsulation efficiency 

The encapsulation efficiency (EE%) of the protein encapsulation was determined using 

equation (2.5). 

EE%=          actual amount of VEGF                 x 100                                                         (2.5) 

          experimental amount of VEGF loaded 

 

The actual amount of VEGF loaded into the microspheres was determined by dissolving 5 mg 

of VEGF loaded microspheres in 1 ml of chloroform and 5 ml of water and the water phase 

was then analysed for the VEGF content by the the invitrogen®VEGF human ELISA kit 

(R&D Systems, Minneapolis, USA). 

 

2.2.12.4. P(3HB) microsphere characterization 

Microspheres were characterized by FTIR (described in section 2.2.4.1.), DSC (described in 

section 2.2.5.3.) and SEM (described in section 2.2.5.5.). 

 

2.2.12.5. VEGF release kinetics from P(3HB) microspheres and P(3HO) films  

The in vitro VEGF release from the microspheres and films was studied for 30 days 

(Sipahigil et al., 2012). In this experiment, 10 mg of microspheres or 10 mg of films were 

incubated in Eppendorf tubes containing 1 ml of PBS at 37 ºC with constant agitation at 100 

rpm. 500 µl of PBS were periodically withdrawn from the tubes and replaced with fresh PBS 

at the following time points (days): 1, 3, 5, 7, 10, 13, 17, 21, 25 and 30. The amount of VEGF 

released in the medium was measured using the Invitrogen®VEGF human ELISA kit (R&D 

Systems, Minneapolis, USA). 
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2.3. DATA ANALYSIS 

Data are reported as mean ± STDEV. Statistical significance was assessed using ANOVA 

with the Newman-Keuls' test. Differences were considered statistically significant when 

*p<0.05, very significant **p<0.01 and highly significant when ***p<0.001. 
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3.1. INTRODUCTION 

Polyhydroxyalkanoates (PHAs) are an alternative source of polymers produced by bacterial 

fermentation of sugar or lipids. Due to their outstanding properties, including 

biocompatibility, biodegradability, and their adjustable mechanical properties, PHAs are 

gaining importance as potential candidates for medical applications. In particular, medium 

chain length-PHAs (mcl-PHAs) have flexible and elastomeric properties that make the 

material unique for soft tissue engineering applications (Rai et al., 2011a).  

Mcl PHAs are commonly produced by Pseudomonas belonging to rRNA homology group I 

(Lageveen et al., 1988). The Pseudomonas sp. PHA synthesis gene cluster consists of two 

different phaC genes encoding class II PHA synthases separated by another gene, phaZ, that 

encodes an intracellular PHA depolymerase. Downstream of the second phaC gene are the 

phaD, phaI and phaF genes, which encode structural and regulatory proteins (Figure 3.1). 

Knock-out mutants in Pseudomonas mendocina studied previously provided evidence that 

phaC1 is the major enzyme for PHA synthesis (Hein et al., 2002).  

 

 

Figure 3.1. The PHA-related gene cluster of Pseudomonas sp., which encodes the proteins 

involved in PHA metabolism. 

 

The Pseudomonas sp. has been widely studied due their capacity to grow on different carbon 

sources, and their ability to produce mcl-PHAs using a related or an unrelated carbon source. 

P. mendocina has been recently found to be a source of the homopolymer P(3HO), an 

unusual observation (Rai et al., 2011a). The P(3HO) homopolymer is flexible and 

elastomeric in nature. In addition, it has the capacity to support cell attachment, 

differentiation, and maturation, making the material a promising candidate for soft tissue 

engineering (Rai et al., 2011b). However, Gram-negative bacteria have LPS, which are co-

purified with the PHAs. The presence of this endotoxin is responsible not only for the 

pyrogenicity, but also for complement activation, which stimulates an undesirable immune 

response. This limits the biomedical applications of the PHAs in several cases. 

Gram positive bacteria, which lack LPS, are the focus for polymer production for medical 

and pharmaceutical applications (Valappil et al., 2007). Among Gram-positive bacteria, 
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Bacillus subtilis is one of the most well studied organisms for heterologous expression due to 

its versatility in the acceptance of varied growth conditions, capacity of growth at a very high 

cell density and their non-pathogenic nature, essential for medical applications (Zweers et al., 

2008). Thus, B. subtilis is an ideal microorganism for the expression of heterologous genes 

(Singh et al., 2009). In this work, the P. mendocina PHA synthase gene (phaC1) was 

expressed in the LPS free Gram-positive microorganism, B. subtilis, so as to produce LPS-

free mcl-PHAs. B. subtilis is a GRAS organism widely used in industry that has not yet been 

explored as a PHA producer at a commercial scale. To this end, P. mendocina phaC1 gene 

was amplified and cloned in B. subtilis 1604 through the pHCMC04 expression vector. 

Sequence analysis of the cloned phaC1 gene was carried out to confirm the integrity of the 

gene. The phaC1 expression was induced and analysed with SDS-PAGE. B. subtilis was 

grown in PHA production media with sucrose as the sole carbon source and the produced 

polymer was quantified and analysed by FTIR, GC-MS and NMR.  

PHA biosynthesis can be divided in to two main steps. The first step involves the synthesis of 

hydroxyacyl-CoA, the PHA monomer units. The second step involves a reaction catalysed by 

the PHA synthase which use the hydroxyacyl-CoA units as substrates and catalyses their 

polymerization into PHAs with the concomitant release of CoA (Rehm et al., 2002). The 

synthesis of the 3-hydroxacyl-CoA units can occur mainly by three different pathways and 

the particular pathway used for PHA production depends on the specific metabolic pathways 

operating in a particular microorganism and the carbon source provided (Steinbüchel et al., 

1991; Doi et al., 1990, Poirier et al., 1995). In the first pathway, P(3HB) or P(3HB-co-3HV) 

are produced from carbohydrates through a precursor from the tricarboxylic acid cycle. The 

second pathway involves the production of mcl-PHAs via the fatty acid oxidation pathway 

from fatty acids related to the final polymer structure. The third pathway involves mcl-PHA 

production via the fatty acid de novo biosynthesis using carbohydrates structurally unrelated 

to the final polymer structure. To assess the capacity of the recombinant B. subtilis to produce 

mcl-PHAs through the fatty acid biosynthesis and degradation pathways, production of PHAs 

was carried out in a range of carbohydrates, fatty acids and oils.   
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3.2. RESULTS 

3.2.1. Construction of recombinant Bacillus subtilis 

P. mendocina was grown in nutrient agar and a single colony was used to inoculate nutrient 

broth. The P. mendocina genomic DNA was isolated from an overnight bacterial culture by 

using the Wizard Genomic DNA Purification Kit. The integrity of the isolated DNA was 

confirmed by electrophoresis (Figure 3.2). 
                                                                                         

 

 

 

 

 

 

Figure 3.2. P. mendocina genomic DNA. Lane MK represents the 1Kb ladder. The arrow in 

the figure shows the integrity of P. mendocina genomic DNA obtained in Lane 1. 

 

The PHA synthase gene (phaC1) was amplified by PCR as described in section 2.2.1.1 using 

specific primers flanking the complete phaC1 sequence and including BamH1 and EcoRV 

restriction enzyme sites present in the plasmids, to be used later for cloning. The resulting 

product was run using a 0.8% agarose gel after gel purification (Figure 3.3). 

  

 

Figure 3.3. The P. mendocina synthase gene phaC1 containing the BamH1 and EcoRV sites 

(1692bp). Lane MK represents the 1Kb ladder and lanes 1-4 correspond to elutions 1-4 

obtained from the column used to purify the product from the gel. The arrow in the figure 

indicates the phaC1 amplified sequence.  

Escherichia coli ECE 189 was grown overnight and pHCMC04 plasmid (a Bacillus-E. coli 

shuttle vector, described in section 2.1.3) was isolated by miniprep as described in section 

MK     1     2      3     4 

MK     1      
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2.2.1.3. Digests were carried out to prepare the vector and inserts for ligation (section 

2.2.1.4). The pHCMC04 plasmid and PCR insert were digested using EcoRV and BamHI 

enzymes. Figure 3 shows a 0.8% agarose gel with both digested insert and vector (Figure 

3.4). 

 

                                                                

Figure 3.4. Digested insert and pHCMC04 vector with BamH1 and EcoRV enzymes. MK 

represents the 1Kb ladder. Lane 1: digested pHCMC04 (8089bp); Lane 2: The digested 

phaC1 PCR product (1692bp). The arrows in the figure indicate the digested insert and 

vector. 

The pHCMC04 vector was ligated with the phaC1 fragment and transformed into 

Escherichia coli XL1 blue cells using heat shock (section 2.2.1.6). The transformed cells were 

grown and selected in 100 µg/mL ampicillin LB agar plates. Restriction digestion of 

plasmids, isolated from randomly chosen ampicillin-resistant colonies was carried out (Figure 

3.5). Note that both plasmids contained an upper band representing the vector, pHCMC04 

and a lower band representing the insert, which confirmed the successful cloning of the 

phaC1 insert into pHCMC04. This plasmid was named pHCMC04-phaC1. 

 

 

 

Figure 3.5. Restriction Digestion of the pHCMC04-phaC1 clones. MK represents the 1Kb 

ladder. Lane 1 and Lane 2: Double digestion of pHCMC04-phaC1 plasmid obtained from 

ampicillin resistant colony 1 and 2, respectively, using BamH1 and EcoRV. The arrows in the 

MK     1      2       

MK      1       2       
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figure show the upper bands corresponding to the vector pHCMC04 (8089bp kb) and the 

smaller bands corresponding to the phaC1 insert (1692bp kb).  

E.coli XL1 blue containing pHCMC04-phaC1 plasmid was grown overnight and the plasmids 

were extracted using the Qiagen Kit (Sussex, UK). The resulting constructs were sequenced 

to confirm that no undesirable mutations were introduced by the PCR reaction (section 

2.2.1.7). The sequence obtained is shown in Figure 3.6. The sequence of phaC1 cloned into 

pHCMC04 vector shows only one mistake at the highlighted position, which results in a 

thymine instead of a cytosine.  

 

            atgagtgacaagaataacgaagacctgaaacgccaggcctcggaaaacacgctgggcctc 

M  S  D  K  N  N  E  D  L  K  R  Q  A  S  E  N  T  L  G  L 

aacccggtgattggcatccgcggcaaggatcttttgacctctgcccgcatggtgctcgcc 

N  P  V  I  G  I  R  G  K  D  L  L  T  S  A  R  M  V  L  A 

caggcactcaaacaatccttccacagcgccaagcatgtcgcccatttcggcctcgaactg 

Q  A  L  K  Q  S  F  H  S  A  K  H  V  A  H  F  G  L  E  L 

aagaacgtcatgctcggccagtccgcgctaaagcccgaagacggtgaccgccgctttgcc 

K  N  V  M  L  G  Q  S  A  L  K  P  E  D  G  D  R  R  F  A 

gatccggcctggagccagaacccgctgtaccgccgctacctgcagacttacctggcctgg 

D  P  A  W  S  Q  N  P  L  Y  R  R  Y  L  Q  T  Y  L  A  W 

cgcaaggagctgcacgactgggtcgagcacagctcgctgtccgagcaggacgccagccgc 

R  K  E  L  H  D  W  V  E  H  S  S  L  S  E  Q  D  A  S  R 

ggcaccttcgtgatcaacctgatgaccgaagacatggcaccctccaacagcatggccaac 

G  T  F  V  I  N  L  M  T  E  D  M  A  P  S  N  S  M  A  N 

ccggcagcggtcaaacgcttcttcgaaaccggcggcaagagcctgctcgacggcctgtcg 

P  A  A  V  K  R  F  F  E  T  G  G  K  S  L  L  D  G  L  S 

cacctggccaaggacatggtgcacaacggcggcatgccgagtcaggtgaatatggaggcc 

H  L  A  K  D  M  V  H  N  G  G  M  P  S  Q  V  N  M  E  A 

ttcgaggtcggcaagaacctggccaccaccgacggcgccgtggtgtttcgcaacgatgtg 

F  E  V  G  K  N  L  A  T  T  D  G  A  V  V  F  R  N  D  V 

ctggagctgatccagtacaagccgatcaccgagagcgtgcatgagcgcccgttgctagtg 

L  E  L  I  Q  Y  K  P  I  T  E  S  V  H  E  R  P  L  L  V 

gtgccgccgcagatcaacaagttctatgtcttcgacctgtcgccggacaagagcctggcg 

V  P  P  Q  I  N  K  F  Y  V  F  D  L  S  P  D  K  S  L  A 

cgcttcctcctgcgcagccaggtgcagaccttcgtggtcagctggcgcaacccgaccaag 

R  F  L  L  R  S  Q  V  Q  T  F  V  V  S  W  R  N  P  T  K 

gcgcagcgcgagtggggcctgtccacctacatcgaggcgctcaaggaagccatcgacgtc 

A  Q  R  E  W  G  L  S  T  Y  I  E  A  L  K  E  A  I  D  V 

atctgcgccatcaccggcagcaaagacgtgaacatgctcggcgcctgctccggtggcctg 

I  C  A  I  T  G  S  K  D  V  N  M  L  G  A  C  S  G  G  L 

accactgcttcgctgctcggccactacgccgcgctcggccaacctaaagtcaatgccctg 

T  T  A  S  L  L  G  H  Y  A  A  L  G  Q  P  K  V  N  A  L 

Continues on the following page 
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accttgctggtcagcgtgctcgacacccagctcgacacccaggtagcgctgttcgccgac 

T  L  L  V  S  V  L  D  T  Q  L  D  T  Q  V  A  L  F  A  D 

gagaagaccctggaacgcggccaacgccgctcctaccaggccggagtgctggaaggcagc 

E  K  T  L  E  R  G  Q  R  R  S  Y  Q  A  G  V  L  E  G  S 

gacatggccaaggttttcgcctggatgcgccccaacgacctgatctggaactactgggtc 

D  M  A  K  V  F  A  W  M  R  P  N  D  L  I  W  N  Y  W  V 

aacaactacctgctcggcaacgagccgccggtgttcgacattctctactggaacaacgac 

N  N  Y  L  L  G  N  E  P  P  V  F  D  I  L  Y  W  N  N  D 

accacacgcctgccggctgcgctgcacggcgagttcatcgaaatgttccagaccaacccg 

T  T  R  L  P  A  A  L  H  G  E  F  I  E  M  F  Q  T  N  P 

ttgacccgtcccggcgcgctggaagtgtgcggtacgccgatcgacctcaaacaggtcacc 

L  T  R  P  G  A  L  E  V  C  G  T  P  I  D  L  K  Q  V  T 

tgcgacttcttcgtcgtcgccggcaccaccgaccacatcacgccatgggattcctgctac 

C  D  F  F  V  V  A  G  T  T  D  H  I  T  P  W  D  S  C  Y 

aaatcggctcatctgttcggcggcaaatgcgagttcgtgctctccaacagcggccatatc 

K  S  A  H  L  F  G  G  K  C  E  F  V  L  S  N  S  G  H  I 

cagagcattctcaacccgccgggcaaccccaaggcgcgctacatgaccaatagcgagatg 

Q  S  I  L  N  P  P  G  N  P  K  A  R  Y  M  T  N  S  E  M 

ccgctggacccgaaagcctggcaggaaagctcgaccaagcatgccgactcctggtggctg 

P  L  D  P  K  A  W  Q  E  S  S  T  K  H  A  D  S  W  W  L 

cattggcaaagctggctggccgagcgctcgggcgaaaccaagaatgctccacgggcgctg 

H  W  Q  S  W  L  A  E  R  S  G  E  T  K  N  A  P  R  A  L 

ggcaacaagaaattcccggccggcgaagccgcaccgggcacctatgtacacgaacgctga 

G  N  K  K  F  P  A  G  E  A  A  P  G  T  Y  V  H  E  R  - 

Figure 3.6. Sequencing results obtained from phaC1 gene cloned into pHCMC04 shuttle 

vector. The highlighted position shows the mutation observed.  

 

Further, B. subtilis 1604 was transformed with the pHCMC04-phaC1 construct by 

electroporation as described in section 2.2.1.8. Transformed colonies were selected in 5 

µg/mL chloroamphenicol. In addition, B.subtilis1604 strain was transformed with pHCMC04 

without insert, to be used as control in further experiments. B. subtilis containing the 

pHCMC04-phaC1 construct and B. subtilis containing the vector without insert were named 

B. subtilis-phaC1 and B.subtilis-vector, respectively. In order to confirm the presence of 

phaC1 in the chloroamphenicol-resistant B. subtilis-phaC1, the isolated plasmid was 

amplified by PCR using specific primers flanking the last 301 bp of the phaC1 gene. Figure 

3.7 shows the results obtained. The first and the last lanes show the PCR product of negative 

controls where no template or the plasmid extracted from B.subtilis-vector, respectively, were 

used. The second lane shows the PCR product obtained when the plasmid extracted from 

B.subtilis-phaC1 was used as template.   
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Figure 3.7. Confirmation of transformation of B. subtilis 1604 with pHCMC04-phaC1. MK 

represents the 1Kb ladder. The picture shows results from PCR reactions using primers 

flanking the last 301 bp of phaC1 sequence. Lane 1: PCR without template; Lane 2: PCR 

with B.subtilis-phaC1 extracted plasmid as template; Lane 3: PCR with B.subtilis-vector 

extracted plasmid as template. The arrow in the figure indicates the PCR amplification 

product obtained. 

 

3.2.2. Expression of the phaC1 gene in the recombinant Bacillus subtilis 1604 

Recombinant B. subtilis was tested for phaC1 gene expression (section 2.2.2). The plasmid 

construct contained the xylA constitutive promoter, inducible by xylose. It was important to 

identify the various growth phases during xylose induction for the recombinant B. subtilis 

1604 in order to determine the correct induction time using xylose. Hence, the recombinant 

strain was grown in LB broth at 30 °C in the presence of chloramphenicol. The OD600nm was 

measured every 30 minutes. Figure 3.8 shows the resulting growth profile and the chosen 

OD600nm values for the xylose induction. 

 

MK     1     2     3       
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Figure 3.8. B. subtilis recombinant growth curve. LogOD600nm of 1.5 (mid-log phase) was 

chosen for induction using xylose. 

 

B. subtilis 1604 recombinant bacteria were grown in duplicate in LB media at 30 °C and one 

of the duplicates was induced with a solution of 0.5 % xylose as described in literature at Log 

OD600nm 1.5 (Nguyen et al., 2005). Aliquots of the growth cultures were taken at different 

time points after induction (min.): 0, 15, 30, 60, 90 and 120. The same procedure was carried 

out for B. subtilis wild type. Whole cell extracts were prepared for SDS-PAGE and run in 

12% SDS-PAGE gel at 140 V. Figure 3.9 shows the resulting gels. The phaC1 protein is  

62.4 KDa in size. Results show that no distinct band of this size was found in either the 

induced or uninduced samples. However, there was appearance of a band at around 66 KDa 

when compared with the wild type bacteria at the different time points, which might indicate 

phaC1 expression. In this case, the fact that the bands appear in both induced and uninduced 

conditions, may indicate the “leaky” characteristics of the plasmids. In order to enhance the 

levels of protein expression, this protocol was repeated using xylose solutions of various 

concentrations (0.2%, 0.8% and 1,1%) at mid-log phase (Log OD600nm 1.5), early-log phase 

(Log OD600nm 1.1) and late-log phase (Log OD600nm 2.2), but no differences were observed 

compared with the 0.5% xylose induction (results not shown). A Western blot could have 

been carried out to determine the presence of phaC1, however, due to the lack of availability 

of a suitable antibody against phaC1, this was not possible. 

 

 

mid-log phase 

early-log phase 

late-log phase 
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       t=120                      t=90                     t=60              t=30                       t=15                     t=0 

    I      UI     WT       I      UI     WT      I      UI      WT   MK     I       UI    WT      I       UI    WT      I       UI     WT  MK 

Figure 3.9. SDS-PAGE of B.subtilis 1604 recombinant and wild type at different time points 

after induction with xylose 0.5%.WT: wild type B.subtilis 1604, UI: uninduced recombinant 

B.subtilis, I: xylose induced recombinant B.subtilis. 

Hence, for the purpose of confirming that the recombinant B. subtilis expresses the phaC1 

gene, both B. subtilis-phaC1 and B. subtilis-vector were grown in PHA production media. A 

single colony was grown in nutrient broth until mid-log phase and used as inoculum for the 

PHA production media. Figure 3.10 shows the growth curve for the recombinant B. subtilis-

phaC1 strain at 30 °C, in PHA production media indicating the mid-log phase for the xylose 

induction.  

Figure 3.10. Growth curve for B. subtilis recombinant strain harbouring pHCMC04-phaC1 in 

PHAs production media. Note that the mid-log phase for B. subtilis 1604 is at LogOD600 1.5. 

mid-log phase 

66KDa 

50KDa 
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position for 
PhaC1 
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 ---66  

 ---50  

 ---37  

 ---25  

 ---20  

 ---15  



                                                                                                                                                                                   CHAPTER 3 

 76 

3.2.3. Production of PHAs from recombinant B. subtilis from carbohydrates 

The recombinant B. subtilis harbouring pHCMC04-phaC1 was grown in LB broth and the 

resulting culture in mid-log phase was used as a 10% inoculum for PHA production using the 

PHA production media described by Ramsay et al., (1990) with sucrose as a carbon source. 

The culture was grown at 30 °C in the PHA production media and induced with a 0.5 % 

xylose solution at an OD600nm of 0.385. After 30-hours of growth in the PHA production 

media, the cells were harvested and dried in a freeze-dryer for two days. As controls this 

protocol was repeated with B. subtilis wild type and B. subtilis-vector.  

Figure 3.11 shows a Gram-staining of the recombinant B. subtilis grown in LB broth after 

induction. The recombinant bacteria were seen to consistently form aggregates in contrast to 

the B. subtilis wild type. Such aggregates were previously observed by Babic et al., (2011) 

who showed that recombinant B. subtilis grow in chains in order to accelerate the spread of 

DNA within microbial communities and that DNA transference appeared to occur at a cell 

pole or along the lateral cell surface by conjugation (Figure 3.8).  

 

 

Figure 3.11. Gram-staining of recombinant B. subtilis grown in LB broth showing the 

aggregates formed.  

The cells obtained from these cultures were freeze dried and analysed by Fourier Transform 

Infrared Spectroscopy (FTIR) as described in section 2.2.4.1. Figure 3.12 shows the FTIR 

spectral analysis confirming the presence of a strong, distinct ester carbonyl band at         
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1733 cm-1 in the case of the recombinant B.subtilis-phaC1 strain which was absent in B. 

subtilis-vector and B. subtilis wild type. These results indicated the successful production of 

PHAs by the recombinant B. subtilis harbouring pHCMC04-phaC1.   

Figure 3.12. FTIR spectra for B. subtilis wild type (—) B. subtilis-phaC1 (—) and B. 

subtilis-vector (—). The arrow in the figure indicates the presence of a distinct ester carbonyl 

band at 1733 cm-1 for B.subtilis-phaC1. 

In order to analyse the polymer produced by the recombinant B. subtilis-phaC1, the growth 

and induction conditions were repeated in large scale. The cells were harvested immediately, 

dried in a freeze-dryer for two days and the polymer was extracted and analysed by FTIR and 

GC. The resulting polymer is shown in Figure 3.13. 
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Figure 3.13. Polymer produced by recombinant B. subtilis-phaC1. 

In order to determine the nature and amount of polymer, B. subtilis wild type, B. subtilis-

phaC1 and B. subtilis-vector were subjected to fermentation in 2 L PHA production media in 

quadruplicates. Polymer was extracted from the resulting cells, quantified and characterized 

by GC-MS (described in section 2.2.4.2) and NMR (described in section 2.2.4.3). Figure 

3.14(A) and 3.14(B) shows the GC-MS and NMR results, respectively, of the obtained 

polymer. These results showed the presence of the P(3HB) homopolymer. 

3.14 (A) 

(3HB) 

Continues on the following page 
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(B) 

 

Figure 3.14. (A) GC-MS spectra of the extracted polymer produced from B. subtilis-phaC1. 

Note the presence of a peak at RT: 6.67 and the corresponding mass spectra for P(3HB) (the 

peak obtained at RT: 9.56 corresponded to methyl benzoate used as the internal control) and 

(B) 1H NMR on the left, 13C NMR on the right. This spectrum is characteristic of the P(3HB) 

homopolymer.  

 

Figure 3.15 shows the dry cells weight (A), PHA content (B) and amount of polymer 

normalized per gram of dry cells (C) of B. subtilis wild type (wt), B. subtilis wild type, B. 

subtilis-vector and B. subtilis-phaC1 after fermentation. According to these results B. subtilis-

phaC1 shows a significant higher dry cell weight, PHA production and polymer content 

compared to B. subtilis-vector and B. subtilis wild type. 
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3.15 (A) 

(B) 

(C) 

Figure 3.15. PHA production by B. subtilis wild type (wt), B. subtilis-vector and B. subtilis-

phaC1. (A) Dry cell weight (B) Total PHA content and (C) PHA yield in % dry cell weight.  



  CHAPTER 3 

81 

3.2.4. Production of PHAs from the recombinant B. subtilis in fatty acids 

In order to test the capability of the recombinant B. subtilis-phaC1 to produce mcl-PHAs via 

the fatty acid degradation pathway, a range of carbon sources including oils (groundnut oil, 

corn oil and coconut oil) and a series of alkanoic acids (monomer length from five to twelve 

carbons) were used. Presence of PHAs was detected only when pentanoic, hexanoic and 

heptanoic acids were used. The produced polymers were characterized by GC-MS and results 

show the production of Poly(3-hydroxyvaleric acid), P(3HV), with small amounts of P(3HB) 

in all the three cases (Figure 3.16).  

Figure 3.16. GC-MS spectra of the extracted polymer produced from B. subtilis-phaC1 when 

heptanoic acid was used as a sole carbon source. Note the presence of a peak at RT: 5.68 and 

(3HB) 

(3HV) 
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6.31 and the corresponding mass spectra for (3HB) and (3HV), respectively (the peak 

obtained at RT: 7.15 correspond to methyl benzoate used as the internal control). 

 

3.2.5. Sequence analysis 

Results obtained in section 2.4 indicate that the phaC1 enzyme from P. mendocina has the 

capacity to catalyse the production of both scl-PHAs and mcl-PHAs. In order to understand 

the broad substrate specificity sequence comparison was carried out with phaC1 protein 

sequences from other Pseudomonas sp. including known mcl-PHA producers such as 

Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas oleovorans. From the 

multiple sequence alignment (Figure 8), the residues in the catalytic triad (Cys296, Asp451, 

His479) and residue Ser297, which plays an important role in the formation of an oxyanion 

hole during catalysis (indicated by a red asterisk, Wahab et al., 2006), were found to be 

conserved in phaC1P.mendocina and also in all other sequences, suggesting that they share a 

similar catalytic mechanism. Another conserved feature, the lipase-box like consensus motif 

(GACSG,) located at residues 294 – 298, was found in all the sequences used in this study 

(underlined in red, Figure 3.17).  

A closer look at the stretch of residues from position 267 to position 484 revealed some 

interesting differences in the protein sequence of phaC1P.mendocina which could potentially 

explain its broad substrate specificity. This region contained the conserved catalytic residues 

is referred to as the core region by Wahab et al., (2006) in their threaded 3D model of 

phaC1Pseudomonas sp. USM4-55..   

It is interesting to note that all phaC1 homologues used in this study have a conserved Ala-

Ala-Lys motif at positions 346-348 except in phaC1P.mendocina where it is substituted with Arg-

Gly-Gln. Similarly Gln314, a neutral amino acid residue, conserved in phaC1P.mendocina, 

phaC1Pseudomonas sp. USM4-55 and phaC1P.nitroreducens was substituted with a negatively charged 

Glu314 in all other sequences. Another charge alteration was observed at Gln417, a neutral 

amino acid residue, conserved in phaC1P.mendocina, phaC1Pseudomonas sp. USM4-55, 

phaC1P.nitroreducens, phaC1P.stutzeri and phaC1P.fulva were substituted with a positively charged 

Lys417 in all other sequences. The above mentioned substitutions are indicated by a blue star 

in Figure 3.17. 
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Figure 3.17. Multiple sequence alignment of phaC1 protein sequences from 10 different 

Pseudomonas sp. The catalytic triad and Ser297 are highlighted by a * and the lipase-box like 

consensus motif (GACSG) is underlined in red. Sequence variations between P. mendocina 

and the most common PHAs producers including P. oleovorans, P. aeruginosa and P. putida 

are indicated by a *. 

 

From the pairwise sequence alignment, the percentage identity between the phaC1P.mendocina   

protein sequence and phaC1 protein sequence from other Pseudomonas sp. was sequentially 

calculated (Table 3.1). Interestingly, phaC1P.mendocina shared a higher percentage identity to 

phaC1Pseudomonas sp. USM4-55 (98.39 %) and phaC1P.nitroreducens (97.85%) than the other known 

mcl-PHA producers such as phaC1P.aeruginosa (81.22%), phaC1P.putida (79.79 %) and 

phaC1P.oleovorans (80.68 %). Phylogenetic analysis further illustrates this divergence (Figure 

3.18).  

 

Table 3.1. List of sequences used in this study and their percentage identity with respect to 
phaC1P.mendocina 

 

 

 

 

 

 

 

 

 

 

Species name Sequence identifier Pairwise percentage 

identity (%) 

P. mendocina AAM10544.1 100 

P. nitroreducens Q8RPZ6 97.85 

P. resinovorans AAD26365.2 84.26 

P. putida AAM63407.1 79.79 

P. stutzeri AAO59383.1 95.89 

P. mediterranea AAX92633.1 81.40 

P. sp_USM4-55 ABX64434.1 98.39 

P. fulva_12-X YP_004472487.1 83.01 

P. oleovorans AAA25932.1 80.68 

P. aeruginosa AFA46810.1 81.22 
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Figure 3.18. Phylogenetic relationship of the analysed Pseudomonas sp. based phaC1 protein 

sequence. The tree was constructed using the neighbour joining algorithm using the ClustalW 

Phylogeny from the ClustalW2 package at the EBI.  

A 3D model for phaC1P.mendocina was generated (Figure 3.19A) using the structure of the 

human gastric lipase (PDB code 1hlg) as template and PHYRE2, an automatic fold 

recognition server for structure prediction (Kelley and Sternberg 2009). The active site 

residues of the catalytic triad (Cys296, Asp451, and His479) are shown in Figure 3.19B. 

Also, the amino acid differences observed in phaC1P.mendocina, ArgGlyGln346-348, Gln315 

and Gln417, as compared to the most used Pseudomonas strains have been highlighted in the 

structure (Figure 3.19(C)). However in the absence of X-ray crystallographic data for type II 

PHA synthases, with and without the substrates, it would be difficult to evaluate the 

significance of the sequence divergence observed in phaC1P.mendocina with respect to the other 

known mcl-producing strains. 

3.19 (A) 

Continues on the following page 
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(B) 

(C) 

Figure 3.19. (A) The predicted 3D model for phaC1P.mendocina generated using the structure of 

the human gastric lipase (PDB code 1hlg) as template on the PHYRE2 server (B) The active 

site residues of the catalytic triad (Cys296, Asp451, and His479) are highlighted (C) Amino 
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acid differences identified in phaC1P.mendocina protein sequence as compared to the most used 

Pseudomonas strains during sequence analysis and catalytic triad is highlighted on the model.  

 

 

3.3. DISCUSSION 

In this chapter, we investigated the phaC1 gene expression from P. mendocina in B. subtilis 

1604. The B. subtilis 1604-phaC1 recombinant strain was subjected to fermentation and 

showed PHA accumulation. The incorporation of the phaC1 gene in B. subtilis confirmed the 

potential of the host bacteria to produce significant levels of PHAs. In contrast to what was 

expected, GC-MS and NMR studies confirmed the presence of an scl-PHA homopolymer, 

P(3HB), when the B. subtilis 1604-phaC1 recombinant strain was grown in PHA production 

media with sucrose as the sole carbon source. This is a very unusual result and has not been 

reported before. P. mendocina phaC1 gene was expected to encode an enzyme that would 

polymerise mcl-PHA monomers units leading to the production of mcl-PHAs.   

Wang et al., (2006) have cloned and expressed the phaC1 gene from Pseudomonas 

aeruginosa in B. subtilis. The gas chromatography results showed that the expression of the 

phaC1 gene into B. subtilis DB104, in the presence of glucose as a carbon source, resulted in 

the production of Poly(3-hydroxydecanoate-co-3-hydroxydodecanoate), P(3HD-co-3HDD), a 

mcl-PHA copolymer. Furthermore, the inclusion of the phaA gene, encoding the  

β-ketothiolase and the phaB gene encoding the acetoacetyl-CoA-reductase from Ralstonia 

eutropha resulted in the production of a Poly(3-hydroxybutyrate-co-3-hydroxydecanoate-co-

3-hydroxydodecanoate P(3HB-co-3HD-co-3HDD), a scl-mcl copolymer. 

In contrast to Wang et al., (2006) our results showed that only the incorporation of the phaC1 

synthase gene from P. mendocina in B. subtilis 1604 resulted in the production of a scl-PHA, 

P(3HB), and no mcl-PHAs were observed. The fact that phaC1P.aeruginosa and phaC1P.mendocina 

showed only 81.22% of identity (table 3.1) can explain differences in PhaC1 substrate 

specificity. However, further experiments should be carried out by Wang et al. to confirm the 

nature of the produced PHAs. 

B. subtilis containing the phaC1 gene showed a higher amount of dry cells weight and a 

significant PHA production compared to B. subtilis containing the vector without the insert 
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and the wild type. The amount of PHA produced, normalized per gram of cells (g of PHA/g 

dry cell weight) was 1.7%±0.43, 2.7%±0.45 and 32.3%±9.6 for B. subtilis wild type,            

B. subtilis-vector and B. subtilis-phaC1 gene, respectively. These results confirmed the role 

of the PhaC1 synthase in PHA accumulation in the recombinant B. subtilis. 

P. mendocina wild type produces a copolymer composed of short chain length and medium 

chain length PHAs when sucrose is used as the carbon source. In contrast to our results, 

previous reports showed production of only mcl-PHAs by P. putida, P. aeruginosa, 

P. resinovorans and P. mediterranea in the presence of carbohydrates confirming the 

different substrate specificity of P. mendocina PhaC1 enzyme (Ashby et al., 2001, Huijberts 

et al., 1992, Palmeri et al., 2012, Rosas et al., 2007).  

As described previously, mcl-PHAs can be produced via the fatty acid de novo biosynthesis 

pathway and the fatty acid β-oxidation pathway. When sucrose was used as a carbon source 

the mcl-PHA polymer production was expected to occur via the fatty acid de novo 

biosynthetic metabolic pathway. However, contrary to our expectations, a scl-homopolymer 

was obtained. In order to test the capability of the recombinant B. subtilis to produce mcl-

PHAs via the fatty acids degradation pathway, a range of fatty acids were screened. Only 

when pentanoic, hexanoic and heptanoic acids were used as carbon sources, PHAs were 

obtained. The resulting polymer was a scl-copolymer composed of Poly-(3-

hydroxybutanoate) and Poly-(3-hydroxypentanoate), (P3HB-co-HV). As previously reported 

by Valappil et al., (2007) within the Gram-positive genera, only Corynebacterium, Nocardia 

and Rhodococcus can naturally synthesize the commercially important co-polymer P(3HB-

co-3HV) from simple carbon sources such as glucose (Alvarez et al., 2000, Haywood et al., 

1991). In this case, the addition of the phaC1 gene from P. mendocina to B. subtilis allowed 

the strain to synthesize LPS-free P(3HB-co-3HV) copolymer. However, no mcl-PHAs 

production was observed. One of the main enzymes that play a pivotal role in the mcl-PHAs 

synthesis is the (R)-3-hydroxyacyl-ACP-CoA transacylase, which converts the (R)-3-

Hydroxyacyl-ACP precursor from the fatty acid de novo biosynthetic pathway to (R)-3-

hydroxyacyl-CoA, the substrate required by the PHA synthase for mcl-PHA production. As 

BLAST results revealed the presence of a hypothetical protein predicted to be a 

hydrolase/acyltransferase in B. subtilis 1604, it is not possible to attribute the incapability of 

the phaC1 synthase from P. mendocina to support mcl-PHA production in B. subtilis to the 

absence of (R)-3-hydroxyacyl-ACP-CoA transacylase. However, as this protein was not 

studied previously, further studies should be carried out to confirm the nature of the protein. 
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No structural information for the class II PHA synthases is available. Threading models 

generated for phaC1 from Pseudomonas aeruginosa (Amara and Rehm, 2003) and 

Pseudomonas sp. USM 4–55 (Wahab et al., 2006) have provided insights into the residues 

critical for catalysis in these enzymes. Therefore, in order to understand the exceptionally 

broad substrate specificity of the phaC1 enzyme in P. mendocina, sequence analysis and 3D 

structure prediction was undertaken. Multiple sequence analysis and phylogenetic analysis 

was carried out with phaC1 protein sequences from other Pseudomonas sp. containing class 

II PHA synthases. Of the 9 sequences compared, phaC1P.mendocina shared the lowest sequence 

identity with other well established mcl-PHA producers such as the P. aeruginosa, P. putida 

and P. oleovorans. The phylogenetic analysis further emphasised this sequence divergence, 

as phaC1P.mendocina was placed in a distinctly different cluster along with phaC1 Pseudomonas sp. 

USM4-55 and phaC1P.nitroreducens. Previous reports has shown that surprisingly, Pseudomonas 

nitroreducens, that shares 97.85% of identity with P. mendocina in the phaC1 sequence 

(Table 3.1), produced P(3HB) homopolymer when hexanoate was used as a sole carbon 

source and Poly(3-hydroxyoctanoate-co-hydroxydecanoate) copolymer in the presence of 

butyrate, decanoate, lauric acid and tetradecanoic acid (Yao et al., 1999). These results 

confirm the broad substrate specificity of the PHA synthase in P. nitroreducens, very similar 

to that found in P. mendocina. 

Although the important residues such as the catalytic triad (Cys296, Asp451, His479), Ser297 

and the lipase-box like consensus motif are conserved in all the sequences used in this study, 

certain amino acid substitutions were observed in the core region (residue 267- 484) of the 

phaC1protein sequence from P. mendocina, which were otherwise conserved in other mcl-

PHA producers such as the P. aeruginosa, P. putida and P.  oleovorans. As described 

previously, some of these amino acid changes result in charge alterations, for example the 

change from neutral amino acid Gln314 in phaC1P.mendocina, phaC1Pseudomonas sp. USM4-55 and 

phaC1P.nitroreducens  to a negatively charged Glu at the same position in all other Pseudomonas 

species. There is no information on the functional significance of these amino acid 

differences. A 3D model was generated for phaC1P.mendocina using human gastric lipase as the 

template. From the predicted model, the catalytic residues and structural position of the 

observed amino acid differences in phaC1P.mendocina could be mapped. However without a 

crystal structure it is difficult to exactly predict the structural effect of these amino acid 

changes on the active site of the enzyme and their role in the catalytic mechanism of the 

phaC1. It is possible that the catalytic core of phaC1P.mendocina is different from the other mcl-
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PHA producers in its charge distribution and side chain composition and therefore exhibits 

broader substrate specificity. 

Hence, in conclusion, this work confirms the capability of a Gram-positive GRAS organism 

to express a Gram-negative gene from P. mendocina. Additionally, our results demonstrate 

the unusually broad substrate specificity of the PHA synthase from P. mendocina, which was 

found to be able to catalyse production of both mcl-PHA and scl-PHA production depending 

on the metabolic pool available in the host organism. Such a PHA synthase can therefore be 

used for the production of the entire range of PHAs (both scl and mcl-PHAs) by simply 

varying the available substrate pool, a great advantage. 
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4.1. INTRODUCTION 

Medium chain length PHAs are gaining importance due to their adjustable flexible material 

properties that are suitable for a range of biomedical applications. The type of mcl-PHA 

produced and hence their properties can be varied with the type and relative quantity of 

carbon sources supplied to the growth media, the organism used and the culture conditions 

provided (Ojumu et al., 2004). In addition to the different properties obtained with different 

mcl-PHAs, the production of co-polymers, blends and composites further increase the range 

of applications allowing the fabrication of tailor made materials. However, despite the varied 

applicability of these polymers, widespread use of the mcl-PHAs remain limited, mainly 

because of the lack of availability of these materials in large quantities (Rai et al., 2011b). 

Awareness of the need of industrialization of these polymers has reinforced the interest in 

scientists to develop different strategies for their production in large scale.  

Although there are many microorganisms that are able to produce PHAs, mcl-PHA 

production has been restricted to different strains of Pseudomonas (Prieto et al., 2007). In 

order to achieve a high productivity and high yield of mcl-PHAs, fermentation processes 

using these strains need to be optimized. To this end, in the first part of this chapter, P(3HO) 

polymer production in P. mendocina was optimized in 2 L bioreactors and the effect of 

different parameters such as pH, and carbon/nitrogen ratio was analyzed.  

As no work has been carried out in the scaling-up of P(3HO) production using P. mendocina, 

in the second part of the chapter we have studied the capacity to scale-up the polymer 

production from 2 L to 20 L and 72 L bioreactors using the constant oxygen transfer 

coefficient technique. In aerobic bioprocesses, the oxygen transfer rate (OTR) in the media is 

a key factor that will influence a culture performance. Therefore, it is important to ensure an 

adequate delivery of oxygen to the media. In a stirred tank bioreactor, the OTR is mainly 

affected by the stirrer speed, the type and number of stirrers and the gas flow rate used. 

Accurate estimation of the OTR in bioreactors is essential in order to establish aeration 

efficiency at different scales under different stirrer speeds and airflow rates. In stirred tank 

bioreactors, the stirrer is the main gas dispersing tool and stirrer speed and airflow rate are the 

main factor that will determine the kLa values. In this project, the P(3HO) polymer 

production was scaled up from the 2 L to the 20 L and 72 L bioreactors based on the constant 

oxygen transfer coefficient, kLa. The oxygen transfer from air to liquid phase is controlled by 

the liquid phase mass transfer resistance, described by the following equation: 

 [dCL/dt] = kLa x (C*-CL)                                                   (4. 1) 
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where C* is the saturation concentration of oxygen in liquid, CL is the dissolved oxygen 

concentration in liquid, t is time and dCL/dt is the volumetric rate of mass transfer. The -kLa 

value can be obtained from the slope of ln(C*-CL) against time.                  

In this project, kLa values were determined by the dynamic method. The dynamic method 

involves the elimination of oxygen in the liquid, followed by the supply of air. The variation 

in oxygen concentration in the water is measured through time. Firstly, the kLa value of the   

2 L bioreactor was determined under the condition that produced maximum polymer in the 

optimization work. Then, in order to keep the same oxygen transference in the 20 L and 72 L 

bioreactors, the kLa values of both bioreactors were calculated at different sets of impeller 

speeds and airflow rates. P. mendocina was grown under the obtained condition for a 

constant kLa in the 20 L and 72 L bioreactors and P(3HO) was extracted at different scales. 

The evaluation of the scaling-up process was carried out by the comparison of the amounts of 

polymer produced at different scales.  
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4. 2. RESULTS 

4. 2. 1. Production of P(3HO) in P. mendocina 

The P(3HO) production from P. mendocina with sodium octanoate as a sole carbon source 

was optimized in 2 L bioreactors as described in section 2. 2.7.1 Four conditions were tested 

where the pH and carbon/nitrogen ratio were varied (Table 2.5). To enhance P(3HO) 

production, the C/N ratios of 20:1, 15:1 and 10:1 and pH of 6.8, 7.15 and 7.5 in mineral salt 

medium production media were compared in order to determine the optimal conditions.  

Figure 4. 1 shows the fermentation profile obtained for condition 1 (pH 7.15, carbon/nitrogen 

20:1 and stirrer speed 200 rpm). Under this condition the organism reaches exponential phase 

after 3 hours of growth. At this point, the DOT reaches zero, as a consequence of the oxygen 

consumption of the growing bacteria in the media. At 29 hours, stationary phase is achieved 

and as a result of the cell death, the DOT starts to increase. The maximum OD450nm achieved 

during the fermentation was 4.7. PHAs were extracted at 24 hr, 36 hr and 48 hr and these 

time points were at the exponential phase, stationary phase and death phase, respectively. The 

maximum PHA yield of 20.6 % DCW was obtained during the stationary phase, at 36 hr.  

 

 

Figure 4. 1. Fermentation profile of P. mendocina and P(3HO) accumulation obtained under 

condition 1 (pH 7. 15, carbon/nitrogen 20:1 and stirrer speed 200 rpm). OD450nm (—) , DOT 

(—) and PHA yield (grey bars). 
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Figure 4.2 shows the fermentation profile obtained under condition 2 (pH 7. 5, 

carbon/nitrogen 15:1 and stirrer speed 200 rpm). In this condition the organism reached 

exponential phase before 3 hours of growth. As a consequence, the oxygen consumption by 

the organism decreased to zero in 1.2 hr. The stationary phase was achieved at 23 hr, when 

the DOT increased drastically. The maximum OD450nm achieved during the fermentation was 

4.5. PHAs were extracted at 24 hr, 36 hr and 48 hr with the first two values at the stationary 

phase and the last one at the death phase. The maximum PHA yield of 12.3 % DCW was 

obtained during early stationary phase, at 24 hr.  

 

 

Figure 4. 2. Fermentation profile of P. mendocina and P(3HO) accumulation obtained under 

condition 2 (pH 7.5, carbon/nitrogen 15:1 and stirrer speed 200 rpm). OD450nm (—) ,  DOT  

(—) and PHA yield (grey bars).  

Figure 4. 3 shows the fermentation profile obtained for condition 3 (pH 6. 8, carbon/nitrogen 

15:1 and stirrer speed 200 rpm). Under this condition the organism achieved exponential 

phase after 3 hours of growth with a slower growth than condition 1, represented by the 

smaller slope of the OD450nm and DOT graph. At 23 hr, the stationary phase was achieved and 

as a result of the cell death, the DOT started to increase. The maximum OD450nm achieved 

during the fermentation was 4.2. PHAs were extracted at 24 hr, 36 hr and 48 hr at the 

stationary phase. The maximum PHA yield of 10.5 % DCW was obtained during early 

stationary phase, at 24 hr.  
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Figure 4. 3. Fermentation profile of P. mendocina and P(3HO) accumulation obtained under 

condition 3 (pH 6. 8, carbon/nitrogen 15:1 and stirrer speed 200 rpm). OD450nm(—) , DOT  

(—) and PHA yield (grey bars)  

 

Figure 4.4 shows the fermentation profile obtained under condition 4 (pH 7.15, 

carbon/nitrogen 10:1 and stirrer speed 200 rpm). In this condition the exponential phase is 

achieved before conditions 1, 2 and 3. As a consequence, the organism’s oxygen 

consumption in the media decreased to zero within 1 hr. The stationary phase was achieved 

between 9 hr and 23 hr and as a result, the DOT increased drastically at 15 hr. The maximum 

OD450nm achieved during the fermentation was 3.3. PHAs were extracted at 24 hr, 36 hr and 

48 hr, at the stationary phase. The maximum PHA yield of 2.3 % DCW was obtained at 24 

hrs.  
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Figure 4. 4. Fermentation profile of P. mendocina and P(3HO) accumulation obtained under 

condition 4 (pH 7. 15, carbon/nitrogen 10:1 and stirrer speed 200 rpm). OD450nm(—) ,      

DOT (—) and PHA yield (grey bars) 

 

4. 2. 2. Scaling-up production of P(3HO) from Pseudomonas mendocina 

4. 2. 2. 1. Determination of kLa and scaling-up conditions 

The condition in which the highest PHA yield was obtained was scaled-up to 20 L and 72 L 

bioreactors as described in section 2.2.7.2. For this, condition 1, when pH is 7.15, 

carbon/nitrogen 20:1 and stirrer speed 200 rpm was used. In a first step, the kLa of the 2 L 

bioreactor, at an airflow rate of 1 vvm and stirrer speed 200 rpm was determined by the 

gassing out method. For this, the bioreactor was filled with 1.4 L of distilled water and the 

oxygen of the liquid was removed with nitrogen. Then, air was supplied to the bioreactor and 

the increment in DOT with time was measured. Equation 4.1 shows that kLa can be obtained 

from the inverse of the slope of ln(C*-C) vs. time and the obtained value was 0.256 (Figure 

4.12).   
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Figure 4. 5. Ln (C*-C) vs. time for the 2 L bioreactor at 1vvm and 200 rpm. Note that the 

inverse of the slope is the kLa.  

In the second part, in order to determine the condition to be used in the 20 L bioreactor for 

constant oxygen transfer, the kLa values were determined at a range of air flow rates (from 

0.5 vvm to 1. 25 vvm) and stirrer speed (from 100 rpm to 250 rpm), in the 20 L bioreactor. 

Figure 4. 6 shows the plot of the ln(C*-C) vs. time at different stirrer speeds of 100, 150, 200 

and 250 rpm and A) 0.5 vvm B) 0.75 vvm C) 1 vvm D) 1.25 vvm constant air flow rates.  

A) 

Continues	  on	  the	  following	  page	  
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B) 

C) 

Continues	  on	  the	  following	  page	  
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D) 

Figure 4. 6. Ln (C*-C) vs. time for the 20 L bioreactor at 100, 150, 200 and 250 rpm at A) 

0.5 vvm B) 0.75 vvm C) 1 vvm and D) 1. 25 vvm. Note that the inverse of the slope for each 

condition is the kLa.  

The kLa obtained at 200 rpm and 1 vvm in the 2 L bioreactor was 0.256. Table 4.1 

summarizes the kLa values obtained at the different air flow rates and stirrer speeds in the 

20 L bioreactor. The results obtained show that the kLa value obtained with the 2 L bioreactor 

is within the range of the kLa values obtained at 0.5 vvm in the 20 L bioreactor (Table 4.1). 

Hence, in order to determine the stirrer speed to be used in the 20 L bioreactor for a kLa of 

0.256, a plot of the kLa vs. stirrer speed at 0.5 vvm was carried out and the stirrer speed was 

calculated from the obtained linear regression (Figure 4.7). The obtained stirrer speed was 

186 rpm.  
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Table 4. 1. kLa values obtained in the 20 L bioreactor at different air flow rates and stirrer 

speeds 

 0.5 vvm 0.75 vvm 1 vvm 1. 25 vvm 

100 rpm 0.193 0.259 0.307 0.360 

150 rpm 0.219 0.287 0.340 0.405 

200 rpm 0.254 0.330 0.379 0.461 

250 rpm 0.312 0.388 0.434 0.526 

 

 

 

Figure 4.7. kLa vs. stirrer speed at 0.5 vvm and linear regression for the 20 L bioreactor.  

The same procedure was repeated to determine the condition to be used in the 72 L bioreactor 

in order to maintain constant the oxygen transference. Figure 4.8 shows the plot of the    

ln(C*-C) vs. time at different stirrer speeds of 100, 150, 200 and 250 rpm and A) 0.5 vvm B) 

0.75 vvm C) 1 vvm D) 1.25 vvm constant air flow rates.  

 

 

 

 

y	  =	  0.0008	  x	  +	  0.1073	  
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A) 

B) 

Continues	  on	  the	  following	  page	  
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C) 

D) 

Figure 4. 8. ln (C*-C) vs. time for the 72 L bioreactor at 100, 150, 200 and 250 rpm at A) 0.5 

vvm B) 0.75 vvm C) 1 vvm and D) 1. 25 vvm. Note that the inverse of the slope for each 

condition is the kLa.  
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Table 4. 2 summarizes the kLa values obtained at the different air flow rates and stirrer speeds 

in the 72 L bioreactor. Results showed that the kLa value obtained with the 2 L bioreactor is 

closer to the kLa values obtained at 0.5 vvm in the 72 L bioreactor. Hence, in order to 

determine the stirrer speed to be used in the 72 L bioreactor for a kLa of 0.256, a plot of the 

kLa vs. stirrer speed at 0.5 vvm was carried out and the stirrer speed was calculated from the 

obtained linear regression by interpolation (Figure 4.9). The obtained stirrer speed was 143 

rpm.  

Table 4. 2. kLa values obtained in the 72 L bioreactor at different air flow rates and stirrer 

speeds  

0.5 vvm 0.75 vvm 1 vvm 1. 25 vvm

150 rpm 0.261 0.313 0.340 _ 

200 rpm 0.336 0.318 0.417 0.409 

250 rpm 0.416 0.480 0.476 0.502 

Stirrer speed (rpm)

140 160 180 200 220 240 260

K
LA

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Figure 4. 9. kLa vs. stirrer speed at 0.5 vvm and linear regression for the 72 L bioreactor. 

y	  =	  0.0016	  x	  –	  0.0277	  
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4. 2. 2. 2 Scaling-up 

The scale-up studies based on a constant oxygen transfer coefficient, kLa from 2 L to 20 L 

and 72 L of aerated and agitated bioreactors were performed. Table 4.3 summarizes the 

conditions obtained for a constant kLa of 0.256. All the fermentations were carried out with 

an initial carbon/nitrogen ratio 20:1 and pH 7. 15.  

Table 4. 3. Scaling-up conditions for the 2 L, 20 L and 72 L bioreactor for a constant kLa of 

0.256  

Bioreactor scale Stirrer speed (rpm) Air flow rate (vvm) 
2 L 200 1 
20 L 186 0.5 
72 L 143 0.5 

 

P. mendocina was grown in the 2 L bioreactor at 200 rpm and 1 vvm. Figure 4.10 shows the 

fermentation profile obtained. Under this condition, within 7 hr of fermentation, a decrease in 

the dissolved oxygen tension, from 100% to zero was observed. After 27 hr the oxygen 

concentration in the media started to increase. The maximum OD450nm achieved during the 

fermentation was 5. 9. PHAs were extracted at 36 hr and 48 hr, during the stationary phase. 

The maximum PHA yield was 26.84±0.35 %DCW, obtained during early stationary phase, at 

36 hrs.  
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Figure 4. 10. Fermentation profile of P. mendocina and P(3HO) accumulation obtained in the 

2 L bioreactor with an initial carbon/nitrogen ratio of 20:1 and pH of 7.15, stirrer speed 200 

rpm and air flow rate 1 vvm. OD450nm(—) , pH (—), DOT (—) and PHA yield (grey bars). 

P. mendocina was grown in the 20 L bioreactor at 187 rpm and 0.5 vvm. Figure 4.11 shows 

the fermentation profile obtained. Under this condition the amount of oxygen in the media 

were zero between 4 hrs and 64 hrs of fermentation. The maximum OD450nm achieved during 

the fermentation was 6. PHAs were extracted at 66 hr and 78 hr during the stationary phase. 

The maximum PHAs yield was 23.17±1.47 %DCW, obtained during the late stationary phase 

at 36 hr.  
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Figure 4. 11. Fermentation profile of P. mendocina and P(3HO) accumulation obtained in the 

20 L bioreactor with an initial carbon/nitrogen ratio of 20:1 and pH of 7. 15, stirrer speed 186 

rpm and air flow rate 0.5 vvm. OD450nm (—) , pH (—), DOT (—) and PHA yield (grey bars).  

 

P. mendocina was grown in the 72 L at 143 rpm and 0.5 vvm. Figure 4.12 shows the 

fermentation profile obtained. In this condition, within 8 hr of fermentation, a decrease in the 

amounts of oxygen from 100% to zero was observed. After 46 hr, the oxygen concentration 

in the media started to increase. The maximum OD450nm achieved during the fermentation 

was 5.6. PHAs were extracted at 48 hr and 65 hr during the stationary phase. The maximum 

PHA yield of 13.80 ± 2.82 %DCW was obtained during the early stationary phase at 48 hr.  
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Figure 4. 12. Fermentation profile of P. mendocina and P(3HO) accumulation obtained in the 

72 L bioreactor with an initial carbon/nitrogen ratio of 20:1 and pH of 7. 15, stirrer speed 143 

rpm and air flow rate 0.5 vvm. OD450nm(—) , pH (—), DOT (—) and PHA yield (grey bars). 
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4. 3. DISCUSSION 

4. 3. 1. Optimization of P(3HO) production in P. mendocina 

Studies were carried out to assess the effect of pH and carbon:nitrogen (C:N) ratio on the 

P(3HO) yield. Four conditions were studied (Table 2. 5): pH 7.15 and C:N 20:1 (condition 1), 

pH 7.5 and C:N 15:1 (condition 2), pH 6.8 and C:N 15:1 (condition 3) and pH 7.15 and C:N 

10:1 (condition 4). From the comparison of the four conditions it was observed that the 

smallest lag phase and consequently a faster achievement of exponential phase occurred 

under condition 4, at pH 7.15 and C:N 10:1. It has been assumed that lag phase allows the 

adaptation required for bacterial cells to begin to grow under new environmental conditions 

(Madigan et al., 2000). The main reason for this observation might be that long chain fatty 

acids have been proven to have a toxic effect on bacterial growth and condition 4 represents 

the lowest amount of sodium octanoate (10mM), used as a carbon source (Dubos 1946). 

Additionally, we have observed that lower concentrations of sodium octanoate results in 

shorter exponential phases. For example, condition 4, containing the lowest amounts of 

sodium octanoate has the shortest exponential growth phase and condition 1, containing the 

highest amounts of sodium octanoate, the longest one. It is expected that the lower 

concentration of carbon source leads to shorter times of bacterial growth. By comparing 

conditions 2 and 3, we observed that pH values of 7.5 resulted in a smaller lag phase and 

consequently a quicker adaptation of the bacteria to the media than pH values of 6.8. 

However, similar durations of the exponential phase were obtained in both cases. Upon 

nutrient starvation or entry into the stationary phase, some bacteria develop different 

mechanisms that allow stress tolerance and starvation survival, including PHAs production 

(Ruiz et al., 2001). PHAs were extracted in the four conditions at 24, 36 and 48 hr. As 

expected, our results show that the highest PHA accumulation occurred during the early 

stationary phase. By comparing condition 1 and 4, where only the C:N ratio differed, we 

observed that when the ratio C:N is increased from 10:1 to 20:1 the PHA yield (%DCW) 

increased from 2.3 to 20.6 %DCW. Also, by comparing condition 2 and 3, where only the pH 

differs, we can conclude that no significant differences in terms of PHA accumulation 

occurred when the pH varied from 6. 8 to 7. 5, suggesting that within this pH range there is 

no significant effect of pH on PHA production. The highest PHA accumulation of 20.6% 

DCW was observed under condition 1 at 36 hr, during the early stationary phase.   
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4. 3. 2. Scaling-up production of P(3HO) from Pseudomonas mendocina 

With a product development there is a need to achieve successful scale-up strategies in order 

to convert laboratory results to industrial scale. Despite much research that has been carried 

out for the development of strategies to allow an efficient scale-up, no common strategies 

were described and hence, for each individual product, process and facility a suitable scale-up 

strategy has to be elaborated (Schmidt et al., 2005). It is not possible to maintain all the 

parameters constant between scales and hence, different characteristics are suggested to be 

maintained constant during scale-up processes (Ju and Chase 1992). As oxygen transfer is 

often a limiting factor in aerobic bioprocesses due to the low solubility of this gas in the 

medium, the oxygen supply in bioreactors is a decisive factor in microorganism growth and 

plays a pivotal role in the scale-up of aerobic biosynthesis systems (Amaral et al. , 2008, 

Galaction et al. , 2004). As a result, one of the most common strategies used for scaling-up 

aerobic systems is based on maintaining the volumetric oxygen transfer, kLa, constant 

through the different scales (Puthli et al., 2005). The determination of kLa in bioreactors is 

essential in order to establish the aeration efficiency and to quantify the effects of the 

operating variables on the oxygen provision. In this project, the production of PHAs from 

P. mendicina was scaled-up from 2 L to 20 L and 72 L bioreactors based on a constant kLa. 

The kLa value was determined by employing the gassing out technique and the obtained value 

was kept constant upon scale-up to maintain similar mass-transfer of oxygen at the larger 

production scale. The chosen volumetric oxygen transfer coefficient was the one obtained 

with the 2 L bioreactor at 200 rpm stirrer speed and 1 vvm air flow rate. For this, as a first 

step, the kLa of the 2 L bioreactor, at 200 rpm and 1 vvm of air flow rate was determined 

from the slope of the ln(C*-C) vs. time. The kLa value obtained under this condition was 

0.256. In order to find the condition in the 20 L and 72 L bioreactors that gave the same kLa, 

the kLa values for the 20 L and 72 L bioreactors were calculated at different set of impeller 

speeds and air flow rates. Due to the fact that the stirrer speed can be regulated with more 

precision, the aeration rate was kept constant and the estimation of the stirrer speed for a 

constant oxygen transfer in the 20 L and 72 L bioreactors was carried out from the 

extrapolation of the kLa vs. stirrer speed plot. As expected, an increment in the kLa values 

was observed with an increment in the stirrer speed or air flow supply for both 20 L and 72 L 

bioreactors. For the 20 L bioreactor, a kLa of 0.256 was among the values obtained at 0.5 vvm 

air flow rate. The stirrer speed was obtained from the linear regression of kLa vs. stirrer speed 

at 0.5 vvm. The obtained stirrer speed was 186 rpm. Note that although a kLa of 0.254 was 
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obtained at 200 rpm (Figure 4.7), a lower stirrer speed of 186 rpm was obtained for a kLa of 

0.256 from the linear regression and this is due to the fact that the values did not follow a 

perfect linear trend. For the 72 L bioreactor, a kLa of 0.256 was close to the values obtained at 

0.5 vvm air flow rate. The stirrer speed was obtained from the interpolation of kLa vs. stirrer 

speed at 0.5 vvm. The obtained stirrer speed was 143 rpm. The conditions obtained for a 

constant kLa in the 2 L, 20 L and 72 L bioreactors showed that bigger bioreactors supply 

more oxygen at the same stirrer speeds and air flow rates. The main reason of this 

observation is that bigger bioreactors require more power input to achieve the same air flow 

rate and, hence, more oxygen is supplied at a certain air flow rate. In this work, the kLa at 

different scales was determined experimentally and, hence, differences in the dimensions of 

the bioreactors, the aspect ratio, the ratio diameter bioreactor and the number of impellers and 

buffers are contemplated in the final kLa obtained for each bioreactor.  

The conditions obtained for the scale-up work in the 2 L, 20 L and 72 L bioreactors were 

evaluated by the PHA yield obtained at different scales. From the profiles obtained we 

observed that the stationary phase, in which we expected the highest PHA production, was 

achieved at different times for the different bioreactors. Surprisingly, the stationary phase was 

achieved after around 27 hr of fermentation for the 2 L bioreactor, after 64 hr of fermentation 

for the 20 L bioreactor and after 46 hr of fermentation for the 72 L bioreactor. PHAs were 

extracted during the stationary phase for each of the different scales; hence, the extraction 

times were modified accordingly. The highest PHA yield was 26.84±0.35 % DCW for the     

2 L bioreactor, 23.17±1.47 % DCW for the 20 L bioreactor and 13.80±2.82 % DCW for the 

72 L bioreactor. Our results showed that similar values were obtained in terms of PHA yield 

with the 2 L and 20 L bioreactors, and hence we can conclude that based on a constant kLa it 

was possible to scale-up the PHA production from the 2 L to the 20 L bioreactor. However, 

the PHAs amount obtained for the 72 L bioreactor were considerably lower than the amount 

obtained with the 2 L and 20 L bioreactors. Our results showed that based on a constant kLa it 

was not possible to scale-up the PHA production to 72 L bioreactor. The reason of this 

observation is that by maintaining the kLa constant, other parameters such as the specific 

power input and the superficial air velocity will change and can thus produce undesired 

effects on the polymer yield (Ju and Chase 1992). The manipulation of specific power input 

and superficial air velocity should be also considered to scale-up from 2 L or 20 L to 72 L 

bioreactors.  
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5.1. INTRODUCTION 
There is an increasing interest in the development of biomaterials for regenerative medicine 

and tissue engineering. Certain requisites are crucial for a successful material in cardiac tissue 

engineering applications. The material’s physical and mechanical characteristics should be 

similar enough to those of the natural tissue in order to support the organ during the 

regeneration process, and its composition should allow it to degrade as the new tissue takes 

over its function (Neal et al., 2012). Biodegradable materials have attracted significant 

interest since further surgery is not required to remove the implanted material. Although most 

of the currently investigated materials are biodegradable, many of these have toxic             

by-products and poor mechanical properties that are not compatible with the injured tissue. 

As a result of the enormous clinical need, myocardial tissue engineering has become a special 

area of focused research within the field of tissue engineering. In this project, medium chain 

length polyhydroxyalkanoates, mcl-PHAs, were studied as potential materials for cardiac 

tissue engineering. These biopolymers are promising materials for various applications due to 

their mechanical properties, biodegradability and biocompatibility.  

In this chapter, P(3HO), a mcl-PHA, produced by Pseudomonas mendocina, was fully 

characterized and assessed for cardiac tissue engineering applications. As discussed 

previously, the material’s mechanical properties are crucial for supporting the organ during 

the new tissue regeneration. In the first part of this chapter, the mechanical properties of 

P(3HO) were determined using dynamic mechanical analysis and the values obtained were 

compared with the values required by the native cardiac structures. The mechanical 

properties of the myocardium are as follows: Young’s modulus 0.02-0.5 MPa, tensile 

strength 3-15KPa, and elongation at break between 100-300% (Nagueh et al., 2004, 

Watanabe et al., 2006).  In order to define the processability of the material, the thermal 

properties of the material were determined by differential scanning calorimetric analysis. 

Surface roughness and wettability have been known to play a crucial role in cell adhesion and 

proliferation, hence, P(3HO) films were formed by the solvent casting method and the 

surface topography, roughness and water contact angle were determined using Scanning 

Electron Microscopy (SEM), white light interferometry and contact angle analysis, 

respectively. 

An appropriate level of cardiomyocyte contraction is a crucial factor for a highly regulated 

mechanical system such as the heart, in order to maintain its accurate pumping function.       
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In vivo, cardiomyocytes’ interaction with the extracellular matrix during contraction is the 

main factor in determining the heart’s performance (Tracqui et al., 2008). In a preliminary 

study, the effect of the P(3HO) polymer on contracting cardiomyocytes was studied by 

seeding freshly isolated cardiomyocytes from rat on P(3HO) films and the viability of the 

cardiomyocytes was studied over time. 

The change in cardiomyocyte contraction in response to a change in electrical stimulation is a 

general property of the cardiac muscle and in most species the contraction increases with the 

frequency of the electrical stimulation (Antoos et al., 2002). Intracellular Ca2+ is the central 

trigger factor for cardiomyocyte contraction and in most species, larger intracellular 

Ca2+concentrations result in higher cardiomyocyte contraction (Knollmann et al., 2008). In 

this project, the contraction of individual fresh adult rat cardiomyocytes on the P(3HO) 

polymer was studied at different frequencies of electrical pulses and calcium concentrations. 

For this, cardiomyocytes were seeded on glass cover slips coated with P(3HO) and glass 

cover slips without coating were used as positive controls. 

Finally, in order to understand and compare the properties of P(3HO) with materials available 

in the market being used as basic cardiac patches, in the last part of the chapter we have 

characterized two types of biological membranes currently used as patches by surgeons, i.e. 

bovine pericardium and small intestinal submucosa (Pires et al., 1999, Tan et al., 2009).	  
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5.2. RESULTS 

5.2.1. Characterization of P(3HO) from Pseudomonas mendocina 

5.2.1.1. P(3HO) chemical characterization 

P. mendocina was grown in shaken flask under nitrogen limiting conditions in MSM growth 

media. As a carbon source, sodium octanoate was used. The obtained polymer was extracted 

and the nature of the polymer was determined by FTIR, GC-MS and NMR. Figure 5.1 shows 

the obtained polymer.  

 

 

 

 

 

 

Figure 5.1. Polymer produced by P. mendocina with sodium octanoate as a sole carbon 

source.  

 

FTIR analysis was carried out in order to determine the functional groups present in the 

obtained polymer, as described in section 2.2.8.1. Figure 5.2 represents the FTIR absorbance 

spectrum, which shows the presence of the characteristic ester band at 1728 cm-1. The bands 

corresponding to O-H stretching groups from carboxylic acids and C-H stretching groups 

from alkyl side chains were observed at 2955 cm-1 and 2928 cm-1, respectively. The bands at 

1466 cm-1 and 1379 cm-1 occurred due to CH3 stretching and the band at 1095 cm-1 describes 

the methylene C-H vibration. According to Ramalingan et al., 2011, four bands are 

characteristic of mcl-PHAs: 1740, 2859, 2924 and 1069 cm-1. The polymer FTIR spectrum 

showed the presence of bands in the range of these characteristic bands, suggesting that the 

PHA produced was indeed a mcl-PHA. 
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Figure 5.2. FTIR spectra of the polymer produced by P. mendocina. Note the four 

characteristic bands of mcl-PHAs highlighted in red. 

 

In order to confirm the exact chemical nature of the sample, GC-MS and NMR were carried 

out as described in section 2.2.8.2 and 2.2.8.3, respectively. The GC-MS spectrum of the 

methanolysed polymer shows the presence of a main band with a retention time of 10.49-

10.51 (Figure 5.3). The mass spectrum of the compound obtained at this retention time 

corresponded to the octanoic acid 3-hydroxy-methyl ester, confirming the presence of poly-

(3-hydroxyoctanoate) homopolymer, P(3HO). The band obtained at a retention time of 9-9.8 

belonged to the methyl ester of benzoic acid, used as a positive control. Peaks obtained at 

9.83 and 15.13 corresponded to other ester forms of the P(3HO) and benzoic acid. Finally, 

other peaks at retention time 11.87 and 12.11 corresponded to impurities that had co-purified 

with the polymer.  
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Figure 5.3. GC-MS spectra of the polymer produced from P. mendocina. Note the presence 

of a peak at RT: 10.49-10.51 and the corresponding mass spectra for P(3HO)  (the peak 

obtained at RT: 9-9.8 correspond to methylbenzoate used as the internal control). 

 

Figure 5.4 shows the (A) 13C and (B) 1H NMR spectra. The 13C spectra showed the presence 

of nine main peaks corresponding to the eight different carbon environments of P(3HO) plus 

one at 77.15 ppm corresponding to the carbon present in CDCl3 used as solvent. The eight 

peaks that belong to the P(3HO) molecule are: 169.56, 70.94, 39.17, 33.84, 31.61, 25.17, 

22.60 and 13.91. These peaks correspond to the different carbon atoms present from the 

carboxylic group of the P(3HO) molecule to the last carbon present in the alkyl group of the 

side chain. The proton spectra showed the presence of five main peaks that correspond to the 

five different types of protons in the P(3HO) molecule. The five peaks obtained were: 5.17, 

2.50, 1.56, 1.27 and 0.82 ppm. The first two peaks correspond to the protons present in the     

-CH groups and -CH2 groups of the main carbon chain. The last three peaks are from the 

different types of protons of the alkyl group in the side chain, starting from the first -CH2  

group bonded to main carbon chain and following to the -CH2 and -CH3 groups present in the 

side chain. 

(3HO)	  
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(A) 

 

 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                              

Figure 5.4. (A) 13C and (B) 1H NMR spectra for the polymer produced by P. mendocina. The 

chemical structure of the P(3HO) molecule indicating the position of the different 

environments for Carbon or Proton atoms in the molecule is shown in the figures.   
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5.2.1.2. P(3HO) mechanical and thermal characterization  

P(3HO) films were fabricated by solvent casting as described in section 2.2.9.1 and 

characterized in terms of the mechanical and thermal properties as described in section 

2.2.10.1 and 2.2.10.2, respectively. The mechanical properties were determined by dynamic 

mechanical analysis. Results are represented in a static strain vs. stress plot (Figure 5.5). The 

initial slope of the plot corresponds to the Young’s modulus and the obtained value was 

3.7±0.3 MPa. The % elongation at break and the tensile strength, obtained at the maximum 

elongation before the material is broken was 299±29 % and 3.4±0.2 MPa, respectively. 

 

 

Figure 5.5. Static strain vs. Stress profile of the P(3HO) polymer. The initial slope and the 

maximum elongation are indicated with a black line. 

 

The thermal properties of the material were determined by the differential scanning 

calorimetry analysis. The thermograms show the presence of two peaks corresponding to the 

melting temperature and glass transition temperature (Figure 5.6). The melting temperature 

obtained was 43.7±4.1 ºC and the glass transition temperature was -32.9±3.8 ºC.  
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Figure 5.6. Thermal profile of the P(3HO) polymer. The peaks corresponding to the Tg and 

Tm are indicated with arrows.  

 

5.2.1.3. P(3HO) surface characterization  

In order to analyze the surface structure of the P(3HO) polymer, P(3HO) films were created 

by the solvent casting technology. The surface wettability of the P(3HO) films was studied 

with a contact angle meter as described in section 2.2.10.3. The water contact angle on the 

P(3HO) films was 101.1±0.8 º, indicating a hydrophobic surface. The surface roughness of 

the P(3HO) film was determined using white light interferometry, as described in section 

2.2.10.5. Results showed that the average surface roughness of the P(3HO) film was 0.17 µm 

(Figure 5.7). Finally, the surface morphology and microstructure of the P(3HO) films was 

studied using scanning electron microscopy, as described in section 2.2.10.4. Figure 5.8 

shows the smooth surface properties obtained.  

Tg 

Tm 



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  5	  
	  

	  

121	  

 

 

Figure 5.7. Surface roughness analysis of two typical P(3HO) films. Ra describes the average 

surface roughness, Rmax the maximum roughness depth, RZDIN is the average peak to valley 

height minus Rtm and Rtm is the average distance between the highest peak and lowest valley 

in each sample. 

 

Figure 5.8. SEM images obtained from P(3HO) films showing the smooth surface of the 

films at different magnifications. 

Ra =        0.17 µm 
Rmax =     2.79 µm 
RZDIN =  2.32 µm 

Ra =        0.17 µm 
Rmax =     3.56 µm 
RZDIN =  2.42 µm 
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5.2.1.4. In vitro cytocompatibility studies 

5.2.1.4.1. Cardiomyocyte viability on P(3HO) films 

In a preliminary study, the effect of the P(3HO) polymer on cardiomyocyte viability was 

studied. Fresh isolated adult rat cardiomyocytes were seeded on the P(3HO) films as 

described in section 2.2.11.1. Based on the shape, the number of live and dead cells were 

determined with an inverted microscope at the following times after seeding: 0, 1, 2, 24, 25 

and 26 hours. Figure 5.9 shows the rod shape of a live cardiomyocyte vs. the round shape of 

dead cardiomyocytes. As a positive control, cardiomyocytes were seeded on plastic tissue 

culture plates. 

 

 

 

 

Figure 5.9. Live vs. dead cardiomyocytes. The picture on the left shows a live cardiomyocyte 

and the picture on the right shows dead cardiomyocytes (Gonzalez-Granillo et al., 2012). 

The ratios of live/dead cells at the different time points are illustrated in Figure 5.10. These 

results show a significant slightly higher viability on the polymer than in the control at 0, 2, 

25 and 26 hr .  

 

Figure 5.10. Live/dead rat cardiomyocytes seeded on the P(3HO) film vs. control at  0, 1, 2, 

24, 25, 26 hours (n=6; error bars=±SD).  
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5.2.1.4.2. Cardiomyocytes’ contraction on P(3HO) films 

The effect of the P(3HO) polymer on the contraction of the cardiomyocytes was studied. 

Fresh isolated adult rat cardiomyocytes were seeded on P(3HO) coated cover slips and 

superfused in a Krebs-Henseleit solution at 37◦C and bubbled with 95% O2, 5% CO2 as 

described in section 2.2.11.2. Cover slips without coating were used as controls. For the 

study, rod shaped cardiomyocytes with regular and no spontaneous contraction without 

stimulation were selected. Cells were stimulated with pulses of 50 V for a period of 2ms with 

2 seconds intervals. The contraction amplitude (% shortening), ʻtime to peak 90%ʼ and time 

to ʻrelaxation 50%ʼ were recorded with a video and analyzed with the Inoptix program.  

 

5.2.1.4.3. Effect on cardiomyocyte contraction at different intervals of electrical 

impulses  

The effect on cardiomyocyte contraction at a range of electrical impulse frequencies was 

analyzed. Cells were stimulated with pulses of 50 V for during 2 ms at the following time 

intervals: 2, 5, 2, 1 and 0.5 seconds. Figure 5.11 shows the profile of one representative 

experiment obtained. 

 

Figure 5.11. Effect of 50 V pulses for 2 ms at 2, 5, 2, 1 and 0.5 seconds intervals on 

cardiomyocyte contraction. 
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Figure 5.12 and 5.13 show the effect of 50 V electrical pulses for 2 ms at 2, 5, 2, 1 and 0.5 

second intervals on the ʻtime to peak 90%ʼ and ʻtime to baseline 50%ʼ, on the P(3HO) 

polymer, respectively. Results show differences when the frequency of electrical pulses 

increases from 5 to 0.5 seconds, where the time to peak 90% decreases in both polymer and 

control (Figure 5.12). Additionally, differences were significant only in control when the 

intervals of electrical pulses decreased from 5 to 2, 1 and 0.5 seconds (Figure 5.13). 

 

 

Figure 5.12. Effect of 50 V pulses for 2ms at 2, 5, 2, 1 and 0.5 seconds intervals on the ʻtime 

to 90% peakʼ of rat cardiomyocytes for cardiomyocytes contraction on P(3HO) polymer and 

control glass slides (n=5; error bars=±SD). The data were compared using the t-test and the 

differences were considered significant when **p < 0.01. 
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Figure 5.13. Effect of 50 V pulses for 2m at 2, 5, 2, 1 and 0.5 seconds intervals on time from 

peak to 50% relaxation of rat cardiomyocytes on P(3HO) polymer and control glass slides 

(n=5; error bars=±SD). The data were compared using the t-test and the differences were 

considered significant when **p < 0.01. 

 

Figure 5.14 shows the effect on cardiomyocyte contraction (% shortening) of electrical pulses 

of  50 V for 2 ms at 2, 5, 2, 1 and 0.5 seconds interval on P(3HO) polymer. The data was 

normalized against 2 second interval pulses. Results show that no differences were observed 

between the cardiomyocyte on the control and polymer. Only when the frequency of 

electrical pulses was increased from 5 to 2, 1 and 0.5 seconds, the percentage of shortening 

decreased significantly in the control but not in the polymer. 
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Figure 5.14. Normalized contraction amplitude (% shortening) of rat cardiomyocytes on 

P(3HO) polymer with electrical pulses of 50 V for 2 ms at 2, 5, 2, 1 and 0.5 seconds intervals 

(n=5; error bars=±SD).The data was normalized against 2 seconds interval pulses and 

compared using the t-test and the differences were considered significant when *p < 0.01, 

***p < 0.001. 

 

5.2.1.4.4. Effect on cardiomyocyte contraction at different calcium concentrations 

In this section, the effect of calcium concentration on cardiomyocyte contraction was studied. 

For this, the calcium concentration in the Krebs-Henseleit solution was increased from 1 to 2, 

3 and 4 mM. The experiments were carried out as described in section 2.2.11.2. Figure 5.15 

shows the profile of one representative experiment. 
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Figure 5.15. Effect of calcium concentration on cardiomyocyte contraction (the calcium 

concentration of the Krebs-Henseleit solution was increased from 1 to 2, 3 and 4 mM). 

 

Figure 5.16 and 5.17 shows the effect on ‘time to peak 90%’ and ‘time to baseline 50%’ of 

the cardiomyocytes on the P(3HO) polymer, when the calcium concentration in the Krebs-

Henseleit solution was increased from 1 to 2, 3 and 4 mM, respectively. Results show that no 

differences were observed between the data obtained for the polymer and control at different 

calcium concentrations. An increment in the ‘time to baseline 50%’ was observed in the 

control but not in the polymer when the calcium concentration was increased from 2 to 3 and 

4 mM. 
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Figure 5.16. Response on cardiomyocyte beat duration, ‘time to peak 90%’, to an increment 

in Ca2+ concentration from 1 to 2, 3 and 4 mM on P(3HO) films (n=5; error bars=±SD). The 

data were compared using t-test. 

 

Figure 5.17. Response on cardiomyocyte beat duration ‘time from peak to 50% relaxation’ to 

an increment in Ca2+ concentration from 1 to 2, 3 and 4 mM on P(3HO) films (n=5; error 
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bars=±SD). The data were compared using the t-test and the differences were considered 

significant when *p < 0.05, **p < 0.01. 

Figure 5.18 shows the effect on cardiomyocyte contraction (% shortening) at 1, 2, 3 and        

4 mM calcium when grown on P(3HO) polymer. Data were normalized against 1 mM 

calcium. The results showed that no differences were observed between the control and 

polymer. A slightly higher response in the % of shortening is observed when the calcium 

concentration is increased from 1 to 2 and 3 mM in the polymer. 

 

 

Figure 5.18. Normalized contraction amplitude (% shortening) of rat cardiomyocytes on 

P(3HO) polymer at different calcium concentrations (n=5; error bars=±SD). The data were 

normalized against 1 mM calcium and compared using t-test. 
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5.2.2. P(3HO), SIS and pericardium   

The SIS and pericardium were characterized in terms of mechanical properties, thermal 

properties, wettability, protein adsorption and surface roughness. The SIS and pericardium 

properties were then compared with the properties of P(3HO). Mechanical properties were 

determined using Dynamic Mechanical Analysis as described in section 2.2.10.1. The 

pericardium and SIS mechanical profile are represented in a static strain vs. stress plot shown 

in Figure 5.19 and Figure 5.20, respectively. The initial slope of the plot corresponds to the 

Young’s modulus and the obtained value was 0.4 ±0.1 MPa and 329.9±2.2 MPa for the 

pericardium and SIS, respectively. Section 5.2.1.2. shows that the P(3HO) Young’s modulus 

was 3.7±0.3 MPa. These results indicate that P(3HO) stiffness is more similar to the 

pericardium than SIS. In the case of the pericardium the tensile strength was 6.33 MPa and 

elongation at break 114.5%. For SIS the obtained tensile strength was 10.5 MPa and 

elongation at break 10%. The tensile strength and elongation at break for P(3HO) was 

3.4±0.2 MPa and 299±29 %, respectively. Comparison of the values showed that P(3HO) had 

the lowest tensile strength and the highest elongation at break and is hence a rather soft and 

flexible polymer. 

 

 

Figure 5.19. Static strain vs. stress profile of pericardium. 
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Figure 5.20. Static strain vs. stress profile of SIS 

 

The thermal properties of the two biological membranes were studied by Differential 

Scanning Calorimetry, as described in section 2.2.10.2. Figure 5.21 and 5.22 show the 

thermal profiles obtained for the pericardium and SIS, respectively. As collagen is the main 

constituent of both membranes, the thermograms showed a typical denaturation peak starting 

at 70 ºC, which corresponds to the collagen denaturation temperature as found in literature 

(Samouillan et al., 2011). The peak observed at 5 ºC for the pericardium belongs to the 

solvent in which the tissue was preserved. As described in section 5.2.1.2, P(3HO) showed a 

melting temperature of 43.7±4.1 ºC, indicating a lower processability of the polymer respect 

to the two biological tissues. 
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Figure 5.21. Thermal profile of the pericardium. The arrow shows the typical denaturation 

peak starting at 70 ºC. The first peak observed at 5 ºC corresponds to the solvent used to 

preserve the tissue. 

 

Figure 5.22. Thermal profile of SIS. The arrow shows the presence of one main peak starting 

at 70 ºC which shows the denaturation of the membrane.  
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Wettability studies were carried out with a contact angle meter as described in section 

2.2.10.3. The contact angle obtained for the pericardium was 41.6±9.6 º and for SIS was 

96.2±6.6 º. These results show that the pericardium surface is hydrophilic, while SIS surface 

is hydrophobic. The P(3HO) water contact angle was 101.1±0.8 º, hence, the P(3HO) 

wettability is similar to that of SIS. The thicknesses of both biological membranes and the  

5 wt% P(3HO) were measured and results were as follows: P(3HO) 0.18 mm, SIS 0.16 mm 

and pericardium 0.58 mm. Hence, the thickness of the P(3HO) film used in this study was 

similar to SIS and less than that of the pericardium. Surface roughness analysis was carried 

out by SEM and white light interferometry as described in section 2.2.10.4 and 2.2.10.5, 

respectively. Figure 5.23 shows the SEM images for pericardium. These pictures reveal an 

uneven surface. Figure 5.24 shows the SEM images obtained for SIS. In these pictures it is 

possible to recognize the presence of some cells and veins that were not removed from the 

membrane which would increase the roughness of the surface. 

 

Figure 5.23. SEM images of pericardium at different magnifications. 

 

Figure 5.24. SEM images of SIS at different magnifications. 



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CHAPTER	  5	  
	  

	  

134	  

The surface roughness results for both membranes are shown in Figure 5.25. The values 

obtained for the membranes were 1.51 µm for pericardium and 2.20±0.01 µm for SIS. As 

expected, the surface roughness values for both membranes were higher than the surface 

roughness values obtained for P(3HO) films (0.17 µm) (section 5.2.1.3). 

(A) 

 

(B) 

 

 

Figure 5.25. Surface roughness analysis of (A) pericardium and (B) SIS. Ra describes the 

average surface roughness, Rmax, the maximum roughness depth, RZDIN, the average peak to 

valley height minus Rtm and Rtm is the average distance between the highest peak and lowest 

valley in each sample. 

 

It is well known that as soon as a foreign body is implanted in the body, proteins are adsorbed 

onto the surface of the implant. As a result, it is expected that cells interact with the 

biomaterial surface rather than directly with the material itself. Hence, the initial protein 

adsorption onto a biomaterial surface is a key factor that will determine how the body will 

Ra =          1.51 µm 
Rmax =     18.35 µm 
RZDIN =  12.54 µm 

Ra =          2.02 µm 
Rmax =     20.19 µm 
RZDIN =  15.91 µm 

Ra =           1.75 µm 
Rmax =      15.22 µm 
RZDIN =   12.98 µm 

Ra =          1.51 µm 
Rmax =     15.19 µm 
RZDIN =  12.64 µm 
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react to an implanted material (Anderson et al., 1990, Tang et al., 1995). The protein 

adsorption on both biological membranes and the P(3HO) film were measured as described in 

section 2.2.10.6 and results are represented in Figure 5.26. For this, films were incubated in 

foetal bovine serum and the total adsorbed protein was quantified. Results showed that 

protein adsorption on P(3HO) films is considerably lower than the SIS and the pericardium. 

Figure 5.26. The concentration of proteins adsorbed on the surface of the P(3HO) films vs. 

SIS and pericardium (n=3; error bars=±SD). The data were compared using ANOVA and the 

differences were considered significant when ***p < 0.001. 

In order to confirm the integrity of the proteins adsorbed on the surface of the structures and 

to verify the origin of these proteins, adsorbed proteins were run on a SDS-PAGE gel. Figure 

5.27 shows the gels. As albumin is the main protein present in the serum the presence of the 

band at 66 KDa in all the samples confirms the integrity of this protein. In the case of the 

pericardium and SIS, results show that not only albumin but also other proteins were eluted 

(Figure 5.27 (B) and (C)). The fact that some bands appear in the negative control, in which 

the membranes were not treated with FBS, indicates that proteins that were originally present 

on the surface of the pericardium and SIS were not completely removed. In the case of SIS 

(Figure 5.27 (C)), the membrane showed a high concentration of protein that eluted from the 
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membrane and a low concentration of albumin. Some of these proteins did not appear either 

in the negative control in which PBS was used instead of FBS or the positive control where 

FBS was loaded, hence, it was not possible to confirm the origin of these proteins. However, 

it is possible that these proteins were present in the serum and due to the fact that the 

concentration of albumin in the serum in significantly higher than other proteins they are not 

visible in the positive control. Hence, we can suggest that SIS has higher affinity for other 

proteins as compared to albumin. 

 

Figure 5.27. SDS-PAGE showing the integrity of the proteins adsorbed on the surface of A) 

P(3HO) films B) Pericardium and C) SIS. MK: Bio-rad® reference protein ladder; C-: 

negative control that contains the proteins eluted from the membranes without FBS treatment; 

FBS: whole serum; PHO1, PHO2 and PHO3: proteins eluted from the P(3HO) film after FBS 

treatment; P1,P2 and P3: proteins eluted from pericardium after FBS treatment; S1, S2 and S3: 

proteins eluted from SIS after FBS treatment. 

Table 5.1 summarizes the results obtained from the various analyses carried out on P(3HO), 

pericardium and SIS.  

A) MK	  	  C	  -‐	  FBS	  	  PHO1PHO2PHO3	  	  	  	  	  	  	  	  	  	  	  	  B)  MK	  	  	  	  C	  -‐	  	  	  FBS	  	  P1	  	  	  	  	  P2	  	  	  	  	  	  	  P3	   C) MK	  	  C	  -‐	  	  FBS	  	  S1	  	  	  	  	  S	  2	  	  	  	  	  	  	  	  S3

250	  -‐-‐-‐-‐-‐	  
100	  -‐-‐-‐-‐-‐	  
150	  -‐-‐-‐-‐-‐	  
	  75	  -‐-‐-‐-‐-‐-‐	  
	  66	  -‐-‐-‐-‐-‐-‐	  
	  50	  -‐-‐-‐-‐-‐-‐	  

	  37	  -‐-‐-‐-‐-‐-‐	  

	  25	  -‐-‐-‐-‐-‐-‐	  

	  20	  -‐-‐-‐-‐-‐-‐	  

	  15	  -‐-‐-‐-‐-‐-‐	  

	  10	  -‐-‐-‐-‐-‐	  

250	  -‐-‐-‐-‐-‐	  
100	  -‐-‐-‐-‐-‐	  
150	  -‐-‐-‐-‐-‐	  
75	  -‐-‐-‐-‐-‐-‐	  
66	  -‐-‐-‐-‐-‐-‐	  
50	  -‐-‐-‐-‐-‐-‐	  

37	  -‐-‐-‐-‐-‐-‐	  

25	  -‐-‐-‐-‐-‐-‐	  

20	  -‐-‐-‐-‐-‐-‐	  
15	  -‐-‐-‐-‐-‐-‐	  

10	  -‐-‐-‐-‐-‐	  

250	  -‐-‐-‐-‐-‐-‐	  
150	  -‐-‐-‐-‐-‐-‐	  
100	  -‐-‐-‐-‐-‐-‐	  	  	  

	  	  	  75	  -‐-‐-‐-‐-‐	  
	  	  	  66	  -‐-‐-‐-‐-‐	  

	  	  	  50	  -‐-‐-‐-‐-‐	  

	  	  	  37	  -‐-‐-‐-‐-‐	  
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Table 5.1. A summary of the results obtained from the characterization of the P(3HO) film, 

SIS and pericardium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the biomaterial’s surface properties have been extensively described to have an 

effect on cell adhesion and proliferation, no general principles that allow the prediction of 

cell behaviour have been established and this has to be specifically determined in each 

particular case. In the following experiment the effect of the polymer and the two biological 

membranes on cell attachment and proliferation was assessed. To this end, myoblast cells 

(C2C12) were seeded on the P(3HO) films, pericardium and SIS, as described in section 

2.2.11.3.3. The cell adhesion and proliferation were measured after 24 hr of cell seeding with 

the MTT colorimetric assay (section 2.2.11.3.4). The results obtained were normalized 

against the cell proliferation observed on tissue culture plates. The results showed no 

significant difference in the % cell proliferation observed on P(3HO) and SIS, at 24 hr 

(Figure 5.28). A 14 % higher cell proliferation was observed on the pericardium in 

comparison to P(3HO) or SIS.  

 

 

 P(3HO) Pericardium SIS 

Young'smodulus (MPa) 3.7±0.3  0.4 ±0.1 329.9±2.2 

Tensile strength (MPa) 3.4±0.2 6.3 10.5  

Elongation at break (%) 299±29 114.5 10 

Melting temperature (ºC) 43.8±4.1 60 60 

Water contact angle 101.1±0.8 41.6±9.6 96.2±6.6 

Thickness  (mm) 0.18 0.58 0.16 

Surface roughness (µm) 0.17 1.51 2.20±0.01 

Protein adsorption (µg/mL) 108.61±40.30 648.06±80.30 954.17±150.70 
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Figure 5.28. % Cell proliferation of C2C12 cell line at 24 hr on P(3HO), SIS and 

pericardium (n=4; error bars=±SD). The data were compared using ANOVA and the 

differences were considered significant when *p < 0.05. 

SEM was carried out to visualize myoblast cells grown on the different materials. Sample 

preparation for the SEM analysis was performed as described in section 2.2.10.4. SEM 

images are shown in Figure 5.29. Although the % cell proliferation is compared between a 

P(3HO) neat structure and two 3D structures, similar proliferation was observed between 

P(3HO) and SIS and comparable values were obtained with the pericardium. 

*

*
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Figure 5.29. SEM images of C2C12 cells after 24 hr at different magnifications growing on 

A), B) and C) P(3HO) neat film; D), E) and F) SIS membrane and G), H), I) pericardium. 
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5.3. DISCUSSION 

Medium chain length PHAs, with a typical monomer chain length from 6-16 carbon atoms, 

are polymers produced in Gram-negative bacteria, mainly Pseudomonas sp. Mcl-PHAs are of 

great interest because according to the number of carbons in the side chain, the physical 

properties of these biodegradable polymers can be varied, allowing the production of tailor 

made materials. Previous reports have shown that mcl-PHAs are flexible elastomeric 

polymers, with low crystallinity, low glass transition temperature, low tensile strength, and 

high elongation to break (Zinn et al., 2001). In this chapter we studied poly(3-

hydroxyoctanoate), a mcl-PHA, as a potential material for cardiac tissue engineering. P(3HO) 

was known to be produced as an homopolymer by P. medocina, as described by Rai et al., 

(2011a).  

5.3.1. P(3HO) properties 

P. mendocina was grown in 2 L bioreactors, in MSM media, with sodium octanoate as the 

sole carbon source and PHAs were extracted and characterized. Structural characterization of 

the polymer was carried out by FTIR, GC-MS and NMR and results showed that, as 

expected, the produced polymer was the P(3HO) homopolymer. 

The mechanical properties of the material will play an essential role in supporting the injured 

organ during regeneration. The P(3HO) mechanical properties were measured using dynamic 

mechanical analysis. As myocardial stiffness is considered to be an essential myocardial 

property, especially during the diastole, P(3HO) stiffness was quantified by examining the 

relationship between stress and strain (Watanabe et al., 2006). According to our results the 

Young’s modulus of the P(3HO) neat film was 3.7±0.3 MPa. This value shows that the 

P(3HO) stiffness is approximately one order of magnitude higher as compared to that of 

myocardial structures (human myocardium stiffness 0.02-0.5MPa). Further experiments will 

include production of P(3HO) structures that will decrease the material’s Young’s modulus. 

The ability to resist breaking under tensile stress is one of the most important properties of 

materials used in structural applications. The tensile strength obtained for P(3HO) was 

3.4±0.2 MPa. Although this value is higher than myocardial structures (human myocardium 

tensile strength 3-15 KPa), a higher tensile strength might have a positive effect as after a 

myocardial infarction, the abrupt loss of myocardium triggers a ventricular remodeling that 
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includes dilatation, hypertrophy, and the formation of a collagen scar that increases the load 

of the infarcted region. Furthermore, it has been described that negative ventricular 

remodeling continues for weeks or moths until the distending forces the cardiac tissue are 

counterbalanced by the tensile strength of the collagen scar, hence, a higher tensile strength 

could have a positive effect after a myocardial infarction (Sutton et al., 2000). The percentage 

elongation at break of P(3HO) recorded at the moment of rupture of the specimen, expressed 

as a percentage of the original length was 299±29 %. This value is similar to the upper limit 

of myocardial structures (human myocardial elongation at break is between 100-300 %). 

Thermal analyses of P(3HO) showed two peaks corresponding to the glass transition 

temperature and melting temperature observed at -32.9±3.8 ºC and 43.7±4.1 ºC during the 

first heat scan, respectively. A glass transition temperature below room temperature and the 

low melting temperature, which reflects the low crystallinity of the polymer imparts to the 

material an elastomeric behavior. No melting temperature peaks were observed during the 

second heat scan as P(3HO) polymer chains were unable to rearrange again into ordered 

structures during the cooling run after the melting process.   

The surface of the biomaterials plays a significant role in determining the outcome of the 

biological system and biomaterial interaction (Flemming et al., 1999). Biomaterials interact 

with the biological environment at their surface, making the characterization of the surface 

crucial for understanding subsequent biological effects. In order to study the surface 

properties of the P(3HO) polymer, films were created by the solvent casting technology. The 

hydrophobicity of a biomaterial surface is directly related to cell adhesion. The cell adhesion 

to a surface occurs by adhesion receptors present in the cell that binds to proteins adsorbed on 

the surface and the conformation of these proteins depends on the surface wettability (Lee et 

al., 2003). It has been described that the water contact angle of hydrophobic surfaces is 

higher or equal to 90º (Li, 2011). The P(3HO) water contact angle was 101.1 ± 0.8º. This 

value showed that the P(3HO) film surface is hydrophobic, however, the value is not much 

higher than the upper limit of 90o, known for hydrophilic surfaces. In general, hydrophilic 

surfaces display better affinity for cells but lower affinity for many proteins as compared to 

hydrophobic surfaces (Lampin et al., 1997).  

Finally, SEM analysis and surface roughness studies revealed that the P(3HO) neat films 

present a smooth surface. With regard to roughness of the surface affecting the growth of 

different kinds of cells, most researchers have shown that increased surface roughness has a 
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positive effect on cell adhesion (Richert et al., 2008). Further experiments in this thesis will 

include surface functionalization of the P(3HO) film in order to promote cell adhesion and 

growth. 

 

5.3.2. Use of P(3HO) in cardiac tissue engineering 

The interaction of cardiomyocytes with the extracellular matrix is essential for the proper 

functioning of cardiomyocytes since the extracellular matrix provides an adhesive surface for 

cells and a structural organization to the tissue (Gupta et al., 2006). In the second part of this 

chapter, the effect of P(3HO) on freshly isolated cardiomyocytes was assessed. In a 

preliminary study, cardiomyocytes were seeded on P(3HO) polymer films and the number of 

live vs. dead cells was measured at different time points. Results were compared to the 

control in which plastic tissue culture was used. Results showed a slightly higher number of 

live cells on P(3HO) than in the control (tissue culture plastic) at different time points. These 

results suggest that P(3HO) is not toxic and a good cell adhesive surface for the 

cardiomyocytes.   

The proper contraction of individual cardiomyocytes is essential for the normal functioning 

of the heart. Intracellular calcium is the main factor that regulates cardiomyocyte contraction. 

First, an action potential leads to the opening of L-Type calcium channel present in the 

membrane of the cells. Second, the calcium entering the cells triggers the release of calcium 

from the sarcoplasmatic reticulum, leading to a marked increase of cytosolic calcium 

concentration. High concentrations of intracellular calcium initiate the interaction of 

contractile filaments and subsequent contraction. Relaxation occurs by the removal of 

calcium from the cytosol by calcium transporters. It has been described that Gap junctions 

coordinate the contraction of individual cardiomyocytes and this force is transduced to the 

extracellular matrix, which coordinates the overall contraction of the heart (Harvey et al., 

2011). Engler et al., (2008) have shown that the culturing of embryonic cardiomyocytes on a 

series of substrates of different elasticity has a significant effect in the transmission of 

contractile work and that cells in a rigid matrix are deficient in the assembly of contractile 

proteins and their beating frequency slows down over time. As a result, the extracellular 

matrix to which cardiomyocytes attach is a key factor for a highly regulated system such as 

the heart. In order to analyze the effect of P(3HO) on isolated cardiomyocyte contraction, 

fresh cardiomyocytes were seeded on P(3HO) coated cover slips and the effect of a range of 
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frequencies on the cardiomyocyte contraction was examined. Results show that no significant 

differences were observed between the polymer and the control (glass cover slips) in terms of 

‘time to peak 90%’, ‘time to baseline 50%’ and the amplitude of contraction (% shortening). 

As expected, increasing stimulation frequencies, leads to a progressive decrease in the 

amplitude of contraction in myocytes due to a shorter time for cytosolic calcium 

replenishment. Decreased function of individual cardiomyocyte contraction is known to lead 

to the deterioration of cardiac performance. Our results showed that the polymer is not 

reducing the effect of frequency on cardiomyocytes. Differences were observed with ʻtime to 

peak 90%ʼ when the frequency of stimulation was increased from every 5 to 0.5 seconds in 

both polymer and control. When the frequency of stimulation was increased from every 5 to 

2, 1 and 0.5 seconds, a significant diminution in ‘time to baseline 50%’ was observed in the 

control but not on the polymer. Additionally, when the frequency of the electrical impulse 

was increased from 5 to 0.5 seconds, the cardiomyocyte contraction decreased significantly in 

the control but not on the polymer. The decrease in time to relaxation might lead to a 

decrease in the contraction amplitude for the control. There is a usual negative effect at high 

frequencies due to a reduction in the time for calcium replenishment, which leads to a 

diminution in the contraction amplitude performance. However, this negative effect on the 

contraction performance with increment in electrical impulse frequency was not observed in 

the case of P(3HO).  

As described before, calcium is a central regulator of cardiac contractibility. We have studied 

the effect of increasing calcium concentrations on cardiomyocyte contraction. It has been 

reported that an intracellular calcium increment leads to an increment in the force of 

contraction that results in a higher contraction amplitude until a saturation point at which no 

further increment in contraction occurs (Bers 2000). Our results show that no significant 

differences were observed between the polymer and the control in terms of ‘time to peak 

90%’, ‘time to baseline 50%’ and amplitude of contraction (% shortening). As expected, an 

increment in cardiomyocyte contraction was observed when the concentration of calcium was 

increased from 1mM to 2mM on both the polymer sample and the control, reaching a point of 

maximum contraction. Additionally, a slight increment was observed in ‘time to baseline 

50%’ when the concentration of calcium was increased from 2 to 3 and 4 mM in the control 

but not on the polymer. These results showed that the polymer is not reducing the effect of 

calcium.  
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In agreement with Engler et al., (2008), who observed a reduced contraction ability of 

cardiomyocytes in rigid surfaces, our results showed a reduction in the contraction amplitude 

at high frequencies of electrical impulses in the rigid surface of the control in contrast to the 

constant contraction amplitude observed on the surface of the P(3HO) elastomeric polymer. 

Our results showed that P(3HO) did not have a deleterious effect on the contraction of adult 

cardiomyocytes and hence P(3HO) is a potential material that can be effectively used in 

myocardial tissue engineering. 

 

5.3.3. P(3HO), SIS and pericardium 

Over the past years, different materials have been proposed to support and regenerate the 

myocardial infarcted tissue as adult cardiomyocytes lack the capacity for self-repair or 

regeneration. Among these materials are porcine small intestinal submucosa (SIS) and bovine 

pericardium. SIS is an extracellular matrix rich in collagen, glycosaminoglycans and 

fibronectin (Perla et al., 2006). This membrane has been used as a biomaterial for soft tissue 

engineering in different tissues including the artery, abdominal body wall, skin and the 

urinary tract (Badylak et al., 1989, Campodonico et al., 2004, Kim et al., 2005 and Zhang et 

al., 2003). On the other hand, bovine pericardium is an extracellular membrane mainly 

composed of collagen and elastin. Bovine pericardium is commonly used in the repair of 

vascular tissue, cardiac tissue, the urinary tract and in thoracic surgery (Li et al., 2011, 

Provencher et al., 2003, Us et al., 2004). In order to understand and compare the properties of 

SIS and the pericardium with P(3HO), in the first part of the chapter we have focused on the 

characterization of these two biological membranes available in the market. As discussed 

previously, mechanical properties play a key role in supporting the organ during the 

regeneration process. Mechanical properties of SIS and the pericardium were determined by 

dynamic mechanical analysis. Figure 5.19 and 5.20 show the mechanical profiles obtained for 

each membrane. The initial slope of the plot corresponds to the Young’s modulus and the 

obtained values were 0.4 ±0.1 MPa and 329.9±2.2 MPa for pericardium and SIS, 

respectively. These results showed that stiffness of these two materials, used as cardiac 

patches by different groups, differs in three orders of magnitude (Pires et al., 1999, Rosen et 

al., 2005). It is important to mention that an unusual mechanical profile was obtained in the 

case of pericardium. The reason of this observation could be related to the dehydration of the 

membrane at room temperature during the measurement. Section 5.2.1.2 shows that the 
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Young’s modulus of P(3HO) was 3.7±0.3 MPa and hence, the P(3HO) stiffness is closer to 

pericardium. In order to achieve a contraction in unison with the heart, it is important that the 

biomaterial has similar mechanical properties to the heart tissue. As described previously, the 

Young’s modulus of the human myocardium is 0.02-0.5 MPa. Consequently, we can 

conclude that only the bovine pericardium stiffness is in the range of myocardial structures. 

In case of the pericardium, the tensile strength was 6.33 MPa and elongation at break was 

114.5%. For SIS the obtained tensile strength was 10.50 MPa and elongation at break 10%. 

The tensile strength and elongation at break of myocardial structures have been found to be 

3-15 KPa, and 100-300%, respectively. The tensile strength of P(3HO) was 3.4±0.2 MPa and 

299±29 %, respectively. Therefore, these results confirmed that the P(3HO) and pericardium 

elongation at break values and the P(3HO) tensile strength value showed values closest to 

myocardial structures. Hence, our results suggest that P(3HO) mechanical properties are very 

similar to that of the pericardium, a material that is currently used in cardiac surgery. This 

confirms that P(3HO) has the potential to be used equally successfully in cardiac tissue 

engineering. 

The thermograms of the pericardium and SIS showed denaturation at 70 ºC, corresponding to 

collagen denaturation. Collagen is a major component of both membranes. The melting 

temperature for P(3HO) was measured to be 43.8±4.1 ºC, hence, both membranes can be 

predicted to have better processability/stability at higher temperatures as compared to 

P(3HO).   

Surface studies including wettability, surface roughness and protein adsorption for 

pericardium and SIS were also carried out. The contact angle obtained for the pericardium 

was 41.6±9.6 º and for SIS was 96.2±6.6 º. As described previously, the water contact angles 

smaller or equal to 90º are characteristic of hydrophilic surfaces (Li, 2011). In this case, the 

pericardium was found to have a hydrophilic surface, whereas SIS was found to have a 

hydrophobic surface. The P(3HO) filmʼs wettability properties were similar to SIS, indicating 

that the P(3HO) surface was hydrophobic in nature. The surface roughness values for the 

pericardium and SIS were 1.51 µm and 2.20±0.01 µm, respectively. Finally, protein 

adsorption/elution studies showed significantly higher proteins concentration on the SIS and 

pericardium surface as compared to neat P(3HO) films. However, SDS-PAGE results suggest 

that some of the eluted proteins from both the membranes were present on the membranes 

before the FBS treatment. It is important to point out that although adsorbed proteins on the 

surface have a positive effect in cell adhesion, the presence of proteins on the membranes is 
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much less desirable because it can elicit adverse host responses such as blood coagulation and 

complement activation (Hlady et al., 1996).  

Due to the continuous contractile activity of myocytes, cardiac tissue has high oxygen and 

nutrient’s demand and hence, a high level of vascularization is essential. It has been found 

that absence of vasculature in tissues thicker than 300 µm can be a limiting factor in the 

selection of a material for cardiac tissue engineering (Bronzino 2006). The thickness of the 

P(3HO) sample, pericardium and SIS were 0.18 mm, 0.58 mm and 0.16 mm, respectively. 

These results show that the thickness of the pericardium is higher than desired values. 

The cell proliferation on P(3HO), SIS and the pericardium was studied using the C2C12 

myoblast cell line. Results showed that at 24 hr, the % cell proliferation on both P(3HO) and 

the pericardium were similar. Higher % cell proliferation was observed for the pericardium at 

24 hr as compared to SIS and P(3HO). As P(3HO) was processed in to a neat film, lower cell 

proliferation on its surface was expected, hence surface modifications of P(3HO) were 

carried out in future experiments. However, contrary to expectation, P(3HO) as a neat film 

showed similar cell proliferation values as SIS and values comparable to that of the  

pericardium. In conclusion, our results showed that P(3HO) is a promising material for the 

fabrication of engineered grafts for cardiac tissue engineering applications.  



 

 

 

CHAPTER 6 

Production of P(3HO) based 

cardiac patches 
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6. 1. INTRODUCTION 

Myocardial tissue engineering is based on the regeneration of cardiac tissue by the 

implantation of cells, capable of forming cardiomyocytes and grown on a biocompatible and 

biodegradable scaffold, which eventually will be implanted onto the injured site of the heart. 

The combination of living cells seeded onto a biomaterial has been proposed as an alternative 

option to replace the scarred non-contractile fibrous tissue caused post-infarction (Jawad et 

al., 2008). 

Williams et al., (1999) defined six key requirements for a biomaterial to succeed in cardiac 

tissue engineering: (1) biocompatible, (2) support cell adhesion and growth, (3) guide and 

organize the cells, (4) allows cell ingrowth and passage of nutrients and waste products (5) 

biodegradable and (6) mechanical properties to support the organ during regeneration.     

Engineering biomaterials to promote cell adhesion and direct cellular behavior is crucial for 

the development of materials capable of restoring tissue function. Several reports have 

proven that cells are sensitive to the physical and chemical environment which determines 

cell specific migration, proliferation, differentiation and production of proteins which in turn 

influences tissue organization and regeneration (Jell et al., 2009). This chapter is devoted to 

the production of cardiac patches using P(3HO). Our first approach was the design of 

permeable porous structures with an appropriate surface structure for cell attachment that 

permits the ingress of cells and guides their growth, leading to tissue regeneration in three 

dimensions. Eventually, the polymer matrix would be degraded leaving behind new tissue. 

The diameter of the cardiomyocytes dictated the minimum pore size (Yang et al., 2001). The 

size of the fabricated porous structures were comparable to cardiomyocytes (250-300 µm) in 

order to allow cell permeation. Additionally, the mechanical properties were adjusted to 

match myocardial structures.  

Several reports have shown that the appropriate modification of the biomaterial’s surface can 

have a high impact on the biocompatibility, cell adhesion and cell interactions (Williams et 

al., 2011). As collagen is the main constituent of the extracellular matrix and exhibits a 

distinct fibrous architecture, in order to mimic such fibrous structure, the neat P(3HO) and 

porous film surfaces were modified using P(3HO) fibres, which were produced using 

electrospinning. In this technique, a syringe fitted with a nozzle is filled with polymer 

solution and an electric field is applied to the nozzle. As the electric field increases, a charge 

builds on the polymer solution. When the force due to the charge in the polymer solution 

exceeds the surface tension of the solution, a charged jet of polymer solution is released 
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(Doshi et al., 1995). P(3HO) fibres were deposited on neat and porous P(3HO) films. Curtis 

et al., (1999) have shown that cell adhesion, morphology and orientation can be highly 

affected by the size and shape of the topographical features on a polymer surface (Curtis et 

al., 1999). In order to find the optimal fibre size, myoblast cells were seeded on a range of 

fibres with different diameters. Optimal fibre size was selected according to the highest cell 

affinity and proliferation observed. Finally, P(3HO) neat and porous surfaces were modified 

with the optimal fibre size and the resulting cardiac patch prototypes were characterized. In 

vitro cell culture work was carried out to assess the final cardiac patches.  
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6.2. RESULTS 

6.2.1. P(3HO) porous patches 

Controlled porosity in biomaterials is a key factor when they are used as a physical support 

for cell adhesion and growth (Lebourg et al., 2008). In this study, porous P(3HO) films were 

created by the particle leaching method according to section 2.2.9.1 and the effect of porosity 

on the mechanical properties and on cell adhesion and proliferation were studied. For this, 

0.5% sucrose with controlled particle size ranging from 250 to 300 µm was used as porogen. 

Mechanical properties of the resulting porous films were measured using dynamic 

mechanical analysis, according to section 2.2.10.1. Figure 6.1 shows the mechanical profile 

of the porous films. It is expected that mechanical strength decrease with increasing porosity. 

In this case, the obtained Young’s modulus was 0.41±0.03 MPa. The Young’s modulus of 

neat P(3HO) film was measured to be 3.7±0.3 MPa (section 5.2.1.2). Hence, the stiffness of 

the material decreases by one order of magnitude. The obtained tensile strength and 

elongation at break were 0.7±0.1 MPa and 447±5 %, respectively. The tensile strength of the 

neat P(3HO) film was 3.4±0.2 MPa and the elongation at break was 299±29 % (section 

5.2.1.2). Hence, the incorporation of porosity in the film resulted in a decrease in its tensile 

strength and an increase in the elongation at break, as compared to the neat film.   

 

 

Figure 6.1. Static strain vs. stress profile of the P(3HO) porous films. The initial slope and 

the maximum elongation are indicated with a black line.   
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The surface wettability of the P(3HO) porous films was studied with a contact angle 

measuring device as described in section 2.2.10.3. The obtained water contact angle was 

104.9 ± 6.0 º. No differences were observed in terms of the surface wettability as compared to 

the neat film which also had a contact angle of 101.1±0.8 º. The surface roughness of the film 

was measured using the white light interferometry technique, as described in section 2.2.10.5. 

The results obtained showed that the surface roughness of the P(3HO) porous films was 

0.9±0.2 µm (Figure 6.2). The average surface roughness of the neat film was 0.17 µm and, 

hence, the incorporation of porous structures increases the surface roughness by 

approximately five times. Figure 6.3 shows the SEM images of the porous structures 

obtained, showing pore sizes ranging from 250 to 300µm. 

 

 

 

Figure 6.2. Surface roughness analysis of two representative samples of P(3HO) porous films 

created by the particle leaching method. Ra describes the average surface roughness, Rmax the 

maximum roughness depth, RZDIN the average peak to valley height minus Rtm and Rtm is 

the average distance between the highest peak and lowest valley in each sample. 

 

Ra =          0.90 µm 
Rmax =     23.15 µm 
RZDIN =  15.58 µm 

Ra =          0.82 µm 
Rmax =     22.80 µm 
RZDIN =  10.88 µm 

Continues	  on	  the	  following	  page	  
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Figure 6.3. SEM images of the P(3HO) porous films showing the structure of the pores at 

different magnifications. 

 

The protein adsorption of the P(3HO) porous films was measured as described in section 

2.2.10.6. The obtained values were compared with neat P(3HO) films. No significant 

differences were observed in terms of the protein adsorption properties with the incorporation 

of porous structures (Figure 6.4).  

 

 

Figure 6.4. Concentration of proteins adsorbed on the neat P(3HO) film vs. P(3HO) porous 

film (n=3; error bars=±SD). The data was compared using the t-test. 

 

In order to study the effect of porous structures on cell adhesion and proliferation, C2C12 

cells were seeded on the P(3HO) porous films and the % cell proliferation was measured at 

24 hr after seeding. Figure 6.5 compares the % cell proliferation observed on the surface of 
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neat P(3HO) and porous films, where the proliferation observed on tissue culture plates was 

considered to be 100%. The results showed that the % cell proliferation increased 2.5 fold 

when porous structures were incorporated on the P(3HO) films.  

 

 

Figure 6.5. The % cell proliferation of C2C12 cell line at 24 hr on neat P(3HO) films and on 

porous films normalized with respect to tissue culture plastic (n=4; error bars=±SD). The data 

were compared using the t-test and the differences were considered significant when ***p < 

0.001. 

 

SEM analysis was carried out in order to visualize the C2C12 myoblast cell line on the 

P(3HO) porous films. Samples were prepared as described in section 2.2.11.4. Figure 6.6 

shows typical SEM images observed for samples after 24 hr of cell growth. It was observed 

that at 24 hr, cells grew inside the pores and almost covered the pore structures.     
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 Figure 6.6. SEM images of C2C12 cells at 24 hr on porous P(3HO) films at different 

magnifications. 

 

6.2.2. P(3HO) fibres 

In order to mimic the fibrillar structure of the extracellular matrix which provides essential 

guidance for cell organization, survival and function, P(3HO) fibres were created by 

electrospinning, as described in section 2.2.9.2. Electrospinning is a process based on the 

production of fibres by the application of a high voltage source to a polymer solution in a 

suitable solvent. For the optimization of the electrospinning conditions, a range of P(3HO) 

solutions were created in acetone (0.2 wt%, 0.5 wt%, 0.6 wt%, 0.7 wt%, 1 wt% and 1.2 

wt%). Additionally, two sizes of inner diameter nozzles (330µm and 660µm) were tested at a 

range of flow rates (from 30 µl/min to 250 µl/min). A stable jet and homogeneous fibres were 

obtained when the 330 µm needle and 30 µl/min flow rate were used and the electric potential 

was adjusted (Figure 6.7). Higher electric potentials were required with lower polymer 
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concentrations. The electric potential used for the 1.2 wt%, 1 wt%, 0.7 wt%, 0.6 wt%, 0.5 

wt% and 0.2 wt% polymer solution were 8.9 KV, 10.9 KV, 11.4 KV, 11.6 KV 13.4 KV and 

13.8 KV, respectively. A distance of 15 cm between the needle and collector was used in all 

conditions tested.  

 

 

	  

	  

	  

	  

Figure. 6.7. The stable jet obtained with a 330 µm needle at a flow rate of 30 µl/min was 

employed for electrospinning. The arrow indicates the single stable jet obtained. 

 

The size of the fibres obtained in each condition was measured by optical microscopy and the 

results are shown in Table 6.1. It was observed that the fibre diameters decreased with 

decreasing P(3HO) concentration and particles rather than fibres were obtained with the 

lowest concentration. In, the case of 0.5 wt% P(3HO) solution, a transition between fibre 

formation and particle formation occurred, hence, both fibres and particles were obtained. 

Figure 6.8 shows optical images of the material obtained with different polymer 

concentration solutions. 

 

Table 6.1. Fibre and particle diameters obtained by electrospinning of different solutions of 

P(3HO) in acetone. Values are shown ± standard deviation. 

 

P(3HO)	  concentration	  (wt%)	   Fibre	  diameter	  (nm)	   Particle	  diameter	  (nm)	  

1.2	   750	  ±	  130	   -‐	  

1	   700	  ±	  100	   -‐	  

0.7	   630	  ±	  100	   -‐	  

0.6	   370	  ±	  90	   -‐	  

0.5	   340	  ±	  100	   660	  ±	  60	  

0.2	   -‐	   	  	  580	  ±	  120	  
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A)                                                       B) 

           

C)                                                        D) 

           

 E)                                                         F) 

           

 

Figure 6.8. Optical microscopy images of P(3HO) electrospun fibres/particles obtained with 

varying concentrations of P(3HO) solutions in acetone, after 10 seconds of collection: A) 1.2 

wt%, B) 1 wt%, C) 0.7 wt%, D) 0.6 wt%, E) 0.5wt% and F) 0.2wt%. 

In order to determine the most suitable fibre or particle size to be used for the design of 

cardiac patches, fibres or particles were collected from the 1.2 wt%, 1 wt%, 0.7 wt%, 0.6 

wt%, 0.5 wt% and 0.2 wt% polymer solution on glass slides for 10 minutes in order to ensure 
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that the full surface of the slides were covered. Contact angle measurements were performed 

on the glass slides coated with different P(3HO) fibre diameters, in order to determine 

differences in surface properties that would influence cell adhesion and proliferation. No 

differences were observed in terms of water contact angle between the 750 nm fibres, 700 nm 

fibres, 630nm fibres, and 340 nm fibres + particles (Figure 6.9). Smaller water contact angles 

were obtained with 580 nm particles than with the other fibres or particle diameters.  

 

Figure 6.9. Surface wettability properties of the different fibres or particles of different 

diameters, obtained by electrospinning (n=3; error bars=±SD).The data was compared using 

ANOVA and the differences were considered significant when ***p < 0.001. 

 

In the following experiments cell proliferation on the P(3HO) fibres was assessed with the 

C2C12 myoblast cell line. Cells were seeded on the glass slides coated with different sizes of 

P(3HO) fibres or particles. Cell adhesion and proliferation were determined after 24 hr using 

the MTT colorimetric assay, as described in section 2.2.11.3.4. Figure 6.10 shows the results 

obtained. Our results showed that an increment in fibre diameter resulted in a higher % cell 

proliferation, achieving the highest value of 196.8± 16.0 with 750 nm fibres. Also, cells 

showed preference for fibrous structures as compared to particle structures.  

***	  
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Figure 6.10. The % cell proliferation of C2C12 cell line normalized against cell growth on 

tissue culture plastic (n=4; error bars=±SD). The data were compared using ANOVA and the 

differences were considered significant when *p<0.05 and **p<0.01. 

 

Figure 6.11 shows the C2C12 myoblast cell line growing on glass slides coated with 750 nm 

electrospun P(3HO) fibres (Figure 6.20 (A), (C) and (E)) vs. slides coated with 370 nm 

electrospun P(3HO) fibres (Figure 6.20 (B), (D) and (F)) collected for ten seconds. In the 

case of cells growing on 750 nm fibres it was possible to identify cells attaching through their 

focal adhesions to the fibres.  
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A)                                                                            B) 

                   

C)                                                                           D) 

                

E)                                                                            F) 

                     

Figure 6.11. Optical microscopy images of C2C12 myoblast cell line grown on glass slides 

coated with: (A), (C) and (E) 750 nm electrospun P(3HO) fibres vs. (B), (D) and (F) 370 nm 
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electrospun P(3HO) fibres collected for ten seconds. A), B), C), D) 100x and E), F) 400x 

magnification. The cell’s focal adhesions attaching to the fibres are indicated with black 

arrows.  

 

Several studies have shown that fibrous matrices, which allow cell infiltration into their 

porous structure, are attractive substrates as tissue engineering scaffolds (Lee et al., 2011, 

Kurpinski et al., 2012). Pores in an electrospun fibrous structure are formed by differently 

oriented fibres and the size and shape of those pores will be directly related to the fibre 

concentration. In order to find the optimal concentration of fibres that will allow cell 

infiltration, in the next experiment, the collection times for the 750 nm fibres on glass slides 

were varied and the fibre concentration was evaluated by optical microscopy. Figure 6.12 

shows optical microscopy images of the 750 nm fibres at (A) 1 second, (B) 10 seconds, (C) 

30 seconds, (D) 60 seconds and (E) 90 seconds collection times. The selected collection time 

was 30 seconds (Figure 5.12 C), in which the fibres covered the entire surface, leaving some 

gaps for the cells to infiltrate. 

           

 

 

 

     A)                                                         B) 
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              C) D) 

              E)    F) 

Figure 6.12. Optical microscopy images of the 750 nm P(3HO) electrospun fibres at (A) 

1 second, (B) 10 seconds, (C) 30 seconds, (D) 60 seconds and (E) 90 seconds collection 

times.   

6.2.3. P(3HO) cardiac patches 

In this section the fabrication of cardiac patches is described. 750 nm fibres were collected 

for 30 seconds on neat and porous 5 wt% P(3HO) films. The surface of the resulting film was 

analyzed in terms of the wettability, surface roughness and protein adsorption. The 

visualization of the fibres by SEM was not possible due to the high temperature sensitivity of 

the P(3HO) fibrous structures which melted under the SEM focused beam of high-energy 

electrons. In order to confirm that fibres were collected on the P(3HO) film surface, the 

patches were observed under the optical microscope (Figure 6.13).  

40µm	   40µm	  

40µm	   40µm	  
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Figure 6.13. Optical microscopy image of the 750 nm P(3HO) electrospun fibres at 30 

seconds collection time on the 5 wt% P(3HO) film. 

 

The surface wettability analysis was carried out as described in section 2.2.10.3. The water 

contact angles measured were 110.2± 3.7 for neat P(3HO) films containing 750 nm fibres and 

99.8 ± 1.9 for porous films containing 750 nm fibres. The water contact angle measured for 

the neat P(3HO) film was 101.1±0.8 (section 5.2.1.3) and for porous P(3HO) film was    

104.9 ± 6.0 (section 6.2.1). Surprisingly, an increment in the surface hydrophobicity was 

observed when neat films were functionalized with fibres and a decrease in the surface 

hydrophobicity was observed when porous films were functionalized with fibres. 

The surface roughness of the cardiac patches was measured according to section 2.2.10.5. 

The obtained values were 0.90±0.01 µm for neat films with 750 nm fibres and 1.1±0.1 µm 

for porous films with 750 nm fibres. The surface roughness of the neat P(3HO) film was  

0.17 µm and for the porous film was 0.9±0.2 µm (section 5.2.1.3 and section 6.2.1, 

respectively). As expected, an increment is the surface roughness was observed when films 

were functionalized with fibrous structures, achieving the maximum roughness when porous 

and fibrous structures were combined.                    
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(A) 

 

(B) 

 

 

 

 

 

 

Figure 6.14. Surface roughness analysis of two representative samples of A) P(3HO) neat 

film modified with 750nm fibres and B) P(3HO) porous films modified with 750nm fibres. 

Ra describes the average surface roughness, Rmax the maximum roughness depth, RZDIN the 

average peak to valley height minus Rtm and Rtm is the average distance between the highest 

peak and lowest valley in each sample. 

 

The protein adsorption capacity of the patches was assessed according to section 2.2.10.6. 

Results were compared with the neat P(3HO) and porous films (Figure 6.15). No significant 

differences were observed in terms of the protein adsorption capacity between the P(3HO) 

neat and porous films and the P(3HO) neat and porous films coated with fibres.  

 

Ra =        0.89 µm 
Rmax =     7.78 µm 
RZDIN =  6.60 µm 

Ra =         1,03 µm 
Rmax =    18,20 µm 
RZDIN =   9,71 µm 

Ra =         1,23 µm 
Rmax =    16,72 µm 
RZDIN = 11,98 µm 

Ra =        0,90 µm 
Rmax =     8,21 µm 
RZDIN =  6,68 µm 
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Figure 6.15. Concentration of proteins adsorbed on the surface of neat P(3HO) films, porous 

P(3HO) films, neat P(3HO) films + 750 nm fibres and porous P(3HO) films + 750 nm fibres 

(n=3; error bars=±SD). The data were compared using ANOVA. 

 

As the structure of the P(3HO) fibres was intended for cardiac tissue engineering, its 

suitability was evaluated in vitro using C2C12, a myoblast cell line. Cells were seeded on the 

cardiac patches as described in section 2.2.11.3.3 and the % cell proliferation was assessed at 

24 hr with the MTT colorimetric assay according to section 2.2.11.3.4. Cell proliferation 

results on the patches were compared with the values obtained for neat P(3HO) and porous 

films (Figure 6.16). Our results showed that a significant increment in the % cell proliferation 

was obtained when fibre structures were incorporated on the surface of the neat P(3HO) films 

and porous films. Similar values for cell proliferation were observed with the porous films 

and neat films modified with fibres, suggesting that both structures contribute in a similar 

way to cell proliferation. Finally, P(3HO) porous films containing the P(3HO) fibrous 

structures showed the highest cell proliferation rate and hence this was the best matrix for cell 

adhesion and proliferation.  
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Figure 6.16. The % cell proliferation of C2C12 cell line on neat P(3HO) films containing 

porous structures, fibrous structures and both fibrous and porous structures. Results were 

normalized against cell growth results on tissue culture plastic, used as a control (n=4; error 

bars=±SD). The data were compared using ANOVA and the differences were considered 

significant when **p<0.01 and ***p<0.001. 

 

SEM analysis was carried out to visualize the C2C12 myoblast cell line on the neat and 

porous P(3HO) films modified with fibres. Samples were prepared as described in section 

2.2.11.4. Figure 6.17 shows the SEM images obtained at 24 hrs. These results show that at  

24 hr the surface of the cardiac patches is covered with cells and new cells growing on top of 

the first cell layer can be observed.   
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A)                                                                    B) 

 

 

 

 

 

 

C)                                                                    D) 

            

 

 

        E)                                                               

 

 

E)                                                                    F) 

    

Figure 6.17. SEM images of C2C12 cells at 24 hr on A), B) and C) neat P(3HO) and C), D) 

and E) porous films modified with 750 nm fibres. 
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6.3. DISCUSSION 

6.3.1. P(3HO) porous patches 

In order to provide more space for incorporation of cells and to allow the formation of a three 

dimensional structure, pores were incorporated in to the cardiac patches. As P(3HO) is a 

biodegradable material, it is anticipated that the biomaterial structure will reabsorb leaving 

behind new tissue. P(3HO) based porous films were fabricated by the solvent cast particle 

leaching method. The average diameter of the porous structures were 250-300 µm, which is 

the size of human myocytes. It is important to mention that although porous structures 

provide more surface for cell residence, the number of porous structures that can be created 

are limited by the desired mechanical properties of the biomaterial. Materials with high 

porosities displayed diminished mechanical properties (Goldstein et al., 1995). As one of the 

main requirements for a biomaterial in cardiac tissue engineering is to support the high 

mechanical demands of the organ during regeneration, the porogen concentration, which 

would determine the porosity in the patch, was chosen to allow some cell ingrowth without 

substantial deterioration of the mechanical properties. For this, P(3HO) porous films were 

created with 0.5 wt% sucrose and the mechanical properties of the constructs were assessed. 

The Young’s modulus value of the porous film was 0.41±0.03 MPa. The Young’s modulus of 

the P(3HO) neat film was 3.7±0.3 MPa. These results show that with a 0.5 % porogen, the 

stiffness of the material decreases by one order of magnitude.  The Young’s modulus of the 

human myocardium is 0.02-0.5 MPa, hence, the stiffness of the P(3HO) porous film matches 

this range very well. As the lower value of myocardial stiffness is 0.02 MPa, it is possible to 

further increase the number of porous structures, decreasing the stiffness of the construct. 

However, after a myocardial infarction, the abrupt loss of myocardium triggers a ventricular 

remodeling which includes dilatation, hence increasing the load on the infarcted region. 

Hence we hypothesized that among the range of cardiac patches, the one with a higher 

stiffness is convenient for myocardial support (Sutton et al., 2000). The tensile strength and 

elongation at break measured for the porous material was 0.7±0.2 MPa and 447±5 %, 

respectively. The tensile strength of the P(3HO) neat film was 3.4±0.2 MPa and the 

elongation at break 299±29 %. With the incorporation of porous structures, the tensile 

strength of the cardiac patch was closer and elongation at break was a bit higher to that of 

myocardial structures. As, expected, an increment in the surface roughness was obtained with 

the incorporation of porous structures. Finally, although no differences were observed in 

terms of surface wettability and protein adsorption between the neat and porous P(3HO) 
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films, the % cell proliferation increased 2.5 times as compared to the neat film, when porosity 

was incorporated.  

 

6.3.2. P(3HO) fibres 

The extracellular matrix provides not only structural support to the cells but also regulatory 

cues for cells assembling into tissues, for growth and communication. As a result, one of the 

main goals in tissue engineering is to develop a tailored in vitro environment that mimics the 

intricate and organized meshwork of native extracellular matrix. As the extracellular matrix is 

mainly composed of collagen fibrils, the structure and topography of the fibres were recreated 

by electrospinning. Electrospinning is a versatile technique which allows the fabrication of 

nano and micro scale fibres or particles which mimic the extracellular matrix architecture. 

Different P(3HO) concentrations ranging from 0.2 wt% to 1.2 wt% were used to create 

electrospun fibres. The results obtained showed an increment in the fibre diameter from 340 

nm to 750 nm when the polymer concentration was increased from 0.6 wt% to 1.2 wt% 

(Table 6.1). These results were in agreement with Boland et al., (2001) who showed a direct 

relation between polymer concentration and electrospun fibre diameter. When the P(3HO) 

concentration was 0.5 wt%, both fibres and particles were obtained. Only particles where 

obtained with 0.2 wt% polymer solution.   

In order to find out the most suitable matrix for cells to grow, glass slides were coated with 

the different fibre sizes obtained. The surface wettability analyses of the samples showed no 

differences between 750 nm fibres, 700 nm fibres, 630 nm fibres, and 340 nm fibres + 

particles (Figure 6.9). Smaller water contact angles were obtained with the 580 nm particles 

than with other fibres or particle diameters, which indicated a more hydrophilic surface. 

C2C12 myoblast cells were seeded on the electrospun coated slides. The results obtained 

showed that the fibre diameter has a direct effect on cell adhesion and proliferation, with an 

increment in cell density with fibre size. In contrast to our results, Chen et al., (2007) 

observed an increment in fibroblast adhesion as a function of decreasing electrospun 

polycaprolactone fibre diameter from 1051 to 428 nm. Optical microscopy images revealed 

that the cell’s focal adhesions attach to the 750 nm fibres. It has been demonstrated that 

differences in fibre diameter result in highly significant differences in focal adhesion 

formation and cell proliferation (Hsia et al., 2011).  
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It is important to mention that fibre diameter also has a crucial role in controlling the pore 

diameter of the networks. It has been proven that increasing fibre diameter results in an 

increase in mean pore radius and hence cellular ingrowth (Eichhorn et al., 2005). Previous 

findings have shown that nanofibre structures impede cell migration into the scaffolds as they 

act as a sieve, keeping cells on the surface of the scaffold (Balguid et al., 2009). In order to 

allow cell migration into the interior of the electrospun fibres and porous structures, different 

collection times were assessed. The selected collection time was 30 seconds (Figure 6.12 C), 

the one in which the fibres have covered the full area leaving gaps for the cells to infiltrate. 

Note that the although some pores are smaller than myocardial cells, they should not impede 

cell migration as the fibres are lying loosely upon each other and cells can perform amoeboid 

movements to migrate through the pores by pushing adjacent fibres (Li et al., 2002).    

6.3.3. P(3HO) cardiac patches 

P(3HO) cardiac prototypes were fabricated by modifying the P(3HO) neat and porous films 

with 750 nm fibres. The surface of the construct was characterized by measuring the water 

contact angle, surface roughness and protein adsorption. It has been described that the 

wettability depends on the type of material as well as the surface treatment of the material 

(Lu et al., 1998). Our experiments showed an increment in the surface hydrophobicity when 

neat cardiac patches were functionalized with fibres. The reason is assumed to be an increase 

in the roughness of the surface. However, in contrast to our expectations, a decrease in the 

surface hydrophobicity was observed when porous cardiac patches were functionalized with 

fibres. The surface roughness of the cardiac patches was 0.90±0.01 µm for neat films with 

750 nm fibres and 1.13±0.14 µm for porous films with 750 nm fibres. The surface roughness 

of the neat P(3HO) film was 0.17 µm and hence with the incorporation of fibrous and porous 

structures, as expected, it was possible to increase the surface roughness by 6.5 fold. 

Although it could be expected an increment in the protein adsorption due to the structure of 

the patches, especially when porous structures were combined with fibres, no significant 

differences were observed between the different cardiac patches in terms of protein 

adsorption. 

Several reports show the influence of surface wettability, surface roughness and protein 

adsorption in the cell-biomaterial interaction, however, no general principles that can help in 

the prediction of cellular behavior by the combination of these parameters are known. 
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Therefore, cell adhesion and proliferation were assessed. Myoblast (C2Cl2) cell proliferation 

was analyzed and compared on neat P(3HO) patches, porous patches, neat P(3HO) cardiac 

patches with 750 nm diameter fibres and porous cardiac patches with 750 nm diameter fibres 

on their surface. The proliferation observed on these patches were 21.11±1.85 %, 53.83±3.05 

%, 41.60±2.40 % and 109.20±1.50 %, respectively, when proliferation observed in tissue 

culture plates was considered to be 100 %. Results showed that both porous and fibrous 

structures increased the % cell proliferation due to their higher surface area-to-volume ratio 

as well as their topographical features that can enhance cellular adhesion and proliferation. A 

higher cell proliferation was observed when porous structures were incorporated than with 

fibrous structures. P(3HO) porous films modified with 750 nm fibres resulted in the best 

matrix for cells to proliferate .  

Thus results from this study suggests that the P(3HO) porous cardiac patches functionalized 

with 750 nm fibres are promising materials to support the infarcted myocardium, due to their 

mechanical properties and to deliver cells in order to allow efficient tissue regeneration due to 

their good cell adhesion properties.   
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7.1. INTRODUCTION 

Cardiac tissue engineering aims to create constructs that can re-establish the structure and 

function of the infarcted myocardium. The basic strategy of tissue engineering includes the 

combination of living cells and a biocompatible material that mimics the structure of the 

extracellular matrix leading to the proliferation and differentiation of the seeded cells (Jawad 

et al., 2008). In addition to the engineered matrix, the cardiac cell microenvironment can be 

improved by the addition of adhesion, growth, migration or differentiation signals. In this 

chapter we have focused on the incorporation of protein based active factors capable of 

inducing vascularisation, modulating cell adhesion, favouring cell migration and 

differentiation, in the PHA based cardiac patches.  

The arginine-glycine-aspartic acid RGD tripeptide sequence is a cell attachment motif 

recognized by several adhesion receptors (Ruoslahti et al., 1996). Due to the widespread 

distribution of the RGD peptide, its use in a range of organisms and its high biological effect 

on cell adhesion, cell behaviour and cell survival, the RGD sequence is one of the most 

effective active molecule used in tissue engineering (Hersel et al., 2003). In the first part of 

this chapter, RGD motifs were immobilized on the P(3HO) film surfaces. The immobilization 

was carried out in two stages. First, the P(3HO) polymer was aminated and films were cast 

using solvent casting. Then, surface immobilization of the RGD peptide was carried out on 

the aminated solvent cast films. The presence of RGD motifs on the P(3HO) film surface was 

confirmed by FTIR, water contact angle studies and SEM.  

As cardiac tissue requires high oxygen levels due to the continuous contractile activity of the 

myocytes, the lack of vasculature in the engineered cardiac patches is the main cause of 

failure after implantation (Bronzino 2006, Cohen et al., 2012).  In order to promote 

angiogenesis and vascularisation, in this work, vascular endothelial growth factor (VEGF) 

was incorporated into the P(3HO) films (Neufeld et al., 1999).  

 

P(3HO) cardiac patches containing the immobilized RGD motifs or VEGF were 

characterized in terms of the mechanical, thermal and wettability properties. Cell 

proliferation studies were carried out using C2C12 myoblast cells on modified cardiac 

patches to determine the effect of RGD and VEGF effects on the biocompatibility of the  

P(3HO) based cardiac patch.  
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Finally, as VEGF has a short biological half-life and high tumorigenic potential, a sustained 

and controlled release is desirable (Faranesh et al., 2004). VEFG can be incorporated into the 

constructs or engineered and supplemented in microspheres separately for a controlled 

release. Biocompatible and biodegradable P(3HB) microspheres have shown a high loading 

efficiency and a controlled release with a high potential to be used in biomedical applications 

(Francis et al., 2011). In order to create a controlled release system, P(3HB) microspheres 

containing VEGF were produced from the polymer obtained from the recombinant  

B. subtilis phaC1-pHCMC04 described in Chapter 3.TheVEGF release from P(3HO) cardiac 

patches and P(3HB) microspheres was measured and compared over a period of a month.   
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7.2. RESULTS 
 
7.2.1. RGD immobilization 

The cell-polymer and cell-cell interactions play a key role in controlling cell adhesion, 

proliferation, migration and differentiation. Several reports show the role of the RGD peptide 

in controlling these interactions (Hersel et al., 2003, Rezania et al., 2008, Yoon et al., 2004). 

In order to improve the properties of the P(3HO) cardiac patches, RGD peptides were 

immobilized onto the surface of the patch. The RGD peptide immobilization protocol used in 

this project was adapted from Yoon et al., 2003, where RGD motifs were immobilized on 

PLGA (section 2.2.9.4). Firstly, the carboxylic acid terminal group of P(3HO) was aminated 

by reacting the polymer with hexaethyleneglycol-diamine. FTIR was carried out to confirm 

that the amination had occurred as described in Section 2.2.9.4.3. The FTIR spectrum 

obtained from the modified P(3HO) patch was compared with the neat P(3HO) patch (Figure 

7.1). Results show the presence of a band at 3400 cm-1, which corresponds to the N-H bond. 

Additionally, a band was observed at 1000 cm-1 confirming the presence of a C-N bond. 

These absorbance peaks were missing in the neat patch. This result confirmed that the 

P(3HO) patch had been successfully aminated.          

 
 
Figure 7.1. FTIR spectra of as synthesized P(3HO) polymer vs. aminated P(3HO) (P(3HO)-

NH2). The arrows at 3400cm-1 and 1000 cm-1 indicate the N-H and C-N bonds, respectively. 



CHAPTER	  7	  

175	  

The aminated P(3HO) polymer was blended with P(3HO) 50:50 and films were fabricated by 

the solvent casting technique. The resultant patches were modified with RGD tripetides on 

one side of the structure. In order to verify the presence of RGD motifs covalently linked to 

the membrane, FTIR was carried out according to section 2.2.9.4.3. The FTIR spectra 

obtained from the RGD immobilized P(3HO) film was compared with the as synthesized 

P(3HO) film (Figure 7.2). Results showed the presence of a strong band at 1287 cm-1 

corresponding to the C-N bonds present on the RGD-P(3HO) polymer. Also, other bands 

were observed at 825 cm-1, 1047 cm-1 and 1226 cm-1 due to the bend of the N-H bond and the 

stretch of C-O and C-O-C bonds from the PEG group linked to the structure, respectively. 

Note that, as expected, the band observed at 3400 cm-1corresponding to the –NH2 functional 

group in Figure 7.1 was not observed in this case. This is due to the fact that this terminal 

amine group would have reacted with the RGD sequence and hence the new terminal group is 

the carboxylic group from the RGD peptide.  

Figure 7.2. FTIR spectra of P(3HO) polymer vs. P(3HO)-RGD. The arrow at 1200 cm-1 

indicates the C-N bond. 

Several reports have shown the relation between RGD immobilization and surface 

wettability. It was observed that the incorporation of RGD structures on the surface of the 
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polymer has a direct effect in decreasing the hydrophobicity of the structure. In order to 

confirm the presence of RGD motifs linked to P(3HO) cardiac patches the surface wettability 

of the cardiac patches was analysed according to section 2.2.9.4.3 The water contact angle 

obtained for the P(3HO)-RGD film was 93.44±0.09°. P(3HO) water contact angle was 

101.12±0.82º (section 5.2.1.3). Our results show a significant decrease in the water contact 

angle which indirectly confirms the presence of the RGD immobilized peptide (Figure 7.3). 
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Figure 7.3. Surface wettability properties of P(3HO) vs. P(3HO)-RGD cardiac patches (n=3; 

error bars=±SD).The data were compared using t-test and the differences were considered 

significant when **p < 0.01. 

As described previously, mechanical properties of the cardiac patch play an essential role in 

the patch function supporting the heart during regeneration.  In order to study the possible 

influence of the P(3HO) modification on the patch mechanical properties, Dynamic 

mechanical analysis was carried out on P(3HO)-RGD cardiac patches according to section 

2.2.10.1. The Young’s modulus of the RGD modified film was 3.9 MPa. Section 5.2.1.2 

shows that P(3HO) Young’s modulus was 3.7±0.3 MPa, hence no differences were observed 

in terms of the material stiffness after the RGD modification. The tensile strength for 

P(3HO)-RGD was 0.66 MPa and elongation at break 426.53%. The tensile strength and 

elongation at break for P(3HO) was 3.4±0.2MPa and 299±29 %, respectively. These results 

show a decrease by 19% in tensile strength and an increase by 42% in elongation at break 

after the RGD modification. In order to visualize the surface of the modified cardiac patches, 

**	  
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SEM was carried out as described in section 2.2.10.4. Figure 7.4 shows the SEM images of 

P(3HO)-RGD cardiac patches. These pictures revealed that the incorporation of RGD 

peptides structures changed the surface morphology by introducing a rough topography to the 

surface. 

   A)                                                                   

 

B) 

    

Figure 7.4. SEM images of A) neat and B) RGD immobilized P(3HO) film at different 

magnifications showing the rough surface of the RGD modified cardiac patches compared to 

neat films. 
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7.2.2. VEGF incorporation in P(3HO) films 

As vascularisation and angiogenesis are key factors in cardiac tissue engineering, VEGF was 

incorporated into the P(3HO) films. The mechanical properties of the resulting cardiac 

patches were measured as described in section 2.2.10.1. The Young’s modulus obtained for 

the VEGF modified film was 6.82 MPa, the tensile strength was 0.56 MPa and the elongation 

at break was 449.32%. The tensile strength and elongation at break for P(3HO) was        

3.4±0.2 MPa and 299±29 %, respectively. These results show a decrease in tensile strength 

by 17% and an increase by 50% in elongation at break after the VEGF incorporation. The 

surface of the VEGF modified cardiac patches was analysed by water contact angle and 

SEM. The water contact angle of P(3HO) cardiac patches containing VEGF factor 

incorporated was 102.49 ± 1.40°. P(3HO) water contact angle was 101.1±0.8 ° (section 

5.2.1.3). These results show no differences in the surface wettability with the VEGF 

incorporation. The surface of the cardiac patches was visualized by SEM (Figure 7.5). SEM 

images show qualitatively a slight increment in the surface roughness compared to P(3HO) 

plain films.  

 

A)       
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B)           

 

Figure 7.5.SEM images of A) P(3HO) neat film and B) P(3HO) containing VEGF at 

different magnifications showing the surface of the films.  

 

7.2.3. Cell proliferation 

In this part of the study, the effect of P(3HO)-RGD immobilized cardiac patches and 

P(3HO)-VEGF on cell proliferation as compared to the neat polymer patch was studied. To 

this end, C2C12 myoblast cells were seeded on P(3HO) modified cardiac patches according 

to section 2.2.12.3.3 and cell proliferation was measured by the MTT colorimetric assay, as 

described in section 2.2.11.3.4. Figure 7.6 shows the % cell proliferation on P(3HO), 

P(3HO)-VEGF, P(3HO)-RGD and P(3HO)-VEGF+RGD cardiac patches when proliferation 

observed on tissue culture plastic was considered to be 100%. The % cell proliferation on 

P(3HO) films was 21.11±5.29 %. A significant increase in cell proliferation was observed 

when VEGF and RGD were incorporated into the P(3HO) cardiac patches. However, a higher 

cell proliferation was achieved with VEGF. A synergistic effect was observed when both 

VEGF and RGD were incorporated together, showing a highly significant effect on cell 

proliferation.   
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Figure 7.6. The % cell proliferation of C2C12 cell line at 24 hr on P(3HO), VEGF, RGD and 

VEGF+RGD modified P(3HO) patches (n=4; error bars=±SD).The data were compared using 

ANOVA and the differences were considered significant when *p<0.05,**p<0.01 and 

***p<0.001. 

 

7.2.4. VEGF encapsulation in P(3HB) microspheres 

VEGF was encapsulated in P(3HB) microspheres anticipating that this approach could lead to 

localised and controlled delivery. P(3HB) microspheres were fabricated according to section 

2.2.12.1. Fabricated microspheres containing VEGF were visualized with SEM. Figure 7.7 

shows the obtained images. SEM images reveal the spherical shape with a smooth surface 

morphology.The average size of the P(3HB) fabricated microspheres was 127.69±16.41 µm. 

As microsphere porosity plays an important role in determining the encapsulation efficiency 

and release kinetics, the porosity of the microspheres were determined using equation 2.4 

described in section 2.2.12.2 (Cai et al., 2013). The porosity of the microspheres was 

calculated to be 85±13 %. 

**	  
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*	  
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Figure 7.7.SEM images of P(3HB) microspheres, containing VEGF, at different 

magnifications showing the spherical and smooth surface of the microspheres. 

In order to confirm drug encapsulation and possible drug-polymer interactions, FTIR and 

DSC (described in section 2.2.12.4) were carried out. Unloaded microspheres were used as a 

negative control. The FTIR spectrum for VEGF loaded and unloaded microspheres are shown 

in Figure 7.8. The appearance of a band at 2978 cm-1 corresponding to the benzene ring of the 

tyrosine and phenylalanine aminoacids present in VEGF protein, indicate the presence of 

VEGF. No other differences were observed between the spectra of VEGF loaded and 

unloaded microspheres which indicated that either no covalent interaction had occurred 

between P(3HO) and VEGF or the amount of VEGF incorporated was too low to be observed 

using FTIR. 
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Figure 7.8. FTIR spectra of P(3HB) unloaded microspheres vs. VEGF loaded P(3HB) 

microspheres. The arrow at 2978 cm-1 indicates the aromatic groups present in the VEGF 

protein. 

The DSC thermograms for unloaded and VEGF loaded micrspheres are shown in Figure 7.9 

(A) and (B), respectively. The thermal properties of P(3HB) crude polymer obtained from 

the recombinant B. subtilis phaC1-pHCMC04 described in Chapter 3 were determined. The 

Tm and Tc values were 169.81ºC and 119.51ºC, respectively. For the unloaded microspheres 

the Tm was 167.07 ºC and Tc was 62.90 ºC. Finally, for VEGF loaded microspheres the Tm 

was 157.74 ºC and Tc was 92.33 ºC. These results showed a shift in the Tm towards lower 

temperature with crude P(3HB) ˃ unloaded microspheres ˃ VEGF loaded microspheres. On 

the other hand, a decrease in Tc was also observed when comparing crude polymer with 

unloaded and loaded microspheres. Note that VEGF does not appear as a separate peak and 

this might be due to the low amount of protein compared to the polymer. However, a change 

in the Tm and Tc values between the loaded and unloaded microspheres indicates the presence 

of VEGF in the VEGF loaded microspheres. Also, in the next section VEGF release was 

quantitatively measured using ELISA from the VEGF loaded microspheres confirming the 

successful encapsulation of VEGF. 
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A) 

 

B) 

 

Figure 7.9. Thermal profile of (A) unloaded P(3HB) microspheres and (B) VEGF loaded 

P(3HB) microspheres. The arrows in the pictures indicate the Tm and Tc obtained.  

 

7.2.5. VEGF release 

The cumulative in vitro release of VEGF from P(3HB) microspheres and P(3HO) cardiac 

patches was studied over 30 days, as described in section 2.2.12.5. The amount of VEGF 

released in the medium was measured using the Invitrogen® VEGF human ELISA kit. The 

cumulative VEGF release was normalized against the total experimental amount of drug 

Tm	  

Tm	  

Tc	  

Tc	  
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loaded within the microsphere. The encapsulation efficiency was calculated using equation 

2.5 described in section 2.2.12.3.1. The obtained value was EE%= 34.98 %. The release 

profile is shown in Figure 7.10. Our results showed a biphasic VEGF release for both P(3HB) 

microspheres and P(3HO) cardiac patches with an initial burst release followed by a period of 

sustained release. Significant differences were observed at days 1 and 3 between P(3HB) 

microspheres and P(3HO) patches. The VEGF released from the microspheres was 

10.78±1.79 % and 21.71±1.95 % on day 1 and 3 respectively, whereas from the cardiac 

patches was 21.92±1.58 % and 30.02±1.78 % on day 1 and day 3 respectively. Note that in 

addition, both in the cardiac patches and the microspheres, the VEGF release kinetics 

changed at day 7, showing a slower release rate. 

Figure 7.10. Release profile of VEGF from P(3HB) microspheres and P(3HO) cardiac 
patches (n = 3; error bars=±SD). 

**

**
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7.3. DISCUSSION 

7.3.1. RGD immobilization 

The fabrication of biodegradable constructs in tissue engineering is essential to provide a 

matrix for cell proliferation, migration and differentiation and to act as a support for the organ 

during regeneration. In addition to the biomaterial matrix, the control of cardiac cell 

environment can be enhanced by the design of biomaterials that provide adhesion, growth, 

migration or differentiation signals. In this chapter, the cardiac patch was further 

functionalised via the incorporation of active factors. It has been observed that proteins that 

contain the Arg-Gly-Asp (RGD) sequence are recognized by several different integrins in 

their adhesion protein ligands (Ruoslahti et al., 1996). In order to allow efficient host cell 

recruitment and adhesion, in the first part of the chapter RGD motifs were immobilized on 

the films. For the RGD immobilization a series of chemical reactions were carried out to 

incorporate active amino terminal structures on the carboxyl terminal end of the P(3HO) 

molecule, followed by the reaction of the terminal amine with the RGD sequence. The 

incorporation of the amino terminal group into the P(3HO) molecule was carried out through 

the addition of  hexaethyleneglycol-diamine to the P(3HO) carboxylic acid end. The 

incorporation of the hexaethyleneglycol-diamine group to the P(3HO) was confirmed by 

FTIR. The appearance of a band at 3400 cm-1 which corresponded to the N-H bond and the 

appearance of a band at 1000 cm-1 showing the presence of a C-N bond suggested the 

presence of the hexaethyleneglycol-diamine in the P(3HO) film. In a second step, the 

covalent linkage of the RGD peptide to the hexaethyleneglycol-diamine present on the 

P(3HO) film was studied by FTIR. Results showed the presence of a strong band at  

1200 cm-1 corresponding to the C-N bonds that should be present in the RGD-P(3HO) 

polymer due to the linkage of the hexaethyleneglycol-diamine with P(3HO) and with the 

RGD peptide. In addition, the disappearance of the band corresponding to the NH2 primary 

amine group further confirmed the formation of the RGD-hexaethyleneglycol-diamine- 

P(3HO) linkage. 

With the incorporation of RGD structures in the P(3HO) cardiac patches, an increment in the 

hydrophilicity of the surface was expected (Lin et al., 1992, Lin et al., 1994). As polar 

molecules interact better with water than non-polar molecules, an increment in the molecular 

hydrophilicity is usually detected when RGD motifs are immobilized (Lin et al., 1992, Lin et 

al., 1994). The water contact angle of the P(3HO)-RGD immobilized cardiac patches was 
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93.44±0.09º. P(3HO) water contact angle was 101.1±0.8 º (section 5.2.1.3). These results 

thus showed a significant decrease in the water contact angle. Hence, the expected increase in 

the surface hydrophilicity after the modification with RGD peptides reconfirmed the 

incorporation of the RGD peptide onto the P(3HO) film.   

In order to study any possible effect of the RGD immobilized peptides on the mechanical 

properties of the P(3HO) cardiac patches, dynamic mechanical analysis under static 

conditions was carried out. No differences were observed in terms of the polymer stiffness 

after the RGD incorporation. However, a decrease in the tensile strength was observed with 

the RGD immobilization. As the linkage of the RGD motifs to the surface of the P(3HO) 

cardiac patches were carried out through hexaethyleneglycol-diamine molecules incorporated 

to the polymer, differences in the mechanical properties can be attributed to the presence of 

these molecules which perhaps embedded themselves between the chains of the polymer, 

spacing them apart. In agreement with our results, previous reports have shown a decrease in 

the tensile strength and an increment in the elongation at break when polyethylene-glycol was 

incorporated into cellulose acetate films as a plasticizer (Yuan et al., 2001). Finally, SEM 

images show an increment in the surface roughness after the RGD modification. 

 

 

7.3.2. VEGF incorporation 

As vascularisation is crucial in cardiac constructs, VEGF was incorporated in order to assist 

cell growth and tissue vascularisation. Mechanical properties of the P(3HO)-VEGF cardiac 

patches were determined and compared with P(3HO) films. Similar stiffness was obtained 

after the VEGF incorporation. However, a decrease in the tensile strength and an increment in 

the elongation at break were observed with VEGF. It has been observed that the addition of 

different molecules on a polymer reduce the molecular weight of the material and a decrease 

in the molecular weight is directly related with a decrease in tensile strength (Barron 2013, 

Odian 1991). The elongation at break may be influenced by water used as VEGF solvent, 

which may have decreased the interaction of the polymer chains when the polymer was 

mixed with the VEGF solution, making them more stretched due to interactions of water with 

the hydrogen bonds of the polymer (Wang et al., 2005). Although an increment in the surface 

hydrophilicity can be expected with the incorporation of VEGF molecules, due to an 

increment in the surface polarity, no significant differences were observed in terms of the 

surface wettability after the VEGF incorporation. The reason of this observation can be 

related to the amount of VEGF incorporated, which was too low to have an effect on the 
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surface wettability. SEM images show a slight increment in the surface roughness in P(3HO) 

VEGF cardiac patches. Surface roughness studies should be carried out for a quantitave 

analysis.   

7.3.3. In vitro cell proliferation in P(3HO) cardiac patches containing VEGF and RGD 

peptide 

C2C12 myoblast cells were seeded on P(3HO) cardiac patches containing VEGF, P(3HO) 

cardiac patches containing RGD and P(3HO) cardiac patches containing both VEGF and 

RGD. Cell proliferation was evaluated at 24 hr with the MTT colorimetric assay. Results 

showed a significant increment in the cell proliferation when VEGF or RGD were 

incorporated in comparison to P(3HO) films. In terms of RGD, these results suggested that as 

previously reported in literature, the increased cell-polymer interactions play a pivotal role in 

simulating cell proliferation (Neff et al., 1999). Yoon et al., (2004) showed a significant 

increment in cell attachment when bone marrow stem cells isolated from rat were seeded on 

PLGA films immobilized with RGD motifs. On the other hand, VEGF has also been shown 

to have a positive effect in cell proliferation. These results are in agreement with previous 

reports that show the presence of VEGF receptors, which were thought to be present 

exclusively in endothelial cells, in a number of different cell types (Couper et al., 1997, 

Pancholi et al., 2000, Shen et al., 1993). Sipahigil et al., (2012) showed a significant 

increment in L-929 cell line proliferation with VEGF incorporationinpoly(lactic-co-glycolic 

acid) microspheresand a direct relation between VEGF concentration and % cell 

proliferation. Additionally, our results showed a slightly higher increment in cell proliferation 

with VEGF than with RGD incorporation. However, from these results it is not possible to 

conclude if the higher effect on cell proliferation with VEGF is due to the difference in the 

actual effects of this factor on the cells or due to the different amounts of VEGF and RGD 

used in this study as the VEGF amount incorporated in each film was 2µg and in the case of 

the RGD, each film was reacted with a 1.5 nm/ml RGD solution. Finally, when both VEGF 

and RGD were incorporated, a synergetic effect was observed, with an increment in cell 

proliferation by 7 times with respect to P(3HO) films. These results suggested that there is no 

interference of VEGF with RGD proteins and, hence, both can be incorporated together to 

achieve better conditions that mimic the extracellular matrix structure in the tissue 

encouraging cell attachment and proliferation. 
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7.3.4. VEGF encapsulation in P(3HB) microspheres 

Several advantages have been described with the development of controlled release systems 

including temporal and spatial presentation of the active factor in the target tissue, protection 

of the active factor from physiological degradation or elimination and patient compliance 

(Siegel and Rathbone, 2012). In order to achieve a controlled release of VEGF, VEGF was 

encapsulated in P(3HB) microspheres. SEM images confirmed the spherical shape of the 

constructs with a smooth surface morphology and with an average diameter of      

127.69±16.41 µm. The importance of porous microspheres is widely reported in tissue 

engineering. A highly porous structure with interconnected pores is crucial to achieve 

sufficient drug absorption and drug release kinetics, large specific surface area, and low 

density (Cai et al., 2013). In this work, the porosity of the microspheres was found to be 

85±13 %, showing a highly porous structure. It is widely known that differences in drug 

release between different constructs were not only attributed to the matrix porosity, but also 

to the polymer composition, the solubility of the drug in the media and amount of drug 

loaded (Gould et al., 1987, Dash et al., 1992). As a result, the optimal porosity should be 

determined in each case by drug release studies. FTIR and DSC analysis were carried out to 

confirm the presence of the VEGF in the microspheres and to study possible VEGF–polymer 

interactions. The FTIR spectra showed the appearance of only one band at 2978 cm-1 that was 

not present in the unloaded microspheres. This band showed the presence of the aromatic 

group of tyrosine and phenylalanine present in VEGF, confirming the presence of VEGF in 

the microspheres. Additionally, FTIR spectral studies showed no other differences between 

VEGF loaded and unloaded microspheres suggesting no significant covalent interactions 

between the drug and the polymer or the relative amount of VEGF being too low to be 

detected by FTIR. DSC studies showed a reduction of 10ºC in the melting temperature for 

VEGF loaded microspheres with respect to unloaded microspheres similar to the observations 

previously made by Bidone et al., (2009) with the incorporation of ibuprofen in 

P(3HB):mPEG-PLA blend microspheres. Our results indicate that the crystalline structure of 

the polymer was affected in the presence of the VEGF. No separate peaks were observed for 

the active factor, which might be due to the low concentration of the VEGF in the sample 

with respect to the polymer. 
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7.3.5. VEGF release 

The drug release profiles of VEGF were measure during VEGF loaded P(3HO) cardiac 

patches and P(3HB) microspheres for a period of 30 days. The results obtained showed a 

biphasic VEGF release profile for both P(3HB) microspheres and P(3HO) film, with an initial 

burst release followed by controlled release. However, the results showed that the P(3HB) 

microsphere drug release, during the initial phase, was half of that obtained using the P(3HO) 

films. These results indicated that a better initial controlled release is obtained with P(3HB) 

microspheres. Note that due to the fact that the structure of the constructs and the nature of 

the polymer used are different, the differences in the release profile must be attributed to both 

these factors. However, due to the more crystalline structure of P(3HB), lower degradations 

rates leading to lower drug release rates are expected, as compared to P(3HO). Hence, the 

more controlled release in microspheres cannot be attributed only to the structure of the 

constructs due to the different nature of the polymer. Although differences in the % 

cumulative release were observed in the P(3HB) microspheres and P(3HO) cardiac patches, 

at day 1 and 3, similar VEGF release rates were obtained from day seven until day 30. On 

day 30 only 50 % of the drug was released in both microspheres and cardiac patches 

indicating a sustained drug release during longer periods than 30 days as is suggested by the 

slope pendant, an advantage for long term release. Sipahigil et al., (2012) have worked on 

VEGF encapsulation in PLGA microspheres. A similar release profile was obtained in 

P(3HB) microspheres with an initial burst release of 10 %, following by a controlled release. 

However, for PLGA microspheres at the end of 30 days, the cumulative release achieved was 

around 75 %. In this study, P(3HB) microspheres showed a slower release rate than PLGA 

microspheres which can be attributed to differences in the VEGF-polymer interaction and 

slower degradation times of PHAs as compared to PLGA that allow drug release for longer 

periods of time. 

A sustained release of VEGF over a 30 day period is crucial for because of a short biological 

half-life of VEGF and its high tumorigenic potential. This was successfully achieved with 

both P(3HB) microspheres and P(3HO) cardiac patches with a more controlled initial burst 

release in microspheres (Faranesh et al., 2004). In conclusion, functionalised patches 

containing RGD and VEGF proteins can create a perfect microenvironment that would 

induce vascularization and improve cell-matrix and cell-cell interactions to promote the 

assembly of a functional heart tissue and enhance the therapeutic effectiveness of cardiac 

patches. 
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8.1. CONCLUSIONS  

 

In the first part of this study we investigated the phaC1 gene expression from P. mendocina 

in B. subtilis 1604. The B. subtilis 1604-phaC1 recombinant strain showed PHA 

accumulation in Ramsay media, when sucrose was used as a sole carbon source. B. subtilis 

wild type and B. subtilis containing the pHCMC04 vector with no phaC1 insert were used as 

controls. Results showed that PHA accumulation in B. subtilis wild type and B. subtilis 

containing the vector with no insert was lower than 3% DCW. In contrast, PHA accumulation 

in B. subtilis containing the phaC1 gene from P. mendocina, was more than 32 %DCW. 

These results confirmed the role of the phaC1 gene in PHA accumulation in the recombinant  

B. subtilis. The chemical characterization of the produced polymer was carried out showing 

the presence of the P(3HB) homopolymer in both the controls and the recombinant strain. In 

order to understand the substrate preference of the phaC1 encoded PHA synthase from  

P. mendocina, when sucrose was used as the carbon source, wild type P. mendocina was 

grown in MSM media with sucrose as the carbon source. In contrast to results obtained with 

other Pseudomonas strains, where mcl-copolymers were accumulated, P. mendocina showed 

the presence of the scl-mcl-PHA copolymer, P(3HB-co-HO). Although it is not possible to 

observe the sole effect of the phaC1 gene due to the presence of other genes related with 

PHA metabolism, this result showed the capability of the phaC1 encoded PHA synthase from        

P. mendocina to utilize coenzyme A thioesters of scl- and mcl-3-hydroxyalkanoates when 

sucrose was used as the carbon source. As previously described, the particular pathway used 

for PHA production was found to depend on the particular metabolic pathways that are 

operating in a particular microorganism and the carbon source provided. Additionally, the 

synthesis of mcl-3-hydroxyacyl-CoA units can occur mainly by two different pathways, one 

involving with the fatty acid degradation pathway from fatty acids and other involved with 

the fatty acid biosynthetic pathway from carbohydrates (Kim et al., 2007, Doi et al., 1990, 

Poirier et al., 1995, Steinbüchel et al., 1991). When the recombinant B. subtilis strain was 

growth on sucrose, mcl-PHA production was expected to occur via the fatty acid biosynthetic 

pathway. However, as no mcl-PHAs were obtained with sucrose as the carbon source, the 

recombinant B. subtilis was grown in a range of fatty acids to test the capability of the strain 

to utilize mcl-3-hydroxyacyl-CoA monomers for mcl-PHA production using the fatty acid 

degradation pathway. In this case PHA production was only observed when pentanoic, 

hexanoic and heptanoic acids were used and the polymer produced was poly(3-
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hydroxybutanoate-co-3-hydroxyvalerate), P(3HB-co-3HV), copolymer in all the three cases. 

As previously reported by Valappil et al., (2007) from the Gram-positive genera, only 

Corynebacterium, Nocardia and Rhodococcus can naturally synthesize this commercially 

important co-polymer P(3HB-co-3HV) from simple carbon sources such as glucose 

(Haywood et al., 1991, Alvarez et al., 2000). In this case, incorporation of the phaC1 gene 

from P. mendocina to B. subtilis allowed the strain to synthesize LPS-free P(3HB-co-3HV) 

copolymer a useful process. However, no mcl-PHA production was observed. Multiple 

sequence alignment showed certain amino acid differences in the core region of the phaC1 

encoded protein sequence from P. mendocina, which were otherwise conserved in other mcl-

PHA producers such as the P. aeruginosa, P. putida and P. oleovorans. These differences 

may explain the different outcomes observed. Our results, however, showed the capability of 

a Gram positive GRAS organism, B. subtilis, to express a gene from a Gram negative 

bacterium, i.e. Pseudomonas mendocina, and the low specificity of the phaC1encoded PHA 

synthase from P. mendocina, which can utilize both mcl- and scl-3-hydroaxyl CoA units for 

PHA production.  

As no P(3HO) was obtained from the recombinant strain, for this project, P(3HO) was 

produced using wild type P. mendocina and rigorously purified by sequential washing with 

acetone, ethanol, and methanol. Rai et al., (2011a) showed that an effective LPS removal was 

observed after strict purification steps, achieving 0.35 EU/mL, which complies with the 

endotoxin requirements of the FDA for biomaterials to be used for biomedical applications 

(Kato et al., 1996). P(3HO) production by P. mendocina was optimized in 2 L bioreactors. 

Four conditions with different carbon nitrogen ratios, and pH were tested. The highest PHA 

yields were obtained when pH 7.15, carbon/nitrogen 20:1 and stirrer speed of 200 rpm was 

used. Scaling-up studies were carried out for P(3HO) production in 20 L and 72 L 

bioreactors, based on the constant oxygen transfer method. The highest PHA yield (% DCW) 

was 26.84±0.35 for the 2 L bioreactor, 23.17±1.47 for the 20 L bioreactor and 13.80±2.82 for 

the 72 L bioreactor.  Comparable results obtained from both 2L and 20L bioreactors 

suggested that it is possible to scale-up PHA production from 2 L to 20 L bioreactors based 

on a constant oxygen transfer. Considerably lower values of PHA yield was obtained with the 

72 L bioreactor, suggesting that other parameters needed to be considered at this scale, such 

as specific power input or superficial air velocity, which cannot be maintained when kLa is 

maintained.   
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The purified P(3HO) was studied as a potential material for cardiac tissue engineering 

applications. In a first experiment, fresh ventricular cardiomyocytes from adult rats were 

seeded on P(3HO) films and the cell viability was compared with that on tissue culture 

plastic. Results showed a slightly higher viability on the polymer than in the control and 

confirmed the non-toxic nature and good cardiomyocyte adhesive property of the P(3HO) 

surface. In the following experiment, the effect of P(3HO) on cardiomyocyte contraction was 

studied using a range of frequencies of electrical impulses and calcium concentrations. The 

results obtained showed that the polymer did not reduce the effect of frequency or calcium on 

cardiomyocyte contraction when compared to the control. Moreover, the negative effect on 

the contraction performance with increment in electrical impulse frequency usually observed, 

was not observed with P(3HO). Results from these experiments confirmed that P(3HO) was a 

potential material to be used as an extracellular matrix in cardiac tissue engineering 

applications.  

It is widely accepted that the most promising materials that will allow efficient beating of the 

heart and proper matrix for new cardiac tissue regeneration will be the materials that most 

resemble the native myocardium. For this reason P(3HO) engineered constructs that attempt 

to mimic cardiac tissue were produced. In a first approach, 5%wt P(3HO) films were 

fabricated by solvent casting. The films were studied in terms of mechanical, thermal and 

surface studies. Due to the contractile function of the heart, one of the pivotal factors that will 

dictate the success of a material in tissue engineering applications is the mechanical 

properties of the engineered construct. As previously described, the mechanical properties of 

myocardium are as follows: Young’s modulus 0.02-0.5 MPa, tensile strength 3-15 KPa, and 

elongation at break between 100-300 % (Nagueh et al., 2004 and Watanabe et al., 2006). The 

stiffness of the P(3HO) film was 3.7±0.3 MPa, tensile strength 3.4±0.2 MPa and elongation 

at break 299±3 %. In order to reduce the stiffness and tensile strength, to provide more 

structural space for cell infiltration and to allow the formation of a three dimensional 

structure by permitting cell ingrowth, P(3HO) porous films were created by solvent cast 

particle leaching using 0.5% sucrose particles ranging from 250-300 µm diameter as the 

porogen. The stiffness of the porous film achieved with 0.5 % sucrose particles was 

0.41±0.03 MPa, tensile strength 0.7±0.2 MPa and elongation at break was 447±5 %. In this 

case, the desirable stiffness was achieved, the tensile strength was closer to myocardial 

structures and elongation at break was a bit higher than plain P(3HO) films, when porous 

structures were incorporated. Although the tensile strength was still higher than myocardial 
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structures, this may have a positive effect as it would prevent negative myocardial 

remodelling. The comparison of the mechanical properties of the P(3HO) film with most 

studied materials which is summarised in Table 1.1 (Chapter 1) indicates that (P3HO) porous 

film is the most promising candidate from the mechanical compatibility point of view. As 

collagen fibrils are the main constituent of the extracellular matrix and since we aimed to 

achieve an extracellular matrix like topography, electrospinning was used to produce P(3HO) 

fibres which were then used to functionalize P(3HO) plain and porous films. Different fibre 

sizes were created by electrospinning and optimal fibre size was selected according to cell 

proliferation studies. Significantly higher cell proliferation values were obtained with 750 nm 

fibre diameter. Final constructs were assessed in vitro with C2C12 myoblast cell line. The 

results obtained showed that cell adhesion and proliferation was improved when porous or 

fibrous structures were incorporated on the surface of the P(3HO) films and was highly 

improved when both fibrous and porous structures were incorporated simultaneously.   

Concluding remarks 

This study has shown the possibility of production of LPS-free PHAs by expressing the PHA 

synthase gene from a Gram-negative into a Gram-positive strain. In addition, results suggest 

the possibility of mcl-PHAs production in Bacillus subtilis using genes from P. mendocina. 

This study showed, for the first time, that Bacillus subtilis is as a potential candidate for 

producing PHAs. P(3HO) production based on constant oxygen transference was successfully 

scaled-up from 2 L to 20 L bioreactors for the first time. P(3HO) fibres were produced by 

electrospinning and used to surface functionalise the P(3HO) patches. Also, RGD tripeptide 

was immobilized on (3HO) patches. The final cardiac patches developed in this project 

exhibited enhanced cell adhesion and proliferation in vitro, and desirable mechanical 

properties, suggesting that P(3HO) is a promising material for future cardiac tissue 

engineering applications.  
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8.2. FUTURE WORK 

Based on the results obtained in this project the following investigations will provide a better 

understanding of the future potential of applying P(3HO) in cardiac tissue engineering: 

• The fact that B. subtilis containing the phaC1 gene from P. mendocina was unable to

synthesize mcl-PHAs can be attributed to the predominance of the scl-PHA metabolic

pathway operating in the organism or the lack of the enzymes from the mcl-PHA

metabolic pathway, including hydroxyacyl-ACP-CoA transferase which links the R-3-

Hydroxyacyl-ACP precursor from the fatty acid de novo biosynthesis metabolic pathway

to the PHA synthase for the mcl-PHA production. Although BLAST analyses suggested

the presence of a hypothetical protein, which is predicted to be a

hydrolase/acyltransferase, this protein has not been studied in detail, hence, further

studies should be carried out to confirm its presence and activity. Additionally, metabolic

engineering techniques with the obstruction of the scl-PHAs metabolic pathway to

facilitate the mcl-PHA biosynthesis should be carried out.

• As one of the main factors that limits the use of mcl-PHAs in different applications is the

limited capacity to produce high yields of mcl-PHAs and relatively low P(3HO) yields

were obtained in this work using P. mendocina, future studies should be carried out to

find optimal fermentation conditions based on a full factorial study with pH, C/N and rpm

as varying parameters.

• As similar yields results were not obtained when P(3HO) production was scaled-up from

20 L to 72 L bioreactors based on a constant oxygen transfer coefficient, further

experimentation is required to achieve a comparable operating condition in both  these

scales based on a range of other conditions including volumetric power input and

superficial air velocity.

• Confirmation of VEGF functional activity after incorporation on the P(3HB) patches

should be carried out by ligand-receptor assay for VEGF (Leopol’d et al., 2012).

• Determination of the optimal amounts of RGD peptide and VEGF to be incorporated on

the surface of the patch, should be carried out based on cell proliferation studies

combined with active factor release studies. To assess cell proliferation and active factor

release, MTT or neutral red and ELISA assays should be carried out, respectively.

Immobilization of optimal amounts of the RGD peptide and incorporation of optimal

amounts of VEGF should be carried out in the final cardiac patches.
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• The capacity of the engineered P(3HO) patch as an extracellular matrix to allow

cardiomyocyte differentiation should be assessed in vitro. For this, cells capable of

forming cardiomyocytes should be seeded and differentiated in vitro with signal

molecules such as ascorbic acid or retinoic acid on the P(3HO) cardiac patches containing

RGD peptides and VEGF (Ling-Ling et al., 2006, Woubus et al., 1998). For this, viability

tests such as the MTT or neutral red or observation in light microscopy in order to assess

live cells, combined with gene expression profiling of cardiac specific RNA and proteins

to determine cell differentiation, should be carried out. Functional activity of the

engineered graft including continuous, rhythmic, and synchronized contractions can be

tested in spontaneously beating artificial myocardial tissues by electrocardiography

(Kofidis et al., 2002a).

• In vivo experiments on infarcted animals will be crucial to define the potential of the

engineered P(3HO) based cardiac patch. Myocardial infarction can be induced i.e. by

ligation of the left anterior descending coronary artery (Laake et al., 2007). In this case,

P(3HO) engineered cardiac constructs created by seeded and differentiated pluri- or

multipotent cells should be implanted in the infracted region of the heart and the

following parameters should be assessed at different periods of time:

1. Degradation studies of the final constructs should be carried out in order to assess the

capability of cells to synthesize new extracellular matrix before complete degradation

of the material. For this, histological analysis combined with collagen I, IV, laminin

and fibronectin expression patterns and SEM can provide useful information in terms

of material degradation and new extracellular matrix formation.

2. Adequate integration and coupling of implanted and host cells should be assessed by

cell junction expression molecules, including connexin 43 and cadherin.

3. Biocompatibility of the final constructs should be assessed by the expression of

inflammatory mediators and material encapsulation. Acute or chronic inflammation

and possible ultimate rejection of the biomaterial should be determined by studying

cell infiltration and bioactive molecule expression. For instance, occurrence of acute

inflammation could be determined by neutrophil infiltration and production of

histamine, nitric oxide, bradykinin, C3A, C3B, C5A, PAF, IL-1 and IL-8 among

others. Chronic inflammation can be assessed by lymphocyte and macrophage

infiltration and TNF-α and INF-γ expression. Material encapsulation should be

evaluated by determining the presence and origin of fibrotic tissue surrounding
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P(3HO) grafts. Although secretion of fibrotic tissue could lead to separation of host 

and implanted cells, this would not necessarily exclude functional coupling 

completely, since electrophysiological signalling can be conducted through relatively 

thick layers of fibrotic tissue (Gaudesius et al., 2003). However, inappropriate or 

excessive secretion of fibrotic tissue can increase the occurrences of arrhythmias 

(Breithardt et al., 1989).  

4. Structural and biochemical properties in common with the native cardiac tissue can be 

assessed by histological analysis.   

5. The ability of the newly formed tissue to contribute to long-term contractile function 

should be assessed using long-term experiments.  
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