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Abstract—Region merging algorithms commonly produce re-
sults that are seen to be far below the current commonly
accepted state-of-the-art image segmentation techniques. The
main challenging problem is the selection of an appropriate and
computationally efficient method to control resolution and region
homogeneity. In this paper we present a region merging algorithm
that includes a semi-greedy criterion and an adaptive threshold
to control segmentation resolution. In addition we present a
new relative performance indicator that compares algorithm
performance across many metrics against the results from human
segmentation. Qualitative (visual) comparison demonstrates that
our method produces results that outperform existing leading
techniques.

I. INTRODUCTION

Segmentation of an image into meaningful regions is an
important task in computer vision. The state-of-the-art, with
respect to both quality and speed of image segmentation,
mainly revolves around the mean-shift [13] and graph based
[16] algorithms. However, one of the most commonly applied
family of techniques is region merging, where pixels are step-
wise grouped into larger and larger segments.

Region merging, a form of agglomerative hierarchical
clustering, lags behind the state-of-the-art because it most
commonly applies a greedy merge mechanism which produces
a lower quality segmentation caused by a tradeoff between
resolution and accuracy [8]. Attempts to adaptively change the
threshold or the merge criteria on the fly [10] have improved
the results to an extent, but have not managed to match the
best performing segmentation techniques. The problem may be
attributed in part to the greedy nature of merging schemes. The
best local merge is not guaranteed to be optimal in a global
sense. However, greedy merging is what gives the technique
its speed, and applying extended merging criteria [8] reduces
this advantage.

In this paper we present a region merging segmentation
method, employing both a semi-greedy merge criterion and
an adaptive threshold. This segmentation method rivals the
results of state-of-the-art algorithms both in quantitative and
qualitative terms. The rest of the paper is organised as follows.
Section II discusses the development of region merging as a
segmentation method. Section III presents the region merging
scheme along with post-processing to reduce the number of
segments. Section IV shows quantitative and qualitative results.
Finally, Section V concludes the paper.

II. BACKGROUND

Some of the leading approaches to image segmentation are
graph or tree based ([16], [28]), probabilistic ([3], [11]) and

statistical ([13], [27], [12]). Another family of segmentation
techniques, region merging, has had less success at matching
the quality-speed tradeoff of the leading methods, however is
still popularly used.

Region merging imposes direct topological constraints in
which no two non-neighbouring regions may be merged. This
ensures that topological proximity becomes a primary factor
in the merge process. Some early work in region merging
involved classical greedy merging using local information and
the regions obtained were applied towards scene analysis [7].
The introduction of the technique of seeded region growing [2]
performed image segmentation by establishing seed points in
the image and then growing regions around these. The results
were sensitive to the initial seed generation. While there has
been effort on improving the seed generation process, the task
of seed generation itself implies some knowledge of the image
structure before segmentation is known.

Another important consideration found in region merging
is the order in which pixels or regions are considered for
merging. There has been work on the dependency between
scan order and the segmentation results, with different paths
for path-based labelling are discussed in [17], statistically-
based reinterpretation in [26], and the entire region merging
framework reanalysed in [8].

The region merging framework consists of three main
components: the region model, the merging criterion, and
the merging order. Some common merging criteria are given
in [15] and [8] which also explores various options and
combinations of these components. We proceed from this foun-
dation by proposing a novel segmentation method, involving
a fast but effective region merging scheme. In particular, our
method favours a best merge over a fast merge. Our method
additionally allows for multiple merges over each iteration as
opposed to only a single merge such as in the hierarchical
stepwise optimisation [6]. The maximum number of possible
merges in a single pass is limited only by the image size and
the homogeneity distribution.

III. SEMI-GREEDY ADAPTIVE-THRESHOLD REGION
MERGING

The Beaulieu-Goldberg hierarchical stepwise optimisation
(HSWO) algorithm [6] performs region merging on N clus-
ters by calculating at each iteration the distance measures
Ci,j = d(Si, Sj) for all cluster pairs (Si, Sj), with the most
similar pair of clusters being merged. This merging procedure
is repeated until some stopping criterion is satisfied.



A. Neighbourhoods and scan order

The method proposed in this paper may be thought of as
a refinement of the basic HSWO algorithm, and thus similar
performance considerations apply. As the authors note, while
for N clusters there are N × (N − 1) cluster pairs, in region
merging we consider only adjacent segments and the average
number of neighbours per segment M is typically small
(4 ≤ M ≤ 8), thus limiting the number of potential segment
pairs per iteration to N ×M . They additionally note that a
limited number of new segment pairs must be considered at
each iteration since a segment merge only affects the adjacent
segments.

The calculation of all relevant merge costs at each iteration
is still an expensive operation, either in terms of computer
memory if a list of merge costs are maintained or in terms
of processing speed if some merge costs are recalculated at
each step. With a suitable neighbourhood scanning procedure
however, some further gains in resource utilisation may be
made. It is common for example to use 4 or 8 connectivity
when considering neighbouring pixels. For reasons of scan
efficiency we use a rectangular L-shaped neighbourhood with
a left to right and top to bottom scan path in our work.

a. b.

Fig. 1. Neighbourhoods at center pixel t for left to right, top to bottom scans.
a) Seeking labels from {TL, T, TR,L} neighbours, b) Pushing labels onto
{R,BL,B,BR} neighbours

We encode the eight possible neighbours for any pixel
centered at pixel t as {TL, T, TR,L,R,BL,B,BR}, (top
left, top, top right, left, right, bottom left, bottom and bottom
right respectively). An L-shaped neighbourhood reduces scan
redundancy while not missing any potential merge pathways.
For computational efficiency and algorithmic correctness we
wish to have the smallest neighbourhoods that exhibit two
characteristics: a) the neighbourhood should contain either
only already-labelled or only yet-unlabelled pixels, and b) the
neighbourhood should not miss any possible merge pathways.
The two possible minimum L-neighbourhoods for a row-wise
scan are {TL, T, TR,L} and {R,BL,B,BR}, see Figure 1.
Given the usual row-wise nature of image scans, the former set
is suited for pull-labelling, in which the pixel currently being
considered seeks to adopt or pull a label from one of the L-
neighbours, while the latter set is suited for push-labelling, in
which the current pixel seeks to propagate or push its own
label onto one or more of the L-neighbours. In our work
we use the 4-neighbourhood {TL, T, TR,L} in the row-wise
scan to check for potential merges, and the 8-neighbourhood
{TL, T, TR,L,R,BL,B,BR} to check if the merge is the
best merge for both involved segments.

The use of a single-pass left to right, top to bottom scan
leads to some trivial oversegmentation. Looped region con-
nectivity paths in rightward arcs at least partially unconnected
after the first pass (segments 2 and 4 in Figure 2) and a second

a. b. c.

Fig. 2. Label assignment: a) Original image, b) After first pass, c) After
second pass

pass is recommended to correct this. Using an iterative best-
merge algorithm however circumvents this problem since any
merges missed on one iteration will be automatically corrected
on the next as long as the merge criterion stays the same or
becomes more relaxed as the segmentation evolves.

B. Distance measure

One of the most important criterion for ensuring a good
balance between accuracy and speed is the distance measure
used to compute segment distances and thus their merge costs.
The work by Mignotte [23] compares the performance of
several common distance measures over segmentation results
using their clustering method on the Berkeley Segmentation
Dataset [21]. The measures compared are the Bhattacharya,
Euclidean, Manhattan, Chord, Kolmogorov, Histogram inter-
sect, Kullback, and Shannon-Jensen distances. Their results
show that the Bhattacharya and Manhattan distances perform
the best with respect to four important segmentation evaluation
metrics, the PRI, VOI, GCE and BDE (see Section IV for our
results over these metrics).

Given the much lower computational expense of the Man-
hattan distance relative to the Bhattacharya distance, in our
work we exclusively use the Manhattan distance, d(Si, Sj) =∑n

i=0 |Ui − Vi|, where Ui and Vi are the feature vectors for
segments Si and Sj respectively, and n is the length the feature
vector, which in our case is 3 from the {R,G,B} colour
channels.

C. Optimal local merges

While a per-iteration single merge is inefficient, using such
an L-neighbourhood row-wise scan path leads to multiple local
merges which are not guaranteed to be the best outside of
the local region being considered. For a center pixel i, a
potential best merge pair (Si, Sj) may be suboptimal for pixel
j, if there exists a neighbour k of j for which Cj,k < Ci,j

is true, indicating a better merge. A merge over any par-
ticular L-neighbourhood would therefore also involve the L-
neighbourhood of the target of the merge. This semi-greedy
behaviour ensures that a local best merge is desirable at a
wider scale than the immediate L-neighbourhood, potentially
even being a globally best merge and additionally still allowing
multiple merges to take place at different image locations
during every iteration through the image.

Additionally there is the matter of segmentation resolu-
tion, which is typically controlled in most region merging
algorithms by some stopping criterion such as a distance
threshold. This threshold determines the range of acceptable
feature-space distance values for any two segments in order
for a merge to take place between them. In almost all cases
the feature distance d(Si, Sj) between two segments and the



cost Ci,j of merging them can be defined equivalently, and
in this paper we will refer interchangeably to them. Merges
take place whenever the condition d(Si, Sj) < dmax holds
true. Increasing the range of dmax lowers the segmentation
resolution and leads to an undersegmentation while restricting
its range has the opposite effect of increasing resolution and
leading to an oversegmentation.

We use a very computationally simple scheme for adapting
the distance threshold as the segmentation progresses, very
similar to the dynamic merge relaxation in [31]. A large
threshold allows incorrect merges to occur if two regions
locally meet the merge criterion even if on a more global
scale the merge in question would be suboptimal. This problem
can be alleviated if the regions are given more time to move
towards their respective cluster centers in feature space.

Based on this, we apply an inflation term to the merge
threshold so that small regions of relatively low salience are
merged as the threshold rises but highly salient small regions
are not. We use a simple expanding threshold, which starts
small and gradually grows towards the final threshold value.
On the first few iterations the small threshold value ensures
only the most locally correct merges take place, having the
effect of shifting regions towards their feature-space cluster
centers. As the threshold rises, these feature-shifted regions
now merge only with their locally nearest-feature neighbours,
thus mitigating the problem of incorrect merges had we started
with a large distance threshold. The full segmentation is a two
phase procedure consisting of the following:

1) Algorithmic region merging
2) Region reduction

a) Weakness heuristic region reduction
b) Small segment reduction
c) Enclosed region absorption

The region reduction phase is discussed in Section III-D.

Before we perform region merging, we convolve the image
with a median filter to reduce any existing salt and pepper
type noise. The median filter is represented as y(m,n;W ) =
med{x(m− k, n− l), (k, l) ∈W}, where W in our case is a
3× 3 window or filter mask.

We adapt and extend the HSWO algorithm from [6] by in-
cluding a semi-greedy merge criterion and an adaptive inflating
threshold. Some significant differences are the use of multiple
merges over any iteration and the ability to change all labels for
a given segment at any time and any number of times within an
iteration (to correct possible labelling errors arising from local
label-seeking that misses merge pathways in the blind spot
of the L-neighbourhood). The key controller of the row-wise
scan is the variable t which is the pixel index currently being
considered. Incrementing t has the effect of moving through
the image row-wise from left to right, the minimum L-shaped
neighbourhood resulting directly from looking only at all the
pixels already labeled in the past within the current iteration.
The variables involved are as follows:

1) Bi, the set of the segments adjacent to Si, called the
neighborhood,

2) Di, the parameters that describe the segment Si, e.g. the
segment R,G,B means,

3) Ci,j = C(Di, Dj), the cost of merging segment Si with
Sj , where Sj is contained in Bi, and

4) dcurr, the distance threshold that restricts merges if the
cost of merging is greater than this value. The threshold grows
after each iteration as dcurr = dcurr + dstep, where dstep = 1
for the slowest evolution of the segmentation map.

5) dmax, the maximum allowable distance threshold such
that the following always holds: dcurr ≤ dmax.

The region merging algorithm is then as follows:

I. Initialise:
(i) Ind = {1, 2, · · ·n} (image pixel in-

dices).
(ii) P 0 = {S1, S2, · · ·Sn} (initial parti-

tion).
(iii) Label(t), t ∈ Ind (segment label for

pixel t).
(iv) k = 0, m = n and dcurr = 0.
(v) ∀Si ∈ P 0, calculate Di and Bi.

(vi) hasMerged = false

II. Merge, ∀t ∈ Ind, 4-neighbour scan {TL, T, TR,L}:
(i) i = Label(t).

(ii) calculate CSi = {Ci,j |Sj ∈ Bi}.
(iii) find Cu,v = Minimum(Ci,j) where Ci,j ∈

CSi, and Minimum(Cv,t) ≥ Cu,v where
Cv,t ∈ CSv in a full 8-neighbourhood
{TL, T, TR,L,R,BL,B,BR}.

(iv) if Cu,v ≤ dcurr, do Merge(Su, Sv) as fol-
lows:
a) k = k + 1 and m = m+ 1.
b) P k = (P k−1 ∪ {Sm}) ∩ {Su, Sv}.
c) calculate Dm from Du and Dv .
d) Bm = (Bu ∪Bv) ∩ {Su, Sv}.
e) ∀Sj ∈ Bm, Bj = (Bj ∪ {Sm}) ∩

{Su, Sv}
f) hasMerged = true

III. Stopping condition:
(i) if hasMerged == true, do the following:

a) hasMerged = false.
b) dcurr = Min(dcurr + dstep, dmax).
c) go to step II.

(ii) stop.

D. Further region reduction

Two examples of heuristics applied in previous work in
order to reduce the number of segments are the phagocyte
heuristic and the weakness heuristic [7]. The phagocyte heuris-
tic acts so as to smoothen or shorten region boundaries while
the weakness heuristic joins regions based on the strength of
the boundary that separates them. The phagocyte heuristic is
less general since objects in real world images are not always
guaranteed to have smooth boundaries. The weakness heuristic
on the other hand is more general with respect to real world
images in the sense that similar segments separated by a
weak boundary are likely to belong together, and thus may
be merged.

We employ the weakness heuristic in our algorithm to
clean up the segmentation and reduce the number segments.



Although a larger distance threshold in the main algorithm
would also result in fewer segments, noise in the data may
cause two dissimilar segments to be joined since merging may
occur over any two adjacent pixels. The weakness heuristic is
more robust since similarity is gauged over the length of the
boundary separating two regions, thus the decision to merge
or not will be less affected by a little noise over the boundary
pixels.

The variables involved in the region reduction post-
processing are as follows:

1) for two regions Si and Sj where Sj ∈ Bi, let Li =
{li,1, li,2, · · · li,q} and Lj = {lj,1, lj,2, · · · lj,r} be the set of all
boundary pixels in Si and Sj respectively.

2) also let Adjacent(li,u, lj,v) be a boolean function deter-
mining whether pixels li,u ∈ Li and lj,v ∈ Lj are immediately
adjacent to each other. Note that this adjacency function finds
three adjacent pixels in Sj for every pixel in Si along smooth
boundaries, which we will need to compensate for in the
boundary strength computation.

3) then Lj
i ⊂ Li, where ∃u ∈ Li, v ∈ Lj for which

Adjacent(li,u,lj,v) = true.

4) d(r,s) is the feature distance between pixels r and s.

5) fi,j = |Lj
i |, the approximated length of the common

boundary between Si and Sj

6) ∀li,u ∈ Lj
i , mean boundary distance between segments

Si and Sj , CTi,j = 1
3

1
fi,j

∑
d(li,u, lj,v), where ∃u ∈ Li, v ∈

Lj such that Adjacent(li,u,lj,v) = true.

7) dweakness = α × dmax, where 0 < α < 1 is the
weakness control factor that decides what proportion of dmax

is the allowable weakness between segments in order to allow
a merge to take place.

In this step we check only neighbour {TL} at every
scan position, having observed faster processing times without
significant degradation in quality. Since we proceed from the
main segmentation step, no initialisation is required for the
region reduction post-processing phase, which is given by the
following:

I. Region reduction, ∀t ∈ Ind, 1-neighbour scan {TL}:
(i) hasMerged = false.

(ii) i = Label(t).
(iii) calculate Cu,v as CTi,j |Sj ∈ Bi.
(iv) if Cu,v ≤ dweakness, do Merge(Su, Sv) as

follows:
a) k = k + 1 and m = m+ 1.
b) P k = (P k−1 ∪ {Sm}) ∩ {Su, Sv}.
c) calculate Dm from Du and Dv .
d) Bm = (Bu ∪Bv) ∩ {Su, Sv}.
e) ∀Sj ∈ Bm, Bj = (Bj ∪ {Sm}) ∩

{Su, Sv}.
f) hasMerged = true.

(v) if hasMerged = true, repeat from step I.

Next we reduce the number of small segments by perform-
ing a single iteration of the main region merging algorithm
via a full 8-neighbour scan (to avoid missing possible merge

pathways) by setting dcurr =∞ and considering i = Label(t)
in a row-wise scan only for segments Si such that the segment
size |Si| satisfies the condition |Si| ≤ γ × |Ind|

|Pk−1| , where
the total image size is represented by the number of pixels
contained |Ind| and the control parameter γ decides the
smallness to be merged in terms of some fraction of the ratio
between image size and the number of segments obtained thus
far.

Additionally, to deal with completely enclosed regions, we
use a second weakness control factor β to reduce the cost of
merging such regions. The main region merging process can be
repeated for a single iteration again via a full 8-neighbour scan
after setting dcurr = β × dmax and considering i = Label(t)
in a row-wise scan only for segments Si in which |Lj

i | = |Li|.

IV. RESULTS

Next we set values for the parameters dmax, dstep, α, β, γ
used in our quantitative evaluation (see Section IV) experi-
ments. Experimental observations over large sets of test data
have suggested the following sets of parameter values to
produce robust results across a wide variety of inputs:

dmax = 35, dstep = 3, α = 0.55, γ = 2, β = 10.

Segmentation resolution is inversely proportional to dmax,
α, β and γ. Segmentation speed is directly proportional to
dstep, which also affects the evolution of the segmentation
map by altering the affinity to merge regions.

While there have been many segmentation evaluation meth-
ods and metrics proposed over the years, only a few have been
commonly used for the purposes of explicit comparison against
other methods. Four of these metrics are the probabilistic Rand
index (PRI) [29], variation of information (VOI) [22], global
consistency error (GCE) [21] and boundary displacement error
(BDE) [18], each having established figures for results using
important segmentation methods. We use these four measures
to quantitatively evaluate our segmentation results against the
figures reported in [19], [25], [12], [11].

The comparisons are with respect to the publicly available
Berkeley Segmentation Dataset (BSDS) [21]. The segmenta-
tion methods compared against are the following: Average Tree
Partitioning (ATP) [35], Contour Based Segmentation (GPB-
UCM) [5], Simple Linear Iterative Clustering (SLIC) [1],
Segmentation From a Soft Boundary Map (SFSBM) [24], K-
Means clustering and Graph Cut (KmsGC) [20], Felzenszwalb
& Huttenlocher Graph-based (FH) [16], Mean Shift (MS)
[13], Normalised Cuts (NC) [30], Multiscale NCut (MNC)
[14], Markov Chain Monte Carlo (MCMC) [33], Fusion of
Clustering Results (FCR) [23], Compression-based Texture
Merging (CTM) [36], Ultrametric Contour Maps (UCM) [4],
Texture and Boundary Encoding-based Segmentation (TBES)
[25], Hierarchical Markov Clustering (HMC) [19], Multiclass
Spectral Clustering (MCSpec) [37], Normalised Tree Partition-
ing (NormTree) [34], Blobworld (BW) [9], Swendsen-Wang
Cuts (SWC) [32]. We abbreviate our semi-greedy adaptive-
threshold method as SGAT. The quantitative comparisons are
shown in Figure 3.

Additionally, since we are comparing segmentation meth-
ods based on values for four different metrics, we propose
a way to obtain a single performance indicator from multiple



metrics. This performance indicator uses the results for human
segmentation as a baseline. There are some properties we must
be careful to preserve in the indicator. In some evaluation
metrics lower values show better performance while for others
higher values show better performance. We therefore use a
scheme that adds a positive term to the performance indicator
for metric results better than the baseline and penalises metric
results worse than the baseline. We must also take into account
the fact that different metrics produce typical values in varying
numeric ranges, and thus differences in some metrics may have
less significance than differences in others. To counteract this
we normalise each metric result by the relative importance of
that metric with respect to the complete set of metrics being
considered.

Some desirable properties of the performance indicator are:

1) the indicator should have a zero value when the baseline
is compared against itself.

2) the indicator should have a specific constant value
when the same pair of human and algorithm results are being
compared, independent of how many other algorithms are
being compared against.

We call this new indicator the relative performance (RP),
which is defined next. Let Hi and Ai be the baseline (human)
and challenger (algorithm) results for metric i for n different
metrics, also let λi = 1 when higher values are better and
λi = −1 when lower values are better for metric i. Then
the relative weight of each metric according to the baseline is
given by:

Wi =
Hi∑n
j=0Hj

(1)

Then RP is defined as:

RP =
1

n

n∑
i=0

λi × (Hi −Ai)

Wi
(2)

As we can see from the RP column in Figure 3, this
relative performance indicator allows us to compare overall
performance for an algorithm across several metrics with
respect to a set of baseline values for each metric. Higher
values (closer to zero) are better. A positive value for RP
would indicate that the algorithm has performed better than
the baseline. We can see that, with respect to the available
data, the proposed SGAT segmentation scheme produces the
best overall performance across the metrics considered.

All experiments were run on a 2.26 Ghz dual core laptop
computer. Average segmentation frame rates on the 481× 321
BSDS images were 0.5 to 1 fps depending upon image
complexity, for both region merging and region reduction
phases.

We now move to a qualitative visual analysis of the SGAT
segmentation results. We see from Figure 4 that important
object boundaries and edges are found in each example, even
in difficult cases such as the gorilla and snake images, even
though the contour of the gorilla has been contorted by a small
area of the background. We also observe that this segmentation

Algorithms PRI ↑ VoI ↓ GCE ↓ BDE ↓ RP ↑
Human 0.8754 1.1040 0.0797 4.9940 0
SGAT 0.7946 3.5026 0.1396 5.0237 -5.33

CTMγ=0.2 0.7617 2.0236 0.1877 9.8962 -5.82
GPB-UCM 0.8183 1.547 0.1911 13.04 -6.13

FCR 0.7882 2.3035 0.2114 8.9951 -6.42
FH 0.7841 2.6647 0.1895 9.9497 -6.86
ATP 0.8039 2.021 0.2066 13.77 -7.52
NC 0.7229 2.9329 0.2182 9.6038 -7.92
MS 0.7550 2.4770 0.2598 9.7001 -8.08

MNC 0.7559 2.4701 0.1925 15.10 -8.49
KmsGC 0.7712 2.5616 0.2932 9.1225 -8.72

NormTree 0.7521 2.4954 0.2373 16.30 -9.95
MCSpec 0.7357 2.6336 0.2469 15.40 -10.10

HMC 0.7816 3.8700 0.3000 8.9300 -10.87
SLIC 0.7287 2.935 0.2738 18.93 -12.44
TBES 0.807 1.705 - - -

SFSBM 0.787 - - - -
UCM 0.77 2.11 - - -

MCMC 0.768 2.261 - - -
BW 0.7138 2.6295 - - -

SWC 0.7644 3.0266 - - -

Fig. 3. Quantitative comparison of SGAT segmentation results with other
methods. Average performance on the BSDS shown. Arrows next to metric
name indicate direction of desired values. Figures not available are marked as
‘-’. The five best values for each measure are shown in bold.

method tends to retain dense groups of segments in highly
textured areas indicating the complexity of the image over
those areas. In the case of the bear image, the bear itself
has been oversegmented and is not represented as a single
object, which is due to textures and shades present on the fur
of the bear. The overall visual quality of the results appear
fairly consistent with human perceptual interpretation of these
images. However the usefulness of segmentation results is best
determined when applied to a larger cognitive task, different
applications requiring varying levels of resolution for different
purposes.

V. DISCUSSION

In this paper we have presented a novel segmentation
method using a semi-greedy threshold-adaptive (SGAT) re-
gion merging scheme and region reduction mechanisms to
refine the segmentation. The proposed method is fast and
both the quantitative and qualitative results demonstrate its
effectiveness. We have further proposed a new indicator of
performance summary, the relative performance (RP), over
several different commonly used evaluation metrics compared
to a set of baseline results. This indicator allows us to easily
compare computational and human segmentations.
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