

WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

The door to door perspective Delgado, L. and Belkoura, S.

A paper presented at the 8th International Conference on Research in Air Transport (ICRAT), Universitat Politècnica de Catalunya, Castelldefels, Catalonia, Spain, 26 - 29 Jun 2018.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((<u>http://westminsterresearch.wmin.ac.uk/</u>).

In case of abuse or copyright appearing without permission e-mail <u>repository@westminster.ac.uk</u>

The door to door perspective

Luis Delgado – Seddik Belkoura University of Westminster Innaxis

Overview of presentation

- Introduction
- Metrics for flights vs metrics for passengers
- The door-to-door context
- Passenger profiles
- Modelling

Introduction

Stakeholders

THE ROADMAP FOR DELIVERING HIGH PERFORMING AVIATION FOR EUROPE European ATM Master Plan

ICRAT Castelldefels, June 2018

Stakeholders

When you can measure what you are speaking about, and express it in numbers, you know something about it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind.

Lord Kelvin (Sir William Thomson) 1824 – 1907

Peter Drucker 1909 – 2005

Stakeholders

When you can measure what you are speaking about, and express it in numbers, you know something about it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind.

Lord Kelvin (Sir William Thomson) 1824 – 1907

Peter Drucker 1909 – 2005

Single European Sky

- Key objectives, to:
 - "restructure European airspace as a function of air traffic flows"
 - "create additional capacity"
 - "increase the overall efficiency of the ATM system"
- High-level, ambitious goals ("political targets"), aka SES '2005 vision'^{*} for 2020:
 - **x3** increase in capacity (reducing delays)
 - **x10** improvement in safety
 - **10%** reduction of flights' impact on environment
 - ≥ **50%** reduction in costs of ATM services to airspace users

ICAO Global ATM Operational Concept ('Doc 9854')

ICAO (2005). Global Air Traffic Management Operational Concept (Doc 9854), Ed. 1, International Civil Aviation Organization, Montréal.

(Not updated with second edition.)

A key objective

Presents ICAO vision of an integrated, harmonised and globally interoperable ATM system – agreed levels of safety, optimum economic ops, environmentally sustainable (horizon: up to and beyond 2025)

ICAO Global ATM Operational Concept ('Doc 9854') - KPA

KPA	Name	Meaning
1	Access and equity	
2	Capacity	
3	Cost effectiveness	
4	Efficiency	
5	Environment	
6	Flexibility	
7	Global interoperability	
8	Participation	
9	Predictability	
10	Safety	
11	Security	

ICAO Global ATM Operational Concept ('Doc 9854') - KPA

KPA	Name	Meaning
1	Access and equity	"all airspace users have right of access to the ATM resources needed to meet their specific operational requirements [] shared use of airspace by different users"
2	Capacity	"meet airspace user demands at peak times and locations while minimizing restrictions on traffic flow [] resilient to service disruption"
3	Cost effectiveness	"cost of service [] should always be considered when evaluating any proposal to improve ATM"
4	Efficiency	"airspace users want to depart and arrive at the times they select and fly the trajectory they determine to be optimum"
5	Environment	"contribute to the protection of the environment by considering noise, gaseous emissions and other environmental issues"
6	Flexibility	"ability of all airspace users to modify flight trajectories dynamically and adjust dep. & arr. times"
7	Global interoperability	"uniform principles [] non-discriminatory global and regional traffic flows"
8	Participation	"ATM community [] continuous involvement in the planning, implementation and operation"
9	Predictability	"ATM service providers to provide consistent & dependable levels of performance"
10	Safety	"highest priority [] uniform safety standards [] applied systematically"
11	Security	"protection against [] intentional acts (e.g. terrorism) or unintentional acts (e.g. human error, natural disaster) "

Visibility of KPAs

Source: SESAR Performance target ('D2'), 2006.

SESAR European ATM Master Plan

SESAR (2015): European ATM Master Plan, Edition 2015

https://www.atmmasterplan.eu/

Significant step towards alignment with SES Performance Scheme.

SESAR European ATM Master Plan

			Figure 5 SES	AR performance ambitions for 2035 (cate	gorised by KPA)		
	Key performance area		SES High-Level Goals		SESAR ambition vs. baseline 2012		
			vs. 2005	Key performance indicator	Absolute saving	Relative saving	
"Operational officiency"		Cost efficiency: ANS productivity	Reduce ATM services unit cost by 50% or more	 Gate-to-gate direct ANS cost per flight Determined unit cost for en-route ANS* Determined unit cost for terminal ANS* 	EUR 290-380	30-40%	/ value in
is added to the SESAR Perf. Framework e.g. to be useable by the SES Perf. Scheme under	•	Operational efficiency		 Fuel burn per flight (tonne/flight) Flight time per flight (min/flight) 	4-8 min 0.25-0.5 tonne	3-6 % 5-10 %	th monetary
'environment' (as fuel savings)	Capacity		Enable 3-fold increase in ATM capacity	Departure delay (min/dep) - En-route air traffic flow management delay*	1-3 min	10-30 %	etrics wi
		Capacity		 Primary and reactionary delays all causes Additional flights at congested airports (million) Networkthroughput additional flights (million) 	0.2-0.4 (million) 7.6-9.5 (million) Additional flights, not saving	5-10 % ¹ 80-100 % ²	Me
	٥	Environment	Enable 10 % reduction in the effects flights have on the environment	 CO₂ emissions (tonne/flight) Horizontal flight efficiency (actual trajectory)* Vertical efficiency Taxl-out phase 	0.79-1.6 tonne	5-10 %	
		Safety	Improve safety by factor 10	Accidents with ATM contribution	No increase in accidents	Improvement by a factor 3-4	-
	Ô	Security	-	ATM related security incidents resulting in traffic disruptions	No increase in incidents		-

* Targeted by the Performance Scheme

¹ Additional flights that can be accommodated at congested airports, representing 5-10 % of flights at congested airports (~31 % of 14,4 (million) flights in 2035). ² Additional traffic accommodated in 2035 in comparison with 2012 and associated with ANSP productivity gains, enabled by SESAR. Note: Numbers are rounded.

Current performance, wider context Comparing Europe, US and China

Region	Europe	US	China
Programme	SESAR*	NextGen	ATMB Strategic Development Programme
Programme target year	2035	2025	2030
Baseline year for comparison of relative changes	2005	2009	2015
(ICAO) KPA			
Safety	Improve safety 10-fold	Commercial carrier fatalities ≤ 6.2 per 100 million pax	Reduce ATC-attributable accident rate by 20% by flight volume
Capacity	Increase capacity 3-fold	12% increase in core airports throughput	Increase capacity 3-fold
Efficiency	1–3 min. reduction in average delay En-route ATFM average delay 0.5 min	Reduce delays by 27%	Average ATC-attributable delay $< 5 \text{ min}$
Environment	10% reduction in impact of flights on environment	Reduce fuel burned per miles flown by $\geq 2\%$ annually	Reduce CO ₂ by 10% (kg/km)

Better

Director of Better

Better – Trade offs

Airline Cost

- Broadening the perspective
 - Air Traffic <u>Control</u> (separation)
 - Air Traffic <u>Management</u> (throughput, delay)
 - Air <u>Transport</u> Management (AO costs, pax-centric, multimodality)

X

No, Air Traffic Management (with planes) Interesting, I didn't know you could research on cash machines

Next time I should say improving passenger mobility

Door-to-door context

- Flightpath 2050 (ACARE, 2011)
 - "highly ambitious goals" (x5)
 - "90% of travellers within Europe are able to complete their journey, door-to-door within 4 hours"

Door-to-door context

- Open questions
 - How measure progress without the right metrics? (Currently G2G)
 - New metrics needed new trade-offs apparent
 - Impacts of intermodal factors (e.g. regulated ticketing; HSR; airport access), on, e.g.:
 - Essential Operational Changes, such as UDPP
 - ATM Technology Changes, such as A-CDM
 - Is faster better? What should we measure? 'slow' & 'green' travel paradigms

Metrics

- Flight-centric \rightarrow pax-centric metrics
 - can't always detect changes with flight-centric metrics

CASSIOPEIA – Hub optimisation

L. Delgado, J. Martin, A. Blanch and S. Cristobal, Hub operations delay recovery based on cost optimisation, SESAR Innovation Days 2016

CASSIOPEIA – Hub optimisation

L. Delgado, J. Martin, A. Blanch and S. Cristobal, Hub operations delay recovery based on cost optimisation, SESAR Innovation Days 2016

CASSIOPEIA – Hub optimisation

Gate-to-gate trip time (min)

Connecting passengers

Non-connecting passengers

L. Delgado, J. Martin, A. Blanch and S. Cristobal, Hub operations delay recovery based on cost optimisation, SESAR Innovation Days 2016

Montlaur, L. Delgado, Flight and passenger delay assignment optimization strategies, <u>Transportation Research Part C: Emerging Technologies</u> <u>Volume 81</u>, August 2017, Pages 99-117

Montlaur, L. Delgado, Flight and passenger delay assignment optimization strategies, <u>Transportation Research Part C: Emerging Technologies</u> <u>Volume 81</u>, August 2017, Pages 99-117

Montlaur, L. Delgado, Flight and passenger delay assignment optimization strategies, <u>Transportation Research Part C: Emerging Technologies</u> <u>Volume 81</u>, August 2017, Pages 99-117

Obj = α Total delay per flight + (1- α) Total delay per passengers

A. Montlaur, L. Delgado, Trade-off on arrival optimization (Current work)

POEM – Delay propagation networks

	S ₀	A ₁
Flight arrival delay	13.8	14.3
Pax arrival delay	16.3	14.6

D6.2 – POEM Final Technical Report

Delay propagation networks

Seddik Belkoura and Samuel Cristobal, New Insights on Nonlinear Delay Causation Network for Passengers and Flights in Europe, ICRAT 2018

Delay propagation networks

Seddik Belkoura and Samuel Cristobal, New Insights on Nonlinear Delay Causation Network for Passengers and Flights in Europe, ICRAT 2018

The door-to-door context

- London – Castelldefels (via Gatwick)

$$\begin{array}{c} \begin{array}{c} 14:40 \\ LGW \end{array} \xrightarrow{2h \ 05} \\ \begin{array}{c} 17:45 \\ BCN \end{array} \end{array}$$

- London – Castelldefels (via Gatwick)

- Access to airport
- Egress airport
- Airport processes departure
- Airport processes arrival
- Flight
- Waiting

- London – Castelldefels (via Gatwick)

- London – Castelldefels (via Heathrow)

- Belgrade – Castelldefels (via Munich)

- Belgrade – Castelldefels (via Munich)

- Belgrade – Castelldefels (via Munich)

Goal 2. 90% of travellers within Europe are able to complete their journey, door-to-door within 4 hours. Passengers and freight are able to transfer seamlessly between transport modes to reach the final destination smoothly, predictably and on-time.

Flightpath 2050 Europe's Vision for Aviation

Report of the High Level Group on Aviation Research

EUR 098 EN

DATASET2050

How many passengers?

Dom_AI	Mar_All	Mar_Al2	Mar_AB	Orig	Connect_2	Connect	3					DavIS (INTA tickat) nav data
KL.	KL.	KL	KL.	ABZ	AM3	FCO						Γ Λ
KL.	KL.	KL	ΛZ	ABZ	AMS	FCO						
KL	KL	KL	AP	ABZ	AMS	FCO	4					+
KL	KL	KL	KL	ABZ	AMS	FCO						
KL.	KL.	KL	KL.	ABZ	AMS	FCO						ndividual flights (PRISME traffic
КІ,	К1.	KI.	KI,	ACA	MEX	AMS						
KL.	KL.	KL	K1.	ADL	KUL	AMB				1		data)
AZ	AZ	AZ	-	AM3	FCO							Galaj
AZ	AZ	AP		AMS	FCD							
AZ	AZ	AZ		AMS	FCO							
AZ	AZ	AZ		AIRS	FCD						\frown	
AZ	AZ	AZ	_	AMS	12	_			1 ()	0	
AZ	AZ	AZ	PZ	AMS	FCO	EZE	1				_	
KL.	LP	KL	KL.	AQP 🤇	LIM	MA						
AZ	AZ	AZ	AZ	ARN	AVIS	FCO				 • 		200 airporte
KL.	KL	KL	KL	ARN	ANA	FCO						
KL.	KL.	times	Aires	Turne	Carr		Ľ.					
KL.	KL.	Opera	br IC/	0_0	Registration	36	ADEP	ADES	AOBT_3	ARVT_3	FIENum	
KL.	PZ	KLM	F	738	PHBXE	171	SHAM	LIFE	17/09/2010 05:03	17/09/2010 07:04		20 000 thate
KL.	KL.	KLW	E	738	PHBGB	171	EHAM	LIFE	17/09/2010 07:55	17/09/2010 09:50	KLM EHAMLIRE	
AZA A320 El090 159 EHAM EZY A319 GEZ8H 109 EHAM KLM B736 PHBXF 171 EHAM		AZA	. /	320	EDSC	159	ERAM	LIFE	17/09/2010 11:29	17/02/2010 13:30	AZA EHAMURFO	
		EZY	1	319	GEZBH	158	EHAM	LIFE	1/09/2010 11:56	17/05/2010 14:00	EZY EHAMURFO	
	LEFE	17:09/2010 11:49	17/05/2010 13:51	KLM EHAMURE	25 million nav							
			_		0.000	134	EHAM	LIFE	1019(2010.1431	17/05/2010 18:34	KIM EHAMURE	
		KLM	E	739	PHBAH						_	
		KLM AZA	E	320	EIDSA	159	EHAM	LIFE	17/09/2010 15:07	17/09/2010 17:08	AZA_EHAMURFO	
		KUM AZA AZA		320 320	EIDSA	159	EHAM	LIRF	17/09/2010 15:07 17/09/2010 17:13	17/09/2010 17:00	AZA_EHAMURE	

What profiles for our travellers?

Economy class

Business class

Factors influencing passenger characteristics?

Profiles are based on available European data and forecasts only

9

Kluge, U., Paul, A., Urban, M., Ureta, H. (2017). Assessment of Passenger Requirements along the D2D Air Travel Chain. In: Towards user-centric transport in Europe. Challenges, solutions and collaborations. Munich. Manuscript submitted and accepted.

Kluge, U., Paul, A., Ureta, H., & Ploetner, K.O. (2018). Profiling Future Air Transport Passengers in Europe. Vienna: 7th Transport Research Arena 2018.

Kluge, U., Paul, A., Cook, A., & Cristóbal, S. (2017). Factors influencing European passenger demand for air transport. Antwerpen: 21st Air Transport Research Society World Conference.

11

•••••• DATASET2050

	Best Agers (Next Generation)	on)
Single		
	MAIN TRAVEL PURPOSE	PRIVATE
MAINT	PREDOMINANT AGE GROUP	65+
FHED	TRAVEL ACTIVITY	0.5 TRIPS / YEAR
TRA	INCOME LEVEL	€€€€€
114	EXPENDITURE ON TRANSPORT	~~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~
· · · · · · · · · · · · · · · · · · ·	ICT USAGE	
	TRAVEL PARTY SIZE	ائے ائے ائے ائے
А	CHECK-IN LUGGAGE	յու յու յու յու
	ACCESS MODE CHOICE	🗐 🛱 🌦 🚟 🏯 🛲 🔊
		i turisafari Mitahut

DATA	SET2050	1) Cultural Seeker	2) Family & Holiday Traveller	3) Single Traveller	4) Best Agers (Next Gen- cration)	5) Environ- mental Traveller	6) Digital Native Business Traveller
	Main travel purpose	Private	Private	Private	Private	Bleisure	Business
	Predominant age group	15 - 65	30 – 50 + children below 15	44+	65+ 30-44		24 - 64
	Luggage require- ments of passenger	Hand lug- gage only (short trips) Check-in luggage	Check-in luggage	Hand lug- gage only (short trips) Check-in luggage	Check-in luggage	Hand lug- gage only (short trips) Check-in luggage (if necessary)	Hand lug- gage only (short trips) Check-in luggage
	Access mode choice	Public transport Taxi Car Sharing	Public transport Private car (park and travel)	Public transport Kiss & fly	Private car (park and travel) Kiss & fly	Public transport Car Sharing Cycling (if possible)	Public transport Taxi Car Sharing

$$D2K_k = T_{m_k} + B_{k,m_k}^1$$

 $m_k \thicksim$ Generalized Bernoulli Distribution with $p(m_i) = p_i$

 $T_m \sim LogN(\mu, \sigma^2)$

$\mu?\sigma?$

Access/Egress Times

$$D2K_k = T_{m_k} + B_{k,m_k}^1$$

Unavailable information!

Kerb-Gate Segment

PROCESS BUFFER

		•••		/		\mathbf{i}					
DATASET2050		Facility		tim	Process le (secs)						
	Airport	irport Total	Avera	Check-in counter Check-in terminal			120 63				
	(milli	(million)	lion) queue	Bag-drop			45 +25/bag				
	Heathrow	72.3	7.27	Boarding-Pass Control			Walking ⁶ time (google maps)				
	Airport	Terminal	Minimum walk (m)	Maximum walk (m)	Average walk (m)	Internal shuttle (mins)	Shuttle frequency (mins)	Minimum time (min)	Maximum time (min)	Average time (min)	
	Munich	T1	100	200	150	0	0	1.2	2.4	1.8	
		T1S	300	450	375	0	0	3.6	5.4	4.5	
		T2	200	680	440	0	0	2.4	8.1	5.2	
		T2S	280	710	440	1	1	4.3	10.5	6.7	
ι	Frankfurt	T1	150	800	400	0	0	1.8	9.5	4.8	
CF		T2	150	1350	320	0	0	1.8	16.1	3.8	

Castelldefels, June 2018

 $K2G_{k,a} = \sum_{i} (\delta_{k}^{i} \cdot P_{a}^{i}) + B_{k,a}^{2}$ $G2K_{k,a} = \sum_{i} (\delta_{k}^{i} \cdot P_{a}^{i})$

TIMES

 $K2G_{k,a} = \sum \left(\delta_k^i \cdot P_a^i\right) + B_{k,a}^2$ $G2K_{k,a} = \sum \left(\delta_k^i \cdot P_a^i\right)$ ĺ

$$B_{k,a}^2 = B_{a,k}^{process} + B_{a,k}^{travel}$$
$$= B_{k,m_k}^1$$

PARALLEL SPEED-UP \sim 15 min

$\sim\,$ 2 Millions Passengers simulated

Interactive results - for fun only?

http://visual.innaxis.org/dataset2050/d2d-time-distribution

http://visual.innaxis.org/dataset2050/d2d-time-map

LOWER MEAN

ICRAT Castelldefels, June 2018

HIGHER MEAN

what gets measured gets managed – even when it's pointless to measure and manage it, and even if it harms the purpose of the organisation to do so

Peter Drucker 1909 – 2005

Validation?

Validations done

EUROCONTROL or CODA's statistics

Sensitive internal statistics from a top-10 airport against which the results of our simulator matched with a 5% error

Other possible validations

Internal airport/airline pax-data statistics

Cross-reference with other projects:

- 1. BigData4ATM
- 2. DORA (Bayesian Approach)

What would you do to reduce D2D times?

AREAS OF INTEREST

Access/Egress Times

Kerb-GateKerb-Gateffer/Waiting Process Segment times

Actual Flying time

AREAS OF INTEREST

How do we reduce the access/egress time to airport? CROUP C e.g. smart airports? Unique travel ticket? Insurance?

Are process in airports efficient?

e.g. over all airports? Necessity of all steps? Queue management2

Can we reduce G2G duration?

e.g. speed of aircraft? Higher traffic = higher delays?

What about buffers?

e.g. conservative vs. risky behaviours/persons, shopping willingness, sr

GROUP B

GROUP A

How to assess the validity/effects of our ideas?

Vista model is a 'what-if' simulator

• What happens if I do something in the system?

And **not**:

• What will happen in 2035 or 2050?

Tested solutions

Futuristic version

Average expectations

Low development

Improvement (in minutes) wrt. total average D2D segment

ICRAT Catelldefels, June 2018

Conclusions

What do we measure? How do we measure it?

If we don't measure something, we don't consider it. Pax need to be included

Which trade-offs? Which optimisations?

How to validate?

Q&A session

Thank you

Luis Delgado & Seddik Belkoura University of Westminster (UoW) & INNAXIS Research Institute

ICRAT Castelldefels, June 2018