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Abstract This work presents the design of a real-time

system to model visual objects with the use of self-

organising networks. The architecture of the system

addresses multiple computer vision tasks such as image

segmentation, optimal parameter estimation and object

representation. We first develop a framework for building

non-rigid shapes using the growth mechanism of the self-

organising maps, and then we define an optimal number of

nodes without overfitting or underfitting the network based

on the knowledge obtained from information-theoretic

considerations. We present experimental results for hands

and faces, and we quantitatively evaluate the matching

capabilities of the proposed method with the topographic

product. The proposed method is easily extensible to 3D

objects, as it offers similar features for efficient mesh

reconstruction.

Keywords Minimum description length � Self-organising
networks � Shape modelling � Clustering

1 Introduction

The images captured of hand gestures, which are effec-

tively a 2D projection of a 3D object, can become very

complex for any recognition system. Systems that follow a

model-based method [1, 32] require an accurate 3D model

that captures efficiently the hand’s high Degrees of Free-

dom (DOF) articulation and elasticity. The main drawback

of this method is that it requires massive calculations which

makes it unrealistic for real-time implementation. Since

this method is too complicated to implement, the most

widespread alternative is the feature-based method [16]

where features such as the geometric properties of the hand

can be analysed using either Neural Networks (NNs)

[34, 36] or stochastic models such as Hidden Markov

Models (HMMs) [6, 35].

However, for the accurate analysis of the hand’s prop-

erties, a suitable segmentation that separates the object of

interest from the background is needed. Segmentation is a

pre-processing step in many computer vision applications.

These applications include visual surveillance [5, 10,

18, 20], and object tracking [15, 17, 26]. While a lot of

research has been focused on efficient detectors and clas-

sifiers, little attention has been paid to efficiently labelling

and acquiring suitable training data. Existing approaches to

minimise the labelling effort [19, 21, 24, 30] use a classi-

fier which is trained in a small number of examples. Then

the classifier is applied on a training sequence, and the

detected patches are added to the previous set of examples.

Levin et al. [21] start with a small set of hand labelled data

and generate additional labelled examples by applying co-
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training of two classifiers. Nair and Clark [24] use motion

detection to obtain the initial training set. Lee et al. [21]

use a variant of eigentracking to obtain the training

sequence for face recognition and tracking. Sivic et al. [30]

use boosting orientation-based features to obtain training

samples for their face detector. A disadvantage of these

approaches is that either a manual initialization [19] or a

pre-trained classifier is needed to initialise the learning

process. Having a sequence of images, this can be avoided

by using an incremental model.

We decided to use NNs to represent the geometric

properties of objects, and more specifically the self-or-

ganising maps (SOMs), due to their incremental nature.

One of these SOM-based methods is the growing cell

structures (GCS) algorithm [8], which is a model formed

incrementally. However, it constrains the connections

between the nodes, so any model produced during the

training stage is always topologically equivalent to the

initial topology. The Topology Representing Networks

(TRN) approach, proposed by Martinez and Schulten [22],

does not have a fixed structure and also does not impose

any constraint on the connection between the nodes. In

contrast, this network has a pre-established number of

nodes and, therefore, it is not able to generate models with

different resolutions. The algorithm was also coined with

the term Neural Gas (NG) due to the dynamics of the

feature vectors during the adaptation process, which dis-

tribute themselves like a gas within the data space. How-

ever, as the NG has a fixed number of nodes, it is necessary

to have some a priori information about the input space to

pre-establish the size of the network. This model was

extended by Fritzke [9] proposing the Growing Neural Gas

(GNG) network, which combined the flexible structure of

the NG with a growing strategy. Moreover, the learning

adaptation step was slightly modified. This extension

enabled the neural network to use the already detected

topological information while training in order to conform

to the geometry. This approach has the capability to add

neurons while preserving the topology of the input space.

Although the use of the SOM-based techniques of NG,

GCS or GNG for various data inputs has already been

studied and successful results have been repor-

ted [4, 13, 14, 27, 31, 32], there are some limitations that

still persist. Most of these works assumed noise-free

environments and low complexity distributions. Therefore,

applying these methods on challenging real world data

obtained using noisy 2D1 and 3D2 sensors is our main

study. These particular non-invasive sensors have been

used in the associated experiments and are typical, con-

temporary technology.

In this work, we extend the method presented in [2] for

object representation using the GNG algorithm. This work

extends the already proposed method by considering

elimination of noisy connections during the learning pro-

cess and by applying it to 3D datasets. The method is used

for the representation of two-dimensional outline of hands

and ventricles, which is extended to 3D. Furthermore, we

are interested in the minimisation of the user intervention

in the learning process; thus, we utilise an automatic cri-

terion for maximum node growth based on topological

parameters. We achieve that by taking into consideration

that human skin has a relatively unique colour and the

complexity or simplicity of the proposed model is decided

by information-theoretic measures.

The remainder of the paper is organised as follows.

Section 2 introduces the framework for object modelling

using topological relations. Section 3 proposes an approach

to minimise the user intervention in the termination of the

network using knowledge obtained from information-the-

oretic considerations. In Sect. 4 a set of experimental

results is presented that includes 2D and 3D representations

before conclusions are drawn in Sect. 5.

2 Characterising 2D objects with modified GNG

GNG [9] is an unsupervised incremental self-organising

network independent of the topology of the input distri-

bution or space. It uses a growth mechanism inherited from

the Growth Cell Structure [8] together with the Competi-

tive Hebbian Learning (CHL) rule [22] to construct a

network of the input date set. In the GNG algorithm [9],

the growing process starts with two nodes, and new nodes

are incrementally inserted until a predefined conditioned is

satisfied, such as the maximum number of nodes or avail-

able time. During the learning process, local error measures

are gathered to determine where to insert new nodes. New

nodes are inserted near the node with the highest accu-

mulated error and new connections between the winner

node and its topological neighbours are created.

Identifying the points of the image that belong to objects

allows the GNG network to obtain an induced Delaunay

triangulation of the objects. In other words, to obtain an

approximation of the geometric appearance of the object.

Let an object O ¼ ½OG;OA� be defined by its geometry and

its appearance. The geometry provides a mathematical

description of the object’s shape, size, and parameters such

as translation, rotation, and scale. The appearance defines a

set of the object’s characteristics such as colour, texture,

and other attributes.

Given a domain S � R2, an image intensity function

Iðx; yÞ 2 R such that I : S ! ½0; Imax�, and an object O, its

standard potential field WTðx; yÞ ¼ fTðIðx; yÞÞ is the

1 Webcam with image resolution 800� 600.
2 Kinect for XBox 360: http://www.xbox.com/kinectMicrosoft.
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transformation WT : S ! ½0; 1� which associates with each

point ðx; yÞ 2 S the degree of compliance with the visual

property T of the object O by its associated intensity Iðx; yÞ.
Considering:

• The input distribution as the set of points in the image:

A ¼ S ð1Þ
nw ¼ ðx; yÞ 2 S ð2Þ

• The probability density function according to the

standard potential field obtained for each point of the

image:

pðnwÞ ¼ pðx; yÞ ¼ WTðx; yÞ ð3Þ

Learning takes place with our modified GNG algorithm

where wrong edges in the network are eliminated and the

final graph is normalised. Algorithms 1 and 2 describe our

extended GNG. During this process, the neural network is

obtained which preserves the topology of the objectO from a

certain feature T. Therefore, from the visual appearance OA

of the object is obtained an approximation to its geometric

appearance OG. Henceforth, the Topology Preserving Graph

TPG ¼ hA;Ci is defined with a set of vertices (nodes) A and

a set of connections (edges) C. To speed up the learning, we

used the faster Manhattan distance [23] compared to the

Euclidean distance in the original algorithm [9].

Figure 1 compares the original GNG algorithm with the

modified GNG in 5 simple shapes with curvatures and

corners.

We test the performance of the modified GNG by quan-

titative measures as shown in Table 1. The two measures of

topological correctness that we used are the mean Quanti-

sation Error (qe) and the Topology Preservation Error

(te) [33], shown in Eqs. 4 and 5 respectively. There are N

pixels, or reference vectors xc
!, representing the input space

in the GNG network. Each node c 2 N has its associated

reference vector fxcgNc¼1 2 Rq. The reference vectors

indicate the nodes’ position or receptive field centre in the

input distribution. We first analyse the quantisation error for

each node with the Euclidean distance to its Best Matching

Unit (BMU)m
xc
!. The Best Matching Unit (BMU)m

xc
! is the

node whose reference vector is closest to the input signal

ðnwÞ. The mean quantization error (qe) is the average dis-

tance between each reference vector and its BMU. For the

calculation of topographic error, there is a function uðxc!Þ that
is 1 if xc

! data vectors first and second BMUs are adjacent and

0 otherwise. The modified version of GNG produces a sig-

nificant speed increase, with better connections in corners

and angles and better topology preservation (less error).

qe ¼ 1

N

XN

c¼1

k xc
!� m

xc
! k ð4Þ

te ¼ 1

N

XN

c¼1

uðxc!Þ ð5Þ

As reflected in Table 1, GNG modified version provided

lower quantization and topology preservation errors due to

the deletion of wrong edges for most cases. However, in a

few cases, wrong edges provide a shorter distance between

input space and the Delaunay triangulation obtained (see

Star-6 TE).

Table 1 Topology Preservation measures of the original vs. modified

GNG with respect to frames per second (fps)

Shape Nodes Original GNG Modified GNG

Fps QE TE Fps QE TE

Star-4 71 1.16 2.7551 0 7.30 2.6375 0

Star-6 74 1.11 2.9564 0 6.06 2.9073 0.0014

Cloud 97 0.61 2.7275 0 5.26 2.6561 0

Heart 70 1.38 2.9337 0 5.24 2.9347 0

Lightning 71 1.04 2.9391 0 6.99 2.8138 0

Fig. 1 The first row shows the original GNG while the second row shows the modified GNG. With the modified GNG any wrong corrections to

corners and curvatures have been eliminated

Neural Comput & Applic (2018) 29:903–919 905
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Figure 2 shows another example of the modified GNG

applied to shapes extracted from the Columbia Object

Image Library (coil-100) dataset. The 100 object coil-100

dataset consists of colour images of 72 different poses for

each object. The poses correspond to 5� rotation intervals.

Figure 3 shows the modified GNG from our own dataset of

hands and shapes. Any wrong connections to corners have

been accurate eliminated.

To normalise the graph that represents the contour we

must define a starting point, for example the node on the

left-bottom corner. Taking that node as the first we must

follow the neighbours until all the nodes have been added

to the new list. If necessary we must apply a scale and a

rotation to the list with respect to the centre of gravity of

the list of nodes. We achieved the required alignment by

applying a transformation T composed by a translation

ðtx; tyÞ, rotation h, and a scaling s. The normalisation is

given by Algorithm 2.

T
xi

yi

� �
¼

sðcos#Þxi �sðsin hÞyi
sðsin#Þxi sðcos hÞyi

� �
þ

tx

ty

� �
ð6Þ

3 Adaptive learning

The determination of accurate topology preservation

requires the determination of best similarity threshold and

best network map without overfitting. Let XðxÞ denote the

set of pixels in the objects of interest based on the con-

figuration of x (e.g. colour, texture, etc.) and ! the set of all

image pixels. The likelihood of the required number of

nodes to describe the topology of an image y is:

pðyjxÞ ¼
Y

u2XðxÞ
pskinðuÞ

Y

v2!nXðxÞ
pbkgdðvÞ

8
<

:

/
Y

u2XðxÞ

pskinðuÞ
pbkgdðuÞ þ pskinðuÞ

9
=

; � eT

ð7Þ

Fig. 2 First shape of each of the first 10 objects in coil-100, showing

the original image, the thresholded region, and the modified GNG

contour representation

906 Neural Comput & Applic (2018) 29:903–919

123



and eT 	
Q

u2XðxÞ pskinðuÞ þ
Q

v2!nXðxÞ pbkgdðvÞ.
Figure 4 shows the network map for images with dif-

ferent skin to background ratio.

eT is a similarity threshold and defines the accuracy of

the map. If eT is low, the topology preservation is lost and

more nodes need to be added. On the contrary, if eT is too

big, then nodes have to be removed so that Voronoı̈ cells

become wider. For example, let us consider an extreme

case where the total size of the image is I ¼ 100 pixels and

only one pixel represents the object of interest. Let us

suppose that we use eT ¼ 100 then the object can be rep-

resented by one node. In the case where eT 
 I then overfit

occurs since twice as many nodes are provided.

In our experiments, the numerical value of eT ranges

from 100	 eT 	 900 and the accuracy depends on the size

of the objects’ distribution. The difference between

choosing manually the maximum number of nodes and

selecting eT as the similarity threshold, is the preservation

of the object independently of scaling operations. Algo-

rithm 3 shows the steps of the automatic criterion added to

the modified GNG algorithm to minimise user intervention

in the learning process.

We can describe the optimum number of similarity

thresholds, required for the accuracy of the map for dif-

ferent objects, as the unknown clusters K, and the network

parameters as the mixture coefficients WK , with d-dimen-

sional means and covariances HK . To do that, we use a

heuristic criterion from statistics known as the Minimum

Description Length (MDL) [28], which does not require an

Fig. 3 Modification of the

GNG network to eliminate

multiple connections and to

attempt to reduce the network to

a single series of sequentially

linked nodes. Model A is the

original network with the wrong

connections (circled corners),

while model B is our modified

network

Fig. 4 Likelihood node ratios for images with same image resolution but different skin to background ratio. a Network adaptation to images of

46,332 pixels with maps of 102 and 162 nodes. b Network adaptation to images of 21,903 pixels with maps of 46 and 132 nodes

Neural Comput & Applic (2018) 29:903–919 907
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estimation of the probability p(Y) as is the case for the

conditional entropy heuristic criterion [3]. The MDL cri-

terion takes the general form of a prediction error, which

consists of the difference between two terms:

E ¼ model likelihood � complexity term ð8Þ

a likelihood term that measures the model fit and increases

with the number of clusters, and a complexity term, used as

a penalty, that grows with the number of free parameters in

the model. Thus, if the number of cluster is small, we get a

low value for the criterion because the model fit is low,

while if the number of cluster is large, we get a low value

because the complexity term is large.

The information-criterion MDL of Rissanen [28], is

defined as:

MDLðKÞ ¼ � ln½LðXjWK ;HKÞ� þ
1

2
M lnðNÞ ð9Þ

where

LðXjWK ;HKÞ ¼ max
YN

i¼1

pðxijWK ;HKÞ ð10Þ

The first term � ln½LðXjWK ;HKÞ� measures the model

probability with respect to the model parameter WK ;HK

defined for a Gaussian mixture by the mixture coefficients

WK and d-dimensional means and covariances HK . The

second term 1
2
M lnðNÞ measures the number of free

parameters needed to encode the model and serves as a

penalty for models that are too complex. M describes the

number of free parameters and is given for a Gaussian

mixture by M ¼ 2dK þ ðK � 1Þ for ðK � 1Þ adjustable

mixture weights and 2D parameters for d-dimensional

means and diagonal covariance matrices.

The optimal number of similarity thresholds can be

determined by applying the following iterative procedure:

• For all K, ðKmin\K\KmaxÞ
(a) Maximize the likelihood LðXjWK ;HKÞ using the

EM algorithm to cluster the nodes based on the

similarity thresholds applied to the dataset.

(b) Calculate the value of MDL(K) according to Eqs. 9

and 10

• Select the model parameters ðWK ;HKÞ that correspond
to minimisation of the MDL(K) value.

Figure 5 shows the value of MDL(K) for clusters within

the range of ð1\K\18Þ. We have doubled the range in

the MDL(K) minimum and maximum values so we can

represent the extreme cases of 1 cluster which represents

the whole dataset, and 18 clusters which over classify the

distribution and corresponds to the overfitting of the net-

work with similarity threshold eT ¼ 900. A global mini-

mum and therefore optimal number of clusters can be

determined for K ¼ 9 which indicates that the best simi-

larity threshold that defines the accuracy of the map

without overfitting or underfitting the dataset is eT ¼ 500.

To account for susceptibility for the EM cluster centres as

part of the MDL(K) initialisation of the mixture coeffi-

cients, the measure is averaged over 10 runs and the

minimal value for each configuration is selected. Algorithm

4 summarises the steps.

9 10

We can now use this optimal network to track objects

locally wherever common regions are found. To do that,

shape information and colour information from the 1st and

any subsequent frames are added to the TPG map and can

be used for the learning in a sequence of k frames. The

segmented frame and the stored shape and colour infor-

mation in each node is given by:

Sðx;Pðgðx; yÞ; tÞ ¼ pðkjxÞ / Pðgðx; yÞ; t � 1Þ; TPGt�1

ð11Þ

Figure 6 shows the convergence of the network with shape

and posterior probability per node.

4 Experiments

In this section, different experiments are shown validating

the capabilities of our extended GNG method to represent

2D and 3D hand models. The proposed method by con-

sidering elimination of noisy connections during the

learning process is able to define an optimal number of

nodes using the MDL criterion. The method has also been

used in 3D datasets. First, a quantitative study is performed

adding different levels of noise to the ground truth model

(datasets). Using the ground truth models and the generated

ones adding noise, we are able to measure the error pro-

duced by our method. In addition, our method is compared

against the state-of-the-art algorithms Active Shape Mod-

els and Poisson surface reconstruction.

All methods have been developed and tested on a

desktop machine of 2.26 GHz Pentium IV processor. These

methods have been implemented in MATLAB and C??.

The Poisson surface reconstruction method has been

implemented using the PCL library3 [29].

3 The Point Cloud Library (or PCL) is a large scale, open project for

2D/3D image and point cloud processing.

908 Neural Comput & Applic (2018) 29:903–919
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4.1 Benchmark data

We tested our modified GNG network on a dataset of hand

images recorded from 5 participants each performing dif-

ferent gestures (Fig. 7) that frequently appear in sign lan-

guage. To create this dataset, we have recorded images

over several days and a simple webcam was used with

image resolution 800� 600. In total, we have recorded

over 12000 frames, and for computational efficiency, we

have resized the images from each set to 300� 225,

200� 160, 198� 234, and 124� 123 pixels. We obtained

the dataset from the University of Alicante, Spain and the

Fig. 5 a Plot of hand distributions. b Plot of the MDL values versus the number of cluster centres. The Minimum Description Length MDL(K) is

calculated for all cluster configurations with ð1\K\18Þ clusters, and a global minimum is determined at 9 (circled point)

Neural Comput & Applic (2018) 29:903–919 909
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University of Westminster, UK. Also, we tested our

method with 49 images from Mikkel B. Stegmann4 online

dataset. In total we have run the experiments on a dataset of

174 images. Since the background is unambiguous, the

network adapts without occlusion reasoning. For our

experiments, only complete gesture sequences are inclu-

ded. There are no gestures with partial or complete

occluded regions, which means that we do not model

multiple objects that interact with the background.

Furthermore, we have performed the experiments hav-

ing in mind specific applications, thus limiting its appli-

cability. The quality and stability of the results at close

range makes it worthwhile for webcam or green screen sign

language applications which share a close range viewing

distance and a relatively uncluttered background.

We have also tested the system in a more generic

background where shadows, changes in lighting and

extremely cluttered backgrounds are common. Figure 8

shows that when colour information is incorporated into

the network, the system is able to represent the gesture and

only a few nodes adjust to nearby similar pixels. Gesture

representation is possible as long as no homogeneity is

applied around the gesture.

To classify a region as a hand or face, we take into

account domain knowledge information that always

respects some proportions found in hands and human

faces [11]. To do that we find the centroid, height and

width of the connected nodes in the networks as well as the

percentage of skin in the rectangular area (Fig. 9). Since

the height to width ratio for hands and human faces fall into

a small range, we are able to reject or accept if the topology

of a network does or does not represent a hand. Stud-

ies [7, 11] have shown that the height to width ratio of

human face and hands fall within a range based on the well

known Golden Ratio (Eq. 12). Thus, we consider a network

as a hand or not if the height to width ratio of the region

falls within a range of the Golden Ratio ± Tolerance. In the

case where the hand is in a folded posture the rule still

applies but with different percentage for the Tolerance. The

values for the Tolerance were found by experimentation,

and range from 0.5 to 0.7 based on the hand posture.

Fig. 6 Network convergence for two sets of images after a sequence

of k frames. The network is defined by the shape Sðx;Pðgðx; yÞÞÞ and
the movement of the nodes depend on the posterior probability

P(g(x, y)). The higher the probability of a node to belong to the skin

prior probability, the faster the node will re-adjust its position to the

new input distribution (black dot)

Fig. 7 Some common gestures used in sign language

4 http://www2.imm.dtu.dk/*aam/.
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u � Height

Width
� ð1þ

ffiffiffi
5

p
Þ

2
ð12Þ

Table 2 shows topology preservation, execution time,

and number of nodes when different variants in the k and

the K are applied in the gesture (d) from Fig. 7 as the input

space. Faster variants get worse topology preservation but

the network converges quickly. However, the representa-

tion is sufficient and can be used in situations where

minimum time is required like online learning for detecting

obstacles in robotics where you can obtain a rough

representation of the object of interest in a given time and

with minimum quality.

Figure 10 shows the distribution of two different hand

shapes and the plots of the MDL(K) cluster centres within

the range of ð1\K\18Þ. The optimum cluster is achieved

at K ¼ 9 (circled point).

Table 3 shows the topology preservation error for a

number of nodes. We can see that the insertion of more

nodes makes no difference to the object’s topology. Based

on the maximum size of the network, an optimum result is

achieved when at least half of the network is developed.

Fig. 8 Examples of gestures in three different cluttered backgrounds

Fig. 9 Example of correctly detected hands and face based on the

golden ratio regardless of the scale and the position of the hands and

the face. a Original image, b after applying EM to segment skin

region, and c hand and face detector taking into account the connected
nodes in the networks as well as the percentage of skin in the

rectangular area

Neural Comput & Applic (2018) 29:903–919 911
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Table 3 shows that for the different type of gestures, this

optimum number is in the range[90 and\130. Further-

more, the more nodes added during the learning process,

the more time it takes for the network to grow (Fig. 11).

Finally, we added different levels of Gaussian noise to

three different gestures to test the validity of the modified

GNG in comparison with Kohonen map and the growing

cell structures (GCS). The results of applying different

levels of noise to the gestures are shown in Fig. 12, and

error measurements for all methods are calculated in

Table 4.

4.2 Variability and comparison with the snake

model

Our modified GNG network has been compared to the

methodology of the active snake model. The snake con-

verges when all the forces achieve an equilibrium state.

The drawbacks with this method are that the snake has no a

priori knowledge of the domain, which means it can

deform to match any contour; this attribute is not desirable

if we want to keep the specificity of the model or preserve

the physical attributes such as geometry, topological rela-

tions, etc., and that the active step is performed globally

even if parts of the snake have already converged. Fig-

ure 13 shows the tracking of a hand gesture using the

modified GNG in the outline of the hand.

Figure 14 shows the fitting results of a snake applied to

the same gesture. Figure 14a is the original state of the

snake after manually locating an area around the hand. The

closer we allocate landmark points around the hand the

faster the convergence of the snake. The snake after a

number of iterations converges to the palm of the hand but

fails to converge around the thumb.

The parameters for the snake are summarised in

Table 5. The execution time for modified GNG is

approximately 4 times less compared to the snake. The

computational and convergence results are summarised in

Table 6.

4.3 3D reconstruction

This section shows the result of applying an existing

approach proposed by Orts-Escolano et al. [25] for per-

forming 3D surface reconstruction using the GNG algo-

rithm. In this work, we focused on the application of the

above-mentioned method for performing reconstruction of

human hands and faces that were acquired using the Kinect

sensor. Moreover, some experiments were performed using

synthetic data.

In [25], the original GNG algorithm is extended to

perform 3D surface reconstruction. Furthermore, it con-

siders surface normal information during the learning

process. It modifies original Competitive Hebbian Learning

process, which only considered the creation of edges

between neurons, producing wire-frame 3D representa-

tions. Therefore, it is necessary to modify the learning

process in order to create triangular faces during network

adaptation.

The edge creation, the neurons insertion and the neuron

removal stages were extended considering the creation of

triangular faces during this process. Algorithm 5 describes

the extended CHL to produce triangular faces during the

adaption process.

Table 2 Topology preservation and processing time using the

quantisation error and the topology preservation error for different

variants

Variant Number of nodes Time (s) QE TE

GNGk¼100;K¼1 23 0.22 8.932453 0.4349

GNGk¼100;K¼9 122 0.50 5.393949 -0.3502

GNGk¼100;K¼18 168 0.84 5.916987 -0.0303

GNGk¼300;K¼1 23 0.90 8.024549 0.5402

GNGk¼300;K¼9 122 2.16 5.398938 0.1493

GNGk¼300;K¼18 168 4.25 4.610572 0.1940

GNGk¼600;K¼1 23 1.13 0.182912 -0.0022

GNGk¼600;K¼9 122 2.22 0.172442 0.3031

GNGk¼600;K¼18 168 8.30 0.169140 -0.0007

GNGk¼1000;K¼1 23 1.00 0.188439 0.0750

GNGk¼1000;K¼9 122 12.02 0.155153 0.0319

GNGk¼1000;K¼18 168 40.98 0.161717 0.0111
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Figure 15 shows the model created by applying the

original GNG algorithm using as an input data a point cloud

obtained using the Kinect sensor. It can be appreciated how

the GNG produces a wire-frame representation of the input

data, but no information about 3D surfaces is provided.

Figure 16 shows the 3D mesh created using the method

mentioned above. It can be seen how this extended algo-

rithm is able to create a coloured 3D mesh, surface infor-

mation, that represents the input data. Since point clouds

obtained using the Kinect are partial 3D views, the mesh

Fig. 10 a, b Distribution of two different hand shapes with plotted

MDL(K) values within the range of ð1\K\18Þ and a global

minimum at 9 (circled point). a, b also show the likelihood term that

measures the model fit and the penalty; both of which grow with the

number of used clusters
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obtained is not complete and therefore the model generated

by the GNG is an open coloured mesh.

Moreover, it can also be appreciated that the generated

representation is accurate and implicitly it performs some

typical computer vision preprocessing steps such as filter-

ing, downsampling and 3D reconstruction.

Figure 17 shows the result of applying the GNG-based

method for surface reconstruction applied to complete hand

3D models. These models were synthetically generated

using 3D CAD software.

Figure 18 shows the mean square error of different

representations of the hand obtained with different num-

bers of neurons. In addition, the graph shows that with

approximately 180 neurons, the adaption error obtained is

satisfactory and provides an adequate representation of the

input data. We chose the minimum number of neurons with

an acceptable quality as it allows real-time processing.

Finally, we performed some experiments using 3D

human faces instead of hands to demonstrate that the

method can also deal with different shapes. Figure 19

shows the 3D reconstruction of a human face acquired

using the Kinect sensor (top) and the 3D reconstruction of a

synthetically generated human face (bottom). Both faces

were reconstructed using the GNG for 3D surface recon-

struction. Synthetic data were generated using the Blensor

software [12], for simulating a virtual Kinect sensor (noise-

free).

Table 3 The topology

preservation error for gestures

(a–d)

Image (a) Image (b) Image (c) Image (d)

Nodes TE Nodes TE Nodes TE Nodes TE

26 -0.0301623 26 -0.021127 24 -0.017626 19 -0.006573

51 -0.030553 51 -0.021127 47 -0.047098 37 -0.007731

77 0.04862 77 0.044698 71 0.046636 56 0.027792

102 0.048256 102 0.021688 95 0.017768 75 0.017573

128 0.031592 128 0.011657 119 0.014589 94 0.018789

153 0.038033 153 0.021783 142 0.018929 112 0.016604

179 0.047636 179 0.017223 166 0.017465 131 0.017755

205 0.038104 205 -0.013525 190 0.017718 150 0.007332

230 0.037321 230 0.017496 214 -0.007543 168 0.007575

Fig. 11 Time taken to insert the maximum number of nodes per

dataset

Fig. 12 Gestures with different levels of Gaussian noise. From left to

right mean = 0, sigma = 0; mean = 0, sigma = 0.25

914 Neural Comput & Applic (2018) 29:903–919

123



Table 4 Error measurements

for modified GNG, Kohonen

and GCS

Gestures Method Nodes RMS TE

Gesture-three fingers (sigma = 0) Modified

GNG

21 0.2558 0.055554

Gesture-three fingers (sigma = 0) Kohonen 25 1.6410 0.172629

Gesture-three fingers (sigma = 0) GCS 30 0.5494 0.159913

Gesture-three fingers (sigma = 0.25) Modified

GNG

21 1.4189 0.083485

Gesture-three fingers (sigma = 0.25) Kohonen 25 2.6578 0.237586

Gesture-three fingers (sigma = 0.25) GCS 30 1.6134 0.241429

Gesture-thumb (sigma = 0) Modified

GNG

25 0.2440 0.046621

Gesture-thumb (sigma = 0) Kohonen 30 0.5376 0.194685

Gesture-thumb (sigma = 0) GCS 31 0.3144 0.176336

Gesture-thumb (sigma = 0.25) Modified

GNG

25 0.3844 0.058153

Gesture-thumb (sigma = 0.25) Kohonen 30 0.6956 0.242131

Gesture-thumb (sigma = 0.25) GCS 31 0.3956 0.239292

Gesture-open hand (sigma = 0) Modified

GNG

23 0.9660 0.048011

Gesture-open hand (sigma = 0) Kohonen 25 3.4727 0.146884

Gesture-open hand (sigma = 0) GCS 27 2.3790 0.150354

Gesture-open hand (sigma = 0.25) Modified

GNG

23 1.4025 0.059658

Gesture-open hand (sigma = 0.25) Kohonen 25 3.5340 0.240014

Gesture-open hand (sigma = 0.25) GCS 27 2.4599 0.112732

Bold numbers demonstrate the lowest errors for our modified GNG network

Fig. 13 Tracking a gesture. The

images correspond from left to

right and from top to bottom to

every 10th frame of a 190 frame

sequence. In each image the red

points indicate the nodes and

their adaptation after 4 iterations

(colour figure online)
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In all our experiments, the parameters of the network are

as follows: k ¼ 100 to 1000, �x ¼ 0:1, �n ¼ 0:005,

Dxs1 ¼ 0:5, Dxi ¼ 0:0005, amax ¼ 125.

While 3D downsampling and reconstruction methods

like Poisson or Voxelgrid are not able to deal with noisy

data, GNG method is able to avoid outliers and obtain an

accurate representation in presence of noise. This ability is

due to the Hebbian learning rule used and its random nature

that update vertex location based on the average influence

of a large number of input patterns.

5 Conclusions and future work

Based on the capabilities of GNG to readjust to new input

patterns without restarting the learning process, we devel-

oped an approach to minimise the user intervention by

utilising an automatic criterion for maximum node growth.

Table 5 Parameters and performance for snake

Hand Constants Iterations Time (s)

Sequence (a) a ¼ 0:05 40 15.29

b ¼ 0

c ¼ 1

j ¼ 0:6

Dmin ¼ 0:5

Dmax ¼ 2

Sequence (b) a ¼ 4 50 15.20

b ¼ 1

c ¼ 2

j ¼ 0:6

Dmin ¼ 0:5

Dmax ¼ 2

Sequence (c) a ¼ 4 40 12.01

b ¼ 1

c ¼ 3

j ¼ 0:6

Dmin ¼ 0:5

Dmax ¼ 2

Sequence (d) a ¼ 4 20 5.60

b ¼ 1

c ¼ 3

j ¼ 0:6

Dmin ¼ 0:5

Dmax ¼ 2

Table 6 Convergence and execution time results of modified GNG

and snake

Method Convergence (iteration times) Time (s)

Snake 20 5.60

40 12.01

50 15.20

40 15.29

Modified GNG 2 0.73

2 1.22

3 2.17

5 4.88

Fig. 14 a Manual initialisation of the snake. b–d Adaptation of the

snake after a number of iterations
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Fig. 15 The two images on the

left represent the raw data

obtained from the low-cost

sensor Kinect. The wire-frame

representation generated by the

original GNG is shown on the

right

Fig. 16 GNG 3D surface

reconstructions. 3D

reconstruction of different hand

poses obtained using the Kinect

sensor

Neural Comput & Applic (2018) 29:903–919 917

123



This automatic criterion for GNG is based on the object’s

distribution and the similarity threshold (eT ) which deter-

mines the preservation of the topology. The model is then

used for the representation of motion in image sequences

by initialising a suitable segmentation. During testing we

found that for different shapes there exists an optimum

number that maximises topology learning versus adapta-

tion time and MSE. This optimal number uses knowledge

obtained from information-theoretic considerations. Fur-

thermore, we have shown that the low dimensional incre-

mental neural model (GNG) adapts successfully to the high

dimensional manifold of the hand by generating 3D models

from raw data received from the Kinect. Future work will

aim at improving system performance at all stages to

achieve a natural user interface that allows us to interact

with any object manipulation system. Likewise, the

acceleration of the whole system should be completed on

GPUs.
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