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Abstract

Background: Biological systems are inherently inhomogeneous and spatial effects play a significant role in processes such
as pattern formation. At the cellular level proteins are often localised either through static attachment or via a dynamic
equilibrium. As well as spatial heterogeneity many cellular processes exhibit stochastic fluctuations and so to make
inferences about the location of molecules there is a need for spatial stochastic models. A test case for spatial models has
been bacterial chemotaxis which has been studied extensively as a model of signal transduction.

Results: By creating specific models of a cellular system that incorporate the spatial distributions of molecules we have
shown how the fit between simulated and experimental data can be used to make inferences about localisation, in the case
of bacterial chemotaxis. This method allows the robust comparison of different spatial models through alternative model
parameterisations.

Conclusions: By using detailed statistical analysis we can reliably infer the parameters for the spatial models, and also to
evaluate alternative models. The statistical methods employed in this case are particularly powerful as they reduce the need
for a large number of simulation replicates. The technique is also particularly useful when only limited molecular level data is
available or where molecular data is not quantitative.
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Introduction

Biological systems are by their very nature heterogeneous [1,2].

The cell contains many different compartments and even in the

‘‘fluid’’ cytosol many protein molecules are localised through

interactions with the cytoskeleton or with the membrane/

membrane bound proteins [3–5]. It is also possible that molecules

within cells could be localised dynamically by reaction-diffusion

processes, which are known to establish spatial organisation in

chemical and biological systems [6,7].

Biological systems can also be characterised by their robustness

and their ability to deal with both internal (intrinsic) and external

(extrinsic) fluctuations [8,9]. Organisms need to be resistant to

fluctuations in environmental conditions so that they can maintain

developmental and regulatory control, otherwise external pertur-

bations could have serious consequences for development and for

maintaining homeostasis.

In order to build more realistic models of biological processes

we need to build models that incorporate stochastic and spatial

effects [10]. One solution to this modelling problem has been the

creation of agent based or mesocopic models [11,12]. In these

models the system components are treated as objects whose

behaviour is described by a set of physical rules, while the rest of

the cellular components are ignored and treated as contributing to

the background in which the simulations take place. One of the

weaknesses of this approach is that it is difficult to use the models

for inference. Many potential models can be constructed with

different sets of parameters or using variations on the physical rules

used to describe the behaviour of the agents. It is not possible to

construct an analytical framework that can be used to optimise the

model parameters as would be the case in models that use ordinary

differential equations where a likelihood method could be used

[13].

For mesocopic and agent based methods it is not possible to

construct a likelihood function for the parameters and so a trial

and error approach has to be taken, where successive models are

built with different sets of parameters that are tested against the

experimental data by measuring the closeness of fit. For this

approach to work two criteria have to apply;

1. A series of parameter values have to be constructed that reflect

some prior knowledge of the system.

2. The output of the model has to be evaluated against the

experimental data.

A further implicit requirement is that different models should be

distinguishable by the criteria used for the evaluation of the

different models. For ordinary differential equation models,

parameter scan methods have been developed and phase plane

analysis can be used to examine the dynamic regimes for different

parameter values [14,15]. In cases where parameters have not

been determined experimentally phenomenological models can be
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constructed where the properties of the model can be determined.

In the case of mesoscopic models increased realism comes at a cost

of computational time and so there is a need to keep the number of

simulations that need to be carried out to a minimum.

For mesoscopic models, model evaluation can be particularly

difficult in cases where there are a large number of parameters or

where the model is very complex and the experimental data only

measures a small number of variables. In these cases the model is

likely to be either over-fitted or the models will be indistinguishable

unless there is a very sensitive scoring of models.

Bacterial Chemotaxis
Bacterial Chemotaxis is the process by which bacteria sense

gradients of specific chemicals, which can either act as

attractants or repellents [16–18]. Attractants are usually sources

of nutrients for the bacterium. In the case of the bacterium

Escherichia coli the swimming behaviour of the cell is controlled

by an alternating sequence of linear swimming behaviour

punctuated by periods of tumbling motions. These two

behaviours are controlled by the bacterial flagella motors that

cause the whip like flagella to form a coordinated bundle which

acts like a semi-rigid propeller, when they rotate counter-

clockwise or for the bundle to break and tumbling to begin

when they turn in a clockwise direction.

The rotation of the bacterial flagella motor is controlled by a

signal transduction pathway that starts from the chemical

receptors embedded in the cellular membrane that detect the

attractant and repellent molecules. The signal is then passed

through a series of intermediate species that are either localised

close to the receptor array or that are freely diffusing in the

cytoplasm. The key diffusive molecule is known as CheY which

can be found in a phosphorylated and unphosphorylated state.

The binding of the phosphorylated state CheY-P to the flagella

motors increases the probability of a transition from counter-

clockwise to clockwise rotation of the motor. So that a higher

concentration of CheY-P in the cell promotes tumbling.

Figure 1 shows a schematic representation of the chemotaxis

network. In this case only one of the five types of cellular receptors

is shown, this corresponds to the aspartate receptor Tar. Asparate

is an example of an attractant molecule, along with sugars and

most amino acids (leucine is an exception). CheY is phosphory-

lated by the activated form of the kinase CheA and dephosphor-

ylated by the phosphatase CheZ. Binding of attractants to the

receptor decreases the rate of CheY phosphorylation reducing the

concentration of CheY-P and therefore reducing the tumbling

rate.

An important feature of chemotaxis is that it detects gradients,

so that in an environment where there is an equal concentration of

attractant in every direction the bacterium will resume tumbling as

there is no preferred direction to take. The system is very sensitive

to differences in gradient and can detect differences of one

molecule per cell volume per micron. Once the cell is again in a

homogeneous environment it returns to its equilibrium tumbling

frequency, which is the same regardless of the environmental level

of attractant.

The fluctuations between counter-clockwise and clockwise

rotations for the flagella motor have been measured in single cell

studies for unstimulated cells, where there are no attractant or

repellent molecules in the bacterial media [19]. This experimental

data can be used to construct a model of the equilibrium state of

the system, where we can investigate the localisation of the signal

transduction pathway components. Experimental studies using

green fluorescent protein labelled CheZ molecules have shown

that the phosphatase is localised to the receptor array, but there is

a need to independently quantify the localisation more precisely

[20–23].

In this work we use mesocopic models of E.coli chemotaxis to

infer the localisation of CheZ. We have developed a statistical

analysis of the output of the stochastic simulations that allows the

different models to be distinguished and the localisation param-

eters to be determined.

Results and Discussion

The movement of a single unstimulated (i.e. in the absence of

either repellent or attractant) bacterial cell has been recorded over

170 minutes at 0.01 second intervals. The time series has been

recorded as a binary time series where 21 represents counter-

clockwise rotations of the flagella motor and 1 represents clockwise

rotations. The time series can be broken down into different

distributions for the time intervals in clockwise and counter-

clockwise motions. Korobkova and co-workers showed that the

clockwise intervals are characterised by an exponential like

distribution and the counter-clockwise intervals by a long-tailed

deviation from the exponential distribution [19].

The stochastic simulations are based upon the experimentally

determined values of the kinetic parameters for the series of

chemical reactions equations that form the signal transduction

network. These parameters are not part of the experimentally

determined validation set and there is a non-linear relationship

between them, that we are trying to determine through the

simulations. The parameters that we wish to infer are the volume

in which the CheZ molecules are localised (a) and the fraction of

CheZ molecules that are localised within this volume (b). An initial

simulation (Simulation 0) was run with no CheZ localisation at all,

the other twelve simulations were carried out using the CheZ

localisations given in table 1.

In order to make the comparison with the experimental data the

switching function from counter-clockwise to clockwise rotation of

the flagella motors has to be calculated from the concentration of

CheY-P molecules. This step in the reaction cannot be modelled

explicitly due to the lack of experimentally determined kinetic

parameters, and so this is done using a threshold transformation as

described by Emonet and co-workers.

Figure 1. Schematic representation of the E. coli chemotaxis
system. The Tar receptors are labelled T, CheW, CheY, CheA, CheZ,
CheB and CheR are labelled as W, Y, A, B, Z and R respectively and the
flagellal motor (FliM) is labelled as F. Phosphate and methyl groups are
shown as orange cirles labelled p or m respectively.
doi:10.1371/journal.pone.0010464.g001

Stochastic Spatial Models
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Switching Threshold~SCheY{PT{0:55s CheY{Pð Þ ð1Þ

Where SCheY{PT is the mean number of CheY-P molecules

and s(CheY-P) is the standard deviation.

Verifying the Equilibrium Behaviour
With any stochastic simulation it is important to verify that the

system is reproducing the expected variation and that the

variability is not divergent. In this case the cells are unstimulated

and so the signal transduction network should be at equilibrium.

This implies that the variation in the levels of CheY-P should not

show any significant upward or downward trend over long periods

of time, but should fluctuate around a mean value. Figure 2 shows

the variation in CheY-P concentration for the model where CheZ

is completely delocalised. The switching threshold is shown in

blue. The trace has been smoothed over a sliding window of

0.3 seconds. In this case the number of CheY-P molecules does

not show any underlying linear trend and the simulation can be

assumed to have reached equilibrium. This is not the case for the

model where CheZ is completely localised, where there is an

underlying linear trend and the system does not achieve

equilibrium, and so the complete rigid localisation of CheZ is

not consistent with our model.

From all of the choices of CheZ localisation parameter the

simulations that did not converge to equilibrium and so were

discounted from further statistical analysis were simulations 3,4,5,6

and 8.

One of the weaknesses of mesoscopic models is the computational

resources that are required to carry out the calculations. As these

calculations are inherently stochastic it is important to verify that the

output correctly samples the possible outcomes. There are two

possible approaches that have been used extensively in the

molecular dynamics literature. The first is to run a single simulation

for a very long time periods so that the sampling is as complete as

possible and the second is to run many different short simulations

and to average them [24]. In this case as the system is at equilibrium

and we are measuring time series data the first, single simulation

approach is more appropriate but we can verify this by checking the

variability of the switching threshold from the simulations, in order

to demonstrate the robustness of the method. The mean and the

sample standard deviation for the switching thresholds of ten repeats

of Simulation 0, where CheZ is freely diffusing are 721.8893 sec-

onds and 0.8981 seconds respectively. This indicates that our

simulator is robust and that the true mean at the 95% level can be

found in the confidence interval between 721.2468 and

722.5317 seconds for the completely delocalised model.

Preliminary Comparison of the Completely Localised and
Freely Diffusing Models of CheZ Localisation

Figure 3 shows the counter-clockwise and clockwise interval

distributions for the model where CheZ is diffusing freely. In the

experimental data the counter-clockwise intervals vary from 0 to

179.13 seconds, whilst that of the clockwise intervals ranges from 0

to 2.77 seconds. Previous studies have put the two sets of interval

data on the same scale as counter-clockwise switching intervals of

longer than 20 seconds are rare events, and so we restricted our

analysis to the range 0 to 20 seconds.

An important feature of the counter-clockwise distribution is the

presence of a peak in the 0 to 1.5 second region. This bimodality

should arise naturally from the simulations if they are to be reliable

Figure 2. The variation in number of CheY-P molecules for the
freely diffusing CheZ model.
doi:10.1371/journal.pone.0010464.g002

Table 1. CheZ localisation parameters for the simulations.

b 0.25 0.5 0.75 1

a

0.01 Simulation 1 Simulation 2 Simulation 3 Simulation 4

0.05 Simulation 5 Simulation 6 Simulation 7 Simulation 8

0.1 Simulation 9 Simulation 10 Simulation 11 Simulation 12

Where a is the fraction of the cell volume around the anterior array in which the
CheZ molecules are localised and b is the fraction of CheZ molecules localised
in this volume.
doi:10.1371/journal.pone.0010464.t001

Figure 3. The counter-clockwise and clockwise interval distri-
butions for the freely diffusing CheZ model.
doi:10.1371/journal.pone.0010464.g003

Stochastic Spatial Models
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models of the signal transduction network. Almost all of the

simulations except for those with a very high degree of CheZ

localisation exhibit this bimodality. A complete breakdown of the

results are given in table 2. These show that our simulations can

robustly reproduce the experimental data. The finding that the

total localisation of CheZ cannot reproduce the empirical

switching behaviour, agrees with the experimental finding that

modified bacteria where CheZ cannot be localised still retain

chemotactic activity [21]. Ideally we could further corroborate our

model if time series data for the swimming of these modified

organisms was available, so that we could check our results for the

switching behaviour in the case of totally delocalised CheZ against

the actual observed behaviour.

The clockwise distribution only contains a single peak at

0.5 seconds. In the unlocalised CheZ simulations there is a slight

shift of this peak to 0.3 seconds, but the change is much larger for

the completely localised model. By considering these extreme

models it indicates that complete localisation is less consistent with

our model that a freely diffusive model but it is necessary to build a

more detailed statistical analysis to infer the actual degree of

localisation.

Statistical Evaluation of the Simulated Interval
Distributions

The simplest method for comparing an observed distribution to

its underlying distribution is the use of the quantile-quantile or Q-

Q plot. The Q-Q plot shows how the quantiles (percentiles for

example) of the two distributions match to each other. The larger

the number of quantiles that are compared the higher the

resolution of the comparison. For a perfect match all of the points

should lie on the diagonal. As Korobkova and co-workers pointed

out in their earlier work, their will be expected variation in the

switching frequency distributions of different E.coli cells [19]. We

therefore have to consider the experimental data as a sample from

the population switching distributions. We can then use this data

to determine point estimators of the parameters for an appropriate

population switching distribution, which will have the form that

best fits the experimental data. In the case of the clockwise interval

distribution this follows an exponential distribution. The Q-Q plot

can therefore be used to measure the deviations between the

simulations and experimental data and the exponential distribu-

tion. In the case of the counter-clockwise interval distribution there

is a long tailed deviation from the exponential distribution but the

underlying distribution is still exponential.

Point estimations were made using Maximum Likelihood

Estimation for the rate l are made for both the counter-clockwise

and clockwise intervals of the simulated data. For example in the

freely diffusing case these are estimated to be l̂lCCW ~
0:5643 seconds and l̂lCW ~1:2944 seconds.

Figure 4 shows the Q-Q plot for the freely diffusing CheZ model

comparing the quantiles for the simulated data to that of the fitted

exponential exponential function. For the freely diffusing CheZ

simulation the median of the counter-clockwise interval distribu-

tion is shifted 0.6 seconds. While over 50% of the data points lie on

the diagonal there is a significant amount of deviation for intervals

longer than 5.7 seconds, which represents the long-tailed deviation

from exponential. The short clockwise interval distribution is

better described by an exponential function and so more of the

points lie on the diagonal.

Locally Weighted Scatterplot Smoothing
As mentioned previously there is often a lack of simulation and

experimental data because of the computational cost of simula-

tions and the resource costs of collecting the experimental data. In

this case only a single empirical sampling of the swimming motions

is available. By creating a smoothed distribution for the simulated

and experimental data we can compare directly the different

interval distributions. The smoothed distributions can be used to

calculate the 95% confidence intervals. If there is a complete

overlap between the fitted simulated distributions and the

experimentally determined confidence intervals then the two will

share the same true fraction mean at the 5% significance level.

The degree of overlap will reflect the closeness of the simulation to

the experimentally observed values.

Smoothing was carried out for the simulated and experimental

data using LOESS fittings with different bandwidths,

h xð Þ~0:8,0:6,0:4 and 0.2 seconds and using different polynomial

Table 2. Summary of the simulation results.

Simulation
Existence of the
Chemical Equilibrium

Statistical
Agreement Figures

0 yes yes 3A and 3B

1 yes yes 5A and 5B

2 yes yes 5C and 5D

3 no - -

4 no - -

5 no - -

6 no - -

7 yes yes 5E and 5F

8 no - -

9 yes yes 5G and 5H

10 yes yes 5I and 5J

11 yes yes 5K and 5L

12 yes no 5M and 5N

The absence of a chemical equilibrium is indicated by a long term trend in the
switching behaviour of the system.
doi:10.1371/journal.pone.0010464.t002

Figure 4. The Q-Q plot for the freely diffusing CheZ model,
comparing the simulated quantiles against an exponential
function fitted to the experimental data.
doi:10.1371/journal.pone.0010464.g004

Stochastic Spatial Models
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degrees such as local quadratic, cubic, linear and constant.

Bandwidth and polynomial degree have to be selected carefully so

as not to over-smooth the data. Figure 5 shows the LOESS fitting

of the clockwise and counter-clockwise distributions from the

simulations that achieved an equilibrium distribution, and the

corresponding measures of statistical closeness for each simulation

are given in table 3. There is excellent agreement between the two

traces in many cases and the bimodality of the counter-clockwise

interval distribution is also often reproduced.

The LOESS fittings are sensitive enough to be able to

distinguish between the different sets of localisation parameters.

These results confirm that the absence of CheZ localisation does

not diminish chemotaxis (Simulation 0 the model with freely

diffusing CheZ). This result agrees with the empirical findings for

cells with a truncated form of CheZ which cannot be localised.

They also show that the statistically closest simulation to the

experimentally observed distributions was simulation 2. In this

case the amount of the CheZ localisation will be about 50% of the

total number of CheZ molecules in the 1% cell volume around the

anterior array of the E.coli cell, which agrees well Manson’s

empirical estimation. However, we can also infer that the optimum

extent of CheZ localisation at the anterior array can depend on the

volume in which the CheZ is localised and that when the volume

for the CheZ localisation is 1% of the whole cell volume, the

Figure 5. The LOESS fitting of the clockwise and counter-clockwise distributions that achieved equilibrium. The letters correspond to
the simulations given in table 2.
doi:10.1371/journal.pone.0010464.g005

Stochastic Spatial Models
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amount of CheZ localisation is between 25% and 50% of the total

number of CheZ molecules. For a 5% cell volume for CheZ

localisation it is inferred that 75% of the total CheZ molecules are

present, and in the case of 10% cell volume for the CheZ

localisation it is between 25% and 75% of the total number of

CheZ molecules. Further simulations could be used to increase the

accuracy of the inference by sampling the parameter space more

finely.

Conclusions
Using a mesoscopic model of the bacterial chemotaxis signal

transduction network we have been able to infer the localisation of

CheZ.

Exploratory analysis using the smoothed distribution of counter

clockwise and clockwise switching intervals distinguished between

parameter sets for the volume of localisation (VA) and the number

of localised molecules (CheZA), and show that incorrect values can

lead to unrealistic simulations in which simulated systems do not

reach the chemical equilibrium. In addition, using Q-Q plot

analysis we can show that only systems that converge to

equilibrium also capture the same underlying statistical distribu-

tions as that of the experimental data.

Through statistical comparisons of the chosen simulations and

the experimental data, we have shown that chosen simulations

from with our new algorithm agree closely with the empirically

determined mean swimming responses of an observed wild-type

cell in a medium in which no attractant was present. The

statistically closest simulation to the experimental data was when

50% of the CheZ molecules were localised in 0:04% of the cell

volume around the receptor arrays. Considering the counter

clockwise intervals from 0s to 20 seconds, about 95:63% of the

true fraction means of the simulated data are close to the

experimental data. In the case of the clockwise intervals from 0s to

2.77 seconds, about 84:66% of the true fraction means of two

populations are statistically close.

This is in very good agreement with the experimentally

estimated degree of CheZ localisation from green fluore-

scent protein labelled experiments (M. Manson personal

communication).

Materials and Methods

Simulation Algorithm
Simulations were carried out with our own implementation of

the Andrews and Bray version of the Smoluchowski algorithm

written in Python. Figure 6 shows the overall outline of the

algorithm. The Andrews and Bray approach allows longer time-

steps to be used than in the original algorithm by using effective

molecular radii that indicate the volume swept out by the diffusive

process in the longer time-step. These modified radii are

particularly important in calculating if reactions have taken place.

The differences between this algorithm and that used within

Smoldyn are the use of a Maxwell-Boltzmann distribution for the

sampling of the molecular velocities, and the use of Recursive

Dimensional Clustering (RDC) to simplify the collision detection

process [25]. RDC uses a space partitioning algorithm to divide

the simulation into volumes that contain a smaller number of

objects which are then checked for collisions rather than trying the

brute force collision detection for the entire simulation space.

There are a variety of possible boundary conditions that can be

applied. In this case a mixture of periodic boundary conditions

and impermeable surfaces was used. If during the course of a time-

step the molecules make contact with the surface then it is reflected

like light from a mirror by an inert impermeable surface. Any

molecules that diffuse past a boundary are transferred across the

system following a straight line path over the course of the time-

step.

The time-step for the calculations was set to be 0.1 milliseconds

as a compromise in giving the highest degree of accuracy without

increasing the computational over-head unnecessarily.

Simulation Set-up
Phosphate is much smaller than the other molecules in the

simulation and so it can be treated as a dimensionless point

particle. The masses of CheA, CheY (and CheY-P), CheZ and

FliM are 71, 14, 24 and 38 kDA respectively. Only CheY, CheY-P

and CheZ are mobile in the cytoplasm and so their diffusions

constants are needed for the simulation. CheY and CheY-P have a

diffusion constant of 10 mm2
�

s and CheZ has a diffusion constant

of 6 mm2
�

s [3]. The radii of CheA, CheY (and CheY-P), CheZ

and FliM were estimated to be 5.5nm, 2.3nm, 3.9nm and 2.7nm

respectively using the PSA program within JOY [26].

Figure 7 shows the E.coli simulation system. An E.coli cell is

approximately cylindrical with a length of 2:5+0:6 mm and a

diameter of 0:88+0:9 mm [27]. There can be a considerable

difference in the ratio between length and diameter depending on

growth conditions. For the simulations this is approximated to a

rectangular box with a length of 2:5 mm and a width and height of

0:78 mm. The 6700 CheA molecular dimers are located in a radial

array of area 267:8 mm2, 20nm from the inside surface of the

anterior cell wall. This corresponds to the active portion of the

Table 3. Statistical closeness between the simulations and
the experimental data.

Simulation %Statistical Closeness

CCW Intervals CW Intervals

0 90.3 81.3

1 93.1 80.6

2 100 89.2

7 94.1 80.6

9 98.4 87.4

10 94.3 83.8

11 95.3 86

doi:10.1371/journal.pone.0010464.t003 Figure 6. An outline of the MESMAX algorithm.
doi:10.1371/journal.pone.0010464.g006

Stochastic Spatial Models
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receptor-CheA complex that is responsible for signal transduction

from the membrane receptors. Four rings each 45nm in diameter

and made of 34 regularly spaced FliM monomers are placed on

the long side walls of the cell, positioned 10nm from the inside

surface. Each ring is placed randomly on a different side wall [28].

The 1600 CheZ dimers are located according to the localisation

parameters either in a volume close to the anterior ray or freely

diffusing in the cytoplasm [29]. The cytoplasm is then seeded with

8200 freely diffusing CheY monomers [29].

The set of reaction equations are given below and the rate

constants are given in table 4.

There are two unimolecular chemical reactions:

R1 : CheA?
k1

CheA{P, ð2Þ

R2 : FliM.CheY{P?
k2

FliMzCheY{P: ð3Þ

There are three bimolecular reactions:

R3 : CheA{PzCheY ?
k3

CheAzCheY{P, ð4Þ

R4 : CheZzCheY{P?
k4

CheZzCheY , ð5Þ

R5 : FliMzCheY{P?
k5

FliM.CheY{P: ð6Þ

Statistical Methods
We employed the use of exploratory procedures to examine the

underlying structure between the experimental and simulated

data. Since reactions within a system will eventually reach a

chemical equilibrium, we assess its existence within our simulations

by assessing constancy of variance and amplitude of the smoothed

stochastic time evolutions of CheY-P molecules with a sliding

average of width 0.3s. Subsequently we verify that our simulation

results have the same underlying statistical features as that of the

experimental data using a comparison of the percentiles of the

theoretical and simulated distributions using a quantile-quantile

(Q-Q) plot. Theoretical distributions for the counter-clockwise and

clockwise interval data are generated from appropriate exponen-

tial distributions with rate parameters estimated using the

maximum likelihood approach within the R statistical environ-

ment [30].

We estimate the true mean patterns of the experimental and

simulated data by the use of locally weighted scatterplot smoothing

(LOESS) using the loess function in R [30,31]. LOESS fittings

were carried out at different bandwidths, h(x) = 0.8, 0.6, 0.4 and

0.2, and varying polynomial degrees such as local quadratic, cubic,

linear and constant for both the simulations and the experimental

data. Here, the bandwidth and the polynomial degree are chosen

to give the best fit to the data so as not to over-smooth it.

By applying LOESS in order to compare the simulated and

experimental cases, we can compute approximate 95% confi-

dence intervals for the LOESS fits for each dataset. If these

confidence intervals contain all of the LOESS estimates for the

experimental data, this will mean that the simulation and the

experimental data statistically have the same true fraction mean

at significance level a = 0.05. However, if it does not contain all

the LOESS estimates of the experimental data, we can still say

that true fraction means of two populations are statistically close

without loss of generality so long as their approximate confidence

intervals overlap. In our paper, the degree of the statistical

closeness between two populations is represented by the

overlapped proportion of their approximate confidence intervals.

This gives a more quantitative measure of the degree of

agreement between the two distributions.
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