

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

A novel model for improving the maintainability of web-based
systems.

Emad Ghosheh

School of Electronics and Computer Science

This is an electronic version of a PhD thesis awarded by the University of
Westminster. © The Author, 2010.

This is an exact reproduction of the paper copy held by the University of
Westminster library.

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.
Users are permitted to download and/or print one copy for non-commercial
private study or research. Further distribution and any use of material from
within this archive for profit-making enterprises or for commercial gain is
strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

Ph.D. Thesis

A Novel Model for Improving the
Maintainability of Web-Based

Systems

EMAD GHOSHEH

A thesis submitted in partial fulfilment of the
requirements of the University of Westminster for the

degree of Doctor of Philosophy

June 2010

Acknowledgements

I would like to thank all people who have helped and inspired me during my doctoral

study. I would like to express my deep and sincere gratitude to my Director of Study,

Professor Sue Black, Head of Department of Information and Software Systems, Uni-

versity of Westminster. Her wide knowledge and her logical way of thinking have been

of great value for me. Her understanding, encouraging and personal guidance have pro-

vided a good basis for the present thesis.

I am deeply grateful to my supervisors, Professor Vladimir Getov, and Professor

Epaminondas Kapetanios for their support in my research.

I wish to express my warm and sincere thanks to Professor Jihad Qaddour, School

of Information Technology, Illinois State University who helped me in conducting the

empirical experiments at Illinois State University in the USA.

I am deeply thankful to Mark Baldwin, Principal Lecturer in the Department of

Information at the University of Westminster for his help and review of the statistical

results reported in this research.

I cannot end without thanking my family, on whose constant encouragement and

love I have relied throughout my time working on my PhD. Special thanks for my par-

ents, wife Rana, son Jawad, daughter Ayisha, and son Noorideen. It is to them that I

dedicate this work.

Portions of this thesis have appeared in the following publications

• Journals

[1] E. Ghosheh and S. Black and E. Kapetanios and M. Baldwin. Exploring the

Relationship between UML Design Metrics for Web Applications and Maintain-

i

ACKNOWLEDGEMENTS ii

ability. Journal of Object Technology JOT , published by ETH Swiss Federal

Institute of Technology, vol. 9, no. 3, May- June 2010, pp. 125-144.

[2] E. Ghosheh and S. Black. Empirical validation of UML class diagram met-

rics through an industrial case study. Journal of Electronics & Computer Science

JECS, vol. 10, no. 4, pp. 63-74, 2008.

[3] E. Ghosheh and S. Black and J. Qaddour. An introduction of new UML design

metrics for web applications. International Journal of Computer & Information

Science, 8(4):600-609, 2007.

• Book Chapters

[1] E. Ghosheh, S. Black, and J. Qaddour. An industrial study using UML design

metrics for web applications. In Computer and Information Science, volume 131

of Studies in Computational Intelligence, chapter 20, pages 231- 241. Springer-

Verlag, 2008.

• Conferences

[1] E. Ghosheh, S. Black, Wapmetrics: a tool for computing UML design metrics

for web applications, in Proceedings of the 7th IEEE/ACS International Confer-

ence on Computer Systems and Applications, pages 682-689. IEEE Computer

Society Press, 2009.

[2] E. Ghosheh, S. Black, and J. Qaddour, A general evaluation criteria for web

applications maintainability models, in Proceedings of the IEEE Region 5 Tech-

nical, Professional, and Student Conference, pages 1-6. IEEE Computer Society

Press, 2008.

[3] E. Ghosheh, S. Black, and J. Qaddour. Design metrics for web application

maintainability measurement. In Proceedings of the 6th ACS/IEEE International

Conference on Computer Systems and Applications, pages 778-784. IEEE Com-

puter Society Press, 2008.

[4] E. Ghosheh, J. Qaddour, M. Kuofie, and S. Black. A comparative analysis of

maintainability approaches for web applications. In Proceedings of the 4th AC-

ACKNOWLEDGEMENTS iii

S/IEEE International Conference on Computer Systems and Applications, page

247. IEEE Computer Society Press, 2006.

• Workshops

[1] E. Ghosheh, S. Black, and J. Qaddour. An introduction of UML design metrics

for web applications. In Proceedings of the Annual Mphil-PhD Research Work-

shop, pages 38-41. Harrow School of Computer Science University of Westmin-

ster, 2007.

Abstract

Web applications incorporate important business assets and offer a convenient way for

businesses to promote their services through the internet. Many of these web applica-

tions have evolved from simple HTML pages to complex applications that have a high

maintenance cost. This is due to the inherent characteristics of web applications, to

the fast internet evolution and to the pressing market which imposes short development

cycles and frequent modifications. In order to control the maintenance cost, quantita-

tive metrics and models for predicting web applications’ maintainability must be used.

Maintainability metrics and models can be useful for predicting maintenance cost, risky

components and can help in assessing and choosing between different software artifacts.

Since, web applications are different from traditional software systems, models and met-

rics for traditional systems can not be applied with confidence to web applications. Web

applications have special features such as hypertext structure, dynamic code generation

and heterogenousity that can not be captured by traditional and object-oriented metrics.

This research explores empirically the relationships between new UML design met-

rics based on Conallen’s extension for web applications and maintainability. UML web

design metrics are used to gauge whether the maintainability of a system can be im-

proved by comparing and correlating the results with different measures of maintain-

ability. We studied the relationship between our UML metrics and the following main-

tainability measures: Understandability Time (the time spent on understanding the soft-

ware artifact in order to complete the questionnaire), Modifiability Time(the time spent

on identifying places for modification and making those modifications on the software

artifact), LOC (absolute net value of the total number of lines added and deleted for com-

ponents in a class diagram), and nRev (total number of revisions for components in a

iv

ABSTRACT v

class diagram). Our results gave an indication that there is a possibility for a relationship

to exist between our metrics and modifiability time. However, the results did not show

statistical significance on the effect of the metrics on understandability time. Our results

showed that there is a relationship between our metrics and LOC(Lines of Code). We

found that the following metrics NAssoc, NClientScriptsComp, NServerScriptsComp,

and CoupEntropy explained the effort measured by LOC(Lines of Code). We found that

NC, and CoupEntropy metrics explained the effort measured by nRev(Number of Revi-

sions). Our results give a first indication of the usefulness of the UML design metrics,

they show that there is a reasonable chance that useful prediction models can be built

from early UML design metrics.

Keywords and Phrases : Maintainability, metrics, web applications, empirical stud-

ies

Table of Contents

1 Introduction 2

2 Related Research 5

2.1 Web Modeling . 6

2.2 Web Metrics . 7

2.3 Software Maintainability . 8

2.4 Software Metrics . 10

2.4.1 Validating Software Metrics 11

2.4.2 Theoretical Validation of Metrics 12

2.4.3 Empirical Validation of Metrics 14

2.5 Architecture Views . 16

2.5.1 The 4 + 1 View Model . 17

2.6 Web Applications . 18

2.6.1 Web Application Basics . 21

2.6.2 Web Application Modeling using the Unified Modeling Lan-

guage(UML) . 23

3 Maintainability Models 28

3.0.3 Hierarchical Multidimensional Assessment Model 28

3.0.4 Regression Modeling Techniques 31

3.0.5 WebMO . 37

4 Research Methodology 39

4.1 Problem Description . 39

vi

TABLE OF CONTENTS vii

4.1.1 Problem Statement . 43

4.1.2 Why are Web Applications Different? 43

4.1.3 Problem Solution . 44

4.1.4 Benefits of Maintainability Models 44

4.2 Solution Methodology . 45

4.2.1 Planning Phase . 45

4.2.2 Definition of UML class diagram metrics for Web Applications 47

4.2.3 Maintainability Measurement 52

4.2.4 Statistical Modeling Phase . 54

4.2.5 Post Modeling Phase . 55

4.2.6 Model Validation . 56

5 Theoretical Validation 61

5.1 Kitchenham’s Validation Framework 61

5.2 Briand’s Validation Framework . 62

5.2.1 Size Metrics . 63

5.2.2 Complexity Metrics . 65

5.2.3 Coupling Metrics . 70

5.2.4 Cohesion Metrics . 75

6 Empirical Validation 83

6.1 PetStore Experiment . 84

6.2 Telecom Web Applications . 91

6.3 Industrial Provisioning Web Application 97

7 Conclusion and Future Work 113

7.1 Conclusion . 113

7.1.1 Original Contribution to Knowledge 118

7.1.2 Future Work . 119

Appendices 130

TABLE OF CONTENTS viii

A Empirical Surveys 131

B Empirical Case Studies 141

B.1 ProvisionApp Interfaces . 142

B.2 ProvisionApp Functional Modules . 143

B.3 Industrial Provisioning Web Application Data 150

C WapMetrics Tool 158

C.1 WapMetrics Tool . 158

C.1.1 Presentation Component . 159

C.1.2 Controller Component . 160

C.1.3 Business Component . 160

C.2 Case Study . 161

C.2.1 Introduction . 161

C.2.2 Data Collection . 163

C.2.3 Results . 163

D WapMetrics Source Code 166

D.1 Installation Instructions . 166

D.2 XMLFileParser . 166

D.3 MetricProcessor . 180

D.4 MetricComputation . 187

List of Figures

2.1 A Structure Model for Measurement [63] 13

2.2 4 + 1 View Model . 17

2.3 Web Site Evolution . 19

2.4 Service Oriented Web Application [52] 20

2.5 HTTP Protocol and Web Applications 22

2.6 Web Applications Model . 26

3.1 WAMM Control Structure Metrics Tree 30

3.2 WAMM Information Structure Metrics Tree 31

3.3 Web Objects Components . 38

4.1 Maintenance in Ideal World [29] . 41

4.2 Lehman’s Laws of Software Evolution [29] 41

4.3 Software Metrics and Maintainability [36] 44

4.4 Web Applications Reference Model 48

4.5 Sample Class Diagram . 50

5.1 Sample Class diagram S . 66

5.2 Class diagram S with m1, m2 disjoint modules 67

5.3 Class diagram S showing Module Monotonocity 68

5.4 Class diagram S showing Module Monotonocity for Coupling 72

5.5 Class diagram S showing Modules m1, m2 81

5.6 Class diagram S showing Merging of Modules m1, m2 82

ix

LIST OF FIGURES x

6.1 Comparative Analysis between Cart and Create Customer Understand-

ability Time . 89

6.2 Comparative Analysis between Cart and Create Customer Modifiability

Time . 90

6.3 ScatterPlot LOC Model . 109

A.1 welcomeScreen Design . 135

A.2 Cart Design . 136

A.3 Create Customer Design . 137

A.4 Create User Design . 138

B.1 ProvisionApp Interfaces . 142

B.2 Login Module . 143

B.3 Search Module . 144

B.4 Current Transactions Module . 145

B.5 Service Transaction Module . 146

B.6 Device Transaction Module . 147

B.7 UserName Module . 147

B.8 Retrigger IOTA Module . 148

B.9 Error Queue Module . 148

B.10 Vision Password Module . 149

B.11 Network Provisioning Module . 150

B.12 Help Module . 151

C.1 WapMetrics Tool Architecture . 160

C.2 WapMetrics MainScreen . 161

C.3 WapMetrics Results Screen . 161

C.4 Claros Home Screen [23] . 162

C.5 Claros Contacts Screen [23] . 162

C.6 Claros Contacts Class Diagram . 165

List of Tables

3.1 WAMM Metrics at System Level . 29

3.2 WAMM Metrics at Component Level 29

3.3 Length Metrics . 34

3.4 Complexity Metrics . 34

3.5 Functionality Metrics . 35

3.6 Information Model Metrics . 36

3.7 Navigation Model Metrics . 36

3.8 Presentation Model Metrics . 37

4.1 Web Sites Growth . 40

4.2 Number of Web Users in the United States 40

4.3 Web Application Class Diagram Metrics 49

4.4 Measurements of Sample Class Diagram 51

5.5 Web Application Class Diagram Metrics 62

5.6 Metrics Definition based on Kitchenham’s model 78

5.7 Metrics Validation based on Kitchenham’s model 79

5.8 Metrics Validation based on Kitchenham’s model 80

6.9 Web Application Class Diagram Metrics 85

6.10 Results & Analysis . 91

6.11 ANOVA Analysis . 92

6.12 Characteristics of Web Applications 92

6.13 Web Application Design Metrics . 93

6.14 Results . 95

xi

LIST OF TABLES 1

6.15 Descriptive Statistics . 101

6.16 Univariate Analysis Results . 102

6.17 Size Metrics Model . 104

6.18 Complexity Metrics Model . 105

6.19 Coupling and Cohesion Metrics Model 106

6.20 All Metrics Model . 107

6.21 Goodness of Fit: Values of MREs for All Models 108

6.22 Goodness of Fit: Values of MEAN MREs for All Models using Boost-

rapping . 108

A.1 Data For PetStore Experiment . 139

A.1 Data For PetStore Experiment . 140

B.1 Characteristics of ProvisionApp . 141

B.2 Data for Dependent Variables for the Industrial Provisioning Web Ap-

plication . 152

B.3 Data for Independent Variables for the Industrial Provisioning Web Ap-

plication . 153

B.3 Data for Independent Variables for the Industrial Provisioning Web Application-

Continued . 154

B.3 Data for Independent Variables for the Industrial Provisioning Web Application-

Continued . 155

B.3 Data for Independent Variables for the Industrial Provisioning Web Application-

Continued . 156

B.3 Data for Independent Variables for the Industrial Provisioning Web Application-

Continued . 157

C.4 Claros Contacts Component Results 164

1
Introduction

Many World Wide Web applications incorporate important business assets and offer a

convenient way for businesses to promote their services through the Internet. A large

proportion of these web applications have evolved from simple HTML pages to complex

applications which have a high maintenance cost. The cost of software maintenance ac-

counts for a large portion of the overall cost of a software system [97]. For example, a

problem in the Amazon.com web site in 1998 put the site down for several hours which

cost the company an estimated $400,000. This is due to the laws of software evolution

[67] and to some special characteristics of web applications. Two software evolution

laws which affect the evolution of web applications are: firstly, the law of continuing

change where software that is used in real world must change or it will become less use-

ful in the changing world. Secondly, the law of increasing complexity where software

becomes more complex as it evolves and more resources are needed to maintain it.

In addition to this, web applications have some characteristics that make their main-

tenance costly: heterogeneity, speed of evolution, and dynamic code generation. A sur-

vey on Web applications conducted by the Cutter Consortium in 2000 revealed that 79%

of web projects presented schedule delays. Also, 63% of web projects exceeded their

budgets [74]. Therefore, it is important to control the maintenance cost of web appli-

cations by using quantitative metrics that can predict web applications’ maintainability.

Maintainability metrics and models can be useful in many ways: predicting the mainte-

nance cost to provide accurate estimates in a project lifecycle [43], comparing different

2

CHAPTER 1. INTRODUCTION 3

design documents to select the documents that have the highest maintainability, identi-

fying risky components to mitigate risks early in the project by reengineering or allocat-

ing experienced developers to the risky components [36]. Web applications are different

from traditional software systems, models and metrics for traditional systems can not be

applied to web applications. The reason for that is that web applications have special

features such as hypertext structure, dynamic code generation and heterogenousity that

can not be captured by traditional and object-oriented metrics. Another difference is

the difference in the unit of measurement of a metric for each application domain. For

traditional systems, the unit of measurement of a metric can be a file, procedure or an

attribute. For object-oriented systems, the unit of measurement can be a class, interface

or attributes. For web applications, the unit of measurement is a web object which can

be either an HTML file, JSP, Servlet or client scripts.

The main aims and objectives of this research are to:

• identify and define new UML design metrics based on an extension of Conallen’s

model [26].

• provide theoretical validation for the metrics based on a validation framework

proposed by Kitchenham [63] and another one proposed by Briand [16].

• study the relationship between the UML design metrics and Understandability

Time and Modifiability Time (the time spent on understanding and modifying a

software artifact).

• study the relationship between the UML design metrics and Lines of Code (abso-

lute net value of the total number of lines added and deleted for components in a

class diagram).

• study the relationship between the UML design metrics and nRev (Number of

Revisions for classes in a class diagram).

• provide an environment for the maintainability prediction model that includes

tools and procedures so that it can be used in an industrial environment.

CHAPTER 1. INTRODUCTION 4

This thesis is further organized as follows: Chapter 2 discusses related research in

the area of web metrics and maintainability models. It gives a general background on

software maintainability. It discusses software metrics and architecture views. Then,

it gives an overview on the structure of web applications. Finally it discusses how to

model web applications using UML. Chapter 3 discusses related research in the area

of maintainability models. It describes the following topics, Hierarchical Multidimen-

sional Assessment, Regression Analysis, WebMo. Chapter 4 focuses on the problem

description and the proposed solution. It starts by identifying the outstanding problem

and the solution. It presents an approach for modeling web applications using an exten-

sion of Conallen’s model [26]. Chapter 5 provides a classification of the metrics based

on the measurement structure proposed by Kitchenham [63] for theoretical metrics val-

idation. In addition, the metrics are validated based on the measurement properties

proposed by Briand [16]. Chapter 6 describes the empirical studies used to validate the

UML design metrics. This research uses industrial web applications, and the Sun Pets

Store application [96]. Chapter 7 provides a conclusion and discusses future work.

2
Related Research

Companies want to know how to assess and predict the quality of their software before

it is used; one of the most desirable quality attributes is maintainability [44]. Measures

of software maintainability can be taken either late or early in the development process.

Late measurements of software maintainability can be used for assessing the software

system, planning for future enhancements, and identifying risky software components.

On the other hand, early measures of software maintainability can help in allocating

project resources efficiently, predicting the effort of maintenance tasks and controlling

the maintenance process. Maintainability can be measured by using some of the sub-

characteristics of maintainability such as understandability, analyzability, modifiability

and testability. Some studies have measured maintainability by measuring both modifi-

ability and understandability [13, 70, 59]. In some studies the maintainability has been

quantified in the Maintainability Index (MI) [24, 66, 32]. Other studies have used ef-

fort for measuring maintainability [43]. Most of the studies related to maintainability

measurements have been carried out using structured and object-oriented systems with

little research looking at web applications. In this chapter we discuss related research in

the web modeling and web metrics area. In addition, we provide an introduction to the

four main areas related to the research described in this thesis: software maintainability,

software metrics, architecture views and web applications.

5

CHAPTER 2. RELATED RESEARCH 6

2.1 Web Modeling

There are different models proposed to describe web application structure. WebML

[76, 12, 25] is an XML language for modeling web applications. WebML generates four

models: Structural Model which models the data content in terms of entities and rela-

tionships, Hypertext Model which models the navigation of users, Presentation Model

which models the layout and graphic appearance of pages, and Personalization Model

which models the user specific contents in the application. WebML is difficult to use

with web applications that are not data intensive. Also, WebML is not UML compliant

which means it takes time for the users to accept the notation.

Relation Management Methodology (RMM) [56, 55] is a methodology for the de-

sign of web applications. RMM is only applicable to web applications with navigational

design. Object Oriented Hypermedia Design Method (OOHDM) [91] is a model based

approach to the development of web applications. It attempts to use object-oriented

methods in the design of web applications [91]. The main limitations of these meth-

ods is the concentration on navigational design and the non-compliance with existing

approaches in designing web applications such as UML.

ReWeb [87, 89] is a tool to analyze web applications based on the model proposed

by Ricca and Tonella [87]. Their model presents a web application using the main web

application components: HTML pages, forms, server programs, frames and the rela-

tionships between the different components such as link, submit and frame loading rela-

tionships. Their model is similar to Conallen’s model in representing web applications

using UML. The main difference is that Conallen’s model captures and defines more

relationships between different web application components such as forward, include,

redirect and builds relationships. This makes Conallen’s model more representable of

the actual web application.

We chose Conallen’s notation for representing web applications in this research be-

cause of its popularity and compliance with UML. Another advantage of using Conallen’s

model is that Rational Rose Web Modeler [53] and WARE [31] can be used to reverse

engineer web applications to the Conallen model. Conallen’s model has been referenced

CHAPTER 2. RELATED RESEARCH 7

and used widely [88, 49, 30, 31, 26].

2.2 Web Metrics

Most research related to maintainability measurement has been carried out on struc-

tured and object-oriented systems. Little work has been done in this regard using web

applications.

The Web Application Maintainability Model (WAMM) [32] uses source code met-

rics and the maintainability was measured using the Maintainability Index. In WAMM

new metrics were defined but there is still a need to validate those metrics empirically

and theoretically. There is also a need to prove how practical WAMM will be in an

industrial environment. WAMM captures many metrics which might make it imprac-

tical to implement unless there is a tool which can simply and quickly capture all the

metrics and provide a single Maintainability Index. The most common approach used

is Regression Analysis. There is research which uses Regression Analysis to define and

validate metrics and models for web applications. In [71] design and authoring effort

were the dependent variables. The independent variables were based on source code

metrics. There is still a need for more empirical studies to validate these newly defined

metrics in order to make general conclusions. In [5] design metrics were introduced

based on W2000 [5] which is a UML like language. In the study the dependent vari-

ables were variations of design effort. The independent variables were measured from

the presentation, navigational and information models. Some data for the presentation

model was discarded in the study due to lack of participation from all subjects. It is not

known how useful this approach would be, since it is not known if the W2000 language

is used outside the educational environment and if it will become popular in industrial

environments. In [1] Maintenance Time is used as the dependent variable and some

metrics based on the Navigational model are used as independent variables. It is not

known how practical these approaches are. WebMo [85] introduces the notion of Web

Objects as size measures for predicting the effort of developing web applications. Case

Based Reasoning [73, 72] is an approach that uses a number of projects’ features stored

CHAPTER 2. RELATED RESEARCH 8

in a database to predict the effort of the current project.

Genero et al [44, 46, 45] use object-oriented UML metrics to measure maintainabil-

ity for object-oriented systems. Their approach is similar to our approach in using UML

class diagram metrics. Our approach is different in the type of metrics used which are

based on an extension of Conallen’s model. Also in our approach we measure different

dependent variables for maintainability. We decided to use UML design metrics since

most of the studies use source code metrics for measuring maintainability despite the

fact that many studies have shown that early metrics are much more useful [18, 20].

Many other researchers have used design metrics for measuring the quality of their soft-

ware system [13, 70, 59, 95, 51].

2.3 Software Maintainability

Quality of software is a goal that all stakeholders try to achieve. Software maintain-

ability is an important quality indicator of software in the maintenance phase. In the

maintenance phase software professionals spend at least half of their time analyzing

software in order to understand it [27]. The cost of software maintenance accounts for a

large portion of the overall cost of a software system [97]. Therefore, it is important to

have a maintainable software, that is easy to understand, correct and enhance. Software

maintenance can be categorized as follows [54]:

• Perfective Maintenance: perfective maintenance improves the functionality of the

software system by expanding requirements.

• Adaptive Maintenance: adaptive maintenance deals with porting a software sys-

tem to a new hardware or software environment.

• Corrective Maintenance: corrective maintenance deals with modifications asso-

ciated with errors in the software system.

• Preventive Maintenance: preventive maintenance deals with software modifica-

tions that prevent possible future errors.

CHAPTER 2. RELATED RESEARCH 9

One of the main concerns of system stakeholders is to increase the maintainability of

the software system. Maintainability can be defined as:

The ease with which a software system or component can be modified to correct faults,

improve performance or other attributes, or adapt to a changed environment [10].

Maintainability is measured as a function of directly measurable attributes A1 through

An as shown in Equation 2.1:

M = f(A1 + A2 ++ An) (2.1)

The measure (M) is a maintainability index which can differ depending on the attributes

being used in the measurement. For example, Sneed [93] proposed a software qual-

ity assessment environment called SOFTING. SOFTING uses the following design at-

tributes: modularity, portability, integrity, redundancy, complexity, generality, time and

span-utilization with associated metrics to calculate the maintainability index.

The following are the different approaches used to quantify maintainability using

software metrics [24]:

• Hierarchical Multidimensional Assessment: in this technique the attributes are

defined in a hierarchy. The top level is divided into three levels control structure,

information structure and documentation. Each level is assigned to certain met-

rics. The total maintainability index is calculated by adding up all the metrics in

the hierarchy [82].

• Aggregate Complexity Measure: in this technique the maintainability is calculated

using a function of entropy [77].

• Regression Analysis Models: in this technique a polynomial equation is con-

structed to measure maintainability using a function of metrics [82].

• Factor Analysis: a statistical technique where metrics are grouped into clusters

where each cluster has metrics that are highly correlated to each other and lowly

correlated to metrics in other clusters. Each group of metrics presents a single

underlying factor [77].

CHAPTER 2. RELATED RESEARCH 10

• Principal Components Analysis: a statistical technique that reduces the collinear-

ity between independent variables. It will reduce the number of independent vari-

ables used to construct a maintainability regression model [100].

All these models were tested and validated on Hewlett-Packard systems [24]. They

showed reasonably accurate measures of maintainability from simple metrics. The Pear-

son Product-Moment correlation coefficients (PMCCs) for all models ranged from .60

to .90. The PMCCs showed the correlation between the maintainability of the models

and the subjective maintainability rating provided by HP engineers [100]. Regression

Analysis and Hierarchical Multidimensional Assessment were the simplest ones to use

and to calculate maintainability in the industrial environment at HP [24]. This research

is using the regression analysis model technique to build a maintainability model for

web applications from UML design metrics.

2.4 Software Metrics

Software metrics are units of measurement that quantitatively characterize some aspects

of a software system or process [39]. Software metrics can help in gauging the main-

tainability of web applications. They can provide support for monitoring, controlling,

predicting and evaluating the quality of software systems [40]. Metrics can be catego-

rized into may ways. The main categories are:

• Product metrics: measure some aspects of the software structure such as require-

ments artifacts, design artifacts and source code. Product metrics are important

for software engineers to have a better understanding of the software system. [39].

• Process metrics: measure the activities of analysis, design and coding during a

project lifecycle in order to improve them. Time, effort and cost are the most

relevant processes attributes. They can be estimated using Boehm’s constructive

cost model (COCOMO) [84]. Process metrics are important for team leaders and

project managers [39].

CHAPTER 2. RELATED RESEARCH 11

• People metrics: describe the available resources and their skills. For example,

people metrics measure the efficiency of designers, testers and developers during

a project lifecycle. Project metrics are important for project managers and system

stakeholders. [39].

The research described in this thesis relates to product metrics. Product metrics are

defined based on UML class diagrams. Early design metrics are very important since

they provide an early indication of any future risks that can happen in the software. Early

design metrics can be useful in the following ways. First, predicting the maintenance

and cost of maintenance tasks which helps in providing accurate estimates that can help

in allocating the right project resources to maintenance tasks [43]. Second, comparing

design documents which can help in choosing between different designs based on the

maintainability of the design. Third, identifying the risky components of a software

since some studies show that most faults occur on only few components of a software

system [38, 75]. Fourth, establishing design and programming guidelines for software

components. This can be done by establishing values that are acceptable or unacceptable

and take actions on the components with unacceptable values. This means providing a

threshold of software product metrics to provide early warnings of the system [36].

Fifth, making system level prediction where the maintainability of all components can

be predicted by aggregating maintainability of single components. This can be used to

predict the effort it will take to develop the whole software system [36].

2.4.1 Validating Software Metrics

Many software metrics have been proposed but not all have been validated. Metrics must

be validated for us to have confidence in them. Validation of a metric is accomplished

by satisfying the following conditions:

• The software metric is a proper numerical characterization of the property it claims

to measure [63].

• The software metric is associated with some external metric such as maintainabil-

ity or any other quality attribute [7].

CHAPTER 2. RELATED RESEARCH 12

The first condition is the theoretical validation, while the second condition is called

empirical validations.

2.4.2 Theoretical Validation of Metrics

Software metrics play an important role in controlling software maintenance practices

and products. It is important that these measures are valid. Kitchenham proposes a

validation framework for software metrics [63] with the goal of showing researchers:

• How to validate a measure.

• How to evaluate the validation of others.

• When to apply a certain measure.

In [63] a structure model of software measurement is proposed, which comprises:

• Entities, Attributes and Relationships: entities are objects such as products, and

processes. Attributes are the properties of the entities. For example, if we say John

is shorter than Mary, the relationship we want to capture and describe formally is

the “is shorter than”. In Figure 2.1 the relationship between entities and attributes

is “many to many”. This means that an entity can have many attributes and an

attribute can describe many entities. For example, weight attribute applies to many

entities such as human beings, furniture and animals.

• Units and Scale Types and their relationships: a measurement unit determines

how an attribute is measured. An attribute can be measured by more than one

measurement such as temperature which can be measured using the Celsius or

Fahrenheit measurement unit. A measurement unit can be used to measure more

than one attribute. For example, the number of faults can be used to measure the

correctness of a program, and it can be used to measure the test case effectiveness.

A measurement unit has one to one relationship with the scale type. The scale type

can be nominal, ordinal, interval and ratio.

CHAPTER 2. RELATED RESEARCH 13

• Values and their properties: values are most of the time numerical. They can also

be in a set of values such as faulty code, non-faulty code. It is important to know

the entity, attribute and the unit to interpret the value correctly. For example, the

attribute price for an item can not be interpreted correctly unless we have the unit

of currency such as dollars or pounds. The properties for the values has also to be

specified. For example, the price of an item can not be negative.

• Measurement Instrument: a measurement instrument can optionally be used to

measure the unit. An instrument usually measures a single unit but it can measure

more than one unit. For example, a thermometer can be used to measure two units

of temperature Fahrenheit and Celsius.

Entity

Attribute

Value

Unit

Measurement

Instrument

Scale Type

applies_to

possesses

belongs_to

uses

determines

quantifies

measures

expressed_in

Figure 2.1: A Structure Model for Measurement [63]

Figure 2.1 shows the different elements of the structure model. In addition to kitchen-

ham’s [63] framework, this research also uses the general framework proposed by Briand

et al [16] for theoretical validation for the software metrics. The framework defines

properties for several measurement concepts such as size, length, complexity, cohesion,

and coupling. The Framework is generic and not specific to any software artifact. In

addition to that, it is based on precise mathematical concepts. The objects of study in

CHAPTER 2. RELATED RESEARCH 14

the framework are defined as a system which consists of a set of elements and a set of

relationships between them.

2.4.3 Empirical Validation of Metrics

Empirical validation of product metrics involves validating that the metric is associated

with an external metric and it is an improvement over other product metrics. This is

accomplished by carrying out empirical studies with the metrics. An empirical study

is a test to compare what is observed to theory. An empirical study can take many

forms: eg. surveys, case studies and controlled experiments. An empirical study has the

following structure [62]:

• Experimental Context

• Hypotheses

• Experimental Design

• Threats to Validity

• Data Analysis

• Results and Conclusions

Experimental Context

The experimental context defines two elements: Firstly, Background Information which

will include information on the problem. The definition of the problem and it’s impor-

tance. Secondly, Related Research which will discuss about what has been done in the

research field and what is still missing and requires further research.

Hypotheses

The hypotheses are important. They state the research question to be answered. The

null hypothesis must be stated clearly. It is usually the reverse of what the experimenter

believes. The alternative hypothesis is a statement of what the experimenter believes.

CHAPTER 2. RELATED RESEARCH 15

Experimental Design

It is important to identify the data that will be used in testing the hypothesis. We also

need to identify the subjects and the process by which subjects are selected and assigned

to groups. We need to identify two variables dependent and independent variables. The

dependent variables are outputs whose values will be predicted based on changes of

the independent variables. The independent variables are the predictors or explanatory

variables which are used to determine the value of the dependent variable.

Threats to Validity

There are three types of threats that can limit us to draw conclusions from the results:

Firstly, Construct Validity which is the degree to which the independent variables and

the dependent variables are accurately measured in the study. Secondly, Internal Validity

which is the degree to which conclusions can be drawn about effect of independent

variables on the dependent variables. Thirdly, External Validity which is the degree to

which results can be generalized to other research settings.

Analysis

There are two main approaches of results analysis. Firstly, Classical Analysis which

deals with comparing numerical data. The goal of the experiments is to reject or not

reject the null hypothesis. Hypothesis testing and power analysis are tools that can

be used in this approach. Hypothesis testing determines the confidence level at which

the null hypothesis can be rejected. Power analysis determines the magnitude of the

effect and the amount of data we have. Secondly, Bayesian Analysis which uses prior

information such as data obtained from previous studies or from expert opinions. This

approach is not usually used in software engineering studies. Another thing that must

be checked is whether to use parametric or nonparametric tests. If the distribution of

variables can be identified parametric tests are used, otherwise, nonparametric tests are

used [62].

CHAPTER 2. RELATED RESEARCH 16

Results and Conclusions

The significance of the results must be reported clearly and they should have enough

information for the readers to repeat the experiment. There are some guidelines that

must be followed when presenting results.

• All statistical procedures used must be described and citation of references must

be provided.

• It is important to report the statistical package used.

• It is good to present the raw data when possible so that it is easier to do a replica-

tion experiment.

• It is important to provide descriptive statistics for all dependent and independent

variables used in the study.

Conclusions made must follow directly from the results of the study. It is important

to define the population to which the results apply. This is important to understand

where and how a predictive model can be used [62]. In this research we will be working

on design product metrics for web applications. Our work will include validating the

proposed product metrics.

2.5 Architecture Views

Different audiences require different views. For example a builder requires the floor

plan to view the architecture of a house while a customer needs a view of the actual

house architecture. Different views contain different kinds of information and should

be described using the most appropriate technique for each view. Each viewpoint has

a different collection of metrics that reflect the characteristics of the viewpoint. There

are three different architecture views for a software system: Firstly, Conceptual archi-

tecture which includes an architecture diagram and CRC cards. The main goal of the

view is to identify major components and to allocate responsibilities to components.

CHAPTER 2. RELATED RESEARCH 17

Secondly, Logical architecture which identifies the interfaces between components. It

is used by designers and developers to build the system. Thirdly, Physical architecture

which shows the whole process flow of the system. It is used to assign resources to

different processes according to their needs. Importance of architecture views can be

found in [65, 19]. The next section will discuss the 4 + 1 view model.

2.5.1 The 4 + 1 View Model

The 4 +1 View model shown in Figure 2.2 defines five different views according to [65].

Use−Case View

Logical View

Process View Deployment View

Functionality Software Management

Performance Topology, installation
delivery

Implementation
View

Figure 2.2: 4 + 1 View Model

Each view shows a set of concerns which is of interest to certain stakeholders such

as customers, developers and managers. The logical view is created by designers and it

supports the functional requirements of the system. Functional requirements are the ser-

vices that the system is providing to its users. The process view considers non-functional

requirements such as performance, fault tolerance and availability of resources. It con-

siders concurrency, system integrity and distribution. In the process view a process is

composed of several tasks that form an executing unit. The development view addresses

the development environment and how software modules are organized in that environ-

ment. The software is grouped into small subsystems that can be worked on by a small

CHAPTER 2. RELATED RESEARCH 18

number of developers. The subsystems are organized into a set of layers where each

layer provides a well-defined interface to the layer above it. The development view is

represented by module and subsystem diagrams that show the import and export rela-

tionships of the system. The physical view addresses non-functional requirements such

as performance and scalability. It maps software architecture defined in the logical and

development view into physical hardware. This mapping needs to have minimal impact

on the source code. Scenarios represent use cases. Use cases show that all other views

are working together. Use cases are an abstraction of the most important requirement.

The scenario view is redundant with other views, that is why we have the +1. In this

research we will examine the system from the design point of view which maps to the

logical view in the 4 + 1 view.

2.6 Web Applications

The world wide web is the largest distributed application in the world. Sir Tim Berners-

Lee originally proposed the world wide web to the European Laboratory for Particle

Physics (CERN) in 1990. His goal was to make the web a shared information space

through which people and machines could communicate. CERN management approved

Sir Berners Lee’s proposal in November 1990. He started working on his proposal

and developed the first prototype on the NeXT platform. There has been a tremendous

growth in web sites since its inception. In 1993 there were around 130 web sites while

in early 2001 there were around 27 million web sites [8] as shown in Figure 2.3. This

great success of the web resulted in interest from businesses in the web [42], with web

applications evolving from simple document sharing applications to complex transaction

based applications.

According to Conallen [26] web applications can be categorized in to two types :

1. Presentation-oriented: a simple document sharing web site, consisting of hyper-

linked text documents that provide information to users.

2. Service-oriented: a complicated web application that provides some service to the

CHAPTER 2. RELATED RESEARCH 19

Figure 2.3: Web Site Evolution

user, example e-commerce applications.

In this research we use Conallen’s [26] definition of service-oriented applications.

Service-oriented web applications are becoming highly complex software systems that

run large-scale software applications for e-commerce, information distribution, enter-

tainment, collaborative working, surveys, and numerous other activities. They run on

distributed hardware platforms and heterogeneous computer systems. This research will

be on service oriented web applications which consist of four tiers [52]. Figure 2.4

shows a service oriented web application based on the J2EE model.

• Client Tier: consisting of dynamic Web pages containing various types of markup

language (HTML, XML), and a Web browser, which renders the pages received

from the server.

• Web Tier: consisting of Servlets and JSP pages. Servlets are Java programming

language classes that dynamically process requests and construct responses. JSP

pages are text-based documents that execute as servlets but allow a more natural

approach for creating static content.

• Business Tier: containing business code, the logic that solves or meets the needs

of a particular business domain such as banking, retail, or finance. It is handled

CHAPTER 2. RELATED RESEARCH 20

Client
Machine

Database
Server
Machine

J2EE
Server
Machine

Client
Tier

Web
Tier

Dynamic HTML Pages

JSP Pages

Enterprise Beans

Database

EIS
Tier

Business
Tier

Figure 2.4: Service Oriented Web Application [52]

by enterprise beans running in the business tier. An enterprise bean receives data

from client programs, processes it, and sends it to the enterprise information sys-

tem tier for storage. An enterprise bean also retrieves data from storage, processes

it, and sends it back to the client program.

• Enterprise Information System Tier: handling enterprise information system soft-

ware and including enterprise infrastructure systems such as enterprise resource

planning (ERP), mainframe transaction processing, database systems, and other

legacy information systems.

Service-oriented web applications have several requirements: Firstly, a web site

CHAPTER 2. RELATED RESEARCH 21

might have millions of hits per day. If the response time is low customers might leave

the web site and go to a different one. Secondly, a web site can grow dramatically due

to increase in business so the architecture must be highly scalable. Thirdly users might

use sensitive data such as credit cards and other personal and private data. The web site

must ensure that they are secure otherwise the web site may lose customers. Fourthly,

it is important that service-oriented web sites are easy to change since in the Internet

world things change very quickly.

2.6.1 Web Application Basics

This section discusses web applications basics, including HTTP, HTML, Sessions, Dy-

namic Clients, Scripting, Applets, and ActiveX.

HTTP

The HyperText Transfer Protocol(HTTP) is the protocol used to communicate between

the web browser and the web server. The Uniform Resource Locator (URL) is used to

access a document on the web server. Documents are located in a directory on the web

server that is relative to the web site’s root directory. HTTP runs over TCP which is

a connection-oriented protocol that implements the OSI model of the networking layer.

HTTPS protocol runs HTTP with Secure Socket Layer(SSL) which makes sure that data

is protected and encrypted when it is passed between the browser and the web server.

In HTTP a client sends a request to the server and the server sends a response back to

the client. If the same client sends another request to the server, the server does not

know that it is the same client. Therefore, HTTP is called a stateless protocol. This

statelessness makes developing web applications more difficult, since in most cases the

client makes several calls to the server, and the server needs to keep track of the client

that called it. A good example of that is an online shopping web application where the

client makes several calls to the server and the server must be aware of that.

Figure 2.5 shows how the HTTP protocol interacts with the web server and web

browsers:

CHAPTER 2. RELATED RESEARCH 22

Browser

Web Server

HTTP Request

HTTP Response

Database

Figure 2.5: HTTP Protocol and Web Applications

HTML

HyperText Markup Language(HTML) is a tag language that is built on the Standard

Markup Language(SGML). HTML displays and formats the text files stored on the web

server. Style-sheets can be used to get a special formatting of font, color and size.

HTML contains an anchor element to connect to other HTML files. Data can be passed

to other HTML files using the href attribute in the anchor element. Another impor-

tant element is the form element which allows the user to enter data and pass it to the

web server. The frameset divides the browser into separate layouts where each layout

provides a separate display of HTML contents [26].

Sessions

A session associates a user with a single use of the system. An example of that is a

shopping-cart session associated with a single user. The session must store some data

for the user on the web- server. The data can be stored using cookies or URL parameters

[26].

Scripting

Scripting is client side code embedded within HTML. The main reason for using script-

ing is for client validation. This includes validating the form data before sending it to

the web-server. Client validation can save some time and gives a quicker response to

errors. An example of a scripting language is JavaScript which is one of the most used

scripting languages. JavaScript embeds the code inside a script tag that indicates to the

browser that this is scripting code. The problem with scripting is that it is not supported

by all browsers. Therefore, it is important to make sure it is supported before using it in

CHAPTER 2. RELATED RESEARCH 23

a certain environment [26].

Non-Linear Navigation

Non-Linear Navigation is one of the important characteristic of web applications that

is specific to hypertext. The main difference between linear and non-linear navigation

is that in linear navigation the client will always be directed to the same page, while in

non-linear navigation the client can be directed to different pages depending on some

control element. The Non-Linear Navigation characteristic does not apply to traditional

software applications and it can make the navigation of web applications hard to un-

derstand. In addition to that it makes it difficult to find defects due to the non-linear

navigation paths [2].

Dynamic Code Generation

Web applications are getting more complex because of the dynamic code generation as-

pect [99]. This means that the actual source code is not known until run time. Client

code such as HTML, forms, frames, links, and relationships between different web com-

ponents is generated by server code. This means that it is difficult to determine the ex-

ecution path for a web page. This makes it more difficult to maintain web applications

[87].

2.6.2 Web Application Modeling using the Unified Modeling Lan-

guage(UML)

Modeling is a technique used to represent complex systems at different levels of abstrac-

tion, and helps in managing complexity. UML is an object-oriented language [26] that

can be used to model object-oriented systems. It is possible to use UML to model web

applications by using extensions supported by UML. Conallen proposed an extension of

UML for web applications [26].

The following web application components are used in Conallen’s model [26]:

CHAPTER 2. RELATED RESEARCH 24

• Pages: are an important component of a web application. Pages are requested by

browsers and distributed by web servers. Pages contain HTML code, client scripts

and server scripts. An example of a page is a JSP or ASP web page. The client

scripts in the page are executed by the browser such as JavaScript or VbScript.

The client scripts in general are event driven and implement client side validation.

The server scripts are executed by the web server and can also do some validation

and update the business logic or database of the web application.

• Forms: are used to collect user input in a web application. The form can contain

several fields such as input text, textarea, selection list, checkboxes, and hidden

fields. Each of those fields has a unique name and id. The form has an action

element that defines the action page that will receive all the fields once the user

hits the submit button.

• Components: are software objects that can run on the server side or client side.

An example of a server side component is a JavaBean that is accessed by server

script code in the web page. Server components can be helpful in encapsulating

some of the business logic and making it available for server scripts. An example

of client side components is ActiveX and Applets which run on the client side and

can provide additional functionality to a web page.

• Frames: enhance the user interface by providing multiple pages that are active

and open at the same time. The browser page is divided into multiple frames.

Each frame has a target browser where components in a frame can interact with

components in different frames.

Conallen’s Extensions to UML

Figure 2.6 shows the various elements of Conallen web application model. The model

uses UML extensions such as stereotyped classes to model the different components of

a web application. The following components are defined as stereotyped classes: Web

Pages, Forms, Scriplets and Framesets.

CHAPTER 2. RELATED RESEARCH 25

A web page is the primary element of a web application. It is modeled with two

separate stereotyped classes, the client page and the server page. The client page con-

tains client side scripts and user interface formatting. The server page contains server

methods and page scoped variables. It makes sense to model the web page as a client

and a server page since a web page has functionality on the client and on the server. It

is important to define what attributes and objects each page can have. The client and

server page both can have attributes and methods. Conallen’s model defines several re-

lationships between the client page and server page. The main relationship between a

server page and a client page is a builds relationship since the server page builds the

client page. This means that the server page generates the dynamic code for the client

page. Every client page can have links to other pages which can be either client or server

pages. The link represents the anchor element in a client page. A forward relationship

is introduced when the server page delegates responsibility to another server page. An

include relationship is introduced when a server page reuses a client or another server

page.

Forms are modeled as a stereotyped form class. They are defined to separate the

form processing from the client page. The form class can not have methods but it has

attributes which are the form fields that are passed to the server page. Each client page

can have multiple form classes this is modeled through the aggregation relationship in

Conallen’s model. The form has a submit relationship to the server page. Each form

submits to a different action page.

A scriplet is a cached client page. It has references to components and controls that

are re-used by client pages. A client page can have multiple scriplets which is modeled

through the aggregation relationship in Conallen’s model.

A frameset divides the user interface into multiple views each containing one web

page. Frames can contain more than one client page, but they must contain at least one

client page. A frameset is similar to a client page but it contains information specific for

browsers that do not support frames. Thus a frameset, can have all the relationships that

a client page has.

It is important to define the different relationships between components in Conallen’s

CHAPTER 2. RELATED RESEARCH 26

Figure 2.6: Web Applications Model

model. Conallen’s model defines the following relations as generic associations be-

tween different components: builds, redirects, links, submit, includes, and forwards.

The builds relationship is a directional relationship from the server page to the client

page. It shows the HTML output coming from the server page. The redirects relation-

ship is a directional relationship that requests a resource from another resource. The

links relationship is an association between client pages and server or client pages. It

models the anchor element in HTML. The links relationship can have parameters which

are modeled as attributes in the relationship. The submit relationship is a relationship

between the form and the server page that processes it. The include relationship is a

directional association between a server page and another client or server page. The

forward relationship is a directional relationship between a server page and a client or

server page. This presents delegating the server request to another page.

Conallen’s model can describe web applications which can be useful during the de-

sign phase. Conallen’s model has the advantage of being UML compliant and can be

extended further to describe web applications in a greater detail. This research will

CHAPTER 2. RELATED RESEARCH 27

define a set of metrics based on Conallen’s extension of UML. We will study the rela-

tionship between these metrics and maintainability.

3
Maintainability Models

In this chapter we will discuss in detail some of the methodologies that have been used

for defining metrics and maintainability models for web applications.

3.0.3 Hierarchical Multidimensional Assessment Model

The HPMAS model has been adapted to the context of web applications in the Web Ap-

plication Maintainability Model (WAMM) [32]. The Web Application Maintainability

Model(WAMM) is based on the Oman and Hagemeister model proposed for traditional

software systems. WAMM proposes new metrics for web applications in order to predict

the maintainability of web applications. WAMM focuses on the source code branch of

the HPMAS model. It defines metrics at the component and system level. These metrics

are shown in Table 3.1 and Table 3.2:

The Maintainability Index (MI) of the web application is calculated as a function of

the metrics defined in the WAMM model. This is shown in Equation 3.1:

MI = F (yiAi) (3.1)

In this equation we have the following variables:

• Ai: The Ai variables is the i-th value of the metric attribute.

• yi: The y1 variable is the i-th weight of the metric.

28

CHAPTER 3. MAINTAINABILITY MODELS 29

Metric Name Description
TotalWebPage# Total number of WA pages
TotalLOC# Total number of WA LOCs
ServerScript# Total number of server scripts
ClientScript# Total number of client scripts
WebObject# Total number of web objects
InterfaceObject# Total number of interface objects
TotalData# Total number of different data identifiers
TotalConnectivity# Total number of relationships among web pages
TotalLanguages# Total number of programming languages

Table 3.1: WAMM Metrics at System Level

Metric Name Description
WebPageTag# Number of tags in the page
WebPageScript# Number of scripts in the page
PageWebObject# Number of web objects in the page
WebPageRelationships# Number of relationships the page has with other pages
WebPageData# Number of different data identifiers in the page
WebPageDataCoupling# Number of data exchanged with other web pages
InnerComponents# Number of inner components in the page
WebPageControlStructure# Number of control flow structures
ScriptSize# Number of source LOCs forming the script

Table 3.2: WAMM Metrics at Component Level

WAMM defines metrics for the source subtree of the Oman model. It specifically

defines metrics for the control structure and information structure branches. This is

shown in Figure 3.1 and Figure 3.2:

WAMM was applied on two of case studies that incorporate different technologies

such as ASP, JavaScript and HTML. These case studies included a freeware discussion

forum, customizable portal and a prototype of an e-commerce application. The met-

rics of these applications were computed using the WARE tool [31] which analyzes the

source code and computes the WAMM metrics directly from the source code. The re-

sults of these experiments provide a first validation of the maintainability model. There

CHAPTER 3. MAINTAINABILITY MODELS 30

Figure 3.1: WAMM Control Structure Metrics Tree

is still a lot of empirical research needed to validate the model. There is a need to prove

empirically that the new defined metrics are effective in calculating the maintainability

of web applications. Also the weight of the coefficients needs to be defined through the

analysis of historical data and more experiments. WAMM concentrates on source code

metrics. One drawback of this approach, is that we have to capture many metrics. This

becomes impractical especially when we have metrics which are collinear which means

they capture the same underlying attribute.

CHAPTER 3. MAINTAINABILITY MODELS 31

Figure 3.2: WAMM Information Structure Metrics Tree

3.0.4 Regression Modeling Techniques

Regression analysis is applied in many areas of software engineering research. One

of those areas is defining measures for software maintainability. Regression analysis

defines the dependent variable as a quantitative measure of some condition or behavior.

The main goal of regression analysis is to determine the values of parameters for a

function that cause the function to best fit the data provided. The linear regression

model can be built using several regression techniques such as Relative Least Square

(RLS) and Least Square (LS). These regression techniques produce the coefficients for

the independent variables. The independent variables have to be selected in a way that

reduces the noise in the model. There are a couple of techniques used in selecting the

CHAPTER 3. MAINTAINABILITY MODELS 32

independent variables such as stepwise regression, backward regression and forward

regression [58]. We need to consider the following issues when we apply regression

analysis [79]:

• Do we have the right and most important independent variables?

• Do we have the correct specification of the model?

• What is the predictive power of the model?

Choosing the Right Independent Variables

It is very important to choose the right and most important independent variables. In

the maintainability model the independent variables are the variables that affect main-

tainability of the software system. These variables are usually a set of complexity and

size metrics which can be obtained from requirements, design or source artifacts. After

selecting a set of independent variables a a correlation test can be run to determine the

variables that are correlated. We can measure the three types of correlation tests Pearson

correlation, Kendall rank correlation and Spearman correlation. Pearson correlation is a

parametric test and assumes a normal distribution between the variables. Kendall rank

correlation and Spearman correlation are non-parametric tests and do not assume any

assumptions related to the distributions. The correlated variables can be removed since

they capture the same information. As a result, we will have a reduced set of variables,

this makes it easier for practitioners to use.

Correct Model Specification

In regression analysis it is common practice to assume a linear relationship between the

independent and dependent variables. It is important to verify the assumptions made

regarding the linearity of the model. If the data does not fit a straight line the relation

might not be linear. In that case we need to transform the data and use a different

equation for fitting the data to the function. There might be some data points that are

far from the fitted line, these data points are called outliers. It is important to look for

CHAPTER 3. MAINTAINABILITY MODELS 33

these outliers and analyze if they are due to an error in data recording. Sometimes these

data points can be removed before regression analysis if there is strong evidence that

this data is unreliable.

Predictive Power of the Model

It is important to assess the predictive power of the model. This can be done by mea-

suring the goodness-of-fit for the model. The goodness-of-fit measures how much the

independent variables explains the dependent variable. The higher the goodness-of-fit

the better the predictive power of the model. Another technique to measure the predic-

tive power of the model is the Mean Magnitude of Relative Error (MMRE). MMRE is

calculated by taking the mean of the difference between the actual value of the depen-

dent variable and its predicted value divided by the actual value. The lower the MMRE

value the better the predictive power of the model [61].

In the next section we will discuss how regression analysis was used to build main-

tainability models and define metrics for web applications.

Regression Analysis Models for Web Applications

There are few examples of maintainability prediction models for web applications in the

literature. Many of these prediction models require more empirical research in order

to be accepted and validated. In [71] linear and stepwise regression analysis is used to

build an effort prediction model for web applications. Size is used as an independent

variable and design and authoring effort is used as the dependent variable. The size

is measured in terms of length, functionality and complexity. The case study used a

medium-size web application with forty-three computer science students, the data was

collected through two questionnaires. The first questionnaire was used to get personal

data from the subjects such as their experience in designing and authoring web appli-

cations. The second experiment was used to measure the size metrics, confounding

factors, and design and authoring effort. Table 3.3 shows the length metrics and Table

3.4 shows the complexity metrics while Table 3.5 shows the functionality metrics.

The functionality metric measures the number of reads, writes, entries and exits to

CHAPTER 3. MAINTAINABILITY MODELS 34

Metric Name Description
Page Count Number of html files used in the application
Media Count Number of non-reused media files used in the application
Program Count Number of non-reused cgi scripts, Javascript files, Java applets

used in the application
Total Page Allocation Total space allocated for all html pages used in the application
Total Media Allocation Total space allocated for all media files used in the application
Total Embedded Code length Total number of lines of code used in the application
Reused Media Count Number of reused/modified media files
Reused Program Count Number of reused/modified programs
Total Reused Media Allocation Total space allocated for all the reused

media files in the application
Total Reused Code Length Total number of lines of code for all

the programs reused by an application.

Table 3.3: Length Metrics

Metric Name Description
Connectivity Total number of links
Connectivity Density Connectivity/Page Count
Total Page Complexity Summation of the number of different media

types in a page/Page Count
Cyclomatic Complexity (Connectivity - Page Count) + 2

Table 3.4: Complexity Metrics

the software system. An example of an entry is a request to an I/O device such as a client

request to the web server. An example of an exit is a web server response to the client.

A read and write is any request that writes or reads from the storage of the application

such as a read or write to a database.

In the study the following confounding variables were controlled:

• Tool Type: This measures the type of tool used in designing and authoring the web

application.

• Experience: This is a measure of the design and authoring experience of the sub-

jects.

• Structure: This is a measure of the main structure of the web application.

CHAPTER 3. MAINTAINABILITY MODELS 35

Metric Name Description
Size Summation of size entries + Summation of size exits

+ Summation of size reads + Summation of size writes

Table 3.5: Functionality Metrics

In the study both linear and stepwise regression analysis was used and, the following

results were reported:

• Length Metrics: both models included Page Count and Total Reused Code Length.

The other predictors did not have a statistical significant correlation, so they were

removed from the model.

• Complexity Metrics: both models included Connectivity since it had the best sta-

tistical correlation with effort.

• Prediction Capability: the models prediction capability was calculated using the

adjusted-R2. No model presented accurate prediction of effort

• Results: both prediction techniques gave similar results in terms of their predictive

capabilities. They were compared using the boxplots of residuals which is the

difference between the actual and predicted values of the effort.

As a conclusion, replication studies need to be carried out to verify the results. The

metrics used in the experiment need to be reviewed to see if there are other metrics that

are better predictors of the dependent variable effort.

In another study [5] the effort of designing a web application is the dependent vari-

able. The independent variables are collected from design artifacts. Size, complexity,

reuse and decomposition are the software attributes that were used as a basis to define

the independent variables for the model. The W2000 modeling language is used in

creating UML like diagrams. The W2000 is developed at Politecnico di Milano. The

following W2000 models were used in the study:

• Information Model: identifies all the data that the web application is using.

CHAPTER 3. MAINTAINABILITY MODELS 36

• Presentation Model: identifies all pages with links and relationships between

them.

• Navigation Model: structures elements in the Information Model in a new form.

It uses nodes to define the main elements and clusters the group nodes together.

Each model in W2000 had its own metrics. Table 3.6, Table 3.7, and Table 3.8 show

the metrics that were used in each model:

Metric Name Description
Entities Number of entities in the model
Components Number of components in the model
Infoslots Number of slots in the model
SlotsSACenter Average number of slots per semantic association center
SlotsCollCenter Average number of slots per collection association center
ComponentEntity Average number of components per entity
SlotsComponent Average number of slots per component
SAssociations Number of semantic association in the model
SACenters Number of semantic association centers in the model
Segments Number of segments in the model

Table 3.6: Information Model Metrics

Metric Name Description
Nodes Number of nodes in the model
NavSlots Number of slots in the model
NodesCluster Average number of slots per cluster
SlotsNode Average number of slots per node
NavLinks Number of links in the model
Clusters Number of clusters in the model

Table 3.7: Navigation Model Metrics

The following were the dependent variables that were measured in the experiments

• Information Effort: the effort needed to design the Information Model.

CHAPTER 3. MAINTAINABILITY MODELS 37

Metric Name Description
Pages Number of pages in the model
PUnits Number of publishing units in the model
PrLnks Number of links in the models
Sections Number of sections in the model

Table 3.8: Presentation Model Metrics

• Presentation Effort: the effort needed to design the Presentation Model.

• Navigation Effort: the effort needed to design the Navigation Model.

• Total Effort: the effort needed to design all the models.

This study is an exploratory study that can be used as a basis for additional research.

A number of predictors have been identified in the study that have a significant statistical

impact on effort. A drawback of this study is using the W2000 modeling language which

is not used in the industry or known in educational environments. Therefore, there would

be a need for subjects to understand this language to run a replication study.

3.0.5 WebMO

WebMo is a cost estimation model introduced by Reifer. It is an adaptation of the

COCOMO II model [85]. WebMo introduces a new size predictor called Web Objects.

Web Objects are needed because current size metrics can not capture all attributes of

web applications [85]. Web Objects provide an indication of the relative size of a web

application. Web Objects add four new components to the function point approach:

multimedia files, web building blocks, scripts and links. These new web components

are shown in Figure 3.3.

A brief description of these components is given below:

• Multimedia Files: this component calculates the effort required to insert audio,

video and images into applications.

CHAPTER 3. MAINTAINABILITY MODELS 38

Web Building

Blocks

Links

Scripts

Multimedia

Files

Internal

Logical Files

External

Inputs

External

Outputs

External

Inquiries
External

Interface

Files

Figure 3.3: Web Objects Components

• Links: this component takes into account the effort to link applications and bind

them to the database.

• Scripts: this component takes into account the effort required to link HTML data

with application files.

• Web building Blocks: this component takes into account the effort required to

develop web blocks such as JSPs and Servlets.

WebMo uses data from 64 web applications in five applications domain to develop

accurate estimates for web applications. It forces the collection of certain cost fac-

tors such as product reliability, platform difficulty, personnel experience, facilities, and

teamwork. Some of these cost factors might not apply in all application domains. As far

as we know the only empirical industrial study on web objects is the one done in [90]

which compares the performance of objects with function points. The results showed

that web objects are better effort predictors. There still is a need to conduct more em-

pirical studies on WebMo to confirm and validate the results.

This chapter discussed some of the models for defining metrics for web applications

were described in detail. The next chapter discuses the research methodology applied in

this thesis.

4
Research Methodology

This chapter provides a description of the problem, and the proposed research method-

ology.

4.1 Problem Description

Maintenance presents a major cost factor in the lifecycle of a web application. There

are many reasons for the high maintenance cost of web applications such as fast internet

evolution, Lehman’s laws of software evolution and the particular characteristics of web

applications. These reasons are discussed below.

Internet Evolution

The Internet has evolved tremendously in terms of number of web sites and number

of usage during the last decade. Table 4.1 shows the growth of the Internet in terms of

number of web sites. In 1993 there were 130 web sites, in 2001 the number reached over

27 million web sites [8]. Table 4.2 shows internet growth in terms of number of users

in the United States. In 1996 there were 31.9 million users rising to 116.5 million users

in 2000 [86]. Amazon.com has a leading e-commerce web application. They started

with 0 customers in 1995, by 2003 they had around 20 million customers and the largest

online store in 220 countries [8].

The rapid growth of the internet, the enormous evolutionary change with very short

39

CHAPTER 4. RESEARCH METHODOLOGY 40

project release cycles and high competition has resulted in many unreliable web applica-

tions. According to one study [37], almost 70% of leading e-commerce and government

sites exhibit some time of failure when used by a first time user.

Date Number of Web Sites
June-1993 130
December-1993 623
June-1994 2,738
December-1994 10,022
June-1995 23,500
January-1996 100,000
June-1996 252,000
January-1997 646,162
January-1998 1,834,710
January-1999 4,062,280
January-2000 9,950,491
January-2001 27,585,719

Table 4.1: Web Sites Growth

Year Internet Usage in the USA
1996 31.9 million
2000 116.5 million

Table 4.2: Number of Web Users in the United States

Lehman’s Laws of Software Evolution

In the ideal world of software development growth would be similar to that in Figure 4.1.

We would have a perfect software engineer, perfect requirements and a perfect design.

Processing all these three input together should give us a perfect system, a happy cus-

tomer and little work for the maintainer. In real life this is not true even if we have all

these three inputs together [29]. The reason for that can be explained by Lehman’s laws

CHAPTER 4. RESEARCH METHODOLOGY 41

process

perfect design

perfect software engineer

perfect requirements

perfect web

application

happy customer

maintainer little to do

Figure 4.1: Maintenance in Ideal World [29]

of software evolution [67]. There are two laws shown in Figure 4.2 and described as

follows:

continuous changes

increased complexity

increased maintenance

web applications

Figure 4.2: Lehman’s Laws of Software Evolution [29]

1. The law of continuing change: a program used in real world must change or even-

tually it will become less useful in the changing world.

2. The law of increasing complexity: as a program evolves it becomes more complex

and extra resources are needed to preserve and simplify its structure.

Web Application characteristics

Web applications have several characteristics that make them difficult to maintain. These

characteristics can be summarized as follows:

• Heterogenousity: Web applications are usually composed of four tiers each tier

uses different programming languages, protocols and technologies. The client tier

consists of dynamic web pages containing HyperText Markup Language (HTML),

CHAPTER 4. RESEARCH METHODOLOGY 42

Extensible Markup Language (XML), JavaScript. The web tier consists of web

components such as servlets and Java Server Pages (JSPs) which translate requests

between the client and the business tier. The business tier implements the bulk of

the application logic. The data layer tier handles enterprise information stored

in database systems [6]. In my opinion the heterogenousity characteristic applies

more to web applications because they are composed of multiple tiers while tra-

ditional software applications are in general composed of one or two tiers.

• Technology advancement: There is an increasing demand from customers to incor-

porate new technologies in their web applications. In the early 90s Tim Berners-

Lee created the first web browser and web server [42]. Web pages started as

simple static HTML which were used for document sharing. Today web appli-

cations are becoming complex software structures which contain many relations

between their components [6]. They usually require transaction processing, high

security and high performance due to the criticality of the applications and the

high number of users. In my opinion the technology advancement characteristic

also applies to traditional software applications.

• Speed of evolution: Web application have a fast maintenance rate [60] and usually

have a short release cycle [28] due to continuous customer demands [33]. All this

causes a lack of appropriate and up to date documentation. This characteristic

also applies to traditional software systems but in general it is more relevant in

web applications [78].

• Dynamic code generation: In traditional software applications both the client and

server code are static while in web applications the client code and the relation-

ships between different web components may be generated by server code [78].

This means that the actual source code is not known until run time. This makes it

more difficult to maintain web applications.

• Duplicated code: Web applications tend to have duplicated code since developers

tend to cut and paste code from different parts of the system [28]. If an error

CHAPTER 4. RESEARCH METHODOLOGY 43

happens in one part it will also happen in other parts of the code. Also if there is

a need for an enhancement many parts of the web application must be touched. In

my opinion duplicated code is found more in web applications but some studies

showed that it is also available in traditional software applications [34].

• Tangled and Scattered Code: Web applications have functionalities that spread

over presentation, control, business and database tiers which leads to tangled and

scattered code [64]. This code is difficult to maintain since a simple change in-

volves all parts of the code. In my opinion the tangled and scattered code is found

in both web applications and traditional software applications but it is more rele-

vant in web applications.

4.1.1 Problem Statement

Web applications are one of the fastest growing classes of software systems. They have

diffused in many and different business domains such as scientific activities, product

sale and distribution and medical activities [37]. These web applications have evolved

into complex applications that have high maintenance cost. This high maintenance cost

of web applications is due to the inherent characteristics of web applications, to the

fast internet evolution and to the pressing market which imposes short development

cycles and frequent modifications. In order to control the maintenance cost, quantitative

metrics and models for predicting web applications’ maintainability must be used. The

maintainability metrics and models can be useful for predicting the maintenance cost,

predicting risky components and, choosing between different software artifacts.

4.1.2 Why are Web Applications Different?

Web applications are different from traditional software systems. Therefore models and

metrics for traditional systems can not be applied to web applications. This is because

web applications have special features such as hypertext structure, dynamic code gen-

eration and heterogenousity. Web applications’ features can not be specified by regular

metrics that are applied to traditional or object-oriented systems. Another difference is

CHAPTER 4. RESEARCH METHODOLOGY 44

the difference in the unit of measurement of a metric for each application domain. For

traditional systems, the unit of measurement of a metric can be a file, procedure or an

attribute. For object-oriented systems, the unit of measurement can be a class, interface

or attributes. For web applications, the unit of measurement is a web object which can

be either an HTML file, JSP, Servlet or client script.

4.1.3 Problem Solution

Figure 4.3 shows that maintainability and maintenance cost is affected by software com-

plexity. In our research, we will investigate the use of software design metrics that pre-

dict the maintainability of web applications. We will present a methodology for assess-

ing, evaluating and selecting software design metrics for predicting web applications’

maintainability. In addition, we will propose a maintainability prediction model for web

applications.

Software

 Metrics

Software

Complexity

Maintainability

Maintenance

Cost

affects

measure

Figure 4.3: Software Metrics and Maintainability [36]

4.1.4 Benefits of Maintainability Models

Maintainability models can be useful for:

• Predicting Maintenance Cost: predicting the maintenance and related cost can

provide accurate estimates that can help in allocating the right project resources

to maintenance tasks [43].

• Comparing Design Documents: predicting the maintainability of design docu-

ments can help in choosing between different designs based on the maintainability

CHAPTER 4. RESEARCH METHODOLOGY 45

of the design.

• Identifying Risky Components: some studies show that most faults occur on only

few components of a software system [81]. Identifying those components early

can help in mitigating risk since more resources can be allocated to those com-

ponents during development or testing. Identifying those components is done

through a maintainability model. Some of these models have been used to control

the quality of switching software at Alcatel [35].

• Design and Programming Guidelines: maintainability model can help in estab-

lishing design and programming guidelines for software components. This can be

done by establishing values that are acceptable or unacceptable and taking action

on the components with unacceptable values. This means providing a threshold of

software product metrics to provide early warnings of the software system [36].

• Making System Level Prediction: maintainability of all components can be pre-

dicted by aggregating maintainability of single components. This can be used to

predict the effort it will take to develop the whole software system [36].

4.2 Solution Methodology

This approach uses statistical regression analysis to build the maintainability model for

web applications. The proposed approach can be divided into three phases [36], de-

scribed in the following three sections:

4.2.1 Planning Phase

In the planning phase we will decide on the metrics selection, dependent variable, and

data analysis technique. All of these are described below:

CHAPTER 4. RESEARCH METHODOLOGY 46

Metrics Selection

Measures of software maintainability can be taken either late or early in the development

process. Late measurements of software maintainability can be used for assessing the

software system, and planning for future enhancements, early measures of software

maintainability can help in allocating project resources efficiently, predicting the effort

of maintenance tasks and controlling the maintenance process.

There are several design quality attributes that have an effect on the maintainability

of software artifacts. As mentioned in the related work section, we decided to use UML

design metrics since most studies use source code metrics for measuring maintainability

despite the fact that many studies have shown that early metrics are much more useful

[18, 20]. Also many other researchers have used design metrics for measuring the qual-

ity of their software system [13, 70, 59, 95, 51]. Early measures are very important since

they provide an early indication of any future risks that can happen in the software. The

following are the design attributes that we will use in our model:

• Size: in our model the size of a UML class diagram is measured by counting the

number of components in the diagram. The lower the size of a component the

higher the maintainability.

• Complexity: measured by measuring the number of branches in a component.

McCabe Cyclomatic Complexity [43] is a common measure for complexity. We

use the number of associations and relations in UML class diagrams to measure

complexity in our model.

• Coupling: the degree of interaction between two components [13, 14]. It is im-

portant to have low coupling in order to have high maintainability. Low coupling

can be achieved by reducing the number of messages that can be sent and received

by individual components [13]. There are several standard coupling measures de-

fined in the literature. Coupling Between Object Classes (CBO) [22] is measured

by the number of other classes it is coupled to. A class is considered to be cou-

pled to another one if it uses methods or attributes of the other class. Response

CHAPTER 4. RESEARCH METHODOLOGY 47

Set For a Class (RFC) [22] is measured by the number of methods that are called

when a message is received by the class. Message Passing Coupling (MPC) [68]

is measured by the number of method calls in a class. Data Abstraction Coupling

(DAC) [68] is measured by the number of attributes in a class that have as their

type another class. In this research coupling is measured using the relationships

and components in the UML class diagram.

• Cohesion: the degree to which the methods and attributes of a class belong to-

gether. [3, 15]. There are a number or metrics proposed in the literature for mea-

suring cohesion. Lack Of Cohesion in Methods (LCOM) [22] is measured by the

number of pairs of methods that do not use attributes in common. Tight Class Co-

hesion (TCC) [11] is measured by the percentage of methods that are connected.

Connected methods use common attributes directly or indirectly. Loose Class Co-

hesion (LCC) [11] is measured by the percentage of pairs of public methods of

the class which are directly or indirectly connected. In this research cohesion is

measured using the relationships and components in the UML class diagram.

• Reusability: taking components of one product in order to facilitate the develop-

ment of a different product with different functionality [8]. The research measures

the reusability by looking at the percentage of web components that are reused in

the whole application.

We have identified several metrics for measuring these quality attributes. These

metrics are defined in the next section.

4.2.2 Definition of UML class diagram metrics for Web Applica-

tions

We have used the model shown in Figure 4.4 to model our web applications and to define

our metrics, the main difference between the model in Figure 4.4 and Conallen’s model

is an additional element called Interface Objects. The Interface Object element is an

extension to the current Conallen model, it is a class that has an association relationship

CHAPTER 4. RESEARCH METHODOLOGY 48

Figure 4.4: Web Applications Reference Model

to the server page in Conallen’s model. A server page can have many Interface objects

that is why we have the one to many relationship in Figure 4.4 between the server page

and the Interface Object. The Interface Object is a class that can have attributes and

methods. When modeling a web application it is important to show the Interface Object

and all the classes that are associated to it, since these classes give a better picture on

the complexity of the class diagram. For example if we have a server page that calls

one Interface Object we will show an association relationship between the Interface

Object and the server page. If the Interface Object uses other classes to call some server

side methods we will show these classes in the class diagram and draw an association

relationship between the Interface Object and the other server side classes. The rest of

the elements in Figure 4.4 are similar to Conallen’s model described in detail in Section

2.6.2.

As mentioned in the related work section, we choose Conallen’s notation for rep-

resenting web applications because of its popularity and compliance with UML. An-

CHAPTER 4. RESEARCH METHODOLOGY 49

Metric Type Metric Name Description
Size NServerP Total number of server pages
Size NClientP Total number of client pages
Size NWebP=(NServerP +

NClientP)
Total number of web pages

Size NFormP Total number of form pages
Size NFormE Total number of form elements
Size NClientScriptsComp Total number of client scripts components
Size NServerScriptsComp Total number of server scripts components
Size NC Total number of classes
Size NA Total number of attributes
Size NM Total number of methods
Structural Complexity NAssoc Total number of associations
Structural Complexity NAgg Total number of aggregation relationships
Structural Complexity NLinkR Total number of link relationships
Structural Complexity NSubmitR Total number of Submit relationships times

NFormE
Structural Complexity NbuildsR Total number of builds relationships times

(NServerScriptsComp + NClientScriptsComp)
Structural Complexity NForwardR Total number of forward relationships
Structural Complexity NIncludeR Total number of include relationships
Coupling WebControlCoupling =

(NLinkR + NSubmitR +
NbuildsR + NForwardR
+ NIncludeR)/ NWebP)

Number of relationships over number of web
pages

Coupling WebDataCoupling =
(NFormE/NServerP)

Number of data exchanged over number of server
pages

Coupling EntropyCoupling =
1/n× (− log 1/(1 +m))

where n is total number of elements and m is total
number of relationships

Cohesion EntropyCohesion total entropy coupling of the application / entropy
coupling of one class diagram

Resusability WebReusability = (NIn-
cludeR/NWebP)

Number of include relationships over number of
web pages

Table 4.3: Web Application Class Diagram Metrics

other advantage of using Conallen’s model is that Rational Rose Web Modeler [53] and

WARE [31] can be used to reverse engineer web applications to the Conallen model.

Conallen’s model has been referenced and used widely [88, 49, 30, 31, 26].

This research defines metrics based on the web application reference model shown

in Figure 4.4. The metrics are based on Web Application Extension (WAE) for UML

and measure attributes of class diagrams. Table 4.2.1 provides a description of the met-

rics. The following metrics (NServerP, NClientP, NWebP, NFormP, NFormE, NLinkR,

NSubmitR, NbuildsR, NForwardR, NIncludeR, NClientScriptsComp, NServerScriptsComp,

CHAPTER 4. RESEARCH METHODOLOGY 50

Figure 4.5: Sample Class Diagram

WebControlCoupling, WebDataCoupling, WebReusability) were defined in the author’s

previous study [48]. The following (NC, NA, NM, NAssoc, NAgg) metrics were de-

fined in the study carried by Genero [44] on class diagram metrics for object-oriented

applications. The metrics use the different components of the web application reference

model as units of measurement. Figure 4.5 shows a sample class diagram and Table 4.4

shows the results of calculating some of the metrics from the sample class diagram.

Dependent Variable

The next step in the planning phase is to identify the type of the dependent variable and

how to measure it. Dependent variables can be binary or continuous. An example of a

continuous variable is a count: a non-negative integer such as the number of hours, or the

CHAPTER 4. RESEARCH METHODOLOGY 51

Metric Type Metric Name Measurement
Size (NServerP) 4
Size (NClientP) 3
Size (NWebP) 7
Size (NFormP) 1
Size (NFormE) 4
Size (NClientC) 0
Structural
Complexity

(NLinkR) 2

Structural
Complexity

(NSubmitR) 4

Structural
Complexity

(NBuildsR) 3

Structural
Complexity

(NForwardR) 1

Structural
Complexity

(NIncludeR) 2

Control Cou-
pling

(WebControlCoupling) 1.7

Data Cou-
pling

(WebDataCoupling) 1

Reusability (WebReusability) 0.28

Table 4.4: Measurements of Sample Class Diagram

number of faults. Binary variables can have only two values, for example a component

can be faulty or non-faulty. Many dependent variables are continuous but sometimes

we might decide to use binary variables especially if the data collection technique is not

reliable, for example if we have a software system where number of faults is chosen to

be the dependent variable. If we do not have a reliable data collection process, counting

inaccuracies can occur, eg. a developer might fix many faults in the same ticket which

will be counted as one fault. In this case we can say that there was at least one fault

fixed for the component, and we should use binary measures for the dependent variable

[36].

Data Collection

The design of many web applications is outdated [30], therefore there is a need to re-

verse engineer the code to come up with the design. In this research IBM Rational

CHAPTER 4. RESEARCH METHODOLOGY 52

Rose Enterprise edition [53] is used to reverse engineer the web applications used in the

empirical studies to produce the class diagrams. Rational Rose has a visual modeling

component, which can create the design artifacts of a software system. The Web Mod-

eler component in Rational Rose supports Conallen’s extension for web applications,

so it will be used in the class diagram generation process. After the class diagrams are

created, Unisys Rose XML [53] is used to export the UML class diagrams into XML

Metadata Interchange (XMI) [83]. XMI is an OMG standard for exchanging metadata

information via Extensible Markup Language (XML). We will develop a tool that reads

the XMI files and extracts the data and computes the metrics from the data in the XMI

files.

4.2.3 Maintainability Measurement

The following are the dependent variables that we will use to measure maintainability

and study the usefulness of the metrics defined in Table 4.2.1:

• Understandability and Modifiability: several studies use maintainability charac-

teristics [13, 43, 45] as maintainability measures. We will measure two important

characteristics of design maintainability namely understandability and modifiabil-

ity. We will measure the following variables:

– Understandability Time: represents the time spent on understanding the sys-

tem in order to complete the questionnaire

– Modifiability Time: represents the time spent on identifying places for mod-

ification and making those modifications

• Lines of Code Changed: has been defined as the number of all non-blank non-

comment lines of code in a class [50]. In past studies, maintainability has been

measured by the number of lines of code changed [68, 69]. In our research we

will use absolute net value of the total number of lines added and deleted for

components in a class diagram to measure maintainability.

CHAPTER 4. RESEARCH METHODOLOGY 53

• Number of Revisions of classes in a class diagram: in past studies, Number of

Revisions was not used to measure maintainability. Based on our knowledge,

This is the first study to use number of revisions to measure maintainability.

Data Analysis Technique

The data analysis technique will depend on the type of dependent variable. For binary

dependent variables we use the logistic regression analysis technique, and for contin-

uous dependent variables we use multiple linear regression. In this research we have

several continuous dependent variables including LOC, Modifiability Time, and Under-

standability Time, therefore we use the multiple linear regression equation shown in

Equation 4.1:

y = β0 + β1x1 ++ βkxk (4.1)

In this equation we have the following variables:

• x: The x variables are the independent variables which present product design

metrics. They are also called predictors or regressors.

• y: The y variable is the dependent variable which presents the variables defined

in the previous section

• β: The β is the regression coefficient. It is the average amount of dependent

increase when the independent variable increase one unit and other independents

variables are kept constant.

The equation assumes a linear relationship between the product metric and the de-

pendent variable. The accuracy of the model can be measured by the coefficient of

determination R2 which is the percentage of the variance in the dependent variable ex-

plained by the independent variable [4].

CHAPTER 4. RESEARCH METHODOLOGY 54

4.2.4 Statistical Modeling Phase

In this phase the maintainability model will be built. When building the model we need

to look at influential observations. Influential observations are observations that have a

large influence on the regression model. We need to make sure that these observations

are correct and not due to a data entry error.

We need to provide descriptive statistics such as the mean, median, maximum, min-

imum and standard deviation for each of the dependent variables. These statistics will

be used in correlation and regression analysis.

Correlation Analysis

In this step the product metric is validated by looking into two aspects of the relationship

between the product metric and the dependent variable:

• Statistical Significance: the probability of getting an estimated parameter as large

as the one actually obtained if the true parameter was zero.

• Magnitude of Relationship: tells how much influence the product metric has on

the dependent variable.

Both of the above measures concern the coefficient of the independent variables

in the regression model. If the coefficient is statistically significant the metric is

validated. For example if the dependent variable is effort and the coefficient is

positive this means that the independent variable is a cost and causes an increase

in effort. On the other hand, if the coefficient is negative this that the independent

variable is a cost saving and causes a decrease in effort [4].

Regression Analysis

Correlation and regression are equally important and a complete analysis of the rela-

tionship between the dependent and independent variables includes both. In regression

analysis the best validated metrics are selected: those that have the strongest relationship

CHAPTER 4. RESEARCH METHODOLOGY 55

with the dependent variable and weak correlation to each other. There are two selection

techniques for selecting the metrics for the regression modes:

• Forward Selection: starts with one independent variable, then other independent

variables are added as long as they fulfill a certain statistical criteria

• Backward Selection: starts with all dependent variables, one is deleted as it com-

plies with certain statistical criteria.

Prediction Model Evaluation

The most common way of evaluating the prediction model is to use the measure of

relative error. The relative error measure is shown in Equation 4.2:

RE =
x− y

y
(4.2)

where x is the predicted value and y is the actual value. If RE is negative this means

that the model underestimates, if RE is positive the model overestimates and if RE is

zero the prediction is perfectly accurate. The result can be multiplied by 100 to get the

percentage of deviation from the actual value. For example if RE is 20% this means

that the model overestimates by 20%. Another measure that can be used is the absolute

relative error as show in Equation 6.1:

MRE = |x− y

y
| (4.3)

In the MRE there is no difference between positive and negative measures this might

be suitable for some dependent variables where over and underestimation are equivalent

[36]. The MMRE is the mean of the MRE, it is one of the most widely used criterion

for assessing the performance of software prediction models [80, 61].

4.2.5 Post Modeling Phase

In this phase results will be analyzed and reported. The following shows what is reported

and analyzed [36]:

CHAPTER 4. RESEARCH METHODOLOGY 56

• Description of the System: the system must be described clearly. Details of the

where the system was used in an educational or professional environment has to

be mentioned. The subject size, the type of data, programming language and any

tools used must be described.

• Unit of Observation: the unit of observation of the metric has to be specified

clearly. For example the unit can be a file, a procedure, a class, an attribute.

• Dependent Variable: tt is important to describe how the dependent variable was

chosen and how it is measured.

• Descriptive Statistics: the descriptive statistics for all data sets has to be reported.

This includes the mean, minimum, maximum, median and standard deviation.

• Data Analysis Technique: the data analysis technique has to be specified and jus-

tification why that technique has been chosen must be given.

• Variable Selection Procedure: in the results the variable selection technique has

to be specified if it is forward or backward selection.

• Evaluation of Prediction Model: a description of how the description model is

evaluated must be specified,

• Comparison to Previous Results: a comparison to previous study should be in-

cluded to build on knowledge and analyze if the study provided similar or different

results.

4.2.6 Model Validation

Software metrics can be acceptable and useful only if they have been proven through

a validation process. We will evaluate our model using both theoretical and empirical

validation.

CHAPTER 4. RESEARCH METHODOLOGY 57

Theoretical Validation

We will use the general framework proposed by Briand et al [16] for theoretical valida-

tion for the software metrics. The framework defines properties for several measurement

concepts such as size, length, complexity, cohesion, and coupling.

A system is defined as a set of elements and a set of relationships between those ele-

ments.

Definition 1 [16]: Representation of Systems and Modules. A system S will be rep-

resented as a pair < E,R >, where E represents the set of elements of S, and R is

a binary relation on E(R ⊆ E × E) representing the relationships between all S ele-

ments. Given a system S =< E,R >, a module m =< Em, Rm > is a module of S if

and only if Em ⊆ E, Rm ⊆ Em × Em, and Rm ⊆ R. The elements of a module are

connected to the elements of the rest of the system by incoming and outgoing relation-

ships. The set InputR(m) of relationships from elements outside module m to those of

module m is defined as:

InputR(m) = {< e1, e2 >∈ R | e2 ∈ Em and e1 ∈ E − Em}.

The set OutputR(m) of relationships from the elements of a module m to those of

the rest of the system is defined as:

OutputR(m) = {< e1, e2 >∈ R | e1 ∈ Em and e2 ∈ E − Em}.

For the size metrics three properties are defined: Nonnegativity, Null Value, and Module

Additivity as shown in the following definitions:

• Property Size 1:(Nonnegativity). The size of a system S =< E,R > is nonneg-

ative: Size(S) ≥ 0.

• Property Size 2:(Null Value). The size of a system S =< E,R > is null if E is

empty: E = 0 ⇒ Size(S) = 0

• Property Size 3:(Module Additivity). The size of a system S =< E,R > is

equal to the sum of the size of two of its modules m1 =< Em1, Rm1 > and

m2 =< Em2, Rm2 > such that any element of S is an element of either m1 or m2:

CHAPTER 4. RESEARCH METHODOLOGY 58

(m1 ⊆ S and m2 ⊆ S and E = Em1
∪
Em2 and Em1

∩
Em2 = 0) ⇒ Size(S) =

Size(m1) + Size(m2).

The size metrics will be defined based on the above definitions. The other metrics

will be defined based on their properties defined in [16].

Empirical Validation

We will carry out different empirical studies using industrial and open source web ap-

plications. We will conduct the following forms of empirical studies Surveys, Case

Studies, and Controlled Experiments [62, 98]:

• Survey: research in the large and the past.

• Case Study: research in the typical since it studies real projects.

• Controlled Experiment: research in the small since the experiment is conducted

on a small population. We will use the MMRE to assess performance of the pre-

diction model. The MMRE is one of the most widely used criterion for assessing

the performance of software prediction models [80, 61].

This research will carry out some empirical studies in an educational institution. The

experiment will contain the following steps:

• Preparing Materials: decide on the material of the experiment, eg. design ar-

tifacts of web applications will be used for the experiments. They should be a

representation of what is used in real life and cover a wide range of web applica-

tion technologies.

• Procedure: the subjects must be chosen carefully, and must have similar estimated

performance. Previous academic history and a questionnaire will be used to assign

subjects to teams. Clear documentation on all steps of the experiment will be

provided to all subjects. Also, a tutorial and sample tasks will be given to subjects

before the start of the actual experiment.

CHAPTER 4. RESEARCH METHODOLOGY 59

• Tasks: the experiment will have three tasks. In the first task the subjects will com-

plete a questionnaire about overall understanding, structure of design and specific

question about design. In the second task the subjects will do an impact analy-

sis and show the modifications that must be made in the code. In the third step

the subjects complete a debriefing questionnaire which includes personal details,

experience, opinions with respect to a subjects motivation and the performance

approach they adopt to complete the most difficult tasks.

It is important to look into both internal, and external validity to make sure the

results are valid. Internal validity is the degree to which conclusions can be drawn about

the effect of the independent variables on the dependent variable. A threat to internal

validity is the way students are allocated to groups. We might have one group that has

excellent students while another has average students. This threat can be eliminated

by correctly allocating students to groups. External validity is the degree to which the

results of the study can be generalized to other settings. Another threat is that students

will not be as experienced as professionals. Another threat is the material used must be

a representation to what is used in real life [13].

Ethics in Empirical Studies

There is little attention to ethical issues in the software engineering world [92]. It is

important to use ethics in research in order to keep the research going in the right di-

rection. If ethical guidelines are not followed, subjects might quit participation in the

experiment. It is encouraged to follow the following three ethical principles when doing

empirical research [92]:

• Informed Consent: This means providing information to subjects before the ex-

periment starts. This can include, the research purpose, benefits of the research

to the world and to subjects. In addition to that, it must be clear that subjects

are participating in the experiment with their free choice without any compulsion.

Subjects can terminate participation in the experiment any time without giving

CHAPTER 4. RESEARCH METHODOLOGY 60

any explanation. It should be explained to subjects that there will be no risk of

getting a bad grade if they do not participate in the experiment.

• Scientific Value: This includes describing the value of the research project and

making sure the experimental results are valid. The validity is accomplished by

checking internal and external validity.

• Confidentiality: This means anonymity of the subjects so that no one can identify

them. It is encouraged to have a signed consent form from the subjects before

conducting the experiment.

In our experiments we did not have to get a signed consent form from the subjects

before the experiments. But we did make sure that subjects participated with their free

choice. It was made clear that participating in the experiments will not have an effect on

students grade.

5
Theoretical Validation

Software measures play an important role in controlling software maintenance practices

and products. It is important that these measures are valid. This chapter will show

how to define and validate the UML metrics shown in Table 5.5 using two validation

frameworks one proposed by Kitchenham [63] and one proposed by Briand [16].

5.1 Kitchenham’s Validation Framework

Kitchenham proposes a validation framework for software metrics [63]. The frame-

work’s goal is to show researchers:

• How to validate a measure.

• How to evaluate the validation of others.

• When to apply a certain measure.

In [63] a structure model of software measurement is proposed. The structural model

is composed of the following elements: Entities, attributes, relationships, units, scale

types, values, and measurement instrument. A classification of the metrics based on the

measurement structure proposed by Kitchenham is shown in Table 5.6. Table 5.7 and

Table 5.8 validate the metrics based on the following conditions: Attribute Validity, Unit

Validity, Instrument Validity, and Protocol Validity. For more details on the framework

refer to Section 2.4.2.

61

CHAPTER 5. THEORETICAL VALIDATION 62

Metric Type Metric Name Description
Size NServerP Total number of server pages
Size NClientP Total number of client pages
Size NWebP=(NServerP +

NClientP)
Total number of web pages

Size NFormP Total number of form pages
Size NFormE Total number of form elements
Size NClientScriptsComp Total number of client scripts components
Size NServerScriptsComp Total number of server scripts components
Size NC Total number of classes
Size NA Total number of attributes
Size NM Total number of methods
Structural Complexity NAssoc Total number of associations
Structural Complexity NAgg Total number of aggregation relationships
Structural Complexity NLinkR Total number of link relationships
Structural Complexity NSubmitR Total number of Submit relationships times

NFormE
Structural Complexity NbuildsR Total number of builds relationships times

(NServerScriptsComp + NClientScriptsComp)
Structural Complexity NForwardR Total number of forward relationships
Structural Complexity NIncludeR Total number of include relationships
Coupling WebControlCoupling =

(NLinkR + NSubmitR +
NbuildsR + NForwardR
+ NIncludeR)/ NWebP)

Number of relationships over number of web
pages

Coupling WebDataCoupling =
(NFormE/NServerP)

Number of data exchanged over number of server
pages

Coupling EntropyCoupling =
1/n× (− log 1/(1 +m))

where n is total number of elements and m is total
number of relationships

Cohesion EntropyCohesion total entropy coupling of the application / entropy
coupling of one class diagram

Table 5.5: Web Application Class Diagram Metrics

5.2 Briand’s Validation Framework

This research also uses the general framework proposed by Briand et al [16] for theo-

retical validation for the software metrics. The framework defines properties for several

measurement concepts such as size, length, complexity, cohesion, and coupling. The

Framework is generic and not specific to any software artifact. In addition to that, it is

based on precise mathematical concepts. The objects of study in the framework are de-

fined as a system which consists of a set of elements and a set of relationships between

them.

CHAPTER 5. THEORETICAL VALIDATION 63

Definition 2 [16]: Representation of Systems and Modules. A system S will be rep-

resented as a pair < E,R >, where E represents the set of elements of S, and R is

a binary relation on E(R ⊆ E × E) representing the relationships between all S ele-

ments. Given a system S =< E,R >, a module m =< Em, Rm > is a module of S if

and only if Em ⊆ E, Rm ⊆ Em × Em, and Rm ⊆ R. The elements of a module are

connected to the elements of the rest of the system by incoming and outgoing relation-

ships. The set InputR(m) of relationships from elements outside module m to those of

module m is defined as:

InputR(m) = {< e1, e2 >∈ R | e2 ∈ Em and e1 ∈ E − Em}.

The set OutputR(m) of relationships from the elements of a module m to those of

the rest of the system is defined as:

OutputR(m) = {< e1, e2 >∈ R | e1 ∈ Em and e2 ∈ E − Em}.

We will define some of the operations and modules used in the following sections:

Inclusion: Let module m1 =< Em1, Rm1 >, and m2 =< Em2, Rm2 >, module m1 is

included in module m2 meaning m1 ⊆ m2 if Em1 ⊆ Em2 and Rm1 ⊆ Rm2.

Union: Let module m1 =< Em1, Rm1 >, and m2 =< Em2, Rm2 >, the union of mod-

ule m1 and m2 is m1
∪
m2 which is equal to < Em1

∪
Em2, Rm1

∪
Rm2 >.

Intersection: Let module m1 =< Em1, Rm1 >, and m2 =< Em2, Rm2 >, the intersec-

tion of module m1 and m2 is m1
∩
m2 which is equal to < Em1

∩
Em2, Rm1

∩
Rm2 >.

In the next sections the metrics in Table 5.5 are defined based on the size, complexity,

coupling, and cohesion properties defined in [16].

5.2.1 Size Metrics

For the size metrics three properties are defined: Nonnegativity, Null Value, and Module

Additivity as shown in the following definitions:

• Property Size 1:(Nonnegativity). The size of a system S =< E,R > is nonneg-

ative: Size(S) ≥ 0.

• Property Size 2:(Null Value). The size of a system S =< E,R > is null if E is

empty: E = 0 ⇒ Size(S) = 0

CHAPTER 5. THEORETICAL VALIDATION 64

• Property Size 3:(Module Additivity). The size of a system S =< E,R > is

equal to the sum of the size of two of its modules m1 =< Em1, Rm1 > and

m2 =< Em2, Rm2 > such that any element of S is an element of either m1 or m2:

(m1 ⊆ S and m2 ⊆ S and E = Em1
∪
Em2 and Em1

∩
Em2 = 0) ⇒ Size(S) =

Size(m1) + Size(m2).

The following size metrics (NServerP, NClientP, NWebP, NFormP, NFormE,

NClientScriptsComp, NServerScriptsComp, NC, NA, NM) satisfy properties 1-3.

We will take one of the size metrics and prove that it satisfies properties 1-3. The

validation of the other size metrics is the same.

NServerP

Definitions: A system S =< E,R > is defined as a class diagram where E are

all the classes in the class diagram and R are all the relationships in the class diagram.

The size S of the class diagram is a function Size(S) that is defined as the number of

server pages in the class diagram. Size(S) is a function that is characterized by three

properties Nonnegativity, Null Value, and Module Additivity.

Nonnegativity: The number of server pages is obtained as a sum of all server pages in

the class diagram which is a sum of nonnegative numbers so the nonnegativity property

holds.

Null Value: When there is no server page in the class diagram the sum of server

pages is equal to null.

Module Additivity: Assume S is a class diagram, E are the set of server pages in

S, and R are the set of relationships between the server pages. Class diagram S is

partitioned in two disjoint class diagrams m1, and m2. Em1 are the set of server pages

in m1, and Rm1 are the set of relationships between server pages in m1. Em2 are the set

of server pages in m2, and Rm2 are the set of relationships between server pages in m2.

Both class diagrams do not have any elements in common.

Let S =< E,R > , m1 =< Em1, Rm1 >, and m2 =< Em2, Rm2 > such that the

following conditions hold: m1 ⊆ S, m2 ⊆ S, E = Em1
∪
Em2 and Em1

∩
Em2 = 0.

CHAPTER 5. THEORETICAL VALIDATION 65

When partitioning the class diagram S into two disjoint class diagrams m1 and m2

the total number of server pages in S stays the same since both m1 and m2 do not have

any server pages in common. Size(S) is equal to all server pages in S, Size(m1) is

equal to all server pages in m1, and Size(m2) is equal to all server pages in m2. It is

clear that the total number of server pages in S is equal to the sum of server pages in m1

and m2. This means that Size(S) = Size(m1) + Size(m2).

Figure 5.1 shows how the module additivity property is applied to a sample class

diagram S. S is partitioned in two disjoint modules m1, and m2. Both modules do not

have any elements in common as shown in the diagram. Size(S) = 2 which is equal to

calendar.jsp + edit task popup.jsp. Size(m1) = 1 which is equal to edit task popup.jsp.

Size(m2) = 1 which is equal to calendar.jsp. We can see that the Size(S) = Size(m1)+

Size(m2). The NServerP for S is unchanged after the partitioning.

5.2.2 Complexity Metrics

For the complexity metrics five properties are defined: Nonnegativity, Null Value, Sym-

metry, Module Monotonicity, and Disjoint Module Additivity as shown in the following

definitions:

• Property Complexity 1:(Nonnegativity). The complexity of a system S =<

E,R > is nonnegative: Complexity(S) ≥ 0.

• Property Complexity 2:(Null Value). The complexity of a system S =< E,R >

is null if E is empty: E = 0 ⇒ Complexity(S) = 0

• Property Complexity 3:(Symmetry). The complexity of a system S =< E,R >

is not related to the convention used to represent the relationships between ele-

ments:

(S =< E,R > and S−1 =< E,R−1 >) ⇒ Complexity(S) = Complexity(S−1).

S is a system where the relationships R are in the incoming direction, and S−1 is a

system where the relationships R−1 are in the outgoing direction. The complexity

should not be sensitive to the direction of arcs representing system relationships.

CHAPTER 5. THEORETICAL VALIDATION 66

Figure 5.1: Sample Class diagram S

• Property Complexity 4:(Module Monotonicity). The complexity of a system

S =< E,R > is equal to or greater than the sum of the complexities of two of its

modules with no relationships in common:

(S =< E,R >, m1 =< Em1, Rm1 >, m2 =< Em2, Rm2 >, m1
∪
m2 ⊆ S and

Rm1
∩
Rm2 = 0) ⇒ Complexity(S) ≥ Complexity(m1) + Complexity(m2)

• Property Complexity 5:(Disjoint Module Additivity). The complexity of a sys-

tem

S =< E,R > composed of two disjoint modules m1 or m2 is equal to the

CHAPTER 5. THEORETICAL VALIDATION 67

sum of the complexity of the two modules: S =< E,R >, S = m1
∪
m2, and

m1
∩
m2 = 0) ⇒ Complexity(S) = Complexity(m1) + Complexity(m2).

Figure 5.2: Class diagram S with m1, m2 disjoint modules

The following complexity metrics NAssoc, NAgg, NLinkR, NSubmitR, NbuildsR,

NForwardR, and NIncludeR satisfy properties 1-5. We will take one of the complexity

metrics and prove that it satisfies properties 1-5. The validation of the other complexity

metrics is the same.

Figure 5.2 is a class diagram S that is partitioned in two disjoint class diagrams m1,

and m2. Both class diagrams do not have any relationships and elements in common as

CHAPTER 5. THEORETICAL VALIDATION 68

Figure 5.3: Class diagram S showing Module Monotonocity

shown in Figure 5.2. The class diagram is used show the Disjoint Module Additivity of

the complexity metrics. Figure 5.3 is a class diagram S that is partitioned in two class

diagrams m1, and m2. Neither class diagrams have any relationships in common. They

share the calendar.jsp client element as shown in Figure 5.3.

NAssoc

Definitions: A system S =< E,R > is defined as a class diagram where E are all

the classes in the class diagram and R are all the relationships in the class diagram. The

complexity S of the class diagram is a function Complexity(S) that is defined as the

sum of all associations in the class diagram. Complexity(S) is a function that is charac-

CHAPTER 5. THEORETICAL VALIDATION 69

terized by five properties Nonnegativity, Null Value, Symmetry, Module Monotonicity

and Disjoint Module Additivity.

Nonnegativity: The number of associations is obtained as a sum of all associations in

the class diagram which is a sum of nonnegative numbers so the nonnegativity property

holds.

Null Value: When there are no associations in the class diagram the sum of associa-

tions is equal to null.

Symmetry: The complexity is independent of the convention chosen to represent

the association relationships. Let (S =< E,R > and S−1 =< E,R−1 >) where S

and S−1 are two class diagrams that have the same number of elements and association

relationships. Let E be the set of elements in S and S−1. R is chosen to be all outgoing

associations and R−1 is chosen to be all incoming associations. The Complexity(S)

is equal to NAssoc which is equal to the number of all outgoing associations R. The

Complexity(S−1) is equal to NAssoc which is equal to the number of all incoming

associations R−1. The number of outgoing associations R is equal to the number of

incoming associations R−1 so Complexity(S) = Complexity(S−1).

An example of applying the symmetry property to NAssoc is shown in Figure 5.2

where Complexity(S) = Complexity(S−1) = 11.

Module Monotonicity: Assume S is a class diagram, E are the set of elements in S,

and R are the set of association relationships between the elements. Class diagram S is

partitioned in two class diagrams m1, and m2. Em1 are the elements in m1, and Rm1 are

the set of association relationships between elements in m1. Em2 are the set of elements

in m2, and Rm2 are the set of association relationships between elements in m2. We have

m1
∪
m2 ⊆ S and Rm1

∩
Rm2 = 0. All the association relationship in R also exist in

Rm1 and Rm2. There is a possibility that some association relationships exist in R but do

not exist in Rm1 or Rm2 since we have m1
∪
m2 ⊆ S. This means that R ≥ Rm1+Rm2.

The Complexity(S) is equal to NAssoc which is equal to the number of all associations

R in S. The Complexity(m1) is equal to NAssoc which is equal to the number of all

associations Rm1 in m1. The Complexity(m2) is equal to NAssoc which is equal to the

number of all associations Rm2 in m2. Since we have R ≥ Rm1 + Rm2 this means that

CHAPTER 5. THEORETICAL VALIDATION 70

Complexity(S) ≥ Complexity(m1) + Complexity(m2).

An example of applying the module monotonicity property to NAssoc is shown in

Figure 5.3 where Complexity(S) = 11, while Complexity(m1) = 6, and Complexity(m2)

= 2. One can see that Complexity(S) ≥ Complexity(m1) + Complexity(m2).

Disjoint Module Additivity: Assume S is a class diagram, E are the set of elements

in S, and R are the set of association relationships between the elements. Class diagram

S is partitioned in two disjoint class diagrams m1, and m2. Em1 are the elements in

m1, and Rm1 are the set of association relationships between elements in m1. Em2

are the set of elements in m2, and Rm2 are the set of association relationships between

elements in m2. We have S = m1
∪
m2 and m1

∩
m2 = 0. m1 and m2 do not have

any element in common which means when creating S by combining m1 and m2 not

extra relationships will be added to class diagram S. This means that R = Rm1 + Rm2.

The Complexity(S) is equal to NAssoc which is equal to the number of all associations

R in S. The Complexity(m1) is equal to NAssoc which is equal to the number of all

associations Rm1 in m1. The Complexity(m2) is equal to NAssoc which is equal to the

number of all associations Rm2 in m2. Since we have R = Rm1 + Rm2 this means that

Complexity(S) = Complexity(m1) + Complexity(m2).

An example of applying the disjoint module additivity property to NAssoc is shown

in Figure 5.2 where Complexity(S) = 11 which is equal to the sum of associations in

m1 and m2. Complexity(m1) = 0 which is equal to the sum of all associations in m1.

Complexity(m2) = 11 which is equal to the sum of all associations in m2. We can see

that the Complexity(S) = Complexity(m1) + Complexity(m2). The NAssoc for S

is unchanged after the partitioning.

5.2.3 Coupling Metrics

For the coupling metrics five properties are defined: Nonnegativity, Null Value, Mono-

tonicity, Merging of Modules and Disjoint Module Additivity as shown in the following

definitions:

• Property Coupling 1:(Nonnegativity). The coupling of a system S =< E,R >

CHAPTER 5. THEORETICAL VALIDATION 71

is nonnegative: Coupling(S) ≥ 0.

• Property Coupling 2:(Null Value). The coupling of a system S =< E,R > is

null if R is empty: R = 0 ⇒ Coupling(S) = 0

• Property Coupling 3:(Monotonicity). We have S1 =< E,R1 > and S2 =<

E,R2 >) where S1 and S2 are two systems that have the same number of ele-

ments. Let E be the set of elements in S1 and S2. R1 are the set of relationships be-

tween the elements in S1 and R2 are the set of relationships between the elements

in S2. Let R2 = R1 + 1. This property shows that adding a relationship does not

decrease the coupling which means we will have Coupling(S1) ≤ Coupling(S2).

• Property Coupling 4:(Merging of Modules). If two modules m1,m2 are merged

to form a new module m3 which is the union of the two modules m1,m2 then the

coupling of module m3 is not greater than the sum of the coupling of m1,m2.

Then Coupling(m1) + Coupling(m2) ≥ Coupling(m3)

• Property Coupling 5:(Disjoint Module Additivity). The coupling of a system

S =< E,R > composed of two disjoint modules m1 or m2 is equal to the sum

of the coupling of the two modules where no relationships exists between the

elements of the two modules: Coupling(S) = Coupling(m1) + Coupling(m2).

EntropyCoupling

Definitions: A system S =< E,R > is defined as a class diagram where E are

all the classes in the class diagram and R are all the relationships in the class diagram.

The coupling S of the class diagram is a function Coupling(S) (EntropyCoupling) that

is defined as 1/n × (− log 1/(1 +R)) where n is total number of elements and R is

total number of relationships. Coupling(S) is a function that is characterized by five

properties Nonnegativity, Null Value, Monotonicity, Merging of Modules and Disjoint

Module Additivity. EntropyCoupling satisfies properties 1-4 but did not satisfy property

5 (Disjoint Module Additivity).

Nonnegativity: EntropyCoupling is obtained by using the following equation:

1/n×(− log 1/(1 +R)) where n is total number of elements and R is total number of re-

CHAPTER 5. THEORETICAL VALIDATION 72

lationships. Both are a sum of nonnegative numbers. If R = 0 then EntropyCoupling =

0. If R > 0 then EntropyCoupling will always be a nonnegative number since

(− log 1/(1 +R)) will always be positive for R > 0.

Null Value: When there are no relationships in the class diagram which means R = 0

EntropyCoupling is equal to 0. We have (− log 1/(1 + 0)) = (− log 1/1) = 0.

Figure 5.4: Class diagram S showing Module Monotonocity for Coupling

Monotonicity: Assume S1 =< E,R1 > and S2 =< E,R2 >) where S1 and S2 are

two class diagrams that have the same number of elements. Let E be the set of elements

in S1 and S2. R1 are the set of relationships between the elements in S1 and R2 are the

set of relationships between the elements in S2. Let R2 = R1 + 1. The number of rela-

CHAPTER 5. THEORETICAL VALIDATION 73

tionships in R2 are more than the number of relationships in R1. We have Coupling(S1)

= 1/n×(− log 1/(1 +R1)) and Coupling(S2) = 1/n×(− log 1/(1 +R2)). We have R2

= R1 + 1 so Coupling(S2) = 1/n× (− log 1/(1 +R + 1)) = 1/n× (− log 1/(R + 2)).

We can see that 1/n× (− log 1/(1 +R1)) ≤ 1/n× (− log 1/(R + 2)) which means

that Coupling(S) ≤ Coupling(S2).

An example of applying the monotonicity property to EntropyCoupling is shown in

Figure 5.4 where adding the include relationship to module m1 between edit task popup.jsp

and calendar.jsp does not decrease its coupling.

Merging of Modules: let m1 =< E1, R1 >, m2 =< E2, R2 >, m3 =< E3, R3 >.

Let E1, E2, E3 be the set of elements in m1, m2, m3 respectively. Let R1, R2, R3 be

the set of elements in m1, m2, m3 respectively. Let m3 be the union of the two class

diagrams m1,m2.

We have Coupling(m1) = 1/n× (− log 1/(1 +R1)),

Coupling(m2) = 1/n×(− log 1/(1 +R2)), Coupling(m3) = 1/n×(− log 1/(1 +R3)).

We need to show that

Coupling(m1) + Coupling(m2) ≥ Coupling(m3)

which means that 1/n × (− log 1/(1 +R1)) + 1/n × (− log 1/(1 +R2)) ≥ 1/n ×

(− log 1/(1 +R3)). We can show that 1/(1 +R1) + 1/(1 +R2) ≥ 1/(1 +R3) ⇒

(1 +R3)/(1 +R1) + (1 +R3)/(1 +R2) ≥ (1 +R3)/(1 +R3)⇒

(1 + R3)/(1 + R1) + (1 + R3)/(1 + R2) ≥ 1. We know that R3 ≥ R1, and R3 ≥ R2

since m3 is the union of the two class diagrams m1,m2, the number of relationship in

m3 is greater or equal than the number of relationships in m1 and m2 . This means that

(1+R3)/(1+R1) ≥ 1, and (1+R3)/(1+R2) ≥ 1⇒ Coupling(m1)+Coupling(m2) ≥

Coupling(m3).

Figure 5.6 shows the result of combining three classes ClickTaskService, Delete-

TaskService, and GetTaskService into CombineTaskService. It is clear that Coupling(m1)+

Coupling(m2) ≥ Coupling(m3)

Disjoint Module Additivity: For the disjoint module additivity property we need to

show that Coupling(m3) = Coupling(m1) + Coupling(m2). We will use the same

definitions from the previous property Merging of Modules except no relationships exist

CHAPTER 5. THEORETICAL VALIDATION 74

between the elements of the class diagrams m1, m2 ⇒ R3 = R1+R2. We need to show

that

1/(1 +R1) + 1/(1 +R2) = 1/(1 +R3) ⇒

(1 +R3)/(1 +R1) + (1 +R3)/(1 +R2) = (1 +R3)/(1 +R3) ⇒

(1 + R3)/(1 + R1) + (1 + R3)/(1 + R2) = 1. When looking at left hand side of the

equation we can use R3 = R1+R2 ⇒ (1+R2+R1)/(1+R2) is greater than 1 which is

greater than right hand side of equation. This means that the disjoint module additivity

is not satisfied.

The following coupling metrics WebControlCoupling, WebDataCoupling satisfy

properties 1-5. We will take WebControlCoupling and prove that it satisfies properties

1-5. The validation of the WebDataCoupling metric is the same.

WebControlCoupling

Definitions: A system S =< E,R > is defined as a class diagram where E are all

the classes in the class diagram and R are all the relationships in the class diagram. The

coupling S of the class diagram is a function Coupling(S) (WebControlCoupling) that

is defined as R/E where R is total number of relationships and E is total number of

web pages in the class diagram. Coupling(S) is a function that is characterized by five

properties Nonnegativity, Null Value, Monotonicity, Merging of Modules and Disjoint

Module Additivity.

Nonnegativity: WebControlCoupling is obtained by using the following equation:

R/E where R is total number of relationships and E is total number of web pages in

the class diagram. Both are nonnegative numbers, WebControlCoupling will always be

a nonnegative.

Null Value: When there are no relationships in the class diagram which means R = 0

WebControlCoupling is equal to null.

Monotonicity: Assume S1 =< E,R1 > and S2 =< E,R2 > where S1 and S2

are two class diagrams that have the same number of elements. Let E be the set of

elements in S1 and S2. R1 are the set of relationships between the elements in S1 and

R2 are the set of relationships between the elements in S2. Let R2 = R1 + 1. The

number of relationships in R2 are more than the number of relationships in R1. We

CHAPTER 5. THEORETICAL VALIDATION 75

have Coupling(S1) = R1/E and Coupling(S2) = R2/E. We have R2 = R + 1 so

Coupling(S2) = (R1 + 1)/E.

We can see that R1/E ≤ (R1+1)/E which means that Coupling(S1) ≤ Coupling(S2).

Merging of Modules: let m1 =< E,R1 >, m2 =< E,R2 >, m3 =< E,R3 >. Let

E be the set of elements in m1, m2, m3. Let R1, R2, R3 be the set of elements in m1,

m2, m3 respectively. Let m3 be the union of the two class diagrams m1,m2. We have

Coupling(m1) = R1/E, Coupling(m2) = R2/E, Coupling(m3) = R3/E. We need to

show that

Coupling(m1) + Coupling(m2) ≥ Coupling(m3)

which means that R1/E + R2/E ≥ R3/E. We know that m3 is the union of the two

class diagrams m1,m2, so the number of relationships in m3 has to be less or equal to the

number of relationships in m1+m2. This means that Coupling(m1)+Coupling(m2) ≥

Coupling(m3).

Disjoint Module Additivity: For the disjoint module additivity property we need to

show that Coupling(m3) = Coupling(m1) + Coupling(m2). We will use the same

definitions from the previous property Merging of Modules except no relationships exist

between the elements of the class diagrams m1, m2 ⇒ R3 = R1+R2. We need to show

that

R1/E + R2/E ≥ R3/E. We have R3 = R1 + R2 which we can substitute in the right

hand side of the equation to become (R1 + R2)/E. We can see that both sides of the

equation are equal which means Coupling(m3) = Coupling(m1) + Coupling(m2).

5.2.4 Cohesion Metrics

For the cohesion metrics four properties are defined: Nonnegativity, Null Value, Mono-

tonicity, and Merging of Modules as shown in the following definitions:

• Property Cohesion 1:(Nonnegativity and Normalization). The cohesion of a

module belongs to a specific interval [0,Max].

• Property Cohesion 2:(Null Value). The cohesion of a module m =< E,R >

is null if R is empty: R = 0 ⇒ Cohesion(m) = 0 This means if the set of

CHAPTER 5. THEORETICAL VALIDATION 76

intramodule relationships is empty the cohesion of the module is 0.

• Property Cohesion 3:(Monotonicity). We have two modules m1 =< Em1, Rm1 >,

and m2 =< Em2, Rm2 > such that E is the set of elements in m1 and m2. Rm1

are the set of relationships between the elements in m1 and Rm2 are the set of re-

lationships between the elements in m2. Let R2 = R1 + 1. then Cohesion(m1) ≤

Cohesion(m2).

• Property Cohesion 4:(Merging of Modules). If two unrelated modules m1,m2

are merged to form a new module m3 which is the union of the two modules

m1,m2 then the cohesion m3 is not greater than the maximum cohesion of m1,m2.

max(Cohesion(m1), Cohesion(m2)) ≥ Cohesion(m3)

The Cohesion metrics are defined based on properties 1-4:

EntropyCohesion

Definitions: A system S =< E,R > is defined as a class diagram where E are all

the classes in the class diagram and R are all the relationships in the class diagram. The

Cohesion S of the class diagram is a function Cohesion(S) (EntropyCohesion) that is

defined as TotalEntropyCoupling
(1/n×(− log 1/(1+R)))

where TotalEntropyCoupling is equal to the sum of the

EntropyCoupling (defined in Section 5.2.3) metric for all class diagrams in the system,

n is total number of elements and R is total number of relationships. Cohesion(S) is a

function that is characterized by four properties Nonnegativity, Null Value, Monotonic-

ity, and Merging of Modules.

Nonnegativity and Normalization: The EntropyCohesion of a class diagram is equal

to total EntropyCoupling of all class diagrams over the EntropyCoupling of one class

diagram. The EntropyCohesion is computed as shown in the following equation:∑k

i=1
(1/n×(− log 1/(1+R)))

(1/n×(− log 1/(1+R)))
where n is the total number of elements in the class diagram,

R is the total number of relationships in the class diagram, and k is the total number

of class diagrams in the application. If R = 0 then EntropyCohesion is defined to

be 0. If R > 0 then EntropyCohesion will always be a nonnegative number since∑k
i=1(1/n× (− log 1/(1 +R))) will always be positive for R > 0.

CHAPTER 5. THEORETICAL VALIDATION 77

Null Value: When there are no relationships in the class diagram which means m = 0

EntropyCohesion is equal to 0.

Monotonicity: When adding a cohesive interactions to the class diagram this cannot

decrease its cohesion. When looking at the EntropyCohesion metric we can see that

adding a relationship to the denominator does not decrease the cohesion of the class

diagram. we have the following: TotalEntropyCoupling
(1/n×(− log 1/(1+R)))

≥ TotalEntropyCoupling
(1/n×(− log 1/(1+R+1)))

. We can

see that Cohesion(m1) ≤ Cohesion(m2).

Merging of Modules: When merging the two disjoint class diagrams m1, and m2 to

form a new class diagram m3 the number of relationships in m3 will be equal or more

than the number of relationships in m1, or m2 alone. Assume r3 are the number of

relationships in m3, and r1 are the number of relationships in m1, r2 are the number of

relationships in m2.

We have r3 ≥ r1 ⇒ TotalEntropyCoupling
(1/n×(− log 1/(1+r1)))

≥ TotalEntropyCoupling
(1/n×(− log 1/(1+r3)))

.

We have r3 ≥ r2 TotalEntropyCoupling
(1/n×(− log 1/(1+r2)))

≥ TotalEntropyCoupling
(1/n×(− log 1/(1+r3)))

.

Then max(Cohesion(m1), Cohesion(m2)) ≥ Cohesion(m3).

Summary

In this chapter, theoretical validation of our UML design metrics has been accomplished

by defining our metrics using two validation frameworks, one proposed by Kitchenham

[63] and one proposed by Briand [16]. We have defined all the size, complexity, cou-

pling and cohesion metrics based on the structural model proposed by Kitchenham [63].

We showed that most of the size, complexity, coupling, and cohesion metrics satisfy the

properties proposed in Briand’s framework [16]. The EntropyCoupling which is a cou-

pling metric did not satisfy the Disjoint Module Additivity property defined in Section

5.2.3.

CHAPTER 5. THEORETICAL VALIDATION 78

Table 5.6: Metrics Definition based on Kitchenham’s model

Name Type Entity Attribute Unit Scale
NServerP direct class diagram number of server

pages
server page interval

NClientP direct class diagram number of client pages client page interval
NWebP direct class diagram number of web pages web page interval
NFormP direct class diagram number of form pages form page interval
NFormE direct class diagram number of form ele-

ments
form element interval

NClientScriptsComp direct class diagram number of client
scripts components

client scripts com-
ponents

interval

NServerScriptsComp direct class diagram number of server
scripts components

server scripts
components

interval

NC direct class diagram number of classes class element interval
NA direct class diagram number of attributes attribute element interval
NM direct class diagram number of methods method element interval
NAssoc direct class diagram number of association

relationships
association rela-
tionship

interval

NAgg direct class diagram number of aggregation
relationships

aggregation rela-
tionship

interval

NLinkR direct class diagram number of link rela-
tionships

link relationship interval

NSubmitR direct class diagram number of submit rela-
tionships

submit relation-
ship

interval

NbuildsR direct class diagram number of build rela-
tionships

build relationship interval

NForwardR direct class diagram number of forward re-
lationships

forward relation-
ship

interval

NIncludeR direct class diagram number of include re-
lationships

include relation-
ships

interval

WebControlCoupling indirect class diagram total number of rela-
tionships divided by
the total number of
web pages

control coupling ratio

WebDataCoupling indirect class diagram total number of form
elements divided by
the total number of
server pages

data coupling ratio

EntropyCoupling indirect class diagram 1/n ×
(− log 1/(1 +m))
where n is total num-
ber of elements and
m is total number of
relationships in the
class diagram

coupling ratio

EntropyCohesion indirect class diagram total entropy coupling
of the application / en-
tropy coupling of one
class diagram

cohesion ratio

WebReusability indirect class diagram total number of in-
clude relationships di-
vided by the total num-
ber of web pages

reusability ratio

CHAPTER 5. THEORETICAL VALIDATION 79

Table 5.7: Metrics Validation based on Kitchenham’s model

Name Attribute validity Unit Validity Instrument Validity Protocol validity
NServerP has attribute # of

server pages
measured by
counting # of
server pages

parsing, counting #
of server pages in
class diagram

counting # of server
pages is consistent
and unambiguous

NClientP has attribute # of
client pages

measured by
counting # of
client pages

parsing, counting #
of client pages in
class diagram

counting # of client
pages is consistent
and unambiguous

NWebP has attribute # of
web pages

measured by
counting # of web
pages

parsing, counting #
of web pages in class
diagram

counting # of web
pages is consistent
and unambiguous

NFormP has attribute # of
form pages

measured by
counting # of
form pages

parsing, counting #
of form pages in
class diagram

counting # of form
pages is consistent
and unambiguous

NFormE has attribute # of
form elements

measured by
counting # of
form elements

parsing, counting #
of form elements in
class diagram

counting # of form
elements is consis-
tent and unambigu-
ous

NClient-
ScriptsComp

has attribute # of
client scripts com-
ponent

measured by
counting # of
client scripts
components

parsing, counting #
of client scripts com-
ponent in class dia-
gram

counting # of client
scripts component is
consistent and unam-
biguous

NServer-
ScriptsComp

has attribute # of
server scripts

measured by
counting # of
server scripts
components

parsing, counting #
of server scripts com-
ponents in class dia-
gram

counting # of server
scripts components is
consistent and unam-
biguous

NC has attribute # of
class elements

measured by
counting # of
class elements

parsing, counting #
of class elements in
class diagram

counting # of class
elements is consis-
tent and unambigu-
ous

NA has attribute #
of attributes in
classes

measured by
counting # of
attributes in class
diagram

parsing, counting #
of attributes in class
diagram

counting # of at-
tributes is consistent
and unambiguous

NM has attribute # of
method elements

measured by
counting # of
methods in class
diagram

parsing, counting #
of methods in class
diagram

counting # of meth-
ods is consistent and
unambiguous

NAssoc has attribute #
of association
relationships

measured by
counting # of
association rela-
tionship

parsing, counting #
of association rela-
tionships in class di-
agram

counting # of associ-
ation relationships is
consistent and unam-
biguous

NAgg has attribute # of
aggregation rela-
tionships

measured by
counting # of
aggregation
relationships

parsing, counting #
of aggregation rela-
tionships in class di-
agram

counting # of aggre-
gation relationship is
consistent and unam-
biguous

NLinkR has attribute # of
link relationships

measured by
counting # of link
relationships

parsing, counting #
of link relationships
in class diagram

counting # of link re-
lationships is consis-
tent and unambigu-
ous

CHAPTER 5. THEORETICAL VALIDATION 80

Table 5.8: Metrics Validation based on Kitchenham’s model

Name Attribute validity Unit Validity Instrument Validity Protocol validity
NSubmitR has attribute # of

submit relation-
ships

measured by
counting # of sub-
mit relationships

parsing, counting #
of submit relation-
ships in class dia-
gram

counting # of sub-
mit relationships is
consistent and unam-
biguous

NbuildsR has attribute # of
build relationships

measured by
counting # of
build relationships

parsing, counting #
of build relationships
in class diagram

counting # of build
relationships is
consistent and
unambiguous

NForwardR has attribute # of
forward relation-
ships

measured by
counting # of for-
ward relationships

parsing, counting #
of forward relation-
ships in class dia-
gram

counting # of for-
ward relationships is
consistent and unam-
biguous

NIncludeR has attribute
of include
relationships

measured by
counting # of
include relation-
ships

parsing, counting #
of include relation-
ships in class dia-
gram

counting # of in-
clude relationships is
consistent and unam-
biguous

WebControl-
Coupling

has attribute # of
form elements and
of server pages.
of server pages
can not be zero

measured by di-
viding the total #
of relationships by
the total # of web
pages

parsing, counting to-
tal of # of relation-
ships and web pages
in class diagram

counting # of rela-
tionships and web
page is consistent
and unambiguous

WebData-
Coupling

has attribute # of
form elements and
number of server
pages. # of web
pages can not be
zero

measured by di-
viding the total #
of form elements
by the total # of
server pages

parsing, counting #
of form elements and
server pages in class
diagram

counting # of form
elements and server
pages is consistent
and unambiguous

Entropy-
Coupling

has attribute # of
elements and # of
relationships. # of
elements can not
be zero

1/n ×
(− log 1/(1 +m))
where n is total
number of ele-
ments and m is
total number of
relationships in
the class diagram

parsing, counting to-
tal of # of relation-
ships and elements in
class diagram

counting # of re-
lationships and ele-
ments is consistent
and unambiguous

Entropy-
Cohesion

has attribute # of
elements and # of
relationships. # of
elements can not
be zero

total entropy
coupling of the
application / en-
tropy coupling of
the class diagram

parsing, counting to-
tal of # of relation-
ships and elements in
class diagram

counting # of re-
lationships and ele-
ments is consistent
and unambiguous

Web-
Reusability

has attribute # of
include relation-
ships and # of web
pages. The # of
web pages can not
be zero

measured by di-
viding the total #
of include rela-
tionships by the
total # of web
pages

parsing, counting #
of include relation-
ships and web pages
in class diagram

counting # of in-
clude relationships
and web pages
is consistent and
unambiguous

CHAPTER 5. THEORETICAL VALIDATION 81

Figure 5.5: Class diagram S showing Modules m1, m2

CHAPTER 5. THEORETICAL VALIDATION 82

Figure 5.6: Class diagram S showing Merging of Modules m1, m2

6
Empirical Validation

This chapter describes the case studies and experiments that have been used in this

research. Initially some preliminary studies were conducted to get an idea on the useful-

ness of the metrics. Then several studies were conducted using an industrial application

and an open source web application to validate the metrics empirically.

We started with an explorative experiment using a PetStore web application. The

subjects were students with some experience with web development. One of our goals

was to study the relationship between the metrics and maintenance time and to see if

there is a possibility for that relationship to exist. Another goal was to see how easy it is

to understand and use our new metrics. Our metrics have not been used before but are

based on UML. We had to assure the assumptions that the metrics will be easy to use and

understand. We got positive results from the PetStore experiment and decided to try our

metrics in industrial web applications to see if we still get similar results. We conducted

a case study using two industrial web applications to explore the metrics further. We

were able to apply our metrics successfully to both industrial web applications and got

an indication on the usefulness of using the metrics for improving maintainability in

industrial web applications. We were ready to do more analysis on our metrics and

study the metric individually or collectively using more statistical analysis. In the last

case study we used another industrial web application and used a 3 year data for studying

the relationship between our metrics and two variables nRev (Total number of revisions

for components in a class diagram), and LOC (Total number of Lines of Code added

83

CHAPTER 6. EMPIRICAL VALIDATION 84

and deleted for components in a class diagram).

The following sections provide a detailed description of the empirical studies.

6.1 PetStore Experiment

This study is an explorative experiment conducted at Illinois State university in the US.

The subjects are graduate and junior undergraduate students taking a summer course in

the Information Technology department

Experiment Context

In this study the pet store web application version 1.3.1 is used for the experiment. The

pet store web application is available at the sun web site. The pet store application

is a sample application that provides customers with online shopping. A customer can

browse the pet store site, look at the catalog and add shopping items to the shopping cart.

The customer will need to sign in and create a user account before making a purchase

with a credit card. The pet store application is an example of a typical e-commerce web

application. The subjects were taking a summer course at the Information Technology

department at the university of Illinois. The experiment was given as a bonus quiz in

order to make sure that the students have motivation for the experiment. The dependent

variable for this study is maintenance time. Maintainability can be defined as

the ease with which a software system or component can be modified to correct faults,

improve performance or other attributes, or adapt to a changed environment [10, 82].

Maintainability can be measured by measuring some of the sub-characteristics of main-

tainability such as understandability, analyzability, modifiability and testability. Some

studies have measured maintainability by measuring both modifiability and understand-

ability [13, 70, 59]. Understandability is an important sub-characteristics of maintain-

ability, since professionals spend at least half of their time analyzing software to under-

stand it [27]. This study measures two sub-characteristics of maintainability, namely

understandability time and modifiability time. Understandability time represents the

time spent on understanding the class diagram in order to complete the questionnaire.

CHAPTER 6. EMPIRICAL VALIDATION 85

Modifiability time represents the time spent on identifying places for modification and

making those modifications. The dependent variables in this study are understandability

time and modifiability time. The independent variables are the metrics defined in Table

6.9.

Table 6.9: Web Application Class Diagram Metrics

Metric Name Description
NServerP Total number of server pages
NClientP Total number of client pages
NWebP=(NServerP +
NClientP)

Total number of web pages

NFormP Total number of form pages
NFormE Total number of form elements
NLinkR Total number of link relationships
NSubmitR Total number of Submit relationships
NbuildsR Total number of builds relationships
NForwardR Total number of forward relationships
NIncludeR Total number of include relationships
NClientScriptsComp Total number of client scripts components
NServerScriptsComp Total number of server scripts components
WebControlCoupling =
(NLinkR + NSubmitR +
NbuildsR + NForwardR +
NIncludeR)/ NWebP)

Number of relationships over number of web pages

WebDataCoupling =
(NFormE/NServerP)

Number of data exchanged over number of server pages

WebReusability = (NInclud-
eR/NWebP)

Number of include relationships over number of web pages

NC Total number of classes
NA Total number of attributes
NM Total number of methods
NAssoc Total number of associations
NAgg Total number of aggregation relationships

Hypothesis

This study is trying to answer the following question: Is there a relationship between the

metrics identified in Table 6.9(NServerP, NClientP, NWebP, NFormP, NFormE, NLinkR,

NSubmitR, NBuildsR, NForwardR, NIncludeR, WebControlCoupling, WebDataCou-

pling, WebReusability) and two sub-characteristics of maintainability, understandabil-

ity time and modifiability time ? We will show both the null (HO) and the alternate

CHAPTER 6. EMPIRICAL VALIDATION 86

hypotheses (HA).

The following hypotheses are investigated:

• H1A: The higher the size metrics of the class diagram, the higher the understand-

ability time.

• H1O: There is no difference in the understandability time required to understand

the class diagram, irrespective of whether the class diagram has high or low size

metrics.

• H2A: The higher the size metrics of the class diagram, the higher the modifiability

time.

• H2O: There is no difference in the modifiability time required to make changes

to systems, irrespective of whether the class diagram has high or low size metrics.

• H3A: The higher the structural complexity metrics of the class diagram, the higher

the understandability time.

• H3O: There is no difference in the understandability time required to understand

the class diagram, irrespective of whether the class diagram has high or low com-

plexity metrics.

• H4A: The higher the structural complexity metrics of the class diagram, the higher

the modifiability time.

• H4O: There is no difference in the modifiability time required to make changes

to systems, irrespective of whether the class diagram has high or low complexity

metrics.

• H5A: The higher the coupling metrics of the class diagram, the higher the under-

standability time.

• H5O: There is no difference in the understandability time required to understand

the class diagram, irrespective of whether the class diagram has high or low cou-

pling metrics.

CHAPTER 6. EMPIRICAL VALIDATION 87

• H6A: The higher the coupling metrics of the class diagram, the higher the modi-

fiability time.

• H6O: There is no difference in the modifiability time required to make changes

to systems, irrespective of whether the class diagram has high or low coupling

metrics.

• H7A: The higher the reusability of the class diagram, the lower the understand-

ability time.

• H7O: There is no difference in the understandability time required to under-

stand the class diagram, irrespective of whether the class diagram has high or

low reusability metrics.

• H8A: The higher the reusability of the class diagram, the lower the modifiability

time.

• H8O: There is no difference in the modifiability time required to make changes

to systems, irrespective of whether the class diagram has high or low reusability

metrics.

Data Collection

In this experiment an IBM tool called Rational XDE is used to reverse engineer the pet

store web application. Rational XDE combines the visual modeling with a Java for-

ward and reverse engineering tool. The pet store code was imported to the Rational tool

and the design for the welcome screen, cartScreen and createCustomer was generated.

Three class diagrams were given to students: The welcomeScreen class diagram Fig-

ure A.1, the cartScreen class diagram Figure A.2, and the createCustomer class diagram

Figure A.3 are all shown in the appendix. The subjects were given instructions, the class

diagrams and a questionnaire that was used to collect results and personal information

on the subject’s experience. The subjects were asked to answer certain questions from

the three diagrams to measure the understandability time and the modifiability time. The

time was recorded in seconds and minutes. Each subject was asked to record the time

CHAPTER 6. EMPIRICAL VALIDATION 88

after answering a question. The subjects were asked to start with the welcomeScreen

diagram shown in Figure A.1. The welcomeScreen Diagram is not used in calculating

the results in order to minimize the learning effects.

Results and Analysis

The main objective in this study was to explore the relationship between the metrics

identified in Table 6.9 and understandability and modifiability time. The empirical study

was carried out using an experiment in which students at the university of Illinois partic-

ipated as subjects. Subjects came from a total of three sections with number of students

ranging from 10 to 22. A total of fifty three students participated in the experiment. The

students participating in this research were graduate and undergraduate who had some

experience in web development.

Each student received three class diagrams: welcome screen, cartScreen and create-

Customer class diagram. For each class diagram, the student was asked to answer the

questions and record the time in minutes and seconds. The welcome screen diagram

was given as a tutorial and was not included in the analysis and results. The results

are recorded in Table 6.10. The metrics were computed from the class diagrams and

the understandability time and modifiability time were computed by recording the time

students spent on understanding and modifying the class diagrams. The unit of measure-

ment used is seconds. Table 6.10 shows the mean understandability and modifiability

times for the cart and create customer class diagrams. Figure 6.1 shows vertical box-

plots for the create customer and cart diagram understandability time, side-by-side for

comparison. And Figure 6.2 shows the vertical box-plots for create customer and cart

diagram modifiability time. The box-plot is a way to examine the data graphically. It

divides the data into five groups: the minimum, the 1st quartile, the median, the 3rd

quartile, and the maximum. The box starts from the 1st quartile, and the notch shows

the median confidence interval. The line in the middle of the box is the median. The

box ends at the 3rd quartile. The diamond shows the mean and the requested confidence

interval around the mean.

The create customer class diagram has higher size metrics, structural complexity

CHAPTER 6. EMPIRICAL VALIDATION 89

Figure 6.1: Comparative Analysis between Cart and Create Customer Understandability
Time

metrics, coupling metrics and lower reusability metrics than the cart class diagram. It

is expected to have greater understandability time and modifiability time. The create

customer diagram had a lower mean understandability time about 63 seconds compared

to the cart diagram about 78 seconds. ANOVA was performed to test the statistical

significance of this difference, and the results are as shown in Table 6.11. From the

analysis, one can notice that the differences are not statistically significant (P value of

0.1385). Thus we accept the null hypotheses H1O, H3O, H5O, and H7O, and reject the

alternative hypotheses H1A, H3A, H5A, and H7A. When looking at the ANOVA results

for the modifiability time, one can notice that the mean modifiability time for the cre-

ate customer diagram is 158 seconds which is higher than the mean modifiability time

for the cart diagram around 91 seconds. One can notice that the differences are statis-

tically significant (P value of 0.0004) as shown in Table 6.11. Thus, one can say that

a class diagram with higher size metrics, higher structural complexity metrics, higher

coupling metrics and lower reusability metrics requires more modifiability time. Thus

we can accept the alternative hypotheses H2A, H4A, H6A, and H8A and reject the null

hypotheses H2O, H4O, H6O, and H8O.

As a conclusion, we found that the new UML metrics were easy to use and under-

stand by students. The study gave an indication that there is a possibility for a relation-

ship to exist between our metrics and modifiability time. This study can serve as a basis

CHAPTER 6. EMPIRICAL VALIDATION 90

Figure 6.2: Comparative Analysis between Cart and Create Customer Modifiability
Time

for future studies, and can provide a first indication of the use of the newly introduced

metrics.

Threats to Validity

This study was based on students and this may limit how much the results can be gener-

alized to professional developers. However, many researchers use students as subjects

and their results are accepted as valid empirical studies. The students were asked to do

the first diagram as a learning diagram in order to minimize the learning effects in this

study. Another limitation is the web application used in this experiment. The pet store

is a toy application compared to complex web applications. However in this study it

was important to give students reasonable tasks which they can understand and solve

in a reasonable amount of time. Also if this study can prove that there is a relationship

between the metrics for the pet store application and maintainability time then it is likely

that a relationship will exist for more complex systems. Another threat to validity is that

student’s time was self recorded. However the grades were not based on the time taken

to accomplish the tasks. This was mentioned clearly in the instructions given to students.

Therefore there would be no reason for students to report their time inaccurately.

The results give a first indication of the usefulness of the UML design metrics. The

CHAPTER 6. EMPIRICAL VALIDATION 91

Table 6.10: Results & Analysis

Metric Type Metric Name Create Customer Cart
Size NServerP 9 8
Size NClientP 7 6
Size NWebP 16 14
Size NFormP 2 2
Size NFormE 22 4
Structural Complex-
ity

NLinkR 3 3

Structural Complex-
ity

NSubmitR 2 2

Structural Complex-
ity

NBuildsR 7 6

Structural Complex-
ity

NForwardR 0 0

Structural Complex-
ity

NIncludeR 5 4

Control Coupling WebControlCoupling 1.06 1.07
Data Coupling WebDataCoupling 2.44 0.5
Reusability WebReusability) 0.031 0.29
Understandability
Time

Mean Understand-
ability Time

63 sec 78 sec

Modifiability Time Mean Modifiabil-
ity Time

158 sec 91 sec

exploratory experiment shows that higher values of size metrics, structural complexity

metrics, coupling metrics and lower values of reusability metrics results in higher values

of modifiability time. The results did not show statistical significance on the effect of

the metrics on understandability time.

6.2 Telecom Web Applications

The proposal of new metrics is not helpful if their practical use is not proved through

case studies. We demonstrate our approach using two web applications case studies. The

case studies are exploratory in nature and will provide a basis for future research. Both

web applications are from the telecommunication operational support system (OSS)

domain. Table 6.12 shows the characteristics of both web applications.

CHAPTER 6. EMPIRICAL VALIDATION 92

Table 6.11: ANOVA Analysis

Name F P
Create Customer vs Cart
Modifiability Time

13.24 .0004

Create Customer vs Cart
Understandability Time

2.22 .1385

Characteristic WebApp1 WebApp2
Application Domain Telecom Telecom
Age 4 5
Language Java Java
Web Server WebLogic 7.0 Tomcat 4.1
Application Server WebLogic 7.0 None
Framework Struts 1.1 None
Database Oracle MySql
Configuration Manage-
ment Tool

CVS None

Design Tool Rational Rose None

Table 6.12: Characteristics of Web Applications

Case Study Context

The first web application is a provisioning application which is used to provision and

activate the wireless service in the network. This study refers to the first web application

as WebApp1. WebApp1 has around 10,000 users of which 2,500 are concurrent. It is

a critical application that is used by customer care advocates to resolve provisioning

issues for wireless subscribers. WebApp1 is built using the latest web technologies and

frameworks such Struts, and EJBs and uses Oracle for the database.

In order to further evaluate the metrics this methodology is applied to a second web

application. This study refers to the second web application as WebApp2. WebApp2 is

a fault management application that is used to automate the configuration management

for fault management applications. It is used to automate password resets, creation of

new users, and creation of configuration management tickets. WebApp2 uses basic web

CHAPTER 6. EMPIRICAL VALIDATION 93

application technologies such as Javascript, servlets, and mysql database.

Both web applications are considered to be of medium size. Due to space limita-

tions the case studies cannot be presented in detail. This study will analyze the web

applications based on system metrics.

Metric Type Description
Size Total number of server pages (NServerP)

Total number of client pages (NClientP)
Total number of web pages (NWebP)=(NServerP + NClientP)
Total number of form pages (NFormP)
Total number of form elements (NFormE)
Total number of client components (style sheet and JavaScript
components)(NClientC)

Structural Complexity Total number of link relationships (NLinkR)
Total number of Submit relationships (NSubmitR)
Total number of builds relationships (NbuildsR)
Total number of forward relationships(NForwardR)
Total number of include relationships(NIncludeR)
Total number of use tag relationships(NUseTagR)

Control Coupling Number of relationships over number of web pages: WebCon-
trolCoupling = (NLinkR + NSubmitR + NbuildsR + NForwardR
+ NIncludeR + NUseTagR)/ NWebP)

Data Coupling Number of data exchanged over number of server pages: Web-
DataCoupling = (NFormE / NServerP)

Reusability Number of include relationships over number of web pages: We-
bReusability = (NIncludeR / NWebP)

Table 6.13: Web Application Design Metrics

Hypothesis

This study aims to answer the following question: Is there a relationship between the

metrics identified in Table 6.13 and maintainability? Since the study is explorative in

nature, it measures maintainability in a subjective manner. The maintainability is mea-

sured by getting input from the developers on the modifiability maintainability sub-

characteristic. The modifiability is based on how easy it is to make changes to the web

application. In this context a high modifiability means that it is easier to make changes to

the web application, while a low modifiability means that it is difficult to make changes

CHAPTER 6. EMPIRICAL VALIDATION 94

to the web application. The desire of developers is to have high modifiability since this

makes it easier for them to modify and change the web application during maintenance

phase.

We will show both the null (HO) and the alternate hypotheses (HA). The following

hypotheses are investigated: (H1A): the lower the size metrics of the class diagram, the

higher the modifiability. (H1O): There is no difference in the modifiability, irrespec-

tive of whether the class diagram has high or low size metrics. (H2A): the lower the

structural complexity metrics of the class diagram, the higher the modifiability. (H2O):

There is no difference in the modifiability, irrespective of whether the class diagram has

high or low complexity metrics. (H3A): the lower the coupling metrics of the class di-

agram, the higher the modifiability. (H3O): There is no difference in the modifiability,

irrespective of whether the class diagram has high or low coupling metrics. (H4A): the

lower the reusability metrics of the class diagram, the lower the modifiability. (H4O):

There is no difference in the modifiability, irrespective of whether the class diagram has

high or low reusability metrics.

Data Collection

In this case study an IBM tool: Rational XDE is used to reverse engineer these web ap-

plications. Rational XDE combines the visual modeling with a Java forward and reverse

engineering tool. The metrics are measured directly from generated class diagrams.

This can become cumbersome if the application is large since a tool was not available

to calculate these metrics.

In this study several attributes of web applications that are expected to affect main-

tainability are considered. These attributes include size, complexity, coupling, and

reusability. Table 6.13 gives a description of the metrics that were used in the case

studies. This study provided two levels of modifiability measures: low and high. The

team lead of each web application was asked to provide a measure for the modifiability

based on these two levels.

CHAPTER 6. EMPIRICAL VALIDATION 95

Results and Analysis

Metric Type Metric Name WebApp1 WebApp2
Size (NServerP) 35 9
Size (NClientP) 37 74
Size (NWebP) 72 83
Size (NFormP) 11 10
Size (NFormE) 20 117
Size (NClientC) 22 158
Structural Complexity (NLinkR) 44 468
Structural Complexity (NSubmitR) 8 9
Structural Complexity (NBuildsR) 35 9
Structural Complexity (NForwardR) 0 0
Structural Complexity (NIncludeR) 39 0
Structural Complexity (NUseTagR) 71 0
Control Coupling (WebControlCoupling) 2.73 5.85
Data Coupling (WebDataCoupling) 0.57 13
Reusability (WebReusability) 0.54 0
Maintainability Measure-
ment

Modifiability high low

Table 6.14: Results

The results are recorded in Table 6.14. The analysis is as follows:

Looking at the size attribute for WebApp1 one may notice that this application has

more server side pages than WebApp2. As a conclusion WebApp2 needs developers

with server side development experience, while WebApp1 needs developers with client

side development experience. When comparing the structural complexity of WebApp1

to WebApp2, one can notice that WebApp2 has ten times more link relationships than

WebApp1 even though the number of web pages for both application is almost the same.

WebApp1 and WebApp2 have similar number of submit relationships, but WebApp1 has

more form elements per form page, which means it will pass more data for each submit

relationship. WebApp1 uses quite a few tags and has many include relationships. On the

other hand WebApp2 does not use tags and has no include relationships. While look-

ing at the control coupling for both web applications, one can see that WebApp1 and

WebApp2 both have high control coupling due to the number of control relationships in

both applications. The data coupling for WebApp2 is very high due to the high number

CHAPTER 6. EMPIRICAL VALIDATION 96

of data elements that are passed between components in the web application. If one

looks at reusability one can notice that WebApp1 has good reusability due to the num-

ber of include relationships. On the other hand WebApp2 does not demonstrate good

reusability that makes maintenance more difficult and makes WebApp2 more prone to

error propagation.

WebApp2 has higher size metrics, structural complexity metrics, coupling metrics

and lower reusability metrics than WebApp1. WebApp2 is expected to have lower mod-

ifiability. According to the results in Table 6.14 the modifiability for WebApp2 is low,

while the modifiability for WebApp1 is high. Thus we can accept the alternative hy-

potheses H1A, H2A, H3A, and H4A, and reject the null hypotheses H1O, H2O, H3O,

and H4O.

As a conclusion, this study showed that we were able to apply our metrics success-

fully to both industrial web applications and got an indication on the usefulness of using

the metrics for improving maintainability in industrial web applications. This study can

serve as a basis for future studies, and can provide a first indication of the use of the

newly introduced metrics.

Threats to Validity

It is important to look at the internal and external validity of this study. In terms of

internal validity, firstly, there was no automated tool for collecting the metrics from the

design artifacts. There can be some human error in the process of computing the metrics

from the class diagrams. Secondly, there was no configuration management tool for

WebApp2. As a result some of the components might be outdated and not representative

of the actual application. Also the maintainability is measured in a subjective manner

which is less accurate than objective measures. With regard to external validity, one

can see that the results can be generalized to other settings. The web applications used

are from the telecommunication domain, but they are still using technologies that are

similar to other applications in the market. The design of the application was collected

using Rational XDE, which requires a license and might not be available for everyone

to conduct a similar study, but still the outcome design is based on UML and there are

CHAPTER 6. EMPIRICAL VALIDATION 97

many freeware tools in the market that can be used to generate the design.

6.3 Industrial Provisioning Web Application

Case Study Context

The web application used is from the telecommunication Operational Support System

(OSS) domain. It is a provisioning application which is used to provision and activate

the wireless service in the network. We refer to the web application as ProvisionWe-

bApp. ProvisionWebApp has around 10,000 users of which 2,000 are concurrent. It

is a critical application that is used by customer care advocates to resolve provision-

ing issues for wireless subscribers. The ProvisionWebApp is divided into the following

functional modules: Login Module, Search Module, Current Transactions Module, Ser-

vice Transaction Module, Device Transaction Module , UserName Module, Retrigger

IOTA Module, Error Queue Module, Password Module, Network Provisioning Status

Module, and Help Module. ProvisionWebApp is built using the latest web technologies

and frameworks such as Struts, and EJBs, and uses Oracle for the database. The web

application uses Java as its main language. It has a Concurrent Versions System (CVS)

repository for storing code changes. The data used in this case study is from year 2002

to year 2005.

This study is trying to explore the relationship between the following metric set

(NServerP, NClientP, NWebP, NFormP, NFormE, NLinkR, NSubmitR, NbuildsR, NFor-

wardR, NIncludeR, NClientScriptsComp, NServerScriptsComp, WebControlCoupling,

NC, NA, NM, NAssoc, NAgg, CoupEntropy, CohesionEntropy) and maintenance ef-

fort measured by the number of lines of code changed and the number of revisions for

components in a class diagram. In addition to that we would like to get an idea of how

accurately our UML design metrics predict maintenance effort. CoupEntropy, and Co-

hesionEntropy are described in the independent variables section while the rest of the

metrics are described in Table 6.13.

CHAPTER 6. EMPIRICAL VALIDATION 98

Dependent Variables

The main goal of this study is to empirically explore the relationship between UML

design metrics and maintenance effort. In this research two dependent variables are

used to measure maintenance effort namely:

• LOC: The Absolute net value of the total number of lines added and deleted for

components in a class diagram.

• nRev: Total number of revisions for components in a class diagram

The dependent variables are collected from a Concurrent Version System (CVS)

repository.

Independent Variables

In this research the metrics based on the web application reference model shown in Fig-

ure 2.6 are used as independent variables. The following metrics (NServerP, NClientP,

NWebP, NFormP, NFormE, NLinkR, NSubmitR, NbuildsR, NForwardR, NIncludeR,

NClientScriptsComp, NServerScriptsComp, WebControlCoupling, WebDataCoupling,

WebReusability) were defined in the authors previous study [48]. The following (NC,

NA, NM, NAssoc, NAgg) metrics were defined in the study carried by Genero [44] on

class diagram metrics for object oriented applications. The metrics use the different

components of the web application reference model as units of measurement. In ad-

dition to the above mentioned metrics this study also uses the following two metrics:

CoupEntropy and CohesionEntropy. They were first presented in [3], but we have mod-

ified them a little bit to fit in the context of UML class diagram metrics. A description

of each of the metrics investigated is given as follows:

• CoupEntropy: The CoupEntropy is computed as shown in the following equation:

1/n × (− log 1/(1 +m)) where n is the total number of elements in the class

diagram and m is the total number of relationships in the class diagram. The to-

tal number of elements in the class diagram is the sum of all server pages, client

CHAPTER 6. EMPIRICAL VALIDATION 99

pages, form pages, and interface classes. The total number of relationships is the

sum of all builds, links, submit, includes, forwards, NAssoc, and NAgg relation-

ships.

• CohesionEntropy: The CohesionEntropy of a class diagram is equal to total CoupEn-

tropy of all class diagrams over the CoupEntropy of one class diagram. The Cohe-

sionEntropy is computed as shown in the following equation:
∑k

i=1
(1/n×(− log 1/(1+m)))

(1/n×(− log 1/(1+m)))

where n is the total number of elements in the class diagram, m is the total number

of relationships in the class diagram, and k is the total number of class diagrams

in the application.

Hypothesis

We will show both the null (HO) and the alternate hypotheses (HA). The following

hypotheses are investigated:

• H1A: There is a nonzero regression relationship between the size metrics of the

class diagram and LOC.

• H1O: There is no regression relationship between the size metrics of the class

diagram and LOC.

• H2A: There is a nonzero regression relationship between the size metrics of the

class diagram and nRev.

• H2O: There is no regression relationship between the size metrics of the class

diagram and nRev.

• H3A: There is a nonzero regression relationship between the complexity metrics

of the class diagram and LOC.

• H3O: There is no regression relationship between the complexity metrics of the

class diagram and LOC.

• H4A: There is a nonzero regression relationship between the complexity metrics

of the class diagram and nRev.

CHAPTER 6. EMPIRICAL VALIDATION 100

• H4O: There is no regression relationship between the complexity metrics of the

class diagram and nRev.

• H5A: There is a nonzero regression relationship between the coupling metrics of

the class diagram and LOC.

• H5O: There is no regression relationship between the coupling metrics of the

class diagram and LOC.

• H6A: There is a nonzero regression relationship between the coupling metrics of

the class diagram and nRev.

• H6O: There is no regression relationship between the coupling metrics of the

class diagram and nRev.

• H7A: There is a nonzero regression relationship between the cohesion metrics of

the class diagram and LOC.

• H7O: There is no regression relationship between the cohesion metrics of the

class diagram and LOC.

• H8A: There is a nonzero regression relationship between the cohesion metrics of

the class diagram and nRev.

• H8O: There is no regression relationship between the cohesion metrics of the

class diagram and nRev.

Data Collection

In this study an automated tool named WapMetrics is used for the data collection. Wap-

Metrics is described in Appendix C. It is a web tool that takes UML diagrams in XMI

[83] format as input and produces the results in different output formats. WapMetrics

is used to compute the UML metrics from the class diagrams and provide the results in

excel format in order to be used in the statistical analysis phase.

Unfortunately, the class diagrams were out of sync for the ProvisionWebApp appli-

cation. IBM Rational Rose Enterprise Edition [53] was used for reverse engineering

CHAPTER 6. EMPIRICAL VALIDATION 101

the ProvisionWebApp application. Rational Rose has a visual modeling component. It

can create the design artifacts of a software system. The Web Modeler component in

Rational Rose supports Conallen’s extension for web applications. The Web Modeler

component was used to generate the class diagrams for the various components of the

ProvisonWebApp application.

For some of the class diagrams, we had to hide the visibility of attributes and meth-

ods in classes in order to fit them in one page. This did not affect the computation of

the metrics since all attribute and methods are exported in the XMI file. Some of the

relationships were not in the generated class diagrams. For example the include and

forward relationships shown in our reference model in Figure 2.6 were not generated by

Rational tool. We had to add these relationships manually to the class diagrams. After

the class diagrams were validated, Unisys Rose XML [53] was used to export the UML

class diagrams into XML Metadata Interchange (XMI) [83]. The WapMetrics tool was

used to compute the independent variables from the XMI input file. The dependent

variables are collected from the CVS system. LOC is computed by adding the absolute

value of Lines of Code for all classes in a class diagram. nRev is computed by adding

all revisions for all classes in a class diagram.

Analysis Results

Table 6.15: Descriptive Statistics

Variable N Min Max Mean Std Deviation
LOC 30 13 13179 2780.9 3725.44
nRev 30 2 229 74.1 78.03
NFormP 30 0 2 .47 .681
NClientScriptsComp 30 0 4 .63 1.098
NServerScriptsComp 30 0 10 4 3.029
NC 30 0 12 3.27 3.704
NA 30 0 218 29.63 54.097
NM 30 0 472 62.47 113.99
NAssoc 30 0 14 3.2 3.745
NAgg 30 0 2 .70 .837
NBuildsR 30 0 14 4.73 3.581
CoupEntropy 30 0 .00644 .0041 .00145
CohesionEntropy 30 1 82.43 31.94 16.41

CHAPTER 6. EMPIRICAL VALIDATION 102

Descriptive Statistics

Table 6.15 shows the descriptive statistics of the independent and dependent variables

used in this study. The measures for LOC dependent variable are much higher than

the measures for nRev. The maximum for LOC is 13179 lines of code added or deleted

while the maximum for nRev is 229 revisions. This result is expected since each revision

will have more than one line of code associated with it. For the independent variables

we can see that NM has the highest value with 472 methods. For the minimum value we

can see that several variables have 0 measures. This is understandable since some class

diagrams in our application did only have client pages or server pages, which resulted

in having 0 measures for several independent variables.

Univariate Negative Binomial Regression

Table 6.16: Univariate Analysis Results

Metric Type Metric Name LOC Coef/StdErr/Sig nRev Coef/StdErr/Sig
Size NFormP .639/.286/.025 .580/.283/.040
Size NClientScriptsComp .623/.183/.001 .610/.197/.002
Size NServerScriptsComp .183/.081/.023 .187/.080/.019
Size NC .468/.058/.000 .376/.059/.000
Size NA .017/.007/.017 .016/.006/.012
Size NM .008/.003/.017 .008/.003/.012
Structural Complexity NAssoc .487/.062/.000 .387/.063/.000
Structural Complexity NAgg .650/.205/.002 .672/.213/.002
Structural Complexity NBuildsR .201/.066/.003 .210/.072/.004
Coupling CoupEntropy 1013.9/112.8/.000 970.9/141.8/.000
Cohesion CohesionEntropy -.058/.009/.000 -.078/.013/.000

The main goal of this case study is to investigate the feasibility of using the met-

rics described in Table 6.13 as predictors of maintenance effort. We build 2 models

based on the LOC and nRev dependent variables separately. Both variables are discrete

count variables that are highly skewed and always positive. Modeling using ordinary

least squares regression (OLS)leads to highly non-normal error distributions leading to

invalid final models. In order to cope with variables of this type Generalized Linear

Models have been devised. These models include Poisson and Negative Binomial Re-

CHAPTER 6. EMPIRICAL VALIDATION 103

gression. Negative Binomial Regression for log link function was chosen for this data

as it copes with the overdispersion (variance > mean) found in a Poisson model [36].

We started by looking at the individual relationships between all the metrics defined

in Table 6.13 and the dependent variables: LOC and nRev.

Table 6.16 shows the results from applying univariate negative binomial regression

to the data set. “Coeff” indicates the coefficient in the regression equation, “StdErr” its

standard error and “Sig” its significance or p-value, that is the probability the coefficient

is greater than zero by chance.

The following size metrics (NFormP, NClientScriptsComp, NServerScriptsComp,

NC, NA, NM) showed significance (p < 0.05) with LOC and nRev. For the structural

complexity metrics only (NAssoc, NAgg, NbuildR) showed significance with LOC and

nRev. Both CoupEntropy, and CohesionEntropy showed significance with LOC and

nRev.

Multivariate Negative Binomial Regression

Having examined the relationship of individual metrics (the predictors) and the depen-

dent variables, LOC and nRev, we can now examine the combined effect of metrics on

the dependent variables by performing a multivariate analysis.

The selection of the predictors can be made using two different stepwise regression

techniques: the forward selection method, and the backward elimination method. The

forward method starts with a model that only includes a constant and then adds single

predictors based on a specific statistical criteria. Forward selection regression is used

when there is no previous research telling us what to expect from the results. The back-

ward method starts with a model that includes all predictors, which are deleted one at

a time from the model based on a specific statistical criteria until an optimal model is

found. In this study, we use α > 0.05 for excluding the predictors from the model and,

the backward elimination method with Negative Binomial distribution with a log link

function for building the model. The likelihood-ratio chi-square test is used to compare

the current model versus the intercept model. A significance value of less than 0.05

indicates that the current models outperforms the intercept model. All models have a

CHAPTER 6. EMPIRICAL VALIDATION 104

value of less than 0.05 which means they outperformed the intercept only model. The

following is the discussion of the analysis results:

• Size Metric Model: The Size Metric Model predicting LOC from NClientScriptsComp,

NServerScriptsComp, and NC is statistically significant with χ2(3) = 67.1, p <

0.05 The predictors NClientScriptsComp, NServerScriptsComp, and NC were

each statically significant. The Size Metric Model predicting nRev from NC is

statistically significant with χ2(1) = 38.7, p < 0.05. We can accept the alterna-

tive hypothesis H1A and H2A, and reject the null hypothesis H1O and H2O.

The predictor NC was statically significant. Table 6.17 shows the coefficients,

standard error and significance for all the independent variables in the size met-

ric models. The negative coefficient for NServerScriptsComp is counterintuitive,

since we expect the Lines of Code to increase as we have more server script com-

ponents. The reason for the negative number can be explained by the suppres-

sor relationship between NServerScriptsComp and NClientScriptsComp which is

common between correlated variables [9]. This is not of a concern as long as no

strong multicollinearity [41] exists which was determined to be negligible since

the condition number was equal to 3.87. A condition number of more than 30

indicates that strong multicollinearity exists between variables [41].

Table 6.17: Size Metrics Model

Parameter Coeff Std. Error Sig
LOC Model
Intercept 5.712 .304 .000
NClientScriptsComp .556 .214 .009
NServerScriptsComp -.212 .069 .002
NC .488 .071 .000
nRev Model
Intercept 2.415 .275 .000
NC .376 .059 .000

• Complexity Metric Model: The Complexity Metric Model predicting LOC from

NAssoc, is statistically significant with χ2(1) = 53.4, p < 0.05

CHAPTER 6. EMPIRICAL VALIDATION 105

Table 6.18: Complexity Metrics Model

Parameter Coeff Std. Error Sig
LOC Model
Intercept 5.482 .270 .000
NAssoc .487 .062 .000
nRev Model
Intercept 2.426 .279 .000
NAssoc .387 .063 .000

The predictor NAssoc was statically significant. The Complexity Metric Model

predicting nRev from NAssoc is statistically significant with χ1(3) = 37.6, p <

0.05. We can accept the alternative hypothesis H3A and H4A, and reject the null

hypothesis H3O and H4O.

The predictor NAssoc was statically significant. Table 6.18 shows the coefficients,

standard error and significance for all the independent variables in the complexity

metric models.

• Coupling Metric Model: The Coupling Metric Model predicting LOC from

CoupEntropy is statistically significant with χ2(1) = 31.2, p < 0.05. The predic-

tor CoupEntropy was statically significant. The Coupling Metric Model predict-

ing nRev is statistically significant with likelihood ratio χ2(1) = 30.1, p < 0.05.

We can accept the alternative hypothesis H5A and H6A, and reject the null hy-

pothesis H5O and H6O. The predictor CoupEntropy was statically significant.

Table 6.19 shows the coefficients, standard error and significance for all the inde-

pendent variables in the coupling metric models.

• Cohesion Metric Model: The Cohesion Metric Model predicting CohesionEn-

tropy is statistically significant with χ2(1) = 7.2, p < 0.05. The predictor Co-

hesionEntropy was statically significant. The Cohesion Metric Model predicting

nRev from CohesionEntropy is statistically significant with χ2(1) = 10.3, p <

0.05. We can accept the alternative hypothesis H7A and H8A, and reject the null

hypothesis H7O and H8O.

The predictor CohesionEntropy was statically significant. Table 6.19 shows the

CHAPTER 6. EMPIRICAL VALIDATION 106

Table 6.19: Coupling and Cohesion Metrics Model

Parameter Coeff Std. Error Sig
LOC Coupling
Model
Intercept 4.048 .501 .000
CoupEntropy 691.8 95.9 .000
nRev Coupling
Model
CoupEntropy 699.3 111.0 .000
LOC Cohesion
Model
Intercept 8.933 .354 .000
CohesionEntropy -.038 .010 .000
nRev Cohesion
Model
Intercept 5.743 .431 .000
CohesionEntropy -.055 .014 .000

coefficients, standard error and significance for all the independent variables in

the cohesion metric models.

• All Metric Model: The All Metric Model predicting LOC from NAssoc,

NClientScriptsComp, NServerScriptsComp and CoupEntropy is statistically sig-

nificant with χ2(4) = 71.1, p < 0.05. The predictors NAssoc, NClientScriptsComp,

NServerScriptsComp and CoupEntropy were each statically significant. The rea-

son for the negative number for NServerScriptsComp can be explained by the

suppressor relationship between NServerScriptsComp and CoupEntropy which is

common between correlated variables. This is not of a concern as long as no

strong multicollinearity exists which was determined to be negligible since the

condition number was equal to 11.95.

The All Metric Model predicting nRev from NC and CoupEntropy is statistically

significant with χ2(2) = 43.3, p < 0.05 . The predictors NC and CoupEntropy

were each statically significant. Table 6.20 shows the coefficients, standard error

and significance for the independent variables in the all metric models.

CHAPTER 6. EMPIRICAL VALIDATION 107

Table 6.20: All Metrics Model

Parameter Coeff Std. Error Sig
LOC Model
Intercept 4.506 .639 .000
NAssoc .439 .079 .000
NClientScriptsComp .568 .212 .007
NServerScriptsComp -.338 .087 .000
CoupEntropy 375.7 187.8 .045
nRev Model
NC .284 .075 .000
CoupEntropy 335.2 148.6 .024

Model Validation

In this study we use the Magnitude of Relative Error (MRE) [36] for evaluating the

prediction models. The MRE is shown in Equation 6.1:

MRE = |x− y

y
| (6.1)

where x is the predicted value and y is the actual value. The result can be multiplied

by 100 to get the percentage of deviation from the actual value. The MMRE is the mean

of the MRE, it is one of the most widely used criterion for assessing the performance

of software prediction models [80, 61].

Table 6.21 shows the values of MRE values in the data set. It shows the mean, stan-

dard deviation, 25th percentile(P25), median, and 75th percentile (P75). When checking

the mean MRE for LOC models we can see that the mean MRE for size, structural com-

plexity, coupling and all metrics models ranges between .17 to .51. The best mean MRE

value was for the All metric model (.1795) while the worst mean MRE value was for

the cohesion model (5178).

When looking at the results for the nRev models, we can see that the mean MRE

values ranges between .32 to .88. The best mean MRE value was for the All metric

model (.3222) while the worst mean MRE value was for the cohesion model (.8848).

It is important to have confidence in our results. Bootstrapping is one technique that

is used to obtain confidence intervals for small data sets [18]. In this study we would

like to find 95 percent confidence intervals for our prediction models. We follow the

CHAPTER 6. EMPIRICAL VALIDATION 108

following bootstrapping procedure [57]:

Table 6.21: Goodness of Fit: Values of MREs for All Models

Size Complexity Coupling Cohesion All Metrics
LOC Model
Mean .1998 .2646 .3972 .5178 .1795
StdDev .22127 .26368 .48582 .57416 .20045
P25 .0695 .0785 .0587 .0717 .0567
Median .1259 .1665 .1385 .1560 .1167
P75 .2624 .4693 .5395 .9762 .2580

Rev Model
Mean .4086 .4160 .4430 .8848 .3222
StdDev .73204 .74078 .55033 1.58322 .25940
P25 .0615 .0523 .1488 .1208 .1688
Median .1580 .1597 .2391 .1795 .2642
P75 .2770 .3043 .6166 .9346 .3951

1. Sample 1000 times and replace randomly our 30 MRE values to obtain 1000 sam-

ples of 30 observations.

2. For each sample compute the mean MRE values for each of the models.

3. Compute the 2.5 percent and the 97.5 percent percentiles which is considered an

estimate of the 95 percent confidence interval of the mean MRE values.

Table 6.22: Goodness of Fit: Values of MEAN MREs for All Models using Boostrap-
ping

Size Complexity Coupling Cohesion All Metrics
LOC Model
P2.5 .24 .17 .23 .31 .11
P97.5 .59 .37 .58 .71 .25

nRev Model
P2.5 .27 .18 .27 .40 .23
P97.5 .65 .70 .65 1.44 .41

Table 6.22 shows the results of the bootstrapping procedure described above. One

can see that the best results are for the LOC complexity and LOC All metric models.

CHAPTER 6. EMPIRICAL VALIDATION 109

Figure 6.3: ScatterPlot LOC Model

The mean MRE for the LOC complexity model is between .17 and .37. This means that

we can have 96 percent confidence that the mean MRE for the complexity model will

be between .17 and .37. The mean MRE for the LOC ALL metric model has even better

results (.11 to.25). For the nRev model the best results are for the nRev ALL metric

model (.23 to .41).

We used the likelihood-ratio chi-square test to compare current model versus the

intercept only model. All models showed a significance value of less than 0.05 which

indicates that the current models outperforms the intercept only model. We also have

searched for the influential points and outliers in the models. We draw charts of stan-

dardized deviance residual versus and predicted values of the linear predictor variable.

Figure 6.3 shows the this scatterplot for the LOC ALL Metrics Model. The resulting

scatterplot appears to not have any outlying points. Similarly, we drew the scatterplots

for the Size, Structural Complexity, Coupling, and Cohesion Metric Models, and we got

similar results with no outlying points.

Threats to Validity

It is important to look into threats to validity in order to make sure the results are valid.

We will look into three types of threats that can limit us to draw conclusions from the

CHAPTER 6. EMPIRICAL VALIDATION 110

results: Construct Validity, Internal Validity, and External Validity.

Construct Validity

Construct Validity is the degree to which the independent variables and the dependent

variables are accurately measured in the study. The dependent variables in this study

are LOC and nRev. Both of these measures were measured from a CVS repository. The

CVS repository has an accurate value for both of these measures. However, human error

can happen in computing and recording both dependent variables, therefore we have

repeated the measure for both variables a second time and made sure that the results

from the first and second time match.

Another issue is that the measurement of the independent variables was performed

from source code since no complete design was available from which the measures

could be obtained. In practice the measures for the independent variables should be

taken from early UML design diagrams. Measures from source code are more accurate

but an investigation on how these measures compare to measures taken from design

diagrams, and how this can affect the accuracy of the prediction model must be carried

out.

Internal Validity

Internal Validity is the degree to which conclusions can be drawn about the effect of the

independent variables on the dependent variables. In this study we have demonstrated

that some of the metrics have a statistically and significant relationship with LOC and

nRev. This relationship does not prove a causal relationship, it only provides evidence

that such a relationship might exist. The only way to prove causality is to run controlled

experiments where the independent variables are varied in a controlled manner while

preserving the functionality and size of the application. In practice this is difficult to

accomplish.

CHAPTER 6. EMPIRICAL VALIDATION 111

External Validity

External Validity is the degree to which results can be generalized to other research

settings. We have used a real industrial application with two years of data stored in

a CVS repository. In addition we have used bootstrapping to have confidence in the

results for the mean MRE values. However, other factors such as developer experience,

size of application and technologies used can limit the generalization of the results to

other web applications.

Conclusions

Early measures of software maintainability can help in allocating project resources ef-

ficiently, predicting the effort of maintenance tasks and controlling the maintenance

process. In this study we explore the relationship between UML class design metrics

and maintenance effort which is measured by the number of lines of code changed and

by the number of revisions. The results showed that there is a reasonable chance that

useful prediction models can be built from early UML design metrics. We have obtained

good results using bootstrapping, for the LOC ALL metric model the mean MRE lies

between 11 to 25 percent for 95 percent of the cases. For the nRev ALL metric model

we also got good results, the mean MRE lies between 23 to 41 percent for 95 percent of

the cases.

We studied the following metric models and got the following results:

• LOC Size metric model: This model shows the relationship between our size met-

rics and LOC(Lines of Code), we found that the following size metrics

NClientScriptsComp, NServerScriptsComp, and NC explained the effort mea-

sured by LOC(Lines of Code).

• nRev Size metric model: This model shows the relationship between our size

metrics and nRev(Number of Revisions), we found that only NC metric explained

the effort measured by nRev(Number of Revisions).

• LOC Complexity metric model: This model shows the relationship between our

CHAPTER 6. EMPIRICAL VALIDATION 112

complexity metrics and LOC(Lines of Code), we found that the following com-

plexity metric NAssoc explained the effort measured by LOC(Lines of Code).

• nRev Complexity metric model: This model shows the relationship between our

size metrics and nRev(Number of Revisions), we found that NAssoc metric ex-

plained the effort measured by nRev(Number of Revisions).

• LOC Coupling metric model: This model shows the relationship between our

coupling metrics and LOC(Lines of Code), we found that the following coupling

metric CoupEntropy explained the effort measured by LOC(Lines of Code).

• nRev Coupling metric model: This model shows the relationship between our

coupling metrics and nRev(Number of Revisions), we found that CoupEntropy

metric explained the effort measured by nRev(Number of Revisions).

• LOC Cohesion metric model: This model shows the relationship between our

cohesion metrics and LOC(Lines of Code), we found that CohesionEntropy ex-

plained the effort measured by LOC(Lines of Code).

• nRev Cohesion metric model: This model shows the relationship between our co-

hesion metrics and nRev(Number of Revisions), we found that CohesionEntropy

metric explained the effort measured by nRev(Number of Revisions).

• LOC All metric model: This model shows the relationship between all our metrics

and LOC(Lines of Code), we found that the following metrics NAssoc,

NClientScriptsComp, NServerScriptsComp, and CoupEntropy explained the ef-

fort measured by LOC(Lines of Code).

• nRev ALL metric model: This model shows the relationship between all our met-

rics and nRev(Number of Revisions), we found that NC, and CoupEntropy metrics

explained the effort measured by nRev(Number of Revisions).

7
Conclusion and Future Work

7.1 Conclusion

There are several design quality attributes that have an effect on the maintainability of

software artifacts such as size, complexity, coupling, cohesion, and reusability. In this

Ph.D thesis, we have defined new UML design metrics based on the Web Application

Extension (WAE) [26] for UML. The metrics use the different components of the web

application reference model as units of measurement. We have defined new metrics

based on the following relations between different components in the web application

reference model: builds, links, submit, includes, and forwards. In addition to that, we

have defined our new UML metrics using the following components in the web appli-

cation reference model: client Page, Server Page, Forms, Components, Scriplets and

Interface Objects. The new UML metrics use the relationships and components of the

web application reference model to measure attributes of class diagrams such as size,

complexity, coupling, cohesion, and reusability. Our motivation in this research was to

use these metrics to support the maintenance of web applications, and to show that the

UML metrics can be useful in controlling the maintenance of web applications and can

provide predictions to different measures of maintainability.

In this thesis, theoretical validation of our UML design metrics has been accom-

plished by defining our metrics using two validation frameworks, one proposed by

Kitchenham [63] and one proposed by Briand [16].

113

CHAPTER 7. CONCLUSION AND FUTURE WORK 114

For Kitchenham’s framework we have defined our metrics using the structure model

proposed by Kitchenham [63]. We have provided a classification of the metrics based on

the measurement structure proposed by Kitchenham [63] and the metrics were validated

based on the following conditions: attribute Validity, unit Validity, instrument Validity,

and protocol Validity.

For Briand’s framework we have defined our metrics using the general framework

proposed by Briand et al [16]. We have defined our metrics using the properties defined

by the framework for size, complexity, cohesion, and coupling. The metrics were de-

fined using precise mathematical concepts where the class diagram was represented as

a system which consists of a set of elements and a set of relationships between them.

The empirical validation of our UML metrics has been accomplished by conduct-

ing several empirical studies using an open source web application and industrial web

applications from the telecommunication domain. We have used the pet store web ap-

plication which is an open source web application available at the sun web site. The

pet store application is an example of a typical e-commerce web application that pro-

vides customers with online shopping. We have used an industrial application from the

telecommunication domain for our experiments. The industrial application is a provi-

sioning application which is used to provision and activate the wireless service in the

network. It has around 10,000 users of which 2,500 are concurrent. It is a critical appli-

cation that is used by customer care advocates to resolve provisioning issues for wireless

subscribers.

In this research we have built an open source tool called WapMetrics for measuring

UML design metrics for web applications. WapMetrics provides an automated way to

measure UML metrics and has the ability to show the results in different output formats.

We have shown how WapMetrics can take UML diagrams in XMI [83] format as input

and produce results in HTML format. The WapMetrics tool takes a standard input and

can be used for any UML diagram in XMI [83] format. WapMetrics can measure and

calculate web application metrics from UML diagrams based on the Conallen model.

Most other tools concentrate on UML metrics for object-oriented applications. In addi-

tion to that, it is independent from the CASE tool used to build the models, and takes

CHAPTER 7. CONCLUSION AND FUTURE WORK 115

an XMI file as input. The XMI file describes the UML model in a standard way. The

XMI input allows the exchange of model information in a standard way regardless of

the CASE tool used to create the XMI file. WapMetrics is a web application that can be

deployed on a central server and used by many users without installing it on the client

machines. This makes it easy to maintain and deploy enhancements to the WapMet-

rics tool. WapMetrics provides interoperability and, the outcome of WapMetrics is user

friendly and easy usable by other tools. WapMetrics allows the output to be exported in

several formats: HTML, XML, pdf, excel, rtf and csv. This allows the output to be used

for statistical reporting and the results to be presented in graphs and other formats.

We studied the relationship between our UML metrics and the following maintain-

ability measures: Understandability Time (the time spent on understanding the software

artifact in order to complete the questionnaire), and Modifiability Time(the time spent

on identifying places for modification and making those modifications on the software

artifact). The study gave an indication that there is a possibility for a relationship to

exist between our metrics and modifiability time. However, we did not find a relation-

ship between our metrics and understandability time. The results did not show statistical

significance on the effect of the metrics on understandability time. However the study

was based on students and this may limit how much the results can be generalized to

professional developers. Another limitation is the web application used in this exper-

iment. The pet store is a toy application compared to complex web applications. We

also studied the relationship between our metrics and LOC (total number of Lines of

Code added and deleted for components in a class diagram), and nRev (total number of

revisions for components in a class diagram). The results showed that there is a reason-

able chance that useful prediction models can be built from early UML design metrics.

We have obtained good results using bootstrapping, for the LOC ALL metric model the

mean MRE lies between 11 to 25 percent for 95 percent of the cases. For the nRev ALL

metric model we also got good results, the mean MRE lies between 23 to 41 percent

for 95 percent of the cases. The study had several strengths: it used an industrial web

application, used real data from year 2002 to year 2005, and we used regression analy-

sis and bootstrapping for validating the metrics. Our results give a first indication of the

CHAPTER 7. CONCLUSION AND FUTURE WORK 116

usefulness of the UML design metrics, they show that there is a reasonable chance that

useful prediction models can be built from early UML design metrics.

We have provided a set of experiments for web applications that can be generalized

to other settings. These experiments build on previous research and provide a starting

point for further research on web applications maintainability.

Finally, we have defined an environment for the maintainability prediction model

that includes tools and procedures so that it can be used in an industrial environment.

We have described the complete process of computing our UML metrics from class dia-

grams. We have discussed web applications that do not have preexisting class diagrams

and described how to reverse engineer these web applications to come up with the class

diagrams.

Benefits of Research to Project Managers

This research can be used by project managers and team leads to identify the design

components that need more time and resources. This will help them allocate resources

efficiently. For example in a project that has just started, the designers will create the

UML class diagrams for the web application based on the web application reference

model defined in chapter 4. After creating the class diagrams, the developers will create

an XMI [83] file representing those class diagrams. Most design tools can export class

diagrams to XMI [83] which is a common language for representing design documents

in XML. The WapMetrics tool (described in Appendix C) takes the XMI file as input

and produces an HTML output showing the results of computing the metrics from the

different class diagrams. These results can be exported to several formats such as pdf

and excel. Based on the metrics of each class diagram the project manager can decide

which class diagrams have a possibility of taking more time and can allocate resources

accordingly.

Another example would be in a project that has already started but no design docu-

ments exist. In this case we have to reverse engineer the code to create the UML class

diagrams. After creating the UML class diagrams and validating them by experienced

developers we can use the WapMetrics tool to compute our metrics.

CHAPTER 7. CONCLUSION AND FUTURE WORK 117

Issues and Problems

One of the main issues and problems we faced in this research was finding subjects

for our experiments. It was hard to convince instructors to allow us to conduct the ex-

periments in their classes. We succeeded though to convince one instructor at London

South Bank University to conduct one experiment for one of his classes. The class had

six students and they were all senior level. We chose an open source web application

that was implementing a PetStore e-commerce site. The application was using some

new server side technologies. We created all the design diagrams for the application

after reverse engineering the code. Then, we created the questionnaire which was based

on the design diagrams. Unfortunately we did not get a good participation in that exper-

iment since only one student answered the questions. It was obvious that the questions

were difficult for the students also the data was not useful for statistical analysis. We

decided to include a brief questionnaire about the subjects knowledge on web applica-

tions design and technologies before conducting any future experiments. We tried to

contact several other universities in the UK but with no luck. We were not able to get

positive response from instructors to conduct our experiments. We decided to try some

universities in the US and we got a positive response from an instructor at Illinois State

University. Finally we were able to conduct some of our experiments there.

There is some debate on the usefulness of conducting experiments with students.

Therefore, we decided to convince experienced programmers to participate in our ex-

periments. We had an opportunity to talk to programmers during the Software Crafts-

manship 2009 conference which was held in London. We started preparing for the

experiment one month before the conference. The idea was to find an open source web

application and to create the design diagrams by reverse engineering the code of that

application. We were already working on an application named Claros and had some of

the design diagrams created. We created the rest of the diagrams and created a survey

questionnaire based on the design diagrams. During the conference we talked to several

programmers and handed out flyers about the experiment. Unfortunately we got only

one participant in this experiment, which was not enough to conduct statistical analysis.

CHAPTER 7. CONCLUSION AND FUTURE WORK 118

As a conclusion it is hard to convince experienced programmers to participate in these

experiments without some incentives, maybe there should be some money incentive or

some type of recognition for the programmers that participate. This has to be studied

carefully in order not to bias the results of the experiments.

7.1.1 Original Contribution to Knowledge

The contribution of this research can be summarized by the following points. It provides:

1. a study on the relationship between the UML design metrics and Understandabil-

ity Time and Modifiability Time (the time spent on understanding and modifying

a software artifact).

2. a study on the relationship between the UML design metrics and LOC (Lines

of Code Changed). The research tells if by using the UML design metrics is it

possible to predict the LOC of the class diagrams.

3. a study on the relationship between the UML design metrics and nRev (Number

of Revisions). The research tells if by using the UML design metrics is it possible

to predict the nRev for classes in a class diagram.

4. a validation of UML design metrics for web applications. This validation was

accomplished using both theoretical and empirical validation.

5. a set of empirical experiments for web applications that can be generalized to other

settings. These experiments build on previous research and provide a starting

point for further research on web applications maintainability.

6. an environment for the maintainability prediction model that includes tools and

procedures so that it can be used in an industrial environment.

7. an extension of Conallen’s model to present web applications in more detail.

CHAPTER 7. CONCLUSION AND FUTURE WORK 119

7.1.2 Future Work

For our UML metrics to be used as a standard for measuring the maintainability of web

applications more experiments are to be conducted. It is important that more experi-

ments are conducted using different web applications from different domains so that our

results can be generalized to other research settings.

In our future work, we hope to explore the relationship between our UML design

metrics and fault-proneness. Many studies [50, 21, 17, 7] have researched the rela-

tionship between fault-proneness and different quality metrics. There are some studies

that investigated the relationship between metrics and fault-proneness of classes [50, 7].

We have not seen a study that investigated the relationship between quality metrics and

fault-proneness in class diagrams. Fault-proneness in class diagrams is defined as the

probability of detecting a fault in a UML class diagram. The faults can be collected

from a bug tracking system and WapMetrics can be used to compute the UML metrics.

In the future, we hope to enhance our open source tool WapMetrics with new func-

tionalities. Currently, WapMetrics does not allow the user to specify new metrics with-

out re-programming the tool. We hope to add functions for defining UML metrics using

XML files so that it can be easily enhanced with user defined metrics. In addition to

that, WapMetrics can only measure metrics from class diagrams. We hope to add the

support of measuring metrics from different design diagrams such as activity diagrams

and use cases. One nice feature to add, is the measurement of differences between two

versions of UML models.

Bibliography

[1] S. Abraho, N. Condori-Fernndez, L. Olsina, and O. Pastor. Defining and validat-

ing metrics for navigational models. In Proceedings of the 9th International Soft-

ware Metrics Symposium, pages 200–210, Sydney, Australia, 2003. IEEE Com-

puter Society Press.

[2] T. Al-Rousan, S. Sulaiman, Rosalina, and A. Salam. WPRiMA tool: Manag-

ing risks in web projects. International Journal of Human and Social Science,

5(11):686–693, 2010.

[3] E. Allen and T. Khoshgoftaar. Measuring coupling and cohesion: An

information-theory approach. In Proceeding of the 6th International Software

Metrics Symposium, pages 119–127, Boca Raton, FL , USA, 1999. IEEE Com-

puter Society Press.

[4] M. Alshayeb and W. Li. An empirical validation of object-oriented metrics in

two different iterative software processes. IEEE Transactions on Software Engi-

neering, 29(11):1043–1049, 2003.

[5] L. Baresi, S. Morasca, and P. Paolini. Estimating the design effort of web ap-

plications. In Proceedings of the 9th International Software Metrics Symposium,

pages 62–72, Sydney, Australia, 2003. IEEE Computer Society Press.

[6] R. Barga and D. Lomet. Recovery guarantees for Internet applications. ACM

Transactions on Internet Technology, 4(3):289–328, 2004.

[7] V. Basili, L. Briand, and W. Melo. A validation of object-oriented design metrics

120

BIBLIOGRAPHY 121

as quality indicators. IEEE Transactions on Software Engineering, 22(10):751–

761, 1996.

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.

Addison-Wesley, 2 edition, 2003.

[9] D. Belsley, E. Kuh, and R. Welsch. Regression Diagnostics: Identifying Influen-

tial Data and Sources of Collinearity. WileyBlackwell, 2004.

[10] P. Bhatt, G. Shroff, and A. Misra. Dynamics of software maintenance. ACM

SIGSOFT Software Engineering Notes, 29(4):1–5, 2004.

[11] J. Bieman and B.-K. Kang. Cohesion and reuse in an object-oriented system. In

Proceedings of the ACM SIGSOFT Symposium on Software Reusability, pages

259–262, Seattle, WA, USA, 1995. IEEE Computer Society Press.

[12] A. Bongio, S. Ceri, and P. Fraternali. Estimating the design effort of web appli-

cations. In Proceedings of the 9th International Conference on the WWW, pages

137–157, Amsterdam, Netherlands, 2000. Elsevier.

[13] L. Briand, C. Bunse, and J. Daly. A controlled experiment for evaluating quality

guidelines on the maintainability of object-oriented designs. IEEE Transactions

on Software Engineering, 27(06):513–530, 2001.

[14] L. Briand, Daly, J. Daly, and J. Wst. A unified framework for coupling measure-

ment in object-oriented systems. IEEE Transactions on Software Engineering,

25(1):91–121, 1999.

[15] L. Briand, J. Daly, and J. Wst. A unified framework for cohesion measurement

in object-oriented systems. Empirical Software Engineering, 3(1):65–117, 1998.

[16] L. Briand, S. Morasca, and V. Basili. Prperty-based software engineering mea-

surement. IEEE Transactions on Software Engineering, 22(1):68–86, 1996.

BIBLIOGRAPHY 122

[17] L. Briand, S. Morasca, and V. Basili. Defining and validating measures for object-

based high-level design. IEEE Transactions on Software Engineering, 25(5):722–

743, 1999.

[18] L. Briand and J. Wurst. Modeling development effort in object-oriented sys-

tems using design properties. IEEE Transactions on Software Engineering,

27(11):963–986, 2001.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

Oriented Software Architecture: A System of Patterns. John Wiley and Sons, 1

edition, 1996.

[20] D. Card, K. El-Emam, and B. Scalzo. Measurement of object-oriented software

development projects. Software Productivity Consortium NFP, 2001.

[21] M. Cartwright and M. Shepperd. An empirical investigation of an object-oriented

software system. IEEE Transactions on Software Engineering, 26(8):786–796,

2000.

[22] S. Chidamber and C. Kemerer. A metrics suite for object-oriented design. IEEE

Transactions on Software Engineering, 20(6):476–493, 1994.

[23] Claros. Claros in touch application. Website. http://www.claros.org/

web/home.do.

[24] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate soft-

ware system maintainability. IEEE Computer, 27(8):44–49, 1994.

[25] S. Comai and P. Fraternali. A semantic model for specifying data-intensive web

applications using WebML. In Proceedings of the 1st International Semantic

Web Working Symposium, pages 566–585, Stanford, California, 2001. Stanford

University.

[26] J. Conallen. Building Web Applications with UML. Addison-Wesley, 2 edition,

2003.

BIBLIOGRAPHY 123

[27] T. Corbi. Program understanding: challenge for the 1990s. IBM Systems Journal,

28(2):294–306, 1989.

[28] A. DeLucia, R. Francese, G. Scanniello, and G. Tortora. Reengineering web

applications based on cloned pattern analysis. In Proceedings of the 12th IEEE

International Workshop on Program Comprehension, pages 132–141, Bari, Italy,

2004.

[29] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Pat-

terns. Morgan Kaufmann, 1 edition, 2002.

[30] G. Di-Lucca, A. Fasolino, U. De-Carlini, and P. Tramontana. Ware: a tool for the

reverse engineering of web applications. In Proceeding of the 6th European Con-

ference on Software Maintenance and Reengineering, pages 241–250, Budapest,

Hungary, 2002.

[31] G. Di-Lucca, A. Fasolino, and P. Tramontana. Reverse engineering web appli-

cations: the WARE approach. Journal of Software Maintenance, 16(2):71–101,

2004.

[32] G. DiLucca, A. Fasolino, P. Tramontana, and C. Visaggio. Towards the definition

of a maintainability model for web applications. In Proceeding of the 8th Euro-

pean Conference on Software Maintenance and Reengineering, pages 279–287,

Tampere, Finland, 2004. IEEE Computer Society Press.

[33] E. DiSciascio, F. Donini, M. Mongiello, and G. Piscitelli. Web applications de-

sign and maintenance using symbolic model checking. In Proceedings of the

7th European Conference on Software Maintenance and Reengineering, pages

63–72, Benevento, Italy, 2003. IEEE Computer Society Press.

[34] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for

detecting duplicated code. In Proceedings of the 15th IEEE International Confer-

ence on Software Maintenance, pages 109–118, Los Alamitos, CA, USA, 1999.

IEEE Computer Society Press.

BIBLIOGRAPHY 124

[35] C. Ebert and T. Liedtke. An integrated approach for criticality prediction. In Pro-

ceeding of the 6th International Symposium on Software Reliability Engineering,

pages 14–23, Toulouse, France, 1995. IEEE Computer Society Press.

[36] K. EL-Emam. A methodology for validating software product metrics. Technical

Report NRC 44142, National Research Council Canada, 2000.

[37] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher. Leveraging user-session data

to support web application testing. IEEE Transactions on Software Engineering,

31(3):187–202, 2005.

[38] N. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a com-

plex software system. IEEE Transactions on Software Engineering, 26(8):797–

814, 2000.

[39] N. Fenton and S. Pfleeger. Software Metrics A Rigourous and Practical Approach.

PWS, 2 edition, 1998.

[40] N. Fenton and S. Pfleeger. Metrics and Models in Software Quality Engineering.

Addsion Wesley, 1 edition, 2003.

[41] A. Field. Discovering Statistics Using SPSS. Sage Publications, 2 edition, 2005.

[42] R. Fielding and R. Taylor. Principled design of the modern web architecture.

ACM Transactions on Internet Technology, 2(2):115–150, 2002.

[43] F. Fioravanti and P. Nesi. Estimation and prediction metrics for adaptive main-

tenance effort of object-oriented systems. IEEE Transactions on Software Engi-

neering, 27(12):1062–1084, 2001.

[44] M. Genero, M. Piattini, and C. Calero. Empirical validation of class diagram met-

rics. In Proceedings of the 2002 International Symposium on Empirical Software

Engineering, pages 195–203, Nara, Japan, 2002. IEEE Computer Society Press.

BIBLIOGRAPHY 125

[45] M. Genero, M. Piattini, and E. Manso. Finding early indicators of uml class di-

agrams understandability and modifiability. In Proceedings of the 2004 Interna-

tional Symposium on Empirical Software Engineering, pages 257–268, Redondo

Beach, CA, 2004. IEEE Computer Society Press.

[46] M. Genero, M. Piattini, E. Manso, and G. Cantone. Building UML class dia-

gram maintainability prediction models based on early metrics. In Proceedings

of the Ninth International Software Metrics Symposium, pages 263–275, Sydney,

Australia, 2003. IEEE Computer Society Press.

[47] E. Ghosheh and S. Black. Wapmetrics: a tool for computing UML design metrics

for web applications. In Proceedings of the 7th IEEE/ACS International Confer-

ence on Computer Systems and Applications, pages 682–689, Rabat, Moroco,

2009. IEEE Computer Society Press.

[48] E. Ghosheh, S. Black, and J. Qaddour. An introduction of new UML design

metrics for web applications. International Journal of Computer & Information

Science, 8(4):600–609, 2007.

[49] M. P. Giuliano Antoniol and M. Zazzara. Understanding web applications

through dynamic analysis. In Proceeding of the 12th IEEE International Work-

shop on Program Comprehension, pages 120–129, Bari, Italy, 2004. IEEE Com-

puter Society Press.

[50] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented met-

rics on open source softwaer for fault prediction. IEEE Transactions on Software

Engineering, 31(10):897–910, 2005.

[51] T. Gymothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented met-

rics on open source software for fault prediction. IEEE Transactions on Software

Engineering, 31(10):897–910, 2005.

[52] M. Hall. Core Servlets and Java Server Pages. Upper Saddle River, 1 edition,

2000.

BIBLIOGRAPHY 126

[53] IBM. Rational Rose Enterprise Edition. Website. http://www-306.ibm.

com/software/awdtools/developer/rose/index.html.

[54] IEEE. IEEE-14764 STD software engineering, software life cycle processes,

maintenance, 2006.

[55] T. Isakowitz, A. Kamis, and M. Koufaris. Extending the capabilities of RMM:

Russian Dolls and Hypert. In Proceedings of 30th Hawaii International Con-

ference on System Science, pages 177–186, Maui, Hawaii, 1997. University of

Hawai at Manoa.

[56] T. Isakowitz, E. Stohr, and P. Balasubramanian. RMM: a methodology for struc-

tured hypermedia design. Communications of the ACM, 38(8):34–44, 1995.

[57] R. Johnson. An introduction to the bootstrap. Teaching Statistics, 23(2):49–54,

2001.

[58] T. Khoshgoftaar, J. Munson, B. Bhattacharya, and G. Richardson. Predictive

modeling techniques of sofware quality from software measures. IEEE Transac-

tions on Software Engineering, 18(11):979–987, 1992.

[59] M. Kiewkanya, N. Jindasawat, and P. Muenchaisri. A methodology for construct-

ing maintainability model of object-oriented design. In Proceedings of the 4th

International Conference on Quality Software, pages 206–213, Braunschweig,

Germany, 2004. IEEE Computer Society Press.

[60] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz. Experiences in engineering

flexible web services. IEEE MultiMedia, 8(1):58–65, 2001.

[61] B. Kitchenham and I. Myrtveit. A simulation study of the model evlauation crite-

rion mmre. IEEE Transactions on Software Engineering, 29(11):985–995, 2003.

[62] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El-Emam, and

J. Rosenberg. Preliminary guidelines for empirical research in software engineer-

ing. IEEE Transactions on Software Engineering, 28(08):721–734, 2002.

BIBLIOGRAPHY 127

[63] B. Kitchenhaum, S. Pleeger, and N. Fenton. Towards a framework for software

measurement. IEEE Transactions on Software Engineering, 21(12):929–944,

1995.

[64] S. Kojarski and D. Lorenz. Domain driven web development with WebJinn. In

the 18th International Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 53–65. ACM Press, 2003.

[65] P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50,

1995.

[66] W. Kurt and P. Oman. Software maintainability metrics models in practice.

Crosstalk, Journal of Defense Software Engineering, 8(11):19–23, 1995.

[67] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski. Metrics and laws

of software evolution the nineties view. In Proceedings of the 4th International

Software Metrics Symposium, pages 20–32, Albuquerque, NM, USA, 1997. IEEE

Computer Society Press.

[68] W. Li and S. Henry. Object-oriented metrics that predict maintainability. Journal

of Software Systems, 23(2):111–122, 1993.

[69] W. Li, S. Henry, D. Kafura, and R. Schulman. Measuring object-oriented design.

Journal of Object-Oriented Programming, 8(4):48–55, 1995.

[70] M. Mario, E. Manso, and G. Cantone. Building UML class diagram maintain-

ability prediction models based on early metrics. In Proceedings of the 9th Inter-

national Software Metrics Symposium, pages 263–278, Sydney, Australia, 2003.

IEEE Computer Society Press.

[71] E. Mendes, N. Mosley, and S. Counsell. Web metrics - estimating design and

authoring effort. IEEE Multimedia, 08(01):50–57, 2001.

[72] E. Mendes, N. Mosley, and S. Counsell. A comparison of development effort

estimation techniques for web hypermedia applications. In Proceedings of the

BIBLIOGRAPHY 128

8th International Software Metrics Symposium, pages 131–140, Ottawa, Canada,

2002. IEEE Computer Society Press.

[73] E. Mendes, N. Mosley, and S. Counsell. Early web size measures and effort pre-

diction for web costimation. In Proceedings of the 9th International Software

Metrics Symposium, pages 18–39, Sydney, Australia, 2003. IEEE Computer So-

ciety Press.

[74] E. Mendes, N. Mosley, and S. Counsell. The need for web engineering: An

introduction. In Web Engineering, chapter 1, pages 1–26. Springer-Verlag, 2006.

[75] K.-H. Moller and D. Paulish. An empirical investigation of software fault dis-

tribution. In Proceedings of the 4th International Software Metrics Symposium,

pages 82–90, Baltimore, MD, USA, 1993. IEEE Computer Society Press.

[76] N. Moreno, P. Fraternali, and A. Vallecillo. A UML 2.0 profile for WebML mod-

eling. In Proceedings of the 6th International Conference on Web Engineering,

page 4, Palo Alto, California, USA, 2006.

[77] J. Munson and T. Khoshgoftaat. The detection of fault-prone programs. IEEE

Transactions on Software Engineering, 18(5):423–433, 1992.

[78] G. Mustafa, A. Shah, K. Asif, and A. Ali. A strategy for testing web based

software. Information Technology Journal, 6(1):74–81, 2007.

[79] I. Myrtveit and E. Stensrud. A controlled experiment to assess the benefits of

estimating with analogy and regression models. IEEE Transactions on Software

Engineering, 25(04):510–525, 1999.

[80] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative

studies of software prediction models. IEEE Transactions on Software Engineer-

ing, 31(05):380–391, 2005.

[81] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone

switches. IEEE Transactions on Software Engineering, 22(12):886–894, 1996.

BIBLIOGRAPHY 129

[82] P. Oman and J. Hagemeister. Construction of testing polynomials predicting soft-

ware maintainability. Journal of Software Systems, 27(3):251–266, 1994.

[83] OMG. Xml Metadata Interchange. Website. http://www.omg.org/.

[84] R. S. Pressman. Software Engineering: A Practioner’s Approch. McGraw-Hill,

6 edition, 2004.

[85] D. Reifer. Web development: estimating quick-time-to-market. IEEE Software,

17(8):57–64, 2000.

[86] G. Rhode and R. Shapiro. Falling through the net: toward digital inclusion. Tech-

nical report, United Stated Department of Commerce, 2000.

[87] F. Ricca. Analysis, testing and re-structuring of web applications. In Proceedings

of the 20th IEEE International Conference on Software Maintenance, pages 474–

478, Chicago Illinois, USA, 2004. IEEE Computer Society Press.

[88] F. Ricca, M. Penta, M. Torchiano, P. Tonella, and M. Ceccato. An empirical study

on the usefulness of conallens stereotypes in web application comprehension. In

Proceedings of the Eighth IEEE International Symposium on Web Site Evolution,

pages 58–68, Philadelphia, PA, USA, 2006. IEEE Computer Society Press.

[89] F. Ricca and P. Tonella. Understanding and restructuring web sites with ReWeb.

IEEE Multimedia, 8(2):40–51, 2001.

[90] M. Ruhe, R. Jeffery, and S. Wieczorek. Using web objects for estimating software

development effort for web applications. In Proceedings of the 9th International

Software Metrics Symposium, pages 30–37, Sydney, Australia, 2003. IEEE Com-

puter Society Press.

[91] D. Schwabe, L. Esmeraldo, G. Rossi, and F. Lyardet. Engineering web applica-

tions for reuse. IEEE Multimedia, 8(1):20–31, 2001.

[92] J. Singer and N. Vinson. Ethical issues in empirical studies of software engineer-

ing. IEEE Transactions on Software Engineering, 28(12):1171–1180, 2002.

BIBLIOGRAPHY 130

[93] H. Sneed and A. Merey. Automated software quality assurance. IEEE Transac-

tions on Software Engineering, 11(9):909–916, 1985.

[94] O. Source. Display tag. Website. http://displaytag.sourceforge.

net/11/.

[95] R. Subramanyam and M. Krishnan. Empirical analysis of ck metrics for object-

oriented design complexity: Implications for software defects. IEEE Transac-

tions on Software Engineering, 29(04):297–310, 2003.

[96] Sun. Pet store application. Website. http://www.java.sun.com.

[97] N. Wilde and R. Huitt. Maintenance support for object-oriented programs. IEEE

Transactions on Software Engineering, 18(12):1038–1044, 1992.

[98] C. Wohlin, M. Host, and K. Henningsson. Empirical research methods in web and

software engineering. In Web Engineering, chapter 13, pages 409–429. Springer-

Verlag, 2006.

[99] Y. Wu and J. Offutt. Modeling and testing web-based applications. Technical

Report ISE-TR-02-08, George Mason University/Department of Information and

Software Engineering, 2002.

[100] F. Zhuo, B. Lowther, P. Oman, and J. Hagemeister. Constructing and testing soft-

ware maintainability assessment models. In Proceedings of the 1st International

Software Metrics Symposium, pages 61–70, Baltimore, MD, USA, 1993. IEEE

Computer Society Press.

A
Empirical Surveys

General Questionnaire Please answer each question provided in this questionnaire.

Personal Identification and Experience:

Name:

Email:

Rate your perceived web application modeling experience (refer to Glossary):

None (1) O Little (2) O Average (3) O Good (4) O Very good (5)

Please answer the questions based on your experience scale:

1. What is your experience with software engineering principles?(circle number)1 2

3 4 5

2. What is your experience with design documents in general?(circle number) 1 2 3

4 5

3. What is your experience with web application modeling?(circle number) 1 2 3 4

5

4. What is your experience performing impact analysis?(circle number) 1 2 3 4 5

Motivation and Performance

1. Estimate how motivated you were to perform well in the study?(circle number) 1

2 3 4 5

2. Estimate how well you understood what was required of you?(circle number) 1 2

3 4 5

3. What approach did you adopt to the exercise?(circle number)

131

APPENDIX A. EMPIRICAL SURVEYS 132

a) Read the documents fully and then attempt the tasks.

b) Read the documents while thinking about the tasks.

c) Straight into the tasks, reading the documents as required.

d) Other- please specify.

4. Estimate the correctness(in percent) of your answers to the questionnaire. 0-20

21-40 41-60 61-80 81-100

5. If you could not complete all the tasks, please indicate why?(circle number)

a) Ran out of time.

b) Did not fully understand the task.

c) Did not fully understand the design documents. d) Other- please specify.

6. In your opinion, what caused you the most difficulty to understand the design

documents?(circle number)

a) Nothing in particular.

b) The notation used.

c) Number of relationships in the diagram

d) Size of design document

e) Other- please specify

7. In your opinion, what caused you the most difficulty to perform impact analysis

on the design documents?(circle number)

a) Nothing in particular.

b) The notation used.

c) Number of relationships in the diagram.

d) Size of design document

e) Other- please specify Miscellaneous

Miscellaneous

1. How do you judge the size of the design documents you had?(circle number)

Too Small Small About Right Large Too Large 1 2 3 4 5

2. On a scale of 1 to 10 estimate, in terms of understandability, the quality of design

documents you had?

1- barely understandable; 10 easily understandable

APPENDIX A. EMPIRICAL SURVEYS 133

3. On a scale of 1 to 10 estimate, estimate your overall understanding of the design

documents?

1- very little; 10 - complete

4. What did you understand least about the design documents and why? Please

specify?

5. On a scale of 1 to 10 estimate in terms of modifiability the quality of design

documents?

1-barely modifiable 10- easily modifiable

6. On a scale of 1-10 estimate the overall difficulty of the tasks you have been asked

to perform?

1- very easy; 10 very difficult

7. Having performed the tasks would you do anything different next time?

8. Have you learned anything from participating in this study?

9. any additional comments

Thank you

Design Diagram Questionnaire:

Please answer each question provided in this questionnaire. Please enter the time in

seconds and minutes. There might be more than one correct answer for some questions.

Personal Identification and Experience:

Name:

Email:

Questions Diagram: welcomeScreen-web-design.Gif:

1. How many server pages are in the diagram?

2. How many client pages are in the diagram?

3. What is the key server page (page with most relationships) in the diagram?

Please enter time(seconds and minutes) for answering questions 1-3:

4. When removing footer.jsp page what are the components and relationships in the

diagram that will be affected?

5. If you need to include preference.jsp in the template.jsp page what are the rela-

tionships and components that will be added to the diagram?

APPENDIX A. EMPIRICAL SURVEYS 134

Please enter time(seconds and minutes) for answering questions 4-5:

Diagram: createCustomer-web-design.GIF

1. How many form pages are there in the diagram?

2. How many attributes are in create-customer.jsp form page (named form1)?

Please enter time(seconds and minutes) for answering questions 1-2:

3. If you need to add account.jsp as an html link to the banner.jsp page what are the

relationships and components that will be added to the diagram?

4. If you need to add an HTML select attribute named color to the banner.jsp form

page what are the components that will be added to the diagram?

Please enter time(seconds and minutes) for answering questions 3-4:

Diagram: cartScreen-web-design.GIF

1. How many use tags relationships are there in the diagram?

2. How many aggregation relationships are there in the diagram?

Please enter time(seconds and minutes) for answering questions 1-2:

3. If you need to add a JSP tag class named struts to the cart.jsp form page what are

the components and relationships that will be added to the diagram?

Please enter time(seconds and minutes) for answering question 3:

Diagram: createUserSequence.gif

1. How many components in the diagram are in the web tier?

2. How many session beans are in the diagram?

3. How many methods does SignOnEJB component have?

Please enter time(seconds and minutes) for answering questions 1-3:

Data For PetStore Experiment

Table A.1 shows the data for the PetStore Experiment. The column UndTime stands for

Understandability Time while the column ModTime stands for Modifiability time.

APPENDIX A. EMPIRICAL SURVEYS 135

Figure A.1: welcomeScreen Design

APPENDIX A. EMPIRICAL SURVEYS 136

Figure A.2: Cart Design

APPENDIX A. EMPIRICAL SURVEYS 137

Figure A.3: Create Customer Design

APPENDIX A. EMPIRICAL SURVEYS 138

Figure A.4: Create User Design

APPENDIX A. EMPIRICAL SURVEYS 139

UndTime
welcome-
Screen

ModTime
welcome-
Screen

UndTime
createCus-
tomer

ModTime
createCus-
tomer

UndTime
cartCus-
tomer

ModTime
cartCus-
tomer

60 120 60 60 30 120
45 120 20 60 20 15
60 270 45 315 15 60
70 310 125 290 120 90
60 360 120 180 120 120
63 420 90 180 120 120
30 60 15 15 15 30
30 60 15 15 15 30
40 120 40 140 140 40
25 180 30 420 20 180
20 180 60 420 60 240
32 174 131 210 207 91
70 200 54 132 86 42
25 70 20 120 60 80
60 120 60 240 120 60
20 120 30 300 30 120
25 15 25 25 15 10
157 180 60 180 120 180
45 90 10 45 45 60
30 60 15 180 30 180
45 90 120 120 90 120
35 163 113 120 83 72
45 120 20 60 20 15
60 270 45 315 15 60
10 7 10 15 5 5
120 180 60 180 60 180
180 120 60 120 60 60
180 105 86 323 132 104
88 127 30 120 27 31
20 150 80 60 120 60

Table A.1: Data For PetStore Experiment

APPENDIX A. EMPIRICAL SURVEYS 140

UndTime
welcome-
Screen

ModTime
welcome-
Screen

UndTime
createCus-
tomer

ModTime
createCus-
tomer

UndTime
cartCus-
tomer

ModTime
cartCus-
tomer

51 198 97 224 52 85
30 60 30 60 45 60
320 208 42 525 30 -
30 30 30 50 45 30
60 135 30 180 120 90
90 120 90 180 240 120
180 120 60 120 60 60
180 240 120 180 60 180
90 300 160 60 190 120
40 180 240 120 180 240
10 50 20 180 20 60
15 60 30 60 20 20
180 180 120 300 120 300
300 10 10 15 240 180
180 300 120 360 60 120
90 120 60 120 120 120
150 90 60 60 120 60
75 185 75 240 50 60
5 10 60 10 60 60
45 160 55 175 135 80
50 110 75 100 70 60
61 62 52 60 60 63
60 90 30 60 30 30

Table A.1: Data For PetStore Experiment

B
Empirical Case Studies

The web application used is from the telecommunication Operational Support System

(OSS) domain. It is a provisioning application which is used to provision and activate

the wireless service in the network. We refer to the web application as ProvisionApp.

ProvisionApp has around 10,000 users of which 2,500 are concurrent. It is a critical

application that is used by customer care advocates to resolve provisioning issues for

wireless subscribers. ProvisionApp is built using the latest web technologies and frame-

works such Struts, and EJBs and uses Oracle for the database. Table B.3 shows the

characteristics of ProvisionApp.

Characteristic WebApp1
Application Domain Telecom
Age 4
Language Java
Web Server WebLogic 7.0
Application Server WebLogic 7.0
Framework Struts 1.1
Database Oracle
Configuration Manage-
ment Tool

CVS

Design Tool Rational Rose

Table B.1: Characteristics of ProvisionApp

141

APPENDIX B. EMPIRICAL CASE STUDIES 142

B.1 ProvisionApp Interfaces

ProvisionApp

ESS

POM

Provisioning

System

HCM listener

SiteMinder

Authentication

Plugin

NMS

Number

Management

System

Figure B.1: ProvisionApp Interfaces

The ProvisionApp has the following interfaces:

SiteMinder

The SiteMinder is a plugin to apache server to provide authentication and authorization

for the users. The authentication and authorization is done against an LDAP server.

POM

The Provisioning Order Manager serves as the work order manager for provisioning

data received from the billing applications. It is used to deliver service orders from

Renaissance and P2K billing applications to Actiview or to individual network service

applications.

NMS

The Number Management System is the central repository for all wireless phone num-

bers (MDN/MSID), ESN, and NAI NAI data. The equipment attributes and subscription

relationships currently held in NMS will migrate to a centralized database, leaving NMS

to focus specifically on number management.

APPENDIX B. EMPIRICAL CASE STUDIES 143

ESS

The Enterprise Security System interface provides the ability for users to initiate Vision

Password Reset.

HCM Listener

The Handset Configuration Manager (HCM) application is responsible for over-the-air

programming of 3G devices. The HCM delivers 3G parameters, but it will eventually

download PRLs, software, and NAM information to devices capable of processing In-

ternetProtocol Over The Air (IOTA) messages.

B.2 ProvisionApp Functional Modules

The ProvisionApp is divided into the following functional modules:

Login Module

Figure B.2: Login Module

The Login Module provides the ability to access the ProvisionApp by entering a

APPENDIX B. EMPIRICAL CASE STUDIES 144

users Network Active Directory domain UserID and Password. Each user can have one

of the following three roles:

• Admin: This user profile has unlimited functionality.

• Troubleshooter: This profile has the following capabilities: ”View List of Cus-

tomer Transactions”, ”View Customer Transaction details” View Network/Device

Transactions”,”View Network/Device Transaction details ”, View Erred Transac-

tions (by interface category) ”Retry an erred Network/Device Transaction”,”View

Active NAIs ” Initiate a Vision Password Reset”,”Force Close erred Network/De-

vice transactions for all System/Network Elements except AAA.”, ”View Vision

Password History ”, ”View Current Network Provisioning Status ”, ”Retrigger

IOTA”

• General User: This profile has the following capabilities: ”View list Customer

Transactions ”, ”View Customer Transaction details”,”View Network/Device Trans-

actions”,View Network/Device Transaction details ”,”View Active NAIs”,”Initiate

a Vision Password Reset”, ”View Vision Password History”,”View Current Net-

work Provisioning Status”

Search Module

Figure B.3: Search Module

APPENDIX B. EMPIRICAL CASE STUDIES 145

The Search Module is the first module presented to the User upon successful authen-

tication of the User ID and Password. It provides the ability to Search for transaction

by one of the following user identifiers: MDN, MSID, ESN or NAI. It also Provides

the ability to search Open, Closed or both transactions. Once the parameters are entered

and search button is selected the user will be taken to the Current Transactions module.

Current Transactions Module

Figure B.4: Current Transactions Module

The Current Transactions Module has the following abilities: ”Displays the current

and archived Service transactions with oldest transactions displayed at the top”, ”Pro-

vides ability to get More Information about the parent - Service Transaction ”, ”Provides

the ability to retrieve Child - Network/Device transactions associated with the Parent -

Service Transaction”, ”Provides the ability to get ”More Info” about the child - Net-

work/Device Transaction”, ”Provides the ability to see Network/Device transactions for

more than 1 service transaction at a time”, ”Provides ability to refresh transactions so

that the user will not have to perform another search to view transactions updates”

Service Transaction Module

The Service Transaction Module provides detailed information about the Service Trans-

action as shown in Figure B.5

APPENDIX B. EMPIRICAL CASE STUDIES 146

Figure B.5: Service Transaction Module

Device Transaction Module

The Device Transaction Module provides the following abilities: ” Provides detailed

information about the Network/Device Transaction as shown in Figure B.6”, Provides

the ability to Retry an Erred Transaction (if a transaction is any status other than Er-

ror the Retry button will be disabled), ” Provides the ability to Force Close an Erred

Transaction” (if a transaction is any status other than Error the Force Close button will

be disabled),” Provides transaction history (Error history and Transaction Activity) for

the selected Network/Device Transaction with most recent displaying at top”, ”Provides

the ability to refresh the Network/Device Transaction information ”, ”Error Log and

Activity Log boxes provide the ability to scroll. This will provide visibility to all er-

rors and activity for the Network/Device Transaction.”, ”The Error Message field will

expand to display the entire error message so that the user doesn’t have to scroll to see

one particular error message.

UserName Module

The UserName Module provides for the following abilities: ” Provides a list of Active

and/or Reserved Usernames stored in the Number Management System database for a

APPENDIX B. EMPIRICAL CASE STUDIES 147

Figure B.6: Device Transaction Module

Figure B.7: UserName Module

user.”, ”Provides the individual status for each Username ”, ”If Usernames do not exist

for a user then the display will show: ”Username not found”.

Retrigger IOTA Module

The Retrigger IOTA Module has the following abilities: ”Provides the ability to retrigger

handset programming”, The user will not be able to Retrigger IOTA for a given MDN

within 30 seconds of another Retrigger IOTA request. ”, ”Upon selecting Retrigger

IOTA the application should check to see if another Retrigger IOTA request, for a given

MDN, has been sent within the last 30 seconds. If a request has been made then an error

APPENDIX B. EMPIRICAL CASE STUDIES 148

Figure B.8: Retrigger IOTA Module

shall display to the user stating: ”IOTA can only be retriggered every 30 seconds. Check

Pending Transactions and try again later.”

Error Queue Module

Figure B.9: Error Queue Module

The Error Queue Module has the following abilities: ”Provides a list of Error Trans-

actions by System/Network Element ”, ” Provides the ability to sort Erred transactions

by Error or Create Date/Time ”, ”Provides ability to get ’more info’ about the Trans-

action. This will launch the Network/Device Transaction Details page. ” ”Provides the

ability refresh the display.”

APPENDIX B. EMPIRICAL CASE STUDIES 149

Vision Password Module

Figure B.10: Vision Password Module

The Vision Password Module has the following abilities: ”Provides Vision Password

History for the user with most recent history at top. ”, ”Provides the ability to reset

the Vision Password for the Username entered. ”, ”Vision Password history will not be

available until the entire service transaction for Vision Service Activation has completed

successfully. ”

Network Provisioning Status Module

The Network Status Module has the following abilities: ”Provides the system/network

elements where the Username is currently provisioned , ”Provides user profile informa-

tion ”, ”Network Status information will not be available until the entire service trans-

action for Vision Service Activation has completed successfully”

Help Module

The Help Module has the following abilities: ” Provides Help desk about the Provsion-

App GUI” , ”Based upon the link selected the user will be navigated to the specific

section that discusses that topic ”, ”Provides the ability to return to the previous screen

by selecting a back button”

APPENDIX B. EMPIRICAL CASE STUDIES 150

Figure B.11: Network Provisioning Module

B.3 Industrial Provisioning Web Application Data

APPENDIX B. EMPIRICAL CASE STUDIES 151

Figure B.12: Help Module

APPENDIX B. EMPIRICAL CASE STUDIES 152

Class Diagram Name Revisions LOC
deviceTrx.jsp 8 80
deviceTrxDetail.jsp 229 10019
error.jsp 8 108
errorBucket.jsp 13 32
help.jsp 11 1649
failure.jsp 2 13
logon.jsp 56 1165
mainSearch.jsp 147 4889
networkStatus.jsp 9 35
popUp.html 3 34
retriggerIota 8 41
roleNotFound.jsp 2 102
servicenode.jsp 207 7894
servicetree.jsp 12 124
serviceTrxDetail.jsp 106 2550
sessionTimeout.jsp 8 229
smlogin.html 2 320
userName.jsp 8 26
visionPassword.jsp 6 24
header.inc 10 38
leftNavigation.inc 49 468
errorBucket.inc 91 1941
errorQueue.inc 96 2016
networkStatusResult.inc 146 10696
networkStatusSearch.inc 203 13179
retriggerIotaSearch.inc 179 5889
userNameResult.inc 101 2623
usernameSearch.inc 169 6017
visionPasswordResult.inc 172 5920
visionPasswordSearch.inc 162 5306

Table B.2: Data for Dependent Variables for the Industrial Provisioning Web Applica-
tion

APPENDIX B. EMPIRICAL CASE STUDIES 153

Class Diagram Name NServerP NClientP NWebP NFormP NFormE
error.jsp 3 1 4 1 0
deviceTrx.jsp 3 1 4 0 0
deviceTrxDetail.jsp 3 1 4 2 2
errorBucket.jsp 4 1 5 0 0
help.jsp 1 1 2 0 0
failure.jsp 1 1 2 1 2
logon.jsp 1 1 2 2 10
mainSearch.jsp 3 1 4 2 13
networkStatus.jsp 4 1 5 0 0
popUp.html 0 1 1 0 0
roleNotFound.jsp 1 1 2 0 0
servicenode.jsp 5 1 6 0 0
servicetree.jsp 3 1 4 0 0
serviceTrxDetail.jsp 3 1 4 0 0
sessionTimeout.jsp 4 2 6 0 0
smlogin.html 0 1 1 1 6
userName.jsp 4 1 5 0 0
visionPassword.jsp 4 1 5 0 0
retriggerIota.jsp 4 1 5 0 0
header.inc 1 1 2 0 0
leftNavigation.inc 1 1 2 0 0
errorBucket.inc 1 1 2 0 0
errorQueue.inc 1 1 2 1 1
networkStatusResult.inc 1 1 2 0 0
networkStatusSearch.inc 1 1 2 1 1
retriggerIotaSearch.inc 1 1 2 1 1
userNameResult.inc 1 1 2 0 0
usernameSearch.inc 1 1 2 1 1
visionPasswordResult.inc 1 1 2 0 0
visionPasswordSearch.inc 1 1 2 1 1

Table B.3: Data for Independent Variables for the Industrial Provisioning Web Applica-
tion

APPENDIX B. EMPIRICAL CASE STUDIES 154

Class Diagram Name NLinkR NForwardR NIncludeR NClientScriptComp
error.jsp 0 0 2 0
deviceTrx.jsp 0 0 2 0
deviceTrxDetail.jsp 3 0 2 3
errorBucket.jsp 0 0 3 0
help.jsp 6 0 0 0
failure.jsp 0 0 0 0
logon.jsp 0 0 0 0
mainSearch.jsp 0 0 2 4
networkStatus.jsp 0 0 3 0
popUp.html 0 0 0 0
roleNotFound.jsp 0 0 0 0
servicenode.jsp 0 0 4 0
servicetree.jsp 2 0 2 0
serviceTrxDetail.jsp 0 0 2 0
sessionTimeout.jsp 0 0 2 0
smlogin.html 0 0 0 0
userName.jsp 0 0 3 0
visionPassword.jsp 0 0 3 0
retriggerIota.jsp 0 0 3 0
header.inc 1 0 0 0
leftNavigation.inc 9 0 0 1
errorBucket.inc 2 0 0 1
errorQueue.inc 0 0 0 1
networkStatusResult.inc 0 0 0 0
networkStatusSearch.inc 0 0 0 3
retriggerIotaSearch.inc 0 0 0 2
userNameResult.inc 0 0 0 0
usernameSearch.inc 0 0 0 2
visionPasswordResult.inc 0 0 0 1
visionPasswordSearch.inc 0 0 0 1

Table B.3: Data for Independent Variables for the Industrial Provisioning Web
Application- Continued

APPENDIX B. EMPIRICAL CASE STUDIES 155

Class Diagram Name NServerScriptsComp NC NA NM NAssoc NAgg
error.jsp 3 0 0 0 0 1
deviceTrx.jsp 3 0 0 0 0 0
deviceTrxDetail.jsp 10 6 80 176 6 2
errorBucket.jsp 4 0 0 0 0 0
help.jsp 0 0 0 0 0 0
failure.jsp 2 0 0 0 0 1
logon.jsp 4 7 36 70 6 1
mainSearch.jsp 10 8 41 70 6 2
networkStatus.jsp 8 0 0 0 0 0
popUp.html 0 0 0 0 0 0
roleNotFound.jsp 0 0 0 0 0 0
servicenode.jsp 8 12 218 472 14 0
servicetree.jsp 1 2 8 17 2 0
serviceTrxDetail.jsp 7 5 120 249 6 0
sessionTimeout.jsp 3 0 0 0 0 0
smlogin.html 0 0 0 0 0 1
userName.jsp 7 0 0 0 0 0
visionPassword.jsp 7 0 0 0 0 0
retriggerIota.jsp 9 0 0 0 0 0
header.inc.jsp 1 0 0 0 0 0
leftNavigation.inc 1 0 0 0 0 1
errorBucket.inc 1 5 19 47 5 1
errorQueue.inc 5 5 19 47 5 2
networkStatusResult.inc 3 7 22 46 6 0
networkStatusSearch.inc 4 7 22 46 6 2
retriggerIotaSearch.inc 4 10 186 378 10 2
userNameResult.inc 4 7 34 70 7 0
usernameSearch.inc 4 7 34 70 7 2
visionPasswordResult.inc 3 5 25 58 5 1
visionPasswordSearch.inc 4 5 25 58 5 2

Table B.3: Data for Independent Variables for the Industrial Provisioning Web
Application- Continued

APPENDIX B. EMPIRICAL CASE STUDIES 156

Class Diagram Name CoupEntropy CohesionEntropy BuildWeight SubmitWeight
error.jsp .00385 31.8920 3 0
deviceTrx.jsp .00298 41.2198 3 0
deviceTrxDetail.jsp .00596 20.6099 13 2
errorBucket.jsp .00346 35.5048 4 0
help.jsp .00447 27.4799 0 0
failure.jsp .00298 41.2198 2 2
logon.jsp .00495 24.8168 4 10
mainSearch.jsp .00551 22.2783 14 13
networkStatus.jsp .00346 35.5048 8 0
popUp.html .00000 1.0000 0 0
roleNotFound.jsp .00149 82.4397 0 0
servicenode.jsp .00644 19.0747 8 0
servicetree.jsp .00447 27.4799 1 0
serviceTrxDetail.jsp .00495 24.8168 7 0
sessionTimeout.jsp .00346 35.5048 6 0
smlogin.html .00149 82.4397 0 0
userName.jsp .00346 35.5048 7 0
visionPassword.jsp .00346 35.5048 7 0
retriggerIota.jsp .00346 35.5048 9 0
header.inc .00236 52.0136 1 0
leftNavigation.inc .00534 22.9960 2 0
errorBucket.inc .00495 24.8168 2 0
errorQueue.inc .00495 24.8168 6 1
networkStatusResult.inc .00447 27.4799 3 0
networkStatusSearch.inc .00516 23.8304 7 1
retriggerIotaSearch.inc .00582 21.1011 6 1
userNameResult.inc .00472 26.0068 4 0
usernameSearch.inc .00534 22.9960 6 1
visionPasswordResult.inc .00447 27.4799 4 0
visionPasswordSearch.inc .00495 24.8168 5 1

Table B.3: Data for Independent Variables for the Industrial Provisioning Web
Application- Continued

APPENDIX B. EMPIRICAL CASE STUDIES 157

Class Diagram Name WebControlCoupling WebDataCoupling WebReusability
error.jsp 1.2500 .0000 .5000
deviceTrx.jsp 1.2500 .0000 .5000
deviceTrxDetail.jsp 5.0000 .6667 .5000
errorBucket.jsp 1.4000 .0000 .6000
help.jsp 3.0000 .0000 .0000
failure.jsp 2.0000 2.0000 .0000
logon.jsp 7.0000 10.0000 .0000
mainSearch.jsp 7.2500 4.3333 .5000
networkStatus.jsp 2.2000 .0000 .6000
popUp.html .0000 .0000 .0000
roleNotFound.jsp .0000 .0000 .0000
servicenode.jsp 2.0000 .0000 .6667
servicetree.jsp 1.2500 .0000 .5000
serviceTrxDetail.jsp 2.2500 .0000 .5000
sessionTimeout.jsp 1.3333 .0000 .3333
smlogin.html .0000 .0000 .0000
userName.jsp 2.0000 .0000 .6000
visionPassword.jsp 2.0000 .0000 .6000
retriggerIota.jsp 2.4000 .0000 .6000
header.inc 1.0000 .0000 .0000
leftNavigation.inc 5.5000 .0000 .0000
errorBucket.inc 2.0000 .0000 .0000
errorQueue.inc 3.5000 1.0000 .0000
networkStatusResult.inc 1.5000 .0000 .0000
networkStatusSearch.inc 4.0000 1.0000 .0000
retriggerIotaSearch.inc 3.5000 1.0000 .0000
userNameResult.inc 2.0000 .0000 .0000
usernameSearch.inc 3.5000 1.0000 .0000
visionPasswordResult.inc 2.0000 .0000 .0000
visionPasswordSearch.inc 3.0000 1.0000 .0000

Table B.3: Data for Independent Variables for the Industrial Provisioning Web
Application- Continued

C
WapMetrics Tool

WapMetrics is an open source tool that is used for measuring UML design metrics for

web applications. The tool can be downloaded at http://www.sueblack.co.

uk/WapMetrics.war, and instructions for installation and usage can be found in

Appendix D. WapMetrics provides an automated way to measure UML metrics and has

the ability to show the results in different output formats. This research uses UML

design metrics rather than source code metrics for measuring maintainability as many

studies have shown that early metrics are much more useful [18, 20, 47].

C.1 WapMetrics Tool

It is important to have an automated tool for computing UML metrics from design di-

agrams. WapMetrics is a web tool that takes UML diagrams in XMI [83] format as

input and produces the results in HTML format. The WapMetrics tool has the following

features:

• it can measure and calculate web application metrics from UML diagrams based

on the Conallen model. Most other tools concentrate on UML metrics for object-

oriented applications. In addition to that, it is independent from the CASE tool

used to build the models, and takes an XMI file as input. The XMI file describes

the UML model in a standard way. The XMI input allows the exchange of model

information in a standard way regardless of the CASE tool used to create the XMI

158

APPENDIX C. WAPMETRICS TOOL 159

file.

• it is a web application that can be deployed on a central server and used by many

users without installing it on the client machines. This makes it easy to maintain

and deploy enhancements to the WapMetrics tool.

• it provides interoperability and, the outcome of WapMetrics is user friendly and

easy usable by other tools. WapMetrics allows the output to be exported in several

formats: HTML, XML, pdf, excel, rtf and csv. This allows the output to be used

for statistical reporting and the results to be presented in graphs and other formats.

The WapMetrics tool architecture is composed of three components:

1. Presentation Component: responsible for getting the input from the user and dis-

playing the results in HTML.

2. Controller Component: mainly responsible for communicating back and forth

between the Presentation Component and the Business Component.

3. Business Component: responsible for the parsing and computation of the metrics.

Figure C.1 shows the architecture components of the WapMetrics tool.

C.1.1 Presentation Component

The presentation component provides the user interface for starting the WapMetrics

tool. The presentation component has been implemented with Java, JSP, JavaScript,

HTML and stylesheets. Figure C.2 shows the main screen which has XMI [83] and

email input. The XMI file contains the design of the model in XML [83] format. Many

UML design tools are able to export their design to the XMI format which makes the

tool interoperable with them. The email input allows the user to get an email with the

results once processing is complete, the email input is validated on the client side using

JavaScript to make sure the email has the correct format. Figure C.3 shows part of the

results screen which is implemented using JSP [52] and the display tag [94]. The results

APPENDIX C. WAPMETRICS TOOL 160

Figure C.1: WapMetrics Tool Architecture

screen allows the user to export the result in different output formats. The result can be

exported in XML, pdf, excel, rtf and csv formats.

C.1.2 Controller Component

The controller component is the communication medium between the presentation com-

ponent and business component. It is implemented totally in Java and provides some

validation on the input data. The controller component carries out the validation on the

XMI input file to make sure it is well formatted. If it finds errors in the format, it dis-

plays an error message to the presentation component, otherwise it passes the data to the

business component for further processing.

C.1.3 Business Component

The business component is the main component of the application. It is responsible

for the extraction, analysis and display of the results of the metrics computation. The

APPENDIX C. WAPMETRICS TOOL 161

Figure C.2: WapMetrics MainScreen

Figure C.3: WapMetrics Results Screen

business component is composed of three parts: the parser, metrics processor, and metric

computor. The parser is a wrapper of the SAX parser version SAX 2.0.1. It extracts the

data from the XMI input file and puts the data in object classes. It creates an Array which

has all the diagrams as elements. The array is passed to the metric processor which

extracts all the diagrams and calls the corresponding method on the metric computor.

The metric computor implements the algorithms for computing all the metrics defined

in Table 4.2.1.

C.2 Case Study

C.2.1 Introduction

We use Claros [23]in our case study. Claros is an open source project with the goal of

providing an easy to use personal information suite for its users. This case study uses

Claros inTouch version 2.1 [23]. Claros inTouch is an Ajax communication suite having

the following components: webmail, address, book, post-it notes, calendar, webdisk,

APPENDIX C. WAPMETRICS TOOL 162

Figure C.4: Claros Home Screen [23]

Figure C.5: Claros Contacts Screen [23]

built-in instant messenger and rss reader. It is an open source web application using

web 2.0 technologies.

Figure C.4 shows the home screen for Claros which has tabs for the Mail, Contacts,

Notes, and chat components. In our study we will use the Contacts component shown

in Figure C.5. The Contacts component allows the user to add a new contact, save

contact, send mail to contact, delete contact and save contact as vCard. The Contacts

components stores general information about the user, home address and work address.

APPENDIX C. WAPMETRICS TOOL 163

C.2.2 Data Collection

The WapMetrics tool takes as input class diagrams in XMI format. Unfortunately, there

were no preexisting class diagrams for the Claros web application, so, we set up a run-

ning Claros web application to help us understand, and reverse engineer the Contacts

component of Claros. To run Claros successfully we had to install the following com-

ponents: Java 1.5 or higher which can be downloaded from the SUN website [96], Tom-

cat5.x webserver which can be donwloaded from the apache website [23], MySQL for

the database which can be downloaded from the MySQL download center [23]. After

setting up all the software components, Claros source code was downloaded and added

to the web folder in Tomcat. Finally, we started the webserver and opened the home

page for the Claros web application.

For generating the class diagram for the Claros web application IBM Rational Rose

Enterprise Edition [53] was used. Rational Rose has a visual modeling component,

which can create the design artifacts of a software system. The Web Modeler component

in Rational Rose supports Conallen’s extension for web applications. The Web Modeler

component was used to generate the class diagram for the Contacts components in the

Claros web application. Figure C.6 shows the class diagram for the Contacts component

which was validated by comparing the running Claros web application and the source

code with the class diagram. After the class diagram was validated, Unisys Rose XML

[53] was used to export the UML class diagrams into XML Metadata Interchange (XMI)

[83]. The WapMetrics tool was used to compute the metrics defined in Table 4.2.1 from

the XMI input file.

C.2.3 Results

Table C.4 shows the results of applying the WapMetrics tool on the class diagram shown

in Figure C.6. The results have been validated by computing the metrics manually from

the class diagrams and comparing the output to results from the WapMetrics tool. As

shown in Table C.4 the Contacts component has four server pages (NServerP). The

number of form elements (NFormE) is thirty six which is quite high for a single form

APPENDIX C. WAPMETRICS TOOL 164

Metric Name Value
NServerP 4
NClientP 1
NWebP 5
NFormP 1
NFormE 36
NClientC 19
NLinkR 7
NSubmitR 1
NbuildsR 1
NForwardR 0
NIncludeR 3
NUseTagR 0
WebControlCoupling 2.4
WebDataCoupling 9
WebReusability 0.6
NC 14
NA 60
NM 130
NAssoc 26
NAgg 2

Table C.4: Claros Contacts Component Results

page. The number of client components (NClientC) is nineteen. This is expected since

Claros is an Ajax application and uses a lot of Javascript. The number of methods and

attributes in the controller, model and service classes is also high. The Claros Contacts

component has many classes with sixty attributes and one hundred and thirty methods.

This means that there is a considerable amount of development effort needed on the Java

side of the Contacts component. The metrics results from WapMetrics were as expected

since the Contacts component is one of the biggest components in Claros.

APPENDIX C. WAPMETRICS TOOL 165

Figure C.6: Claros Contacts Class Diagram

D
WapMetrics Source Code

D.1 Installation Instructions

Please follow the following instruction for installing and using the WapMetrics Tool:

1. Download the WapMetrics tool from

http://www.sueblack.co.uk/WapMetrics.war

2. Deploy the WapMetrics.war file to a web server

3. Put the XMI file in your C directory

4. Start the web server and go to the main screen index.jsp

5. Wait till your results are shown on the screen

D.2 XMLFileParser

package w e b m e t r i c s . u t i l s ;

i m p o r t j a v a . i o . P r i n t W r i t e r ; i m p o r t j a v a . u t i l . A r r a y L i s t ; i m p o r t

j a v a . u t i l . HashMap ;

i m p o r t o rg . w3c . dom . Document ; i m p o r t o rg . w3c . dom . Element ; i m p o r t

o rg . w3c . dom . NodeLis t ; i m p o r t o rg . xml . sax . SAXException ; i m p o r t

166

APPENDIX D. WAPMETRICS SOURCE CODE 167

org . xml . sax . SAXParseExcept ion ;

i m p o r t w e b m e t r i c s . domain . ClassDiagram ;

i m p o r t dom . GetElementsByTagName ; i m p o r t dom . P a r s e r W r a p p e r ;

p u b l i c c l a s s XMLFi leParser {

/∗∗ Namespaces f e a t u r e i d (h t t p : / / xml . o rg / sax / f e a t u r e s / namespaces) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g NAMESPACES FEATURE ID =

” h t t p : / / xml . o rg / sax / f e a t u r e s / namespaces ” ;

/∗∗ V a l i d a t i o n f e a t u r e i d (h t t p : / / xml . o rg / sax / f e a t u r e s / v a l i d a t i o n) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g VALIDATION FEATURE ID =

” h t t p : / / xml . o rg / sax / f e a t u r e s / v a l i d a t i o n ” ;

/∗∗

∗ Schema v a l i d a t i o n f e a t u r e i d

∗ (h t t p : / / apache . o rg / xml / f e a t u r e s / v a l i d a t i o n / schema) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g SCHEMA VALIDATION FEATURE ID =

” h t t p : / / apache . o rg / xml / f e a t u r e s / v a l i d a t i o n / schema ” ;

/∗∗

∗ Schema f u l l c h e c k i n g f e a t u r e i d

∗ (h t t p : / / apache . o rg / xml / f e a t u r e s / v a l i d a t i o n / schema−f u l l −c h e c k i n g) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g SCHEMA FULL CHECKING FEATURE ID =

” h t t p : / / apache . o rg / xml / f e a t u r e s / v a l i d a t i o n / schema−f u l l −c h e c k i n g ” ;

/∗∗

∗ Honour a l l schema l o c a t i o n s f e a t u r e i d

APPENDIX D. WAPMETRICS SOURCE CODE 168

∗ (h t t p : / / apache . o rg / xml / f e a t u r e s / honour−a l l −s c h e m a L o c a t i o n s) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g HONOUR ALL SCHEMA LOCATIONS ID =

” h t t p : / / apache . o rg / xml / f e a t u r e s / honour−a l l −s c h e m a L o c a t i o n s ” ;

/∗∗

∗ V a l i d a t e schema a n n o t a t i o n s f e a t u r e i d

∗ (h t t p : / / apache . o rg / xml / f e a t u r e s / v a l i d a t e −a n n o t a t i o n s) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g VALIDATE ANNOTATIONS ID =

” h t t p : / / apache . o rg / xml / f e a t u r e s / v a l i d a t e −a n n o t a t i o n s ” ;

/∗∗

∗ Dynamic v a l i d a t i o n f e a t u r e i d

∗ (h t t p : / / apache . o rg / xml / f e a t u r e s / v a l i d a t i o n / dynamic) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g DYNAMIC VALIDATION FEATURE ID =

” h t t p : / / apache . o rg / xml / f e a t u r e s / v a l i d a t i o n / dynamic ” ;

/∗∗ XInc lude f e a t u r e i d (h t t p : / / apache . o rg / xml / f e a t u r e s / x i n c l u d e) . ∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g XINCLUDE FEATURE ID =

” h t t p : / / apache . o rg / xml / f e a t u r e s / x i n c l u d e ” ;

/∗∗

∗ XInc lude f i x u p base URIs f e a t u r e i d

∗ (h t t p : / / apache . o rg / xml / f e a t u r e s / x i n c l u d e / f i x u p−base−u r i s) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g XINCLUDE FIXUP BASE URIS FEATURE ID =

” h t t p : / / apache . o rg / xml / f e a t u r e s / x i n c l u d e / f i x u p−base−u r i s ” ;

/∗∗

APPENDIX D. WAPMETRICS SOURCE CODE 169

∗ XInc lude f i x u p l a n g u a g e f e a t u r e i d

∗ (h t t p : / / apache . o rg / xml / f e a t u r e s / x i n c l u d e / f i x u p−l a n g u a g e) .

∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g XINCLUDE FIXUP LANGUAGE FEATURE ID =

” h t t p : / / apache . o rg / xml / f e a t u r e s / x i n c l u d e / f i x u p−l a n g u a g e ” ;

/ / d e f a u l t s e t t i n g s

/∗∗ D e f a u l t p a r s e r name (dom . w r a p p e r s . Xerces) . ∗ /

p r o t e c t e d s t a t i c f i n a l S t r i n g DEFAULT PARSER NAME =

”dom . w r a p p e r s . Xerces ” ;

/∗∗ D e f a u l t r e p e t i t i o n (1) . ∗ /

p r o t e c t e d s t a t i c f i n a l i n t DEFAULT REPETITION = 1 ;

/∗∗ D e f a u l t namespaces s u p p o r t (t r u e) . ∗ /

p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT NAMESPACES = t r u e ;

/∗∗ D e f a u l t v a l i d a t i o n s u p p o r t (f a l s e) .

∗ / p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT VALIDATION = f a l s e ;

/∗∗ D e f a u l t Schema v a l i d a t i o n s u p p o r t (f a l s e) . ∗ /

p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT SCHEMA VALIDATION = f a l s e ;

/∗∗ D e f a u l t Schema f u l l c h e c k i n g s u p p o r t (f a l s e) .

∗ /

p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT SCHEMA FULL CHECKING = f a l s e ;

/∗∗ D e f a u l t honour a l l schema l o c a t i o n s (f a l s e) .

∗ /

p r o t e c t e d s t a t i c f i n a l b o o l e a n

DEFAULT HONOUR ALL SCHEMA LOCATIONS = f a l s e ;

/∗∗ D e f a u l t v a l i d a t e schema a n n o t a t i o n s (f a l s e) .

∗ /

APPENDIX D. WAPMETRICS SOURCE CODE 170

p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT VALIDATE ANNOTATIONS = f a l s e ;

/∗∗ D e f a u l t dynamic v a l i d a t i o n s u p p o r t (f a l s e) .

∗ /

p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT DYNAMIC VALIDATION = f a l s e ;

/∗∗ D e f a u l t XInc lude p r o c e s s i n g s u p p o r t (f a l s e) .

∗ /

p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT XINCLUDE = f a l s e ;

/∗∗ D e f a u l t XInc lude f i x u p ba se URIs s u p p o r t (t r u e) .

∗ /

p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT XINCLUDE FIXUP BASE URIS = t r u e ;

/∗∗ D e f a u l t XInc lude f i x u p l a n g u a g e s u p p o r t (t r u e) . ∗ /

p r o t e c t e d s t a t i c f i n a l b o o l e a n DEFAULT XINCLUDE FIXUP LANGUAGE = t r u e ;

p u b l i c s t a t i c P a r s e r W r a p p e r c r e a t e P a r s e r () {

P a r s e r W r a p p e r p a r s e r = n u l l ;

/ / use d e f a u l t p a r s e r ?

i f (p a r s e r == n u l l) {

/ / c r e a t e p a r s e r

t r y {

p a r s e r = (P a r s e r W r a p p e r) C l a s s . forName (DEFAULT PARSER NAME)

. n e w I n s t a n c e () ;

} c a t c h (E x c e p t i o n e) {

System . e r r . p r i n t l n (” e r r o r : Unable t o i n s t a n t i a t e p a r s e r (”

+ DEFAULT PARSER NAME + ”) ”) ;

}

}

r e t u r n p a r s e r ;

}

p u b l i c s t a t i c vo id s e t P a r s e r F e a t u r e s (P a r s e r W r a p p e r p a r s e r) {

APPENDIX D. WAPMETRICS SOURCE CODE 171

b o o l e a n namespaces = DEFAULT NAMESPACES;

b o o l e a n v a l i d a t i o n = DEFAULT VALIDATION ;

b o o l e a n s c h e m a V a l i d a t i o n = DEFAULT SCHEMA VALIDATION ;

b o o l e a n schemaFu l lCheck ing = DEFAULT SCHEMA FULL CHECKING ;

b o o l e a n h o n o u r A l l S c h e m a L o c a t i o n s =

DEFAULT HONOUR ALL SCHEMA LOCATIONS ;

b o o l e a n v a l i d a t e A n n o t a t i o n s = DEFAULT VALIDATE ANNOTATIONS ;

b o o l e a n d y n a m i c V a l i d a t i o n = DEFAULT DYNAMIC VALIDATION ;

b o o l e a n x i n c l u d e P r o c e s s i n g = DEFAULT XINCLUDE ;

b o o l e a n x i n c l u de F i xu p B a se U R I s = DEFAULT XINCLUDE FIXUP BASE URIS ;

b o o l e a n x i n c l u d e F i x u p L a n g u a g e = DEFAULT XINCLUDE FIXUP LANGUAGE ;

t r y {

p a r s e r . s e t F e a t u r e (NAMESPACES FEATURE ID , namespaces) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ NAMESPACES FEATURE ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (VALIDATION FEATURE ID , v a l i d a t i o n) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ VALIDATION FEATURE ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (SCHEMA VALIDATION FEATURE ID , s c h e m a V a l i d a t i o n) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ SCHEMA VALIDATION FEATURE ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (SCHEMA FULL CHECKING FEATURE ID ,

APPENDIX D. WAPMETRICS SOURCE CODE 172

schemaFu l lCheck ing) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ SCHEMA FULL CHECKING FEATURE ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (HONOUR ALL SCHEMA LOCATIONS ID ,

h o n o u r A l l S c h e m a L o c a t i o n s) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ HONOUR ALL SCHEMA LOCATIONS ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (VALIDATE ANNOTATIONS ID , v a l i d a t e A n n o t a t i o n s) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ VALIDATE ANNOTATIONS ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (DYNAMIC VALIDATION FEATURE ID , d y n a m i c V a l i d a t i o n) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ DYNAMIC VALIDATION FEATURE ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (XINCLUDE FEATURE ID , x i n c l u d e P r o c e s s i n g) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ XINCLUDE FEATURE ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (XINCLUDE FIXUP BASE URIS FEATURE ID ,

x i n c lu d e F ix u p B as e U RI s) ;

} c a t c h (SAXException e) {

APPENDIX D. WAPMETRICS SOURCE CODE 173

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ XINCLUDE FIXUP BASE URIS FEATURE ID + ”) ”) ;

}

t r y {

p a r s e r . s e t F e a t u r e (XINCLUDE FIXUP LANGUAGE FEATURE ID ,

x i n c l u d e F i x u p L a n g u a g e) ;

} c a t c h (SAXException e) {

System . e r r . p r i n t l n (” warn ing : P a r s e r does n o t s u p p o r t f e a t u r e (”

+ XINCLUDE FIXUP LANGUAGE FEATURE ID + ”) ”) ;

}

}

p u b l i c s t a t i c Document parseXMIDocument () {

/ / v a r i a b l e s

Document document = n u l l ;

P a r s e r W r a p p e r p a r s e r = n u l l ;

p a r s e r = c r e a t e P a r s e r () ;

/ / s e t p a r s e r f e a t u r e s

s e t P a r s e r F e a t u r e s (p a r s e r) ;

/ / p a r s e f i l e

t r y {

/ / document = p a r s e r . p a r s e (”C : / XMIFiles / i n d u s t 2 d i a g r a m s . xml ”) ;

/ / document = p a r s e r . p a r s e (”C : / XMIFiles / moodle . xml ”) ;

document = p a r s e r . p a r s e (”C : / XMIFiles / c l a r o s 2 . xml ”) ;

}

c a t c h (SAXParseExcept ion e) {

/ / i g n o r e

} c a t c h (E x c e p t i o n e) {

APPENDIX D. WAPMETRICS SOURCE CODE 174

System . e r r . p r i n t l n (” e r r o r : P a r s e e r r o r o c c u r r e d − ”

+ e . ge tMessage ()) ;

E x c e p t i o n se = e ;

i f (e i n s t a n c e o f SAXException) {

se = ((SAXException) e) . g e t E x c e p t i o n () ;

}

i f (s e != n u l l)

s e . p r i n t S t a c k T r a c e (System . e r r) ;

e l s e

e . p r i n t S t a c k T r a c e (System . e r r) ;

}

r e t u r n document ;

}

p u b l i c s t a t i c A r r a y L i s t parseWebModel () {

/ / v a r i a b l e s

A r r a y L i s t d i a g r a m s = new A r r a y L i s t () ;

C lassDiagram c l a s s D i a g r a m = new ClassDiagram () ;

Document document = n u l l ;

P a r s e r W r a p p e r p a r s e r = n u l l ;

p a r s e r = c r e a t e P a r s e r () ;

/ / s e t p a r s e r f e a t u r e s

s e t P a r s e r F e a t u r e s (p a r s e r) ;

/ / p a r s e f i l e

t r y {

/ / document = p a r s e r . p a r s e (”C : / XMIFiles / moodleModel . xml ”) ;

document = p a r s e r . p a r s e (”C : / XMIFiles / c l a r o s c o n t a c t s M o d e l . xml ”) ;

}

c a t c h (SAXParseExcept ion e) {

/ / i g n o r e

APPENDIX D. WAPMETRICS SOURCE CODE 175

} c a t c h (E x c e p t i o n e) {

System . e r r . p r i n t l n (” e r r o r : P a r s e e r r o r o c c u r r e d − ”

+ e . ge tMessage ()) ;

E x c e p t i o n se = e ;

i f (e i n s t a n c e o f SAXException) {

se = ((SAXException) e) . g e t E x c e p t i o n () ;

}

i f (s e != n u l l)

s e . p r i n t S t a c k T r a c e (System . e r r) ;

e l s e

e . p r i n t S t a c k T r a c e (System . e r r) ;

}

NodeLis t e l e m e n t s = document . getElementsByTagName (” c l a s s d i a g r a m ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

c l a s s D i a g r a m . setName

(e l e m e n t . g e t A t t r i b u t e (” name ”)) ;

c l a s s D i a g r a m . s e t S e r v e r p a g e

(getWebModelElement (e lement , ” s e r v e r p a g e ”)) ;

c l a s s D i a g r a m . se tFormpage

(getWebModelElement (e lement , ” formpage ”)) ;

c l a s s D i a g r a m . s e t C l i e n t p a g e

(getWebModelElement (e lement , ” c l i e n t p a g e ”)) ;

c l a s s D i a g r a m . s e t C l i e n t s c r i p t

(getWebModelElement (e lement , ” c l i e n t s c r i p t ”)) ;

c l a s s D i a g r a m . s e t T a g

(getWebModelElement (e lement , ” t a g ”)) ;

c l a s s D i a g r a m . s e t I n t e r f a c e c l a s s

(getWebModelElement (e lement , ” i n t e r f a c e c l a s s ”)) ;

d i a g r a m s . add (c l a s s D i a g r a m) ;

c l a s s D i a g r a m = new ClassDiagram () ;

}

APPENDIX D. WAPMETRICS SOURCE CODE 176

r e t u r n d i a g r a m s ;

}

p r i v a t e s t a t i c A r r a y L i s t getWebModelElement (Element e lement ,

S t r i n g elementName) {

A r r a y L i s t e l e m e n t L i s t = new A r r a y L i s t () ;

NodeLi s t s e r v e r P a g e E l e m e n t s =

e l e m e n t . getElementsByTagName (elementName) ;

f o r (i n t j = 0 ; j < s e r v e r P a g e E l e m e n t s . g e t L e n g t h () ; j ++) {

Element s e r v e l e m e n t = (Element) s e r v e r P a g e E l e m e n t s . i t em (j) ;

e l e m e n t L i s t . add (s e r v e l e m e n t . g e t T e x t C o n t e n t ()) ;

System . o u t . p r i n t l n (s e r v e l e m e n t . g e t T e x t C o n t e n t ()) ;

}

r e t u r n e l e m e n t L i s t ;

}

p u b l i c s t a t i c vo id se tXMIIds (ClassDiagram c la s s Di ag ra m ,

Document document) {

HashMap xmiIDMap = new HashMap () ;

A r r a y L i s t l i s t O f S e r v e r P E l e m e n t s = new A r r a y L i s t () ;

A r r a y L i s t l i s t O f C l i e n t P E l e m e n t s = new A r r a y L i s t () ;

A r r a y L i s t l i s t O f C l i e n t S c r i p t E l e m e n t s = new A r r a y L i s t () ;

A r r a y L i s t l i s t O f F o r m P E l e m e n t s = new A r r a y L i s t () ;

A r r a y L i s t l i s t O f I n t e r f a c e C l a s s E l e m e n t s = new A r r a y L i s t () ;

A r r a y L i s t l i s t O f T a g s = new A r r a y L i s t () ;

l i s t O f S e r v e r P E l e m e n t s = c l a s s D i a g r a m . g e t S e r v e r p a g e () ;

l i s t O f C l i e n t P E l e m e n t s = c l a s s D i a g r a m . g e t C l i e n t p a g e () ;

l i s t O f C l i e n t S c r i p t E l e m e n t s = c l a s s D i a g r a m . g e t C l i e n t s c r i p t () ;

l i s t O f F o r m P E l e m e n t s = c l a s s D i a g r a m . ge tFormpage () ;

l i s t O f I n t e r f a c e C l a s s E l e m e n t s = c l a s s D i a g r a m . g e t I n t e r f a c e c l a s s () ;

l i s t O f T a g s = c l a s s D i a g r a m . ge tTag () ;

NodeLis t e l e m e n t s = document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

f o r (i n t j = 0 ; j < l i s t O f S e r v e r P E l e m e n t s . s i z e () ; j ++) {

APPENDIX D. WAPMETRICS SOURCE CODE 177

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f S e r v e r P E l e m e n t s . g e t (j))) {

System . o u t . p r i n t l n (”Web Elemen t s NAME = ”

+ e l e m e n t . g e t A t t r i b u t e (” name ”)) ;

System . o u t . p r i n t l n (”Web Elemen t s XMI ID = ”

+ e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”)) ;

xmiIDMap . p u t (e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”) , e l e m e n t

. g e t A t t r i b u t e (” name ”)) ;

}

}

f o r (i n t j = 0 ; j < l i s t O f C l i e n t P E l e m e n t s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f C l i e n t P E l e m e n t s . g e t (j))) {

System . o u t . p r i n t l n (”Web Elemen t s NAME = ”

+ e l e m e n t . g e t A t t r i b u t e (” name ”)) ;

System . o u t . p r i n t l n (”Web Elemen t s XMI ID = ”

+ e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”)) ;

xmiIDMap . p u t (e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”) , e l e m e n t

. g e t A t t r i b u t e (” name ”)) ;

}

}

f o r (i n t j = 0 ; j < l i s t O f C l i e n t S c r i p t E l e m e n t s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f C l i e n t S c r i p t E l e m e n t s

. g e t (j))) {

System . o u t . p r i n t l n (”Web Elemen t s NAME = ”

+ e l e m e n t . g e t A t t r i b u t e (” name ”)) ;

System . o u t . p r i n t l n (”Web Elemen t s XMI ID = ”

+ e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”)) ;

xmiIDMap . p u t (e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”) , e l e m e n t

. g e t A t t r i b u t e (” name ”)) ;

}

}

APPENDIX D. WAPMETRICS SOURCE CODE 178

f o r (i n t j = 0 ; j < l i s t O f F o r m P E l e m e n t s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f F o r m P E l e m e n t s . g e t (j))) {

System . o u t . p r i n t l n (”Web Elemen t s NAME = ”

+ e l e m e n t . g e t A t t r i b u t e (” name ”)) ;

System . o u t . p r i n t l n (”Web Elemen t s XMI ID = ”

+ e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”)) ;

xmiIDMap . p u t (e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”) , e l e m e n t

. g e t A t t r i b u t e (” name ”)) ;

}

}

f o r (i n t j = 0 ; j < l i s t O f I n t e r f a c e C l a s s E l e m e n t s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f I n t e r f a c e C l a s s E l e m e n t s

. g e t (j))) {

System . o u t . p r i n t l n (”Web Elemen t s NAME = ”

+ e l e m e n t . g e t A t t r i b u t e (” name ”)) ;

System . o u t . p r i n t l n (”Web Elemen t s XMI ID = ”

+ e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”)) ;

xmiIDMap . p u t (e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”) , e l e m e n t

. g e t A t t r i b u t e (” name ”)) ;

}

}

f o r (i n t j = 0 ; j < l i s t O f T a g s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f T a g s . g e t (j))) {

System . o u t . p r i n t l n (”Web Elemen t s NAME = ”

+ e l e m e n t . g e t A t t r i b u t e (” name ”)) ;

System . o u t . p r i n t l n (”Web Elemen t s XMI ID = ”

+ e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”)) ;

xmiIDMap . p u t (e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”) , e l e m e n t

. g e t A t t r i b u t e (” name ”)) ;

}

APPENDIX D. WAPMETRICS SOURCE CODE 179

}

} c l a s s D i a g r a m . setXmiIDMap (xmiIDMap) ;

}

}

/ / GetElementsByTagName . p r i n t

(out , document , ”UML: A s s o c i a t i o n ” , ” xmi . i d ”) ;

/ / xmi . i d = ’S . 1 6 1 . 1 0 1 5 . 1 7 . 3 8 ’

/ / NodeLis t e l e m e n t s =

document . getElementsByTagName (”UML: S t e r e o t y p e ”) ;

/ / NodeLis t e l e m e n t s =

document . getElementsByTagName (”UML: O p e r a t i o n ”) ;

/ / NodeLis t e l e m e n t s =

document . getElementsByTagName (”UML: A t t r i b u t e ”) ;

/ / NodeLis t e l e m e n t s =

document . getElementsByTagName (”UML: C l a s s ”) ;

/∗

∗ NodeLis t e l e m e n t s =

document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

∗

∗

∗ f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++)

{ Element e l e m e n t =

∗ (Element) e l e m e n t s . i t em (i) ;

NodeLi s t a t t r E l e m e n t s =

∗ e l e m e n t . getElementsByTagName (”UML: O p e r a t i o n ”) ;

f o r (i n t j = 0 ; j <

∗ a t t r E l e m e n t s . g e t L e n g t h () ; j ++)

{ Element e l e m e n t a t t r =

∗ (Element) a t t r E l e m e n t s . i t em (j) ;

/ / i f

∗ (e l e m e n t . g e t A t t r i b u t e (” name ”) .

e q u a l s I g n o r e C a s e (” v i s i o n P a s s w d C l i e n t ”)) {

∗ System . o u t . p r i n t l n (e l e m e n t a t t r . getNodeName ()) ;

APPENDIX D. WAPMETRICS SOURCE CODE 180

∗ System . o u t . p r i n t l n (e l e m e n t a t t r . g e t T e x t C o n t e n t ()) ;

∗ System . o u t . p r i n t l n (e l e m e n t a t t r . g e t A t t r i b u t e (” name ”)) ; } }

∗

∗ System . o u t . p r i n t l n (e l e m e n t . getNodeName ()) ;

∗ System . o u t . p r i n t l n (e l e m e n t . g e t T e x t C o n t e n t ()) ;

∗ System . o u t . p r i n t l n (e l e m e n t . g e t A t t r i b u t e (” name ”)) ; }

∗ /

D.3 MetricProcessor

package w e b m e t r i c s . u t i l s ;

i m p o r t j a v a . i o . P r i n t W r i t e r ; i m p o r t j a v a . u t i l . A r r a y L i s t ;

i m p o r t o rg . w3c . dom . Document ; i m p o r t o rg . w3c . dom . NamedNodeMap ; i m p o r t

o rg . w3c . dom . Node ; i m p o r t o rg . w3c . dom . Text ;

i m p o r t w e b m e t r i c s . domain . ClassDiagram ; i m p o r t

w e b m e t r i c s . domain . M e t r i c E n t r y ; i m p o r t dom . P a r s e r W r a p p e r ;

/∗∗

∗ Th i s f i l e computes t h e m e t r i c f o r t h e webMetr ic t o o l .

∗

∗ @author Emad Ghosheh

∗

∗ @version 1 . 0 : M e t r i c P r o c e s s o r . j a v a

∗ /

p u b l i c c l a s s M e t r i c P r o c e s s o r {

/∗∗ Number o f e l e m e n t s . ∗ /

p r o t e c t e d long f E l e m e n t s ;

/∗∗ Number o f a t t r i b u t e s . ∗ /

p r o t e c t e d long f A t t r i b u t e s ;

APPENDIX D. WAPMETRICS SOURCE CODE 181

/∗∗ Number o f c h a r a c t e r s . ∗ /

p r o t e c t e d long f C h a r a c t e r s ;

/∗∗ Number o f i g n o r a b l e w h i t e s p a c e c h a r a c t e r s . ∗ /

p r o t e c t e d long f I g n o r a b l e W h i t e s p a c e ;

/∗∗ Document i n f o r m a t i o n . ∗ /

p r o t e c t e d P a r s e r W r a p p e r . DocumentInfo fDocument In fo ;

/ /

/ / P u b l i c methods

/ /

p u b l i c A r r a y L i s t e x e c u t e () {

d o u b l e t o t a l C o u p l i n g = 0 . 0 ;

d o u b l e t o t a lN u m b e rO f E l e me n t s = 0 . 0 ;

A r r a y L i s t d i a g r a m s = new A r r a y L i s t () ;

d i a g r a m s = XMLFileParser . parseWebModel () ;

Document document = XMLFi leParser . parseXMIDocument () ;

M e t r i c E n t r y mEntry = new M e t r i c E n t r y () ;

A r r a y L i s t m e t r i c R e s u l t = new A r r a y L i s t () ;

C lassDiagram c l a s s D i a g r a m = new ClassDiagram () ;

f o r (i n t j = 0 ; j < d i a g r a m s . s i z e () ; j ++) {

c l a s s D i a g r a m = (ClassDiagram) d i a g r a m s . g e t (j) ;

t o t a lN u m b e rO f E l e m e n t s = to t a l N um b e r O fE l e m en t s

+ c l a s s D i a g r a m . g e t C l i e n t p a g e () . s i z e ()

+ c l a s s D i a g r a m . g e t C l i e n t s c r i p t () . s i z e ()

+ c l a s s D i a g r a m . ge tFormpage () . s i z e ()

+ c l a s s D i a g r a m . g e t I n t e r f a c e c l a s s () . s i z e ()

+ c l a s s D i a g r a m . g e t S e r v e r p a g e () . s i z e ()

+ c l a s s D i a g r a m . ge tTag () . s i z e () ;

}

c l a s s D i a g r a m = new ClassDiagram () ;

f o r (i n t j = 0 ; j < d i a g r a m s . s i z e () ; j ++) {

c l a s s D i a g r a m = (ClassDiagram) d i a g r a m s . g e t (j) ;

APPENDIX D. WAPMETRICS SOURCE CODE 182

/ / s e t t h e XMI ID HashMap

XMLFileParser . se tXMIIds (c l a s s Di ag ra m , document) ;

mEntry . se tNa

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N A (c l a s s Di ag ra m , document)) ;

mEntry . se tNagg

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N A g g (c l a s s Di ag ra m , document)) ;

mEntry . s e t N a s s o c

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N A s s o c (c l a s s Di ag ra m , document)) ;

mEntry . s e t N b u i l d s r

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N B u i l d s R (c l a s s Di ag ra m , document)) ;

mEntry . se tNc

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N C (c l a s s Di ag ra m , document)) ;

mEntry . s e t N c l i e n t p

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N C l i e n t P (c l a s s Di ag ra m , document)) ;

mEntry . s e t N c l i e n t s c r i p t s c o m p

(M e t r i c C o m p u t a t i o n .

c a l c u l a t e N C l i e n t S c r i p t s C o m p (c l a s s Di ag ra m , document)) ;

mEntry . se tNforme

(M e t r i c C o m p u t a t i o n . ca l cu l a t eNFormE (c l a s s Di ag ra m , document)) ;

mEntry . se tNformp

(M e t r i c C o m p u t a t i o n . ca l cu l a t e N Form P (c l a s s Di ag ra m , document)) ;

mEntry . s e t N f o r w a r d r

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N F o r w a r d R (c l a s s Di ag ra m , document)) ;

mEntry . s e t N i n c l u d e r

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N I n c l u d e R (c l a s s Di ag ra m , document)) ;

APPENDIX D. WAPMETRICS SOURCE CODE 183

mEntry . s e t N l i n k r

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N L i n k R T e s t (c l a s s Di ag ra m , document)) ;

mEntry . setNm

(M e t r i c C o m p u t a t i o n . ca l cu la t eNM (c l a s s Di ag ra m , document)) ;

mEntry . s e t N s e r v e r p

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N s e r v e r P (c l a s s Di ag ra m , document)) ;

mEntry . s e t N s e r v e r s c r i p t s c o m p (M e t r i c C o m p u t a t i o n .

c a l c u l a t e N S e r v e r S c r i p t s C o m p (c l a s s D i ag ra m , document)) ;

/ / f i x i n g N s e r v e r S c r i p t s s i n c e i t i n c l u d e s number o f c l i e n t s c r i p t s

/ / S t r i n g nCl ien tTemp = mEntry . g e t N c l i e n t s c r i p t s c o m p () ;

/ / S t r i n g nFormETemp = mEntry . getNforme () ;

/ / i n t n S e r v I n t = Math . abs (I n t e g e r . p a r s e I n t (nFormETemp) −

/ / I n t e g e r . p a r s e I n t (nCl ien tTemp)) ;

/ / mEntry . s e t N s e r v e r s c r i p t s c o m p (S t r i n g . va lueOf (n S e r v I n t)) ;

mEntry . s e t N s u b m i t r

(M e t r i c C o m p u t a t i o n . c a l c u l a t e N S u b m i t R (c l a s s Di ag ra m , document)) ;

mEntry . s e t N u s e T a g r

(M e t r i c C o m p u t a t i o n . ca l cu la t eNUseTagR (c l a s s Di ag ra m , document)) ;

mEntry . setNwebp

(M e t r i c C o m p u t a t i o n . ca lcu la teNWebP (c l a s s Di ag ra m , document)) ;

mEntry . s e t W e b c o n t r o l c o u p l i n g

(M e t r i c C o m p u t a t i o n .

c a l c u l a t e W e b C o n t r o l C o u p l i n g (c l a s s D i ag ra m , document)) ;

mEntry . s e t W e b d a t a c o u p l i n g

(M e t r i c C o m p u t a t i o n

. c a l c u l a t e W e b D a t a C o u p l i n g (c l a s sD i a g r a m , document)) ;

APPENDIX D. WAPMETRICS SOURCE CODE 184

mEntry . s e t W e b r e u s a b i l i t y

(M e t r i c C o m p u t a t i o n . c a l c u l a t e W e b R e u s a b i l i t y (

c l a s s D i a g r am , document)) ;

mEntry . s e t C o u p e n t r o p y

(M e t r i c C o m p u t a t i o n . c a l c u l a t e C o u p E n t r o p y (

c l a s sD ia g r a m , document , mEntry , t o t a l Nu m b e r Of E l e m en t s)) ;

mEntry . s e t D i a g r a m

(c l a s s D i a g r a m . getName ()) ;

t o t a l C o u p l i n g = t o t a l C o u p l i n g

+ Double . p a r s e D o u b l e (mEntry . g e t C o u p e n t r o p y ()) ;

m e t r i c R e s u l t . add (mEntry) ;

c l a s s D i a g r a m = new ClassDiagram () ;

mEntry = new M e t r i c E n t r y () ;

}

f o r (i n t k = 0 ; k < m e t r i c R e s u l t . s i z e () ; k ++) {

mEntry = (M e t r i c E n t r y) m e t r i c R e s u l t . g e t (k) ;

mEntry . s e t C o h e s i o n e n t r o p y (M e t r i c C o m p u t a t i o n

. c a l c u l a t e C o h e s i o n E n t r o p y (mEntry , t o t a l C o u p l i n g)) ;

}

r e t u r n m e t r i c R e s u l t ;

}

/∗∗ S e t s t h e p a r s e r wrapper . ∗ /

p u b l i c vo id s e t D o c u m e n t I n f o

(P a r s e r W r a p p e r . DocumentInfo documen t In fo) {

fDocument In fo = documen t In fo ;

} / / s e t D o c u m e n t I n f o (P a r s e r W r a p p e r . DocumentInfo)

/∗∗ T r a v e r s e s t h e s p e c i f i e d node , r e c u r s i v e l y . ∗ /

p u b l i c vo id c o u n t (Node node) {

APPENDIX D. WAPMETRICS SOURCE CODE 185

/ / i s t h e r e a n y t h i n g t o do ?

i f (node == n u l l) {

r e t u r n ;

}

i n t t y p e = node . getNodeType () ;

s w i t c h (t y p e) {

c a s e Node .DOCUMENT NODE: {

f E l e m e n t s = 0 ;

f A t t r i b u t e s = 0 ;

f C h a r a c t e r s = 0 ;

f I g n o r a b l e W h i t e s p a c e = 0 ;

Document document = (Document) node ;

c o u n t (document . ge tDocumentElement ()) ;

b r e a k ;

}

c a s e Node . ELEMENT NODE: {

f E l e m e n t s ++;

NamedNodeMap a t t r s = node . g e t A t t r i b u t e s () ;

i f (a t t r s != n u l l) {

f A t t r i b u t e s += a t t r s . g e t L e n g t h () ;

}

/ / d rop t h r o u g h t o e n t i t y r e f e r e n c e

}

c a s e Node . ENTITY REFERENCE NODE : {

Node c h i l d = node . g e t F i r s t C h i l d () ;

w h i l e (c h i l d != n u l l) {

c o u n t (c h i l d) ;

c h i l d = c h i l d . g e t N e x t S i b l i n g () ;

}

b r e a k ;

}

APPENDIX D. WAPMETRICS SOURCE CODE 186

c a s e Node . CDATA SECTION NODE : {

f C h a r a c t e r s += ((Text) node) . g e t L e n g t h () ;

b r e a k ;

}

c a s e Node . TEXT NODE : {

i f (fDocument In fo != n u l l) {

Text t e x t = (Text) node ;

i n t l e n g t h = t e x t . g e t L e n g t h () ;

i f (fDocument In fo . i s I g n o r a b l e W h i t e s p a c e (t e x t)) {

f I g n o r a b l e W h i t e s p a c e += l e n g t h ;

} e l s e {

f C h a r a c t e r s += l e n g t h ;

}

}

b r e a k ;

}

}

} / / c o u n t (Node)

/∗∗ P r i n t s t h e r e s u l t s . ∗ /

p u b l i c vo id p r i n t R e s u l t s

(P r i n t W r i t e r out , S t r i n g u r i , l o ng p a r s e ,

l ong t r a v e r s e 1 , l ong t r a v e r s e 2 , i n t r e p e t i t i o n) {

/ / f i l e n a m e . xml :

/ / 6 3 1 / 2 0 0 / 1 0 0 ms (4 elems , 0 a t t r s , 78 spaces , 0 c h a r s)

o u t . p r i n t (u r i) ;

o u t . p r i n t (” : ”) ;

i f (r e p e t i t i o n == 1) {

o u t . p r i n t (p a r s e) ;

} e l s e {

o u t . p r i n t (p a r s e) ;

o u t . p r i n t (’ / ’) ;

APPENDIX D. WAPMETRICS SOURCE CODE 187

o u t . p r i n t (r e p e t i t i o n) ;

o u t . p r i n t (’ = ’) ;

o u t . p r i n t (p a r s e / r e p e t i t i o n) ;

}

o u t . p r i n t (’ ; ’) ;

o u t . p r i n t (t r a v e r s e 1) ;

o u t . p r i n t (’ ; ’) ;

o u t . p r i n t (t r a v e r s e 2) ;

o u t . p r i n t (” ms (”) ;

o u t . p r i n t (f E l e m e n t s) ;

o u t . p r i n t (” elems , ”) ;

o u t . p r i n t (f A t t r i b u t e s) ;

o u t . p r i n t (” a t t r s , ”) ;

o u t . p r i n t (f I g n o r a b l e W h i t e s p a c e) ;

o u t . p r i n t (” spaces , ”) ;

o u t . p r i n t (f C h a r a c t e r s) ;

o u t . p r i n t (” c h a r s) ”) ;

o u t . p r i n t l n () ;

o u t . f l u s h () ;

} / / p r i n t R e s u l t s (P r i n t W r i t e r , S t r i n g , long , long , l ong)

}

D.4 MetricComputation

/∗∗

∗

∗ /

package w e b m e t r i c s . u t i l s ;

i m p o r t j a v a . u t i l . A r r a y L i s t ; i m p o r t j a v a . u t i l . HashMap ;

i m p o r t o rg . w3c . dom . Document ; i m p o r t o rg . w3c . dom . Element ; i m p o r t

o rg . w3c . dom . NodeLis t ;

APPENDIX D. WAPMETRICS SOURCE CODE 188

i m p o r t w e b m e t r i c s . domain . ClassDiagram ; i m p o r t

w e b m e t r i c s . domain . M e t r i c E n t r y ;

/∗∗

∗ @author Emad Ghosheh 2008 T h i s c l a s s computes a l l t h e m e t r i c s

∗

∗ /

p u b l i c c l a s s M e t r i c C o m p u t a t i o n {

p u b l i c s t a t i c S t r i n g c a l c u l a t e N s e r v e r P

(ClassDiagram c l a s sD i ag r a m ,

Document document) {

S t r i n g n s e r v e r P = ” ” ;

i n t numberOfServerP = 0 ;

A r r a y L i s t l i s t O f S e r v e r P a g e s = new A r r a y L i s t () ;

l i s t O f S e r v e r P a g e s =

c l a s s D i a g r a m . g e t S e r v e r p a g e () ;

NodeLi s t e l e m e n t s =

document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

f o r (i n t j = 0 ; j < l i s t O f S e r v e r P a g e s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f S e r v e r P a g e s . g e t (j))) {

numberOfServerP ++;

}

}

}

n s e r v e r P = S t r i n g . va lueOf (numberOfServerP) ;

APPENDIX D. WAPMETRICS SOURCE CODE 189

r e t u r n n s e r v e r P ;

}

p u b l i c s t a t i c S t r i n g ca lcu la teNWebP (ClassDiagram c la s s Di ag ra m ,

Document document) {

S t r i n g nWebP = ” ” ;

i n t nWebPagesCount = I n t e g e r . p a r s e I n

t (c a l c u l a t e N C l i e n t P (c l a s sD i a g r a m ,

document))

+ I n t e g e r . p a r s e I n t

(c a l c u l a t e N s e r v e r P (c l a s s D i ag r a m , document)) ;

r e t u r n nWebP = S t r i n g . va lueOf (nWebPagesCount) ;

}

p u b l i c s t a t i c S t r i n g c a l cu l a t e N Form P (ClassDiagram c la s s Di ag ra m ,

Document document) {

S t r i n g nFormP = ” ” ;

i n t numberOfFormP = 0 ;

A r r a y L i s t l i s t O f F o r m P a g e s = new A r r a y L i s t () ;

l i s t O f F o r m P a g e s = c l a s s D i a g r a m . ge tFormpage () ;

NodeLi s t e l e m e n t s =

document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

f o r (i n t j = 0 ; j < l i s t O f F o r m P a g e s . s i z e () ; j ++) {

APPENDIX D. WAPMETRICS SOURCE CODE 190

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f F o r m P a g e s . g e t (j))) {

numberOfFormP ++;

}

}

}

nFormP = S t r i n g . va lueOf (numberOfFormP) ;

r e t u r n nFormP ;

}

p u b l i c s t a t i c S t r i n g ca l cu l a t eNFormE (ClassDiagram c la s s Di ag ra m ,

Document document) {

S t r i n g nFormE = ” ” ;

i n t numberOfFormElements = 0 ;

A r r a y L i s t l i s t F o r m P a g e s = new A r r a y L i s t () ;

l i s t F o r m P a g e s = c l a s s D i a g r a m . ge tFormpage () ;

NodeLi s t e l e m e n t s =

document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

APPENDIX D. WAPMETRICS SOURCE CODE 191

f o r (i n t j = 0 ; j < l i s t F o r m P a g e s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t F o r m P a g e s . g e t (j))) {

NodeLis t e l e m e n t s A t t r i b u t e s = e l e m e n t

. getElementsByTagName (”UML: A t t r i b u t e ”) ;

numberOfFormElements = numberOfFormElements

+ e l e m e n t s A t t r i b u t e s . g e t L e n g t h () ;

}

}

}

nFormE = S t r i n g . va lueOf (numberOfFormElements) ;

r e t u r n nFormE ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N L i n k R (ClassDiagram c la s s Di ag ra m ,

Document document) {

S t r i n g nLinkR = ” ” ;

i n t numberOfLinkR = 0 ;

APPENDIX D. WAPMETRICS SOURCE CODE 192

HashMap s t e r o t y p e H a s h m a p = c r e a t e S t e r o t y p e H a s h M a p (document) ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

NodeLi s t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t (c l a s s Di ag ra m ,

e l em en t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) != n u l l

&& e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () > 0) {

S t r i n g x m i S t e r e o t y p e = e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) ;

i f (s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e) != n u l l

&& ((S t r i n g) s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e))

. e q u a l s I g n o r e C a s e (” l i n k ”)) {

numberOfLinkR ++;

APPENDIX D. WAPMETRICS SOURCE CODE 193

}

}

}

}

nLinkR = S t r i n g . va lueOf (numberOfLinkR) ;

r e t u r n nLinkR ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N L i n k R T e s t

(C lassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g nLinkR = ” ” ;

i n t numberOfLinkR = 0 ;

HashMap s t e r o t y p e H a s h m a p = c r e a t e S t e r o t y p e H a s h M a p (document) ;

NodeLis t e l e m e n t s = document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

NodeLi s t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

APPENDIX D. WAPMETRICS SOURCE CODE 194

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t A s s o c (c l a s s Di ag ra m ,

e l em en t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) != n u l l

&& e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () > 0) {

S t r i n g x m i S t e r e o t y p e = e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) ;

i f (s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e) != n u l l

&& ((S t r i n g) s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e))

. e q u a l s I g n o r e C a s e (” l i n k ”)) {

numberOfLinkR ++;

}

}

}

}

nLinkR = S t r i n g . va lueOf (numberOfLinkR) ;

r e t u r n nLinkR ;

}

APPENDIX D. WAPMETRICS SOURCE CODE 195

p u b l i c s t a t i c S t r i n g c a l c u l a t e N S u b m i t R (ClassDiagram c la s s Di ag ra m ,

Document document) {

S t r i n g nSubmitR = ” ” ;

i n t numberOfSubmitR = 0 ;

HashMap s t e r o t y p e H a s h m a p = c r e a t e S t e r o t y p e H a s h M a p (document) ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

NodeLi s t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t (c l a s s Di ag ra m ,

e l eme n t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) != n u l l

&& e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () > 0) {

APPENDIX D. WAPMETRICS SOURCE CODE 196

S t r i n g x m i S t e r e o t y p e = e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) ;

i f (s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e) != n u l l

&& ((S t r i n g) s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e))

. e q u a l s I g n o r e C a s e (” s ub m i t ”)) {

numberOfSubmitR ++;

}

}

}

}

nSubmitR = S t r i n g . va lueOf (numberOfSubmitR) ;

r e t u r n nSubmitR ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N B u i l d s R (ClassDiagram c la s s Di ag ra m ,

Document document) {

S t r i n g nBui ldsR = ” ” ;

i n t numberOfBuildsR = 0 ;

HashMap s t e r o t y p e H a s h m a p = c r e a t e S t e r o t y p e H a s h M a p (document) ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

APPENDIX D. WAPMETRICS SOURCE CODE 197

NodeLis t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t

(c l a s sD ia g r am ,

e l em en t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) != n u l l

&& e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () > 0) {

S t r i n g x m i S t e r e o t y p e = e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) ;

i f (s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e) != n u l l

&& ((S t r i n g) s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e))

. e q u a l s I g n o r e C a s e (” B u i l d ”)) {

numberOfBuildsR ++;

}

}

}

}

nBui ldsR = S t r i n g . va lueOf (numberOfBuildsR) ;

APPENDIX D. WAPMETRICS SOURCE CODE 198

r e t u r n nBui ldsR ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N C l i e n t P

(ClassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g n C l i e n t P = ” ” ;

i n t numberOfCl ien tP = 0 ;

A r r a y L i s t l i s t O f C l i e n t P a g e s = new A r r a y L i s t () ;

l i s t O f C l i e n t P a g e s = c l a s s D i a g r a m . g e t C l i e n t p a g e () ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

f o r (i n t j = 0 ; j < l i s t O f C l i e n t P a g e s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f C l i e n t P a g e s . g e t (j))) {

numberOfCl ien tP ++;

}

}

}

n C l i e n t P = S t r i n g . va lueOf (numberOfCl ien tP) ;

r e t u r n n C l i e n t P ;

APPENDIX D. WAPMETRICS SOURCE CODE 199

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N F o r w a r d R

(ClassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g nForwardR = ” ” ;

i n t numberOfForwardR = 0 ;

HashMap s t e r o t y p e H a s h m a p =

c r e a t e S t e r o t y p e H a s h M a p (document) ;

NodeLi s t e l e m e n t s =

document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

NodeLi s t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t (c l a s s Di ag ra m ,

e l em en t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) != n u l l

APPENDIX D. WAPMETRICS SOURCE CODE 200

&& e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () > 0) {

S t r i n g x m i S t e r e o t y p e = e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) ;

i f (s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e) != n u l l

&& ((S t r i n g) s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e))

. e q u a l s I g n o r e C a s e (” f o r w a r d ”)) {

numberOfForwardR ++;

}

}

}

}

nForwardR = S t r i n g . va lueOf (numberOfForwardR) ;

r e t u r n nForwardR ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N I n c l u d e R

(ClassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g n Inc ludeR = ” ” ;

i n t numberOfIncludeR = 0 ;

HashMap s t e r o t y p e H a s h m a p = c r e a t e S t e r o t y p e H a s h M a p (document) ;

NodeLi s t e l e m e n t s =

document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

NodeLi s t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

APPENDIX D. WAPMETRICS SOURCE CODE 201

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t

(c l a s sD ia g r am ,

e l emen t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) != n u l l

&& e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () > 0) {

S t r i n g x m i S t e r e o t y p e = e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) ;

i f (s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e) != n u l l

&& ((S t r i n g) s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e))

. e q u a l s I g n o r e C a s e (” I n c l u d e ”)) {

numberOfIncludeR ++;

}

}

}

}

nInc ludeR = S t r i n g . va lueOf (numberOfIncludeR) ;

r e t u r n n Inc ludeR ;

}

APPENDIX D. WAPMETRICS SOURCE CODE 202

p r i v a t e s t a t i c b o o l e a n i s P a r t i c i p a t e E l e m e n t

(ClassDiagram c l a s sD i ag ra m ,

NodeLis t e l emen t s , NodeLi s t e l e m e n t s A s s i a t i o n E n d) {

b o o l e a n i s P a r t i c i p a t e = f a l s e ;

f o r (i n t k = 0 ; k < e l e m e n t s A s s i a t i o n E n d . g e t L e n g t h () ; k ++) {

Element e l e m e n t A s s o c i a t i o n E n d = (Element) e l e m e n t s A s s i a t i o n E n d

. i t em (k) ;

i f (c l a s s D i a g r a m . getXmiIDMap () . g e t (

e l e m e n t A s s o c i a t i o n E n d . g e t A t t r i b u t e (” p a r t i c i p a n t ”)) != n u l l) {

i s P a r t i c i p a t e = t r u e ;

}

}

r e t u r n i s P a r t i c i p a t e ;

}

p r i v a t e s t a t i c b o o l e a n i s P a r t i c i p a t e E l e m e n t A s s o c

(ClassDiagram c l a s sD i ag ra m ,

NodeLis t e l emen t s , NodeLi s t e l e m e n t s A s s i a t i o n E n d) {

b o o l e a n i s P a r t i c i p a t e = f a l s e ;

i n t c o u n t = 0 ;

APPENDIX D. WAPMETRICS SOURCE CODE 203

f o r (i n t k = 0 ; k < e l e m e n t s A s s i a t i o n E n d . g e t L e n g t h () ; k ++) {

Element e l e m e n t A s s o c i a t i o n E n d = (Element) e l e m e n t s A s s i a t i o n E n d

. i t em (k) ;

i f (c l a s s D i a g r a m . getXmiIDMap () . g e t (

e l e m e n t A s s o c i a t i o n E n d . g e t A t t r i b u t e (” p a r t i c i p a n t ”)) != n u l l) {

c o u n t ++;

}

i f (c o u n t == 2) {

i s P a r t i c i p a t e = t r u e ;

}

}

r e t u r n i s P a r t i c i p a t e ;

}

p r i v a t e s t a t i c b o o l e a n i s A g g r e g a t i o n R e l a t i o n S h i p

(NodeLis t e l emen t s ,

NodeLi s t e l e m e n t s A s s i a t i o n E n d) {

b o o l e a n i s A g g r e g a t e = f a l s e ;

f o r (i n t k = 0 ; k < e l e m e n t s A s s i a t i o n E n d . g e t L e n g t h () ; k ++) {

Element e l e m e n t A s s o c i a t i o n E n d = (Element) e l e m e n t s A s s i a t i o n E n d

. i t em (k) ;

i f (e l e m e n t A s s o c i a t i o n E n d . g e t A t t r i b u t e (” a g g r e g a t i o n ”) != n u l l

APPENDIX D. WAPMETRICS SOURCE CODE 204

&& e l e m e n t A s s o c i a t i o n E n d . g e t A t t r i b u t e (” a g g r e g a t i o n ”)

. e q u a l s I g n o r e C a s e (” a g g r e g a t e ”)) {

i s A g g r e g a t e = t r u e ;

}

}

r e t u r n i s A g g r e g a t e ;

}

p u b l i c s t a t i c S t r i n g ca lcu la t eNUseTagR (ClassDiagram c la s s Di ag ra m ,

Document document) {

S t r i n g nUseTagR = ” ” ;

i n t numberOfUseTagR = 0 ;

HashMap s t e r o t y p e H a s h m a p = c r e a t e S t e r o t y p e H a s h M a p (document) ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

NodeLi s t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t (c l a s s Di ag ra m ,

APPENDIX D. WAPMETRICS SOURCE CODE 205

e l emen t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) != n u l l

&& e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () > 0) {

S t r i n g x m i S t e r e o t y p e = e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) ;

i f (s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e) != n u l l

&& ((S t r i n g) s t e r o t y p e H a s h m a p . g e t (x m i S t e r e o t y p e))

. e q u a l s I g n o r e C a s e (” useTag ”)) {

numberOfUseTagR ++;

}

}

}

}

nUseTagR = S t r i n g . va lueOf (numberOfUseTagR) ;

r e t u r n nUseTagR ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N C l i e n t S c r i p t s C o m p

(ClassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g n C l i e n t S c r i p t s C o m p = ” ” ;

APPENDIX D. WAPMETRICS SOURCE CODE 206

i n t numberOfCl i en tSc r ip tComp = 0 ;

A r r a y L i s t l i s t C l i e n t S c r i p t P a g e s = new A r r a y L i s t () ;

l i s t C l i e n t S c r i p t P a g e s = c l a s s D i a g r a m . g e t C l i e n t s c r i p t () ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

f o r (i n t j = 0 ; j < l i s t C l i e n t S c r i p t P a g e s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t C l i e n t S c r i p t P a g e s . g e t (j))) {

NodeLis t e l e m e n t s A t t r i b u t e s = e l e m e n t

. getElementsByTagName (”UML: A t t r i b u t e ”) ;

NodeLi s t e l e m e n t s O p e r a t i o n s = e l e m e n t

.

getElementsByTagName (”UML: O p e r a t i o n ”) ;

numberOfCl i en tSc r ip tComp = numberOfCl i en tSc r ip tComp

+ e l e m e n t s A t t r i b u t e s . g e t L e n g t h ()

+ e l e m e n t s O p e r a t i o n s . g e t L e n g t h () ;

}

}

}

APPENDIX D. WAPMETRICS SOURCE CODE 207

n C l i e n t S c r i p t s C o m p = S t r i n g . va lueOf (numberOfCl i en tSc r ip tComp) ;

r e t u r n n C l i e n t S c r i p t s C o m p ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N S e r v e r S c r i p t s C o m p

(ClassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g n S e r v e r S c r i p t s C o m p = ” ” ;

i n t numberOfServe rScr ip t sComp = 0 ;

A r r a y L i s t l i s t S e r v e r S c r i p t P a g e s = new A r r a y L i s t () ;

l i s t S e r v e r S c r i p t P a g e s = c l a s s D i a g r a m . g e t S e r v e r p a g e () ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

f o r (i n t j = 0 ; j < l i s t S e r v e r S c r i p t P a g e s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t S e r v e r S c r i p t P a g e s . g e t (j))) {

NodeLis t e l e m e n t s A t t r i b u t e s = e l e m e n t

APPENDIX D. WAPMETRICS SOURCE CODE 208

. getElementsByTagName (”UML: A t t r i b u t e ”) ;

NodeLi s t e l e m e n t s O p e r a t i o n s = e l e m e n t

. getElementsByTagName (”UML: O p e r a t i o n ”) ;

numberOfServe rScr ip t sComp = numberOfServe rScr ip t sComp

+ e l e m e n t s A t t r i b u t e s . g e t L e n g t h ()

+ e l e m e n t s O p e r a t i o n s . g e t L e n g t h () ;

}

}

}

n S e r v e r S c r i p t s C o m p = S t r i n g . va lueOf (numberOfServe rScr ip t sComp) ;

r e t u r n n S e r v e r S c r i p t s C o m p ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e W e b C o n t r o l C o u p l i n g

(ClassDiagram c l a s sD i ag r a m ,

Document document) {

S t r i n g webCon t ro lCoup l ing = ” ” ;

do ub l e webContro lCoupl ingNumber = 0 ;

do ub l e t o t a l N u m b e r O f R e l a t i o n s h i p = 0 ;

APPENDIX D. WAPMETRICS SOURCE CODE 209

dou b l e toat lNumberOfWebPages = 0 ;

t o t a l N u m b e r O f R e l a t i o n s h i p = I n t e g e r . p a r s e I n t (c a l c u l a t e N B u i l d s R (

c l a s s D i a g r am , document))

+ I n t e g e r . p a r s e I n t (c a l c u l a t e N F o r w a r d R (c l a s sD ia g r am , document))

+ I n t e g e r . p a r s e I n t (c a l c u l a t e N L i n k R (c l a s s Di ag ra m , document))

+ I n t e g e r . p a r s e I n t (c a l c u l a t e N S u b m i t R (c l a s s Di ag ra m , document))

+ I n t e g e r . p a r s e I n t (ca l cu la t eNUseTagR (c l a s s Di ag ra m , document))

+ I n t e g e r . p a r s e I n t (c a l c u l a t e N I n c l u d e R (c l a s s Di ag ra m , document)) ;

toat lNumberOfWebPages = I n t e g e r . p a r s e I n t (ca lcu la teNWebP (c l a s s Di ag ra m ,

document)) ;

i f (toat lNumberOfWebPages != 0) {

webContro lCoupl ingNumber = t o t a l N u m b e r O f R e l a t i o n s h i p

/ toat lNumberOfWebPages ;

} e l s e {

webContro lCoupl ingNumber = 0 ;

}

webCon t ro lCoup l ing = S t r i n g . va lueOf (webContro lCoupl ingNumber) ;

r e t u r n webCon t ro lCoup l ing ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e W e b D a t a C o u p l i n g

APPENDIX D. WAPMETRICS SOURCE CODE 210

(C lassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g webDataCoupl ing = ” ” ;

do ub l e webDataCouplingNumber = 0 ;

do ub l e to ta lNumberOfFormElements = 0 ;

do ub l e t o t a l N u m b e r O f S e r v e r P a g e s = 0 ;

to ta lNumberOfFormElements = I n t e g e r . p a r s e I n t (ca l cu la t eNFormE (

c l a s s Di ag r a m , document)) ;

t o t a l N u m b e r O f S e r v e r P a g e s = I n t e g e r . p a r s e I n t (c a l c u l a t e N s e r v e r P (

c l a s s Di ag r a m , document)) ;

i f (t o t a l N u m b e r O f S e r v e r P a g e s != 0) {

webDataCouplingNumber = to ta lNumberOfFormElements

/ t o t a l N u m b e r O f S e r v e r P a g e s ;

} e l s e {

webDataCouplingNumber = 0 ;

}

webDataCoupl ing = S t r i n g . va lueOf (webDataCouplingNumber) ;

r e t u r n webDataCoupl ing ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e W e b R e u s a b i l i t y

(ClassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g w e b R e u s a b i l i t y = ” ” ;

do ub l e webReusab i l i t yNumber = 0 ;

do ub l e t o t a l N u m b e r O f I n c l u d e R e l a t i o n s h i p = 0 ;

do ub l e tota lNumberOfWebPages = 0 ;

t o t a l N u m b e r O f I n c l u d e R e l a t i o n s h i p =

I n t e g e r . p a r s e I n t (c a l c u l a t e N I n c l u d e R (

c l a s s Di ag r a m , document)) ;

to ta lNumberOfWebPages =

APPENDIX D. WAPMETRICS SOURCE CODE 211

I n t e g e r . p a r s e I n t (ca lcu la teNWebP (c l a s s Di ag ra m ,

document)) ;

i f (to ta lNumberOfWebPages != 0) {

webReusab i l i t yNumber =

t o t a l N u m b e r O f I n c l u d e R e l a t i o n s h i p

/ to ta lNumberOfWebPages ;

} e l s e {

webReusab i l i t yNumber = 0 ;

}

w e b R e u s a b i l i t y =

S t r i n g . va lueOf (webReusab i l i t yNumber) ;

r e t u r n w e b R e u s a b i l i t y ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N C

(ClassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g nC = ” ” ;

i n t numberOfClasses = 0 ;

A r r a y L i s t l i s t O f I n t e f a c e C l a s s e s = new A r r a y L i s t () ;

l i s t O f I n t e f a c e C l a s s e s =

c l a s s D i a g r a m . g e t I n t e r f a c e c l a s s () ;

NodeLi s t e l e m e n t s =

document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t =

(Element) e l e m e n t s . i t em (i) ;

f o r (i n t j = 0 ; j < l i s t O f I n t e f a c e C l a s s e s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t O f I n t e f a c e C l a s s e s . g e t (j))) {

numberOfClasses ++;

}

}

}

APPENDIX D. WAPMETRICS SOURCE CODE 212

nC = S t r i n g . va lueOf (numberOfClasses) ;

r e t u r n nC ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N A

(ClassDiagram c l a s sD i ag r a m ,

Document document) {

S t r i n g nA = ” ” ;

i n t n u m b e r O f A t t r i b u t e s = 0 ;

A r r a y L i s t l i s t C l a s s e s = new A r r a y L i s t () ;

l i s t C l a s s e s =

c l a s s D i a g r a m . g e t I n t e r f a c e c l a s s () ;

NodeLi s t e l e m e n t s =

document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t =

(Element) e l e m e n t s . i t e m (i) ;

f o r (i n t j = 0 ; j < l i s t C l a s s e s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

.

e q u a l s I g n o r e C a s e ((S t r i n g) l i s t C l a s s e s . g e t (j))) {

NodeLis t e l e m e n t s A t t r i b u t e s = e l e m e n t

. getElementsByTagName (”UML: A t t r i b u t e ”) ;

n u m b e r O f A t t r i b u t e s = n u m b e r O f A t t r i b u t e s

+ e l e m e n t s A t t r i b u t e s . g e t L e n g t h () ;

}

}

APPENDIX D. WAPMETRICS SOURCE CODE 213

}

nA = S t r i n g . va lueOf (n u m b e r O f A t t r i b u t e s) ;

r e t u r n nA ;

}

p u b l i c s t a t i c S t r i n g ca lcu la t eNM

(ClassDiagram c l a s sD i ag ra m ,

Document document) {

S t r i n g nM = ” ” ;

i n t numberOfMethods = 0 ;

A r r a y L i s t l i s t C l a s s e s = new A r r a y L i s t () ;

l i s t C l a s s e s = c l a s s D i a g r a m . g e t I n t e r f a c e c l a s s () ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: C l a s s ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

f o r (i n t j = 0 ; j < l i s t C l a s s e s . s i z e () ; j ++) {

i f ((e l e m e n t . g e t A t t r i b u t e (” name ”))

. e q u a l s I g n o r e C a s e ((S t r i n g) l i s t C l a s s e s . g e t (j))) {

NodeLis t e l emen t sMethods = e l e m e n t

APPENDIX D. WAPMETRICS SOURCE CODE 214

. getElementsByTagName (”UML: O p e r a t i o n ”) ;

umberOfMethods = numberOfMethods

+ e lemen t sMethods . g e t L e n g t h () ;

}

}

}

nM = S t r i n g . va lueOf (numberOfMethods) ;

r e t u r n nM;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N A s s o c

(ClassDiagram c l a s sD i ag r a m ,

Document document) {

S t r i n g nAssoc = ” ” ;

i n t numberOfAssocR = 0 ;

NodeLis t e l e m e n t s = document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

NodeLis t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t A s s o c (c l a s sD ia g r am ,

e l emen t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) == n u l l

| | e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () == 0) {

i f (! i s A g g r e g a t i o n R e l a t i o n S h i p (e l emen t s ,

APPENDIX D. WAPMETRICS SOURCE CODE 215

e l e m e n t s A s s i a t i o n E n d)) {

numberOfAssocR ++;

}

}

}

}

nAssoc = S t r i n g . va lueOf (numberOfAssocR) ;

r e t u r n nAssoc ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e N A g g (ClassDiagram c la s s Di ag ra m ,

Document document) {

S t r i n g nAgg = ” ” ;

i n t numberOfAggR = 0 ;

NodeLis t e l e m e n t s =

document . getElementsByTagName (”UML: A s s o c i a t i o n ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

NodeLis t e l e m e n t s A s s i a t i o n E n d = e l e m e n t

. getElementsByTagName (”UML: A s s o c i a t i o n E n d ”) ;

b o o l e a n i s P a r t i c i p a t e = i s P a r t i c i p a t e E l e m e n t A s s o c (c l a s sD ia g r am ,

e l emen t s , e l e m e n t s A s s i a t i o n E n d) ;

i f (i s P a r t i c i p a t e) {

System . o u t . p r i n t l n (” a s s o c i a t i o n s t e r o t y p e a t t r : ”

+ e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”)) ;

i f (e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) == n u l l

| | e l e m e n t . g e t A t t r i b u t e (” s t e r e o t y p e ”) . l e n g t h () == 0) {

i f (i s A g g r e g a t i o n R e l a t i o n S h i p (e l emen t s ,

e l e m e n t s A s s i a t i o n E n d)) {

numberOfAggR ++;

}

}

}

}

APPENDIX D. WAPMETRICS SOURCE CODE 216

nAgg = S t r i n g . va lueOf (numberOfAggR) ;

r e t u r n nAgg ;

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e C o u p E n t r o p y

(ClassDiagram c l a s sD i ag r a m ,

Document document , M e t r i c E n t r y mEntry ,

d ou b l e t o t a l N u m be r O f E le m e n t s)

{

S t r i n g coupEnt ropy = ” ” ;

/ / d o ub l e to t a l N um b e r O fE l e m e n t s =

c l a s s D i a g r a m . g e t C l i e n t p a g e () . s i z e () +

do ub l e t o t a l N u m b e r O f R e l a t i o n S h i p s =

Double . p a r s e D o u b l e (mEntry . getNagg ())

+ Double . p a r s e D o u b l e (mEntry . g e t N a s s o c ())

+ Double . p a r s e D o u b l e (mEntry . g e t N b u i l d s r ())

+ Double . p a r s e D o u b l e (mEntry . g e t N f o r w a r d r ())

+ Double . p a r s e D o u b l e (mEntry . g e t N i n c l u d e r ())

+ Double . p a r s e D o u b l e (mEntry . g e t N l i n k r ())

+ Double . p a r s e D o u b l e (mEntry . g e t N s u b m i t r ())

+ Double . p a r s e D o u b l e (mEntry . ge tNuseTagr ()) ;

System . o u t . p r i n t l n (” t o t a l N u m b e r O f R e l a t i o n S h i p s = ”

+ t o t a l N u m b e r O f R e l a t i o n S h i p s) ;

dou b l e r e s u l t = 1 . 0 / t o t a l N u m b er O f E l em e n t s

∗ (−Math . log10 (1 / (1 + t o t a l N u m b e r O f R e l a t i o n S h i p s))) ;

coupEnt ropy = S t r i n g . va lueOf (r e s u l t) ;

r e t u r n coupEnt ropy ;

APPENDIX D. WAPMETRICS SOURCE CODE 217

}

p u b l i c s t a t i c S t r i n g c a l c u l a t e C o h e s i o n E n t r o p y

(M e t r i c E n t r y mEntry ,

do ub l e t o t a l C o u p l i n g) {

S t r i n g c o h e s i o n E n t r o p y = ” ” ;

do ub l e moduleCoupl ing =

Double . p a r s e D o u b l e (mEntry . g e t C o u p e n t r o p y ()) ;

d o u b l e c o h e s i o n = t o t a l C o u p l i n g / moduleCoupl ing ;

c o h e s i o n E n t r o p y = S t r i n g . va lueOf (c o h e s i o n) ;

r e t u r n c o h e s i o n E n t r o p y ;

}

p u b l i c s t a t i c HashMap c r e a t e S t e r o t y p e H a s h M a p (Document document) {

HashMap s t e r o t y p e H a s h m a p = new HashMap () ;

NodeLi s t e l e m e n t s = document . getElementsByTagName (”UML: S t e r e o t y p e ”) ;

f o r (i n t i = 0 ; i < e l e m e n t s . g e t L e n g t h () ; i ++) {

Element e l e m e n t = (Element) e l e m e n t s . i t em (i) ;

s t e r o t y p e H a s h m a p . p u t (e l e m e n t . g e t A t t r i b u t e (” xmi . i d ”) , e l e m e n t

. g e t A t t r i b u t e (” name ”)) ;

}

r e t u r n s t e r o t y p e H a s h m a p ;

}

}

