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Domino 
NOVEL TOOLS TO EVALUATE ATM SYSTEMS COUPLING UNDER FUTURE 
DEPLOYMENT SCENARIOS 

 

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under 
grant agreement No 783206 under European Union’s Horizon 2020 research and innovation 
programme. 

 

 

Abstract  

This deliverable presents the final results obtained from the Domino project. It presents the 
corresponding metrics, the model, and a detailed analysis of two case studies. The main 
modifications to the model with respect to the previous version are highlighted, including curfew 
management. The calibration of the model is presented, which is similar to the previous version, with 
more in-depth analyses and further effort dedicated to the calibration process. Two case studies are 
defined in this deliverable, using previous definitions of the three base mechanisms: 4D trajectory 
adjustments, flight prioritisation, and flight arrival coordination. The case studies are defined to have 
a focused insight into the efficiency of the mechanisms in specific environments. The two case 
studies are run by the model and analysed using metrics previously defined, including centrality and 
causality metrics. The results show different levels of efficiency for the three mechanisms, highlight 
the degree of robustness to the propagation of negative effects (such as delay) in the system, 
demonstrate various trade-offs between the indicators, and support a discussion of the limit of the 
mechanisms. 

 

 

The opinions expressed herein reflect the authors’ views only. Under no circumstances shall the 
SESAR Joint Undertaking be responsible for any use that may be made of the information contained 
herein. 
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Executive Summary 

The primary goal of Domino was to improve the state of the art regarding a methodology for 
analysing the architecture of, and interdependencies within, the air transportation system, by 
capturing different facets of causality under the impact of a selection of ATM mechanisms. In this 
regard, the project has made progress on three key topics to reach this goal, as listed below. 

• The possibility to model, at a disaggregated level, the full gate-to-gate European air 
transportation system. 

• The introduction of new metrics allowing the capture of some subtle network effects. 

• A powerful statistical analysis, combining the capabilities of the model with the power of classical 
and new metrics to perform a full, network-wide assessment. 

The re-implementation of the Mercury simulator, using an agent-based paradigm, is one of the most 
important achievements of Domino. To our knowledge, it is the only full, European Civil Aviation 
Conference (ECAC)-wide model able to simulate key stakeholders, such as, passengers, airlines and 
the network manager, in an integrated simulator. With respect to previous versions, it allows us to 
inject complex behavioural rules for different agents, in particular airlines. 

Various metrics have been deployed by Domino. Some are classically used in air traffic flow 
management (ATFM) (such as average delay), some have been imported from other fields, others 
have been developed specifically for this project: in particular, the centrality metrics, which take into 
account the itineraries of passengers and the precise timing of the scheduled flights. At their core, 
they represent the most relevant metrics in terms of connectivity considering passengers. For their 
practical usage, Domino has identified some shortcomings. Causality metrics, on the other hand, 
have been used before in the air transportation system. Their introduction answered the necessity 
for decision-makers to understand causal links between subsystems, as opposed to correlations, in 
order to gain some high-level knowledge. The new methods introduced in Domino, allow us to 
capture different facets of causality, in particular with an emphasis on how rare events trigger other 
rare events in the system. 

The model allows us to measure a large number of low-level observables, which both poses a 
problem and raises an opportunity. With so much data, different practical issues arise – such as 
storage or analysis time – but, more importantly, statistical analyses must be performed with care. 
Due to the number of observables, the stochastic nature of the simulator, its geographical scope, and 
the dynamic nature of the system, many different analyses can be performed. In this deliverable, we 
have focused on the variety of metrics available to the modeller, and on the possibility to restrict the 
analysis in scope (such as geographically or by stakeholder). Domino has shown that the model can 
be used to inspect, with a high level of detail, different aspects of the system. In particular, it is able 
to shed light on the inner functioning of different mechanisms (such as flight swapping or dynamic 
cost indexing), understanding under which conditions they would, or would not, provide benefits for 
the different stakeholders. Domino’s model sheds light on the role of exogenous and endogenous 
noise, the behaviours of agents and the initial conditions (passengers, schedules, etc.) on the 
efficiency of different mechanisms. 
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Of the three mechanisms investigated, the 4D trajectory adjustments mechanism seems to have the 
greatest impact. Its application in the first case study, hub management, shows that it has some 
impact on delays, costs, centrality, and causality metrics. It is efficient at reducing costs for the 
airlines, mostly through the protection of critical flights and overall arrival delay reduction. However, 
whilst connecting passengers tend to gain from this mechanism, other passengers have their average 
arrival delay increased, which highlights an important trade-off that policymakers should take into 
account. Passenger centrality tends to worsen, which indicates that cost-driven airlines are 
negatively affecting more (low cost-impacting) itineraries than they improve (high cost-impacting) 
ones. Overall, the mechanism creates some buffer in the system, as shown by the causality metrics, 
decreasing the potential delay propagation channels. 

The flight prioritisation mechanism has almost no effect at a system level, except for a tendency to 
decrease delay feedback loops (hence decreasing the probability that a flight is late because previous 
flights are delayed). This mechanism is, by its nature, limited with regard to which airlines can use it 
(e.g. having enough flights in an ATFM regulation at an arrival airport with expected costs sufficiently 
different to benefit from swapping them) and in which circumstances (e.g. at arrival airports which 
have issued an ATFM regulation). The impact at the network level is thus also rather limited. 

The effect of the horizon of the flight arrival coordination mechanism is highly dependent on the 
exact optimisation algorithm of its queuing process. Overall, the larger the Extended Arrival Manager 
(E-AMAN) radius, the higher the uncertainty associated with the flights therein. This translates into 
suboptimal behaviours if the optimiser does not have proper uncertainty computation capabilities. 
For instance, longer holding times can be assigned to flights that previously had fuel-saving 
instructions, due to landing sequence-breaking uncertainties. 

Looking forward, Mercury can serve as a test bed for different types of simulations. Different 
optimisation processes for E-AMAN, rules for flight swapping or trajectory management, levels of 
congestion, levels of compensation and duty of care for passengers are all examples of modifications 
which can be tested, relying on a realistic representation for the other components of the model. 
With respect to other tools, Mercury provides many advantages. For instance, whereas the 
EUROCONTROL RNEST tool is more advanced regarding airspace management (including, for 
example, explicit ATFM regulations and the Computer-Assisted Slot Allocation (CASA) algorithm 
implementation), Mercury takes into account behavioural (potentially sub-rational) effects from 
different agents, realistic, stochastic generation of delays, passenger management, and a highly 
detailed cost of delay model, driving the most important decisions for airlines. 
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1 Introduction 

One of the challenges when introducing or modifying solutions in the ATM system is to understand 
the effect of these, not at a local level, but their repercussion in the wide-network. Domino has 
developed a model and a set of metrics which allow modellers to capture these interactions. 
Moreover, the impact of these changes is not only experienced by airlines and in terms of delay, but 
also by passengers and in terms of cost. Domino is able to estimate these different layers of metrics. 

This deliverable presents the final results of the Domino project. This includes the development of a 
dedicated agent-based model which is able to estimate indicators for the entire ECAC region for a full 
day of operations for both flights and passengers perspective. Some relevant stakeholders are 
explicitly modelled. 

Three different mechanisms with three different levels of implementation each have been developed 
in Domino. The broad analysis of these mechanisms was presented in the analysis of different case 
studies in D5.2 Investigative case studies results. With feedback from stakeholders gathered at 
different consultation activities (see D6.3 Workshop results summary), the model has been updated 
and more detailed case studies defined. These final case studies are presented and analysed in this 
deliverable. 

 

1.1 Case studies 

D5.2 Investigative case studies results presented the results of modelling the main scenarios 
identified in D3.2 Investigative case studies description. A total of 14 scenarios were analysed. This 
broad perspective allowed us to understand some of the limitations and capabilities of the suggested 
metrics. 

In this deliverable, instead, we decided to focus on fewer scenarios and grouped them into two case 
studies: 

• Hub delay management: where three hubs are modelled with high ATFM regulations on them 
and the impact of introducing the 4D Trajectory Adjustment (4DTA) mechanism is evaluated 
along with the Flight Prioritisation (FP). 

• Effect of E-AMAN scope on arrival manager: where the planning horizon of the E-AMAN is 
increased and the Flight Arrival Coordination (FAC) mechanism which tries to optimise the 
expected cost of the airlines is applied. 

The system is analysed with a reference where the mechanisms are modelled at Level 0 (trying to 
replicate current practices) and with advanced behaviours, at Level 2. 
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These case studies were reported in D3.3 Adaptive case studies description. More details on the 
scenarios and mechanisms modelled in this deliverable are presented in Section 1. 

 

1.2 Domino model 

The Domino model is an agent-based model (ABM) executed over a stochastic event driven 
simulator. A total of 8 agent types are modelled: 

• Flights 

• Airline operating centres (AOC) 

• Ground airport 

• Network manager 

• E-AMAN 

• DMAN 

• Radar 

• Flight swapper 

Approximatively 32.000 instances of these agents are created during the simulations. 

The full architecture of the model is presented in detail in D4.1 Initial ABM model design. In this 
deliverable we present the main evolutions carried out from the implementation plan described in 
D4.1. 

The usage of a standard procedure and methodology to develop the ABM (Gaia methodology based 
on agents, roles and their interactions) has allowed us to create a model which is flexible and 
adaptable in the behaviour of the agents. Moreover, the model is integrated and run over an event-
driven simulator which has been developed using standard approaches and libraries (Python SimPy). 
All this mean that the code is easy to follow, and it is relatively simple to introduce and/or adapt new 
mechanisms and events. 

The model captures the interaction between the agents, and it can represent flights and passenger 
itineraries. Therefore, many metrics can be captured at a very low level, such as for example, 
departure delay for flights and passengers, missed connections, taxi times, holding fuel. 

The different processes are modelled with the required level of detail to capture the required metrics 
and interactions for the analysis of the mechanism: from explicit modelling of messages between 
agents to the usage of stochastic probabilities calibrated with historical data. This implements a 
meso-model which balances accuracy, computation time and flexibility. The current architecture 
allows modellers to modify these processes as required in a simple manner, for example, replacing 
taxi times which are generated following stochastic distributions with explicit modelling of 
movements at an airport. 
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For a full description of the model the reader is referred to D4.1 Initial ABM model design. In D5.3, 
Section 3 compiles the modifications introduced in the model since its design and it provides more 
detail on the agents’ features along with other internal modelling particularities. 

1.3 Model calibration 

As in the previous version of the model, some effects are explicitly modelled (e.g., propagation of 
delay due to reactionary delay), but others are the results of a higher abstraction (e.g., actual taxi 
time or turnaround times). These parameters are stochastically sampled from distributions that need 
to be calibrated. 

Some issues identified in the analysis of previous results, along with the modifications implemented 
in the model since the results reported in D5.2 Investigative case studies results, means that these 
calibration activities needed to be performed again. 

This has been done considering the baseline scenario which represents the current (2014) operations 
and considering the analysis from different data sources to use them as calibration targets. 

The calibration activities and results are gathered in Section 4 of this deliverable. 

1.4 Domino metrics 

As presented previously, the ABM is able to generate very low level indicators. These need to be 
combined in a meaningful manner to gain understanding on the impact of introducing/modifying 
mechanisms in the ATM system. 

A review of classical (flight and passenger) metrics along with the definition of advanced network 
metrics which focus on centrality and causality were reported in D5.1 Metrics and analysis approach. 
These metrics were tested on the investigative case studies (D5.2 Investigative case studies results) 
and presented to stakeholders on different consultation activities (see D6.3 Workshop results 
summary). 

The description of the metrics used for the analysis of the results of this deliverable are detailed in 
Section 5.1. Finally, from the presentation of the preliminary results to stakeholders and experts, 
feedback was gathered that there was a need to relate the new metrics presented in Domino to 
operational indicators, this has been addressed in Section 5.1.2. 

1.5 Feedback into this deliverable 

In order to produce this deliverable, some modifications to the model, the mechanism and how the 
metrics are used have been performed. These come from feedback obtained from different 
consultation and dissemination activities carried out by Domino. In particular the participation to an 
airspace users’ workshop organised by EUROCONTROL and a dedicated workshop on Domino with 
stakeholders and experts organised at the SJU premises. 

The feedback obtained was consolidated in D6.3 Workshop results summary, and primary focuses on 
the applicability of the new network metrics, the capabilities of the agent-based model and the 
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behaviour of some agents (e.g. how the effect of curfews are considered by airspace users (AUs) 
from earlier in the day). 

1.6 Structure and contents of this deliverable 

This document is structured as follows: Section 2 presents the scenarios that have been modelled 
with a description of the mechanism implemented. In Section 3 a summary of the ABM developed in 
Domino is presented, focusing on the changes carried out with respect to the model described in [1]. 

The calibration of the model is presented in Section 4 followed by the results on the case studies in 
Section 5. This section is formed by three parts: 

• description of the metrics computed in 5.1, 

• summary of key results in 5.2, and 

• detailed analysis of the results for the two case studies in 5.3. 

Details about the methods to test the presence of a causality relationship between two state 
variables are presented in Annex I (Section 9), and detail values on the scenarios results are provided 
in Annex II (Section 10). 

The document closes with conclusions gathered in Section 6, as well as some considerations on next 
steps, focusing on future lines of research. References and acronyms can be found in Sections 6.1 
and 8 respectively. 
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2 Scenarios and mechanisms modelled 

2.1 Scenarios modelled 

Scenarios simulated with the final version of the model are more focused on a few specific aspects of 
the air transportation system, as opposed to the results presented in D5.2. They are grouped in two 
case studies, as explained in D3.3. 

2.1.1 Hub delay management 

In this case, we are interested in disruptions at hubs in order to understand under which conditions 
disruptions can be alleviated by mechanisms. 

We started by choosing three important hubs in Europe: Amsterdam (EHAM), Heathrow (EGLL), and 
Paris Charles de Gaulle (LFPG). For these airports, we considered that some major disruptions have 
hit them at the same time. The disruptions were created by manually defining an ATFM regulation at 
each airport with the following characteristics: 

• Starting and finishing in the first part of the day: 06:00 - 14:00 local time. 

• Reducing the capacity at the airport to half their nominal capacity: EHAM with 45 arrivals/hour, 
EGLL with 54 arrivals/hour and LFPG with 44 arrivals/hour. 

In addition to these manually set ATFM regulations, the rest of the delay in the system is set as 
default (i.e., nominal day of operations) and ATFM regulations are defined at other airports based on 
a randomly selected nominal day. 

To mitigate the effects of disruptions, two mechanisms are modelled: 

• Flight Prioritisation processes (FP): based on ATFM slot swapping (inspired in UDPP concepts) and 
allowing inter-airline swaps. 

• 4D Trajectory Adjustments (4DTA): consisting on dynamic cost indexing (allowing us to recover 
delay or adjust the speed to save fuel) and coupled with actively waiting-for-passenger when it is 
considered to be the alternative which will provide the lowest operational costs for the airline. 

In total three scenarios are modelled: 

• Hub delay management baseline: Disruptions at the three hubs without any mitigation action to 
be used as baseline. All mechanisms are implemented at Level 0. 

• Hub delay management FP Level 2: Disruptions at the three hubs with FP at level 2 (flight 
swapping between airlines allowed). 
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• Hub delay management 4DTA Level 2: Disruptions at the three hubs with 4DTA at level 2 (full 
DCI and waiting for passengers with conjoint decision). 

Note that even if the manually set disruptions are only defined for the three hubs, the mechanisms 
are implemented everywhere, and the whole network is simulated in each case. 

2.1.2 Effect of E-AMAN scope on arrival manager 

The second case study focuses on the implementation of the Flight Arrival Coordination (FAC) 
mechanisms. In this case, we are interested on analysing the impact of extending the E-AMAN 
horizon. A larger horizon means that flights are considered in the landing sequence earlier providing, 
on one hand potentially larger optimisation savings, but on the other hand, affecting flexibility and 
having higher uncertainty (the landing sequence is modified more times, as each time a flight enter 
the E-AMAN scope a new landing sequence might be produced). 

In this case, to see the effect of modifying this horizon, we consider the stressed baseline, so that 
larger delays can be mitigated through the mechanism. 

As a result, we simulated these four scenarios: 

• E-AMAN scope on arrival baseline: ‘Stressed’ baseline scenario, with all mechanisms at level 0 
and high delay across the system. 

• E-AMAN scope on arrival FAC Level 0 extended range: ‘Stressed’ scenario with FAC at level 0 
and 600 NM as planning horizon. 

• E-AMAN scope on arrival FAC Level 2 nominal range: ‘Stressed’ scenario with FAC at level 2 (full 
cost minimisation) and 200 NM as planning horizon. 

• E-AMAN scope on arrival FAC Level 2 extended range: ‘Stressed’ scenario with FAC at level 2 
again, but 600 NM as planning horizon. 

E-AMAN at level 2 considers the information from the flight (which has been relied by the AOC) on 
which is the expected total cost of each available landing slot. This considers the cost of fuel, but also 
other costs such as passenger costs, cost of delay, potential curfew at the end of the day, etc. See 
Section 2.2.3 for more details. Note that the change of horizon has been applied only at airports 
which have an E-AMAN. 

Finally, in this deliverable we will focus on the scenario where the mechanism is modelled at Level 2. 
The extended range at Level 0 is only computed as another reference to better understand the effect 
of extending this horizon. 

2.2 Mechanisms modelled 

In this section we summarise the three mechanisms that are modelled in Domino focusing on their 
implementation for this deliverable. Their implementation in baseline (Level 0) and advance (Level 2) 
are described as these are the ones analysed. For more information on the mechanisms the reader is 
referred to [1] and to [2]. 
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2.2.1 4D Trajectory Adjustments (4DTA) 

4D Trajectory Adjustments is a mechanism which deals with modifications of the trajectory of flights 
just before push-back and once airborne in order to deal with delay. This mechanism is formed of 
two sub-mechanisms: 

• Waiting for passengers: actively delaying outbound flights to wait for delayed connecting 
passengers. 

• Dynamic cost indexing: modifying the speed of the flight to speed up and recover delay or, in 
some cases, even slow down to save some fuel. 

2.2.2 Baseline - Level 0 

At Level 0, we use rules of thumb that serve as an approximation of the current practices in the 
airline industry for the tactical management of flight delay and waiting for passengers at the hub. 
Two sub-mechanisms are considered: 

• Determining the cost index of a flight (before take-off), i.e., an increment or not on the cruising 
speed. 

• Deciding whether a flight waits for delayed connecting passenger. 

The specific parameters of these mechanisms have been calibrated according to the feedback 
received from a number of experts in the industry.  

Cost index is calculated before the take-off (i.e., at push back) and it is fixed throughout the flight. To 
decide on its speed, the flight uses the information about its departure delay. At ‘pushback_ready’, 
the departure delay is assessed by comparing estimated off-block time (EOBT) with scheduled off-
block time (SOBT): 

departure_delay = EOBT - SOBT 

The attempted delay recovery is then performed according to the probability distribution shown in 
Figure 1. If the estimated departure delay is smaller than 15 minutes, the flight does not try to 
recover it. If it is larger than 60 minutes, the flight will try to recover as much delay as possible (up to 
5 minutes) by selecting a higher speed than the planned one. Lastly, the decision on recovering any 
delay between 15 and 60 minutes is made stochastically according to the linear probabilistic 
distribution on Figure 1. 

Additionally, the maximum delay is considered to be recovered is limited by the amount of extra fuel 
that would be required for this recovery and it is capped at 70% of the total amount of additional fuel 
available. Moreover, in order to make the application of this rule more aligned with the current 
practices, the flight never speeds up to the maximum possible speed; rather, the speeding up is 
capped at 90% of the maximum velocity. Finally, if after applying all of the so far mentioned 
constraints, the amount of delay that can be recovered is lower than 5 minutes, no recovery is 
performed. That decision was made upon the consultation with the experts, due to the fact that the 
recovery of the delays lower than 5 minutes is seldom performed. 
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Note that a change on cruise speed will imply also a change on the TOD, generally increasing the 
cruise and reducing the slower descend. 

 

Figure 1: Probabilistic distribution for deciding on delay recovery depending on the estimated 
departure delay. 

Wait for passengers is performed 5 minutes before the ‘pushback_ready’ event, and it is triggered by 
a special event called ‘pax_check_event’. At that moment, we run a check that inspects which 
passengers are not at the gate ready for boarding, and we estimate how much time they need to 
make it to the gate. For this estimate, we use the information on their current position: If they 
are/were arriving on a connecting flight, the in-block time of their previous flight is used (real or 
estimated, depending on the status of the flight). In addition, the average minimum connecting time 
is taken into account for the calculation of their estimated at-gate time. The average minimum 
connecting time has been pre-calculated for each airport and it depends on the type of connection 
the passenger is making: domestic - domestic, domestic - international, etc. 

Finally, the flight decides to wait for any passenger with a flexible ticket who’s at-gate time is 
estimated to be at most 15 minutes later with respect to the flight’s expected push back time. 

Other approached used in previous projects include wait only if the load factor is lower than 80% of 
the planned one and at most 10 minutes. 

2.2.3 Level 2 

Level 2 couples the assessment of cost index and wait-for-passenger decision process via a unified 
cost function. That way, the optimisation is improved by relying on the sum of all the estimated 
costs, including the possibility to recover a part of delay by speeding up and spending more fuel than 
planned. There are two types of cost that a flight takes into account in the cost optimisation process: 

• fuel cost: the cost of the extra fuel that would be needed in order to recover a delay (fully or 
partially); 

• time cost: the cost of unrecovered delay, which includes non-passenger costs (maintenance, 
crew and curfew costs), as well as passenger costs (compensation, soft costs and the costs due to 
the effects of reactionary delays). 
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The delay recovery is performed with a time resolution of 1 minute (i.e., the flight can only decide to 
recover a rounded number of minutes). Unlike at Level 0, there is no limitation on the maximum 
velocity that the flight can choose in order to recover delay, as the decision is purely driven by the 
cost and the objective to find the optimal solution given the estimated costs. 

Additionally, to make a decision on waiting for passenger, the component of cost due to waiting/not 
waiting for passenger is described and added to the overall cost function via the following two costs: 

• waiting cost: the cost of waiting a passenger group 𝑝𝑝𝑖𝑖  for 𝑛𝑛 minutes with respect to EOBT. This 
wait would essentially delay the EOBT for 𝑛𝑛 minutes, and thus this is the cost of delaying the 
flight (EOBT) for 𝑛𝑛 minutes. 

• not-waiting cost: the cost of not waiting a group of passengers and having to take care of them. 
This cost includes different types of care that the airline needs to provide to the passengers that 
missed their connecting flight for no fault of their own: duty of care, compensation cost and 
transfer cost. Transfer cost is calculated by searching for alternative itineraries for stranded 
passengers, estimating the cost of each itinerary and choosing the least expensive one. 
Additionally, this also includes soft costs - the cost airline will suffer due to a potential future loss 
of passengers or reputation. 

There are two times during a flight when delay is assessed and 4DTA mechanisms potentially applied: 
at ‘pax check event’ (5 minutes before ‘pushback_ready’) and the top of climb. 

At 5 minutes before a flight is ready for push back, a joined assessment of departure delay (and its 
potential recovery) and wait for passenger options is performed. Similarly, as in Level 1, we assess 
current estimated departure delay and consider recovery options by speeding up (changing cost 
index before departure) through assessing the cost of those options. At the same time, the check for 
missing passenger is performed, and waiting costs and not-waiting costs are calculated for each 
passenger group. All those estimated costs are added and observed on the domain of recoverable 
delay (from 0 to the maximum number of minutes a flight can recover by speeding up and using the 
extra fuel available). The decision that minimises the total cost is taken, and according to it cost index 
might be changed (speeding up) and a number of passenger groups waited for. I.e., a decision to wait 
and recover delay is performed before push back. 

Example. Let’s assume that the currently estimated departure delay of the flight is 20 minutes, and 
there are 2 passenger groups estimated to be late for boarding with delays of 10 and 15 minutes 
(w.r.t. updated push back time, i.e., waiting 10 minutes will allow the first group of passengers arrive 
to the flight, waiting 15 minutes will ensure that both group of passengers can board the plane). In 
this case, all the costs are assessed on the domain of possible delays ranging from 0 (recovering all of 
the delay, which would require significant increase in velocity and thus spending a large amount of 
additional fuel, if all 20 minuets can be recovered by speeding up) to 35 minutes (meaning the flight is 
waiting for both passenger groups and deciding not to recover any delay). 

At the top of climb, the assessment of the expected arrival delay and potential speeding up is done. 
The delay recovery decision is made by observing the total cost, i.e., the sum of the fuel and time 
cost (naturally, no passenger costs apply here). The flight chooses the recovery time (in minutes) that 
expects to minimise the total cost (on the domain ranging from 0 minutes to total estimated arrival 
delay). In addition, a flight has the possibility to slow down at the top of climb if the (currently) 
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expected arrival time (EIBT) is at least 30 minutes before the scheduled arrival time (SIBT). In this 
case, the flight decides to slow down by adding 𝑥𝑥 minutes to the flight, where 𝑥𝑥 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 −
30. This has been done in order to save fuel and prevent potential holding times which can likely 
occur in case of such very early arrivals. 

2.3 Flight Prioritisation (FP)  

Flight Prioritisation mechanism deals with the potential swap of ATFM slots by airlines at regulations 
defined at arrival airports. 

2.3.1 Baseline - Level 0 

At level 0, no swap is performed by the airlines. The delay that is assigned due to ATFM regulations at 
arrival is performed by the flight who receives it. 

2.3.2 Level 2 

At Level 2, swaps between flights can be performed among the flights of a given airline, or between 
flights of different airlines. Every time a departure flight plan is submitted (whether it is the first flight 
plan for this flight or not), the airline estimates if a swap can be done with this flight if ATFM delay 
has been assigned. The conditions considered are the following: 

• both flights must be in the same regulation at their arrival airport; 

• the estimated cost of the swap must be negative (i.e., the swap has a positive impact overall). 

The cost of the swap is estimated using the following rule: if COBT 1 is the controlled off-block time 
of the first flight, COBT 2 the time of the second flight, and cost1 and cost2 the delay cost function of 
the first and second flight, then we compute: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1(𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆2) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2(𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆1)− (𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1(𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆1) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2(𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆2)) 

i.e., the total cost of delay if the COBT are swapped minus the cost of delay if they are not. The cost 
function used for this mechanism is different from the one used for 4DTA at TOC, since the 
estimation of the cost happens on the ground, before the departure of the flight. More specifically, 
the cost function is evaluated using as delay the controlled off-block time minus the scheduled one, 
and includes the following components: 

• non-pax cost (maintenance and crew); 

• passenger soft cost; 

• duty of care; 

• passenger compensation. 

Moreover, the delays for passengers are computed using the updated information on their next 
flights and worst case scenarios. In particular, when a passenger is expected to miss their next flight 
and when a flight may miss the curfew. Some network effects are also taken into consideration using, 
again, the worst case scenario. We gather information on the next flights using the same aircraft and 
consider that all of these flights will have the same cost than the current one. 
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Note that in theory we could estimate exactly which flight will be impacted by the propagation of 
delay, in terms of aircraft and/or connecting passengers, since all information is known to the airlines 
(or can be requested from another airline). However, this information takes too long to compute, 
especially for passengers, which increases by a large factor the time of the simulation. As a 
consequence, in this deliverable the above heuristics is used for the decision-making process of 
swapping the slots. 

Flights can be swapped among different airlines. The mechanism works otherwise exactly the same. 
The airline starts by checking all flights in the same regulation at the arrival airports, and then 
requests some information from another airline, if needed, in order to compute the total cost of the 
swap. The same cost function is applied, and the swap is performed if the cost is negative. 

It is clear that in reality, different airlines will never share their true cost, first because it is sensitive 
information, and more importantly because they have no incentive not to inflate their own reported 
cost. In the model, we consider that there is a market mechanism (e.g., credit system, auction) in 
place which allows us to have an efficient market for swaps and thus do a swap only if it is beneficial 
in average (for instance by giving back some money to the airline delaying its flight). This market 
mechanism might or might not be feasible in reality, which is another research question. Thus, the 
model should be considered as a best case in this regard. 

2.4 Flight Arrival Coordination (FAC) 

The Flight Arrival Coordination mechanism focuses on the sequencing done by the extended arrival 
manager at airports. This mechanism is only implemented in airports which have or are expected to 
operate an E-AMAN system (24 airports as according to the SESAR Pilot Common Project [3]: EBBR, 
EDDB, EDDF, EDDL, EDDM, EGCC, EGKK, EGLL, EGSS, EHAM, EIDW, EKCH, ENGM, ESSA, LEBL, LEMD, 
LEPA, LFMN, LFPG, LFPO, LIMC, LIRF, LOWW and LSZH. 

For the above mentioned airports there are two moments when flights are issued delay when 
approaching them (see Figure 2): 

1. When the flight enters the planning horizon of the E-AMAN (with a default value of 200 NM from 
the airport). 

2. When the flight enters the tactical or execution horizon of the E-AMAN (defined at 120 NM from 
the airport). 

The distances selected for the planning and execution horizon are in accordance with the expected 
extension of the arrival managers from 100-120 NM to 180-200 NM [3]. As presented in the case 
studies (see Section 2.1.2) we will explore the effect of increasing the planning horizon from 200 NM 
to 600 NM. 
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Figure 2: Flight Arrival Coordination horizons 

When a flight enters the planning horizon, all the flights which are located in the scope of the arrival 
manager, i.e., between the planning and the execution horizon, are re- optimised, i.e., assigned to 
the slots which are either planned or available, considering a given optimisation function which 
depends on the Level of the mechanism. At the planning horizon, the flight which triggers this 
optimisation, i.e., the one which enters the arrival manager, receives the amount of delay that it is 
expected to experience and tries to absorb as much delay as possible by slowing down (saving some 
fuel). At the tactical horizon, the flight which exits the E-AMAN will be issued with a slot (assigned as 
the output of another re-optimisation) and the required delay (if any) will be performed as holding. 

The optimisation of all the flights within the E-AMAN every time a flight enters or exits the system 
ensures that the best sequence is maintained within the arrival manager with respect to the 
optimisation function, and that the flight can slow down to absorb part of the delay saving some fuel 
if delay is expected. However, as the amount of delay that can be absorbed is very limited, only the 
flight which enters the arrival manager considers this speed and TOD variation. Note that only 
available or planned slots are considered in the optimisation and once a landing slot has been 
assigned to a flight which exits the execution horizon it is fixed. Note that in some cases, the slot 
which has been planned at the planning horizon for a given flight might not be available anymore 
when it reaches the execution horizon. Finally, at both horizons the arrival capacity at the airport is 
considered to ensure that the arrival sequence respect the airport throughput. 

For the airports which are not listed above, a simple arrival manager located at 100 NM from the 
airport is considered, and a first-in first-out approach modelled. The assigned delay will hence be 
done as holding. This ensures that the arrival capacity at the airport is not exceeded. 

2.4.1 Baseline - Level 0 

In Level 0, current principles applied on E-AMAN systems are considered: The Flight Arrival 
Coordination tries to minimise the amount of holding delay that will be carried out at the TMA by 
minimising the total holding delay. The FAC is focused on the maximisation of the arrival throughput 
at the runway. No information from the airlines is taken into account when applying this mechanism. 
When a flight enters the planning horizon, the first slot available in the sequence from the flight 
estimated landing time is assigned. In a similar manner, once the flight enters the execution horizon, 
the first available slot is assigned, and the holding delay computed. 
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2.4.2 Level 2 

In Level 2, the arrival manger tires to minimise the expected total cost for each flight. This includes 
the: 

• cost of fuel: considering potential fuel savings by slowing down but also fuel cost by performing 
estimated holding (estimated by the flight), and 

• cost of delay: considering passenger and non-passenger related costs of delays, estimated and 
provided by the AOC. 

 

Figure 3: FAC Level 2 messages 

The FAC considers the expected cost of each slot for each flight as this information is provided to the 
FAC by the flight. As depicted in Figure 3: 

1. when the flight enters the E-AMAN, the FAC send a list of slots available to the Flight; 

2. then the flight requests the expected cost of delay to its AOC; 

3. the total expected cost of using each slot (in the current implementation the total cost of delay 
function) is returned to the flight; 

4. which with information on the aircraft performance and flight details (e.g., current weight) 
estimates the fuel required for each slot (savings by slowing down and holding); 

5. the total expected cost (including cost of delay and cost of fuel) is sent to the FAC to be used 
during the optimisation process to assign the slots. 

When the flight enters the planning horizon, once the FAC has received this expected cost per slot, 
the arrival sequence, considering all the flights in the E-AMAN scope are optimised. When the flight 
reaches the execution horizon, the same optimisation is performed with the already provided 
expected cost of slots functions. 
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3 Domino agent-based model 

This section presents the agent-based model on which the results are based. Since the design for the 
model has been presented in detail in D4.1, we do not reproduce all the description of the model, 
but rather highlight the main differences between the final implementation and the original design. 

3.1 Agents 

3.1.1 Flight 

The flight is basic agent which is tasked with executing its planed trajectory, from push-back to 
arrival. The main features of the flights are the following: 

• Taxi-out phase, based on taxi distribution at the airport. 

• Iterative climb/cruise/descent phases, going through all the way points defined in the trajectory. 
A stochastic variation on the segments lengths are applied to each segment independently. 

• If the flight decides to recover delay by applying DCI, the length of the rest of the flight (cruise 
and descend phase) are modified to consider the impact of DCI on the location of the TOD. See 
Section 3.1.2 for more details on the cost functions used. 

• Taxi-in phase is based on distributions on stochastic arrival taxi time from the airports. 

• Once the flight arrives to the gate two processes are triggered: 

o the aircraft is transferred to the ground airport for the computation of the turnaround 
processes 

o the passengers are hand-over to the airline for their arrival/onward connection 
processes. 

As described in Section 3.1.2, flights can be cancelled either stochastically or based on an internal 
decision from the airline, because of curfews at the airports. 

3.1.2 Airline operating centre 

The airline is the most complex agent in the system, as it manages its own flights and passengers. 
Therefore, it decides between alternatives (e.g. flight plan, slow swapping, waiting-for-pax options) 
based on delayed rewards. Here is a list of actions potentially considered by the agent: 

• Submit flight plans, deciding which one to select (there is one option per potential route 
between origin-destination) decisions on best one. 

• Reassess flight delay before departure, potentially triggering another flight plan submission. 
24 
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• Process arriving passengers: 

o Check if their destination was the final one or they are connecting. If final destination, 
computing delays and potential compensations. 

o Request connecting times for connecting passengers and based on this information: 

 check if they could make the connection to the next flight, 

 otherwise, consider the handling of these passengers by rebooking them, 
considering: 

• its own flights, 

• flights from the alliance the airline is from (if any), 

• flights outside of alliances (only for premium passengers) 

• if not possible consider associated cost for care of passengers (e.g., 
hotel). 

o Trigger passenger driven costs (e.g., Regulation 261 compensation, duty-of-care): 

 Based on types and magnitudes of delays, 

 Assigning cost to individual flights to trace back their costs to their flights. 

• Decide if wait for connecting passenger by actively delaying outbound flights, potentially 
triggering another flight plan submission. 

• Decide if speed-up/slow down flights to recover delay/fuel. 

• Make decision on cancellation of flight if flight is expected to miss a curfew. 

• Manage the cancellation of flights (based on exogenous probability), which will trigger the 
rebooking of passengers. 

• Make decision on swapping flights inside and outside its own fleet, depending on the 
mechanism, based on expected cost in case of ATFM regulation at arrival airport. 

• Airlines also incorporate the estimation of cost of delay at different stages, see Section 3.1.2. 

3.1.3 Ground airport 

The ground airport is mainly tasked with estimating the time required for operations carried out at 
the airport. There is a Ground airport agent per airport allowing us to consider the particularities of 
each airport type to produce these times. In particular, it provides: 

• Averages for turnaround times and connecting times to airlines, so that they can consider these 
times when estimating arrival delays for their cost functions. 

• Actual turnaround (based on airline and airport type). 

• Actual taxi times. 

• Actual passenger connecting times. 
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As part of the turnaround process, the Ground airport holds the aircraft (internally a resource that 
can be used only by one agent at a time, see Section 3.2.2), until the end of the process. 

3.1.4 Network Manager 

The network manager is tasked with accepting or rejecting flight plan, issuing ATFM regulations 
applying them to flights. Its main decisions are the following: 

• Check if a received flight plan infringes a curfew. Such flight plans are rejected, because, as 
described in Section 3.2.3, all curfews are considered hard in Domino, i.e., no flight can plan to 
arrive after the curfew. 

• Computing ATFM delay for a given flight plan: 

o Stochastically for regulations issued in the airspace. A probability (depending on the 
scenario) is used to draw if a given flight plan is affected by a regulation. Then, another 
distribution is used to draw how much delay is assigned to that flight. These probabilities 
and distributions are estimated based on historically analysed datasets (AIRAC 1313-
1413, 1702 and 1709). Note that the stochastic ATFM regulations are also divided 
between regulations due to weather and regulations for other causes. This is required in 
order to estimate if downstream delay is potentially entitled to generate compensation 
for passengers as described in Regulation 261. 

o Explicitly for airports. These regulations are decided at the initialisation of the 
simulations (but agents (and in particular AOC) do not have this information), either from 
a randomly sampled day, from a fix historical one or manually defined. In this case, an 
explicit queue is created and managed by the network manager for the arrival airport. 
This queue models individual slots as defined by the regulation declared capacity. More 
details on regulations can be found in Section 3.2.2. 

• Disseminate accepted flight plans to interested parties, in practice E-AMANs and airlines. 

• Swap flights at explicit ATFM regulations when FP mechanism is used and requested by airlines. 

3.1.5 E-AMAN 

The role of the E-AMAN/AMAN agent is to manage the arrival sequence of flights at airports. An 
airport might implement an extended arrival manager (E-AMAN) or just an arrival manager (AMAN). 
In case of having an AMAN system (the default option), once flights enter in the horizon of the 
system, they are tactically sequenced in a first come first served approach. The goal is to use all 
arrival slots and assign required holding delay to arrival flights. 

When an E-AMAN is implemented, two radii are defined, the first one is the planning horizon, and 
the second one is the tactical horizon. When flights enter in the planning horizon, all the flights 
within the E-AMAN scope (between the planning and the tactical horizon) are considered to optimise 
the landing sequence. Then, once flights arrive to the tactical horizon, their final slot is assigned and 
required delay will be performed as holding. The goal is to optimise the arrival sequence to minimise 
a given objective and also, allowing flights to slow down within the E-AMAN to absorb required 
arrival delay with the objective of reducing fuel consumption and required total holding delay. 
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The objective function considered when optimising the arrival sequence are: 

• For Level 0: the total arrival delay. Only arrival delay at the airport is considered, providing an 
optimisation close to first come first served and closer to current E-AMAN objectives. 

• For Level 1: the total expected delay at the airport. This considers the arrival delay of flights but 
also their potential reactionary delay. The objective is then to minimise the total delay including 
the departure delay at the airport. 

• For Level 2: the E-AMAN does not focus on delay but on cost. The agent request to the flight the 
expected cost for using each of the available slots (this information will be provided to the flight 
by the AOC). Then these cost functions are used to minimise the total expected delay. When 
considering the expected cost different factors are taken into account: expected holding fuel 
required, expected cost of delay (considering both, arrival and departure (reactionary) delay), 
expected knock-on effect with potential missing curfew at the end of the day, saving expected by 
reducing speed to get a later slot). 

As each time a flight enters the planning horizon the sequence might change, some sub-optimality 
might occur. 

Finally note that only airports which according to the PCP are due, or already have, an E-AMAN 
implemented will have this system in the model [3]. 

3.1.6 DMAN 

The departure manager is implemented at all the airports in the model. In this case, it provides slots 
to flights following a first come first served. The main goal of the DMAN is to ensure that departure 
runway capacity is maintained. It explicitly models a queue of slots for the departure sequence. 

Flights request a slot when ready at gate, the firs slot available is assigned and the required delay 
computed. 

3.1.7 Radar 

There is a central radar in Domino, which is considered as an agent. It does not perform any decision 
but relies information about the position of the flights to interested stakeholders. For each 
trajectory, different waypoints are identified, when the flight reaches these, they are captured by the 
Radar agent which notifies the relevant agents. 

The Radar agent is in charge of: 

• Disseminating flight plans and flight plan changes to the different agents so that they can be 
informed on these changes (e.g., DMAN, E-AMAN). 

• Augment flight plans, by adding intermediate waypoints and providing events to simulate signal 
broadcasting when flights reach those points defined by other users (e.g., reaching the planning 
horizon for E-AMAN). 
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3.1.8 Flight swapper 

The flight swapper (Flight Prioritisation Agent in D4.1) is used when FP level 2 is implemented. In this 
case, flights from different airlines can swap their arrival slots due to ATFM regulations. In order to 
do that, an airline has to estimate the expected gain from the swap. As a consequence, it needs 
information from the other airlines. As explained in D5.2, we consider that a market mechanism is in 
place which allows the airlines to trade slots using their own intrinsic value. In other words, it can be 
considered that airlines reveal their true cost through the mechanism. This is why in model airlines 
can provide their cost functions to another airline. 

However, exchanging messages with cost functions build around different estimation points is time 
consuming from a computational point of view. As a result, we decided to create the flight swapper 
which has access to the necessary internal information from all airlines to compute cost functions 
required to assess the swap possibilities. Direct memory accesses, instead of explicit messages 
between the agents, are faster. This comes at the price of breaking the full agent paradigm of 
communication via messages. Note that this, however, does not change the model principles, i.e. the 
underlying mathematical representation, it is only an implementation choice done for performance 
issues. The agent can: 

• Compute cost function from any airline. 

• Compute valid flight swaps. 

• Estimate the total value of any given flight swap. 

3.2 Other internal modelling details 

3.2.1 Cost functions 

Cost functions are the cornerstones of any agent-based models. It is the algorithmic piece which 
allows agents to make their decisions. 

The main cost functions are computed by the airline operator centre. Different versions of them have 
been implemented, depending on the level detail needed and on the information available when 
making the decisions. In practice, the cost function is a cost of delay, which is the variable. ‘Delay’ 
means different things for different roles at different point in time. For instance: 

• DCI at TOC is interested in the arrival delay. In this case, the delay accrued before reaching the 
TOC is already fixed (and some costs are already realised). 

• In the case of flight swapping, departure delay is more relevant, as the flight is still on-ground 
and is based on the ATFM regulation slot. 

In general, note that the consideration or not of buffers is relevant and that different amount of 
delay can be considered if departure delay or estimated arrival delay with respect to schedule are 
considered. 

In addition, different costs should be considered for different functions. For instance: 
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• Duty of care should not be considered in DCI at top of climb, because duty of care happens 
before departure. 

• Cost of fuel should not be considered for flight swapping, since the fuel used in different slots 
should be approximately be the same. 

• In the case of the E-AMAN, some delay might even represent cost savings as a later slot might 
allow some fuel savings by reducing the speed of the flight. 

The cost of delay function can also use various level of update information when estimating the delay 
and cost. For instance, one can use the most up to date EOBT or the SOBT. Different updated 
information will be used at different times. 

Finally, there is a compromise between the accuracy of the function and computational load. Some 
functions have to be built (and thus information accessed) quite frequently (e.g., to estimate the cost 
of each possible slot at an arrival manager). For instance, one could compute exactly the estimated 
cost of all passengers travelling on all flights using the same aircraft for the duration of the day. 
However, in practice doing this is very long. In addition, airlines do compute costs with this level of 
detail on their practice. In Domino, we partly used some heuristics for some functions. In the last 
version of the model, consider two cost functions: 

• A heuristic ground version, used for instance for FP: uses OBT, takes into account duty of care, 
compensation, soft cost, curfew cost, non-passenger cost (maintenance, crew, at gate). 

• A heuristic air version, used for instance for DCI and FAC: uses IBT, takes in account 
compensation, soft cost, curfew cost, non-passenger cost (maintenance, crew, on cruise), and 
fuel. 

Passenger delays (and their associated costs) are accounted explicitly by considering if passengers 
(from this flight) can make their connections. Both use a very conservative heuristic knock-on factor 
by considering that all flights after this one and using the same aircraft with incur the same cost. 

Figure 4 presents two cost of delay functions for two flights. In the first one, there are two points 
where a miss connection of passengers happens leading to higher expected costs. In the second one, 
there is one point where delay will propagate leading to the potential miss of a curfew (see Section 
3.2.3 for more details on curfew buffers estimation). 

 

Figure 4: Examples of cost of delay functions as estimated by the E-AMAN 
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3.2.2 Resources 

Resources in agent-based models are common. Typically, an agent needs something to make an 
action, and needs a resource for that. However, they are really important in concurrent 
implementation of agent-based models, where agents are taking actions in parallel, potentially at 
the same (internal) time. In this case, resource management becomes critical, as it avoids agents to 
perform actions that they should not as they don’t have access to the resource which is used by 
another agent. 

Concurrent issues can be further divided into two categories: 

• Out-of-date information. Typically, an agent makes a decision based on parameters that are 
changing in the same time stamp due to the action of another agent. In most cases, it doesn’t 
cause an unstable state of the system, in the sense that the first agent can be considered taking 
an obsolete decision, useless but unharmful. As an example, a flight could be considering waiting 
for passengers due to delays from an incoming flight. It can be that this flight is even more 
delayed (and knows it at the same time than the other flight decides to wait) and thus the 
second flight will wait when it shouldn’t. 

• Concurrent resource access race. In this case, an agent modifies its internal state based on the 
accessibility of some resources, which is also being accessed and/or modified by another agent. 
As an example, a flight could request for potential slots in a regulation as part of the slot 
swapping process. It then decides to use slot #1, while another flight making the same decision 
has already taken it (between the physical time of the access and the physical time of the 
booking). This kind of issues usually gives rise to serious inconsistencies in the code, and/or 
programming errors. 

Below are explained how some concurrent issues were solved by exclusive access to dedicated 
resources implementing a traffic light system. The resources in the model can be requested by agent, 
i.e., when they are released by the current agent, the next in line in the request queue can 
automatically use it. Technically, it is considered as an event by the simulation engine. 

3.2.2.1 Aircraft 
The aircraft are considered as resources in the model, and only one agent can use the at the same 
time. In practice, all a flight agent requests the resource, then releases it at arrival to the ground 
airport, who holds it for a certain time (the turnaround time) before it is released, to be use by the 
next flight. In this way, reactionary delay is explicitly modelled in the system as the aircraft is not 
released for the next flight until the completion of the turnaround. 

3.2.2.2 ATFM regulation resources 
Explicit ATFM regulations are complicated to manage in a concurrent way, because some physical 
time elapses between the point where the airline asks for the possible slots and the point where it 
actually chooses a slot. In the meantime, another flight can take the slot. This is due to the fact that a 
slot is pre-assigned when an airline submits a flight plan but the flight plan is not confirmed at that 
point, as the airline might request a re-routing instead. 

To avoid this effect, we build a ‘booker’ for each ATFM regulation queue. The booker is a resource, 
with only one agent able to use it at the same time. Moreover, all changes to the regulation slots 
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(e.g., a slot assignment) have to be done by the booker, and no one else. As a consequence, only one 
flight at a time can access and modify the regulation slots. Note that two identical simulations can 
end up with difference results nevertheless, since the concurrent race for requests can happen, and 
will be solve internally, most likely randomly. 

3.2.3 Curfew 

An important addition to the model with respect to D5.2 is the presence of curfews for some 
airports. The details of how these curfews have been set, and for which airports, can be found in [4]. 
In the model, curfews have two impacts: 

• The network manager agent rejects flight plans for which the flight would arrive later than 
the threshold; 

• The airline operating centre takes this into account when computing expected costs, by 
adding a curfew cost to a flight which may potentially infringe the curfew. 

This translates into having slightly more cancelled flights than in the baseline, but more importantly 
airlines are more sensitive to delays on their flights if these delays may cause the last flight of the day 
to infringe any curfew. 

 

 

Figure 5: Example of estimation of curfew buffers 

Figure 5 presents how the curfew buffers have been estimated. In the first image, five consecutive 
flights of the same aircraft are presented. As depicted, flight 2 and flight 4 have as destination an 
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airport with a curfew at 23h00. Between each rotation there is an estimated minimum turnaround 
time required (MTT). With this information, it is possible to compute, as presented in the second 
image, the buffers to propagate delay between the flights (turnaround buffer) and to breach the 
different curfews (e.g., flight 2 should be delayed by more than 645 minutes for the flight to breach 
the curfew, as its SIBT is at 12h45 and the curfew at destination is at 23h00). Then, finally, with this 
information, it is possible to compute the curfew buffer for the different flights considering from 
which moment it is possible that the flights would propagate enough delay to potentially breach a 
curfew. For example, flight 3 has a curfew buffer of 45 minutes as if the flight is delayed over 45 
minutes, it will propagate over 30 minutes to flight 4 which will then breach a curfew. In this 
example, even if flight 2 has 645 minutes of delay until it breaches the curfew, its curfew buffer is 
only 55 minutes, as after that it could potentially propagate enough delay for flight 4 to breach its 
curfew. 

In the model, these buffers are computed using the most up-to-date available information, such as 
the updated EIBT of downstream flights. 

3.2.4 Passengers 

Passengers are not considered agents in the model, since they do not make decisions during their 
trips. A passenger class exists in the code, as a place holder for all passengers of the same type 
following the same itineraries. These groups can be split in case of rebooking. The class is also used 
to compute the soft cost incurred by airlines, corresponding to image deterioration due to delays. 
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4 Model calibration and validation 

Most of the model calibration process has been explained in D5.2 Investigative case studies results. 
In this deliverable the same principles apply, we only highlight the differences with respect to the 
previously reported calibration. 

4.1 Data used for calibration 

Table 1 presents some of the key processes that are modelled in Domino, and how their distributions 
have been adjusted as reported in D5.2. 

Table 1: Processes model in Domino with distributions 

Process Distribution Based on 

Taxi-in 

LogNormal distribution considering 
mean, standard deviation and 
modifier to consider baseline or 
stressed scenarios. 

IATA Summer Season 2010 from CODA [5] 

Taxi-out 

LogNormal distribution considering 
mean, standard deviation and 
modifier to consider baseline or 
stressed scenarios. 

IATA Summer Season 2010 from CODA [6] 

Climb 
uncertainty Normal distribution minutes 

Analysis DDR difference between planned 
and executed trajectories (m2, m3) from 
DCI4HD2D Project [7] 

Cruise Normal distribution NM 
Analysis DDR difference between planned 
and executed trajectories (m2, m3) from 
DCI4HD2D Project [7] 

Wind 

Empirical probability distribution 
function for planned wind during the 
cruise. Used average wind between 
regions. No noise added on execution. 

For each ANSP to ANSP origin and 
destination airport consider the 
difference between requested speed and 
observed average ground speed for cruise 
segments from DDR2 analysis 
(AIRAC1409) [8] 
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Turnaround 
time 

Exponential distribution considering: 

• Minimum turnaround time 
based on airport size, aircraft 
wake and type of airline (REG, 
CHT, LCC, FSC) 

Lambda which depends on scenario 
(Default or High delay) 

Analysis of turnaround times performed 
in POEM project and used in 
ComplexityCosts project [9] 

Probability 
ATFM delay 

When regulation is explicit at airport, 
the regulations are based on a given 
historical day. The days are selected 
based on their percentile ranked by 
number of regulations at airport in the 
day. There is a minimum and 
maximum percentile to be considered 
for baseline and stressed scenarios. 

For regulations in the airspace there 
are two probabilities one for 
regulations due to weather and 
another for regulations due to any 
other reason. 

Based on analysis of DDR2 (AIRAC1313-
1413 excluding days with industrial 
actions) [8] 

ATFM delay 

Empirical probability distribution 
function for regulations due to 
weather and regulations for other 
reasons. 

Based on analysis of DDR2 (AIRAC1313-
1413 excluding days with industrial 
actions) [8] 

Non-ATFM 
delay 

Exponential distribution with different 
lambda as a function of scenario: 
baseline, stressed 

- 

Passenger 
connecting 
times 

LogNormal distribution 

Considering minimum connecting 
times per airport and type of 
connection (between national flights, 
from national to international and 
between international flights), sigma 
and percentile of passengers who 
connect in less than the minimum 
connecting time. 

Based on analysis of minimum connecting 
times at ECAC airports originally 
performed in POEM project [10] 
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Variation of 
cruise length 
due to DCI 

Normal distribution NM Analysis of Performance using Airbus PEP 
[11] 

Cancellation 

Probability based on historical 
cancellation rate and explicit 
cancellation for missing arrival curfew 
at airports. 

CODA 2017 report [12] and information 
on airports implementing curfews from 
EUROCONTROL. 

 

Table 2 presents the data sources used to identify the target values for key indicators as in D5.2. 
Note that we are basing the scenarios on the traffic of a given day. Therefore, we have been able to 
reconstruct the schedules of that day with the execution of the flights from DDR2, and use this 
information for the validation of the model. 

Table 2: Calibration parameters considered for targets 

Parameter Source 

Departure delay Reconstructed schedules compared with AOBT from 
DDR2 (m3) 

Arrival delay Reconstructed schedules compared with estimated 
AIBT from DDR2 (m3) 

Delay distribution per reason (Reactionary, 
en-route, capacity, weather) CODA 2017 report [12] 

Flight plan length (NM) DDR2 (m1) 

Flight plan duration (min) DDR2 (m1) 

Flight execution length (NM) DDR2 (m3) 

Flight execution duration (min) DDR2 (m3) 

Taxi-in Reconstructed schedules compared with planned taxi 
times from DDR2 (m1) 

Taxi-out Take off time - AOBT estimated form DDR2 (m3) 

Gate-to-gate time (min) DDR2 with estimated taxi times 

Cancellation rate CODA 2017 report [12] 
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Table 3 present the parameters that have been adjusted. Some of these parameters have been 
chosen based on expert judgment, whereas others have been calibrated using some of the above 
metrics. 

Table 3: Parameters that have been adjusted in the model from the distributions 

Process Parameter Possible values 

Turnaround time Lambda of exponential 
distribution 

• Default delay scenario value 
• High delay scenario value 

Climb uncertainty Extra climb minutes • Value adjusted for calibration in 
baseline scenario 

Airport capacity 
modifier Reduction of airport capacity 

• Default scenario value: no 
reduction 

• High delay scenario value: half 
capacity reduction 

Airport capacity 
adjustment 

Adjustment of capacity at airport 
considering demand lower due to 
non-inclusion of non-passenger 
commercial flights 

Value adjusted based on baseline 
scenario analysis of DDR2 flights 

Non-ATFM delay Parameter in exponential 
distribution, typical delay 

• Default delay scenario value 
(calibrated on DDR2 data) 

• High delay scenario value 

Probability of ATFM 
delay explicit at 
airport 

Day selection minimum and 
maximum percentile considered 

• Default delay scenario values (0.3-
0.8) 

• High delay scenario values (0.8-1) 

Taxi time modifier Increment of taxi time 

• Default scenario value: no 
increment 

• High delay scenario value: half 
increment 

Passenger connecting 
time 

Percentage of passengers who 
made the connection in less time 
than the MCT 

Sigma for the LogNormal 
distribution 

Value adjusted for calibration in 
baseline scenario 

Cancellation rate Ratio of cancelled flights per day Value adjusted for calibration in 
baseline scenario 
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4.2 Calibration process 

The basic principle of calibration is to measure something in output of the model, compare it to some 
empirical data, and adjusting some parameters so they eventually matched. The calibration on the 
final version has been done following a similar process than the previous version, in particular 
calibrating mainly average values. The calibration process is iterative by nature, since parameters 
usually impact several observables on the system. 

4.2.1 Airborne times 

The first indicator that was adjusted was the flying time (from take-off to landing). In the model, 
flights select their flight plan using some pre-computed trajectories. The pre-computation is done 
based on routes built from a clustering analysis on DDR data, as explained in D5.2. For each possible 
route between each origin and destination pair, a trajectory is computed for each aircraft type which 
could use that route. These trajectories are estimated using aircraft performance model (BADA 4) 
and adding wind to the cruise phase. The output of this pre-computation phase is the pool of flight 
plans that will be used by the AOC when selecting the one operated by the flight. 

Note that at execution, there are uncertainties added to the actually flown trajectory (time required 
to reach the top of climb or actual flight plan distance) as explained above. Moreover, airlines and 
flights might use some mechanism (such as 4DTA) to modify their trajectories, and there are also 
delays due to arrival queue management at airports (holdings). 

Based on the work carried out in Vista (Vista Consortium, 2018), an average estimated wind can be 
computed as the difference between the estimated ground speed (distance of the segment divided 
by time required to cover the segment according to the flight plan) and the requested speed from 
historical DDR data. A weighted average wind is then estimated per flight considering the length of 
all the segments. Finally, cumulative distribution functions of average wind are produced by grouping 
the flights based on their origin-destination NAS. As shown in Figure 6,in this manner probability 
distributions of average cruise winds encountered, which differ by origin and destination, thus 
capturing the general weather pattern (e.g., flights from Canada to Ireland will in general have head 
wind (negative) while flying from Ireland to Canada tail winds are more commonly encountered 
(positive winds), see Figure 6 a)). 
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a) Canada (CY) to Ireland (EI) flights 
 

 

b) United Kingdom (EG) to Spain (LE) flights 

Figure 6: Examples of cumulative distribution of average wind between different NAS 

In Domino, we have selected a fixed wind per origin-destination based on the distributions presented 
above and considering the 0.42 percentile of the wind. This provides a slightly higher head-wind than 
in the average case and has been adjusted as part of the calibration to ensure that the total average 
flying time is properly calibrated with historical data. 

The re-computation of all the possible trajectories for the pool of flight plans is a very long process, 
several days are needed to compute all the trajectories needed for the simulated day of operations 
(there are a total of 42.942 trajectories available for a total of 11.344 origin-destination pairs (3.8 
trajectories in average per origin-destination pair, one per possible route and aircraft type)). 

4.2.2 Taxi times 

Taxi times impact both arrival and departure delay (through turnaround), but are relatively 
independent of other factors (in the model). As a consequence, in a second step, we slightly adjust 
both distributions to match empirical data for them. 
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4.2.3  Non-ATFM delay 

On top of the ATFM regulations, a non-ATFM delay is applied to the flights before their departure. 
This delay represents different exogenous factors, like missing crew, problem when boarding 
passengers, etc. 

As a third step, we use this distribution of delay to match simulated departure delay to the empirical 
one.  

4.2.4 Turnaround time 

The turnaround time is the time necessary for the aircraft to be ready for next flight (including de-
boarding and boarding of passengers). As a consequence, it impacts reactionary, departure, and 
arrival delay at the same time. In Domino we adjusted it so that reactionary delay has the right share 
in the delay analysis (see below), and the arrival reaches its empirical value. Note that the starting 
values for the turnaround are based on an analysis of turnaround times performed in POEM project 
and used in the ComplexityCosts project which considered aircraft, airport and airline types (SESAR, 
2013). 

Since this parameter also impacts departure delay, a few iterations were needed between the non-
ATFM delay and this parameter to perform the calibration. 

4.2.5  Curfews 

Curfews are an important part of the airlines decision-making process when it comes to tactical 
management as even delays early in the day might propagate to eventually cause a curfew to be 
breached as presented in Section 3.2.3. Flights infringing curfews, i.e., landing after a certain time of 
the day, may face two issues: 

• a fine to pay (‘soft’ curfew), 

• a rejection of their flight plan, i.e., flights cannot be planned to land after a certain time in some 
airports (‘hard’ curfew). 

Note that these terminologies are not official, standard terms. Further work across this research area 
is needed, and curfew data needs to be made available, to enable comparisons between projects. As 
reported in [4], curfews application can be very complex. For example, the curfew may be active only 
for a certain type of aircraft, for flights coming from a certain direction, for departures, for arrivals, 
etc. This complexity is driven by the fact that some of these limitations are related with 
environmental practices (e.g., noise pollution). 

In Domino, a simplified version is implemented. We consider only curfews which prevent airlines 
from filing a flight plan to the destination. If the expected arrival time to the airport is after the 
curfew time, the flight plan will be rejected by the network manager and if no alternatives are 
available (e.g., using a different earlier arriving flight plan), the flight will be cancelled. This choice has 
two consequences for the model: 

• the network manager can reject some flight plans if they infringe a curfew, 
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• the airline has to take into account the price of a flight that would not make it to its final 
destination when making different decisions (such as flight swapping or delay recovery to avoid 
downstream potential breach of curfews). 

Concerning the second point, the team used prior EUROCONTROL knowledge of this issue through its 
UDPP development project. For that, EUROCONTROL developed a cost model including potential 
curfew costs, estimated with the help of the UDPP airline board. Domino considers the same costs: 

• 40000 euros for a light or medium aircraft, as flagged in their wake turbulence category, 

• 80000 euros for a heavy jet. 

Airlines are aware that delays early in the day can translate into delays for the last flight, which might 
breach a curfew (as presented in Section 3.2.3). 

In the model version used to generate the results presented in D5.2 Investigative case studies results, 
curfews were already modelled. However, which airports implemented curfew was based on the 
analysis of historical data by identifying airports which didn’t have flights arriving after a certain 
threshold. This led to an overestimation of the airports which enforce curfews. In D5.2, if a flight 
breached a curfew all subsequent flights planned with that aircraft were also cancelled. In some 
instance, abnormally large delays earlier in the day might trigger the cancellation of many flights. 

In the current version of the model, these shortcomings have been fixed. First, curfews are enforced 
at arrival only at airports in the ECAC region which were provided by EUROCONTROL. These airports 
have been considered as airports with curfews as part of the validation activities of UDPP. This 
reduced the number of airports which enforce curfews to 14. Secondly, only the flight which 
breaches the curfew is cancelled and subsequent flights with the same aircraft are considered to be 
possible to be operated if they won’t breach a curfew themselves. 

As for the time when these arrival curfews start, data provided from EUROCONTROL has been used. 
However, for 5 of the 14 airports, some scheduled flights in the model were planned to arrive after 
the curfew times provided by EUROCONTROL. For those airports, and in order to prevent flights 
breaching the curfew even if on-time, the curfew time has been increased to the SIBT of those late 
arriving flights, providing a buffer of 15 minutes, and rounding them to the next 15 minutes. 

 

4.3 Final state of calibration 

The following table shows the final values of the observables in the model and compare them to 
historical data. All the averages (except flying delay, which is very small) are within 5% of their 
empirical values. Most of them are within 1% of their targets, which ensures a good level of 
calibration for these average values. 

  

40 
 

© – 2019 – University of Westminster, EUROCONTROL, Università degli studi di 
Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the SESAR 
Joint Undertaking under conditions.  

 
 



D5.3 FINAL TOOL AND MODEL DESCRIPTION, AND CASE STUDIES RESULTS 

 

  

 

 

 

© – 2019 – University of Westminster, EUROCONTROL, Università degli studi 
di Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the 

SESAR Joint Undertaking under conditions. 

41 
 

 
 

 

Table 4: Model calibration summary 

Average value of: Simulations Historical Difference (mins) Error 

Departure delay 11.41 11.43 -0.02 -0.15% 

Flying delay -0.05 -0.16 0.11 -70.45% 

Taxi delay -4.78 -4.62 -0.16 3.50% 

Arrival delay 6.58 6.65 -0.07 -0.99% 

Arrival delay without earlies 11.32 11.57 -0.25 -2.12% 

Scheduled G2G time 159.47 159.47 0 0.00% 

Actual G2G time 154.65 154.69 -0.04 -0.02% 

Scheduled flying time 136.37 137.28 -0.91 -0.66% 

Actual flying time 136.33 137.12 -0.78 -0.57% 

Scheduled flying distance 965.37 960.57 4.8 0.50% 

Actual flying distance 954.33 948.51 5.82 0.61% 

Actual taxi-out time 12.14 12.52 -0.38 -3.02% 

Actual taxi-in time 5.6 5.73 -0.13 -2.26% 

 

In order to further check the calibration, we also compared the modelled delays results with the type 
of delay experienced by flights. For this, we used a CODA report from 2017 which presents a break-
down of the types of delay. This information has been used to qualitative ensure that the model is 
producing the type of delays that are expected and not as a quantitative target. The report from 
CODA used is for the whole of 2017, whereas are targets are for a specific day. Moreover, there 
might be some differences on how delays are labelled, e.g., whether the report computes averages 
only on most penalising delays on not. The following table shows the differences between the report 
and the simulated data. 
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Table 5. Distribution of delays among the main reasons of delay 

Type of delay Proportion in 
simulations 

Proportion in CODA 
2017 

Minutes needed in simulation 
to match proportions 

Reactionary 27.85% 44.50% 1.94 

Turnaround 58.55% 35.80% -2.52 

En-route 7.60% 7.50% 0.00 

Capacity 3.67% 7.20% 0.41 

Weather 2.32% 1.90% -0.04 

4.4 Further comparison and remaining known issues 

Further analyses were performed to better understand the relationship between the historical data 
and the model output. We show a few of them in the following. 

The first important metrics is the gate-to-gate time. The distribution shown in Figure 7 is driven by 
the structure of the OD pair distance, but depends also more weakly on the performance data (for 
speed) and the various delay distributions (e.g., holdings at arrival, taxi times). The agreement is very 
good between simulations and empirical data. 

 

Figure 7: Probability distribution of gate-to-gate times in simulations and historical data. Inset: QQ-
plot between both distributions. 

Other important distributions to review are departure and arrival delay, since they structure the 
model and form the basis of the airlines’ decisions. On the left of Figure 8, we can see that departure 
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delays have quite a significant difference in the model with respect to historical data. In the model 
we assumed that no flight could depart before their schedule time. However, this is not the case in 
reality, as shown by the orange distribution. In the historical dataset, flights can be up to 20 minutes 
earlier than their schedules. The model could consider that if the aircraft is ready and there is no 
missing passenger, the flight could be ready to depart earlier than their schedule. However, it is not 
clear which parameters should be considered to properly model this behaviour. Finally, in some 
instances, the values observed in the historical data could also be an artefact due to some 
misalignment between DDR and schedule data. 

The arrival delay distribution is closer to the historical one, as seen on the right of the figure. It is 
however interesting to note that the simulations create more delays around 20 minutes than there 
are in the historical data. Conversely, less flights have almost no delay (around 9 minutes). This might 
be due partially to the previous departure delay artefact, since early departing flights are more likely 
to be on time at arrival.  

  

Figure 8: Probability distributions for departure (left) and arrival (right) delay in simulations and 
historical data. Insets: corresponding QQ-plots.  

It is interesting also to compare the differences of features between the planned and the actual 
trajectories. In Figure 9, we show the distribution of differences in gate-to-gate times between 
planned and actual trajectories. In this case, the agreement between simulations and historical data 
is very good, even if the simulations seem to have slightly fatter tails on both sides. 
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Figure 9: Probability distributions of gate-to-gate differences in simulations and historical data. 

Finally, we highlight a discrepancy between empirical data and simulations which may have some 
long-reaching consequences. When examining passenger data, we have noted that the average delay 
per passenger seemed to be quite low compared to flight delay. For instance, in the baseline, the 
average arrival passenger delay is only 66% of the average flight arrival delay. This is counter-
intuitive, since passengers can have multi-leg itineraries, miss a connection, and thus have much a 
much higher delay than the flight they take. However, the ratio of the average delays can be smaller 
than 1, as shown in Table 6, displays the values of the ratios for departure and arrival delay, in the 
simulations and in the historical data. 

 

Table 6: Estimations of ratios between pax delay and flight delay 

 Simulations Historical 

Ratio pax arrival delay/flight arrival delay 0.66 0.91 

Ratio pax departure delay/flight departure delay 0.97 1.11 

 

The reason for this ratio to be smaller than one is related to a simple statistical effect: if big planes 
are in average less delayed than smaller ones, then this drives naturally the passenger delay down. 
To analyse this effect, we show in Figure 10 the average flight delay as a function of the number of 
passengers on the flight, average per quantile (60 quantiles represented). We also show the Pearson 
correlation coefficients (computed on all points, not just the quantiles) in the legend. Clearly, the 
simulations have a different behaviour than the empirical data. Overall, it seems that the simulations 
tend to have lower arrival delays for large flights, and higher delays for small ones. At departure, the 
coefficients are not so different, and the noise is larger than the average trends, which explains why 
the ratios are not so different for departure in Table 6. 
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Figure 10: Average departure (left) and arrival (right) delay as a functions of the number of pax in 
flight. Delays are averaged over quantiles. 

Note that there is a correlation between larger number of passenger and longer flight distance. 
There might be different reasons to explain this behaviour (buffers, effect of wind, airline behaviour). 
It is expected that larger aircraft carrying more passengers are more important for airlines as they 
might potentially incur on higher costs. For this reason, it is expected that larger flights will be more 
protected than small ones. We could expect this pattern to be more present in the 
historical/empirical data. 
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5 Case studies results 

5.1 Metrics 

5.1.1 Metrics definitions 

This section is dedicated to the explanation of the metrics that are used to analyse the model’s 
outputs and how they are computed. We first consider the same classical metrics related to delays, 
passengers and costs that were considered in [2], plus some additional passenger-related metrics, 
whose computation is made possible by the new organisation of the output. We list all the classical 
metrics below. Secondly, we consider the more advanced, network metrics of centrality and causality 
that were also used in [2], which are very briefly summarised here. As anticipated in [13], an 
additional measure of centrality and an alternative method to detect causality are added to the set 
of tools. These new methods are explained and justified in this section. 

5.1.1.1 Classical metrics 
 

a) Delay metrics 

For delay, we report the following classical metrics, averaged over 50 iterations of the agent-based 
model, per scenario: 

• Average departure delay of flights1. 

• Fraction of flights with departure delay > X minutes 

• Total departure delay of flights with departure delay > X minutes 

• Average departure delay of flights with departure delay > X minutes 

• Average arrival delay across all flights2 

• Average arrival delay without earlies3 

• Fraction of flights with arrival delay > X minutes 

1 Departure delays are always positive, as in the model flights never depart before their scheduled off-block 
time. 
2 Early arrivals are counted as negative delays. 
3 Early arrivals are counted as 0. 
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• Total arrival delay of flights with arrival delay > X minutes 

• Average arrival delay of flights with arrival delay > X minutes where X=15, 60, 180 

• Average gate-to-gate delay of flights (obtained as the difference between the scheduled and the 
actual gate-to-gate time) 

• Average per-passenger gate-to-gate delay (for each flight, the delay is divided by the number of 
passengers on the flight; the result is averaged over all flights) 

• Fraction of cancelled flights 

Average reactionary delay (computed as the mean delay of flights whose main reason for delay is 
reactionary4) 

• Fraction of flights with any reactionary delay 

b) Cost metrics 

For the costs, we report the following classical metrics, averaged over 50 iterations of the model: 

• Average excess cost of fuel (the extra cost with respect to the planned cost of fuel, which can 
also be negative if fuel was saved) 

• Average cost of compensation 

• Fraction of flights paying compensation 

• Average cost of transfer 

• Fraction of flights paying transfer 

• Average duty of care cost 

• Fraction of flights paying duty of care 

• Average soft costs 

• Fraction of flights paying soft costs 

• Average non-pax costs (crew + maintenance) 

• Fraction of flights paying non-pax costs 

• Average total excess cost relative to scheduled flight plan 

All costs are in euros. Average costs are computed for all flights, including those that did not 
experience such costs as indicated above (counted as zero). 

c) Passenger metrics 

We consider the following metrics related to passengers, averaged over 50 iterations of the model: 

4 The main reason for the delay to a flight is flagged as reactionary if among all the delays experienced by the 
flight, the largest part is reactionary. 
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• Average passenger delay across all passengers5 

• Average passenger delay without earlies6 

• Average delay of connecting and non-connecting passengers. 

• Fraction of passengers with a modified itinerary 

• Fraction of passengers arriving at their final destination on the same day 

• Fraction of passengers receiving compensation 

• Average compensation received 

• Fraction of passengers receiving duty of care 

• Average duty of care received 

• Fraction of passengers with delay > X minutes 

• Total delay of passengers with delay > X minutes 

• Average delay of passengers with delay > X minutes where X=15, 60, 180 

5.1.1.2 Centrality metrics 
The first centrality metric that we consider is trip centrality, which was introduced in Deliverable 5.1 
[14]. The outgoing trip centrality of an airport counts all the potential itineraries having that airport 
as the origin, while the incoming trip centrality counts those having that airport as a destination. 
Potential itineraries are all the sequences of any number of flights that can be potentially taken one 
after the other, given their schedule. An itinerary of n legs is weighted 𝛼𝛼𝑛𝑛, where 𝛼𝛼 < 1, so that 
itineraries made of more legs are counted less. For all the results shown in this deliverable 𝛼𝛼 = 0.2. 
With respect to how the metric was defined in Deliverable 5.1 and computed in Deliverable 5.2 [2], 
we make a small modification to account for a minimum connecting time between subsequent flights 
used in an itinerary. Given a minimum connecting time of Δ𝑡𝑡, that we fix to 15 minutes, this 
modification is simply obtained by shifting forward the arrival time of each flight by Δ𝑡𝑡. Trip centrality 
can either count only the itineraries made of legs of the same airline or alliance, corresponding to 
setting 𝜀𝜀 = 0 (see Deliverable 5.1 [14]), or count also the itineraries using two or more airlines or 
alliances. For all the results presented in this deliverable we used 𝜀𝜀 = 0, therefore the walks counted 
are those within an alliance or within an airline (for airlines that do not belong to any alliance). 

The loss of an airport’s outgoing and incoming trip centrality between the network of scheduled 
flights, and the actual network, measures the loss of potential outgoing or incoming itineraries that 

5 Computed as the arrival delay at the passenger's final destination; early arrivals are counted as negative 
delays. 
6 The average is computed counting early arrivals as zeros. This metric is interesting because of its related 
metrics for the flight delays, used in several other reporting contexts, although there is a general lack of 
standardisation and consistency between frameworks. Note that whereas for a flight early arrival are not 
usually beneficial, and thus can be set to 0, they are probably more often important for passengers, whose 
utility always decreases with the length of the trip (this is captured in the previous average passenger delay 
metric). 
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are not feasible any more (due to delays or cancellations), therefore it quantifies the decrease in the 
potential to go from that airport to the rest of the airport network or vice versa. See Deliverables 5.1 
and 5.2 for further details on the computation and interpretation of trip centrality losses. Note that 
for trip centrality, when the centrality loss is averaged over the entire network, the loss of incoming 
centrality equals exactly the loss of outgoing centrality. In fact, each loss of outgoing centrality 
corresponds to an equal loss of incoming centrality of another airport. Therefore, in this case, we will 
refer to it as ‘Average trip centrality loss’. When referring to a subset of the airports, incoming and 
outgoing centrality losses can be different. 

Secondly, we consider ‘passenger centrality’, which was introduced in Deliverable 5.2. In the 
computation of passenger centrality each itinerary contributes to the outgoing or incoming centrality 
of an airport an amount which corresponds to the number of passengers on that itinerary. Therefore, 
the outgoing passenger centrality of an airport corresponds to the number of passengers that depart 
from that airport (either as their first departure or taking a flight connection there) and are directed 
to another destination, either with a direct flight or with connections. The incoming centrality of an 
airport, instead, corresponds to the number of passengers that land in that airport, either as their 
final destination or to take a connection. 

To compute the loss of passenger centrality, in the actual network we only count passengers that 
reach their destination using their scheduled itinerary. The actual outgoing passenger centrality of an 
airport corresponds to the number of passengers that were counted in the scheduled outgoing 
passenger centrality and that manage to follow their scheduled itinerary. If, for example, N incoming 
passengers miss their connection in airport i, and are rebooked to another outgoing flight, airport i 
will have a loss of outgoing centrality amounting to N. The same loss would apply if N passengers 
depart late from i and miss their next connection at another airport. While in Deliverable 5.2 we 
could not use the information on which itineraries had been disrupted in the simulations due to 
issues in how the information had been stored, in the current model output the information is 
available. 

5.1.1.3 Centrality metrics 
In addition to these metrics, we introduce another centrality metric, as mentioned in Deliverable 3.3, 
inspired by the concept of betweenness centrality. The purpose of this metric is to measure the 
potential flow of passengers through an airport (and its loss in the actual network), a quantity of 
particular interest for hubs. In fact, with trip centrality, the centrality of an airport does not account 
for itineraries passing through that airport, therefore its loss does not account for missed 
connections at the airport itself. The loss of outgoing passenger centrality, as explained in Deliverable 
5.2, does account for missed connections in the airport itself, however it is computed using the 
scheduled and actual passenger itineraries: information that is not easily available outside of a 
modelling context. The same is true for classical metrics, such as the number of missed connections 
at an airport. This is why we propose a centrality metric, that we call ‘trip betweenness centrality’, 
that computes the potential passengers flow and its loss based only on scheduled and actual flights 
and on passenger demand for each origin-destination pair (on a specific day or averaged on a longer 
period). The value of trip betweenness centrality for an airport (see below for its definition) is an 
estimate of the number of passengers connecting at that airport, given the flight schedules and the 
demand for each origin-destination pair. The loss of trip betweenness is an estimate of the number 
of passengers connecting at that airport that had a disrupted itinerary. It therefore represents a tool 
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to evaluate the risk of connecting in a certain airport that can be used by stakeholders interested in 
the passengers’ point of view. 

In standard betweenness centrality [15], a node is considered central if a large fraction of the 
shortest paths between each pair of nodes in the network pass from it. More precisely, if 𝜎𝜎𝑖𝑖𝑖𝑖is the 
number of shortest paths between i and j and𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘 is the number of such shortest paths that pass by k, 
the betweenness centrality of k is 

𝑏𝑏(𝑘𝑘) = ∑
𝑖𝑖𝑖𝑖

𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘

𝜎𝜎𝑖𝑖𝑖𝑖
. 

In this definition, only the shortest paths are considered, i.e., if a path from node i to node j which 
passes from node k is not the shortest path joining i and j, it would not contribute to the centrality of 
node k. For ATM applications, however, we deem it more realistic that passengers would not only 
use the shortest paths, as these could only be available at certain times of the day or could well be 
more expensive than a slightly longer path (where path length might be intended as number of legs, 
duration or a combination of the two). In addition, the standard betweenness centrality does not 
consider that the network is temporal, and therefore that paths should be time-ordered. Temporal 
generalisations of betweenness centrality have been proposed in the literature [16]. Here, we 
propose a temporal version of betweenness centrality tailored for ATM applications, where all the 
paths that satisfy the following constraints are accepted: 

• the path must have no more than 2 legs; 

• the path must be time-ordered, i.e. the departure time of the second leg must be later than the 
landing time of the first leg, and there must be a connecting time of at least Δ𝑡𝑡 mins; note that 
this time has the meaning of the minimum connecting time in a scheduled itinerary, which might 
be larger than the minimum time needed to take a connection, as passengers would not choose 
exceedingly tight itineraries; 

• the duration of the path must not exceed K times the duration of the fastest path connecting the 
same origin-destination pair (including directs); 

• the demand for the corresponding origin-destination pair must be non-zero. 

With these constraints, both the number of legs and the duration of a path are taken into 
consideration. Choosing K=2,Δ𝑡𝑡=45 (the value chosen looking at the connecting times in the 
scheduled passengers’ itineraries of 12 September 2014) and using the demand of 12 September 
2014, these constraints select a set of paths such that 50% of the 2-leg passengers’ itineraries of 12 
September are among the accepted paths, which however include many more paths that were not 
used on that day but are acceptable according to the constraints (a total of 170 000 accepted 2-leg 
itineraries, of which around 35 000 correspond to real passengers itineraries). 

Note that real passengers’ itineraries also include a small number (~4000) of 3-leg itineraries. 
However, if we also accept 3-leg paths (with the same constraints on duration) the accepted 3-leg 
paths are around 700 000, therefore including a large number of itineraries that were not used by 
passengers. We therefore decided to only accept paths up to two legs, so that the set of accepted 
paths is more similar to the set of paths actually used by passengers. 
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Additionally, we want to weight the contribution of pair (i,j) to the trip betweenness centrality by the 
demand 𝑑𝑑𝑖𝑖𝑖𝑖  for that origin-destination pair. As a first option, one could think of computing the trip 
betweenness centrality of an airport k as: 

𝑡𝑡𝑏𝑏(𝑘𝑘) = ∑
𝑖𝑖𝑖𝑖

𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘

𝜎𝜎𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖 , 

Where 𝜎𝜎𝑖𝑖𝑖𝑖 is the number of accepted paths between i and j (including directs) and 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘  the number of 

such paths that pass through k. Note that the product 
𝜎𝜎𝑖𝑖𝑖𝑖
𝑘𝑘

𝜎𝜎𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖  is an estimate of the number of 

passengers that pass from k going from i to j, assuming that the demand is split equally among the 
𝜎𝜎𝑖𝑖𝑖𝑖accepted paths. However, this is not realistic, in fact we verified that when there is a direct 
between i and j, on average 94% of the demand is satisfied by the direct. Therefore, a more realistic 
estimate for the number of passenger connections in k is obtained reducing 𝑑𝑑𝑖𝑖𝑖𝑖to 6% of the total 
demand for origin-destination pairs having a direct flight between them, and letting 𝜎𝜎𝑖𝑖𝑖𝑖be the 
number of accepted paths between i and j, excluding directs. In conclusion, tb(k) is computed 
according to (1), but where 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑖𝑖𝑖𝑖are redefined as explained. We checked that results do not 
change significantly if the demand reduction is done with the percentage specific for that origin-
destination pair instead than using the average. 

We consider a path to be disrupted if the actual connecting time is at leastΔ𝑡𝑡2(which in principle can 
be smaller than Δ𝑡𝑡, as it represents the minimum time needed to take a connection). Calling 𝜎𝜎𝑖𝑖𝑖𝑖

′𝑘𝑘the 
number of accepted paths from i to j assign from k that are not disrupted, the actual betweenness 
centrality is: 

𝑡𝑡𝑏𝑏𝑅𝑅(𝑘𝑘) = ∑
𝑖𝑖𝑖𝑖

𝜎𝜎𝑖𝑖𝑖𝑖
′𝑘𝑘

𝜎𝜎𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖 , 

For the results presented in this Deliverable, we useΔ𝑡𝑡2 = 20. The loss of betweenness Δ𝑏𝑏(𝑘𝑘) =
𝑏𝑏(𝑘𝑘) − 𝑏𝑏𝑅𝑅(𝑘𝑘) is therefore an estimate of the number of passengers connecting in k whose itinerary 
is disrupted. The relative loss Δ𝑏𝑏(𝑘𝑘)/𝑏𝑏(𝑘𝑘)is an estimate of the fraction of passengers connecting in k 
whose itinerary is disrupted, i.e. the probability to have one’s itinerary disrupted if connecting at k. 

The scheduled trip betweenness has, as expected, a strong linear correlation with the number of 
connecting passengers in the same airport (correlation coefficient=0.98). The two quantities are 
plotted in Figure 11 in double logarithmic scale, together with their linear fit (blue line, R2=0.96). 
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Figure 11: Number of connecting passengers in each airport vs trip betweenness estimate on 
12SEP14. The plot is in double logarithmic scale, the blue line is a linear regression y=a*x+b with 
a=1.02±0.01. b=-15±13, R2=0.96). 

5.1.1.4 Causality metrics 
In the ATM system, delays and congestion states propagate through the system due to the 
interactions between the flights and the environment, e.g. the network manager, the airports or 
arrival coordinators. The proposed causality metrics aim to detect the extent to which the congested 
state of an airport causes congestion in other nodes of the network, thus providing a toolbox which is 
able to characterise the channels of interactions between the different sub-parts of the system. 

In time series analysis, a (directional) causal relationship between two systems is detected when the 
information on the state of one system helps in predicting the future state of the other. The 
presence of a causal relationship is assessed by means of statistical tests whose most well-known 
example is the Granger causality metric [17]. Indeed, it has been recently applied to airport networks 
[18] and [19]. 

Here, a data driven approach is adopted to identify the channels through which the delay propagates 
and establishes a network of causal relationships, where a link between two airports is present if 
delay propagates (in statistical sense) from one to the other. Causality is tested between the states of 
delay (or congestion) of airports in the network, measured as a given quantile of the distribution of 
the flight delays for that airport within one-hour window. In the following, we will consider two 
different definitions for the state of delay, by measuring it as either the mean or the third quartile of 
the distribution of delays. Finally, we consider the whole ECAC ATM system by averaging over all 
flights, without distinguishing between airlines. 

The topology of the resulting causal network may change depending on the mechanism 
implemented in the system. This relates the presence of innovations at the micro level to its impact 
on delay dynamics and propagation at some macro level of aggregation, such as airports, airlines, or 
passengers. For example, a smaller number of causal links or less positive feedback subsystems can 
be seen as an improvement of the system, as they signal a diminished coupling of the systems’ 
elements. 
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There exist several methods to detect a causality relationship, each one assessing the statistical 
significance of one time series in forecasting another. Granger causality (in mean) by [17] tests the 
statistical significance of the forecasting performance on average, by considering both small and 
large values, whereas the statistical test introduced by [20], namely Granger causality in tail, restricts 
the analysis to the prediction of extreme events, which are defined as the states falling in the tail of 
the distribution. When studying the propagation of congestion between airports, delays which are 
small with respect to flight time are probably not relevant for delay propagation, as they are typically 
fairly easily absorbed by buffers (or during the flight). Granger causality in tail tends to capture 
exactly the propagation of extreme events, thus describing the dynamics of congestion in the ATM 
system. However, the statistical test introduced by [20] suffers a high false positive rate when the 
time series describing the state of congestion of an airport displays non-zero autocorrelation. This is 
in effect very common for the ATM system: it is likely that a congestion lasts for many hours, thus 
resulting in systemic delays for flights and persistent state of congestion for the airport (i.e. positive 
autocorrelation shown by the state of delay). To solve this drawback of the test introduced in [20], 
we propose a novel statistical approach to identify causal relationships between the states of 
congestion of two airports, also in presence of non-zero autocorrelation and non-zero terms of 
interaction. 

In the following, we introduce the definitions for both the state of delay and the state of congestion 
used in the causality analysis and describe the statistical tests. 

a) State of delay, state of congestion 

Here, we give some operative definitions for the random variables describing the states of the 
corresponding airports. 

• State of delay. A random variable 𝑋𝑋𝑖𝑖 ∈ ℝ associated with airport i determining the level of delay 
of all flights departing from that airport within one hour time window, i.e. 𝑥𝑥𝑖𝑖,𝑡𝑡 with t=1,...,24. We 
consider two different definitions: 

1. the average delay of all flights departing from the airport in that given hour; 

2. the 75% percentile (i.e. the third quartile) of the distribution of delays of the flights departing 
from the airport in that given hour. 

As pointed out by [18], a Z-Score standardisation procedure is applied to reduce the non-
stationarity of the time series caused by daily seasonality, which may result in a biased 
evaluation of the Granger causality metric. The standardised time series of airport i is calculated 

as 𝑥𝑥
~
𝑖𝑖,𝑡𝑡 = (𝑥𝑥𝑖𝑖,𝑡𝑡 − 𝑥𝑥

¯
𝑖𝑖
𝑡𝑡)/𝜎𝜎𝑖𝑖𝑡𝑡 where 𝑥𝑥

¯
𝑖𝑖
𝑡𝑡 and 𝜎𝜎𝑖𝑖𝑡𝑡 are the mean and the standard deviation of the delay 

states of airport i recorded at hour t across all available days (or, equivalently, simulations of the 
ABM model). 

• State of congestion (or extreme delay). A binary random variable 𝑍𝑍𝑖𝑖 ∈ {0,1} associated with 
airport i determining if the airport is congested or not, according to a threshold value Q which is 
determined as the 80% quantile of the distribution of the state of delay, by considering all 
airports and all days (simulations). In other words: 



EDITION 01.00.00 
 

{
𝑧𝑧𝑖𝑖,𝑡𝑡 = 1 if 𝑥𝑥𝑖𝑖,𝑡𝑡 ≥ 𝑄𝑄,
𝑧𝑧𝑖𝑖,𝑡𝑡 = 0 if 𝑥𝑥𝑖𝑖,𝑡𝑡 < 𝑄𝑄. 

When the actual the state of delay falls in the right tail of the distribution determined by the 
quantile Q, we say that the state of delay is extreme, thus identifying the airport as congested. 

b) Review of causality methods 

Any causality method is based on detecting a causal relationship between two time series by testing 
if the knowledge of past observations of one time series allows us to estimate the future 
observations of the other time series better than without considering it. Assume we observe the 
realisation of a stochastic variable 𝑋𝑋 whose realisation 𝑥𝑥𝑡𝑡 at time t represents the state of delay of an 
airport (according to some previous definition). 

(i) Granger causality in mean 

𝑌𝑌 ≡ {𝑦𝑦𝑡𝑡}𝑡𝑡=1,...,𝑇𝑇 is said to Granger-cause in mean 𝑋𝑋 ≡ {𝑥𝑥𝑡𝑡}𝑡𝑡=1,...,𝑇𝑇 if we reject the null hypothesis that 
the past values of 𝑌𝑌do not provide statistically significant information about future values of 𝑋𝑋 by 
assuming a linear predictive model [17]. In other words, if 𝑌𝑌 Granger-causes 𝑋𝑋, it is possible to use 
the past observations of 𝑌𝑌 to improve the prediction performance (with a certain degree of 
confidence) of the future value of 𝑋𝑋, weighting equally small and large values in assessing the 
prediction performance. In the ATM application, this is equivalent to say that the delay observed in 𝑌𝑌 
is ‘transmitted’ to 𝑋𝑋, thus the causal relationship from 𝑌𝑌 to 𝑋𝑋 can be interpreted as the presence of a 
channel for the process of delay propagation within the ATM system. 

(ii) Granger causality in tail by Hong et al. 

The statistical approach introduced by [20] aims to evaluate whether the knowledge of the past 
extreme events for a random variable 𝑌𝑌 helps in forecasting the occurrence of future extreme events 
for another random variable 𝑋𝑋. With a similar spirit of [17], this Granger causality in tail test aims to 
evaluate whether extreme events in an airport cause extreme events in another airport, by analysing 
the binary time series of the states of congestion of the airports. Let us consider 𝑍𝑍1 and 𝑍𝑍2 as the 
states of congestion associated with the states of delay 𝑋𝑋 and 𝑌𝑌 of two airports, respectively. 

𝑌𝑌 is said to Granger-cause in tail 𝑋𝑋 if we reject the null hypothesis that the past extreme events, i.e. 
{𝑍𝑍2,𝑠𝑠}𝑠𝑠=𝑡𝑡,𝑡𝑡−2,...,𝑡𝑡−𝑀𝑀 for given 𝑀𝑀 > 0, of 𝑌𝑌do not provide statistically significant information about the 
future extreme event, i.e. 𝑍𝑍1,𝑡𝑡+1, of 𝑋𝑋, thus revealing the presence of a propagation channel for 
‘extreme’ delays (or congestion) between two airports. 

However, the proposed statistical test is not robust to the presence of positive autocorrelation for the 
states of congestion, thus resulting in a very high rate of false positives (see below). For this reason, 
we introduce a novel method to test for Granger causality in tail. 

(iii) Granger causality in tail with BiDAR 

Let us consider a single binary time series {𝑍𝑍𝑡𝑡}, e.g., describing the state of congestion of an airport. 
We can describe 𝑍𝑍𝑡𝑡  by a DAR(p) (discrete auto-regressive of order p) process [21], i.e. 

𝑍𝑍𝑡𝑡 = 𝑉𝑉𝑡𝑡𝑍𝑍𝑡𝑡−𝜏𝜏𝑡𝑡 + (1 − 𝑉𝑉𝑡𝑡)𝑈𝑈𝑡𝑡 , 
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meaning that 𝑍𝑍𝑡𝑡  can be copied from the past (𝑡𝑡 − 𝜏𝜏 for some 𝜏𝜏 = 1, . . . , 𝑝𝑝) or sampled from some 
Bernoulli marginal𝑈𝑈𝑡𝑡, according to the Bernoulli random variable 𝑉𝑉𝑡𝑡 = 0,1, which selects step by step 
what is the case. 

Then, the DAR(p) process can be generalised to the case of two binary random states, 
i.e.𝑍𝑍1and𝑍𝑍2describing the states of congestion of two airports, by considering the following BiDAR(p) 
(binary discrete auto-regressive of order p) process, 

{
𝑍𝑍1,𝑡𝑡 = 𝑉𝑉𝑡𝑡((1− 𝐴𝐴𝑡𝑡)𝑍𝑍1,𝑡𝑡−𝜏𝜏𝑡𝑡11 + 𝐴𝐴𝑡𝑡𝑍𝑍2,𝑡𝑡−𝜏𝜏𝑡𝑡12) + (1 − 𝑉𝑉𝑡𝑡)𝑈𝑈1,𝑡𝑡

𝑍𝑍2,𝑡𝑡 = 𝑆𝑆𝑡𝑡(𝑆𝑆𝑡𝑡𝑍𝑍1,𝑡𝑡−𝜏𝜏𝑡𝑡21 + (1 − 𝑆𝑆𝑡𝑡)𝑍𝑍2,𝑡𝑡−𝜏𝜏𝑡𝑡22) + (1 − 𝑆𝑆𝑡𝑡)𝑈𝑈2,𝑡𝑡
 

where, as before, 𝑉𝑉𝑡𝑡determines for 𝑍𝑍1,𝑡𝑡if copying or not from the past (similarly for 𝑆𝑆𝑡𝑡 in relationship 
to 𝑍𝑍2,𝑡𝑡), but the Bernoulli random variable 𝐴𝐴𝑡𝑡selects now if copying the past (extreme) values of 
𝑍𝑍1itself or 𝑍𝑍2 (vice versa with 𝑆𝑆𝑡𝑡). 

Hence, the off-diagonal term of interaction𝐴𝐴𝑡𝑡determines the level of causality. In particular, 𝑌𝑌is said 
to Granger-cause in tail 𝑋𝑋 if we reject the null hypothesis that the past extreme events, i.e. 
{𝑍𝑍2,𝑠𝑠}𝑠𝑠=𝑡𝑡,𝑡𝑡−2,...,𝑡𝑡−𝑝𝑝 for given 𝑝𝑝 > 0, of 𝑌𝑌do not provide statistically significant information about the 
future extreme events, i.e. 𝑍𝑍1,𝑡𝑡+1, of 𝑋𝑋, by testing for non-zero term of interaction 𝐴𝐴𝑡𝑡. 

For further details about the statistical tests here described, see Appendix II. 

(iv) Causality network 

Given a method to detect causality between two time series, we can consider the network of airports 
where a link 𝑖𝑖 → 𝑗𝑗 is present if 𝑖𝑖 ‘Granger causes’ 𝑗𝑗. This approach has already been considered in a 
recent analysis of the Chinese air transportation network [18], where only Granger causality in mean 
has been used, and in [19] where we have used also the Granger in tail of [20]. 

Given 𝑁𝑁 time series, representing the state of the𝑁𝑁airports in the network, the (chosen) causality 
test is performed on all the possible 𝑀𝑀 = 𝑁𝑁(𝑁𝑁 − 1) pairs. When performing multiple hypothesis 
testing, a correction to the significance level of each single test should be applied to obtain the 
desired overall level Γ, i.e. if we test 𝑀𝑀 hypotheses simultaneously with a desired Γ, then a 
significance level Γ′ < Γ should be applied to each single test to correct for the increased chance of 
rare events, and therefore, the increased probability of false rejections. This has typically not been 
considered in the literature. However, it can have a huge impact on the number of detected causal 
links. 

Here, we apply two types of correction: 

1. the Bonferroni correction which compensates for the multiple comparisons in the most 
conservative way by setting Γ′ = Γ/𝑀𝑀; 

2. false discovery rate (FDR) method which controls for the rate of false positives in the following 
way: 

a. consider the all the 𝑀𝑀 = 𝑁𝑁(𝑁𝑁 − 1) hypotheses we aim to test, together with the p-
values of each statistical test {𝑝𝑝𝑖𝑖}𝑖𝑖=1,...,𝑀𝑀 

b. sort the p-values in ascending order 𝑝𝑝1 ≤ 𝑝𝑝2 ≤. . .≤ 𝑝𝑝𝑀𝑀 
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c. find the position 𝑘𝑘 such that 𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑥𝑥{𝑖𝑖: 𝑝𝑝𝑖𝑖 ≤
𝑖𝑖
𝑀𝑀

5%
∑𝑖𝑖=1
𝑀𝑀 1/𝑖𝑖

} 

d. validate the rejections of the first 𝑘𝑘 hypotheses with p-values 𝑝𝑝1, . . . ,𝑝𝑝𝑘𝑘. 

Note that the test rejections validated with the Bonferroni corrections, are validated with the FDR 
method, too. However, FDR could accept some rejections of the null hypothesis which were excluded 
by Bonferroni. 

The Bonferroni correction is extremely strict and essentially aims to minimise false positives, 
sometimes at the cost of accepting as consistent with the null hypothesis low probability 
observations. FDR, on the other hand, uses a more balanced threshold both for specificity and for 
sensitivity. 

Whatever the type of correction applied, in the causality analysis we set the overall confidence level 
of the statistical test at Γ = 5%. 

 

5.1.2 Relationship between network metrics and operational indicators 

5.1.2.1 Centrality metrics 
In this section, we explore the relationships between centrality losses and standard operational 
indicators, in particular passenger-related costs and number of passengers with modified itineraries. 
All the analyses shown in this section are performed on the baseline scenario of hub delay 
management (see Section 2.1). 

As was explained in Section 5.1, the trip betweenness of an airport is an estimate of the flux of s 
passing through an airport, given the schedules and the demands for each origin-destination pair. 
Therefore, the loss of trip betweenness of an airport is an estimate of the number of passengers 
connecting there that experienced disruption, either because of a missed connection or because of 
the cancellation of one leg of their itinerary. If this is a good estimate, we expect the loss of trip 
betweenness to be correlated to the number of passengers with modified itineraries and also to the 
passenger-related costs, as the latter are mostly generated by modified itineraries. In fact, if we 
consider the total loss of trip betweenness on the entire network (sum of the loss of each airport) in 
the model iterations, we find that this has a strong linear correlation both with the total number of 
passengers with modified itineraries (𝜌𝜌=0.61) and with the total passenger-related costs associated 
with all flights (𝜌𝜌=0.77). The Pearson correlation coefficients are computed on 100 iterations, see 
Figure 12. Therefore, in a situation in which we do not know the actual costs and the passengers’ 
itineraries, but we know the schedules, the delays and the demand, we can provide a (rough) 
estimate of the aggregate passenger-related costs for all flights and of the number of passengers 
with modified itineraries using trip betweenness loss. 
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Figure 12: Trip betweenness loss. Left panel: Total trip betweenness loss on the network against 
total number of passengers with modified itineraries. Each dot represents one iteration. Right 

panel: Total trip betweenness loss on the network against total passenger-related costs associated 
with all flights. Each dot represents one iteration. 

Note that the difference between the loss of trip betweenness and the number of passengers with 
modified itineraries is mainly due to the fact that the itineraries counted by trip betweenness do not 
completely coincide with the itineraries actually used by passengers in the simulated day, as 
explained in Section 5.1. Thus, the loss of trip betweenness actually measures the number of 
passengers with modified itineraries that we would have on a day in which passengers use all the 
itineraries counted by trip betweenness, i.e. all the itineraries accepted by the constraint we applied, 
with the approximations mentioned in Section 5.1. Additionally, the said difference is also partly due 
to the fact that in trip betweenness we consider an itinerary disrupted if the actual connecting time 
is less thanΔ𝑡𝑡2, while in the model’s simulation passenger connections are stochastic, and can 
require longer or shorter times than that, also depending on the airport and on the type of flights. 
However, we see in Figure 12 that, on at the aggregate level, the loss of trip betweenness still gives 
meaningful information for this particular day. 

If we consider, instead, single airports, we can verify if the percentage loss of trip betweenness 
centrality of the airport is correlated to the fraction of passengers with modified itineraries among 
those having a connection there, and if the absolute loss is correlated to the cost of flights landing 
there. Of the 246 airports having non-zero betweenness centrality, 152 have actual passenger 
itineraries connecting there. For each airport of this subset, we computed the correlation between 
percentage trip betweenness loss and fraction of passengers with modified itineraries. We found 
that around 52% of these airports show a significant positive correlation (all the others have no 
significant correlation). The histogram of the obtained correlation coefficient is shown in Figure 13, 
left panel. When we consider the correlation with costs of incoming flights, instead, around 54% of 
these airports show a significant positive correlation (all the others have no significant correlation). 
The histogram of the obtained correlation coefficient is shown in Figure 13, right panel. 
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Figure 13: Pearson correlation coefficients for trip betweenness. Left panel: Histogram of the 
Pearson correlation coefficients between trip betweenness loss and number of passengers with 

modified itineraries (among those connecting there) for airports having a significant positive 
correlation; right panel: Histogram of the Pearson correlation coefficients between trip 

betweenness loss and the passenger-related costs associated to incoming flights for airports having 
a significant positive correlation. 

Moving to outgoing passenger centrality loss, for a single airport, this value coincides exactly with the 
number of passengers departing or connecting there having modified itineraries on the simulated 
day. Therefore, its sum over all airports is clearly strongly correlated (𝜌𝜌=0.98) with the total number 
of passengers with modified itineraries, although it is always larger because the modified itineraries 
of connecting passenger are counted twice when summing over all airports (see Figure 14, left 
panel). It is also strongly correlated with the total passenger-related costs (𝜌𝜌=0.79, Figure 14, right 
panel). At the single airport level, for around 88% of the airports having non-zero outgoing passenger 
centrality, we find a positive correlation with the cost of outgoing flights, with many correlations 
close to 1 (see Figure 15, left panel). Interestingly, the correlations with sum of costs of outgoing and 
incoming flights are smaller (see Figure 15, right panel), probably because the cost of incoming flights 
includes costs related to non-connecting incoming passengers (e.g. in the case of the cancellation of 
an incoming flight) that do not affect outgoing passenger centralities (although it also includes the 
cost of connecting incoming passengers, which do affect outgoing passenger centrality). 

Passenger centrality provides exact information on the number of modified itineraries, while trip 
betweenness provides only an estimate, and it also provides more precise estimates of costs with 
respect to trip betweenness, especially at the single airport level. However, note that it requires 
knowledge of the scheduled and actual passenger itineraries to be computed, differently from trip 
betweenness. 
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Figure 14: Passenger centrality loss.Left panel: Total passenger centrality loss in the network 
against total number of passengers with modified itineraries. Each dot represents one iteration; 
Right panel: Total passenger centrality loss in the network against total passenger-related costs 

associated to all flights. Each dot represents one iteration. 

 

Figure 15: Pearson correlations for passenger centrality loss.Left panel: Histogram of the Pearson 
correlation coefficients between outgoing passenger centrality loss and cost of outgoing flights, for 
airports having a significant positive correlation; right panel: Histogram of the Pearson correlation 

coefficients between passenger centrality loss and cost of outgoing and incoming flights, for 
airports having a significant positive correlation. 

The total trip centrality loss in the network is only weakly correlated with the total number of 
passengers with modified itineraries and with the total passenger-related costs (𝜌𝜌=0.2 and 0.25, 
respectively). This is probably because the itineraries that are considered by trip centrality (i.e. all the 
feasible itineraries in the network, of any length, with the longer ones weighted less) have little 
overlap with the real passengers’ itineraries. However, at the single airport level the correlations are 
similar to those of betweenness centrality: we computed for each of the 756 airports having non-
zero outgoing trip centrality the correlation between centrality loss and the number of passengers 
with modified itineraries among those departing from there, and between centrality loss and the 
cost of flights departing from there. For modified itineraries, we find that 56% of the considered 
airports have a positive correlation coefficient (all the others have no significant correlation), with 
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histogram shown in Figure 16, left panel. For costs, we find that 65% of the considered airports have 
a positive correlation coefficient (all the others have no significant correlation), with histogram 
shown in Figure 16, right panel. 

 

Figure 16: Pearson correlations for outgoing trip centrality loss. Left panel: Histogram of the 
Pearson correlation coefficients between outgoing trip centrality loss and number of passengers 

with modified itineraries (among those departing from there) for airports having a significant 
positive correlation; right panel: Histogram of the Pearson correlation coefficients between trip 

centrality loss and the passenger-related costs associated with outgoing flights for airports having 
a significant positive correlation. 

 

5.1.2.2 Causality metrics 
In this section, we show how to use the causality analysis from an operative point of view, in 
particular to answer some possible questions from the perspectives of stakeholders. 

The detection of a causal link between two airports can be interpreted as a channel of delay 
propagation arising from different mechanisms which can be present at the same time: (i) one leg 
effects mediated by a flight connecting the two airports; (ii) more than one leg effects because of the 
presence of trips, possibly served by different aircrafts; (iii) some geographical effects due to the 
proximity of airports, e.g. the weather or the air traffic regulations. 

Hence, the network of causal links gives to the regulator a global picture of the whole ATM system in 
relation to the process of delay propagation, but also amplification in the presence of feedback 
mechanisms represented by some subsystems in which the delay can be transmitted in a loop. Then, 
in the Domino project, we are interested in the impact of some innovations having on the ATM 
system, in particular in terms of network effects. The causality analysis can help in determining this 
impact in relation to the process of delay (or cost of delay) propagation, in particular by highlighting 
if some innovation tends to disrupt such propagation channels or feedback subsystems, thus 
increasing the resilience of the system. 

So far, we have found that there are three classical network metrics which are of interest in the 
description of the causality network associated with the ATM system: 
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1. link density, namely the density of causal links with respect to all possible couples of nodes. It 
captures the average level of causality of the system, i.e. how many propagation channels exist; 

2. link reciprocity, namely the ratio of the number of links pointing in both directions to the total 
number of causal links. It is a measure of the likelihood that node-airports in the causality 
network are mutually linked, thus representing minimal subsystems (i.e. formed by two nodes) 
of delay amplification, statistically associated with the presence of round-trip flights; 

3. number of feedback triplets, namely the number of triangles with all links directed clockwise (or 
anti-clockwise). Similar to reciprocated links, they represent subsystems of three nodes where 
delay is transmitted in a circle, thus amplified in a loop. 

Since the values of the last two network metrics depend on the link density of the network, when 
comparing some scenario with the baseline of the ABM model, we consider the normalised (w.r.t. 
the Erdos-Renyi random benchmark) values of such metrics, dividing each value by the expected 
value of the corresponding metric in the Erdos-Renyi random graph (with the same link density). The 
obtained value is defined as the over-expression of the network metric with respect to the Erdos-
Renyi benchmark model. 

Since the presence of amplifying feedback mechanisms for delay can be captured by such network 
metrics, i.e. reciprocated links, triangles, and feedback triplets in the network of causal links among 
airports, an ATM innovation which tends to disrupt such feedback effects would represent an 
improvement for the ATM system. Thus, we can quantify the systemic impact of an innovation 
mechanism by measuring the percentage changes of these network metrics from the baseline to the 
scenario where the innovation is implemented.  

Table 7: Network metrics for Granger causality networks applying Bonferroni correction (i) - built 
with the state of delay of airports as the average delay of the departing flights. 

 GC in 
mean 
net. 

Erdos-Renyi 
benchmark (GC 
in mean) 

GC in tail 
net. 
(Hong et 
al.) 

Erdos-Renyi 
benchmark 
(Hong et al.) 

GC in tail 
net. 
(BiDAR) 

Erdos-Renyi 
benchmark 
(BiDAR) 

Link density 0.004 0.004 0.225 0.225 0.004 0.004 

Reciprocity 0.209 0.002 0.17 0.112 0.03 0.002 

Feedback 
triplets 

128 0.5 98107 61749 2 0.2 
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Table 8: Network metrics for Granger causality networks applying FDR correction (i) - built with the 
state of delay of airports as the average delay of the departing flights. 

 GC in 
mean 
net. 

Erdos-Renyi 
benchmark (GC 
in mean) 

GC in tail 
net. (Hong 
et al.) 

Erdos-Renyi 
benchmark 
(Hong et al.) 

GC in tail 
net. 
(BiDAR) 

Erdos-Renyi 
benchmark 
(BiDAR) 

Link density 0.008 0.008 0.352 0.352 0.026 0.026 

Reciprocity 0.217 0.004 0.229 0.176 0.04 0.013 

Feedback 
triplets 

303 3 322977 238248 282 93 

 

Table 9: Network metrics for Granger causality networks applying Bonferroni correction (ii) - built 
with the state of delay of airports as the third quartile of the delay distribution of the departing 
flights. 

 GC in 
mean 
net. 

Erdos-Renyi 
benchmark (GC 
in mean) 

GC in tail 
net. 
(Hong et 
al.) 

Erdos-Renyi 
benchmark 
(Hong et al.) 

GC in tail 
net. 
(BiDAR) 

Erdos-Renyi 
benchmark 
(BiDAR) 

Link density 0.003 0.003 0.218 0.218 0.003 0.003 

Reciprocity 0.192 0.001 0.166 0.109 0,029 0.001 

Feedback 
triplets 

66 0.1 91981 56254 2 0.01 

 

Table 10: Network metrics for Granger causality networks applying FDR correction (ii) - built with 
the state of delay of airports as the third quartile of the delay distribution of the departing flights. 

 GC in 
mean 
net. 

Erdos-Renyi 
benchmark (GC 
in mean) 

GC in tail 
net. (Hong 
et al.) 

Erdos-Renyi 
benchmark 
(Hong et al.) 

GC in tail 
net. 
(BiDAR) 

Erdos-Renyi 
benchmark 
(BiDAR) 

Link density 0.004 0.004 0.346 0.346 0.024 0.024 

Reciprocity 0.192 0.002 0.227 0.173 0.033 0.012 

Feedback 
triplets 

114 1 311030 225272 240 70 

 

The introduced network metrics can be also used to characterise the Granger causality networks 
built with the different statistical tests: Granger Causality in mean, Granger Causality in tail by Hong 
et al., and Granger Causality in tail by the novel method introduced here for the first time and based 
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on the bivariate generalisation of the DAR(p) process, namely BiDAR(p). The values of such metrics, 
i.e. link density, reciprocity, and the number of feedback triplets, are shown in Table 7, Table 8, Table 
9, and Table 10 in the case of the baseline scenario (0) of the ABM model developed in Domino. In 
particular, we show the results for both the definitions of the state of delay of an airport, i.e. the 
average delay of departing flight within one-hour time window or the third (75%) quartile of the 
distribution of the delay of departing flights, and by considering both multiple testing corrections, i.e. 
Bonferroni and false discovery rate corrections. 
The results suggest that predicting statistically if an airport is congested or not at some future time is 
much easier than forecasting the state of delay itself, as highlighted by the difference in link density 
for the networks of Granger causality in mean and in tail. Moreover, the statistical test by Hong et al. 
leads to a link density much higher than the one obtained with the novel test based on the BiDAR(p) 
process. Two effects (both present) can be responsible for this discrepancy: (i) the presence of causal 
relationships which are not detected by the BiDAR(p) test and (ii) a higher rate of false positives for 
the test by Hong et al. Since the BiDAR test is parametric, whereas the test by Hong et al. does not 
rely on a specification of the generative model, the latter is in effect more flexible, thus capturing 
potentially some causal relationships which cannot be described by the BiDAR(p) model. 
Nevertheless, the test by Hong et al. is not robust in the presence of autocorrelation for the binary 
state variables. There are several ways to show this. The simplest is to generate the binary data with 
the following BiDAR(1) model, 

{
𝑍𝑍1,𝑡𝑡 = 𝑉𝑉𝑡𝑡((1− 𝐴𝐴𝑡𝑡)𝑍𝑍1,𝑡𝑡−1 + 𝐴𝐴𝑡𝑡𝑍𝑍2,𝑡𝑡−1) + (1 − 𝑉𝑉𝑡𝑡)𝑢𝑢1,𝑡𝑡
𝑍𝑍2,𝑡𝑡 = 𝑆𝑆𝑡𝑡(𝑍𝑍2,𝑡𝑡−1) + (1 − 𝑆𝑆𝑡𝑡)𝑢𝑢2,𝑡𝑡,

 

describing two binary state variables 𝑍𝑍1 and 𝑍𝑍2 which are both autocorrelated, i.e. both 𝑉𝑉𝑡𝑡 and 𝑆𝑆𝑡𝑡 
having probability different from zero (randomly chosen in the unit interval), and 𝑍𝑍2 is ‘causing’ 𝑍𝑍1 
because of the non-zero term of interaction described by 𝐴𝐴𝑡𝑡 Bernoulli random variable with 
probability equal to one-half. Note that 𝑍𝑍1 does not ‘Granger cause (in tail)’ 𝑍𝑍2. However, let us 
consider the Granger in tail test by Hong et al. with confidence level equal to 5% for the null 
hypothesis 𝑍𝑍1 does not ‘Granger cause (in tail)’ 𝑍𝑍2. 

Table 11: Frequency test rejection under null 𝒁𝒁𝒁𝒁 does not Granger cause in tail 𝒁𝒁𝒁𝒁 with BiDAR(1) as 
data generating process. 

Hong et al. test with BiDAR(1) as generating 
process 

M=2 M=5 M=10 M=15 M=20 M=25 M=30 

T=500 0.43 0.42 0.41 0.41 0.37 0.45 0.39 

T=1000 0.50 0.49 0.43 0.46 0.51 0.55 0.51 

T=2000 0.57 0.54 0.56 0.52 0.47 0.52 0.65 

 

The results are shown in Table 11 for different values of both the time scale parameter M and the 
length T of the times series. In each case, the frequency of test rejection, i.e. the detection of a (false) 
causal relationship from 𝑍𝑍1 to 𝑍𝑍2, is about one-half, much higher than the confidence level of the test 
(0.05), thus displaying a very high rate of false positives when the binary time series are 
autocorrelated in time. Figure 17 shows the average autocorrelation coefficients for the time series 
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of the state of congestion from the ABM. It is evident that autocorrelation effects are significant and 
therefore we can expect that the test of Hong et al. detects a significant fraction of false positive 
causal links in tail. 

 
Figure 17: Average autocorrelation coefficients for the time series of the state of congestion (over 

all airports). The red line represents the bound of significance, meaning that a value larger than the 
bound is statistically significant. 

 
Figure 18: Pictorial representation of two instances of causality networks (left panels), how the 

true causal links are detected by the Hong et al. test, together with false positives because of both 
autocorrelation and network effects (middle panels), and similarly for the novel BiDAR causality 

method (right panels), which, however, solves the issue of false positives, thus decreasing the 
detection of false reciprocated causal links. 

The high rate of false positives for the Hong et al. test can lead to both an increase of link density and 
an overestimation of the reciprocated links of the Granger causality network. A pictorial 
representation of this behaviour is shown in Figure 18 for two different types of networks of 
interaction. Two spurious effects may lead to the false detection of a causal interaction with the 
Hong et al. test: (i) because of autocorrelated time series, if there exist a directional causal 
relationship from A to B, it is likely that also the causal interaction in the opposite direction, i.e. from 
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B to A, is detected; (ii) in the presence of network effects, if A causes B and B causes C, then it is likely 
that the causal interaction from A to C is detected (even if it is in effect mediated by B) because of 
the pairwise causality analysis, i.e. we consider couples of nodes, and not the whole system at once. 
The novel statistical BiDAR test represents a solution for the first kind of spurious detections, see 
Figure 18. Furthermore, the BiDAR(p) process can be generalised to the multivariate case, thus a new 
statistical test can be introduced to solve the second issue about spurious detections. However, this 
is out of the scope of the present analysis. 

Since spurious detections of causality interactions by the Hong et al. test induce overestimations of 
subgraphs such as reciprocated links and triangles, we focus more on the novel BiDAR causality 
method to detect the channels of propagation of ‘extreme’ delays within the ATM system. When 
looking at the subsystems of delay amplification, i.e. reciprocated links and feedback triplets, the 
causality network built with the BiDAR test displays characteristics similar to those obtained with the 
other two statistical tests of Granger causality, in particular the over-expression of the network 
metrics with respect to the Erdos-Renyi random benchmark, i.e. the expected value of such metrics 
in a Erdos-Renyi random graph with the same link density of the Granger causality network, see 
Table 7, Table 8, Table 9, and Table 10. This is a further confirmation of the importance of this kind of 
feedback subsystems for the ATM network. In the analysis of the Domino mechanisms (below), we 
study what is their impact in terms of either disrupting or preserving such delay amplification 
network effects. 
Moving from the systemic point of view to more local aspects, Granger causality networks can be 
usefully applied to understand what the interacting subparts of the ATM system are and how strong 
the interaction is. A directional causal link 𝑖𝑖 → 𝑗𝑗 in the Granger causality network built with the state 
of delay of the airports describes the delay propagation from airport𝑖𝑖 to airport 𝑗𝑗, whatever the 
propagation mechanism is: direct flight, two legs effect, and so on (note that the kind of propagation 
mechanism is not important at this stage, since the causality analysis is in effect a data-driven 
approach). Nevertheless, the directional causal link can bring more information than just the 
propagation of delays, for instance it can be correlated to the propagation of the cost of delay. 

The relationship between delay and cost of delay cannot be trivially determined, because of many 
network effects. In fact, small delays at one hub can have a huge impact in terms of costs, e.g. 
because of missing connections, whereas large delays at some peripheral airports may be less 
important, e.g., when flights are not involved in passengers’ connections. Costs related to missing 
connections are usually described in terms of one leg effects, i.e. the first flight involved in a 
connection should land at the arrival airport before the departure of the second flight. Nevertheless, 
network effects with more than one leg can be also important, e.g. three flights in a row representing 
some passengers’ trip. Hence, the aggregated network of flights (link = one leg effect) between 
airports could not be enough to characterise the channels of delay and cost propagation. Moreover, 
only airlines have access to the complete information about the correlation between costs of delays, 
but only for their own flights. Hence, within the framework of the Domino ABM model, an interesting 
question from the perspective of each stakeholder without full information about the system is to 
understand, at least partially, the relationship between the delay propagation (reconstructed by 
means of DDR files) and the cost payed by airlines at the airports (which is, on the contrary, not 
accessible in the real world), thus revealing what are the most important nodes of the ATM network 
and the level of predictability, or, equivalently, how strong the interaction is between two nodes in 
the process of propagation. 
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To this end, Granger causality networks built with the states of delay of the airports can be used to 
test whether two airports connected in the causality network displays some significantly positive 
correlation for the cost payed by airlines at those airports, and vice versa, i.e. not significant 
correlation, if not connected. If yes, this is a signal of the causal links in the Granger causality network 
as channels of propagation of costs, and not only delays. 

For the correlation analysis, let us associate to each airport a cost variable defined as the 90% 
percentile of the distribution of the cost of delay of departing flights obtained, within the ABM 
modelling framework, as the sum of the following components: 

1. the cost of compensation for delayed flights at the arrival; 

2. the cost of transferring connecting passengers in the case of missed connection; 

3. the cost associated with the duty of care of delayed passengers; 

4. soft passenger-related costs; 

5. non passenger-related costs such as the crew cost. 

Then, given a network of causal interactions between airports, we consider the sample Pearson 
correlation between the cost variables of two airports when: 

1. they are connected by a causal link in the network; 

2. they are not connected. 

Finally, for each airport we obtain two samples of correlation coefficients, the one for neighbours in 
the causality network and the one for non neighbours. Thus, we can consider the average Pearson 
correlation for the two samples, together with the standard deviation as measure of dispersion with 
respect to the average correlation. 
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Figure 19: Average Pearson correlation coefficient between the cost variables of an airport and 
either its neighbour (red dots) or its non-neighbour (blue dots) in the network of flights (top left), 
the network of Granger causality in mean (top right), the network of Granger causality in tail built 
with the Hong et al. test (bottom left), and the network of Granger causality in tail built with the 

novel BiDAR test (bottom right). The airports are sorted according their size, measured as the 
average number of flights per day. The error bar is the standard deviation associated with the 

distribution of Pearson correlation coefficients, for the two samples of either neighbours or non-
neighbours in the network of causal interactions. The Granger causality networks are built by using 
the state of delay of airports defined as the third quartile of the distribution of delays of departing 

flights and the Bonferroni correction is applied. 

In Figure 19, the results of the correlation analysis are shown by ordering the airports according to 
their size measured as the average number of flights per day and for four networks of interactions: 

1. the network of flights, which displays a link if there exists a direct flight connecting the two node-
airports; 

2. the causality network built with the Granger causality in mean test, applied to the states of delay 
of airports (defined as the third quartile of the distribution of departing delays of flights); 

3. the causality network built with the Granger causality in tail test by Hong et al., applied to the 
states of congestion of airports; 

4. the causality network built with the Granger causality in tail test based on the BiDAR process, 
applied to the states of congestion of airports. 

Here, for all Granger causality networks, we correct the increasing size of false positive because of 
multiple hypothesis testing by using the Bonferroni correction. However, similar results can be 
obtained by applying the FDR method. 
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We note that the correlation of the cost of delay payed by airlines are on average larger for 
connected airports than for non-connected ones, for all considered networks. However, this 
information cannot be used to select the channels of cost propagation in the case of either Granger 
causality in tail and the network of flights (one leg effects), because of partial superposition of the 
two samples of correlation coefficients. On the contrary, Granger causality in mean network displays 
a significant distinction, thus we can claim with a certain degree of confidence that the causal links 
are associated with the process of propagation of both delays and costs of delay. Hence, according to 
these findings, the causality network built with the Granger causality in mean test represents a 
method to correlate the observed delays of flights at some airports with the unobserved costs of 
delay payed by airlines (at the same airports). 

5.2 Summary of key results 

Most of the analyses have been performed by considering 100 simulations of the model for each 
scenario. For the centrality analyses, we have considered 50 simulations. The results of each metric 
have been averaged across these, and in the following discussion, we show these averages. 
Specifically, as in D5.2, we consider the baseline scenario as a reference point, and both for classical 
and network metrics we show their percentage change with respect to the baseline. As a robustness 
check, we have considered subsamples of 50 simulations and compared the results (data not shown): 
thus the vast majority of the results reported are those that have shown consistent results in the 
subsamples. When a significant variability between the subsamples is found, we discuss it in the 
detailed analysis of Section 5.3. 

In this section, we have collected the most relevant results in three figures, one per mechanism 
(4DTA, FP, FAC), each of them composed of five panels. The three top panels report the results for 
classical metrics, namely, from left to right: delay, costs, and passengers-related metrics (delays, 
missed connections, re-routings, etc.). The two bottom panels show the results of centrality and 
causality metrics. For centrality metrics, we consider trip centrality, passenger centrality, and trip 
betweenness. For causality metrics, we define the state of congestion of the airport as the third 
quartile of the delay distributions of flights departing from a given airport. We then show metrics 
related to the new causality (BiDAR) approach, with the false discovery rate (FDR) correction (see 
Sections 5.1.1 and 5.3) and essentially confirm the main conclusions discussed here. 

5.2.1 4D Trajectory Adjustment 

The top-left panel of Figure 20, shows that the introduction of the 4DTA mechanism improves the 
airspace system by making it less affected by delays. This is true for all the displayed quantities, 
namely the average arrival delay for flights with more than 15 minutes of delay, their fraction, and 
the reactionary delay (number of flights and amount of delay). The detailed analysis shows that this 
is consistent across different measures of delay. The top-centre panel shows that with 4DTA, there is 
a sizeable reduction of excess fuel cost (up to almost 20%). This can be understood by the fact that 
flights use 4DTA to control, in a more efficient way, their total costs, and the cost of fuel is a 
significant factor driving part of the solution. Other types of cost are only marginally affected by the 
introduction of 4DTA, some of them are even increasing (see Section 5.3). Non-passenger delay costs 
display a small but sizeable decrease. Overall, the costs are reduced by more than 10% when 4DTA is 
introduced in the system. Also, passenger delays are reduced (see top-right panel). This is much 
more evident when considering connecting passengers, since they benefit more by the introduction 
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of 4DTA. On the negative side, the fraction of modified itineraries slightly increases, but we can safely 
affirm that passengers are better off when 4DTA is in operation. 

The causality and centrality metrics partly confirm this view. The centrality metrics display a slightly 
larger loss, possibly in connection with the larger number of modified itineraries. However, the 
causality metrics show a very significant substantial decrease of density and reciprocity, indicating 
that the propagation of distress from one airport to the others is much weaker, as well as the two-
airport feedback effects. There is, however, a small increase in the feedback triplets. In summary, the 
introduction of the 4DTA mechanism makes the system better from the point of view of airlines, 
passengers and the environment (due to reduced fuel consumption). The system is more efficient 
(from the cost and delay perspective) and more robust to local shocks at airports, which propagate 
much less. 

 

Figure 20: Summary of percentage changes of metrics in 4DTA with respect to the baseline 

 

5.2.2 Flight Prioritisation 

The top panels of Figure 21 show the percentage change of classical metrics when FP is implemented 
at three large airports, namely: LFPG, EGLL, EHAM, where ATFM regulations have been manually 
issued on the morning traffic. Note that the displayed variations are restricted to the three airports 
where the FP mechanism is applied during the regulation time periods. The overall picture is that the 
system is worse off, since all but one metric displays a worsening with respect to the baseline. It is 
important to note, however, that these variations are quite small (never larger than 1.5%, often 
much smaller). This suggests that the introduction of FP has little or no (or a slightly negative) impact, 
at least when measured with classical metrics, when FP is in operation. The more detailed analysis 
shown in Section 5.3 fully supports this conclusion. 

The bottom panels of Figure 21 show centrality and causality metrics for the three airports where FP 
is implemented. Again, the variations are very small and their sign is not common across the airports. 
Possibly only EHAM displays an overall benefit through the introduction of FP, but, again, the 
percentage changes are very small. When the analysis is extended to all airports (i.e., not only the 
three where FP is implemented but all those modelled in the ECAC region), the percentage variation 
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of all metrics becomes extremely small. In summary, the introduction of FP appears to have 
essentially little or no effect (or maybe slightly negative) on the system, when considering delay, cost, 
centrality, and causality. More surprisingly, the same conclusion holds when restricting the analysis 
to the airports where the FP mechanism is implemented. 

 

Figure 21: Summary of percentage changes of metrics in FP with respect to the baseline. The 
percentage variations of the classical delay and cost metrics are restricted to the three airports 

where the FP mechanisms are applied and we consider all flights landing at any of the three 
airports within the time window of active regulation. 

5.2.3 Flight Arrival Coordination 

Flight Arrival Coordination is tested in two different settings, one where the radius of the E-AMAN 
system is nominal (200 NM), and another, where it is extended (600 NM). Moreover, in the 
simulations, the FAC is implemented in 24 major airports. Figure 22 shows the results of our 
analyses. All the displayed results are obtained by restricting the study to the airports where the 
mechanisms are applied. In particular, we consider only flights landing at an airport of the restricted 
sample in computing the delay and cost metrics. The left- and right-hand panels in the top part of 
Figure 22 clearly show that the introduction of FAC increases the delay of flights and passengers. It 
appears also that the extended radius of the FAC produces larger delays than the nominal range. As a 
consequence, passenger costs are larger (see the top-central panel). Quite surprisingly, the excess 
fuel cost is only very slightly smaller (in the nominal radius FAC setting) or even larger (in the 
extended radius scenario) than in the baseline scenario. Thus, it seems that the introduction of the 
FAC mechanism makes the system less efficient. This is due to a discrepancy between the E-AMAN 
planned and actual holding required time, which causes the assignments of additional holding delays 
to respect the planned landing sequence (see Section 5.3.2). These results are highly robust, as can 
be seen in the detailed analysis presented in Section 5.3. Generally, the introduction of FAC makes 
the system worse off for almost all the classical metrics. This conclusion holds even when considering 
the whole ECAC space, and not only the 24 airports where the mechanism is implemented. 

Centrality metrics (bottom-left panel) show small and positive variations, meaning that the 
introduction of the mechanism makes the centrality loss of these airports larger. This is likely due to 
the increase of modified itineraries and more generally to the increased delays. The causality metrics 
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are extracted from the network of causal relationships between all the couples of the ECAC airports, 
but considering only the subgraphs involving at least one airport where the mechanism is 
implemented. Here the outcome is mixed and not clear: while the introduction of FAC in the nominal 
radius E-AMAN makes the system slightly worse off, in the extended radius scenario the system 
becomes significantly less connected, from a causal point of view, both in terms of the number of 
causal links and of feedback effects (reciprocated links and triplets). This could be explained by the 
fact that FAC increases the arrival delay of flights independently of their departure delays, thus 
masking the causal relationships due to network effects. In summary, the introduction of the FAC 
mechanism appears to make the system worse off from the point of view of airlines and passengers, 
as well as regarding the environment. With the exception of causality, all the metrics are worse for 
the extended range, than for the nominal range. 

 

 

Figure 22: Summary of percentage changes of metrics in FAC with respect to the baseline. The 
percentage variations of both classical and centrality metrics are restricted to the airports where 
the FAC mechanisms are applied. In particular, we consider only flights landing at any airport of 

the restricted sample in computing the delay and cost metrics. The causality metrics are extracted 
from the network of causal relationships between any couple of the ECAC airports, but considering 

only the subgraphs, i.e. the reciprocated links or the feedback triangles, involving at least one 
airport where the FAC mechanism is implemented. 

5.3 Detailed analysis 

5.3.1 Hub delay management 

5.3.1.1 Classical metrics: delay and costs 
The percentage variations in flight delay metrics and in cost-related metrics in the advanced 
scenarios with respect to the baseline are shown in Figure 23 and Figure 24. The value of the metrics 
and their interquartile range are reported in Annex I (Section 9), Table 12 and Table 15. 

For the 4DTA advances scenario, all flight delay metrics show improvements with respect to the 
baseline, especially with a large percentage reduction in the number of flights with large delays (>60 
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and >180 mins), both in departure and arrival. This suggests that the possibility to adjust speed is 
useful to partially absorb large delay. This might be linked to expected high cost of missed 
connections which might be compensated with small partial reduction of large delays. For the same 
scenario, we see a percentage reduction in the total excess cost of around 10% with respect to the 
baseline, mainly driven by a large reduction of the extra fuel costs (partly counterbalanced by an 
increase in curfew costs and soft costs). 

The large percentage reduction (~20%) in extra fuel costs is due to the possibility to slow down to 
save fuel when a flight is estimated to arrive early (as estimated at the top of climb) with respect to 
their schedule. In summary, the 4DTA mechanism is effective in reducing both average delays and 
costs, by speeding up to recover part of the delay and by slowing down to save fuel when the flight is 
ahead of schedule. 

In the FP scenario, instead, we see small and negative variations in the delay metrics (except for a 
small improvement in the tail of delays >180 mins), suggesting that the FP mechanism is too local to 
see significant changes at a whole system level on the delays. The total excess cost has a small 
percentage increase with respect to the baseline, driven by the increase of transfer costs, soft costs 
and crew costs. 
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Figure 23: Change in delay metrics HDM.Top: percentage change in classical delay metrics in HDM 

advanced scenarios with respect to the baseline. Bottom: percentage change in classical delay 
metrics in HDM advanced scenarios with respect to the baseline, on a restricted sample (see text). 
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Figure 24: Change in cost metrics in HDM. Percentage Top: percentage change in classical cost 
metrics in HDM advanced scenarios with respect to the baseline. Bottom: percentage change in 
classical cost metrics in HDM advanced scenarios with respect to the baseline, on a restricted 
sample (see text). 

 

5.3.1.2 Passengers-related metrics 
The percentage variations in passengers-related metrics in the advanced scenarios with respect to 
the baseline are shown in Figure 25. The value of the metrics and their interquartile ranges are 
reported in Annex I (Section 9), Table 13. 
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Figure 25: Change in passenger-related metrics in HDM.Percentage change in passengers-related 
metrics in Hub delay management advanced scenarios with respect to the baseline. 

The most notable change concern the passengers’ delays in the scenario with 4DTA implemented: 
while the average delay of all passengers (including those arriving early) increases, the average delay 
of passengers excluding the earlies decreases. The increase in the delay of all passengers is due to 
the fact that flights landing early reduce this early arrival with respect to the baseline, which also 
explains the similar increase in the average delay of all non-connecting passengers. When early 
arrivals are excluded, the reduction of the average passenger delay shows the effectiveness of the 
mechanism in reducing positive delays. Connecting passengers, in particular, are affected positively, 
with an average decrease of 8% in their average delay. In the same scenario, a reduction of the 
fraction of passengers receiving duty of care and a smaller increase of the average duty of care 
produce an overall improvement, and the same is true for the large delays (>180 min). Therefore, in 
this scenario we see a general improvement from the passenger point of view, especially for 
connecting passengers. If we restrict the analysis to passengers that are departing from or landing at 
one of the three manually regulated airports during a regulation (see Figure 26 and Table 14), we still 
find that connecting passengers are positively affected, but in general passengers’ delays increase, as 
do non-connecting passengers delays. This is probably due to the fact that the regulations create 
several departure delays, and in the advanced scenario they are only recovered when it is 
advantageous cost-wise (e.g., if there are connecting passengers missing their connections due to the 
delay). As a result, connecting passengers are better off than in the baseline but non-connecting 
passengers are worse off. 
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Figure 26: Change in passenger metrics in HDM restricted sample. Percentage change in 
passengers-related metrics in the advanced scenarios (left panel: 4DTA, right panel: FP) with 
respect to the baseline, on a restricted sample (see text). 

The improvements for connecting passengers can be due to a more efficient use of the ‘wait for 
passengers’ option or to a speeding up of the flights with connecting passengers on board. Regarding 
the latter factor, we verified that the flights carrying at least one connecting passenger choose 
slightly higher percentage speeds than flights that contain no connecting passengers when applying 
4DTA to speed up (see Figure 27), therefore this is one factor of the improvement for connecting 
passengers. We also note that the use of wait for passengers is quite different in the two scenarios. 
In fact, although a similar number of flights considers applying the wait for passengers option in the 
two scenarios, only 15% of them actually apply it in the advanced scenario, against 27% in the 
baseline, and the average wait is shorter (3.8 minutes against 6.7 in the baseline). This suggests that 
the strict rule used in the baseline scenario (i.e., always waiting for any flex passengers if the wait is 
below 15 minutes) is not efficient cost-wise when compared to the more flexible strategy of the 
advanced scenario. In fact, flex passengers (7.7% of the 3.4M passengers) are widely spread over 
flights (67.9% of flights have at least one flex passenger) and often they are connecting passengers 
(21.6% of them), this leads to a significant large use of wait for passengers in the baseline. This 
should be adjusted as part of a future calibration. The strategy used in the advanced scenario, 
evaluating the cost of waiting for passengers, leads to a more moderate use of the option, which 
however seems more efficient both for costs (as seen in the previous paragraph) and for connecting 
passengers. 
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Figure 27: Violin plot of the percentage speed selected when applying 4DTA at TOC by flights with 
at least one connecting passenger (orange) and by flights not carrying any connecting passenger 
(purple). 

 

In the FP scenario, instead, we have a small overall worsening: delays have a small increase, and 
more passengers receive duty of care, on average larger. If we restrict the analysis to passengers that 
are landing at one of the three manually regulated airports during a regulation, we see 
improvements in several metrics (see right panel of Figure 26 and Table 14). However, these results 
are not consistent if we compare two independent sets of 50 realisations, therefore they might be 
just random fluctuations. In fact, they are based on a set of itineraries much smaller than the full 
dataset (whose results are instead consistent across the two sets of 50 independent realisations). 

5.3.1.3 Centrality metrics 
The percentage variations in centrality metrics in the advanced scenarios with respect to the baseline 
are shown in Figure 28. The average losses of all three centrality metrics show a small percentage 
increase with 4DTA and FP. This is consistent with the increase in the fraction of passengers with 
modified itineraries. 

 

Figure 28: Percentage change in centrality metrics in hub delay management advanced scenarios 
with respect to the baseline. 
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For the FP scenario, we also focus on the three airports in which extra manual regulations are 
applied: EGLL, EHAM and LFPG, for which Figure 29 shows the percentage change in average 
centrality losses with respect to the baseline. The metrics do not offer a univocal interpretation of 
this change, as some show an improvement and some a worsening. For example, trip betweenness 
shows that, when FP is applied, there is a lower probability of having a disrupted itinerary when 
connecting in EGLL or EHAM, but a higher one when connecting in LFPG. As trip betweenness 
considers also possible itineraries that are not used by passengers on that particular day, this might 
not be related to what happens to the passengers travelling on September 12th. In fact, the outgoing 
passenger centrality, whose loss accounts for real missed connections and cancellations in the 
considered airport and downstream for the passengers’ itineraries of September 12th, disagrees with 
trip betweenness in EGLL, where it shows an improvement. This is probably because the disrupted 
itineraries connecting in EGLL that are counted by trip betweenness were not used by passengers on 
that particular day, and therefore imply no loss of outgoing passenger centrality. These results on 
individual airports, however, cannot be used to draw general conclusions on the effects of the FP 
mechanism on these three airports, because they are not statistically significant. In fact, if we 
perform the analysis on two independent sets of 50 iterations of the model, we find results that are 
not consistent. 

 

Figure 29: Percentage change in centrality metrics of the three airportssubject to manual 
regulations in the FP scenario with respect to the baseline. 

5.3.1.4 Causality metrics 
The percentage variations in causality metrics in the advanced scenarios with respect to the baseline 
are shown in Figure 30 and Figure 31. The percentage decrease (on average) of the link density in the 
Granger causality in mean network for the 4DTA scenario with respect to the baseline is consistent 
with the decrease of departing delays of flights. Moreover, the slight increase of the same network 
metric in the FP scenario is consistent with the increase of the departing delay, even if this effect is 
smaller if compared with the 4DTA mechanism. 
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Figure 30: Percentage change of link density, and over-expression in hub delay management (i) - 
advanced scenario with 4DTA with respect to the baseline of both reciprocity and the number of 
feedback triplets of the Granger causality networks. The networks of Granger causality in mean 
and in tail, for both Hong et al. and BiDAR methods, are built with the states of delay of airports 
defined as the third quartile of the distribution of departing delays of flights. We consider both 

corrections for multiple hypotheses testing, namely Bonferroni correction (BC) and false discovery 
rate (FDR) correction. 

 

In the 4DTA advanced scenario, the percentage variations of all network metrics, i.e., link density, 
reciprocity, and the number of feedback triplets, for the Granger causality in tail network built with 
the Hong et al. test are really small, thus we can consider them as not significant. These findings 
together with the significant percentage variations of the metrics for the Granger causality in tail 
network built with the novel BiDAR test suggest that the much larger link density of the Hong et al. 
case (w.r.t. the other two causality networks) can be in effect explained by the presence of a high 
number of false positives, which are in effect random noise. Hence, when moving from the baseline 
to the advanced scenario, any variation can be explained in terms of random changes because of the 
changing of link density, thus resulting zero or really small variations of the over-expression of 
network metrics with respect to the Erdos-Renyi random benchmark. Similarly, for the FP advanced 
scenario. 
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Figure 31: Percentage change of link density, and over-expression in hub delay management (ii) - 
advanced scenario with FP with respect to the baseline of both reciprocity and the number of 

feedback triplets of the Granger causality networks in Hub delay management advanced scenario 
with FP implemented with respect to the baseline. The networks of Granger causality in mean and 

in tail, for both Hong et al. and BiDAR methods, are built with the states of delay of airports 
defined as the third quartile of the distribution of departing delays of flights. We consider both 

corrections for multiple hypotheses testing, namely Bonferroni correction (BC) and false discovery 
rate (FDR) correction. 

In the 4DTA scenario, Granger causality in mean networks (in both BC and FDR cases) display an 
increase of the over-expression of reciprocity, but a decrease when considering the number of 
feedback triplets. On the contrary, in the case of Granger causality in tail by BiDAR test, we find the 
significant decrease of both metrics. Hence, the 4DTA mechanism tends to reduce the average level 
of causality, i.e. the propagation of delays or congestions, and, at the same time, is able to disrupt 
the feedback subsystems of delay amplification, with the exception of reciprocated causal links in the 
Granger causality in mean case, which are, on the contrary, preserved by the mechanism. 

Finally, in the FP advanced scenario, despite the slight increase of the level of causality (measured by 
Granger causality both in mean and in tail), the percentage variations of the over-expression of the 
network metrics are negative (if we do not consider the Hong et al. case, which is largely affected by 
random noise). Thus, even if the effect is smaller if compared with 4DTA, these findings support the 
possibility that FP tends to disrupt some feedback subsystems of delay amplification. 

5.3.1.5 Conclusions regarding hub delay management 
• 4D trajectory adjustments are much more efficient at a network level than flight prioritisation; 

they have a greater impact on flight, passenger, centrality and causality metrics. 

• 4D trajectory adjustments are efficient at reducing costs for the airline, as well as the average 
delays for flights; connecting passengers benefit greatly from this, but non-connecting 
passengers see their arrival delay increase. Hence, there is a trade-off between airline economic 
efficiency and (some) passenger utility. 

• Centrality tends to worsen at the network level with 4D trajectory adjustments, however, the 
airports under stress seem to have various losses or improvements, depending on their particular 
case. 
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Causality tends to decrease with 4D trajectory adjustments, with some exceptions concerning 
reciprocity, i.e. two-legged feedback loops. This might be due to the wait-for-passenger mechanism, 
impacting single aircraft that need to go back to their base. 

• Causality for extreme events (in tail) is relatively unaffected by 4D trajectory adjustments in 
general. 

• Flight prioritisation tends to increase causality in general, even though it tends to destroy 
feedback loops. 

5.3.2 Effect of E-AMAN scope on arrival manager 

5.3.2.1 E-AMAN mechanism behaviour 
There are two moments when flights are issued delay when approaching an airport issued with an E-
AMAN, when the flight enters the E-AMAN: 

1. planning horizon; 

2. tactical horizon. 

In the planning horizon, the slot assigned to the flight considers the slots which are not assigned yet 
and an optimisation criteria (arrival delay for E-AMAN implementation at Level 0, total expected cost 
for implementation at Level 2). Part of this delay can be absorbed by reducing the cruise speed 
producing some fuel saving. 

When a flight enters the tactical horizon, the final slot is assigned to the flight and the issued delay 
will be performed as holding. 

 

a) experimental cumulative distribution 

 

b) boxplot 
 

Figure 32: Delay assigned at planning horizon. 
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a) experimental cumulative distribution all flights 

 

b) experimental cumulative distribution flights 
issued delay 

 

c) 95% confidence interval average fuel all flights 

 

d) 95% confidence interval average fuel flights 
issued delay 

Figure 33: Planned extra-fuel expected at planning horizon for flights issued with delay (fuel 
savings). 

As shown in Figure 32, the delay issued at the planning horizon tends to be small and similar on all 
options. Larger E-AMAN radius and Level 2 implementation assign, in some cases, large delays (e.g., 
delays of over 20 minutes). This is, as shown in Figure 33 due partially because the E-AMAN in Level 2 
is trying to minimise the expected total cost, and in some cases, some delay might represent fuel 
savings as the speed is reduced. In the baseline implementation (Level 0) as the radius increases from 
200 to 600 NM, the fuel that is potentially saved increases, as there is more distance to absorb delay: 
total fuel save by slowing down at 200 NM Level 0 in average is 19.6 t (2 kg per flight), at 600 NM in 
Level 0 in average the total fuel is 24.2 t (2.5 kg per flight). In Level 2, as the focus is on the total 
expected cost, fuel plays a more relevant role and even with a radius of 200 NM the expected fuel 
savings are larger than for the baseline implementation at 600 NM: at 200 NM Level 2, the total fuel 
saved is 32.7 t (average of 3 kg per flight), at 600 NM Level 2 the total fuel is 269.0 t (average of 27kg 
per flight). Here we can see the importance of the cost function as it prioritises the total cost. This 
means that earlier slots might not be assigned originally so that fuel can be saved. 

82 
 

© – 2019 – University of Westminster, EUROCONTROL, Università degli studi di 
Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the SESAR 
Joint Undertaking under conditions.  

 
 



D5.3 FINAL TOOL AND MODEL DESCRIPTION, AND CASE STUDIES RESULTS 

 

  

 

 

 

© – 2019 – University of Westminster, EUROCONTROL, Università degli studi 
di Trieste, Università di Bologna, Innaxis. All rights reserved. Licensed to the 

SESAR Joint Undertaking under conditions. 

83 
 

 
 

Figure 34 represents the cost functions for a given flight when entering the planning horizon of the E-
AMAN. In this case it can be observed the importance of cost of fuel which is higher than the other 
expected costs of delay. 

 

Figure 34: Cost of delay for a given flight on entering E-AMAN planning horizon, considering cost of 
fuel and other cost of delay (pax and non-pax related). 

The delay assigned at planning stage is, however, not fixed as there is uncertainty on the trajectory of 
the flights within the E-AMAN, but specially on the forthcoming demand. The planned landing 
sequence is broken due to lack of managing uncertainty (within flights and with new flights 
appearing). As the system is implemented, each time a flight enters one of the radii, the sequence of 
landing is optimised. This means that there is no capacity reserved for new arrivals which are not 
already in the E-AMAN scope. As shown in Figure 35 this leads to significant amount of delay that is 
assigned tactically (and performed as holding). 
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a) experimental cumulative distribution 

 

b) boxplot 

 

 

c) 95% confidence interval average holding delay 

Figure 35: Delay issued at tactical horizon (as holding delay). 

Figure 35 also presents how the length of the radius is the major contributor to the amount of delay 
issued at the tactical horizon. This is due to the fact that the larger the radius the higher the 
uncertainty and therefore the more changes will be produced between the planned assigned slot and 
the final assigned one. Note also how implementation at Level 2 tends to issue higher delays than the 
same radius implementation at Level 0. This is due to the fact that Level 2 is considering the total 
expected cost of all flights within the E-AMAN and might consider that a swap might be beneficial 
while at Level 0, as the objective is the arrival delay, any two flights are equivalent for the system. 
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a) experimental cumulative distribution 

 

b) boxplot 

 

c) 95% confidence interval average extra delay 

Figure 36: Extra delay required between delay assigned at planning and tactically. 

These differences between planned and executed are captured in Figure 36. The difference between 
the delay that has been issued at the planning horizon and the delay required at the tactical horizon 
added to the delay that has been absorbed by slowing down are presented. As described, the larger 
the radius, the larger this inefficiency which is higher for Level 2. 

 

a) experimental cumulative distribution all flights 

 

b) experimental cumulative distribution flights got 
delay at planning horizon 
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c) boxplot all flights 

 

 

d) boxplot flights got delay at planning horizon 

 

e) 95% confidence interval average fuel all 
flights 

 

f) 95% confidence interval average fuel flights got 
delay at planning horizon 

Figure 37: Fuel required to manage arrival sequence (savings as slowing down and holding). 

Finally, these delays are traduced on fuel required to perform those delays as presented in Figure 37. 
It can be observed that the implementation at Level 2 leads to higher variation on the fuel used per 
individual flight, but that at 600 NM with Level 2, some fuel reductions are observed in average with 
respect to the baseline at 200 NM. 

 

a) average arrival delay 

 

b) average cost of delay 

Figure 38: 95% confidence interval: average delay and cost of delay per flight 
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Besides usage (and cost) of fuel, the delay and cost of delay due to passenger and non-passenger 
cost increase in average when the radius of the E-AMAN is increased but not significantly as observed 
in Figure 38. 

 

 

Figure 39: 95% confidence interval: assigned delay at planning radius per aircraft size 

 

 

Figure 40: Flight plan distance (NM) of flights with delay issued at planning horizon 

An interesting phenomenon is that in the baseline implementation (Level 0), as the radius increases, 
larger aircraft (with more than 300 pax) tend to get smaller delay assigned at planning horizon. This is 
consistent with the fact that larger planes tend to cover larger distances, therefore, when the radius 
is increased, they enter the scope of the E-AMAN before and more slots (earlier) are available. 
However, in Level 2, this is not the case, as those flights seem to be assigned larger delays as they can 
absorb delay and smaller flights might have connecting passengers with higher cost of delay and are 
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hence prioritised. This is shown in Figure 39. As shown in Figure 40, the implementation of the 
mechanism at Level 2 tends to assign delay to flights which have larger flight plans. 

5.3.2.2 Classical metrics: delay and costs 
The percentage variations in flight delay metrics and in cost-related metrics in the advanced 
scenarios (Level 2) with respect to the baseline (200 NM with Level 0) are shown in Figure 41 and 
Figure 42. The value of the metrics and their interquartile range are reported in Table 16 and Table 
19. From Figure 41 it emerges clearly that average flight delays increase when the FAC mechanism in 
Level 2 is active, and the increase is larger when the radius is larger. This remains true when we 
restrict the analysis to all flights landing in the airports with the FAC mechanism implemented (see 
Figure 43), in which case the increase in average delays is even larger (note the different vertical 
scale in the plot). The large percentage increase of the gate-to-gate delay (~18% in the restricted 
case) signals an increase of the flight time for flight landing at E-AMAN airports. The average excess 
cost also slightly increases, both on the entire system and on the restricted sample (see Figure 44). 
Interestingly, as pointed out before, the holding fuel cost does not decrease (note that the saving 
due to slowing down are not considered here) nor do the passenger-related costs. 

 

 

Figure 41: Percentage change in classical delay metrics in E-AMAN (i) - advanced scenarios with 
respect to the baseline. 
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Figure 42: Percentage change in classical cost metrics in E-AMAN (i) - advanced scenarios with 
respect to the baseline. 

 

 

 

Figure 43: Percentage change in classical delay metrics in E-AMAN (ii) - advanced scenarios, 
restricted to the airports where the E-AMAN is implemented. 

 

  



EDITION 01.00.00 
 

 

 

Figure 44: Percentage change in classical cost metrics in E-AMAN (ii) - advanced scenarios, 
restricted to the airports where E-AMAN is implemented. 

 

5.3.2.3 Passenger-related metrics 
The percentage variations in passengers-related metrics in the advanced scenarios with respect to 
the baseline are shown in Figure 45 and in Figure 46 for the restricted sample of itineraries that leave 
or pass from or arrive to an airport with E-AMAN (representing ~80% of the itineraries). The metrics 
average values and their interquantile ranges are reported in Table 17 and Table 18. In the nominal 
radius case, there is a clear difference between the connecting passengers average delay (overall and 
positive), which is increasing with respect to the baseline, and the one of non-connecting passengers, 
which stays roughly the same. In the long range case, instead, both types of passengers are 
negatively affected. As an effect of the increased delays, more and larger compensations are paid on 
average, and more passengers receive duty of case (though smaller on average). In both cases there 
is a decrease in the average delay of passengers having very large delays (>180 min), however the 
fraction of such passengers increases. In the long radius case the fraction of modified itineraries is 
also increasing. The situation is qualitatively similar when the analysis is restricted to the itineraries 
passing from E-AMAN airports, but the worsening is more accentuated. 
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Figure 45: Percentage change in passenger-related metrics in E-AMAN (i) - advanced scenarios with 
respect to the baseline. 

 

Figure 46: Percentage change in passenger-related metrics in E-AMAN (ii) - advanced scenarios 
with respect to the baseline, restricting the sample to the itineraries that leave or pass from or 

arrive to an airport with E-AMAN. 

5.3.2.4 Centrality metrics 
The percentage variations in centrality metrics in the advanced scenarios with respect to the baseline 
are shown in Figure 47. All types of centrality losses increase on average (except for a very small 
decrease of the incoming passenger centrality loss in the long radius scenario), as a consequence of 
the increased delays on the network. 
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Figure 47: Percentage change in centrality metrics in FACadvanced scenarios with respect to the 
baseline. 

5.3.2.5 Causality metrics 
The percentage variations of the causality metrics in the E-AMAN advanced scenarios with respect to 
the baseline are shown in Figure 48. In the case of nominal radius, the average level of causality 
measured by link density remain approximately the same with respect to the baseline, for all Granger 
causality networks, in line with the really small variation of the departure delay of flights. However, it 
increases significantly in the case of long radius, measured as the increase of link density in the 
Granger causality in mean network. This is consistent with the average increase of the departure 
delay in the same scenario. Nevertheless, the opposite pattern is observed when considering the 
case of Granger causality in tail networks, thus suggesting that extreme delay events become less 
correlated. Finally, the other network metrics, i.e., reciprocated links and feedback triplets, do not 
display any clear pattern of variations in the case of short radius. On the contrary, they show a slight 
percentage decrease in the case of long radius, thus highlighting the partial disruption of the 
feedback subsystems of delay amplification, mediated by more than one leg effects. This result 
contradicts apparently the positive variations of all delay metrics in the long radius E-AMAN 
advanced scenario (Level 2). However, this effect can arise because of the local scope of the E-AMAN 
mechanism: it induces some delays in the planning horizon and/or the holding phase (explaining the 
positive variations of all delay metrics), but the same delays could reduce the correlation between 
the delays of different flights departing at different airports, thus maybe reducing the correlation 
between the states of congestion at the airports. 
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Figure 48: Percentage change of link density, reciprocity, and the number of feedback triplets of 
the Granger causality networks with E-AMAN implemented for both nominal (short) and long 
radius, with respect to the baseline. The networks of Granger causality in mean and in tail, for both 
Hong et al. and BiDAR methods, are built with the states of delay of airports defined as the third 
quartile of the distribution of departing delays of flights. We consider both corrections for multiple 
hypotheses testing, namely Bonferroni correction (BC) and false discovery rate (FDR) correction. 

5.3.2.6 Conclusions regarding E-AMAN scope 
• The larger the E-AMAN radius, the higher the uncertainty associated with the flights therein. The 

implementation in the model of E-AMAN considers only the flights that are within the E-AMAN 
radius and does not take into account uncertainties regarding the assignment of arrival slots in 
the sequence, or future demand. This leads to changes in the landing sequence, which translate 
into non-optimal behaviour of the system. 

• E-AMAN at the more advanced Level 2 tries to minimise the expected cost of the landing 
sequence. However, the relative cost of fuel means that fuel burn is highly prioritised and large 
flights might receive relatively large amounts of delay at the planning horizon. This leads to high 
savings of fuel during the cruise phase as speeds are reduced but, as new flights enter the E-
AMAN, and uncertainty manifests itself, the landing sequence is broken. Therefore, higher 
amounts of delay are assigned at holding. Earlier slots have already been given to other flights, 
which translate into slightly higher fuel consumption at holding, than under the simple 
assumptions of Level 0, but also higher arrival delays, and hence costs of delay, also subsequently 
result. 
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6 Conclusions and look ahead 

6.1 Conclusions 

The primary goal of Domino was to improve the state of the art regarding a methodology for 
analysing the architecture of, and interdependencies within, the air transportation system, by 
capturing different facets of causality under the impact of a selection of ATM mechanisms. In this 
regard, the project has made progress on three key topics to reach this goal, as listed below. 

• The possibility to model, at a disaggregated level, the full gate-to-gate European air 
transportation system. 

• The introduction of new metrics allowing the capture of some subtle network effects. 

• A powerful statistical analysis, combining the capabilities of the model with the power of 
classical and new metrics to perform a full, network-wide assessment. 

The re-implementation of the Mercury simulator, using an agent-based paradigm, is one of the most 
important achievements of Domino. To our knowledge, it is the only full, ECAC-wide model able to 
simulate key stakeholders, such as, passengers, airlines and the network manager, in an integrated 
simulator. With respect to previous versions, it allows us to inject complex behavioural rules for 
different agents, in particular airlines. Looking forward, Mercury can serve as a test bed for different 
types of simulations. Different optimisation processes for E-AMAN, rules for flight swapping or 
trajectory management, levels of congestion, levels of compensation and duty of care for passengers 
are all examples of modifications which can be tested, relying on a realistic representation for the 
other components of the model. With respect to other tools, Mercury provides many advantages. 
For instance, whereas the RNEST tool from EUROCONTROL is more advanced regarding airspace 
management (including, for example, explicit ATFM regulations and CASA algorithm 
implementation), Mercury takes into account behavioural (potentially sub-rational) effects from 
different agents, realistic, stochastic generation of delays, passenger management, and a highly 
detailed cost of delay model, driving the most important decisions for airlines. 

Various metrics have been deployed by Domino. Some are classically used in ATFM (such as average 
delay), some have been imported from other fields, others have been developed specifically for this 
project: in particular, the centrality metrics, which take into account the itineraries of passengers and 
the precise timing of the scheduled flights. At their core, they represent the most relevant metrics in 
terms of connectivity considering passengers. For their practical usage, Domino has identified some 
shortcomings, as highlighted in the next section. Causality metrics, on the other hand, have been 
used before in the air transportation system. Their introduction answered the necessity for decision-
makers to understand causal links between subsystems, as opposed to correlations, in order to gain 
some high-level knowledge. The new methods introduced in Domino, allow us to capture different 
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facets of causality, in particular with an emphasis on how rare events trigger other rare events in the 
system. 

The model allows us to measure a large number of low-level observables, which both poses a 
problem and raises an opportunity. With so much data, different practical issues arise – such as 
storage or analysis time – but, more importantly, statistical analyses must be performed with care. 
Due to the number of observables, the stochastic nature of the simulator, its geographical scope, and 
the dynamic nature of the system, many different analyses can be performed. In this deliverable, we 
have focused on the variety of metrics available to the modeller, and on the possibility to restrict the 
analysis in scope (such as geographically or by stakeholder). Domino has shown that the model can 
be used to inspect, with a high level of detail, different aspects of the system. In particular, it is able 
to shed light on the inner functioning of different mechanisms (such as flight swapping or DCI), 
understanding under which conditions they would, or would not, provide benefits for the different 
stakeholders. Domino’s model sheds light on the role of exogenous and endogenous noise, the 
behaviours of agents and the initial conditions (passengers, schedules, etc.) on the efficiency of 
different mechanisms. 

6.2 Look ahead 

Domino’s high-level goal was to provide a tool and a methodology, to analyse the interdependencies 
existing within the air transportation system. By developing a model able to simulate and produce 
the right level of information, Domino was able to develop and test several metrics that can be used 
to analyse the system’s architecture from the point of view of systemic, ‘domino’ effects. 

The consortium plans to take this method closer to a real application in the future. Firstly, by 
generalising the analysis, allowing complex metrics to be used at different levels. For instance, 
various subsystems can be considered instead of airports, to infer causality links or central nodes. 
Flights, routes, sectors are all possibilities of subsystems that could be considered, and whose 
relationships may thus be analysed. This will allow the consideration of adequate measures to avoid 
the propagation of disruption in the system. Secondly, the partners plan to test more extensively the 
method, considering other days of operations or specific environments. This will allow us to provide 
some improvements to the method, and also to improve the extent of the validation. 

Validating the model further is a third objective of the partners. This validation will include two 
processes. The model, Mercury, will need to undergo some systematic comparisons with other 
available models. These include, for instance, RNEST outputs which can be compared with Mercury, 
where these are similar in scope and depth. The validation of Mercury lies as much in this 
comparison itself, as in the understanding of the differences between the models. Expert interviews 
on some detailed aspects of the models are also needed (for example to calibrate some mechanisms 
on their baseline implementation, such as adjusting the wait for passenger rules). Finally, using more 
data to test the model in different environments is paramount to assessing its generalisability. 

The metrics presented in this deliverable will need more work in order to assess their usability. This 
includes some theoretical effort to understand the relationship between these new metrics and 
established ones (similar to the work presented in D5.1 Metrics and analysis approach), and also a 
practical effort to render them more intuitive and/or understandable, and thus being candidates to 
be used as future (key) indicators. It is important to note that these metrics may indeed (as we 
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suggest) be good proxies for others, and/or add further dimensionality and usefulness. This can only 
be understood via statistical analyses and additional case studies. It is also worth noting that these 
metrics are independent of the model, and that the model is established, in part, to: (1) to support 
the increase of the power of the metrics via statistical analyses of the output; (2) to create synthetic 
data for more or less exploratory scenarios. 

This last point is crucial for the partners and will also be developed further in the future. Indeed, for 
several years, the partners have maintained the ambition to establish a model that could be used as 
a standard in the field to test different solutions and observe their impact in terms of various KPIs. 
Hence, the consortium is particularly interested in enhancing the reusability of Mercury, which has 
been re-implemented in this project with this idea in mind. Harmonious performance assessments 
(or independent checks) could be achieved through the use of a standard model. 

The consortium is eager to develop some of the ideas used during the project regarding the three 
mechanisms: 4DTA, FAC, and FP. Whilst studies on 4DTA and its impact appeal to airlines regarding 
their operations, FP is more important to assess for the network manager. The possible introduction 
of further variations of UDPP (e.g., credits for low-volume users) can be studied with the method 
presented in Domino. The way in which FAC impacts operations at airports and at the network level, 
is both important for airports and the network manager. Various optimisation algorithms could be 
tested with the method presented in Domino. 
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8 Acronyms 

4DTA: 4D Trajectory Adjustment mechanism 

ABM: Agent-based model 

AIRAC: Aeronautical Information Regulation and Control 

AMAN: Arrival Manager 

ANSP: Air Navigation Service Provider 

AOBT: Actual off-block time 

AOC: Airline Operations Centre 

ATC: Air Traffic Control 

ATFM: Air Traffic Flow Management 

ATM: Air traffic management 

AU: Airspace user 

BADA: Base of Aircraft Data 

BC: Bonferroni correction 

CASA: Computer Assisted Slot Allocation 

CI: Cost Index 

COBT: Calculated off-block time 

CODA: Central Office for Delay Analysis 

DCI: Dynamic cost indexing 

DDR2: Demand Data Repository 

DMAN: Departure Manager 

E-AMAN: Extended Arrival Manager 

ECAC: European Civil Aviation Conference 
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EIBT: Estimated in-block time 

EOBT: Estimated off-block time 

FAC: Flight Arrival Coordination mechanism 

FDR: False discovery rate 

FP: Flight Prioritisation mechanism 

G2G: Gate to Gate 

GC: Granger Causality 

HDM: Hub Delay Management scenario 

KPI: Key Performance Indicator 

MCT: Minimum connecting time 

MTT: Minimum turnaround time 

NAS: National Airspace 

NM: Nautical mile 

Pax: Passengers 

Q-Q: Quantile-Quantile 

RNEST: Research Network Strategic Tool 

SIBT: Scheduled in-block time 

SJU: SESAR Joint Undertaking 

SOBT: Scheduled off-block time 

TMA: Terminal Manoeuvring Area 

TOC: Top of Climb 

TOD: Top of Descend 

UDPP: User-Driven Prioritisation Process 
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9 Annex I – Detailed mechanism tables 

9.1 Hub delay management 

9.1.1 Delay metrics 

9.1.1.1 Flight metrics 
Table 12: Values of the classical delay metrics – hub delay management 

 Baseline 4DTA Level 2 FP Level 2 
Metric Mean 1st 

Quartile 
3rd 

Quartile 
Mean 1st 

Quartile 
3rd 

Quartile 
Mean 1st 

Quartile 
3rd 

Quartile 
Mean departure delay of 
flights 

11.7 11.2 12 11.4 11 11.6 11.8 11.2 11.9 

Number of flights with 
departure delay > 15 minutes 

7110 7000 7220 6990 6870 7090 7110 6990 7230 

Number of flights with 
departure delay > 60 minutes 

556 471 626 531 454 584 568 465 632 
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Number of flights with 
departure delay > 180 
minutes 

38.3 13 33 27.5 12 26 38.7 13 36 

Total departure delay of 
flights with departure delay > 
15 minutes (x103) 

237 223 244 229 217 234 238 222 241 

Total departure delay of 
flights with departure delay > 
60 minutes (x102) 

553 400 606 495 390 537 566 419 589 

Total departure delay of 
flights with departure delay > 
180 minutes (x102) 

120 33.9 102 78.5 34.6 79.4 118 39.5 114 

Mean departure delay of 
flights with departure delay > 
15 minutes 

33.3 31.6 33.8 32.7 31.5 33.1 33.4 31.7 33.6 

Mean departure delay of 
flights with departure delay > 
60 minutes 

96.2 86.4 97.4 91.4 85.5 93.3 95.8 86.4 97.8 

Mean departure delay of 
flights with departure delay > 
180 minutes 

294 259 324 288 255 319 286 245 316 

Mean arrival delay of flights 6.9 6.4 7.2 6.8 6.4 7 6.9 6.3 7.1 
Mean arrival delay of delayed 
flights (early arrivals as 0) 

11.6 11.1 11.8 11.4 11 11.5 11.6 11.1 11.8 

Number of flights with arrival 
delay > 15 minutes 

7380 7280 7480 7330 7210 7430 7380 7240 7490 

Number of flights with arrival 
delay > 60 minutes 

635 550 703 621 544 677 646 535 707 

Number of flights with arrival 
delay > 180 minutes 

39.3 14 36 28.9 14 28 40 15 39 
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Total arrival delay of flights 
with arrival delay > 15 
minutes (x103) 

255 242 262 250 240 255 256 240 260 

Total arrival delay of flights 
with arrival delay > 60 
minutes (x102) 

616 474 665 565 463 614 628 474 643 

Total arrival delay of flights 
with arrival delay > 180 
minutes (x102) 

122 36 108 81 37 79 121 42 116 

Mean arrival delay of flights 
with arrival delay > 15 
minutes 

34.6 33 35 34.2 33 34.5 34.7 33 34.9 

Mean arrival delay of flights 
with arrival delay > 60 
minutes 

94.3 85.1 95.8 89.6 84.2 91.4 94 85.5 95.6 

Mean arrival delay of flights 
with arrival delay > 180 
minutes 

288 254 311 281 249 311 281 243 306 

Mean gate-to-gate delay of 
flights 

4.8 4.8 4.9 4.6 4.5 4.6 4.8 4.8 4.9 

Mean per-passenger gate-to-
gate delay (x10-3) 

28 27 28 26 26 27 28 27 28 

Number of cancelled flights 280 265 291 281 269 290 282 271 293 
Mean reactionary delay 3.8 3.4 3.9 3.6 3.4 3.7 3.8 3.4 3.9 
Number of flights with 
reactionary delay 

4880 4810 4950 4830 4740 4890 4890 4810 4960 
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9.1.1.2 Passenger metrics 
Table 13: Passenger-related metrics – hub delay management 

 Baseline 4DTA Level 2 FP Level 2 
Metric Mean 1st 

Quartile 
3rd 

Quartile 
Mean 1st 

Quartile 
3rd 

Quartile 
Mean 1st 

Quartile 
3rd 

Quartile 
Average pax delay 4.7 4.17 4.8 4.85 4.47 5.02 4.77 4.23 4.97 
Average pax positive delay 10.6 10.1 10.7 10.5 10.1 10.6 10.7 10.1 10.9 
Average conn. pax delay 9.28 8.38 9.59 8.54 7.9 9.04 9.5 8.24 9.67 
Average conn. pax pos. delay 14.8 13.8 14.9 14 13.5 14.5 15 13.8 15.1 
Average non-conn. pax delay 4.27 3.79 4.4 4.51 4.15 4.65 4.33 3.88 4.52 
Average non-conn. pax pos. 
delay 10.2 9.73 10.3 10.1 9.83 10.2 10.3 9.81 10.4 
Fraction modified itineraries 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Fraction pax at dest. 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
Frac. Pax receiving comp. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Frac. Pax receiving DOC 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 
Average compensation 39.9 39.2 40.7 40.1 39.4 40.8 40 39.5 40.6 
Average DOC 57.8 53.5 62.6 58.5 55.4 62.8 56.6 53.2 62.3 
Frac. pax with delay>15 0.25 0.25 0.26 0.26 0.25 0.26 0.26 0.25 0.26 
Average delay>15 34.9 33.1 34.7 34.4 33.3 34.4 34.9 33.2 35.1 
Frac. pax with delay>60 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
Average delay>60 104 95.1 101 97.7 93 98.7 103 94.1 105 
Frac. pax with delay>180 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Average delay>180 316 291 331 308 291 321 308 278 328 
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Table 14: Passenger-related metrics for restricted sample – hub delay management 

 Baseline restricted (to 
passengers departing or 

landing in an airport during 
regulations) 

4DTA Level 2 restricted (to 
passengers departing or 

landing in an airport during 
regulations) 

Baseline restricted (to 
passengers landing in an 

airport during regulations) 

FP Level 2 restricted (to 
passengers landing in an 

airport during regulations) 

Metric Mean 1st 
Quartile 

3rd 
Quartile 

Mean 1st 
Quartile 

3rd 
Quartile 

Mean 1st 
Quartile 

3rd 
Quartile 

Mean 1st 
Quartile 

3rd 
Quartile 

Average pax delay 2.02 1.6 2.41 2.69 2.32 2.95 4.38 4.01 4.76 4.4 3.98 4.77 
Average pax 
positive delay 9.7 9.31 10 9.93 9.56 10.2 10.7 10.4 11.1 10.7 10.3 11 
Average conn. pax 
delay 4.38 3.45 5.06 4.27 3.48 4.85 3.4 2.58 4.2 3.31 2.63 3.9 
Average conn. pax 
pos. delay 11.9 11.1 12.6 11.7 11 12.2 11.2 10.5 11.9 11.1 10.5 11.6 
Average non-conn. 
pax delay 1.46 1.11 1.85 2.32 1.93 2.68 4.77 4.46 5.15 4.82 4.34 5.24 
Average non-conn. 
pax pos. delay 9.18 8.91 9.4 9.52 9.18 9.83 10.5 10.2 10.9 10.6 10.2 10.9 
Fraction modified 
itineraries 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Fraction pax at 
dest. 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
Frac. Pax receiving 
comp. 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 
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Frac. Pax receiving 
DOC 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
Average 
compensation 49.2 47.7 50.8 49.4 47.5 51.4 51.4 49 54 51.9 50.1 54.8 
Average DOC 62.1 57 68 60.4 55.5 65.9 60.2 54.3 67.1 59.3 54.1 65.4 
Frac. pax with 
delay>15 0.24 0.23 0.24 0.24 0.23 0.25 0.26 0.26 0.27 0.26 0.25 0.27 
Average delay>15 34.1 32.9 34.9 34.7 33.7 35.4 34.3 33.3 35.1 34.4 33.5 35.1 
Frac. pax with 
delay>60 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
Average delay>60 108 99.7 114 108 99 114 112 104 119 112 103 118 
Frac. pax with 
delay>180 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 
Average delay>180 339 320 356 336 320 355 338 313 352 331 310 351 
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9.1.2 Cost metrics 

Table 15: Values of the classical cost metrics – hub delay management 

 Baseline 4DTA Level 2 FP Level 2 
Metric Mean 1st 

Quartile 
3rd 

Quartile 
Mean 1st 

Quartile 
3rd 

Quartile 
Mean 1st 

Quartile 
3rd 

Quartile 
Average excess cost of fuel 128 127 130 103 102 105 129 128 130 
Average cost of compensation 56.6 53.7 59.1 57.1 53.5 59.3 57 54.5 59.5 
Fraction of flights paying 
compensation (x10-3) 

17 16 18 17 17 18 17 16 18 

Average cost of transfer 1.1 0.5 1.2 1 0.6 1.2 1.2 0.6 1.3 
Fraction of flights paying transfer 
(x10-5) 

83 70 92 86 70 99 87 70 101 

Average duty of care cost 122 114 126 121 114 125 124 116 127 
Fraction of flights paying duty of 
care 

0.092 0.087 0.096 0.092 0.086 0.097 0.093 0.088 0.098 

Average soft costs 8.5 3.6 14.2 9.9 3.7 14.3 10.7 3.8 14.3 
Fraction of flights paying soft costs 0.491 0.489 0.494 0.49 0.488 0.492 0.491 0.489 0.493 
Average non-pax costs 70.9 68.7 72.3 70.1 68.1 70.9 71.4 68.2 72.4 
Fraction of flights paying non-pax 
costs 

0.936 0.935 0.938 0.936 0.935 0.937 0.936 0.935 0.937 

Average curfew costs 9.2 3.7 8.6 10 4.9 8.6 9.7 4.9 10.4 
Fraction of flights paying curfew 
costs (x10-5) 

27 11 26 30 15 26 29 15 31 

Average total excess cost 238 227 242 211 203 216 243 231 245 
Note: Costs are represented in euros as experienced by the airlines per flight. 
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9.2 E-AMAN scope 

9.2.1 Delay metrics 

9.2.1.1 Flight metrics 
Table 16: Values of the classical delay metrics – E-AMAN scope 

 Baseline - FAC Level 0 - 200 
NM 

FAC Level 2 - 200 NM FAC Level 0 - 600 NM FAC Level 2 - 600 NM 

Metric Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean departure 
delay of flights 33.3 32.8 33.8 33.3 32.8 33.9 33.5 32.9 33.9 33.5 33 33.9 
Number of flights 
with departure 
delay > 15 
minutes (x102) 158 158 159 158 157 159 158 158 159 158 158 159 
Number of flights 
with departure 
delay > 60 
minutes 4200 4130 4260 4210 4140 4280 4240 4170 4320 4240 4180 4290 
Number of flights 
with departure 
delay > 180 
minutes 213 196 228 216 194 238 220 200 240 217 195 237 
Total departure 
delay of flights 
with departure 
delay > 15 
minutes (x103) 839 826 852 841 826 856 846 829 857 845 831 857 
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Total departure 
delay of flights 
with departure 
delay > 60 
minutes (x103) 452 440 464 456 439 472 460 441 469 459 444 472 
Total departure 
delay of flights 
with departure 
delay > 180 
minutes (x103) 101 88 115 104 88 118 106 91.6 119 104 89.8 118 
Mean departure 
delay of flights 
with departure 
delay > 15 
minutes 53 52.3 53.9 53.2 52.3 54.2 53.4 52.4 54.1 53.3 52.4 54.1 
Mean departure 
delay of flights 
with departure 
delay > 60 
minutes 108 105 110 108 105 111 109 106 111 108 105 111 
Mean departure 
delay of flights 
with departure 
delay > 180 
minutes 476 437 512 479 440 518 479 451 511 480 440 517 
Mean arrival 
delay of flights 37.9 37.4 38.4 38 37.4 38.6 38.4 37.7 38.7 38.4 37.9 38.9 
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Mean arrival 
delay of delayed 
flights (early 
arrivals as 0) 39.2 38.7 39.7 39.3 38.7 39.9 39.6 39 40 39.7 39.1 40.1 
Number of flights 
with arrival delay 
> 15 minutes 
(x102) 183 182 183 183 182 183 184 183 184 184 183 185 
Number of flights 
with arrival delay 
> 60 minutes 5480 5410 5550 5490 5430 5560 5540 5450 5630 5550 5490 5600 
Number of flights 
with arrival delay 
> 180 minutes 258 240 275 260 240 283 265 247 286 263 241 283 
Total arrival delay 
of flights with 
arrival delay > 15 
minutes (x103) 1010 1000 1030 1020 1000 1030 1020 1010 1030 1030 1010 1040 
Total arrival delay 
of flights with 
arrival delay > 60 
minutes (x103) 576 561 590 579 563 598 586 568 597 586 571 598 
Total arrival delay 
of flights with 
arrival delay > 180 
minutes (x103) 112 98.6 124 114 96.4 129 116 102 128 115 101 130 
Mean arrival 
delay of flights 
with arrival delay 
> 15 minutes 55.5 54.8 56.2 55.7 54.8 56.4 55.8 55 56.3 55.7 55 56.5 
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Mean arrival 
delay of flights 
with arrival delay 
> 60 minutes 105 103 107 106 103 108 106 103 107 106 103 108 
Mean arrival 
delay of flights 
with arrival delay 
> 180 minutes 433 399 463 438 404 469 438 411 466 437 403 469 
Mean gate-to-
gate delay of 
flights -4.7 -4.7 -4.6 -4.7 -4.7 -4.7 -4.8 -4.9 -4.8 -4.9 -5 -4.9 
Mean per-
passenger gate-
to-gate delay -61 -61 -0.06 -61 -61 -61 -62 -62 -62 -63 -63 -62 
Number of 
cancelled flights 327 313 338 327 316 337 324 313 335 327 314 340 
Mean reactionary 
delay 20 19.6 20.3 20 19.6 20.5 20.2 19.8 20.6 20.2 19.8 20.6 
Number of flights 
with reactionary 
delay (x103) 12.0 11.9 12.0 12.0 11.9 12.0 12.1 12.0 12.1 12.1 12.0 12.1 
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9.2.1.2 Passenger metrics 
Table 17: Passenger-related metrics – E-AMAN scope 

 Baseline - FAC Level 0 - 200 
NM 

FAC Level 2 - 200 NM FAC Level 0 - 600 NM FAC Level 2 - 600 NM 

Metric Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Average pax delay 34.2 33.9 34.6 34.4 34 34.9 34.7 34.2 35.2 34.8 34.3 35.4 
Average pax 
positive delay 36.1 35.8 36.4 36.3 35.8 36.7 36.5 36 37 36.6 36 37.2 
Average conn. 
pax delay 46.7 45.7 47.6 46.9 45.9 47.8 47.2 46.2 48.1 47.2 46.4 48.2 
Average conn. 
pax pos. delay 48.4 47.4 49.4 48.6 47.7 49.5 48.9 47.9 49.7 48.9 48.1 49.9 
Average non-
conn. pax delay 33.1 32.7 33.4 33.3 32.9 33.7 33.5 33.1 34 33.7 33.1 34.3 
Average non-
conn. pax pos. 
delay 34.9 34.6 35.3 35.1 34.7 35.6 35.4 34.9 35.9 35.5 34.9 36.1 
Fraction modified 
itineraries 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Fraction pax at 
dest. 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
Frac. Pax 
receiving comp. 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 
Frac. Pax 
receiving DOC 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 
Average 
compensation 39.2 38.8 39.7 39 38.5 39.6 39.1 38.6 39.6 39.2 38.6 39.9 
Average DOC 24.2 23.4 24.9 24.5 23.8 25.1 24.1 23.5 24.7 24.3 23.3 25 
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Frac. pax with 
delay>15 0.65 0.64 0.65 0.65 0.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 
Average delay>15 53.7 53.1 54.2 54 53.3 54.8 54 53.3 54.8 54.1 53.3 54.8 
Frac. pax with 
delay>60 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.2 0.19 0.19 0.2 
Average delay>60 105 103 106 106 104 109 106 104 108 106 103 108 
Frac. pax with 
delay>180 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
Average 
delay>180 438 412 462 452 425 488 449 424 474 453 422 485 

 

 

Table 18: Passenger-related metrics for restricted sample – E-AMAN scope 

 Baseline - FAC Level 0 - 200 
NM 

FAC Level 2 - 200 NM FAC Level 0 - 600 NM FAC Level 2 - 600 NM 

Metric Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Average pax delay 32.6 32.2 33 32.9 32.3 33.3 33.3 32.8 33.9 33.4 32.8 34.1 
Average pax 
positive delay 34.7 34.2 35 34.9 34.4 35.3 35.3 34.9 35.9 35.3 34.8 36.1 
Average conn. 
pax delay 44.6 43.8 45.6 44.8 43.8 45.7 45.2 44.3 46.2 45 44.2 45.7 
Average conn. 
pax pos. delay 46.4 45.6 47.4 46.6 45.7 47.5 46.9 46 47.9 46.8 45.9 47.5 
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Average non-
conn. pax delay 31.1 30.7 31.4 31.3 30.8 31.8 31.8 31.3 32.4 31.9 31.2 32.6 
Average non-
conn. pax pos. 
delay 33.2 32.7 33.4 33.4 32.9 33.9 33.8 33.4 34.4 33.9 33.2 34.6 
Fraction modified 
itineraries 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 
Fraction pax at 
dest. 0.99 0.98 0.99 0.98 0.98 0.99 0.99 0.98 0.99 0.98 0.98 0.99 
Frac. Pax 
receiving comp. 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 
Frac. Pax 
receiving DOC 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 
Average 
compensation 40.6 40.1 41 40.4 39.7 41 40.5 39.8 41.1 40.5 39.8 41.1 
Average DOC 25.4 24.6 26.3 25.8 24.9 26.8 25.4 24.8 26 25.4 24.5 26.3 
Frac. pax with 
delay>15 0.63 0.63 0.63 0.63 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.64 
Average delay>15 52.7 51.9 53.2 53.1 52.2 53.8 53.1 52.5 53.9 53 52 53.9 
Frac. pax with 
delay>60 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.18 0.18 0.19 
Average delay>60 105 103 107 106 103 110 106 104 109 106 102 109 
Frac. pax with 
delay>180 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
Average 
delay>180 420 388 450 436 394 475 434 406 463 431 387 475 
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9.2.2 Cost metrics 

Table 19: Values of the classical cost metrics – E-AMAN scope 

 Baseline - FAC Level 0 - 200 
NM 

FAC Level 2 - 200 NM FAC Level 0 - 600 NM FAC Level 2 - 600 NM 

Metric Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Mean 1st 
Quart. 

3rd 
Quart. 

Average excess 
cost of fuel 187 185 189 187 185 189 191 189 193 188 186 189 
Average cost of 
compensation 71.4 68.4 74.4 72 69.2 74.7 70.5 67 74.3 72.2 69.2 75.4 
Fraction of flights 
paying 
compensation 35 34 36 35 34 36 35 35 36 35 35 36 
Average cost of 
transfer 2 1.6 2.3 2 1.6 2.3 2.1 1.5 2.1 2.2 1.6 2.6 
Fraction of flights 
paying transfer 
(x10-4) 27 25 29 27 26 30 27 26 28 28 25 30 
Average duty of 
care cost 204 195 211 205 199 211 204 197 215 206 197 213 
Fraction of flights 
paying duty of 
care 178 174 183 179 175 183 178 174 182 0.18 176 184 
Average soft costs 29.5 12.3 48.7 29.1 12.3 48.7 39.6 21.5 49.3 34.5 12.4 49.4 
Fraction of flights 
paying soft costs 0.58 578 581 0.58 579 582 0.58 579 582 582 0.58 583 
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Average non-pax 
costs 165 164 166 165 164 167 166 164 168 165 164 167 
Fraction of flights 
paying non-pax 
costs 967 966 968 966 966 967 967 966 968 967 966 968 
Average curfew 
costs 66.7 63.1 71 67.3 62.4 72.2 68.4 65.2 69.8 66.6 61.8 70.9 
Fraction of flights 
paying curfew 
costs (x10-4) 20 19 21 20 19 22 21 20 21 20 19 21 
Average total 
excess cost 493 477 509 494 473 513 509 488 525 500 480 518 

Note: Costs are represented in euros as experienced by the airlines per flight. 
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10 Annex II – Causality testing methods 

In this Appendix, we give more details about the methods to test the presence of a causality 
relationship between two state variables. 

(i) Granger causality in mean 

𝑌𝑌 ≡ {𝑦𝑦𝑡𝑡}𝑡𝑡=1,...,𝑇𝑇 is said to Granger-cause 𝑋𝑋 ≡ {𝑥𝑥𝑡𝑡}𝑡𝑡=1,...,𝑇𝑇 if we reject the null hypothesis that the past 
values of 𝑌𝑌 do not provide statistically significant information about future values of 𝑋𝑋 by assuming 
VAR(p) as the predictive model. Let us consider 𝑋𝑋 and 𝑌𝑌 described by 

{
𝑥𝑥𝑡𝑡 = 𝜙𝜙01 + ∑𝑖𝑖=1

𝑝𝑝 𝜙𝜙𝑖𝑖11𝑥𝑥𝑡𝑡−𝑖𝑖 + ∑𝑖𝑖=1
𝑝𝑝 𝜙𝜙𝑖𝑖12𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜖𝜖𝑡𝑡1

𝑦𝑦𝑡𝑡 = 𝜙𝜙21 + ∑𝑖𝑖=1
𝑝𝑝 𝜙𝜙𝑖𝑖21𝑥𝑥𝑡𝑡−𝑖𝑖 + ∑𝑖𝑖=1

𝑝𝑝 𝜙𝜙𝑖𝑖22𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜖𝜖𝑡𝑡2
 

 

where 𝜖𝜖𝑡𝑡1, 𝜖𝜖𝑡𝑡2 are taken to be two uncorrelated white-noise series. The goal of the test [17] is to 
assess the statistical significance of {𝜙𝜙𝑖𝑖12}𝑖𝑖=1,...,𝑝𝑝 by considering as null hypothesis that they are zero, 
i.e. 𝐻𝐻0: {𝜙𝜙𝑖𝑖12 = 0}𝑖𝑖=1,...,𝑝𝑝. The null hypothesis 𝐻𝐻0 is equivalent to considering that {𝑥𝑥𝑡𝑡} evolves 
according to an AR(p) process. After estimating both VAR(p) and AR(p) models (the order p of the 
autoregressive processes is selected by means of the Bayesian Information criterion), the Likelihood-
Ratio test (or, alternatively, the F-test) can be applied in order to test if VAR(p) outperforms 
statistically AR(p) in fitting the observations {𝑥𝑥𝑡𝑡}. If it does, 𝐻𝐻0 is rejected, meaning that 𝑌𝑌 ‘Granger-
causes (in mean)’ 𝑋𝑋. 

(ii) Granger causality in tail 

The statistical approach introduced by [20] aims to evaluate whether the knowledge of the past 
extreme events for a random variable 𝑌𝑌 helps in forecasting the occurrence of future extreme events 
for another random variable 𝑋𝑋.  

A realisation 𝑥𝑥𝑡𝑡 is defined as extreme when it falls in the right (or left) tail of the distribution of 𝑋𝑋 at 
time t, as claimed before. In particular, assume to know the probability density function of 𝑋𝑋 at time 
t conditional on past values and let us define 𝑄𝑄𝑡𝑡 ≡ 𝑄𝑄(𝑥𝑥1, . . . , 𝑥𝑥𝑡𝑡−1,𝛽𝛽) as the (1 − 𝛽𝛽)-quantile of the 
conditional probability distribution of 𝑋𝑋, i.e. ℙ(𝑋𝑋 > Q |𝑡𝑡 𝑥𝑥1, . . . , 𝑥𝑥𝑡𝑡−1) = 1 − 𝛽𝛽 almost surely with 𝛽𝛽 ∈
(0,1) defines 𝑄𝑄𝑡𝑡 implicitly. This define the new binary random variable 𝑍𝑍 whose binary realisations 
describe the extreme events of 𝑋𝑋. 

The null hypothesis 𝐻𝐻0𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 of the test [20] is: 

ℙ(𝑋𝑋 > Q |𝑡𝑡 {𝑥𝑥𝑠𝑠}𝑠𝑠=1𝑡𝑡−1) = ℙ(𝑋𝑋 > Q |𝑡𝑡 {𝑥𝑥𝑠𝑠}𝑠𝑠=1𝑡𝑡−1 , {𝑦𝑦𝑠𝑠}𝑠𝑠=1𝑡𝑡−1) a.s.∀𝑡𝑡 = 1, . . . ,𝑆𝑆 
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meaning that the past realisations of 𝑌𝑌 do not help in predicting the extreme events of 𝑋𝑋 more than 
the past history of 𝑋𝑋 itself. A rejection of the null hypothesis 𝐻𝐻0𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 means that 𝑌𝑌 ‘Granger causes in 
tail’ 𝑋𝑋 at level 𝛽𝛽. For further information on how to make testable this definition, see [20]. In 
particular, the authors point out that this test is (not rigorously) equivalent to a Granger-type 
procedure based on the following auxiliary regression for given 𝑀𝑀 > 0 (here, 𝑀𝑀 has a role similar to 
the order p of the autoregressive process in the Granger causality in mean test. However, it is not 
optimally selected according to some criterion, but arbitrarily chosen.) 

𝑧𝑧1,𝑡𝑡 ≃ 𝛼𝛼0 + ∑𝑖𝑖=1𝑀𝑀 𝛼𝛼2,𝑖𝑖𝑧𝑧2,𝑡𝑡−𝑖𝑖 + 𝑢𝑢𝑡𝑡 

where {𝑧𝑧1,𝑡𝑡}𝑡𝑡=1,...,𝑇𝑇 and {𝑧𝑧2,𝑡𝑡}𝑡𝑡=1,...,𝑇𝑇 are the time series of extreme events of 𝑋𝑋 and 𝑌𝑌, respectively, 
thus checking whether the coefficients {𝛼𝛼2,𝑖𝑖}𝑖𝑖=1,...,𝑀𝑀 are jointly zero. Note that this process does not 
account for the possibility of autocorrelated {𝑧𝑧1,𝑡𝑡}, i.e. terms of type 𝛼𝛼1,𝑖𝑖𝑧𝑧1,𝑡𝑡−𝑖𝑖 for some 𝑗𝑗 > 0. It can 
be shown (both numerically and analytically) that the statistical testing procedure introduced in [20] 
displays a significant (i.e. larger than the confidence level of the test) false positive rate of ‘𝑌𝑌(𝑍𝑍2) 
Granger causes in tail 𝑋𝑋(𝑍𝑍1)’ in the case of 𝛼𝛼2,𝑖𝑖 = 0∀𝑗𝑗 , when two conditions hold: (i) 𝑍𝑍1 is 
autocorrelated (i.e. 𝛼𝛼1,𝑖𝑖 ≠ 0 for some 𝑗𝑗) and (ii) ‘𝑋𝑋(𝑍𝑍1) Granger causes in tail 𝑌𝑌(𝑍𝑍2)’. 

(iii) A novel method of Granger causality in tail 

Let us consider the standard DAR(p) model [21] for the binary random variable 𝑍𝑍1 representing the 
occurrence of an extreme event for the random variable 𝑋𝑋 (similarly, we associate a binary random 
variable 𝑍𝑍2 to the random variable 𝑌𝑌), i.e. 

𝑍𝑍1,𝑡𝑡 = 𝑉𝑉𝑡𝑡𝑍𝑍1,𝑡𝑡−𝜏𝜏𝑡𝑡 + (1 − 𝑉𝑉𝑡𝑡)𝑈𝑈1,𝑡𝑡 

where 𝑍𝑍1,𝑡𝑡 ∈ {0,1}∀𝑡𝑡, 𝑉𝑉𝑡𝑡 ∼ ℬ(𝜈𝜈
~

) is a Bernoulli random variable with 𝜈𝜈
~
∈ [0,1], 𝜏𝜏𝑡𝑡 ∼ ℳ(𝛾𝛾

~
1, . . . , 𝛾𝛾

~
𝑝𝑝) is 

a multinomial random variable with 𝜸𝜸
~
≡ {𝛾𝛾

~
𝑖𝑖}𝑖𝑖=1,...,𝑝𝑝 such that ∑𝑖𝑖=1

𝑝𝑝 𝛾𝛾
~
𝑖𝑖 = 1 and 𝑈𝑈1,𝑡𝑡 is a binary random 

variable sampled according to the Bernoulli marginal distribution ℬ(𝜒𝜒
~

) with 𝜒𝜒
~
∈ [0,1]. In other 

words, at each time 𝑉𝑉𝑡𝑡 determines if copying from the past or sampling according to the marginal. 
When we copy from the past, then the multinomial random variable 𝜏𝜏𝑡𝑡 selects the time lag and, 
accordingly, which past realisation of 𝑍𝑍1 we copy. 

Then, let us introduce the generalisation of the DAR(p) model [21] for bivariate binary random 
variables 𝑍𝑍1 and 𝑍𝑍2 with Markov properties of order p, namely Bi-DAR(p) model, and the following 
autoregressive process 

 

{
𝑍𝑍1,𝑡𝑡 = 𝑉𝑉𝑡𝑡((1− 𝐴𝐴𝑡𝑡)𝑍𝑍1,𝑡𝑡−𝜏𝜏𝑡𝑡11 + 𝐴𝐴𝑡𝑡𝑍𝑍2,𝑡𝑡−𝜏𝜏𝑡𝑡12) + (1 − 𝑉𝑉𝑡𝑡)𝑈𝑈1,𝑡𝑡

𝑍𝑍2,𝑡𝑡 = 𝑆𝑆𝑡𝑡(𝑆𝑆𝑡𝑡𝑍𝑍1,𝑡𝑡−𝜏𝜏𝑡𝑡21 + (1 − 𝑆𝑆𝑡𝑡)𝑍𝑍2,𝑡𝑡−𝜏𝜏𝑡𝑡22) + (1 − 𝑆𝑆𝑡𝑡)𝑈𝑈2,𝑡𝑡
 

 

where 𝑍𝑍1,𝑡𝑡,𝑍𝑍2,𝑡𝑡 ∈ {0,1}∀𝑡𝑡, 𝑉𝑉𝑡𝑡 ∼ ℬ(𝜈𝜈) with 𝜈𝜈 ∈ [0,1], 𝑆𝑆𝑡𝑡 ∼ ℬ(𝜉𝜉) with 𝜉𝜉 ∈ [0,1], 𝐴𝐴𝑡𝑡 ∼ ℬ(𝛼𝛼) with 𝛼𝛼 ∈
[0,1], 𝑆𝑆𝑡𝑡 ∼ ℬ(𝛽𝛽) with 𝛽𝛽 ∈ [0,1], and 𝜏𝜏𝑡𝑡⋅ ∼ ℳ(𝛾𝛾1⋅ , . . . , 𝛾𝛾𝑝𝑝⋅ ) with ∑𝑖𝑖=1

𝑝𝑝 𝛾𝛾𝑖𝑖⋅ = 1. The marginals 𝑢𝑢1,𝑡𝑡 and 
𝑈𝑈2,𝑡𝑡 are also Bernoulli random variables with distribution ℬ(𝜒𝜒1) and ℬ(𝜒𝜒2), respectively, with 
𝜒𝜒1,𝜒𝜒2 ∈ [0,1]. 
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The process describes the evolution of binary state 𝑍𝑍1, as: (i) at time t, 𝑉𝑉𝑡𝑡 determines if copying or 
not from the past; (ii) if yes, 𝐴𝐴𝑡𝑡 determines if copying 𝑍𝑍1,𝑡𝑡−𝜏𝜏𝑡𝑡

𝑥𝑥  (with probability 1 − 𝛼𝛼) or 𝑍𝑍2,𝑡𝑡−𝜏𝜏𝑡𝑡12  
(with probability 𝛼𝛼); (iii) how may steps backward is determined by the multinomial random variable 
𝜏𝜏𝑡𝑡⋅  which selects the time lag; (iv) otherwise, we toss a coin with success probability 𝜒𝜒1. Equivalently 
for the state variable 𝑍𝑍2. Hence, the parameter 𝛼𝛼 (or, equivalently, 𝛽𝛽) controls the level of 
dependence of 𝑍𝑍1 from 𝑍𝑍2 (and vice versa when considering 𝛽𝛽): conditional on the probability that a 
past event affects the current state (i.e. 𝜈𝜈), the larger is 𝛼𝛼, the larger is the probability that a past 
extreme event for 𝑍𝑍2 triggers an extreme event for 𝑍𝑍1. In that case, taking into account the past 
information on 𝑍𝑍2 helps in forecasting the current state of 𝑍𝑍1, thus revealing a causal relationship. 
We can test for Granger causality in tail as follows. 

The null hypothesis ℍ0
𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 that the time series {𝑍𝑍2,𝑡𝑡} does not Granger-cause in tail the time series 

{𝑍𝑍1,𝑡𝑡} can be stated in terms of the Bi-DAR(p) model as 

𝐻𝐻0𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡:ℙ𝐷𝐷𝐷𝐷𝑅𝑅(𝑝𝑝)({𝑍𝑍1,𝑡𝑡}|𝜈𝜈
~

,𝜸𝜸
~

,𝜒𝜒
~

) = ℙ𝐵𝐵𝑖𝑖−𝐷𝐷𝐷𝐷𝑅𝑅(𝑝𝑝)({𝑍𝑍1,𝑡𝑡}|{𝑍𝑍2,𝑡𝑡}, 𝜈𝜈,𝛼𝛼,𝜸𝜸𝑖𝑖 ,𝜒𝜒)a.s. 

where on the left-hand side we have the likelihood of the DAR(p) process, whereas in the right-hand 
side it is the likelihood of the Bi-DAR(p) model (the order p of the discrete autoregressive processes is 
selected by means of the Bayesian Information Criterion). 

Note that the two considered models are nested, since the ‘full’ Bi-DAR(p) model contains all the 
terms of the ‘restricted’ DAR(p) model, but includes also the ‘off-diagonal’ term of interaction. Thus, 
to make testable the null hypothesis ℍ0

𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡, we can apply the likelihood-ratio test to assess the 
goodness of fit of the two competing nested models by evaluating how much better the full model 
works than the restricted one: if the likelihoods of the two models are statistically different one from 
each other, then the null hypothesis is rejected, thus detecting the presence of a non-zero 
interaction from 𝑍𝑍2 to 𝑍𝑍1, or, equivalently, a relationship of causality in tail from 𝑌𝑌 to 𝑋𝑋.  
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