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Contrast discrimination determines the threshold contrast required to distinguish 
between two suprathreshold visual stimuli. It is typically measured using sine-wave 
gratings. We first present a modification to Barten’s semi-mechanistic contrast 
discrimination model to account for spatial frequency effects and demonstrate how the 
model can successfully predict visual thresholds obtained from published classical 
contrast discrimination studies. Contrast discrimination functions are then measured 
from images of natural scenes, using a psychophysical paradigm based on that employed 
in our previous study of contrast detection sensitivity. The proposed discrimination model 
modification is shown to successfully predict discrimination thresholds for structurally 
very different types of natural image stimuli. A comparison of results shows that for 
normal contrast levels in natural scene viewing, contextual contrast detection and 
discrimination are approximately the same and almost independent of spatial frequency 
within the range of 1-20 c/deg. At higher frequencies both sensitivities decrease in 
magnitude due to optical limitations of the eye. The results are discussed in relation to 
current Image Quality models. 
 
 
1.  INTRODUCTION 
 
The spatial contrast sensitivity function (CSF) is a measure for quantifying spatial vision. 
Typically, the CSF is determined using luminance modulated sine-wave gratings, where visual 
sensitivity at a given grating frequency is defined as the inverse of Michelson contrast at the 
threshold of grating detection. Over the years, CSF studies have proved extremely valuable in 
elucidating basic mechanisms underlying spatial vision in both humans and animals from 
photon capture through to signal detection [1-9]. The CSF concept has also been adapted to 
provide a rapid spatial vision assessment tool in clinical studies [10, 11] and applied as a visual 
weighting factor in models designed to measure the visual image quality of reproduced natural 
scenes [12-15].  However, an important factor to be considered in our understanding of spatial 
vision, is that images in the natural environment are considerably more complex in structure 
compared with traditional stimuli used to determine the CSF and contain clearly visible 
(suprathreshold) contrast information.  As a consequence, the ultimate relevance of the CSF, 
which is based on threshold vision, as derived from simple sine-wave patterns has been 
questioned in its ability to provide an understanding of the visual processing of natural images 
[16].  Further, the use of the CSF as a weighting tool in image quality (IQ) modelling [17-20], 
which aims to predict the visual quality of reproduced images, has been a subject of much 
debate. 
 
In an attempt to address some of these reservations relating to the CSF, we previously 
conducted a study designed to directly measure this sensitivity function from a number of 
natural images [15]. In this study, measurements of the CSF were obtained through spatial 



frequency decomposition of a selection of pictorial scenes into ten 1-octave wide frequency 
bands.  The psychophysical experimentation involved an observer free viewing both a standard 
image and test image spatially overlapping, but separated in time by 300ms. The standard was 
defined by the original scene, but with all contrast energy removed from the frequency band 
from which contrast sensitivity was to be determined.  The test image was similarly defined, 
except that now, the band contrast could be increased to the point where a difference in 
appearance between standard and test could just be perceived. This threshold test band contrast 
was defined in terms of the RMS contrast metric, this being considered an appropriate band 
contrast measure for complex imagery, as discussed in our previous communication [15].  The 
inverse of the threshold RMS contrast value defines band contrast detection sensitivity. In 
addition, measurements were taken with each standard and test image defined from a single 
frequency band with no other band information present; a condition close to that associated 
with the use of a simple sine-wave grating stimulus. 
 
The results showed that the spatial contrast sensitivity profile obtained from individual 
frequency bands presented within the complete image (the contextual CSF, cCSF) displayed a 
slow increase in sensitivity from low frequencies up to a turning point of around 16 c/deg, 
whereas the isolated band contrast sensitivity function (iCSF) showed the classic band-pass 
profile so characteristic of measurements obtained from simple grating stimuli. The 
mechanistic Barten model for sine-wave contrast detection [6] offered a good fit to the iCSF 
data, and we derived a further model that could satisfactorily predict cCSF using both the iCSF 
and the image contrast spectrum as input.  We argued that spatial noise generated from 
frequency bands at +/- 1-octave from a specific band was the major factor in determining its 
contextual detection level [15].     
 
Our work has now been extended to include the measurement and modelling of contrast 
discrimination in natural scenes. Contrast discrimination measures the threshold contrast (just 
noticeable difference) required to distinguish between two visual suprathreshold stimuli. 
Changes in suprathreshold luminance contrasts are basic building blocks leading to the 
discrimination of shape, form and detail.  This paper addresses the important issue of sensitivity 
to changes in suprathreshold contrast in natural scene viewing. Modelled contextual contrast 
discrimination functions, describing suprathreshold contrast sensitivity at a given spatial 
frequency in the presence of suprathreshold signals at other frequencies, are also compared with 
contextual contrast sensitivity (detection) functions (cCSFs) derived in our previous work [15]. 
These latter functions are fundamentally different from discrimination functions (i.e. they 
describe the absolute threshold contrast detection at a given spatial frequency (from no signal 
to the minimum signal detection). From this comparison conclusions are then drawn regarding 
the importance of contrast discrimination sensitivity compared with contrast detection 
sensitivity in the understanding of how the human visual system responds to structural changes 
in natural scenes.  
 
The following sections first discuss the general concept of contrast discrimination and its 
modelling. We then present an extension of Barten’s contrast discrimination model that 
accounts for spatial frequency effects and test this using visual data from classical 
discrimination studies. Further on we present measurements of contrast discrimination 
functions obtained from natural image stimuli at two different contrast levels; results are 
compared against our model predictions. Modelled contextual discrimination functions are also 
compared with contextual detection sensitivity functions derived in our earlier work. Finally, 
we discuss our findings and their implications in IQ modelling. 
 
 
 



 
1.1 The dipper function  
 
As in the case of the CSF, most previous studies of basic contrast discrimination have involved 
the use of sine-wave grating stimuli [21-29]. For contrast discrimination, a just noticeable 
difference in contrast has to be perceived between two nearly identical suprathreshold gratings 
(test and standard stimuli) that differ only in Michelson contrast value. When this occurs, the 
threshold level for discrimination is then defined as Δc, the algebraic difference between test 
and standard grating contrasts. The fixed contrast level of the standard is usually termed the 
“pedestal” contrast. Note that a value of Δc for zero pedestal contrast represents the contrast 
detection level. 
 
The conventional way of presenting contrast discrimination data is by plotting Δc versus 
pedestal contrast at a given spatial frequency u c/deg. It is found that for a grating with a mean 
luminance above about 2.0 cd/m2 and spatial frequency above 1.0 c/deg, as pedestal contrast 
increases from zero, values of Δc remain fairly constant and then start to decrease to a minimum 
value at a pedestal contrast of around 0.01 [29]. The function then has a turning point and as 
pedestal contrast level increases, Δc increases with a relatively constant slope. From about a 
pedestal contrast of 0.5 and above, the function then shows a slow decrease in slope. This 
general profile is observed in most contrast discrimination studies and has led to the term 
“dipper” function. In other words, the “dip” in the function shows that as pedestal contrast 
increases from low levels, discrimination sensitivity (as defined as the inverse of Δc) becomes 
higher than that at the absolute threshold detection level and then progressively decreases. 
Examples of this dipper function (which were produced from the model explained and 
discussed in Section 2) are shown by the continuous curves in Fig. 1(a,b,c). If the dipper 
function is determined in the presence of 2D spatial noise, low pedestal contrast values of Δc 
increase significantly and the “dip” point shifts to a higher pedestal value [6]. 
 
1.2.   Spatial frequency effects  
 
Early contrast matching experiments using suprathreshold sine-wave gratings showed that 
perceived contrast was relatively independent of spatial frequency, providing Michelson 
contrast was above 0.1 [2, 30]. This form of visual adaptation to contrast was later confirmed 
from other experimentation [31, 32].  Bradley and Ohzawa [28] determined sine-wave contrast 
discrimination as a function of spatial frequency at a fixed pedestal contrast of 0.25 and 
obtained a curve of slightly flatter profile than their companion detection threshold (CSF) 
curve. This form of visual adaptation to contrast, is referred to as contrast constancy. Contrast 
constancy can be considered as a form of contrast gain control, which has also been advanced 
to account for the phenomenon of contextual modulation in contrast perception [33]. This 
phenomenon measures how both threshold contrast detection [34-36] and suprathreshold 
apparent contrast [37, 38] can be suppressed, or enhanced when the sinusoidal grating is 
presented within a surrounding image. Contrast constancy is an important feature when 
studying the perception of real complex images and plays a significant role in visual IQ 
assessment.  
 
Previous studies suggest that as spatial frequency increases from about 1.0 c/deg, the overall 
slope of the dipper function remains approximately constant.  Both Legge [24] and Bradley and 
Ohzawa [28] found that in the spatial frequency range 1.0 to 16.0 c/deg, the initial slope of the 
function for pedestal contrast values above the dip, was consistently around 0.9; a result close 
to Weber law behaviour.  Yang and Makous [29] obtained slightly lower slopes of 0.77 and 
0.65 at 6 and 2 c/deg respectively. As spatial frequency reduces below 1.0 c/deg, and pedestal 
contrast increases above about 0.2-0.3, a substantial reduction in the dipper slope occurs. 



Values of slope of around 0.4 at 0.8 c/deg [27], and 0.2-0.3 at 0.25 c/deg [24, 39] have been 
obtained.  Kulikowski [39] argued that the shallower slopes at very low frequency are because 
detection is mediated by transient mechanisms, which do not adapt and have shallower 
increment threshold functions compared to high frequency sustained mechanisms. Legge [24] 
challenged the detail of this explanation, but agreed that the differences between low and high 
frequency dipper slopes probably do relate to operating differences between the two types of 
mechanism [40, 41]. Certainly, it is now well established that the magnocellular (transient) 
pathway dominates spatial information transfer at frequencies below 1.0 c/deg [42]. 
 
1.3 Contrast discrimination in natural scenes 
 
Of all the determinations of the dipper function conducted over the last 50 years, only a few 
have used natural images. These include the study by Bex, Mareschal and Dakin [43], who 
employed a derivative of the Legge and Foley technique [25] to determine contrast 
discrimination in images of four natural scenes. In their work, spatially filtered images were 
presented in a number of different ways. One modification involved the presentation of a 1-
octave wide, spatially band-filtered image of a given scene, where three peak frequencies were 
chosen in the filtration process. A second experimental modification was made, similar to the 
band-pass condition, but in that spatial frequencies outside of the band were not discarded, i.e. 
the band-image was presented in the context of the remaining frequency bands. Contrast 
discrimination data were measured at three spatial frequencies (1.0, 2.0 and 4.0 c/deg). Dipper 
functions were obtained from this experiment, with overall profiles similar to those obtained 
from sine-wave grating experiments.  
 
Tolhurst et al [44] measured sensitivity to increments of contrast in a range of natural scenes 
and again dipper functions were used to express the data. This particular study related contrast 
discrimination to firing rates in striate cortex neurones.  
 
1.4 Contrast discrimination models 
 
Of all the models generated over the years to account for the profile of the dipper function, the 
one which has received most attention is that proposed by Legge and Foley [25]. This 
incorporates 5 stages of signal processing: an early linear filter, followed by a non-linear 
transduction process, with final stages which include the addition of neural noise and eventual 
decision making. A similar cascade model appeared at the same time by Wilson [45]. Whittle 
[46,47] suggested that the earliest stage in the cascade must in fact be a non-linear process, a 
concept later supported by the work of McIlhagga [48] in his study of sine-wave contrast 
discrimination. Kane and Bertalmio [49] re-examined the data set generated by Whittle and 
developed a model construct which incorporated a divisive contrast gain control mechanism. 
 
In complete contrast to these models, Pelli [27], described the nature of the dipper function in 
terms of uncertainty. Here, it is supposed that the brain monitors many channels of information, 
of which only a small group are relevant to the detection of a contrast change. One plausible 
mechanism is where the pedestal allows the observer to ignore some of the irrelevant 
information channels, resulting in a decrease in the uncertainty level associated with the signal 
detection process. Blackwell [50] employed aspects of Pelli’s uncertainty model to account for 
improvements in contrast detection when measured in the presence of low contrast noise. 
Sanborn and Dayan [51] formulated yet another alternative dipper function model based on 
Bayesian inference.  
 
The different attempts at modelling contrast discrimination using either the non-linear 
transduction or the uncertainty concept have produced radically different mathematical 



constructs. The models vary considerably in the number and meaning of equation parameters 
and a detailed side by side comparison is beyond the scope of this communication. A detailed 
comparison of these model genres is, however, available elsewhere [52]. It is important to note 
however that, none of these model investigations have resulted in any firm conclusions being 
drawn regarding the actual visual mechanisms underlying contrast discrimination. This has 
resulted in much debate on the issue [44, 53-58].  
 
1.5 Barten contrast discrimination model   
 
Although most of the models mentioned in section 1.4 have been successful in describing the 
general nature and profile of the dipper function, they are all examples of a particular genre 
which is limited in its ability to link through to underlying neurophysiological mechanisms. 
Barten [6], in his theoretical treatment of spatial vision, has produced models for both contrast 
detection and contrast discrimination, the former being used in our detection study [15].  
 
Barten’s detection model is characterised by the incorporation of the key physiological loci in 
the visual system, which impact contrast detection sensitivity. Specifically, stages quantifying 
optical attenuation, quantum efficiency, receptor sampling, lateral inhibition, area signal 
summation effects, neural noise and final cortical detection are incorporated into the model 
framework. The model is both mechanistic and predictive, minimally relying on the use of 
measured contrast sensitivity data in its formulation. Values of equation parameters in the 
model are in most instances, derived directly from both physical and electrophysiological 
measurements. Barten demonstrated the predictive power of this model using measured 
contrast sensitivity data obtained from a substantial number of independent studies [1, 2, 59-
70]. Further, Barten [71,72] and others [17,73-75] showed how his detection model can be 
incorporated in predictive models of subjective (visual) image quality.  
 
 As shown in section 2.1, Barten’s contrast detection model defines the foundation for his 
contrast discrimination model and as a consequence, this latter model also directly links through 
to underlying visual neurophysiology. Two basic features of the discrimination model are the 
embodiment of a non-linear transduction process in the visual system and the concept that 
discrimination is simply a threshold detection process in the presence of a noise source, namely 
the pedestal contrast itself. It is this model variant that we extend and use in relation to our 
contrast discrimination data obtained from natural scenes.  
 
The derivation of the Barten contrast discrimination model is outlined and discussed in detail 
in Appendix A. For the case when test and standard stimuli are both sinusoidal and have the 
same spatial frequency, u c/deg, the generalized Barten discrimination model for Δc may be 
written as: 
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In equations 1 and 2, cs denotes the Michelson contrast value of the standard (defining the 
pedestal value). The term co is the threshold level for contrast detection and as a function of 
spatial frequency, the value of (co)-1 defines the CSF. The function Ψ(u) represents the operation 
of a non-linear transduction process at high pedestal contrast values. The constant k represents 



the Crozier factor which is considered a basic signal/noise ratio for detection [76-80] and has a 
nominal value of around 3.0 [6]. At any fixed value of u c/deg, equation 1 defines a dipper 
function. 
                                                                                                                                                                                
Barten showed the dipper represented by equation 1 to be a good fit to measured discrimination 
data obtained from a number of published sine-wave grating studies at fixed pedestal 
frequencies above 1.0 c/deg. [6].  Moreover, for discrimination data measured with a 4 c/deg 
grating presented in the presence of spatial noise [81], the model again offered good predictions. 
In these particular model calculations (see Appendix A), co was replaced by (co )n  where: 
 

@𝑐A(𝑢)BC = [𝑐A(𝑢)7 + 𝑘7𝑐C(𝑢)7]..9                                      (3) 
 
The term (co )n  denotes the contrast detection threshold level in the presence of a noise source, 
with an average sine-wave component contrast cn . 
 
 
2. METHODS 
 
2.1 Barten model extension 
 
None of the discrimination models outlined in Section 1.4, nor the Barten model described by 
equations 1 and 2 can account for the reduced dipper slope at low frequencies and high pedestal 
contrasts.  Whatever the exact nature of the visual mechanism responsible for this dipper 
behaviour, it is mathematically characterised by the combination of both a contrast and a 
frequency response function; the first operating to substantially lower the dipper slope at 
pedestal contrasts above around 0.2-0.3 and the second to predominantly restrict the slope 
reduction to below 1.0 c/deg.  As now shown, both of these response characteristics can be 
successfully modelled by the inclusion of two Butterworth squared functions [82] (designated 
B and B* in equations 4-7), into the function Ψ, which controls the dipper behaviour at high 
contrasts. Accordingly, Ψ is re-defined as: 
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where 
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The term β represents a dimensionless non-zero scaling parameter and c* is a contrast constant. 
The function B* is given by: 
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where u* is a spatial frequency constant. 
 
 
 
 



2.1.1 Initial model testing 
 
This modification to the Barten model was initially tested using sine-wave contrast 
discrimination data from the Legge [24], Yang & Makous [29] and Bradley and Ohzawa [28] 
studies. The results of this comparison are shown in Fig. 1(a,b,c,d). The symbols shown in Fig. 
1(a) are measured contrast discrimination values from the Legge study at a pedestal frequency 
of 0.25 c/deg. Symbols shown in Fig. 1(b) are values from the Yang and Makous study for a 
pedestal of 0.8 c/deg. The continuous curves in Fig. 1(a,b) represent dipper functions, 
calculated using the modified Barten model (equations 1 and 4), with k fixed at its nominal 
value 3.0. Values chosen for the B and B* parameters (n, m, u*, c*) are (2.0, 1.0, 3.0 c/deg, 
0.2), with β set at 0.02 (Legge data) and 0.015 (Yang and Makous data).  The similarity of the 
value of β (which through our work has ranged between 0.01 and 0.02 for isolated signal 
viewing and, although larger, has remained stable also for contextual viewing) is important for 
the general application of the model (see Table 1, section 3.2). 
 
The low frequency results given in Fig. 1(a,b) show that the modified model yields good 
predictions of the measured data from both studies, using the same set of equation parameter 
values. With these values, the appropriate criteria described above for both contrast and 
frequency response functions are fulfilled, i.e. f starts to significantly decrease in magnitude as 
pedestal contrast reduces from below about 0.2 and accordingly, the product f.B* tends toward 
zero with equation 4 becoming equivalent to equation 2 (the original Barten formulation for Ψ, 
equation 2). The function B* diminishes from its maximum scaling value of β as spatial 
frequency increases above 1.0 c/deg, with again the product f.B* tending toward zero. The hatch 
curves in Fig. 1(a,b) represent model calculations using the original Barten formulation 
(equations 1 and 2) which show a poorer fit to the data at higher pedestal contrasts. RMSE 
values calculated to quantify the goodness of the model fits, for the original Barten and the 
modified models, confirm this (RMSE 0.0144 (original) vs 0.0066 (modified) in Fig. 1(a); 
RMSE 0.0158 (original) vs 0.0021 (modified) in Fig. 1(b)). This expected reduction in slope in 
the dipper function at low frequencies and high pedestal contrasts can only be achieved with 
the modified model.   
 
Fig. 1(c) shows the modified model prediction for contrast discrimination data obtained at 2.0 
c/deg (Yang & Makous [29]) and 4.0 c/deg (Legge [24]). In the model calculations, co was 
estimated by extrapolation from the measured contrast discrimination value at the lowest 
pedestal.  The single curve represents model calculations using the modified Barten model with 
β equal to 0.02 (for Legge data [24]) and 0.015 (for Yang & Makous data [29]). Note that the 
two model calculations yield the same curve. This is because for spatial frequencies above 
about 1.0 c/deg the term f.B* is near to zero and so the modified model becomes equivalent to 
the original version and independent of β.   
 
The data points in Fig. 1(d) represent the measured CSF and the companion contrast 
discrimination function obtained by Bradley and Ohzawa [28]. The upper continuous curve 
represents the Barten CSF model [6] fitted to the data. The lower curve is obtained from our 
modified Barten discrimination model, with parameters (n, m, u*, c*) set at the same values 
used in the dipper modelling shown in Fig. 1(a,b,c) and with values of β and k of 0.01 and 4.0 
respectively (i.e. a little higher than the nominal k value, but well within the range suggested 
by Barten, i.e. 2.7 -4.5) [6, p. 59] . In the calculation of discrimination, values of co were defined 
from the Barten CSF and cs fixed at 0.25.  
 
The constancy found for the equation parameter values in this examination of three 
experimental studies is extremely important in a theoretical model of this type. It is a necessary 
feature which enables performance trends to be predicted without extensive curve fitting 



procedures, which is the case for many computational, or black box models that rely on large 
amounts of data for fitting purposes.   This examination of previously measured sine-wave 
contrast discrimination data strongly indicates that the modified Barten model can offer good 
performance predictions with the use of consistent parameter values in equations 4-7 at all 
pedestal frequencies. 
 
 

(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
 
 
 
 



(d) 

 
Fig. 1. Comparison of contrast discrimination data Δc, from classical literature studies presented in [24] (a), [29] (b) and 
[24, 29] (c), together with our modified Barten contrast discrimination model predictions. (d) Measured contrast detection 
and discrimination data obtained from [28] versus the Barten CSF model and the modified Barten discrimination model.  
 
Note that the scaling factor β is particularly important for obtaining an absolute fit between the 
model and measured contrast discrimination data. Since the numerical value of β was empirically 
adjusted to give a good fit to the data obtained from three distinctly separate studies, the 
expectation would be that some variation in its value would occur. In this initial testing of the 
model, the fact that this variation was found to be relatively small (β= 0.020 (for Legge data 
[24]), β=0.015 (for Yang & Makous data [29]), β=0.010 (for Bradley & Ohzawa data [28)), is 
particularly important in demonstrating the model’s predictive stability. A summary of the β and 
k values used for these sine-wave studies, using Michelson contrasts, is given in Table 1(a).   
 
The following sections will explore the validity of the model for predicting contrast 
discrimination using natural images. In both our studies with natural images (the current 
discrimination study and detection study in [15]), the RMS contrast metric was used.  The choice 
of the RMS metric for such work is fully discussed in [15].  For sinusoidal gratings, comparing 
Michelson with RMS is not specifically a problem, the former measure is simply √2 RMS [83] 
resulting to only shifting the functions by a factor of √2 without any change in their shape. 
Nonetheless, it is necessary to be cautious when comparing studies with different contrast 
measures. 
 
2.2 Stimuli and their features 
 
The image stimuli used in our measurements of contrast discrimination from natural scenes 
were the same three employed in our previous study of contextual contrast sensitivity functions 
derived from natural scenes (cCSF) [15]. Full specification of the images, their capture and 
image processing are detailed in this communication.  
 
Fig. 2(a,b,c) shows the images, designated gallery (containing angular and linear structural 
features), park (defined by open natural spaces, with foreground and background detail) and 
people (structurally complex group scene) respectively; all three offering substantial 
differences in structural composition. Two overall pictorial contrast levels designated “normal” 
and “low” were chosen for the experimentation as per [15]. The low contrast version was 
defined from band contrast values of just half those for the normal image; their mean image 
luminance was kept constant. 
 
 
 
 
 



(a)                                  (b) 

   
                                                                          (c) 

 
Fig. 2. Normal contrast version of the test images: (a) gallery, (b) park, (c) people [15]. 

 
Briefly, filtering techniques used for spatial frequency decomposition employed Peli’s cosine 
log filters [84] of 1-octave bandwidth, centered at frequency 2i cycles per picture (cpp). The 
filters satisfied our requirements of symmetrical shape on a log frequency axis and the condition 
of additive reconstruction [15]. Ten filters, centered at the corresponding retinal frequencies of 
0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 24 and 32 c/deg were produced for the purpose. They have a 
number of convenient properties and have been employed in a variety of digital imaging 
applications [84-88].  
 
The RMS band contrast spectra of the images, calculated as per [15], reduced with increasing 
spatial frequency according to the inverse power law function (park) or a logarithmic function 
(gallery and people). Fig. 3 shows band contrast spectra for the normal image versions.  
 

 
Fig. 3. 𝑅𝑀𝑆 band contrasts, cs, of normal versions of the three stimuli used 
in the contrast discrimination experiments. The dashed lines indicate 
regression curves, used in the modeling of contrast discrimination. 

 
 
 
 
 



2.3 Stimulus presentation and psychophysical paradigm 

The modified adaptive staircase method used to determine contrast thresholds in this study, is 
described in full detail in our previous communication [15, Appendix C].  The psychophysical 
display and observer selection are also discussed in detail in [15].  
 
In summary, visual experiments were carried out using two identical high quality, fully 
characterized, wide gamut 24′′ EIZO LCDs.  The displays incorporated digital uniformity 
equalizers, ensuring luminance uniformity across the screen. The display settings and stimulus 
parameters are summarized below:  
 

• Display pixel dimensions: 1794 (H) x 1196 (V) pixels 
• Display mean luminance: 55 cd/m2.  
• Display output: 10 bits per channel, from 16-bit per channel input images, linearized 

via LUTs so that each color channel was displayed with 1024 equally spaced 
luminance steps.	 

• Display temporal frequency: 60 Hz. 
• Display pixel pitch: 0.270 mm square. 
• Maximum display spatial frequency: 1.85 mm−1. 
• Observer viewing distance: 1800 mm. 
• Maximum retinal frequency of 58 cpd.   
• Stimulus pixel size: 1794 (H) x 1196 (V) pixels (full screen). 
• Stimulus field size: 16.5 (H) x 11.0 (V) deg. 
• Stimulus mean luminance: image dependent, varied between 14 cd/m2 and 20 cd/m2. 

 
The same observer pool from our previous study [15] was used also in this study. Observers 
were given initial training with each image stimulus and all frequency bands, so that they (i) 
fully understood the task, (ii) got used to the free-viewing mode that was employed in the 
experiments. Examination of the intra-class correlation coefficient in software R led to the 
selection of 10 observers, a mixture of males and females, with ages ranging from 18 to 35 
years old. 
 
The filtering and preparation of the image stimuli is the same as in our work on the detection 
(CSF) studies; it is described in detail in [15]. However, the presentation of the stimuli in the 
current work on the discrimination sensitivity was different from that study (i.e. in 
discrimination studies, both reference and test stimuli are suprathreshold, in detection the 
reference is subthreshold). In the current study, for defining the isolated band contrast 
discrimination sensitivity, the standard consisted of the band of interest in its full contrast, 
presented in isolation (i.e. outside the remaining image contents, within a uniform field of mean 
luminance equal to the mean luminance of the image). The test was originally defined as 
identical to the standard, then the RMS contrast of the test band selected for investigation was 
adjusted (via the adaptive staircase method [15]) until the observer just perceived a difference 
between test and standard. For defining the contextual band contrast discrimination sensitivity, 
the standard consisted of the complete original (unfiltered) image. The test was again initially 
defined as identical to the standard, then the RMS contrast of the selected test band was adjusted 
until the observer just perceived a difference between test and standard images.  
 
This way, for any given frequency band, the RMS contrast discrimination threshold, Δc, was 
identified in the absence of the contrasts in the remaining frequency bands of the image 
(isolated discrimination), or in their presence (contextual discrimination). Fig. 4 (a,b) illustrates 



an example of a standard and a test stimulus respectively for the contextual discrimination 
experiment. 
 

(a)                                                                     (b) 
 

     
Fig. 4: (a) Standard and (b) test stimulus example for the contextual discrimination experiment, test 

image park. 
 
During the experiments, the observers had their head positioned on a chin rest. They free-
viewed the displayed images by only moving their eyes. Standard and test stimuli were 
displayed at full display, in random order in alteration for 3 seconds each, with a temporal 
separation of 300 msc and a mid-gray screen displayed between stimuli. They continued being 
displayed in alternation until the observer chose to answer “yes” or “no” to the question “are 
the two images different?”. Observers operated blindly two keys on a nearby keyboard for 
answering.  
 
Measurements were obtained from a number of 1-octave wide bands with central frequencies 
ranging from 0.1 to 32 c/deg. Band contrast discrimination sensitivity was defined as the inverse 
of the RMS contrast discrimination threshold (i.e. Δc-1). The standard band contrast in this study 
with complex images is equivalent to the pedestal contrast (cs) in a sine-wave discrimination 
experiment.  
 
Δc-1 values for each spatial frequency in the resulting functions were averages from minimum 
3 and maximum 7 observations. The standard error, which accounts the number of 
observations, was calculated for each point; it is presented as error bars in all relevant figures. 
 
3. RESULTS 
 
3.1 Isolated contrast discrimination 
 
To supplement the testing of our modification to Barten’s model, we obtained a limited amount 
of contrast discrimination data from a scene containing isolated pictorial bands, which as 
described in the introduction, produces a stimulus close to an individual sine-wave grating. 
Data were obtained from just the gallery image, simply to determine if the dipper-predicted 
low frequency rise in discrimination sensitivity at high contrast band levels was still evident. 
The results are shown in Fig. 5, where data points are measured values of isolated band contrast 
discrimination sensitivity (Δc i) -1  as a function of spatial frequency, obtained from both normal 
and low contrast versions of the image.  
 
For a given spatial frequency above 1.0 c/deg, contrast discrimination sensitivity is lower for 
the normal contrast image, as predicted from sine-wave dipper behaviour. As spatial frequency 
reduces below 1.0 c/deg, discrimination sensitivity for the normal contrast image progressively 



moves toward that for the low contrast version. This result is consistent with the dipper results 
shown in Fig. 1(a,b) for the two low frequency sine-wave cases. The solid and hatch curves in 
Fig. 5 are modelled values of contrast discrimination sensitivity obtained from the modified 
Barten model (equations 1 and 4), for the normal and low contrast versions respectively.   
 

 
Fig. 5.  Measured and modelled isolated band contrast discrimination 
sensitivity, (Dci) -1, for the normal and low contrast versions of scene gallery. 

 
Parameter values (n, m, u*, c*) for the evaluation of Ψ are the same as used for the modelling 
shown in Fig. 1. The value for β is 0.015, the same as for the modelled dipper data from the 
Yang and Makous study (Fig. 1b) and k is 2.8 (see Table 1(a, b) for comparisons). Required 
values of cs used in the modelling were obtained from the regression line fit to the gallery 
contrast spectrum shown in Fig. 3. We chose the regression line curve to represent cs for 
mathematical consistency within equation 1, where co was defined from the Barten CSF 
appropriate for natural images [15] and both B and B* are all continuous Butterworth squared 
functions (see section 2.1). 
 
The modified version of the Barten discrimination model is seen to offer a good fit to the data 
of Fig. 5 for both normal and low contrast images at all spatial frequencies. The dotted curve 
shows discrimination sensitivity calculated from the original Barten formulation (equations 1 
and 2), which undershoots the normal contrast level data below 1.0 c/deg. 
 
3.2 Contextual contrast discrimination 
 
The data points in Fig. 6(a,b,c) show measured contextual band contrast discrimination 
sensitivity (Δc c) -1 as a function of band spatial frequency for all three images, for both normal 
and low contrast versions.  
 
 

(a) 

 



(b) 

 
(c) 

 
Fig. 6. Measured and modelled contextual band contrast discrimination sensitivity, (Dcc) -1, for all three 
images and both normal and low contrast versions. (a) gallery (b) park (c) people. 

 
For all three images, above about 2.0 c/deg, the normal contrast image yields a lower 
discrimination sensitivity compared with the low contrast version. As frequency reduces below 
this value, contrast discrimination gradually improves with the normal image, until it matches, 
or even slightly surpasses that for the low contrast version.  
 
The continuous and hatch curves in Fig. 6 are again calculated from the modified Barten model 
for normal and low contrast conditions respectively. Equation 4 parameter values are as given 
above with the exception of β, which are for gallery [0.2 (low contrast image), 0.25 (normal 
contrast image)], park [0.2 both low and normal image contrast] and people [0.2 both low and 
normal image contrast]. Values of the Crozier factor k for gallery, park and people are 3.0, 3.0 
and 2.5 respectively (see also Table 1(a,b,c) for comparisons between all experiments). 
 
In the use of equation 1, co is replaced by previously modelled values of contextual contrast 
detection as a function of u for all three images [15]. Contextual contrast detection reflects the 
impact of spatial noise generated from the image as described in the introduction and can be 
calculated directly from co and cs   as shown in our previous communication [15].  Incorporating 
image noise into the contrast detection term in this fashion, is directly equivalent to Barten’s 
use of equations 1 and 3 in his successful modelling of sine-wave contrast discrimination in the 
presence of spatial noise [6]. Values of cs used in the modelling of the data in Fig. 5 were again 
obtained from regression line fits to the image contrast spectra shown in Fig. 3.  
 
Our adaptation of the Barten model is seen to offer a good fit to the measured discrimination 
sensitivity values for all three images and throughout the measured frequency range.  
 



The numerical values for both k and β model parameters for all our discrimination studies are 
summarised in Table 1 for comparative purposes. Table 1(a) lists values for the sine-wave 
derived data (Figure 1, section 2.1.1); Table 1(b) list values for the isolated image band derived 
data (Figure 5, section 3.1); and Table 1(c) lists values for the contextual image band derived 
data (Figure 6, current se,ction). Note the similarity in β values between the gallery isolated 
data and the sine-wave data, suggesting that isolated image band discrimination is analogous 
to sine-wave discrimination. On the other hand, the b values for the contextual studies are 
around ten times higher than those for the sine-wave studies. This discrepancy is due to the two 
different modes of viewing (contextual vs isolated) and is discussed further in section 4. The 
values of k (Crozier factor) fall within the expected range [59, 76-80].  
 
Table 1: Numerical values for k and β model parameters for all studies. 
(a) 

Sine-wave 
studies 
 

Legge [24] 
 
0.25 cpd 

Legge [24] 
 
4.0 cpd 

Yang & 
Makous [29] 
0.8 cpd 

Yang &  
Makous [29]  
2.0 cpd 

Bradley &  
Ohzawa [28] 
cs  = 0.25 

β 0.020 0.020 0.015 0.015 0.010 
k 3.0 3.0 3.0 3.0 4.0 

 
(b) 

Natural-scene  
isolated band studies 

gallery  
 

β 0.015 (0.015) 
k 2.8 

 
(c) 

Natural-scene  
contextual band studies 

gallery  
 

park  people 

β 0.25 (0.20) 0.20 (0.20) 0.20 (0.20) 
k 3.0 3.0 2.5 

 (a) sine-wave studies, Michelson contrast; (b) natural-scene studies with isolated image bands, RMS contrast; (c) 
natural-scene studies image bands in context, RMS contrast. The β values in parenthesis in (b) and (c) correspond to 
the low image contrast versions and those outside the parenthesis to the normal image contrast versions. 
 
Appendix B presents measures of deviation (RMSE and MAE) between data and the original 
Barten and the modified discrimination models for all our studies.  
 
3.3 Comparison of contrast detection and discrimination 
 
Fig. 7(a,b,c) compares modelled contrast detection sensitivities obtained from our previous 
study [15]  and modelled discrimination sensitivities, as depicted in Fig. 6, for all three image 
stimuli and both contrast versions. We used the modelled values of contextual contrast 
detection sensitivity for visual clarity, since they show a close fit to the measured detection data 
[15]. When contrast detection is directly compared with contrast discrimination, some 
interesting features emerge. First, for gallery and park scenes, at spatial frequency above about 
2.0- 3.0 c/deg, and for each overall contrast level, detection and discrimination sensitivity levels 
are similar. This is approximately the case for people above about 6.0 c/deg, although 
discrimination sensitivity is slightly higher than for detection. Second, as spatial frequency 
reduces below 2.0 c/deg, contrast discrimination sensitivity progressively increases to a level 
above that for detection sensitivity in both normal and low image contrast conditions. 
 
 
 
 
 



(a) 

 
(b) 

 
(c) 

 
Fig 7: Modeled contextual detection sensitivity and discrimination 
sensitivity for (a) gallery, (b) park and (c) people image stimuli at normal 
and low contrast levels.  

 
4. DISCUSSION 
 
The modified Barten discrimination model introduced in section 2.1 has been found to offer a 
realistic framework for describing contrast discrimination data obtained from traditional sine-
wave grating patterns with variations in both spatial frequency and pedestal contrast. More 
important to our study is that, the model is capable of describing sensitivity to changes in 
suprathreshold contrast in 1-octave wide spatial frequency bands within three radically different 
natural scenes. The model structure addresses non-linear operations in the visual system and 
embodies the concept that discrimination is simply detection in the presence of spatial noise, 
this being defined by the pedestal contrast. In natural scenes, a further consideration is contrast 
noise generated from signals immediately outside of the band whose discrimination threshold 
is being measured [15]. 



 
For both sine-wave grating and isolated band stimuli within a natural image, numerical 
parameter values within the model remain at constant levels, which is important when using 
the model as a predictive tool. However, with natural scenes, for the model to give an absolute 
fit to contextual contrast discrimination data, the value of the scaler term β (equation 5), is 
around ten times higher than the value required in the case of both the isolated band sensitivity 
measurements and the sine-wave data (see Table 1). This, itself, is not a problem providing the 
numerical value of β remains stable as scene type changes, as was found to be case in our study.  
Since the required values of contextual detection in the model can be readily calculated from 
combining image contrast spectrum data with a standard Barten contrast detection curve (CSF 
for a given image luminance and field size), the model framework offers a straightforward 
method for the prediction of band contrast discrimination sensitivity in natural scenes.  
 
There are, of course, other pictorial factors likely to affect final contextual band contrast 
sensitivity, such as the spatial distribution of contrasts, edge density and colour [36, 85]. 
Nevertheless, the model is shown to satisfactorily predict absolute measurements for at least 
the three distinctly different natural scenes studied. As indicated in [15], the image contrast 
spectra are significant influencers of the shape and magnitude of the detection (and in 
consequence the discrimination) sensitivity curves in free viewing images. The natural scene 
images we used in both our studies follow the general 1/frequency profile of natural scene 
spectra, but also span over a relatively large range in terms of magnitude and gradient, when 
compared with measured scene contrast spectra of a large number of scenes with important 
variations of scene contents, as shown in [15]. Although the model predictions require further 
validation from more images, including synthetic images where spatial frequency content can 
be controlled, the results obtained in our study provide a very solid foundation for future 
experimentation. Of primary interest would be an investigation of the numerical stability of the 
model parameter β for radical changes in image type.     
 
At a given spatial frequency above about 2.0 c/deg, the difference in contrast discrimination 
sensitivity between normal and low image contrast versions shown in Fig. 6 can be 
conceptualised by the near Weber law behaviour normally demonstrated in the sine-wave 
dipper function at pedestal contrasts higher than the “dip”. Certainly, the image contrast spectra 
shown in Fig. 3 indicate that pedestal (band) contrasts at moderate to high frequencies are large 
enough for this to be the case for both scene contrast levels. The behaviour shown by the 
measured contrast discrimination at a value below 2.0 c/deg can be related to the dipper profile 
found in previous sine-wave studies at low frequency [24, 29, 39], where the function’s slope 
reduces considerably beyond the dip as discussed in section 2.3. This feature of the dipper 
response has been incorporated into the Barten model with the visual mechanism responsible 
for the phenomenon characterised by the product of both a contrast and a frequency response 
function f.B*. As discussed in section 1.4, it has been suggested that the visual mechanism is, 
in fact, simply a switch from signal transfer through sustained visual processing channels to 
transient channels as spatial frequency reduces [24, 39-41]. Our model variant with the 
incorporation of f.B* into the function Ψ is a simple single channel construct and therefore does 
not directly address the detail of this possible crossover mechanism.  
 
Fig. 6 and Fig. 7 show that low frequency contrast discrimination sensitivity is higher than 
detection sensitivity and for the normal contrast version of our images, this increase is 
substantial, being around 5.0-10.0 times at 0.1 c/deg. This may be because at low frequencies 
with our normal contrast level images, noise defined by adjacent band signal information at 
+1/-1 octaves, (which is likely to be the most significant pictorial noise source [15, 50, 89]) 
will be near its maximum level as indicated from the contrast spectra of Fig. 3.  Previous dipper 
function determinations have revealed higher sine-wave contrast discrimination sensitivity 



compared with detection sensitivity for pedestal contrasts between 0.05 and 1.0 when measured 
in the presence of substantial levels of noise [27].  
 
Both our contextual contrast discrimination and detection sensitivity [15] findings have 
important implications for general everyday vision. If, for example, spatial frequencies from 
1.0-15 c/deg are the most critical for simply perceiving objects in the natural world, as 
suggested by Norton et al [90], then the results indicate that for this frequency range, and at a 
given overall level of scene contrast, discrimination and detection sensitivity are approximately 
the same and almost independent of spatial frequency. The most important factor in controlling 
band spatial contrast sensitivity then becomes simply the overall level of scene contrast itself. 
Field and Chandler [91] introduced an approach to understanding spatial contrast sensitivity 
which focuses on a neurons vector magnitude. This study, together with results from a contrast 
matching experiment performed with log-Gabor functions, led them to conclude that contrast 
sensitivity to natural scenes will be flat up to around 30 c/deg. Our findings are in broad 
agreement with this, although a turning point nearer to 20 c/deg is suggested. The decrease in 
sensitivity at higher frequencies then being mainly due to optical limitations of the eye and 
receptor sampling effects.  
  
4.1 Implications in IQ modelling 
 
The results also provide implications for IQ modelling which routinely uses the luminance CSF 
(a contrast detection function derived from simple stimuli presented in isolation from other 
signals) as a visual weighting tool. Our findings for both contextual contrast detection [15] and 
discrimination over the frequency range (0.1-32 c/deg) suggest that, any relevant visual 
weighting function should be relatively flat up to around 20 c/deg and then reduce in magnitude. 
This contradicts the typical bandpass CSF implementation, but is in line with suggestions from 
Peli [92] who states that low pass functions that are flat at low frequencies are better suited for 
quality modeling, as well as the more recent conclusions by Field and Chandler [91].  
 
Debates on the relevance of the CSF, as well as contrast suprathreshold models in IQ and 
fidelity modelling have been extensive and go back as far as 1976 [93].  Amongst others, Haun 
and Peli [12], Triantaphillidou et al. [13] and Chandler [94,95] have provided reviews on the 
subject. Both the linear systems approach and the relevance of threshold contrast models in 
image quality evaluation have been questioned for almost as long as they have been in use. 
Almost three decades ago Ahamuda and colleagues [96,97] stated that in image viewing, the 
CSF is largely outweighed by contrast masking. Around the same period, Silverstein and Farrell 
[98] declared that suprathreshold judgments of IQ are unrelated to contrast threshold 
judgments. In contrast, Haun and Peli [12] argued that in estimating the visual quality of 
images, contrast thresholds are of principle importance, whilst perceived suprathreshold 
magnitudes are relatively less important. In any case, contrast is routinely mathematically 
treated in IQ modelling, it is of basic perceptual importance, yet overall perceived pictorial 
contrast is difficult to quantify or predict [12, 99, 100].  
 
Many more have queried the implementation of threshold detection models in metrics 
evaluating visual IQ [17, 101-103]. Nonetheless, the CSF is widely used and currently included 
in several standard visual metrics, for example metrics proposed in IEEE Standard for Camera 
Phone Image Quality (CPIQ) [104] and the current ISO12233 [105]. Our finding that, at a given 
level of overall contrast in a natural scene, contrast discrimination and detection [15] are similar 
over the visually significant spatial frequency range has implications in IQ modelling. It 
suggests that both contextual detection or discrimination visual weighting functions may be 
equally effective. Even so, given that the human contrast sensitivity weighting function in IQ 



modelling is in a normalised form [74, 75, 94], it cannot account for the important changes in 
detection and discrimination sensitivity incurred by a variation in overall image contrast level.   
 
The proposed predictive detection and discrimination models presented in [15] and this 
communication are both scene and process dependent. They may therefore offer a more viable 
alternative to CSF models implemented in current IQ modelling and relevant standards. Initial 
research by Fry et al. [75] compared the performance of IQ models with the standard CSF and 
with the contextual detection and discrimination sensitivity models outlined in [15] and in this 
study.  They showed that, although current computational as well as signal-transfer IQ metrics 
that were calibrated with observer data performed better with the standard bandpass CSF, other, 
well established non-calibrated signal transfer metrics (‘purer’ in form metrics that do not rely 
on observers’ data fittings) performed better with our proposed model which accounts for the 
natural scene spectra.  
 
In other words, contextual contrast detection and discrimination functions have the potential to 
represent more meaningfully human visual responses within IQ metrics than classical CSFs, 
since they represent responses to the frequency contents of target image frequencies within the 
context of all remaining frequencies. Also, given their inherent scene dependent nature, they 
can lead to metric design and calibration that do not rely on observer responses to image 
datasets. Considering their implementation, despite the scene dependency in our determinations 
of contrast discrimination, in broad terms the contextual detection and discrimination functions 
we derived basically resemble low pass filters. This is in support of the abovementioned claims 
[91, 92] and the argument that, the visual weighting function used in IQ models from signal 
transfer theory could simply be represented by a low pass filter which decays at high frequency 
according to the optical transfer function of the eye. 
 
The suitability of the proposed visual models for IQ purposes should be further tested with a 
larger variety of scenes and implemented in different genres of IQ metrics. Nevertheless, since 
these models are essentially mechanistic, i.e. they derive predictions from visual functions 
directly from natural scene contrasts, they should provide a robust basis for IQ modelling of 
natural scenes.  
 
5. CONCLUSIONS 
 
The following conclusions can be drawn from the research presented in this paper. 
 
For all three image stimuli, above about 2.0 c/deg, the normal contrast image yields a lower 
discrimination sensitivity compared with the low contrast version. As frequency reduces below 
this value, contrast discrimination gradually improves with the normal image, until it matches, 
or even slightly surpasses that for the low contrast version. 
 
Our adaptation of the Barten model is seen to offer a good fit to the measured discrimination 
sensitivity values for all three images used in this study and throughout the measured frequency 
range. Values of the parameter b and the Crozier factor k for gallery, park and people are very 
similar, demonstrating the robustness of the model, which accounts for different scene spectra 
content.  
 
Contextual contrast detection reflects the impact of spatial noise generated from the image as 
described in the introduction and can be calculated directly from co and cs   as shown in our 
previous communication [15].  
 



Comparison of contrast detection and discrimination showed some interesting features. For two 
out of three scenes, at spatial frequency above about 2.0-3.0 c/deg and a given overall contrast 
level, modeled detection and discrimination sensitivity levels are similar. This is also nearly the 
case for the third scene, but not at all spatial frequencies.  
 
In summary, it is clear that important predictions can be seen from the theoretical model curves: 

• The collapse of low frequency/high contrast sine-wave dipper functions (as shown in 
Fig 1 and reported in the literature). 

• At normal contrast levels, lower discrimination sensitivity at moderate to high 
frequencies are shown compared to low contrasts (both contextual and isolated bands). 

• Equalization of low frequency discrimination sensitivity at both image contrast levels 
in isolated and contextual bands.   

• General flattening of discrimination sensitivity before optical attenuation takes hold 
(contrast gain control in operation)  

• Overall magnitude of discrimination sensitivity is predicted with stable b values. 
 
Perceptual image contrast is an intrinsic factor in IQ and affects all IQ attributes. The proposed 
predictive detection and discrimination models presented in [15] and here, being scene and 
process dependent, may offer a more viable alternative to CSF models implemented in current 
IQ modelling standards. 
 
It is important to note that these models are largely mechanistic and are not expected to fit 
perfectly observer response data. Their purpose is to make predictions from visual functions 
which are based on natural scene data. This should make them suitable for incorporating in to 
IQ modelling of natural scenes.  
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APPENDIX A: Barten contrast discrimination model 
 
In the development of both his contrast detection (i.e. contrast sensitivity function - CSF) and 
discrimination models, Barten first considered the mathematical nature of the psychometric 
function [6]. This expresses the detection probability P of a signal of strength s, and is 
represented by a cumulative Gaussian probability function with an associated standard 
deviation σ. In luminance perception, Crozier [76] experimentally found that the ratio between 
the signal strength at the threshold of detection so and σ was effectively constant over a wide 
range of signal conditions. This relationship is often referred to as Crozier’s Law. In the 
following, this ratio will be designated k. Regarded as a basic signal/noise ratio for detection, 
values of between about 2.0 and 4.0 have been experimentally determined from a number of 
studies after Crozier [77-80]. In Barten’s studies the range was found to be between 2.7 and 4.5 
[6, p. 59]. The constant k relates to the slope of the psychometric function and Barten showed 
that at the value of the signal for threshold detection (so): 
 

(YZ
Y6
4 = 1

6*√7[
                                                        (A.1) 

 
In the case of sine-wave contrast detection, s is represented by Michelson contrast (c) and so by 
the Michelson contrast threshold level (co).  

 
When the psychometric function obtained from a sine-wave contrast detection experiment is 
compared with that obtained from a contrast discrimination experiment (with the signal defined 
as the test contrast at the threshold of discrimination), higher slopes are observed with the latter. 
For the case of contrast detection, the slope indicates k values near to the expected value of 3.0. 
However, when Barten examined the discrimination psychometric functions measured by Foley 
and Legge [106] and Legge [26], k values of 5.6 and 8.3 respectively, were found; far too high 
for Crozier’s law.  Re-plotting this data with the signal variable defined by the contrast 
difference metric Δc gave slopes with a k of around 1.0, which is lower than predicted by 
Crozier’s law.  However, when the signal was defined as a contrast difference given by (ct2 – 
cs2 ) 0.5  , where cs is the standard (pedestal) contrast and ct  the test contrast at the threshold of 
discrimination,  k values  near to the nominal Crozier value were found. This led Barten to 
conclude that the functional parameter in the visual contrast discrimination process is 
 (ct 2 – cs2 ) 0.5   and not Δc.  
 
Conceptually, Barten also considered contrast discrimination as equivalent to contrast detection 
in the presence of a noise source defined by the pedestal itself. Now, in the presence of noise, 
Barten found that the sine-wave contrast detection threshold (co )n  is given by: 
 

(𝑐A)C = (𝑐A7 + 𝑘7𝑐C7)..9                                               (A.2) 
 
where cn   denotes the average sine-wave component contrast of the noise. Equation A2. was 
empirically deduced by Barten from sine-wave contrast detection data with added 2D noise as 
measured by van Meeteren and Valeton [81]*.  Barten therefore presented as his basic model 
construct for contrast discrimination the following expression: 
 

(𝑐\7 − 𝑐67)..9 = (𝑐A7 + 𝑘7𝑐C7)..9                                      (A.3) 
 

 
* Equation 2 is, in fact, functionally equivalent to the linear amplification model [15, 50] 
when the noise is expressed in terms of contrast rather than spectral density. 



With the assumption that the pedestal defines the noise source, then for a single sine-wave 
component, Barten showed that cn can be approximated by 0.2 cs .The normally employed 
contrast discrimination metric Δc was also introduced into equation A.3 using the fact that  
(ct 2 - cs2 ) 0.5 is mathematically equivalent to [(cs  + Δc )2 – cs2 ]0.5.  
 
A final addition to equation A.3 was made by Barten to account for the slow decrease in 
gradient displayed in the dipper function at high contrasts [25, 107] which was assumed due to 
the profile of Wilson’s transducer function [45]. This particular non-linearity component was 
mathematically approximated by dividing the right-hand side of equation A.3 by a factor Ψ 
given by: 
 

𝛹 = (1 + 0.004𝑘 )2
)*
4
..9
																																			           (A.4) 

 
If we now allow for a variation of pedestal spatial frequency u c/deg, we may describe the 
generalised Barten model (expressed in terms of Δc ) as: 
 

Δ𝑐(𝑢) = '()*
+(,)-...01+)2+(,)

3+(,)
4 + 𝑐67(𝑢)8

..9
− 𝑐6(𝑢)                       (A.5) 

 
which is equation 1 in the main text.   
  



APPENDIX B: Goodness of fit  
 
Table B.1 presents measures of deviation (RMSE and MAE) between data and i) the modified 
discrimination model and the original Barten model for the sine-wave discrimination studies 
(Fig. 1), ii) the modified discrimination model and the original Barten model for the isolated 
band discrimination study (Fig. 5), iii) the modified discrimination model for the contextual 
band discrimination study (Fig. 6).  
 
Table B1: Measures of deviation between the data and the model(s) for all studies 

Figure 1a Legge [24] 0.25 c/deg (data in Dc) 

 modified Barten discrimination Barten discrimination  
RMSE 0.0066 0.0144 
MAE 0.0080 0.0092 

Figure 1b Young & Macus 0.8 c/deg [29]   (data in Dc) 

 modified Barten discrimination Barten discrimination 
RMSE 0.0021 0.0158 
MAE 0.0059 0.0078 

Figure  1c Legge  [24] 4 c/deg  (data in Dc) 

 modified Barten discrimination Barten discrimination 
RMSE 0.0092 n/a 
MAE 0.0062 n/a 

Figure 1d Bradley & Osawa [28]  (data in Dc -1) 

 modified Barten discrimination Barten discrimination 
RMSE 4.43 n/a 
MAE 3.74 n/a 

Figure 5 Low contrast gallery (data in Dc -1) 

 modified Barten discrimination Barten discrimination 
RMSE 64.85 n/a 
MAE 54.18 n/a 

Figure 5 Normal contrast gallery (data in Dc -1) 

 modified Barten discrimination Barten discrimination 
RMSE 54.79 57.77 
MAE 39.88 46.41 

Figure 6a Low contrast gallery (data in Dc -1) Normal contrast gallery (data in Dc -1) 
 modified Barten discrimination modified Barten discrimination 
RMSE 55.77 31.56 
MAE 48.95 26.15 

Figure 6b Low contrast park (in Dc -1) Normal contrast park (data in Dc -1) 
 modified Barten discrimination modified Barten discrimination 
RMSE 24.86 21.56 
MAE 19.90 18.26 

Figure 6c Low contrast people (in Dc -1) Normal contrast people (data in Dc -1) 
 modified Barten discrimination modified Barten discrimination 
RMSE 9.44 28.28 
MAE 7.71 23.03 

 
The measures in Table B.1 are provided to help reading the figures, but it is important to bear 
in mind that, both Barten’s original and the proposed discrimination models are largely 
mechanistic and follow theoretical expectations (as discussed throughout the paper and 



summarized in the conclusions), so interpretations cannot be necessarily derived from such 
statistical measures [108]. 


