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Abstract
Purpose Magnetic resonance (MR) imaging targeted prostate cancer (PCa) biopsy enables precise sampling of MR-detected
lesions, establishing its importance in recommended clinical practice. Planning for the ultrasound-guided procedure involves
pre-selecting needle sampling positions. However, performing this procedure is subject to a number of factors, includingMR-
to-ultrasound registration, intra-procedure patient movement and soft tissue motions. When a fixed pre-procedure planning
is carried out without intra-procedure adaptation, these factors will lead to sampling errors which could cause false positives
and false negatives. Reinforcement learning (RL) has been proposed for procedure plannings on similar applications such as
this one, because intelligent agents can be trained for both pre-procedure and intra-procedure planning. However, it is not
clear if RL is beneficial when it comes to addressing these intra-procedure errors.
Methods In this work, we develop and compare imitation learning (IL), supervised by demonstrations of predefined sampling
strategy, and RL approaches, under varying degrees of intra-procedure motion and registration error, to represent sources of
targeting errors likely to occur in an intra-operative procedure.
Results Based on results using imaging data from 567 PCa patients, we demonstrate the efficacy and value in adopting RL
algorithms to provide intelligent intra-procedure action suggestions, compared to IL-based planning supervised by commonly
adopted policies.
Conclusions The improvement in biopsy sampling performance for intra-procedure planning has not been observed in
experiments with only pre-procedure planning. These findings suggest a strong role for RL in future prospective studies
which adopt intra-procedure planning. Our open source code implementation is available here.
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Introduction

MR-targeted TRUS-guided prostate biopsy
procedures

Acquiring magnetic resonance (MR) imaging scans is rec-
ommended before previously commonly adopted “blind”
biopsy of prostate cancer [1]. In recent years, pre-procedural
MR reporting has increasingly been followed by an MR-
targeted approach for biopsy of suspicious lesions found on
MR, typically guided by intra-procedural transrectal ultra-
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sound (TRUS) imaging. A brachytherapy template can also
be adopted to assist with sampling to stabilise needle inser-
tion. To prepare for such a procedure, clinicians utilise
pre-procedural MR scans with annotated positions of multi-
ple suspected lesions to obtain an approximate plan of where
to sample needles.

The most intuitive sampling strategies devised before the
biopsy include sampling template grid positions closest to
the lesion centre. However, applying this strategy during the
procedure is subject to several potential targeting errors that
result in false negatives from missed tumour samples [2].
First, the mapping of the pre-operative positions to the live
US-images of the prostate requires cognitive or computa-
tional registration, both of which are subject to registration
error [3]; second, the patient is subject to movement dur-
ing the procedure; third, organ motion occurs due to factors
such as respiratory motion, bladder filling, the US probe
movement, needle insertion and non-trivial needle bend-
ing [4]. These errors are not independent of each other and
may be difficult to de-couple, which means that targeting
imprecision may be a result of a mixture of these. Their col-
lective effect can be understood and modelled by a non-rigid
spatial mismatch between MR-informed targets and actual
biopsy sampled locations. Given the presence of these spatial
mismatches, there is a need to learn robust and adaptable sam-
pling strategies based on observed intra-procedure changes.

Related work

Previous work demonstrated that strategies which sample
biopsy needles only at the centre of the lesion may lead
to under-grading of tumours, especially in the case of het-
erogeneous PCa [5]. The study suggests that targeting the
peripheral of the lesions could lead to more representative
samples of the suspected lesions. However, to the best of
our knowledge, there are limited studies that quantify the
effectiveness of this strategy, or that search for alternative or
optimum sampling strategies. In [6], reinforcement learning
(RL) is used to learn patient-specific targeting strategies. An
interesting finding is that RL learned strategies that adapted
to the size of the lesions, by spreading the needles more for
smaller lesions, achieving a similar detection rate as larger
lesions. However, key limitations in training RL models are
highlighted in this work: long training times, especiallywhen
training individual patient models, and sample-inefficiency
as large amounts of experiences are required before learning
an optimal strategy. These findings suggest a need to speed
up the training process of RL, before training models that
can generalise to multiple unseen cases.

Outside of prostate biopsy, RL has also been successfully
applied in similar needle planning applications. In [7], RL
is used to learn optimal electrode trajectories for thermal
ablation of liver tumours. An environment is constructed to

simulate the procedure, using fixed 3D masks derived from
CT scans. To guide the agents’ learning, rewards are devised
based on clinical constraints relevant to the ablation process,
such as ensuring the electrode trajectories do not collide with
organs of interest. They report results based on mean accu-
racy and failure cases, based on whether the trajectory is able
to reach the target tumour. However, it is unknown whether
their method is able to adapt to changes which may occur
intra-operatively, such as tissue deformation or needle bend-
ing, which were not included in their simulations. In [8], RL
is used for planning flexible needle insertion paths for sur-
gical robotics. The agent learns actions that rotate and move
the direction of insertion of the needles, receiving negative
rewards for colliding with organs at risks. In their simula-
tions, uncertainty from flexible needle-tissue interactions are
modelled through a stochastic environment which incorpo-
rates a 10% probability for movement failure. Their results
suggest that the agent is able to learn optimal trajectories
regardless of these uncertainties, achieving a high number of
success cases. Thus simulation of these uncertainties could
prove beneficial, allowing agents to learn adaptive and robust
strategies.

RL for pre-procedure and intra-procedure planning

In this work, we propose to train RL agents that suggest
a sequence of sampling locations without utilising previous
intra-procedure sampling steps.We define this type of plan as
“pre-procedure planning”. In this case, the RL agent acts as
a trial-and-error optimisation approach to find optimal sam-
pling location distribution, and potentially the optimumorder
of them, before the procedure.

Another potential advantage of using RL includes mod-
elling the dynamic decisionmaking process—data frompre-
vious steps can be used to suggest the next sampling actions.
The sequential data modelling nature of RL algorithms
enables real-time and potentially better action suggestion on-
the-fly, which hereinafter is referred to as “intra-procedure
planning”. The key difference is the availability of intra-
procedure data, that enables the agents to modify the strategy
intra-operatively.

To train the models, training data can ideally be acquired
from interaction between agent-suggested actions and obser-
vations from the real clinical environment, for off-policy
training 1 of intra-procedure planning agents. However, in
practice these interactions are acquired through simulating
the RL environment. In our work, the patient anatomy and
pathology locations are obtained from the pre-procedureMR
images and the spatialmismatch is quantified by assumptions

1 In general, we consider an on-policy training in this application for
needle placement to be infeasible due to patient risk and other ethical
concerns.
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on the above-discussed registration error, patient movement
and organ motion. Intuitively, the more realistic these simu-
lations are, the better chance the trained agents generalise
in the intra-procedure planning. Hence we test the RL-
learned strategies in the presence of these errors, to evaluate
its potential in being used as an intra-procedure planning
tool.

Training RL agents is considered more challenging due to
potentially sensitive hyperparameter and algorithm choices;
the off-policy interaction is logistically expensive to acquire;
and simulating these spatial mismatch factors also requires
further research. Therefore we aim to quantify the benefits of
intra-procedure planning to justify the use of RL algorithms
and interaction data. Furthermore, to address RL’s problem
of long-training times, supervised imitation learning (IL) can
also be used to train models for both pre-procedure and
intra-procedure planning, supervised by “demonstrations”
of expert-defined (pre-procedure or intra-procedure) sam-
pling strategies. Combining IL and RL, by initialising RL
agents with strategies learned by IL, allows for faster learn-
ing with fewer number of interactions required for training,
as demonstrated by works in [9] and [10]. However, it is
unknown which of these strategies can lead to better sam-
pling performance. Thus we aim to evaluate and compare
the performance of agents trained with IL, RL and IL+RL
combined.

Study aim and contributions

In this work, we design a set of experiments to quantify
biopsy outcomes using (a) IL-based pre-procedure planning,
(b) RL-based intra-procedure planning and (c) training with
varying spatial mismatch levels, for quantifying the differ-
ence between pre-procedure and intra-procedure planning,
with increasing interaction data.

The key contributions of this paper are summarised as
follows: (1) we describe a multi-patient training strategy to
learn a generalisable sampling strategy that can be applied
to unseen patients—for the first time in this application;
(2) we demonstrate that initialising RL agents with demon-
strated actions of biopsy needle sampling is beneficial for
pre-procedure planning in terms of clinically relevantmetrics
such as hit rate and average cancer core length; (3) we present
an interesting observation: training with RL alone is more
robust to changes observed intra-operatively such as organ
deformation, compared to initialised strategies using demon-
strations. Importantly, this suggests the capability of RL in
learning novel solutions that are adaptive to intra-procedure
changes, making it more suitable for intra-procedure plan-
ning.

Methodology

Data set

Multiparametric MR images (mpMRI) from 567 patients,
with amixed cohort of biopsy and focal therapypatients,were
obtained frommultiple clinical trials, including PROMIS [1],
SmartTarget [11], and PICTURE [12]. All patients provided
written consent, with ethics approved as part of their respec-
tive clinical protocols. A detailed description of the entire
mpMRI data set, along with applied pre-processing methods
such as re-sampling and normalisation, can be found in [13].
In this work, labelled prostate gland and suspected lesion
masks are used, which are annotated by radiologists on the
T2-weighted sequences. All lesions used in this data set are
for lesions with Likert-scores ≥ 3. To prevent data leakage,
the data set is split at the patient level between training, vali-
dation and test sets as 396:58:113. For patients with multiple
images obtained at different time points, both images are
included within the same split, such that the test set does
not include images from the same patients used for training.
For each patient, at least two lesion masks are present and
treated as individual cases, resulting in 966, 141 and 275
lesions for the training, validation and test sets, respectively.
All lesions from the same patient are in the same split. The
binary labelled masks of lesions and prostate glands are the
only input required for the presented planning strategies in
this study.

Transperineal prostate biopsy procedure

We simulate a targeted transperineal template-guided biopsy
procedure using information derived from T2-weighted MR
images and their corresponding prostate and lesion masks
using the described data set in 2.1. MR images provide
the information about the position of the lesion within the
prostate gland, and a simulated brachytherapy template grid
will be used for needle insertion, for which there are 13x13
discrete locations in a para-transverse plane, which is illus-
trated in Fig. 1.

Templates are also commonly used in saturation-biopsy,
where the entirety of the prostate gland is sampled. In this
application we focus on targeted sampling and use the tem-
plate as a guide for improved stabilised needle insertion. The
aim is to learn a sampling strategy that determines the posi-
tion of five needle positions to target the lesion of interest
identified on MR scans.

Reinforcement learning for optimal core positions

The task of finding optimal biopsy needle positions is for-
mulated as an RL problem, which can be formally defined as
a Markov decision process (MDP) tuple:
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Fig. 1 Top row: states st provided to agent at time t . These consist
of the prostate and lesion masks, and needle trajectories for three time
steps. Bottom row: left) Template-guided procedure; centre) Centre pol-

icy πCentre(at , st ). right) Edge targeted policy πEdge(at , st ). Blue circle
represents a target lesion, whilst red squares represent needle core posi-
tions. A red cross represents the centre of the template grid

MDP =< S, A, R > (1)

where S, A and R are the domains of states, actions and
rewards, respectively. The state at time-step t describes the
information provided to the agent, denoted as st ∈ S,
where st = (Pt , Lt , Nt , Nt−1, Nt−2). Pt and Lt describe
the prostate and lesion masks respectively. Nt describes a
3D binary mask of the needle trajectory and a history of
past trajectories are included, from Nt−2 to Nt , to provide
information about previous grid positions, enabling agents
to make dynamically informed decisions for next actions.
An example of the observed states are illustrated in Fig. 1.

A describes the domain of actions that the agent takes
within the environment, denoted as at ∈ A where at =
(δx , δy, δz). The actions δx , δy represent continuous move-
ment within the grid between (−10,+10) which are con-
verted into 5mm intervals, whilst δz represents the depth of
needle firing within the patient, for which one out of two
depths is chosen: one near the apex and one near the base
of the prostate gland. Continuous actions enable the move-
ment of multiple grid positions at a time, allowing for greater
exploration whilst reducing the training time required due to
the large action spaces.

R =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+10 if needle fired, intersects with target

−2 if needle fired, misses target

−1 if not fired

−5 if needle is placed outside prostate gland

(2)

The rewards r(st , at ) = Rt can be defined in Eq. 2. Integer
rewards are chosen empirically for effective and efficient RL
training.

Policy learning

Using the describedMDP, we aim to learn a policy π(·|st ; θ)

that maps a state st to action at by maximising the expected
cumulative sum of rewards Qπ (st , at ) = ∑T

k=0 γ k Rt+K ,
where γ is a discount factor applied to balance the contribu-
tions of future rewards with intermediate rewards.We denote
Qπ (st , at ) as the Q-value which describes the expected
reward received being in a state st and taking actionat . Neural
networks can be used to parameterise the policy as π(·|st ; θ)

andQ-value network as Qπ (st , at ;w). An action can be sam-
pled from this policy using at ∼ π(·|st ; θ) to provide the
sequence of biopsy core positions to target within the grid.

The policy-gradient based algorithmproximal policy opti-
misation (PPO) is used to learn the optimal parameters
θ and w for the policy and value-network because of its
guaranteed monotonic reward improvement and improved
training stability [14]. PPO minimises the loss function in
Eq. 3. LCL I P

t is a clipping function that prevents large policy
updates, enabling stability in training; LV F

t describes the loss
between the estimated values from Qπ

θ (st , at ) and actual val-
ues obtained from trajectory estimates, whilst H is an entropy
term that encourages the agent to visit and explore other states
during training. The terms c1 and c2 are weighting factors
describing the contribution of each term in the overall loss
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function. The optimal policy can be obtained by minimising
the combined terms as π∗ = argminθ,w(LCL I P+V F+H

t ).
Further details and description of each loss term can be found
in [14].

LCL I P+V F+H
t (θ, w) = Et [LCL I P

t (θ)

−c1L
V F
t (w) + c2H [πθ ](st )] (3)

Learning from demonstrations

Imitation learning (IL) is proposed to address the long train-
ing times of RL. We hypothesise that learning from prior
demonstrations can help to initialise and guide the explo-
ration of RL agents.We describe a set of demonstrations D ∈
(s0, a0, s1, a1, ..., sn, an) that consists of paired states s and
corresponding actions a provided by an expert policy. The
goal of IL is to imitate these demonstrated actions by learning
a policy π̃θ (at |st ) that closely resembles the demonstrated
policy πD(at |st ). This involves solving the optimisation
problem: π̃∗ = argmin(L(π(at , st ), πD(at , st ))).

Where L is a loss function we aim to minimise that com-
pares the two policies. The loss function L = 1

n

∑n
i=1(adi −

apredi )
2 describes the mean squared error between predicted

actions apred and demonstrated actions ad taken at the same
state s.

We describe two different expert policies that are sug-
gested in clinical practice, which can be visualised in Fig. 1.
πCentre(at , st ) targets five grid positions closest to each
lesion centre. πEdge(at , st ) targets the centre of the lesion,
followed by four grid positions at the edge of the lesion,
similar to a strategy proposed by [5].

Simulation of intra-proceduremismatches

To investigate the robustness of the agents to registration
effects, Gaussian noise is added to the positions of both the
prostate and lesion, thereby simulating movement within the
observed states, following the previouswork [6]. The scale of
Gaussian noise added is varied to simulate different levels of
target registration error (TRE), which are in line with levels
of registration errors reported in previous studies [15].

To devise a controlled organ deformation, a free-form
deformation model of the prostate gland is implemented
based on [16]. The control points are placed in a 10×10×10
equidistant grid positions over the MR image space, inter-
polating a smooth transformation using Gaussian splines,
for the capability to model both global and local deforma-
tions [16]. An efficient PyTorch implementation, based on
transposed convolution, is implemented to copewith training
large number of on-the-fly sampled deformations and image
re-sampling. Varying levels of deformation can be adjusted
by two parameters: a rate (the percentage of control points

deformed at each time step), and a scale (the range of sam-
pled distance in mm assigned to displaced control points) at
each time step. Further details of the adopted deformation
model may refer to the provided open-source repository.

Experiments

IL and RL implementation and training

Five different models are trained using the same size and
network architecture for the policy and value networks, with
detailed implementation of the networks found in our open-
source repository here. Two ILmethods are trained following
a supervised-learning approach(Sect. 2.5); 1000 epochs are
used for training using an Adam optimiser with learning rate
0.0005. Three RL agents are also trained using the PPO algo-
rithm, two of which are initialised with the weights obtained
from IL and one with randomly initialised weights. For train-
ing RLmodels, training lasts for 100,000 episodes, here each
episode is an interactionwith a newpatient data set; the length
of each episode is limited to a maximum number of 20 time
steps but can terminate early if five fired needles intersect
with the lesion. Every 100 episodes, themodels are evaluated
on validation patients and saved if the average episode reward
is higher than previously observed reward values. Similar to
IL, an Adam optimiser is used for training but with a learning
rate of 0.00005 as a lower rate lead to better training reward
convergence. All models are trained using a Ubuntu 18.04.6
operating system, with a Quadro P5000 GPU with 32GB of
memory and left for approximately 2–3 days to train until
convergence.

Metrics for biopsy outcomemeasurements

Tomeasure the performance of these learned strategies, clini-
cally relevant metrics are used which are commonly reported
for biopsy outcome. Hit rate (HR) is the percentage of nee-
dles fired by the agents which hit the lesion. Cancer core
length (CCL) describes total length of intersection between
the needle trajectory and the suspected lesion inmm.We also
report another measure N.CCL which is CCL normalised by
the maximum possible CCL obtainable within each volume.
N.Coverage measures the spread of the needles normalised
by the area of the lesion, obtained as stdx∗stdy∗π

AreaL
where stdx

and stdy describes the standard deviation of the x and y
positions of the fired needles, whilst areaL is the 2D area
of the lesion projected onto the transverse plane. Cancer
core length correlation coefficient (CCL coeff) measures
the correlation between the lesion size in voxels and mea-
sured CCL. This measures how well the sampling strategy
canmeasure the extent of disease burden; a higher coefficient
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Table 1 Performance of trained
models evaluated on testing data
consisting of 113 patients and
275 lesion cases altogether

Model HR (100%) CCL (mm) N.CCL N.Coverage CCL coeff

πCentre 0.418±0.283 4.586±4.606 0.192±0.189 0.959±0.846 0.786

πEdge 0.204±0.173 1.916±2.433 0.095±0.104 2.189±1.853 0.780

πCentre+RL 0.464±0.246 4.857±4.421 0.231±0.173 0.937±0.765 0.816

πEdge+RL 0.412±0.266 4.503±4.318 0.191±0.175 1.091±0.836 0.761

RL 0.415±0.229 4.298±3.952 0.206±0.170 0.956±0.723 0.786

Best performing results are in bold

indicates that the obtained CCL is more representative of the
true size of each lesion.

Comparative analysis

To test the statistical significance of the difference in results,
paired student’s t-tests were conducted using a significance
level of α = 0.05. We compare the following:

Comparison of initialised and randomly-initialised agents
—We compare IL models, defined as πCentre and πEdge, with
RLmodels,πCentre+RL ,πEdge+RL and RL . This is tomea-
sure the benefit of initialising RL with predefined IL-learned
strategies, against the benchmark of RLwith random initiali-
sation. It also quantifies the potential value in usingRL in this
application, compared with alternative supervised IL meth-
ods. We also qualitatively compare the learned strategies.

Comparison of RL agents under varying registration
errors For the RL-trained models, we evaluate the perfor-
mance under different levels of simulated TREs (Sect. 2.6)
from 0 to 10mm. This set of experiments evaluates the sensi-
tivity of RL performance to a specific type of intra-procedure
mismatch, likely caused by registration between aMR-based
pre-procedure planning and intra-procedure target locations.

Comparison under varying intra-procedure mismatchWe
vary the rates and scales of applied deformation - represent-
ing the collective spatial mismatch (Sect. 2.6) and measure
the biopsy metrics for three models: the best performing IL-
initialised RL model, its corresponding IL model and an
RL model. This set of experiments investigates the biopsy
performance of the trained models, the IL model (without
training-time deformation described above) and different RL
models used for a pre-procedure planning (represented by
small or no intra-procedure mismatch), and when applied
to intra-procedure planning (with larger observed intra-
procedure mismatch) during test, to quantify the potential
value in using RL for the latter.

Results

Comparison between IL models and RL agents

The biopsy performance metrics are summarised in Table 1
for the two IL-models, πCentre and πEdge, and three RL-

Fig. 2 Comparison of different strategies for the samepatient and lesion
case. From left-right: RL , πCentre + RL and πEdge + RL . Fired needles
are illustrated in black

trained models. IL-initialised RL models significantly out-
performed their corresponding IL models (p-values p =
0.042 and p < 0.001 in terms of HR, for centre and edge
cases, respectively), which demonstrates the added benefit of
training usingRL.When comparing the RL-trainedmethods,
the best performing method is πCentre + RL , with p-values
< 0.020, compared with both πEdge + RL and RL alone for
HR. It also obtains the highest CCL, N.CCL and CCL coeff
when compared with all other methods. This suggests that
initialisation using a centre-based strategy followed by train-
ing with RL can achieve the highest performance compared
to using RL and IL alone. The policy πEdge has the high-
est N.Coverage, which suggests a more spread strategy, but
performs the worst in terms of HR and CCL. From this, a
trade off is observed between HR and N.Coverage; although
a larger area of the lesion could be detected, the overall effec-
tive HR is reduced.

The difference between the three RL strategies are illus-
trated in Fig. 2. We observe that the initialised strategies
resemble the imitated strategies shown in Fig. 1. A randomly-
initialised RL strategy can be seen to cover more of the entire
lesion, in contrast to πCentre + RL where only the centre sec-
tion of the lesion is captured, which supports results seen in
Table 1. However, a higher HR is also observed as a result
of this strategy, when compared to a more spread strategy
displayed by πEdge + RL .

Performancewith varying intra-proceduremismatch

From Table 2, an expected result is obtained: the per-
formance of the three models decreases with increasing
TREs. The pattern of this decrease can be seen visually in
Fig. 3. The within-model reductions due to varying TREs are
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Table 2 Biopsymetrics for three RLmodels for varying levels of target
registration error

TRE (mm) Model HR N.CCL

0 RL 0.435±0.232 0.266±0.157

πCentre+RL 0.493±0.242 0.314±0.174

πEdge+RL 0.434±0.253 0.265±0.168

3 RL 0.420±0.254 0.262±0.171

πCentre+RL 0.474±0.257 0.293±0.173

πEdge+RL 0.421±0.266 0.261±0.175

6 RL 0.405±0.253 0.239±0.150

πCentre+RL 0.430±0.251 0.265±0.164

πEdge+RL 0.365±0.255 0.227±0.172

10 RL 0.332±0.248 0.200±0.161

πCentre+RL 0.382±0.268 0.234±0.173

πEdgeRL 0.302±0.251 0.169±0.153

statistically significant after TRE≥6mm and ≥10mm, for
N.CCL and HR, respectively. From [15], an average TRE of
∼4mm was reported when using computational registration
methods, which may suggest that RL-learned strategies are
robust to intra-procedure registration errors in this applica-
tion. When comparing the three strategies, we observe that
πCentre+RL obtains the highest HR and N.CCL, with statis-
tical significance of p < 0.03 for all TRE except for 6mm.
However, there is no statistical significance detected between
πEdge+RL and RL, which is also evident in Fig. 2, showing
a similar spread strategy between the two.

From Table 3, an interesting phenomenon is observed:
whencomparing the twometrics,HRandN.CCL, a randomly-
initialised agent performs better than an agent initialised
with IL, which is opposite to the result in Sect. 4.1; The
performance differences are statistically significant, better

for larger simulated deformations, which suggests that train-
ing with RL, without using imitated actions, enables more
robust learning strategies in the presence of intra-procedure
mismatch. Although initilisation with IL-learned strategies
in general improves the RL training, it may also adversely
impact the exploration and versatility inherent in RL algo-
rithms, especially in an increasingly complex environment.
Compared with the IL models, RL yielded the same advan-
tages as intra-procedure mismatch increased (with statistical
significance found in both metrics when scale and rate>0.5).
Visual results of learned strategies from the RL agent can be
seen in Fig. 4. The shape of both lesion and prostate gland
are visibly different when increased levels of deformation
rate and scale are applied. For the last row of figures where
both deformation rate and scale are 1.0, this illustrates the
large range of the deformation parameters used in the exper-
iments, with the unlikely extreme parameter values leading
to arguably implausible deformation. Despite the large levels
of deformation and positional changes in both prostate gland
and lesion, the agent is still able to fire needles that hit the
target lesion. These results highlight the strength of RL in its
ability to adapt to dynamic changes, such as the frequently
encountered significant deformation in prostate gland, mak-
ing it a useful tool for intra-procedure planning.

Discussion and conclusion

In thiswork,wedescribe the use ofRL for both pre-procedure
and intra-procedure planning. Experimental results, based on
a large real clinical imaging data set, suggest that learning
from demonstrations of clinically applied strategies, when
combined with RL, can improve biopsy performance in
terms of clinical metrics. Additionally, we find that these

Fig. 3 Plots of metrics (HR and
N.CCL) vs TRE (in mm) for
three different strategies
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Table 3 The HR, N.CCL values
for three strategies with
deformation P-values are
reported between RL and the
other two methods

HR

Scale Rate RL πcentre + RL πcentre pRL pI L

0.10 0.25 0.340±0.233 0.311±0.256 0.313±0.258 0.165 0.198

0.50 0.50 0.335±0.271 0.277±0.243 0.273±0.250 0.009 0.006

1.00 1.00 0.290±0.272 0.233±0.245 0.206±0.241 0.013 <0.001

N.CCL

Scale Rate RL πcentre + RL πcentre pRL pI L

0.10 0.25 0.250±0.177 0.196±0.148 0.239±0.170 0.502 0.458

0.50 0.50 0.196±0.169 0.162±0.243 0.176±0.142 0.005 0.133

1.00 1.00 0.173±0.165 0.128±0.142 0.119±0.142 0.001 <0.001

Fig. 4 Visualisation of strategies learned by RL for three different cases, under varying levels of deformation (with changing scale and rate). The
prostate is in pink, the lesion in green whilst black dots are needle points fired by the agent

strategies perform well despite the presence of registra-
tion errors. While IL-initialised RL strategies prove helpful
when performing pre-procedure planning, a different story
is observed when the encountered intra-procedure deforma-
tion increases: strategies learned using RL alone outperforms
models initialised with IL. As shown in our experiments,
the actions of RL adapt based on observed changes of envi-
ronment state, for instance the shape and position of the
prostate and lesions, which further supports its use as an
intra-operative planning tool.

When comparing to previous works in this field, we show
that building on a centre-based strategy, aiming at the closest
grid points near the centre of the lesion,we achieve higherHR
and N.CCL for pre-procedure planning but that RL, which
spreads the needles around the peripheral of the lesion, suits
better for intra-procedure planning. This supports the sug-
gestions made by [5] that strategies should also consider
aiming around the edges of the lesion. Building on previous
work in [6], we train models that can generalise to unseen
patients, rather than training patient-specific models for each
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new patient. Outside of this clinical application, our work
is similar to [7] where the procedure is simulated using 3D
masks derived from real patient data. However, we include
the modelling of intra-procedure errors that enables adap-
tive planning, which is not discussed in their work. Similar
to [8] we include uncertainties in our model to account for
errors that could occur in the real-world procedure; however,
we believe that modelling individual components of these
errors (such as registration and deformation) could be more
informative than using a failure probability accounting for
all movement errors which is done in their work.

Despite these interesting findings, our experiments are
mainly limited by a number of assumptions, including the
limited test of different IL models (e.g. for estimating per-
formance change due to different number of needles feasibly
required), simplified registration error based on independent
errors on target and anatomy locations, and the nonrigid
yet general-purpose spline-based motion models. Although
these approximations are arguably necessary before any
prospective studies or even interaction data acquisition (as
discussed in Sect. 1.3), we aim to take the next step in acquir-
ing real-world interaction data for developing and validating
these RL-trained intra-procedure planning agents. This is
much encouraged by the results presented in this study.
In addition, we are also developing a virtual environment
through a game-like interface for acquiring additional inter-
action data, by recruiting volunteers to play the biopsy game,
with the under-development code available also on GitHub:
BiopsyGame. Using real interaction data can enable us to
compare the detection rates achieved with RL-trained mod-
els beyond simulations, which can further demonstrate the
robustness of the targeted biopsy strategies.
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