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Keynesian Resurgence: Financial Stimulus And Contingent
Claims Modelling

Ephraim Clark2, Sovan Mitra1 and Octave Jokung3

Abstract

Since the commencement of the Global Financial Crisis, a worldwide resurgence
in applying Keynesian modelling has occurred, and has been cited as a major factor
in averting a worldwide Economic Depression. A key aspect of Keynesian modelling
is that Governments gain contingent claims on firms in exchange for financial stim-
ulus. However, there exist few mathematical finance models examining Keynesian
modelling, stimulus modelling and the valuation of such Government contingent
claims.

In this paper we provide a new mathematical finance framework for modelling
firms and financial stimulus under a Keynesian framework; we apply a stochastic
differential equation model, rather than the standard time series models. Our model
incorporates fundamental concepts of Keynesian modelling and Keynesian stimulus,
which is a new characteristic to current financial models. We model the Govern-
ment’s contingent claim on the firm as a real call option, and derive a closed form
solution for the value of this option which takes into account firm stimulus. We
also derive a solution for the minimum firm value required to exercise the option.
We conduct numerical experiments for different firm equilibrium values, firm values,
economic cycles and analyse the impact on option and stimulus values.

Keywords: financial crisis; stimulus spending; real options; Keynesian economics;
Geometric Ornstein-Uhlenbeck.

1



.

1 University of Liverpool,

Brownlow Hill,

Liverpool,

L69 7ZX,

United Kingdom.

email: sovan.mitra@liverpool.ac.uk

2 Middlesex University,

The Burroughs,

London,

NW4 4BT,

United Kingdom.

3 Université Polytechnique Hauts-de-France,

Voirie Communale Université Val Mont Houy,

59300 Famars,

France.

2



1. Introduction

As the Global Financial Crisis commenced (see [22], [17] and [10]), many coun-
tries were facing the possibility of a potential global Economic Depression. Conse-
quently, many policy makers and Academics considered potential actions to avert
such a crisis. The typical free market and monetarist approaches, such as substan-
tially lowering interest rates and allowing firms to fail (such as Lehman Brothers
[18]) were deemed unsuccessful. This led to a worldwide interest and resurgence
in Keynesian economics. This resulted in an unprecedented action of greater Gov-
ernment intervention, in many markets, new spending plans and stimulus packages.
The Keynesian approach to modelling and the associated stimulus packages have
been widely credited as the key initiatives that prevented the Global Financial Cri-
sis from worsening [39].

The Keynesian approach to modelling economic and financial markets has typ-
ically advocated for greater Government intervention, Government spending and
that markets should be ‘managed’ rather than allowed to function autonomously as
in the free market approach. Essentially, in classical economics the economy func-
tions at full capacity (such that aggregate demand equals full productive capacity
of the economy) however Keynes does not assume this. In the Keynesian view ag-
gregate demand can be influenced by many factors, causing a shortage of demand
as well as affecting economic output, employment and inflation. The Keynesian
approach has the advantage that many financial and economic aspects (such as in-
flation, output, etc.) can be determined by decision makers, but potentially enables
greater mismanagement. On the other hand the classical economics approach al-
lows economies to autonomously correct themselves and so limits mismanagement,
however the self-correcting process may cause too much disturbance.

Keynesian modelling and economics supports the argument that Governments
intervene in the economy when there is a disconnect between demand and full pro-
ductive capacity. However, the Keynesian approach had drastically lost popularity
since the 1970s’ as Keynesian models and theories were unable to offer solutions to
stagnant economies, with prolonged stagflation and rising unemployment.After the
commencement of the Global Financial Crisis, the effectiveness of Keynesian mod-
elling and the ideas in dealing with potential worldwide Economic Depressions has
re-established Keynesian modelling as an important, credible and practical academic
theory for markets. It is also worth pointing out that in [21] the Keynesian approach
is reconciled with classical economics by "IS-LM" analysis. Some of the new con-
tributions to classical theory require that macroeconomics be based on the same
foundations, such as microeconomic theory, profit-maximizing firms and rational,
utility-maximizing consumer [2].

Whilst Governments provide stimulus to firms, they typically obtain some con-
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tingent claim in return for the stimulus, for example partial ownership of a firm
that is sold at a later point in time. An actual case in point is HBOS bank, where
the UK Government gained partial ownership of HBOS in exchange for providing
stimulus to the bank. HBOS received approximately £11 billion in exchange for
partial ownership by the UK Government, and HBOS received additional benefits
from the Government, such as facilities to recapitalise its funds and arrange funds
from the private sector. For example, Barclays banks arranged funding for HBOS
with assistance from the UK Government. It was also later reported that the UK
Government provided further loans to HBOS whilst the bank was still recovering.

The Government’s stake or claim on any firm receiving stimulus assistance does
not represent a standard ownership in a firm, as we would normally encounter when
an investor buys a share. Firstly, the ownership is strictly bound to be sold at some
future point in time, although there is no fixed deadline for the sale. Governments
are normally committed to selling their stake in firms to avoid their firms having
any undue political benefit or liability to the Government. In fact some politicians
do not favour giving stimulus assistance because ownership can effectively become
indefinite, hence there is a significant incentive to definitely sell.

Secondly, the sale of ownership by Governments typically involves substantial
costs (other than transaction costs) which can make sales prohibitively expensive,
or not profitable at all. For example, the UK Government needed to investigate
and reconcile competition laws and regulations before selling its stake in HBOS.
Additionally, the size of ownership and the type of ownership (being a Government)
meant that disposal of ownership can lead to a significant drop in value of the firm;
such an incident occurred for the firm AIG which received Government assistance.
Consequently, the Government ownership stake of firms resembles a contingent claim
rather than a standard share in a firm.

Although policy makers and Academics may agree on the need for stimulus
spending to encourage growth, a major problem facing Governments is valuation of
claims on firms. Firstly, how does the Government value the claim or stake in a firm
(which it is bound to sell at some point in the future) whilst taking into account its
unique disposal costs? Secondly, what is the optimal condition on which to dispose
of its claim? The fact that the UK government has received substantial criticism
for obtaining sub-optimal value for money for taxpayers in disposing of its stake in
HBOS bank demonstrates the importance of understanding the optimal conditions
for sale.

Our discussion therefore leads us to conclude that one needs to examine the
incorporation of Keynesian modelling and stimulus within financial models. The
current models in relation to Keynesian modelling and stimulus tend to be discrete
time and econometric models, sometimes excluding firm specific modelling factors
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entirely, and do not provide a viable method for continuous time financial modelling.
Furthermore, current models analysing Keynesian concepts do not offer a viable
mathematical modelling approach. They do not enable valuation and analysis of
any contingent claims arising from stimulus funding to a firm, or incorporating the
disposal costs.

In this paper we propose a continuous time financial model of firms that incorpo-
rate Keynes’ model of firms and receive financial stimulus. Our model captures the
fundamental aspects of Keynes’ model of firms, such as cyclical variations in firm
value, as well as incorporating other important aspects such as stochastic movements
in firm value. We achieve this using a Geometric Ornstein-Uhlenbeck stochastic dif-
ferential equation, rather than applying the typical time series and standard discrete
time models. We then propose a model for the Government’s contingent claim on
a firm by applying a real call options approach (options are used for a variety of
applications, see for example [4],[35], [41]). Our method takes into account disposal
costs by Governments and the indefinite period for sale of the stake (that is no
expiry date). We then derive a closed form solution for this option and derive the
minimal firm value at which it is beneficial to exercise the option.

This paper is organised as follows: in the next section we provide an introduction
to continuous time financial models, Keynesian modelling and stimulus spending,
and provide a literature review on models in these areas. In the next section we
introduce our model, model the contingent claim in the firm (obtained by the Gov-
ernment) as a real call option on the firm, and derive a closed form solution for
the option. We then also derive the minimum firm value that should be attained
before the Government exercises its option. We conduct numerical experiments for
different firm equilibrium values, firm values, economic cycles (or equivalently the
levels of mean reversion) and analyse the impact on the option value and stimulus.
We finally we end with a conclusion.

2. Literature Review

In this section we provide a literature review of continuous time financial mod-
elling, and mathematical models that are closest to our research area of Keynesian
modelling and stimulus. Whilst a wide range of models exist in finance (see for
example [25], [20], [23]) the continuous time financial models are based on stochas-
tic processes, such as in [33]. The advantages of continuous time financial models
are that they enable us to derive closed formed and analytic solutions. One can
also utilise continuous time financial models so that one can apply well established
financial models, such as option pricing.

Let there exist a probability space {Ω,F ,P} where Ω denotes the sample space, F
denotes a collection of events in Ω with probability measure P, and we have a filtered
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probability space {Ω,F , {Ft}t≥0,P}. The set {Ft} denotes the set of information
that is available to the observer up to time t and we have

Fs ⊆ Ft ⊆ FT ,∀s, t with s < t < T,

and the set {Ft}, t ∈ [0, T ] is also known as a filtration. Furthermore, for a given
stochastic process X(t), as more information is revealed to an observer as time t
progresses, we introduce the filtration FXt which denotes the information generated
by process X(t) on the interval [0, t]. Finally, assume we have the probability space
{Ω,F ,P} then we define a change of measure from P ∼ Q to be the probability
space {Ω,F ,Q}.

Despite the resurgence of Keynesian modelling and the importance of Keyne-
sian economics in the post-world war years of the twentieth century, there exist few
mathematical finance models in relation Keynesian modelling and Keynesian stim-
ulus, yet there exist a wide range of other mathematical finance models (such as
[37], [15], [34], [16]). A significant financial model is the Black and Scholes option
pricing model [6] which determined the closed form solution of European call options
CBS(X(t)) on the assumption of no arbitrage:

CBS(X(0), T, r, σ,K) = X(0)Ψ(d1)−Ke−rTΨ(d2),

where

d1 =

ln

(
X(0)

K

)
+

(
r +

σ2

2

)
T

σ
√
T

,

d2 = d1 − σ
√
T .

The variable X(t) is the stock price that follows Geometric Brownian motion

X(t) = X(0) +

∫ t

0

µdt+

∫ t

0

σdW (s),

or more conveniently,

dX(t)/X(t) = µdt+ σdW (t),

where µ denotes drift, σ denotes volatility and W (t) is a Wiener process. In
CBS(X(t), T, r, σ,K), T is the expiration date, Ψ(·) is the standard normal cu-
mulative distribution function, r is the riskfree rate of interest and K is the strike
price.

The price of a European call option is also determined by risk neutral valuation

CRN(X(t), K, T ) = e−rTEQ[X(T )−K]+,
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where Q is the risk neutral probability measure. In terms of Girsanov’s Theorem and
change of probability measures with respect to stochastic differential equations, let
us assume we have a family of information sets Ft over a period [0, T ] where T <∞.
We define over [0, T ] the random process (also known as the Doleans exponential)
χt:

χt = exp

{
−
∫ t

0

l(u)dW P(u)− 1

2

∫ t

0

l2(u)du

}
,

where W P(t) is the Wiener process under probability measure P and l(t) is an Ft-
measurable process that satisfies the Novikov condition

EP
[
exp

{
1

2

∫ t

0

l2(u)du

}]
<∞, t ∈ [0, T ].

We then have WQ(t) is a Wiener process with respect to Ft under probability mea-
sure Q, where WQ is defined by

WQ(t) = W P(t) +

∫ t

0

l(u)du, t ∈ [0, T ].

Financial models have been also developed to take into account credit risk, for
example the model by Leland [29],[28] to model strategic default. This model incor-
porates debt as an optimal capital structure problem, so that it is consistent with
Miller-Modigliani Capital Structure Theory [7]. If we assume the debt is modelled
by bond D̃(T ) then the debt is given by

D̃(T ) =
Λ

r
+

(
χ− Λ

r

)(
1− e−rT

rT
− 1

T

∫ T

0

e−rtψ(t)dt

)
+

(
(1− ι)J∗ − Λ

r

)
1

T

∫ T

0

e−rtψ′(t)dt,

where Λ is the coupon payment per year, χ total principal value of all bonds, ψ(t) is
the cumulative distribution function of the passage time of bankruptcy, ψ′(t) is the
associated probability density function, J∗ is the asset value that triggers default,
ι specifies the fraction of asset values that is distributed to the bondholders in the
event of default.

Other financial models include modelling volatility as a function of stock price
(local volatility), that is σ(X, t), and a number of local volatility based option pric-
ing models exist. Dupire’s local volatility modelling is able to obtain a unique risk
neutral measure Q from empirical option data. Dupire applies Breeden and Litzen-
berger equation [8] and the Fokker-Planck equation, to obtain the Dupire equation
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[12]:

∂C

∂T
= σ2(X,T ).

X2

2
.
∂2C

∂X2
− (r −D)X.

∂C

∂X
−DC, (1)

where D is the dividend. If we rearrannge equation (1) then we obtain:

σ(X,T ) =

√√√√√√
∂C

∂T
+ (r −D)X

∂C

∂X
+DC

X2

2

∂2C

∂X2

.

Therefore the local volatility σ(X,T ) can be fully extracted from option data.
Despite the different models that have been developed for financial modelling,

the issues of Keynesian stimulus and modelling have not been heavily examined in
continuous time finance models. For instance, many stock price models exist but
do not explicitly take into account Keynesian modelling or Keynesian stimulus. For
example, in [1] a stochastic differential equation is proposed for modelling the stock
value movements, the stock value of asset i is given by

dXi = µidt+ σidWi(t) + Zi(t)dNi(t), i = 1, 2, ..., k, (2)

where k correlated Wiener processes exist, [Z1(t), Z2(t), ..., Zk(t)] is a vector of jump
sizes, and dNi(t) is another stochastic counting process. Although an individual
asset model is provided in continuous time, there is no explicit modelling of stimulus
or Keynesian firm value dynamics.

The research literature that examines Keynesian stimulus and Keynesian based
modelling of firms tend to include econometric, time series or discrete time mod-
els, rather than employing stochastic differential equations as in standard financial
mathematics models. For example the DSGE model (dynamic stochastic general
equilibrium) is a popular econometric model, which has been used to analyse stimu-
lus (see for example [30]) and has been significantly developed due to its importance
(for example [3] devises an optimisation method for it). However the DSGE model is
a discrete time model and is therefore limited in its financial modelling applications
and mathematical analysis. Similarly, in [31] a Keynesian model is examined using
a maximum likelihood approach, however this also employs a discrete time model
to analyse macroeconomic effects.

In addition to many models adopting a discrete time modelling approach, the ma-
jority of Keynesian and stimulus models tend to model sectors or entire economies,
rather than model individual firms. Whilst this may be useful to understand the
impact on particular sectors or economies, it does not assist in understanding indi-
vidual firms and most financial modelling is with respect to an individual firm. This
enables one to develop mathematical analysis and derive solutions to derivatives
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related to a specific firm. Moreover, we can understand the impact of Keynesian
modelling and stimulus on individual firms.

One paper that is closest to our work is [19], which uses stochastic differential
equations to model stimulus and other fiscal policies. Specifically, [19] combines
the DSGE model with a stochastic volatility model, and other economic factors are
modelled using standard continuous time financial models. For example, bond prices
B(t, T ) at time t with maturity T are modelled using the Heath-Jarrow-Morton
framework. The Heath-Jarrow-Morton framework is given by [5]

dB(t, T ) = r(t)B(t, T )dt−B(t, T )

(∫ T

t

σ(t, s)ds

)
dWQ(t). (3)

In another example, the paper [19] models new wages Γ(t) in continuous time as

dΓ(t) =

νh(Γ(t)f(π(t), π, th))

 1

1− ιn


+ (1− νh)dΓ(t)

 1

1− ιn


(1−ιn)

dt,

where Γ(t) is an optimised wage, 0 ≤ h ≤ 1 is a habit formation variable, f(π(t), π, th)

is an economic variable and function, (1− νh) relates to a probability of changes to
nominal wages, 1 ≤ ιn ≤ ∞ is the wage markup for index n; the reader is referred
to [19] for more information. A model is also given to replicate stock returns based
on macroeconomic factors, contagion and other spillover effects.

The paper [19] takes into account economic factors such as budget constraints,
inflation, capital and consumption, and some of these factors are modelled with
continuous time equations. The paper also focuses on the interaction of different
economic monetary policies, fiscal policies and their impact on key macroeconomic
variables. Additionally, stabilisation policies are discussed, in terms of the model
and the impact on different sectors, such as the household and the bond market
sectors. However, the paper does not model the dynamics of individual firms and so
we do not know the impact of Keynesian modelling and stimulus upon each firm.

Another paper that is close to our work is [9], which uses stochastic differen-
tial equations. In [9] they model a number of economic variables using stochastic
differential equations, for example capital k is modelled as

dk = (Φ(i)− δ)kdt+ σkkdW (t),

where i is the investment rate, the function Φ(.) represents investment costs and
δ is the capital depreciation rate. The paper studies the equilibrium dynamics of
an economy in the presence of financial frictions that limit capital flows. Moreover,
they find that financial frictions amplify different risks.

In [9] they model various agents in continuous time, for example, the household
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sector is assumed to have a utility

E

[∫ ∞
0

e−rtdc(t)

]
,

where c(t) is consumption at time t. They also find that securitisation and deriva-
tives reduce some particular risks but also increase systemic risks. However, [9] does
not explicitly take into account Keynesian models or Keynesian stimulus, thus it
may have continuous time modelling but it does not model the individual firms or
groups of firms that behave in a Keynesian model, or receive any stimulus.

A key problem with all the economic models that include stimulus modelling
is that they are generally not continuous time models. Consequently, this limits
the amount of mathematical analysis that can be applied, for example we cannot
determine closed form solutions for any contingent claims, or determine the optimal
point to sell such claims. In fact, models such as [19] are typically not formulated for
the purposes of mathematical analysis or deriving any useful analytical solutions.
This is evident given that, for instance, the stock return model involves a stochastic
differential equation involving over 20 different terms, and so would be analytically
intractable to derive any useful solutions.

Another key problem with current models is that they tend not to model in-
dividual firms or the firm’s specific stimulus, rather the models tend to examine
particular sectors or economies. Consequently, we cannot understand the impact of
stimulus or Keynesian modelling in relation to a specific firm. This is particularly
important to understand so that Governments can analyse the impact of stimulus
packages on specific firms, or any contingent claims associated with the stimulus
package.

Finally, the economic models generally do not examine any value of any contin-
gent claims that Governments typically obtain in relation to stimulus packages. For
example, during the Global Financial Crisis the UK Government provided stimulus
assistance to HBOS and gained partial ownership of the firm, and the sale of owner-
ship was to be at some indefinite time in the future. If such claims are not correctly
modelled then one cannot correctly value such claims. Hence one cannot determine
the optimal point to sell such claims, or examine how such claims are affected by
the time dynamics of a firm.

3. Keynesian Financial Model: Firm Value and Stimulus Processes

In this section we introduce our Keynesian financial model for firm value, and
the associated firm stimulus.
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3.1. Keynesian Model of Firms

Keynes’ approach to modelling firms is concerned with the dynamics of the
changing value of firms over time. Keynes was concerned about the fluctuating
value of firms because this could cause significant economic problems such as reces-
sions or depressions. Whilst fluctuations in firm value may occur due to appropriate
variations in firm performance, sometimes the variations were excessively high which
would cause significant economic problems. Moreover, Keynes considered such fluc-
tuations as unnecessarily high and as a result of systemic problems in the market,
rather than purely the fault of firm performance.

Keynes was particularly concerned with the variation in the intrinsic or funda-
mental value of firms, as opposed to the market value of firms. The market value
of a firm is essentially the value attributed by traders in a market, for example the
stock price multiplied by the total number of shares for firms listed on the stock
market. Whilst market value can be misleading and may greatly fluctuate each day,
it does not pose a significant problem provided the intrinsic value of firms does not
change. The intrinsic value of firms is concerned with the fundamental or "true"
value of firms, rather than the daily market based valuations. Moreover, Keynesian
stimulus is concerned with improving the intrinsic value of firms, rather than the
market value. Hence it is important in our modelling that we address intrinsic value
based modelling.

The intrinsic value of firms represent the fundamental value of the company and
this has been widely studied in finance (see for instance [27] and [40]). Intrinsic value
has also been studied to understand asset and stock market bubbles and crashes
[38], in that substantial deviations in intrinsic value and market value account for
such phenomena. Intrinsic value models typically relate to measuring fundamental
aspects of the company itself, for example its assets, liabilities and profits etc.. Hence
intrinsic value is strongly related to economic as well as industry specific metrics.

A number of models or measures have been proposed for intrinsic value, for
example [27]. However such models are generally not useful for continuous time
financial modelling. Firstly, there is no overall consensus on any specific model for
intrinsic value and it can be shown that different models have major deficiencies
in measuring intrinsic value. Secondly, there is generally no continuous time or
stochastic differential equation to model the evolution of the intrinsic value over time.
This poses a significant problem in financial modelling because most financial models
are formulated in stochastic differential equations (or at least continuous time). If
we do not use stochastic differential equations then we cannot apply mathematical
techniques and analyses to obtain closed form solutions, or determine optimal points
to sell contingent claims etc..

Thirdly, the discrete time formulation of intrinsic value models limits the mod-
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elling of the firm value dynamics over time. In fact most intrinsic value models are
formulated in discrete time steps that are frequently of time intervals of months or
longer. Hence we cannot capture the complex dynamics of any process over time.
This is important because the specific dynamics of individual firms are a fundamen-
tal aspect of Keynes’ model of firms (to be discussed later). Consequently, we cannot
ignore such time dynamics if we wish to incorporate Keynes’ ideas in modelling firm
values. Moreover, Yu [42], Forster and Hayo [19] point out that continuous time
models tend to offer better approximations of actual assets and markets. Finally, a
correct model of firm value is required if we want to correctly model the associated
Keynesian stimulus.

In order to model intrinsic value of firms V (t) in continuous time we model it as
a stochastic differential equation, that is dV (t) will be of the form

dV (t) = µ(V (t), t)V (t)dt+ σ(V, t)V (t)dW (t).

The advantage of modelling intrinsic firm value with stochastic differential equations
is that firstly, it allows one to model the random fluctuations of firm value more
realistically. The Wiener process captures random movements, multiplied by the
volatility σ, and the drift µ provides a monotonically increasing trend with time
t. This is consistent with the Efficient Markets Hypothesis [14] which implies that
firm values should not be predictable. Secondly, a stochastic differential equation
also has a predictable component (that is the drift µ) which relates to the long term
value of the firm. As Keynes’ stimulus method wishes to address the long term value
of firms, such a component in a model is essential (to be addressed later).

In order for a stochastic differential equation to model (intrinsic) firm value in
the framework of a Keynesian model, we must understand Keynes’ model of firms.
Keynes assumed firms follow a cyclical process [24]; firm value was subject to cycles
of growth and decline and there also exists significant empirical evidence to support
this theory. Keynes also gave theoretical justifications for such cycles, namely that
differences in demand and output led to cyclical firm values. The cyclical nature
of firms is a fundamental property of Keynesian modelling because it is this time
dynamic that necessitates Government intervention (namely stimulus) to smooth
out such damaging cycles. Thus if firms did not exhibit cyclical behaviour then
Keynesian stimulus would not be required. Hence our stochastic differential equation
for firm value must include a cyclical process if we are also to model Keynesian
stimulus.

In order to capture Keynes’ idea of cyclical fluctuations in firm value, one cannot
use the standard model of Geometric Brownian motion:

dV (t)/V (t) = µdt+ σdW (t),
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as no cyclical component exists in the equation. A stochastic differential equation
that would capture cyclical behaviour is the standard Ornstein-Uhlenbeck process

dV (t) = α(Veq − V (t))dt+ σdW (t), (4)

where α is the speed or rate of mean reversion and Veq is the equilibrium or long
run value of V (t). The term α determines the frequency of cyclicity, with higher α
leading to more frequent cycles over time. The term Veq represents the long term
value of V (t): as V (t) undergoes cycles moving from one extreme value to another
extreme value the value V (t) fluctuates around its equilibrium value Veq. For the
convenience of writing we replace Veq with V̄ , that is Veq = V̄ .

The ability of the Onstein-Uhlenbeck models to capture the cyclical behaviour
of V (t) has enabled it to be used in modelling a range of cyclical variables in finance
and economics. For example, interest rates r(t) are modelled by the well known
Vasicek model:

dr(t) = a(b− r(t))dt+ σdW (t),

or

r(t) = r(0)e−at + b(1− e−at) + σ−at
∫ t

0

easdW (s),

where a is the speed of reversion and b is the long term value. Another example is
the modelling of commodity prices [11] such as oil prices.

A key problem with the Ornstein-Uhlenbeck model (and consequently one of the
reasons that it is not as widely adopted) is that the model takes on negative values
with probability one. This is a significant disadvantage for firm value modelling
because we do not assume negative firm values, hence this poses a fundamental
problem in our model.

In order to overcome the problem of negative values in the Ornstein-Uhlenbeck
process we use the Geometric Ornstein-Uhlenbeck process to model intrinsic firm
value

dV (t) = α(V̄ − V (t))V (t)dt+ σV (t)dW (t). (5)

The Geometric Ornstein-Uhlenbeck model has been applied in a number of financial
and economic applications for mathematical modelling (see [32] and [13] for exam-
ples). It can be shown that if V (t) > V̄ then equation (5) will tend to push future
V (t) values back towards V̄ ; similarly if V (t) < V̄ then there will be a tendency for
equation (5) to push future V (t) values back up to V̄ . Consequently V (t) tends to
revert around V̄ and the rate of reversion is determined by α.
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The Expectation of equation (5) is given by

E[dV (t)] = (αV̄ V (t)− αV 2(t))dt,

and so E[dV (t)] is a quadratic in V (t), therefore E[dV (t)] is a parabola with respect
to V (t), and E[dV (t)] = 0 at V (t) = 0 and V (t) = V̄ . Additionally, E[dV (t)] is
maximised by

∂(E[dV (t)])

∂V (t)
= (αV̄ − 2αV (t))dt,

we therefore have

∂(E[dV (t)])

∂V (t)
= 0 at V (t) =

V̄

2
.

Hence E[dV (t)] is maximised at V (t) =
V̄

2
.

We now have a model of firm value under a Keynesian framework (equation
(5)). Our model follows a random process, hence it takes on unpredictable changes
in value, which we would expect for a realistic model of firm value. Additionally, the
unpredictability is consistent with the Efficient Markets Hypothesis. The firm value
exhibits cyclical values and the rate of reversion is reflected in α, hence we have
incorporated Keynes’ idea of cycle theory [24] which is also essential to stimulus
modelling.

3.2. Keynesian Model Of Stimulus
As mentioned previously, the cyclical dynamics of firm value can cause sub-

stantial problems (such as depressions and unemployment) and it is these cyclical
dynamics that necessitate the intervention of Governments in markets. The aim of
Government intervention is to stabilise firms so that such cyclical time dynamics no
longer occur in firms. In Keynesian modelling stimulus spending is recommended
(although a range of alternative measures exist the stimulus spending approach is a
popular method and the most publicised method during the Global Financial Cri-
sis). We now state the model for our stimulus with the following theorem.

Theorem 1. For a firm whose intrinsic value V(t) follows

dV (t) = α(V̄ − V (t))V (t)dt+ σV (t)dW (t),

the associated stimulus is given by

λV (t)dt = (γ − α(V̄ − V (t)))V (t)dt.

Proof. The purpose of stimulus spending is to stabilise firm value so that it is no
longer exhibiting cyclical swings in firm value. If one were to stabilise the firm value
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then the drift term should no longer exhibit mean reversion, that is the drift should
be constant. If we denote a firm with firm value V (t) that receives stimulus funding
as VS(t) then under Keynesian stimulus dVS(t) would follow

dVS(t) = γV (t)dt+ σV (t)dW (t), (6)

where γ is a constant. In other words, the stimulus removes the mean reverting
drift of the stochastic differential equation and we have a constant drift γ. We can
also interpret γ as the target drift that we aim to give to the firm after receiving
stimulus. It is worth also noting that the drift of a stochastic differential equation
can be taken to represent the long term and fundamental value of the firm, hence
changing the drift from mean reverting to a constant directly incorporates Keynes’
purpose of stimulus, that is to remove cyclical variations in the fundamental value
of the firm.

As dVS(t) equals the firm value that receives stimulus then this should be equal
to the firm value dV (t) and the stimulus itself. We can therefore write

dVS(t) = dV (t) + λV (t)dt,

= α(V̄ − V (t))V (t)dt+ σV (t)dW (t) + λV (t)dt,

where λV (t)dt denotes the stimulus, and λ is a constant. The stimulus contribution
to dVS(t) (that is λV (t)) increases with V (t) because larger firm values require larger
amounts of funding in order to stabilise them. We can now derive an equation for
the stimulus because the previous equation and equation (6) are identical. Therefore

dVS(t) = γV (t)dt+ σV (t)dW (t) = α(V̄ − V (t))V (t)dt+ σV (t)dW (t) + λV (t)dt

⇒ γdt = α(V̄ − V (t))dt+ λdt,

λ = γ − α(V̄ − V (t)).

The total stimulus is therefore

λV (t)dt = (γ − α(V̄ − V (t)))V (t)dt. �

Hence our stimulus provides a counter-cyclical fund, which is exactly the property
that Keynes desired a stimulus should possess.

The stimulus model can be understood by examining the contributions of growth
from each component of the model. If we assumed dV (t) followed

dV (t)

V (t)
= α(V̄ − V (t))dt+ σdW (t),
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then an increase in V (t) would cause the growth dV (t)/V (t) to decrease. This
reflects the mean reverting nature of Geometric Ornstein-Uhlenbeck to restore V (t)

towards its equilibrium value Veq or V̄ . This time dynamic leads to the cyclical
behaviour that Keynes proposed to eliminate by stimulus funding. With stimulus
funding we eliminate the cyclical growth so that a drop in intrinsic firm value growth
(due to the above equation) is countered this with stimulus. The second component
of the firm’s growth, stimulus λ, is also a function of V (t). Therefore, as V (t)

increases then λ also increases, hence the stimulus restores the growth of the firm
to a constant rate of γ. Hence we remove cyclical growth, as we would expect under
Keynesian modelling.

4. Options Model For Stimulus Related Contingent Claim

In this section we derive a closed form solution for the value of the contingent
claim obtained in relation to the stimulus funding. Specifically, we model the con-
tingent claim as a real call option, whose underlying is a firm value that follows the
Keynesian model and receives Keynesian stimulus. We derive a closed form solu-
tion for the call option and the minimum firm value for exercise of the option to be
profitable.

4.1. Options Model For Contingent Claims
It has been observed during the Global Financial Crisis (and in other periods)

that Governments providing stimulus to firms frequently receive some contingent
claim in exchange for the stimulus assistance. In particular, the Government re-
ceives some contract whose value is typically related to the intrinsic value V (t).
Additionally, the Government typically has the right, but not the obligation, to ex-
ercise its contingent claim on the firm and there is also no fixed deadline associated
with exercising it. For example, during the Global Financial Crisis the UK Govern-
ment provided funds and assistance to HBOS bank in exchange for part ownership
of the firm, which was later sold by the Government.

In addition to the Government receiving some contingent claim on a firm, Gov-
ernments typically incur substantial disposal costs K when exercising the contract.
This is because the Government faces unique and significant costs when selling its
stake in a firm. For example, the Government may need to consult legal regulations
and make employee provisions for transferring a firm from partial public ownership
to private ownership. The size of Government ownership also means that the size of
the sale would put significant selling pressure on the sale price of the firm. Finally,
the fact that the Government sells part ownership in a firm may prompt firm value
to decrease because the firm no longer has the support of the Government (either
through direct or indirect assistance). Hence there is a cost associated with the
Government selling its stake.
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The Government’s contingent claims can therefore be modelled as a real call
option C(V ) (or to be more precise a perpetual call option), whose underlying asset
is the intrinsic firm value V (t) that receives stimulus λ. The call option would have
no expiration date to reflect that the Government typically has the right but not
the obligation to sell its stake at some indefinite time in the future. Additionally,
the strike K would model the disposal costs incurred in the sale of a stake in a firm,
when it is exercised.

For the call option C(V ) we model the payoff as

C(V ) = V (t)−K, for V (t) ≥ K,

= 0, for V (t) < K.

This payoff reflects the fact that the Government incurs significant disposal costs
K on sale of its stake, hence the Government will not receive V (t) but the income
net of disposal costs K. Additionally, the Government has a right but no obligation
to exercise the option. Hence the Government will not exercise its option unless
V (t) > K, otherwise the Government will make a loss, thus the payoff is 0 for
V (t) < K.

The strike K can also be understood in terms of real options theory. Firstly,
K represents a ‘sunk’ cost or an irreversible cost, that cannot be recovered once it
is expended. Secondly, the timing of the expenditure of the sunk cost K can be
delayed, we are not forced to spend K until V (t) > K. This flexibility to spend K
(or exercise the option) is extremely valuable, as we can avert negative payoffs when
V (t) < K.

The call option C(V ) must have the following boundary condition from standard
option pricing theory. We have

V (t) = 0⇒ C(V (t)) = 0, ∀t. (7)

This boundary condition tells us that an underlying asset that is worthless (V (t) =

0) should also have a call option with 0 value.

4.2. Partial Differential Equation For The Call Option
In order to develop an option pricing equation for C(V ) we require a partial

differential equation in C(V ). In order to obtain this partial differential equation
we need to derive dC when the underlying asset V (t) receives stimulus λ. We now
give this in our Theorem.

Theorem 2. For an option C(V ) whose underlying asset V (t) receives stimulus
λV (t)dt, then dC(V ) follows

dC(V ) =
∂C

∂V
dV +

(
C(V )− ∂C

∂V
V

)
rdt+

∂C

∂V
V λdt.
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Proof. We assume we can model option C(V ) by a standard replicating portfolio
or hedging argument. Economically, a replicating portfolio for C(V ) corresponds
to assuming that the market for C(V ) is complete, that is C(V ) can be perfectly
hedged by the underlying asset V (t) and riskless bonds B(t). The assumption that
a market is complete is a standard economic assumption in financial models and
is commonly used in option pricing (for example the Black-Scholes option pricing
model [6]).

If we hedge dC in a complete market then we can achieve this using a quantity
of n(t) amount of V (t). We therefore have the equation

dC(V )− n(t)dV.

We now also set n(t) =
∂C

∂V
, so that we have

dC(V )− ∂C

∂V
dV.

Now a perfectly hedged portfolio is riskless, and so should earn the riskless rate of
interest r. Therefore we have

dC(V )− n(t)dV = B(t)rdt.

The riskless bond amount will increase at the riskless rate r over a time period dt.
Additionally, the amount invested in a riskless bond B(t) is equal to the difference
C(V )− n(t)V (t), and so we have

dC(V ) = n(t)dV +B(t)rdt,

=
∂C

∂V
dV +

(
C(V )− ∂C

∂V
V

)
rdt.

Whilst the previous equation gives a partial differential equation for dC, it as-
sumes the underlying receives no stimulus, that is the firm has no λ. We now
introduce stimulus into our model, therefore dV is replaced by dVS so that

dC(V ) = n(t)dVS +B(t)rdt.

If we re-express this equation by using our definition of dVS in terms of dV and λ,
then we have

dC(V ) = n(t)dV +B(t)rdt+ n(t)λV (t)dt.

Over a time period dt the Government gives stimulus, additionally the stimulus
should be proportional to the amount invested in the firm, hence the total stimulus
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is proportional to n(t), to give n(t)λV dt. Again B(t) will be the same amount as in
the case with no stimulus. Hence we can re-express the previous equation as

dC(V ) =
∂C

∂V
dV +

(
C(V )− ∂C

∂V
V

)
rdt+

∂C

∂V
V λdt. � (8)

The equation (8) provides the partial differential for our option C(V ) in the presence
of stimulus. However we cannot solve this equation without obtaining an additional
equation for dC. Using Ito’s Lemma we obtain an additional partial differential
equation and this enables us to finally obtain a partial differential equation for dC
which we can eventually solve. We now state this is in the following theorem.

Theorem 3. For a firm whose intrinsic value V(t) follows

dV (t) = α(V̄ − V (t))V (t)dt+ σV (t)dW (t),

and receives the associated stimulus

λV (t)dt = (γ − α(V̄ − V (t)))V (t)dt,

then the associated option C(V ) is given by the partial differential equation

0 =
σ2V 2(t)

2

∂2C

∂V 2(t)
+ (r − λ)V (t)

∂C

∂V (t)
− rC. (9)

Proof. We first derive an equation for dC using Ito’s Lemma. For an Ito process
dS where

dS = a(S, t)dt+ b(S, t)dW (t),

then Ito’s Lemma asserts that F (S), a function of S, has the differential

dF =

[
a(S, t)

∂F

∂S
+
b2(S, t)

2

∂2F

∂S2

]
dt+ b(S, t)

∂F

∂S
dW (t).

If we apply Ito’s Lemma to our model for dV , where dV is given by

dV = α(V̄ − V )V dt+ σV dW (t),

then by Ito’s Lemma we therefore have for dC

dC =

[
α(V̄ − V )V

∂C

∂V
+
σ2V 2

2

∂2C

∂V 2

]
dt+ σV

∂C

∂V
dW (t).

Alternatively, by substitution of dV in the previous equation we can re-express it as

dC =
∂C

∂V
dV +

σ2V 2

2

∂2C

∂V 2
dt. (10)
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Hence the change in the option has a deterministic component, and a random com-
ponent.

If we now equate equations (8) and (10) then we have

∂C

∂V
dV +

σ2V 2

2

∂2C

∂V 2
dt =

∂C

∂V
dV +

(
C − ∂C

∂V
V

)
rdt+

∂C

∂V
V λdt.

If we now re-arrange this equation then we have

0 =
σ2V 2(t)

2

∂2C

∂V 2(t)
dt+ (r − λ)V (t)

∂C

∂V (t)
dt− rCdt,

and dividing by dt we have

0 =
σ2V 2(t)

2

∂2C

∂V 2(t)
+ (r − λ)V (t)

∂C

∂V (t)
− rC. �

We have therefore derived our partial differential equation for our option C(V ). We
note in passing that this is a second order linear homogeneous partial differential
equation, with non-constant coefficients. This is similar to the Euler-Cauchy partial
differential equation [26] except that the coefficient of the first order derivative is to
the power of V 2 instead of V (recall that λ contains a V term).

4.3. Closed Form Solution To The Partial Differential Equation
We now wish to solve the partial differential equation (9), so that we can obtain

a closed form solution for C(V ). We now state the solution in the following theorem.

Theorem 4. The option C(V ) has closed form solution

C(V ) = βV (t)κH

(
2αV (t)

σ2
, κ,m

)
,

where

κ =
−Γ +

√
Γ2 + 2σ2r

σ2
,

Γ = r − γ + αV̄ − σ2

2
,

m = 2

(
κ+

Γ

σ2

)
,

β ∈ R,

and H(.) is the confluent hypergeometric function of the first kind (also known as
Kummer’s function). The function is defined as

H(x, ρ, v) = 1 +
ρ

v
x+

ρ(ρ+ 1)

v(v + 1)

x2

2!
+
ρ(ρ+ 1)(ρ+ 2)

v(v + 1)(v + 2)

x3

3!
+ ......,
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where ρ and v are specified constants.
Proof. In order to obtain a solution to our partial differential equation (9), we first
substitute our initial definition of λ into equation (9), so that our partial differential
equation becomes

0 =
σ2V 2

2

∂2C

∂V 2
+ (r − γ + α(V̄ − V ))V

∂C

∂V
− rC. (11)

This partial differential equation does not follow a standard form (unlike the heat
equation). Hence there is no standard solution method to this equation, therefore
we solve it by noticing that the solution to a similar Euler-Cauchy equation

0 =
σ2V 2

2

∂2C

∂V 2
+ ãV

∂C

∂V
− rC.

would be of the form
C(V ) = β̃V (t)κ̃,

where ã, κ̃, β̃ are constants. Therefore we try the solution for C(V ) as

C(V ) = βV (t)κf(V ),

where β ∈ R is a constant. Using this solution, we therefore have

∂C

∂V
= κβV κ−1f(V ) + βV κ∂f(V )

∂V
,

= βV κ

[
κf(V )V −1 +

∂f(V )

∂V

]
,

and we also have by taking the second order partial differentials

∂2C

∂V 2
= (κ− 1)κβV κ−2f(V ) + κβV κ−1∂f(V )

∂V
+ βV κ∂

2f(V )

∂V 2
+ κβV κ−1∂f(V )

∂V
,

= βV κ

[
(κ− 1)κβV κ−2f(V ) + 2κV κ−1∂f(V )

∂V
+
∂2f(V )

∂V 2

]
.

If we now insert these partial derivatives into equation (11) then we have

0 =
σ2

2
V 2βV κ

[
(κ− 1)κβV −2f(V ) + 2κV −1

∂f(V )

∂V
+
∂2f(V )

∂V 2

]
+

(r − γ + α(V̄ − V ))V βV κ

[
κV −1f(V ) +

∂f(V )

∂V

]
− rβV κf(V ).

To simplify this equation, we divide through by the constant β and rearranging gives

0 = V κf(V )

[
1

2
σ2κ(κ− 1) + (r − γ + αV̄ )κ− r

]
+

V κ+1

[
1

2
σ2V

∂2f(V )

∂V 2
+ (σ2κ+ r − γ + α(V̄ − V ))

∂f(V )

∂V
− ακf(V )

]
.
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Now the previous equation must hold for all values of V , including V 6= 0.
Therefore, if we examine the top part of the equation, that is

V κf(V )

[
1

2
σ2κ(κ− 1) + (r − γ + αV̄ )κ− r

]
= 0,

then we deduce that

1

2
σ2κ(κ− 1) + (r − γ + αV̄ )κ− r = 0. (12)

Similarly, if we also examine the bottom equation, that is

V κ+1

[
1

2
σ2V

∂2f(V )

∂V 2
+ (σ2κ+ r − γ + α(V̄ − V ))

∂f(V )

∂V
− ακf(V )

]
= 0,

then we can also conclude that

1

2
σ2V

∂2f(V )

∂V 2
+ (σ2κ+ r − γ + α(V̄ − V ))

∂f(V )

∂V
− ακf(V ) = 0. (13)

We will require both equations (12) and (13) to find the option pricing solution
C(V ).

One can solve equation (13) to obtain a solution to f(V ) in C(V ) = βV κf(V ),
by observing that equation (13) follows Kummer’s differential equation. Let w be a
function of z, that is w = f(z), then Kummer’s differential equation is given by

z
d2w

dz2
+ (m− z)

dw

dz
− ρw = 0, (14)

where m, ρ are constants. To transform equation (13) into Kummer’s differential
equation, we make the substitutions

z =
2αV

σ2
⇒ V =

σ2z

2α
,

ρ = κ,

and

m = 2κ+
2(r − γ + αV̄ )

σ2
. (15)

If we set f(V ) = w(z) then

∂f(V )

∂V
=

dw

dz
.
dz

dV
,

=
dw

dz
.

(
2α

σ2

)
.
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Therefore

(σ2κ+ r − γ + α(V̄ − V ))
∂f(V )

∂V
=

dw

dz
.

(
2α

σ2

)
.

(
σ2κ+ r − γ + α

(
V̄ − σ2z

2α

))
,

= α(m− z).
dw

dz
.

We also have

∂2f(V )

∂V 2
=

∂

∂V

(
∂f(V )

∂V

)
,

=

(
d

dz

(
dw

dz
.
2α

σ2

))
.
dz

dV
,

=
d2w

dz2
.

(
2α

σ2

)2

.

Therefore

1

2
σ2V

∂2f(V )

∂V 2
=

1

2
σ2

(
σ2z

2α

)(
d2w

dz2
.

(
2α

σ2

)2
)
,

= αz
d2w

dz2
.

Therefore equation (13) becomes

αz
d2w

dz2
+ α(m− z)

dw

dz
− αρw = 0,

and given that α is a constant, we then divide by α to obtain Kummer’s differential
equation

z
d2w

dz2
+ (m− z)

dw

dz
− ρw = 0.

The solution to the Kummer differential equation (14) is the confluent hyperge-
ometric function [36], specifically the confluent hypergeometric function of the first
kind. The confluent hypergeometric function is denoted by H(z, ρ,m) and defined
by

H(z, ρ,m) = 1 +
ρ

m
z +

ρ(ρ+ 1)

m(m+ 1)

z2

2!
+

ρ(ρ+ 1)(ρ+ 2)

m(m+ 1)(m+ 2)

z3

3!
+ ......

=
∞∑
n=0

znρñ

mñn!
,

where añ = a(a+ 1)(a+ 2)..... is the the rising factorial of a to the power n. Hence
our solution for f(V ) is

f(V ) = H(z, κ,m) = H

(
2αV

σ2
, κ,m

)
.
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Therefore our final solution for C(V ) is

C(V ) = βV κf(V ) = βV κH

(
2αV

σ2
, κ,m

)
. (16)

To determine κ we solve equation (12) in κ. First we observe that equation (12)
is a quadratic in κ, that is if we re-arrange equation (12) then we have

1

2
σ2κ2 +

(
r − γ + αV̄ − 1

2
σ2

)
κ− r = 0,

and this equation is of the form aκ2+bκ+c = 0, where a =
1

2
σ2, b =

(
r − γ + αV̄ − 1

2
σ2

)
,

c = −r. Therefore we can solve the quadratic in κ with

κ =
−b±

√
b2 − 4ac

2a
.

The solutions are κ = {φ, φ̂} where κ ∈ R, therefore we have

φ =

−
(
r − γ + αV̄ − 1

2
σ2

)
+

√(
r − γ + αV̄ − 1

2
σ2

)2

+ 2σ2r

σ2
,

φ̂ =

−
(
r − γ + αV̄ − 1

2
σ2

)
−

√(
r − γ + αV̄ − 1

2
σ2

)2

+ 2σ2r

σ2
.

If we re-express the solutions κ = {φ, φ̂} with

Γ = r − γ + αV̄ − σ2

2
,

then we have

κ =
−Γ±

√
Γ2 + 2σ2r

σ2
. (17)

Given that σ2r ∈ R+, ∀ r, σ therefore

√
Γ2 + 2σ2r > Γ, ∀Γ ∈ R.

We can therefore conclude that φ ∈ R+ and φ̂ ∈ R−. If we now take into account the
boundary condition (equation (7)) and assuming C(V ) = βV κf(V ) then κ must be
positive to satisfy the boundary condition (V (t) = 0⇒ C(0) = 0). As φ̂ is negative
we must therefore discard this solution and so κ = φ. Therefore we have

κ =
−Γ +

√
Γ2 + 2σ2r

σ2
. �
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We now have a closed form solution for the option when the underlying asset is
a firm that behaves according to Keynesian modelling and receives Keynesian stim-
ulus. The option can be used to model any contingent claims received by the Gov-
ernment in exchange for providing stimulus assistance to a firm, and the disposal
costs are incorporated by K.

4.4. Option Exercise Barrier and Beta

We have derived an equation for the value of the option associated with stimulus,
so that Governments can value their contingent claims. However, Governments and
decision makers would also like to know the conditions that are required for optimal
exercise of the option. We already know that V (t) > K (otherwise the option would
theoretically give a negative or 0 payoff), however we would like to determine the
minimum firm value required to exercise the option.

In this section we derive the minimum firm value V θ required for option exercise
to be profitable. In deriving V θ we also derive an equation for β in terms of V θ. We
now state this in the following theorem.

Theorem 5. The option C(V ) is subject to the following boundary conditions

C(V (t)) = 0,∀t, if V(t)=0,
C(V θ) = V θ −K,

∂C

∂V

∣∣
V=V θ

= 1,

where K is the strike price, V (t) = V θ denotes the minimum value to exercise the
option C(V ). Consequently, β in C(V ) is given by

β =
V θ −K

H

(
2αV θ

σ2
, κ,m

)
(V θ)κ

.

Proof. First we must recognise that in option theory there exists an exercise barrier
or value V θ, such that if V (t) ≥ V θ(t) then it is always optimal to exercise the option.
This means the holder of the option C(V ) should not just exercise the option if V (t)

is greater than the disposal costs (V (t) > K). Hence the value V θ has implications
for decision makers of the contingent claims associated with stimulus.

According to option theory, options have the following boundary condition (known
as the value matching condition) where

C(V ) = V (t)−K, for V (t) ≥ V θ. (18)

This can be understood because at exercise the option payoff is always V (t) − K
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if we exercise the option, and we have assumed for V (t) ≥ V θ that the option is
exercised. We can therefore write

C(V ) = V (t)−K = βV κf(V (t)), for V (t) ≥ V θ,

⇒ β =
V (t)−K

f(V (t))V (t)κ
,

or alternatively we can write

β =
V (t)−K

H

(
2αV (t)

σ2
, κ,m

)
V (t)κ

. (19)

Hence the value matching condition enables us to determine β, assuming that V θ is
known. Typically, V θ can be calculated for options and so one can obtain β with
V (t) = V θ, so that

β =
V θ −K

H

(
2αV θ

σ2
, κ,m

)
(V θ)κ

.

If V θ is not known we can determine V θ using the third boundary condition,
also known as the high-contact or smooth pasting condition. At V (t) ≥ V θ we have
C(V ) = V (t)−K and if we take the partial derivative

C(V ) = V (t)−K ⇒ ∂C

∂V
= 1, for V (t) ≥ V θ.

Therefore we have for V (t) > V θ:

∂C

∂V
=
∂(βV (t)κf(V (t)))

∂V
= βV (t)κ

[
κ

V (t)
f(V (t)) +

∂f(V (t))

∂V

]
= 1,

⇒ βV (t)κ
(

κ

V (t)
H +H ′

)
= 1,

where H denotes H
(

2αV (t)

σ2
, κ,m

)
, and H ′ denotes

∂H

(
2αV (t)

σ2
, κ,m

)
∂V

. Using

equation (19) for β and substituting this into our equation we then have

(V (t)−K)
H ′(.)

H(.)

]
= 1, for V (t) ≥ V θ. � (20)

We note in passing that one would find V θ by numerical solutions as it is non-
trivial to obtain by analytical methods. Additionally, to improve computation time
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we can express our option pricing equation as:

C(V ) = βV (t)κH

(
2αV (t)

σ2
, κ,m

)
, for V (t) < V θ,

= V (t)−K, for V (t) ≥ V θ.

The first equation is from Theorem 4, however the second equation is obtained from
the value matching condition (that is equation (18)). In using the second equation
we significantly improve computation time because we simply subtract a constant
(K) from V (t) to obtain C(V ) and this can be computed very fast. If we used
Theorem 4 to calculate C(V ) for V (t) ≥ V θ then we would require computation of
many nonlinear functions, which would be more time consuming.

5. Numerical Experiments

In this section we conduct numerical experiments to analyse the option price
C(V ) and stimulus value λ as key input parameters are varied, such as α and V (t).
We calculate option price values C(V ) and stimulus λ, provide graphs and analyse
the results. The results provide insight into the impact of different input parameters
(such as V̄ and α) upon stimulus and option price values.

5.1. Introduction

In our numerical experiments we calculate the option price C(V ) and stimulus
value λ, over different reversion values α, firm values V (t) and equilibrium values V̄ .
The option price C(V ) was calculated using equation (16), κ was calculated using
equation (17), m was calculated using equation (15) and stimulus λ was calculated
using the equation

λ = γ − α(V̄ − V (t)). (21)

Whilst any numerical values could be chosen for our input parameters, for the
benefit of exposition we provide the details here. We set K = 1 for convenience,
although any value of K could be chosen without affecting our results a convenient
choice aids analysis. We set r = 0.04 as interest rates were set at low levels during
the initiation of stimulus. Typically interest rates are low if the economy is not
performing well and this is also most likely to be the time when stimulus will be
introduced, hence we reflect this in the models.

We set γ = 0.08 as γ represents the target growth rate of firms; given that
stock market indexes grow approximately at 10% a year, we would want firms under
stimulus to perform almost as well as the average firm on the stock market. Hence
we expect γ to be below 10% but close to it, and so we chose 8%. Finally we set
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σ = 0.2 as firms requiring stimulus typically suffer from higher risk (and risk is
typically related to firm volatility). Consequently we choose a higher figure of σ.

The values of V̄ were chosen to be varied from 0.5-1.5, so that the equilibrium
value of firm value gave at-the-money, in-the-money and out-of-the-money call op-
tions when strikeK = 1. This enabled us to analyse the relation between equilibrium
value V̄ and the strike K. The value of α reflects the level of cyclicity in the firm
and cyclicity is an important characteristic in Keynesian modelling. Hence it is im-
portant to see the impact of cyclicity or reversion upon option pricing and stimulus.
The value of α was varied from 0.05-0.5 so that α was increased by a magnitude of
10, to examine the impact of α on stimulus and option prices.

5.2. Results

We now present our results on option pricing C(V ) and stimulus λ, for different
values of α, V (t) and V̄ .

5.2.1. Results For α=0.05
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Figure 1: Graph Of Option Prices C(V ) For Different Values V And V̄ (Veq)
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Figure 2: Graph Of Option Prices C(V ) For Different Values V And V̄ (Veq)
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Figure 3: Graph Of Stimulus λ For Different Values V And V̄ (Veq)
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5.2.2. Results For α=0.1

Figure 4: Graph Of Option Prices C(V ) For Different Values V And V̄ (Veq)
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Figure 5: Graph Of Option Prices C(V ) For Different Values V And V̄ (Veq)
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Figure 6: Graph Of Stimulus λ For Different Values V And V̄ (Veq)
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5.2.3. Results For α=0.5

Figure 7: Graph Of Option Prices C(V ) For Different Values V And V̄ (Veq)
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Figure 8: Graph Of Option Prices C(V ) For Different Values V And V̄ (Veq), for α = 0.5
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Figure 9: Graph Of Option Prices C(V ) For Different Values V And V̄ (Veq)
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Figure 10: Graph Of Stimulus λ For Different Values V And V̄ (Veq), for α = 0.1
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5.3. Analysis

The Figures 1-10 give the option pricing and stimulus results of our numerical
experiments, over different parameter values. In particular we vary α over 0.05,
0.1, 0.5 and observe the relation upon C(V ), V, Veq, λ. The option prices satisfy the
boundary condition that C(V ) is 0 at V=0, also C(V ) increases with V which is

expected because C(V ) = βV κH

(
2αV

σ2
, κ,m

)
. Similarly, we notice that increasing

V̄ leads to an increase in C(V ), over different reversion values α.
We observe that the option price C(V ) tends to increase with Veq (or V̄ ), for

different levels of V and α. This implies that the contingent claim given to Gov-
ernments is generally worth more if the long term value of the firm is also higher.
This is an economically consistent result, since an option should be worth more if
the underlying asset has higher long term fundamental value. Given that financial
institutions such as banks generally have high long term fundamental values, our
model therefore suggest that an option obtained on the bank should be good value
for money.

As we would expect most of the figures exhibit a "hockey stick" shaped graph,
which is a common shape for option graphs. Additionally, as V exceeds V θ the
option pricing equation follows C = V −K and so the option payoff is linear with
respect to V in the graphs. We can also notice that as Veq increases then the linear
part of the graph occurs at higher values of V . Therefore this implies that higher
Veq leads to higher V θ values, over different α values. Hence firms with higher
long term or fundamental firm value will also require higher firm values V before
it is profitable for the Government to exercise its option. This may explain the
opposition of politicians to give funding to firms because the firm many require
many years before V is sufficiently high enough to enable exercising the option.

The most striking feature of all the figures is the impact of α and V̄ for higher
values, particularly if we compare Figures 7-9 to Figures 1, 2, 4 and 5. We notice
that for α = 0.05 that C(V) is convex for all Veq and V values. However as the
rate of mean reversion increases (that is α = 0.1 or α = 0.5) the convexity is lost
and in fact for low values of V we have a concave relation. This implies there is
a non-convex relation between option value C(V ) and V for high mean reversions.
As the mean reversion tends to be dependent upon the behaviour of the economy,
the results imply that different economies will have different option values with
V , and minimum exercise values V θ. Hence Keynesian stimulus and contingent
claims modelling is not a homogeneous or "one size fits all" approach, the Keynesian
approach needs to be adjusted to each economy.

In Figures 3, 6 and 10 stimulus λ is plotted for different α, V̄ and V values.
Whilst the figures for C(V ) change significantly in shape and behaviour as α, V̄

34



and V are varied, the shape and behaviour of λ generally remains consistent. In
other words there is a linear relationship between λ, V̄ and V , and this is expected
given that λ follows equation (21). This is also a useful result because it suggests
that Government stimulus funding is quite predictable, even with fluctuations in
long term equilibrium value V̄ , firm value V and cyclical changes α. However, it
is the value of the Government’s contingent claim that can vary significantly with
parameters.

6. Conclusion

Since the commencement of the Global Financial Crisis, Keynesian modelling
and Keynesian stimulus have been gaining increasing credibility and interest from
Academics, Economists, policy makers as well as the media. In this paper we develop
a new framework for modelling firms and Keynesian stimulus, under a Keynesian
framework. We model the dynamics in our framework by using stochastic differential
equations, rather than standard time series models, which is a new approach to
current Keynesian models.

In this paper we devise a contingent claims model for Government stimulus, using
a real call option model (specifically a perpetual call option). We have derived the
partial differential equation for our option model, where the underlying asset follows
a Keynesian model and receives Keynesian stimulus. We have derived a closed form
solution for this option and conducted numerical experiments to illustrate the model.
We have shown how important parameters such as the long term equilibrium firm
value V̄ , the firm value V and rate of reversion α affect option prices C(V ) and
stimulus λ. In particular, such results show the importance to manage the stimulus
approaches according to each particular economy, rather than applying a generic
approach to all economies.

In terms of future work, we would like to explore the impact of finite expirations
upon the valuation of options and stimulus and compare these to our current model.
We would also like to develop our model to include more realistic factors, for example
stochastic interest rates as interest rates have a significant impact on economic
dynamics as well as the timing of stimulus spending. Another important aspect
in our model to incorporate is credit risk related factors, since stimulus spending
is mainly concerned with mitigating default risks. Finally, we would also like to
develop our model to incorporate liquidity factors as liquidity factors can have a
significant impact on firms. In fact in the Global Financial Crisis the liquidity risk
of many firms was heavily underestimated, and led to significant economic problems.
Hence liquidity risk management is important in the model.
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