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Abstract	
 

Breast cancer is highly heterogeneous and is considered a collection of 

molecularly distinct tumour subtypes. Substantial efforts have been made to 

explore the gene expression profiles underlying the subtypes, and to elucidate 

possible markers associated with clinical outcomes. However, research in this 

area has been met with significant challenges and despite ongoing 

advancements in diagnostics and targeted therapeutics, incidence and mortality 

continues to rise. Thus, there is a need for greater molecular characterisation of 

breast tumours, to further understand the mechanistic roles of genes within their 

respective signalling pathways. 

 

With the advent of high-throughput technologies in transcriptomics, as well as the 

use of open databases and bioinformatics analysis tools, it is now possible to 

examine thousands of genes in parallel, generating an unprecedented amount of 

information. This provides a means for researchers to identify novel genes and 

targets from large volumes of gene expression data. However, the task of 

extracting clinically relevant results, is a prominent challenge. Therefore, the aim 

of this study was to use a streamlined in silico pipeline, integrated with in vitro 

methods to identify and functionally investigate a novel genetic marker 

demonstrating a key role in breast carcinogenesis. 

 

Gene expression profiles from breast cancer cell lines were obtained from public 

databases (Array Express and Gene Expression Omnibus). Data was filtered and 

subjected to an extreme variation analysis to generate a list of differentially 

expressed genes. Subsequently, multiple pathway analysis tools were used to 

identify a novel candidate gene for further investigation. Achaete-scute complex 

homolog 2 (ASCL2) is a transcription factor and Wnt-target gene, recognised as 

a regulator of stem cell identity and embryogenesis. Gene expression was 

validated in vitro by Reverse Transcription Quantitative Polymerase Chain 

Reaction (RT-qPCR), and to assess the tumourigenic potential of ASCL2, siRNA 

knockdown was performed; assays were employed to measure proliferation, 

wound-healing and apoptosis. Data mining of patient tumours obtained from the 
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METABRIC study was also undertaken to ascertain the potential of ASCL2 as a 

prognostic indicator. 

 

This work utilised a systematic pipeline used by the wider scientific community 

for the identification of candidate genes from transcriptomic data. Differential 

expression of ASCL2 was observed across multiple breast cancer cell lines, with 

largest the expression seen in MCF7 cells. Although evidence did not support the 

usage of ASCL2 as a prognostic indicator in patient tumours, data integrated from 

multiple lines of investigation suggested that this gene may influence the 

migratory capacity of breast tumour cells, whilst exercising its tumourigeneic 

function via the Wnt signalling pathway in breast cancer. Thus, this potential 

novel role of ASCL2 in breast tumourigenesis highlights a prominent area for 

further exploration.  
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1.1	An	Introduction	to	Breast	Cancer	

1.1.1	Introduction	to	Cancer	

The term cancer refers to a group of widespread diseases caused by the 

uncontrolled growth of abnormal cells that have the potential to spread and 

invade surrounding healthy tissue. In the UK, 1 in 2 people have a risk of being 

diagnosed with cancer during their lifetime (Cancer Research UK, 2019). 

Cancer is a highly complex and multi-step process now considered 

predominantly as a disease entailing genetic changes (Hanahan, & Weinberg, 

2011; Vogelstein, et al., 2013); mutations or alterations in the expression of 

certain genes ultimately sustain the development and growth of tumours. These 

genes can be largely classified as a loss-of-function tumour suppressor gene, 

responsible for preventing uncontrolled growth and encouraging cell cycle 

checkpoints and DNA repair, or a gain-of-function oncogene, which promotes cell 

proliferation and survival (Hanahan, & Weinberg, 2011; Lee, & Muller, 2010).  

Despite its complexity, the development of cancer has been rationally classified 

into a handful of underpinning capabilities that tumours use to govern neoplastic 

growth. These are now universally known as the Hallmarks of Cancer (Figure 

1.1), first described by Hanahan and Weinberg in 2000, and later revised in 2011. 

These key principles cause errors in cellular communication networks (signalling 

pathways), which ultimately affect cell growth, death, motility, metastasis, 

replicative immortality, evasion of the immune system, and instability of the 

genome (Hanahan, & Weinberg, 2011; Hanahan, & Weinberg, 2000). 

Cancer can arise from familial (inherited) or acquired genetic mutations, but may 

also develop as a result of gene expression changes and other epigenetic 

modifications (Rizzolo, et al., 2011). The majority of cancers arise from acquired 

somatic genetic mutations, which can result from factors such as external 

carcinogens, DNA instability or deregulation of gene expression (Greenman, et 

al., 2007). These genetic changes are able to give cells a selective growth 

advantage, which accumulate over time and lead to disruptions in gene activity, 

and subsequently changes in cell behaviour. One could argue therefore, that all 

of the hallmarks affecting cellular behaviour depend on some type of genomic 

alteration in tumour cells, thus the ‘genomic instability and mutation’ hallmark 
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could be considered to underpin all of the other hallmarks (Figure 1.1) (Hanahan 

and Weinberg, 2011). 

Metastasis is the cause of approximately 90% of cancer related deaths, and 

occurs due to the genetic instability of primary cancer cells which have an 

invasive capacity; these may enter the circulation and eventually adapt to a 

distant tissue microenvironment (Gupta, & Massagué, 2006). Owing to the deaths 

related to invasion, this calls for greater characterisation of the genetic basis and 

markers leading to tumour metastasis (Bos, et al., 2009). 
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Figure 1.1. The 10 Hallmarks of Cancer as described by Hanahan & Weinberg (2011), 
with focus on the ‘Genome Instability’ hallmark, responsible for the genetic variation 
seen in cancer cells.  
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1.1.2	Breast	Cancer	

Breast cancer was classically considered as three predominant subtypes with 

distinct features and behaviours – hormone receptor positive (HR+) (expressing 

oestrogen receptors, ER, and progesterone receptors, PR), human epidermal 

growth factor receptor positive (HER2+) and triple negative breast cancer 

(TNBC). These subtypes represent somewhat clear therapeutic groups. Broadly 

speaking, hormone receptor positive tumours are the most common, typically 

presenting with a good prognosis due to treatment using endocrine therapy. Up 

to approximately 10% of breast cancers are diagnosed as HER2+, and previously 

indicated a poor prognosis. Yet, treatment with anti-HER2 targeted agents has 

since provided a large benefit to patients in this group. Breast tumours that do 

not express any of the aforementioned receptors, are referred to as triple 

negative. These tumours are aggressive in nature, with limited treatment options, 

resulting in a high mortality rate (Karagoz, et al., 2015; Perou, & Børresen-Dale, 

2011; Reis-Filho, & Pusztai, 2011; Yeo, & Guan, 2017).  

However, it has become well-known that breast cancer is highly heterogeneous, 

and the viewpoint that it is a single disease with varying histology is extremely 

outdated. It is now accepted that the term ‘breast cancer’ refers to a collection of 

tumour subtypes with distinctive aetiologies, origins, genetic signatures and 

clinical outcomes; this complex picture encompassing a number of tumour 

entities is considered in further detail in Section 1.1.4 (Karagoz, et al., 2015; 

Perou, & Børresen-Dale, 2011; Reis-Filho, & Pusztai, 2011; Yeo, & Guan, 2017). 

This heterogeneity is mirrored in its complex genomic landscape, and despite 

advancements in subtype-specific therapeutics, many patients are not 

responsive to therapies, or present with unexpected tumour behaviour due to 

underlying genetic mutations that require characterisation.  

In the UK, breast cancer is the most common type of cancer, and incidence is 

projected to rise by 2% by 2035; over 11,500 women died of the disease in 2016 

(Cancer Research UK, 2019). However, due to increasing knowledge of 

underlying molecular aberrations and the development of subsequent 

treatments, survival rates have doubled since the 1970s (Figure 1.2) (Cancer 

Research UK, 2019).  In the western world, breast cancer follows lung cancer as 

the second biggest cause of cancer-related mortality (Fadoukhair, et al., 2015). 

On a global scale, breast cancer is the most frequently diagnosed cancer in 
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women; approximately 1.67 million women were diagnosed with invasive breast 

carcinoma worldwide, with an estimated 522,000 women dying from the disease 

in 2012 (Liu, et al., 2015). This was estimated to reach 627,000 deaths in 2018 

(Bray, et al., 2018). Prominent sites of breast cancer metastasis are the brain, 

bones and lungs (Bos, et al., 2009). These statistics necessitate research 

focussed on further genomic characterisation that nurture the growth of breast 

cancer and that may be beneficial as pharmaceutical targets; this can then be 

translated to patient-tumour-specific molecular diagnosis, partnered with a 

personalised treatment strategy in the near future. 

  

Figure 1.2. Cancer Research UK statistics illustrating that since the 1970s, breast 
cancer survival beyond 10 years has increased by half (statistics taken from Cancer 
Research UK, 2019). 

1970s	
	
	
	
	

Present	

Survival	beyond	10	years	
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1.1.3	Breast	Cancer	Risks	

The risk factors associated with the growth of breast tumours are multifactorial. 

Primarily, inherited genetic variants have been identified as conferring a greater 

susceptibility to breast cancer in patients; these patients have a hereditary 

predisposition, and are considered to be high-risk, thus benefit greatly from 

screening and regular follow-up appointments. Notable genetic loci contributing 

to an increased familial risk are the high-penetrance BRCA1 and BRCA2 

mutations on chromosome 17 and 13 respectively, responsible for disturbances 

in DNA damage and repair mechanisms (Vogelstein, et al., 2013). Other rare, yet 

high-penetrance genes include PTEN, CDH1, STK11, and moderate-penetrance 

genes such as CHEK2, ATM, and PALB2, also screened in medical genetic 

practice (Antoniou, et al., 2014; Michailidou, et al., 2013; Shiovitz, & Korde, 2015; 

van der Groep, et al., 2011). Although mutations in these genes result in a high-

risk of developing breast cancer in the individual, within the general population, 

these only account for a small proportion of cases.  

Yet, genome-wide association studies (GWAS) have now identified a number of 

breast cancer susceptibility variants (single-nucleotide polymorphisms, SNPs) 

that are of small risk individually, but may be grouped together to confer a 

substantial combined effect. These are known as a polygenic risk score (PRS) 

and can be utilised within preventative screening strategies to stratify women 

according to their risk of breast cancer, identifying patients most likely to benefit 

from intervention (Mavaddat et al., 2019; Mina & Arun, 2019). A landmark study 

by Mavaddat et al., (2019) reported the development and validation of subtype-

specific polygenic risk scores for breast cancer, especially for the improved 

prediction of ER-negative breast cancer. The study identified a PRS of 313 SNPs 

significantly more predictive of risk (accounting for subtype, age and family 

history) than previously reported risk scores (Mavaddat et al., 2019).  

There are many hormonal and reproductive risk factors also associated with 

breast cancer, such as early menarche, late menopause, nulliparity and breast 

feeding. Early menarche in women and late menopause is associated with an 

increased breast cancer risk due to greater exposure to associated hormones 

(oestrogen and progesterone). However, earlier full term pregnancy in younger 

women lowers the risk of breast cancer. Women whom have not carried a 
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pregnancy nor given birth are at a slightly increased risk of developing breast 

cancer after 40 years of age, but not at younger ages. 

Other exogenous and lifestyle factors play a large role in the risk of developing 

breast cancer. Over the years, a number of studies have found an association 

between alcohol intake and increased breast cancer risk; compared to women 

who did not drink alcohol, the relative risk of breast cancer increased by 

approximately one third. This risk increased as consumption increased 

(McDonald et al., 2013). Overall, evidence supports that lifetime moderate 

alcohol intake increases the risk of breast cancer (odds ratio [OR] = 2.13) (Terry 

et al., 2006). 

Smoking and alcohol consumption have been shown to be strongly associated 

with DNA methylation in breast tumourigenesis as well as in a range of other 

cancers (Catsburg, et al., 2015; Christensen, et al., 2010; Passarelli, et al., 2016). 

Smoking is well known to cause direct and indirect DNA damage and instability, 

as well as changes in DNA damage responses, and it is estimated that heavy 

smoking for 40 years can cause up to 1,000 DNA aberrations in all cells 

(Alexandrov, et al., 2016; Lord, & Ashworth, 2012). However, in spite of this, most 

prospective cohort studies have found no causal association between both active 

or passive smoking and incidence of breast cancer, highlighting little to no 

relationship between smoking and breast cancer risk (OR = 1.00) (Luo et al., 

2011; Prescott et al., 2007; Lash & Aschengrau, 2002; Ahern et al., 2009). 

Another exogenous lifestyle factor specifically relating to breast cancer risk is the 

prolonged use of oral contraceptives, which have been proven to confer an 

increased risk of developing oestrogen receptor positive (ER+) breast cancer, 

depending on the variable formulation of the pill (Beaber, et al., 2014; Mørch, et 

al., 2017). Obesity and diet can also have an effect on breast cancer risk, as 

dietary changes have been known to prevent approximately one-third of cases 

(Brennan, et al., 2010).  

DNA damaging agents can also increase the risk of breast and other solid 

tumours. These agents can execute damage through occupational exposure, 

chemical warfare, or via genotoxic and mutagenic chemotherapeutic drugs. 

These can affect DNA repair pathways such as base excision and mismatch 

repair. Alkylating agents, such as melphalan, are used in the treatment of solid 
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tumours and have the potential to give rise to secondary cancers. It is for this 

reason that treating patients with ineffective chemotherapy is to be avoided, as 

cytotoxic damage can occur in other tissues. These risks bombard DNA with 

damage over time, causing somatic aberrations that accumulate and eventually 

have the potential to drive carcinogenesis.  

1.1.4	Classification	of	Breast	Cancer	

Over the years, the classification of breast cancer has advanced from being 

focussed on morphological features, to being consolidated with specific 

biomarkers and clinical features. As previously mentioned, breast cancer was 

traditionally categorised into three main subtypes – HR(ER/PR)+, HER2+ and 

TNBC. This classification has now been superseded by the ‘intrinsic subtypes’ 

taxonomy, first classified in 2000, and was developed to better reflect the gene 

expression and molecular patterns of the tumours (Perou, & Børresen-Dale, 

2011). A summary of this is shown in Table 1.1 and Figure 1.3 encompassing the 

five intrinsic subtypes known as Luminal A, Luminal B, HER2-enriched, Claudin-

low and Basal-like (Eroles, et al., 2012). 

Luminal tumours are known to express hormone receptors (ER/PR) and are 

(broadly speaking) divided into types A (ER+, PR+, HER2-) and B (ER+, PR+, 

HER2+). Luminal tumours hold the status of the most common of the breast 

cancer subtypes, with Luminal A representing the majority. Although generally 

prognosis is good for these tumours, Luminal A tumours have a significantly 

better prognosis than Luminal B; these patients can be treated with and respond 

well to endocrine therapy in most cases, such as tamoxifen, as traditional 

chemotherapy can be less effective. Altered gene expression patterns of these 

tumours are commonly associated with ER activating genes (Dai, et al., 2015). 

Tumours within the HER2-enriched subtype over-express the HER2 (ERBB2) 

protein only and are ER and PR negative. Although these tumours are generally 

sensitive to some chemotherapies, they were traditionally known to be associated 

with a poorer prognosis than Luminal tumours due to their high risk of relapse 

(Dai, et al., 2015). However, after the approval of trastuzumab in 2001, advances 

in the therapeutics used to treat these tumours have greatly improved the clinical 

management and survival outcomes of patients diagnosed with HER2+ breast 

cancer (Ortiz et al., 2019).  
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As the name suggests, TNBC lacks the expression of hormone (ER/PR) and 

HER2 receptors, and because of the lack of evident target, is linked with an 

extremely poor prognosis. Its aggressive nature has attracted much research 

interest due to its lack of available molecular treatment targets (Karagoz, et al., 

2015). Lehmann, et al., (2011) has classified TNBC into six further subtypes 

displaying distinctive gene expression patterns – basal-like 1 and 2, 

immunomodulatory, mesenchymal, mesenchymal stem-like, and luminal 

androgen receptor. Further characterising these tumours illustrates the 

complexity of breast cancer, and the notion that each subtype requires its own 

treatment strategy despite similar phenotypes, due to the unique gene expression 

patterns harboured by each individual tumour. 

More recently in 2012, the METABRIC study, integrating genomic and 

transcriptomic sequencing, as well as long-term clinical follow-up, characterised 

2000 primary breast tumours and identified 10 molecularly distinct subtypes, 

known as the ‘integrative clusters’ (Table 1.2) (Curtis, et al., 2012; Dawson, et 

al., 2013a). This ever expanding and scrutinised system of classifying breast 

cancer illustrates the complexity and heterogeneity of the disease, and 

exemplifies the importance of a specific classification system to aid the 

administration of efficient treatments in patients. 
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Table 1.1. A summary of the intrinsic subtype taxonomy and current molecular markers, adapted from Eroles et al. (2012). 
 

Subtype Frequency Receptor 
Status 

Proliferation 
Genes 
Present 

Origin Associated 
Genes 

TP53 
Mutation 

Histologic 
Grade Prognosis 

Basal-
like 10-20% ER- PR- 

HER2- High Myoepithelial 
breast cells 

KRT5, CDH3, 
ID4, FABP7, 

KRT17, 
TRIM29, 
LAMC2 

High High Poor 

HER2-
enriched 10-15% ER- PR- 

HER2+ High Epithelium of 
breast duct 

ERBB2, 
GR67 High High Poor 

         

Normal-
like 5-10% ER-/+ HER2+ Low Adipose 

tissue 

PTN, CD36, 
FABP4, 

AQP7, ITGA7 
Low Low Medium 

Luminal 
A 50-60% ER+ PR+ 

HER2- Low 

 

ESR1, 
GATA3, 
KRT8, 

KRT18, XBP1 

Low Low Good 

Luminal 
B 10-20% ER+/- PR+/- 

HER2+/- High 

Luminal 
epithelium of 

mammary 
ducts 

FOXA1, TFF3 Medium Medium Medium 

Claudin-
low 12-14% ER- PR- 

HER2- High - CD44, SNAI3 High High Poor 

 Table 1. A summary of the intrinsic subtype taxonomy and current molecular markers, adapted from Eroles et al. (2012). 

Figure 1.3. The mRNA expression of ER and HER2 across the breast cancer intrinsic subtypes, Eroles et al. (2012). 
 
Figure 3. The mRNA expression of ER and HER2 across the breast cancer intrinsic subtypes, Eroles et al. (2012). 
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Subtype	 Receptor	Status	 Genomic	Instability	 Associated	Mutations	 Pathobiology	 Prognosis	

IntClust	1	 ER+,	Luminal	B	predominantly	 High	

Amplification	of	17q23	
locus	

High	prevalence	of	GATA3	
mutations	

High	proliferation	 Intermediate	

IntClust	2	 ER+,	Luminal	A	and	B	 High	 Amplification	of	11q13/14	
Aggressive	

pathophysiology	
Worst	prognosis	of	all	

ER+	tumours	

IntClust	3	 Mainly	Luminal	A	 Low	 	 Small	low-grade	tumours	
Good,	best	of	all	

clusters	

IntClust	4	
ER	+/-	

Can	be	triple	negative.	
Mix	of	the	intrinsic	subtypes	

Low	 	 	 Favourable	outcome	

IntClust	5	
ERBB2	amplified	

HER2+/ER-	
Luminal	ER+	

Intermediate	 	
Presents	at	younger	age	
High	grade	tumours	

Poor	

IntClust	6	 ER+,	Luminal	A/B	 High	
Amplification	of	8p12	locus	

Low	levels	of	PIK3CA	
mutations	

	 Intermediate	

IntClust	7	 ER+/PR+,	Luminal	A	 Intermediate	 	
Low	grade	well	

differentiated	tumours	
Good	

IntClust	8	 ER+,	mainly	Luminal	A	 	
1q	gain/16q	loss.	High	

PIK3CA,	GATA3	mutations	
Low	grade	well	

differentiated	tumours	
Good	

IntClust	9	
Mix	of	intrinsic	subtypes	
Mainly	ER+	Luminal	B	

High	 Increased	TP53	mutations	 	 Intermediate	

IntClust	10	
Mostly	triple	negative	
Basal-like	tumours	

Intermediate	 High	TP53	mutations	
Presents	at	young	age	

High	grade,	poor	
differentiated	

High	risk	pre-5	years	
Good	post-5	years	

Table 1.2. A summary of the integrative cluster taxonomy as proposed by Dawson, et al., (2013).   
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1.1.5	Current	Diagnostics	&	Therapeutics		

At present, subtypes are diagnosed on the basis of immunohistochemical 

analysis of a tissue biopsy, and in situ hybridisation to detect a single gene 

amplification if results are equivocal (Hansen, & Bedard, 2013). However, it could 

be argued that this basic diagnosis using a panel of so few histopathological 

markers is not reflective of most tumour types and treatment requirements. 

Hence, there is a requirement for more widely available clinical molecular 

screening programmes and molecular diagnostic testing to shed light on patient 

specific genetic signatures that can be more efficiently targeted.  

Although systemic therapy for the treatment of breast tumours is determined by 

subtype, few approved drugs have emerged in the past few decades in the hope 

of specifically targeting biomarkers of breast cancer. Those demonstrating 

success include endocrine therapies, aromatase inhibitors, or tamoxifen directed 

at treating ER+ breast cancers, and the anti-HER2 class of monoclonal 

antibodies (such as trastuzumab or pertuzumab), and tyrosine kinase inhibitors 

(TKI’s, such as lapatinib), used for treatment of HER2+ tumours. Trastuzumab 

was the first therapy to specifically target HER2+ metastatic tumours, and is 

considered a leading example of using patient genomic profiles to direct 

treatment decisions (Fadoukhair, et al., 2015; Hansen, & Bedard, 2013).  

While targeted treatments such as tamoxifen and trastuzumab arose to improve 

the survival of patients with hormone receptor positive and HER2+ cancers 

respectively, these were initially met with unexpected inefficiency in a large 

number of patients who were thought to possess the corresponding molecular 

markers for these treatments (Rexer, & Arteaga, 2013; Vu, & Claret, 2012). Some 

patients with HER2+ breast cancer fail to respond to trastuzumab and ultimately 

develop progressive disease, likely due to the manifestation of a resistant 

phenotype. However, new strategies have been developed to circumvent the 

different acquired therapeutic resistance mechanisms observed in some HER2+ 

tumours; for example, utilising a combination of PI3K inhibitors and cyclin D1-

cyclin-dependent kinase 4/6 (CDK 4/6) inhibitors alongside anti-HER2 agents, to 

target the alterations that lead to hyperactivation of downstream signalling in the 

PI3K/AKT/mTOR axis, which otherwise instigate and perpetuate resistance to 
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HER2 targeting therapies (Goel et al., 2016; Ortiz et al., 2019; Vernieri et al., 

2019).  

TNBC is treated with often ineffective traditional or adjuvant chemotherapy, 

however recent efforts to produce targeted therapies has brought about the 

advent of poly (ADP) ribose polymerase inhibitors (PARP) (for BRCA1 tumours 

and TNBC), epidermal growth factor receptor inhibitors (EGFR) and 

antiangiogenic agents (Karagoz, et al., 2015). Despite this, adjuvant 

chemotherapy is still administered to approximately 60% of all early-stage breast 

cancer patients, with only up to 15% of these patients benefitting (Reis-Filho, & 

Pusztai, 2011). It is important to only treat tumours likely to be responsive to 

genotoxic chemotherapy, as all patients are at risk of the highly toxic side effects 

(Reis-Filho, & Pusztai, 2011).  

1.1.6	The	Problem	with	Current	Therapies	

It is now accepted that breast cancer as a disease requires the interplay of 

multiple signalling pathways that are capable of sustaining proliferative signalling 

and evading apoptosis, among the other hallmarks of cancer (Hanahan, & 

Weinberg, 2011). These cause distinct tumours in each patient likely to benefit 

from a more personalised treatment approach. Factors such as nodal status or 

tumour burden are no longer thought to be the only determinants of treatment 

response, but rather the molecular characteristics of the tumour (Reis-Filho, & 

Pusztai, 2011). However, current therapies are not patient specific and are 

usually targeted at the ‘average’ population rather than smaller, targeted groups 

of patients with certain biomarkers or molecular signatures. Nevertheless, before 

new pharmaceuticals can be designed and administered to patients for a more 

‘personalised’ approach, new and robust molecular markers need to be identified, 

thoroughly examined and validated (Eroles, et al., 2012).  

Ali, et al., (2016) investigated metastatic TNBC, a subtype for which there is no 

effective targeted therapy after conventional platinum-based and anthracycline 

chemotherapies become ineffective. This study used in-depth genomic profiling 

of the patient’s tumour to identify a commonly mutated anti-apoptotic gene, 

MCL1, in TNBC, which then dictated personalised treatment using sorafenib and 

vorinostat (preclinical evidence demonstrated the efficacy of these drugs for 

TNBC with MCL1 amplification) (Ali, et al., 2016). 



	

15	
	

This study highlights that despite the failure of many rounds of differing 

conventional therapies, treatment based on the patient’s tumour genetic profile 

prevailed and extended survival. Therefore, characterising further subtype-

specific genetic markers driving breast cancer tumorigenesis is extremely 

valuable in developing a greater selection of targeted drugs to aid in designing 

tailored treatment regimens for patients. This has the potential to limit the amount 

of toxic chemotherapeutic agents administered to patients who may have 

tumours resistant to conventional therapies.  

However, the differing molecular characteristics per subtype is not the only 

challenge. The dissemination of cancer cells that migrate away from the primary 

tumour via the lymphatic and circulatory system, and metastasise as secondary 

tumours in other regions of the body, is a main cause of death in women (Braune, 

et al., 2018). Another significant hurdle for researchers and clinicians alike is 

multidrug resistance (MDR); in these cases, tumour cells develop the ability to 

acquire resistance and escape the cytotoxic effects of drugs and 

chemotherapeutic agents, leading to increased cell survival and thus resulting in 

ineffective treatment and inevitable relapse (Dewangan, et al., 2017).  

Cancer stem cells (CSCs) also present another prominent challenge to current 

treatment strategies. These cells have multiple characteristics that allow them to 

evade cytotoxic treatment. Firstly, their ability to self-renew, regenerate and 

differentiate permits the accumulation of genetic mutations. Secondly, these cells 

possess a quiescent nature, which is protective against conventional treatments 

that target rapidly diving cells. In addition, their capacity to self-renew gives rise 

to the production of multiple heterogeneous cancer cell lineages that make up a 

tumour (Dewangan, et al., 2017). With these challenges in mind, research efforts 

have taken a shift towards selectively targeting therapy-resistant cells and CSCs, 

by interfering with the mechanisms and signalling pathways that these cells rely 

on.  
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1.2	Breast	Cancer	Signalling	Networks	

It is well known that genetic and epigenetic changes are responsible for driving 

the development of breast cancer. These changes most often correspond to a 

signalling pathway that controls cellular functions and allows cells to 

communicate; hyperactivation or inactivation of these pathways disrupts the 

homeostasis of cells and can alter downstream signalling networks, leading to a 

cascade of disturbances and gives rise to the hallmarks of cancer (Sever, & 

Brugge, 2015).  

Frequent mutations in various parts of the PI3K pathway have been confirmed by 

many studies and represent a very relevant tumourigenic pathway in breast 

cancer (Yang, et al., 2016). Sustained proliferative signalling in breast cancer 

may also be a result of deregulated HER2 signalling in some tumours. The 

human epidermal receptors have tyrosine kinase activity which can activate 

JAK/Stat and Ras/Raf/MAPK pathways, as well as PI3K/Akt/mTOR signalling 

(Eroles, et al., 2012). Studies have also shown that Wnt/β-catenin signalling, a 

regulator of migration, differentiation and proliferation, is implicated in TNBC due 

to upregulated Wnt receptors (FZD7 and LRP6). Salinomycin has been identified 

as an inhibitor of Wnt/β-catenin signalling (primarily expression of LRP6) and a 

specific killer of CSCs in breast cancer, lending itself to be a potential treatment 

option in the future (King, et al., 2012). Notch signalling has also been implicated 

in breast cancer, with Notch1 being shown to promote the epithelial-

mesenchymal transition, thus stimulating proliferation and subsequent 

metastasis (Bolós, et al., 2013). Other less characterised pathways, such as the 

stress-induced JUN-kinase pathway has been suggested to predict 

chemosensitivity of ER+ tumours via mutations in MAP3K1 and MAP2K4 

(Hansen, & Bedard, 2013; Xue, et al., 2018)   

Knowledge of deregulated signalling pathways can aid treatment development or 

selection for breast cancer patients. For example, for patients with HER2+ breast 

cancer that are resistant to trastuzumab, a monoclonal antibody able to 

downregulate HER2 from the surface of the cell, there are multiple known 

mechanisms whereby cancer cells can escape the action of this drug. The PI3K-

Akt pathway is now known to aid in the anti-tumour effect of trastuzumab. Hence 
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in these cases, a PI3K inhibitor may be administered alongside trastuzumab for 

greater treatment efficiency (Rexer, & Arteaga, 2013).  

There are many emerging pharmaceutical agents targeting the numerous 

aberrant signalling pathways in breast cancer (Table 1.3). The quantity of 

dysfunctional pathways is further evidence of the complex heterogeneity in breast 

cancer, and demands greater characterisation of the aberrant genes perturbing 

these transduction pathways. Many large-scale sequencing projects such as The 

Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 

(ICGC) have been undertaken, revealing the complexity of the full molecular 

profile of breast cancer. The most frequently mutated genes are TP53 and 

PIK3CA (36-37%), but there are many other persisting gene mutations that occur 

at much lower frequencies which may prove to be significant targets for drugs 

(Hansen, & Bedard, 2013).  

 

 

 

   

Pathway	 Targets	 Agents	

PI3K/Akt/mTOR	
mTORC1	

Isoform-selective	PI3K	inhibitors	
Dual	mTOR/PI3K	inhibitiors	

Everolimus,	temsirolimus,	rapamycin	
GDC-0023	
XL765	

ErbB/HER2	 EGFR	inhibitor	
HER2	inhibitor	

Erlotinib,	gefitinib,	cetuximab	
Pertuzumab,	trastuzumab-DM1	

MAPK	 MEK1/2	inhibitors	 Binimetinib,	cobimetinib	

FGF	 Multi-targeted	FGFR	inhibitors	 Dovitinib,	lucitanib	

Notch	 Gamma-secretase	inhibitor	 PF-03084014	

PARP	 PARP1/2	 Olaparib,	niraparib	

Wnt	 NOP14,	BKCa	channels,	Emilin2,	
WISP,	NRBP1,	TRAF4,	Wntless	 Salinomycin	

 

  

Table 1.3. Current aberrant signalling pathways identified to be involved in breast 
cancer and the agents in development to target them. Adapted from Fadoukhair et al., 
(2015) and Liang, et al., (2016). 
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1.2.1	Wnt	Signalling	in	Breast	Cancer	

Wnt signalling is a highly important network for development, and is renowned 

for its involvement in cancer; this pathway is particularly considered a hallmark 

of colorectal cancer (Basu, et al., 2016; Howe, & Brown, 2004). The pathway is 

divided into the canonical (β-catenin dependent) and non-canonical, (β-catenin 

independent) pathway – for the purpose of this thesis, the canonical Wnt 

signalling pathway will be of focus.   

The main purpose of Wnt signalling in normal cells is to regulate embryonic 

development, adult homeostasis and tissue morphogenesis, chiefly using β-

catenin to transduce Wnt signals from the extracellular membrane, into the 

nucleus from the cytoplasm (Figure 1.4). This pathway must be strictly regulated 

at each stage in the network, from ligand-receptor binding to transcriptional and 

post-transcriptional control, to maintain its finely-tuned normal activity (Zarkou, et 

al., 2018). In synergy with other pathways, such as TGF-β and Notch, Wnt 

signalling maintains cellular homeostasis by regulating migration, differentiation, 

proliferation and apoptosis; it has also been reported that Wnt signalling 

encourages self-renewal in stem cells (Howe, & Brown, 2004; Zarkou, et al., 

2018).    

Therefore, it is expected that abnormal activation of the Wnt pathway is 

responsible for tumour initiation and growth, motility and migration, and invasion, 

as well as playing an integral role in the epithelial-to-mesenchymal-transition 

(EMT) in cancer (Anastas, & Moon, 2013). In the past few decades, activated 

Wnt signalling involving β-catenin has become increasingly studied in breast 

cancer, and elevated β-catenin levels are commonly observed in most clinical 

breast tumour tissue samples (Braune, et al., 2018; Howe, & Brown, 2004; Jang, 

et al., 2015). Additionally, overexpression of many Wnt genes, such as WNT1, 

and abnormal expression of Wnt regulators (e.g. soluble Frizzled-related protein, 

sFRP1) have been seen in mouse model breast cancers in the past (Howe, & 

Brown, 2004). While the primary molecular performers of Wnt signalling have 

been extensively studied and characterised, many aspects of the pathway remain 

elusive (Zarkou, et al., 2018).  

Additionally, when considering the increased attention received by CSCs in 

breast cancer, their regulation by the Wnt pathway is extremely promising as a 
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potential therapeutic target (Kazi, et al., 2016). Aberrant Wnt signalling is 

considered to be important in the regulation of CSC migration and self-renewal. 

1.2.2	Cancer	Stemness		

The epithelial-to-mesenchymal transition (EMT) is a mechanism harnessed in 

embryonic development and tumour progression. This process encourages 

epithelial cells to convert to mesenchymal stem cells by losing cell polarity and 

adhesion, and gaining motility and other invasive characteristics, by which tumour 

cells can migrate from primary sites and spread via blood vessels and the 

lymphathic system. In addition to this, EMT induces tumour cells with an invasive 

capacity to acquire ‘stemness’ traits, much like those seen in normal stem cells; 

these cells are known as CSCs and have the capacity to self-renew and 

differentiate into multiple lineages (previously described in Section 1.1.6) (Basu, 

et al., 2018)  

There is sufficient evidence to suggest that Wnt signalling activity involving β-

catenin increases tumourigenic potential in breast CSCs; it has been 

demonstrated by numerous studies that Wnt signalling upregulation has 

increased breast tumour metastasis, and conversely, inhibiting Wnt signalling 

suppresses breast cancer metastasis in mice models (Jang, et al., 2015; Chen, 

et al., 2011). CSCs have become an attractive research area for potential 

targeting, and the Wnt signalling pathway may be the most fruitful option to 

attempt to improve clinical outcomes.  

However, the mechanisms through which the Wnt pathway contributes to CSC 

function have not fully been elucidated, and it has been suggested that the most 

viable starting point would be Wnt target gene investigation, in genes such as 

ASCL2, LGR5, MYC, CCND1, and CD44 (Kim, et al., 2017). One such target 

gene, and acknowledged CSC marker is cluster of differentiation 44 (CD44); 

CD44 is a cell adhesion molecule induced by EMT and has been directly linked 

with the acquisition of CSC traits. Overexpression of CD44 is associated with 

advanced stages of breast cancer development and has been directly linked to 

enhancing Wnt signalling in tumour cells (Basu, et al., 2018; Kim, et al., 2017). 

Another example of a Wnt target gene is Achaete-scute Complex Like-2 

(ASCL2), a transcription factor implicated in colorectal cancer. This gene has 

been shown to work as a transcriptional switch within the Wnt pathway, activating 
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genes that are crucial for the maintenance of stem cell identity and persistence 

of CSCs (Kim, et al., 2017).   

1.2.3	Achaete-scute	Complex	Like-2	(ASCL2)	in	Cancer 

Achaete-scute Complex Like-2 (ASCL2) (11p15.5) belongs to a conserved family 

of transcription factors containing a basic helix-loop-helix (bHLH) domain, which 

activates transcription by dimerising through this basic domain and binding to the 

E-box of target genes (Jubb, et al., 2006). In the normal state, ASCL2 is involved 

in the development and maintenance of trophoblasts in the placenta, neuronal 

precursor determination in both the central and peripheral nervous system, as 

well as controlling the fate of intestinal crypt stem cells (Hu, et al., 2015; Tian, et 

al., 2014). Expression of ASCL2 has been found in the placenta and at the base 

of small and large intestinal crypts, but is generally low or even undetectable in  

other normal tissues (Tian, et al., 2014; Zhongfeng, et al., 2018). 

ASCL2 is a key intestinal stem cell marker and a known downstream target of 

Wnt signalling (Figure 1.4), activated by WiNTRLINC1 (van der Flier, et al., 2009; 

Giakountis, et al., 2016). The gene is thought to act as a Wnt dependant and 

responsive transcriptional switch, regulated by an autocrine loop, that defines 

stem cell (LGR5+) fate in the intestine by acting in cooperation with β-catenin and 

Tcf (Hu, et al., 2015; Schuijers, et al., 2015). However, recently ASCL2 has been 

seen to be involved in tumour progression; due to the loss of imprinting at the 

11p15.5 locus (where ASCL2 resides) being a common occurrence in colorectal 

cancer (CRC), this prompted the investigation of ASCL2 in CRC, leading to the 

findings that this gene is upregulated in colorectal tumours (Jubb, et al., 2006). 

Since, a number of groups have shown that ASCL2 overexpression is seen in  

colon and intestinal tumours (Giakountis, et al., 2016; Jubb, et al., 2006; 

Schuijers, et al., 2015). Not only has ASCL2 been found to be upregulated in 

these tumours, but its activity within the Wnt pathway appears to be disturbed; 

this disturbance is thought to lead to the overexpression of ASCL2 in CRC. 

As well as expression in primary CRC, Stange, et al., (2010) found that ASCL2 

is a likely signature affecting CRC metastasis to the liver; ASCL2 overexpression 

leads to changes in stem/progenitor cell hierarchy (Kim, et al., 2017). Additionally, 

it is thought that this gene can potentially affect the behaviour of these metastatic 

tumours by altering the potential of stem and progenitor cells, subsequently 
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causing self-renewal as opposed to differentiation (Tian, et al., 2014). ASCL2 

overexpression has previously been found in a number of other cancers such as 

lung squamous cell (Hu, et al., 2015), gastric (by induction of EMT) (Kwon, et al., 

2013; Zuo, et al., 2018) and osteosarcoma (Liu, et al., 2016), conferring a poor 

prognosis. A recent study by Juarez, et al., (2018) found that Ivermectin, an 

antiparasitic agent being explored as an anticancer drug, interacts with the Wnt 

pathway and supresses ASCL2, and has the ability to target CSCs. It was also 

discovered that cells overexpressing ASCL2 show a resistance to 5- fluorouracil 

in gastric cancer, a drug used to treat many solid tumours including breast cancer 

(Kwon, et al., 2013; Kim, et al., 2017).  

In 2014, a study published by Conway, et al., (2014) used DNA methylation 

profiling and clustering analysis to reveal a group of hypermethylated 

developmental genes, including ASCL2, in hormone receptor positive breast 

cancers; ASCL2 was one of many genes showing large differential methylation, 

reduced expression, and a predictor of poor prognosis in patients. This study 

showcased evidence of an association between epigenetic profiles such as DNA 

methylation and breast tumour classification. Other than this, ASCL2 had not 

been investigated specifically or thoroughly in breast cancer when the present 

study began. Since, an in silico meta-analysis of the ASCL gene family was 

published in 2017 (Wang, et al., 2017), revealing that ASCL2 demonstrated 

significantly increased expression in breast, stomach, head and neck, ovarian 

and testicular cancers, as well as exhibiting low expression in melanoma, 

sarcoma, prostate and neurological cancers. In terms of breast cancer 

specifically, a study by Xu, et al., (2017) found that ASCL2 was expressed highly 

in breast cancer cells compared to normal epithelial cells, and expression 

appeared to correlate with tumour size, growth, and metastasis; the study also 

suggested that ASCL2 may be used as a marker to assess the risk of relapse in 

cancers. In 2018, Wang, et al., (2018) used Gene Ontology (GO) functional 

enrichment analysis and identified ASCL2 as one of many differentially 

expressed genes in BT474 breast cancer cells compared to MCF10A cells.  

Despite the study by Xu, et al., (2017) being the first to document the clinical 

relevance of ASCL2 in breast tumours, experimental analysis was extremely 

scarce and relied on immunohistochemical staining alone, with small sample 

sizes; no elucidation of the function of ASCL2 was explored. Although there have 
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been other recent studies hinting at the involvement of ASCL2 in breast cancer, 

none of these have led an in-depth investigation into the role of ASCL2 in breast 

tumourigenesis, or integrated multiple layers of examination.  

From the studies mentioned, it is clear that interest in ASCL2 in breast cancer is 

peaking in the scientific community and research in this area is extremely 

prospective, however, functional investigation or further exploration of this gene 

has not been pursued by any of these studies to date. Still, these studies not only 

provide further rationale for the selection of ASCL2 as a candidate gene in this 

study, but also provide evidence that this area of research is a current field of 

interest requiring knowledge contribution, and has given some new insight that 

can be built upon within this project.  

Therefore, these factors pave the way for investigation into the function of the 

ASCL2 gene in breast cancer, particularly within the Wnt signalling pathway. Wnt 

signalling is considered to be important in the regulation of CSC migration and 

self-renewal, and taking into account what is already known about the role of 

ASCL2 in development and defining stem cell fate, this may be a link that needs 

exploring. 
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Figure 1.4. Proposed signalling mechanism by which ASCL2 works within the Wnt 
signalling pathway to affect the expression of Wnt target genes and advance the 
growth of cancer. Diagram adapted from Schuijers, et al., (2015) & de Sousa, et al., 
(2011). 

Dishevelled GSK 

Axin 

APC 

TCF ASCL2 

Frizzled 

LRP 

β-cat 

β-cat 

Wnt	target	genes	–	 
C-MYC,	LGR5,	CCND1,	
CD44,	ASCL2 

á Tumour	growth	
á Invasion	
á Migration	
á Stemness	
â		 Apoptosis	 

ASCL2 

+ 
Positive	 
Feedback 
Loop 

Wnt 



	

24	
	

1.3.	Cancer	Genetics,	Biomarkers	&	Gene	Discovery	

There has been great progress in identifying many germ-line mutations, such as 

BRCA1/2, which have given the ability to detect susceptibility, predict prognosis 

and dictate patient stratification. However, the success of these genes is 

dampened by the fact that hereditary mutations are only responsible for 

approximately 5% of breast cancers. Therefore, the remaining 95% are sporadic 

and instigated by an accumulation of somatic mutations (van der Groep, et al., 

2011).  

Somatic mutations occur in all dividing cells due to exogenous (environmental 

factors such as radiation) or endogenous (faults in DNA replication) mutagens. 

These types of mutations are acquired and may be classed as a ‘driver’ or 

‘passenger’. Solid tumours typically can contain up to thousands of genetic 

aberrations and alterations, but only a handful of these are considered driver 

mutations (Tomasetti, et al., 2015). Driver mutations allow cells a selective growth 

advantage and are considered positively selected in cancer cells; these alter 

critical cellular processes leading to the hallmarks of cancer (Gonzalez-Perez, 

2016). In contrast, passenger mutations may arise within the cell, but do not give 

the cell any growth advantage (Greenman, et al., 2007). A driver gene therefore, 

is a gene containing driver mutations (Tomasetti, et al., 2015).  

Vogelstein, et al., (2013) estimated that an average tumour contains two to eight 

driver gene mutations. These driver mutations are thought to only provide a small 

growth advantage to cells, which eventually build up over many years and result 

in billions of additional cells. Hence, it follows that the number of these somatic 

mutations is correlated to age. In this sense, sequential somatic mutations 

occurring during tumourigenesis can be thought of as an ‘evolutionary clock’ 

(Vogelstein, et al., 2013). 

However, despite the exact number of driver gene mutations required for breast 

tumour initiation and progression being unknown, Tomasetti, et al., (2015) have 

shown that for the development of lung and colon adenocarcinomas, only 3 

mutations are needed. This has important implications for driver gene 

identification highlighting that although there is unlikely to be one single gene 

responsible, there may only be a small handful which can be taken advantage of 

for targeting. 
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Although, hereditary mutations and mutations in driver genes are not the only 

initiators of cancer development. Epigenetic alterations are also crucial for the 

pathogenesis of breast cancer. Despite all cells holding essentially the same 

genetic information, the variation observed between cell types and cellular 

functions is a result of differences in gene expression. Epigenetics in its broadest 

and simplest form therefore describes the changes in gene expression and 

activity that are not encoded by DNA (Gibney, & Nolan, 2010; Byler, et al., 2014). 

There are a number of ways in which gene expression is controlled via epigenetic 

mechanisms including DNA methylation, histone modification and microRNA 

expression (Gibney, & Nolan, 2010). Epigenetic alterations, such as dysregulated 

microRNAs, can therefore affect the expression of tumour suppressor or 

oncogenes and result in tumourigenic growth (Byler, et al., 2014).  

MicroRNAs are small non-coding RNAs and their involvement in the regulation 

of gene expression has been established in breast cancer, among other cancers, 

for some time. Iorio, et al., (2005) revealed that a number of miRNAs were 

aberrantly expressed in breast cancer compared to normal tissue, namely mir-

125b, mir-145, mir-21, and mir-155, with a number of miRNAs being associated 

with clinical parameters in patients; these include hormone receptor status, stage, 

vascular invasion and proliferation index. Since, it has been recognised that 

microRNAs also play a role in treatment resistance (Rodriguez-Barrueco, et al., 

2017). 

1.3.1	The	Importance	of	Biomarker	&	Gene	Identification	

Identifying key genes in breast cancer, as well as in other cancers, is pivotal in 

revealing crucial information regarding tumour biology, such as which pathways 

are disturbed during tumourigenesis. By identifying the genes responsible for 

driving and altering oncogenic signalling pathways, these can be further explored 

and may be used to gather information on individual tumours during diagnosis in 

order to enhance clinical decisions. Additionally genes within a pathway can be 

potentially targeted, or used to predict and tailor response to therapy (Gatza, et 

al., 2014).  

The important implication that driver genes can be targeted for therapeutic 

development is supported by a study by Rubio-Perez, et al., (2015) highlighting 

that in 4000 tumour samples across 28 tumour types, only 6% were shown to be 
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manageable using currently approved agents. This highlights a need for greater 

in-depth genetic characterisation in cancers, particularly for breast cancer 

patients where current therapies are ineffective; this is the case for many HER2+ 

cancers, where nearly half of patients exhibit resistance to trastuzumab (Esteva, 

et al., 2010). 

1.3.2	The	Current	Genetic	Landscape	of	Breast	Cancer	

It has been established that there are on average approximately 57 somatic 

mutations per breast cancer case, but only a small number of tumours have 

overlap in driver mutations, and no tumour can be considered identical at the 

genome level (Desmedt, et al., 2016; Ng, et al., 2015). It is important to note that 

depending on laboratory methods, sample selection and data analysis, many 

studies identify different sets or signatures of somatic gene mutations (Ng, et al., 

2015). However, there are still a small set of potential driver genes that are 

recurrently identified across breast cancer studies, such as ERBB2, TP53, MYC, 

PIK3CA, GATA3, CCND1, FGFR1 and MAP3KI (Desmedt, et al., 2016). Studies 

have shown that ER-positive tumours have fewer mutations than ER-negative 

tumours, which primarily affect PIK3CA. Of all of the intrinsic subtypes, HER2+ 

has been shown to have the highest mutation rates, with the most frequently 

mutated gene in HER2+ and the basal-like subtype being TP53 (Ng, et al., 2015).  

Presently, it appears that the term ‘driver gene’ can be interpreted in 2 different 

ways in the scientific literature. At its core, a ‘driver gene’ is used to define a 

mutation that gives a cell a selective growth advantage. Thus, a driver gene must 

have a driver mutation. However, some recognised driver genes do not possess 

a mutation and enhance tumourigenicity via changes in expression by epigenetic 

alterations. Although both mutated or over/under expressed genes can still drive 

the neoplastic process and can therefore be regarded as a driver gene, this 

terminology is vague. Vogelstein, et al., (2013) suggest clarifying this by 

categorising driver genes as a ‘mut-driver’ or ‘epi-driver’. Epi-drivers can 

therefore be considered to be aberrantly expressed in tumours but not 

necessarily mutated (Vogelstein, et al., 2013). 

Gatza, et al., (2014) used gene expression microarray data and a panel of gene 

expression signatures to examine patterns of pathway activity to identify specific 

DNA amplifications and genes within these that represent key drivers. This study 
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identified 8 genes (FGD5, METTL6, CPT1A, DTX3, MRPS23, EIF2S2, EIF6 and 

SLC2A10) amplified only in patients with proliferative luminal breast cancers, a 

subtype with few therapeutic options. Liu, et al., (2015) have also identified 

candidate driver mutations in the luminal subtype, revealing mutations in BRAF, 

GNAS, IDH1 and KRAS, by sequencing hotspot regions from cancer related 

genes. 

A study by Lawrence, et al., (2014) revealed 33 novel candidate genes related to 

the hallmarks of cancer. The authors suggest that a complete catalogue of cancer 

genes, which would be helpful for precision medicine, is still far from achievable, 

with the new number of new candidate genes continuously expanding, especially 

with increasing sample sizes. This would ultimately be useful for clinicians to 

select the optimum combination of therapies based on the disrupted pathways in 

each patients’ specific tumour. Despite this study, and numerous others 

identifying large sets of novel candidate genes in breast cancer, few of these 

candidate genes are functionally investigated to determine their role on tumour 

growth and progression. It is important that for our knowledge of genes to be 

useful, follow up studies must fully validate them and explore their potential 

drugability (Lawrence, et al., 2014). 

A comprehensive genomic, transcriptomic and proteomic analysis integrated with 

clinical data, by Michaut, et al., (2016) has confirmed that PI3K pathway 

mutations and CDH1 inactivating mutations are most frequently altered in 

invasive lobular breast carcinoma. Other mutations in HER2, MAP3K1, and 

MAP2K4 were revealed at low frequency. As can be seen from these studies, 

there is seldom complete agreement or overlap of identified driver genes across 

the different breast cancer subtypes; the variety of subtypes also make it difficult 

to obtain a generalised picture of the genes present in breast cancer. This further 

demonstrates the complexity of breast tumorigenesis and the challenge of 

identifying true driver genes, necessitating further investigation and 

characterisation. 

Other studies have put focus on the immunoglobulin superfamily genes, such as 

ALCAM, CXCR4, MUC18 and L1CAM (Li, et al., 2016). This novel study 

investigated the superfamily by integrating different levels of data (genomic, gene 

expression, protein-protein interactions). Results indicated that the majority of 
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these genes could be considered cancer drivers, or have links to drivers, thus 

show potential as breast cancer biomarkers.  

In 2016, a landmark study used whole genome sequencing and comprehensive 

bioinformatics analyses to analyse 560 breast cancers (Nik-Zainal, et al., 2016). 

Ninety-three potential driver genes (protein coding somatic mutations) were 

identified, along with 12 base substitution and 6 base rearrangement driver gene 

signatures. To date, this research has been the largest study to attempt to 

encompass the majority of somatic mutations in breast cancer, and has made 

efforts to confirm the accepted notion of each breast tumour’s genetic profile 

being individual (Nik-Zainal, et al., 2016). Despite this study gaining a general 

picture of the driving mutations in breast tumourigenesis, it is likely that subtle or 

uncommonly mutated genes still need classification. As well as this, further 

functional analysis and development of this list of 93 genes is needed to improve 

the clinical utility of this research. Smid, et al., (2016) illustrates the importance 

of functional analysis of somatic mutations by undertaking a comprehensive 

genomic and pathway analysis in breast cancer. The group found that the type 

of genetic substitution has greater impact at triggering an immune response 

against a tumour, rather than the number of mutations, as was previously 

thought. Although smaller studies and research groups are often limited on 

resources to perform such large scale and varied analysis, the trend of integrating 

multiple platforms can still be feasible on a smaller scale, for example by using 

only two or three platforms, smaller samples sizes, or by data mining from free 

public databases rather than performing all laboratory analysis in-house.  

The few driver gene mutations present in cancers in comparison to passenger 

mutations means it is difficult to investigate the function of all mutations identified 

by sequencing. In light of this, bioinformatics analysis tools have been developed 

to predict key genes and mutations, which can therefore be preferentially 

selected for functional analyses. There are two main approaches used in this 

instance, which either examine the mutation frequencies or aim to predict the 

functionality of the mutations (Pon, & Marra, 2015). Alternatively, systematic 

approaches can reveal groups of genes that are functionally related, or genes 

that are linked by a functional network or significantly enriched signalling pathway 

(Figure 1.4) (Gonzalez-Perez, 2016). 
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The molecular markers and gene expression signatures (discussed above) used 

to currently classify patients’ breast cancers, and thus predict prognosis and 

treatment course, have been used in the private clinical laboratory for some time, 

for example, OncoType DX by Genomic Health, and the ‘MammaPrint 70-gene 

prognostic signature’ by Agendia (Cronin, et al., 2007; Slodkowska, & Ross, 

2009). Furthering knowledge of the molecular heterogeneity of breast cancer can 

expand these clinical tests for greater predictive and informative power which 

could be crucial in reducing cancer mortality (Vogelstein, et al., 2013) 
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1.3.3	The	Challenges	of	Gene	Identification	in	Breast	Cancer	

The ongoing research in this field by academics and industrial laboratories 

worldwide emulates the challenge of gene identification. Despite sequencing and 

array technologies moving at a phenomenal pace, this is not matched by ‘big 

data’ handling techniques or user-friendly bioinformatics analyses. Furthermore, 

the number of bioinformatics algorithms, possible analysis pipelines and 

databases can make it difficult for researchers with little bioinformatics 

experience. This is further discussed in Section 1.5.  

Aside from technical challenges, there are many factors that cause difficulties in 

gene identification. One important thing to consider is that somatic mutations 

rarely occur at greater than 10% prevalence, meaning that most genes have a 

much lower incidence and are mutated infrequently. This is due to the fact that 

there is such an enormous and assorted range of somatic mutations occurring in 

cancer cells, that the frequency of any identified driving mutation can be 

extremely low, even if they provide cells with a significant growth advantage 

(Tomasetti, et al., 2015; Liu, & Hu, 2014). This can be seen across all breast 

cancers where only somatic mutations in TP53, PIK3CA and GATA3 appear at 

>10% incidence (The Cancer Genome Atlas Network, 2012). The overwhelming 

amount of tumour suppressor or oncogenes, and possible epigenetic changes, 

manifests a huge number of possible genotypic outcomes per tumour. An 

additional complication is that driver genes can also contain mutations that are 

not driver mutations (Vogelstein, et al., 2013).  

Despite breast tumours originating from the same mammary tissues, the different 

subtypes can be considered as molecularly different diseases with differing gene 

expression profiles and therapeutic responses. It is now accepted that these 

subtypes do not exhibit identical sets of mutations or gene expression patterns; 

it is unlikely that each subtype can be represented by a single driving gene or 

biomarker, although the pathways affected may be similar. In this sense, it seems 

that no two breast tumours are genetically the same, and thus no two breast 

cancer cell lines are the same.  

There is growing evidence suggesting that many primary breast tumours consist 

of several genetically distinct clones, rather than existing as a single entity. This 

inter and intra-tumour heterogeneity (Figure 1.5) has been demonstrated in 
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approximately two-thirds of triple negative breast cancers, particularly in basal-

like subtypes, and often means that potential driver somatic mutations are 

actually only seen in a minority of tumour cells (Ng, et al., 2015). This can also 

affect secondary tumours, with the majority of metastatic lesions varying 

significantly in their genetic profile compared to primary breast tumours.  

A single tumour consisting of different cell clones is thought to be a result of 

distinct CSC populations and tumour cell plasticity. There is now evidence that 

breast cancer cells have the ability to convert between different subtypes of the 

disease (Yeo, & Guan, 2017); a study by Jordan, et al., (2016) revealed that 

circulating tumour cells demonstrated reversible HER2 expression plasticity.  In 

light of this, it may be advantageous in the future to utilize multiple subtype-

specific therapeutic agents together to lessen the chance of resistant populations 

from remaining (Yeo, & Guan, 2017).  

Regarding inter- and intra-tumoural heterogeneity, there is currently a disconnect 

between scientific research and clinical practice (Yeo, & Guan, 2017). Progress 

within research has led to the identification of 10 distinct integrated clusters 

(discussed previously) to segregate breast tumours, however these, as well as 

PAM50 genomic testing (a 50 gene prognostic subtype classifier) (Parker, et al., 

2009) have not yet been employed in the clinical setting. Owing to intra-tumoural 

heterogeneity, diagnosis at the cellular level instead of the tumour as a single 

entity would be more beneficial (Yeo, & Guan, 2017). This is where single-cell 

technologies would be favoured in diagnosis, rather than an isolated biopsy of a 

section of the tumour which may not be reflective of the entire mass.  

Additionally, the diversity of somatic alterations found in breast tumours can 

change over time as the tumour develops (Desmedt, et al., 2016). This presents 

a challenge to researchers, as driving mutations found in single breast cancer 

samples may not be characteristic of the whole tumour. Although these complex 

factors pose challenges for gene identification in breast cancer, they may be 

useful for more long-term development and implementation of targeted medicine; 

this would ensure that future therapeutics would be based more upon the 

molecular biology of individual tumours (Ng, et al., 2015).  
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Figure 1.5. Inter- and intra- tumour heterogeneity, a prominent challenge in breast 
cancer research.    
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1.3.4	Personalised	Medicine	

When taking into account the complexity, variability and unpredictability of 

tumourigenesis, precision medicine has been the goal of cancer research for a 

number of years, and has been used for some time, e.g. ER and HER2 status. 

The aim of precision medicine is to provide a level of care for the patient that will 

yield the best clinical outcome and avoid adverse reactions, based on the 

patients’ influential profile of genetic variants and factors. Each tumour will exhibit 

different genetic and epigenetic variations, which in turn is responsible for 

different manifestations, behaviour, prognosis, and response to therapeutic 

agents. This goal is becoming seemingly more attainable due to the 

advancements in technology and research discussed in this chapter, allowing a 

patient’s particular tumour to be characterised at the clinic and then administered 

more specific and targeted drugs with greater therapeutic impact (Uzilov, et al., 

2016). As these targeted drugs have proved effective at treating patients with 

these biomarkers, efforts continue to find more of these links to be exploited, but, 

identification and drug development can be extremely complex (Uzilov, et al., 

2016). 

There are many targeted drugs for a variety of cancers, including breast cancer, 

which have been FDA approved or are awaiting approval. Some of these rely on 

an increased expression of cell surface receptors (characterised by 

immunohistochemistry) whereas others rely on genetic biomarkers. An example 

is Lapatinib, a tyrosine kinase inhibitor for HER2 overexpression in breast 

tumours, which received full FDA approval in 2010 (Mcveigh, & George, 2017; 

National Cancer Institute, 2011); A more widely used example is Herceptin 

(Mcveigh, & George, 2017). However, it is important to note that the idea of 

precision medicine does not mean individual drugs custom-made for each 

patient. Instead, drugs and treatment options are given based on a patients’ 

genetic profile and predicted response. 

A number of large studies (including those previously mentioned in this chapter) 

have worked towards using Next Generation Sequencing (NGS) for genetic 

testing to build a well-defined landscape of possible mutations in breast cancer 

to increase the capacity of personalised care. Uzilov, et al., (2016) have 

described an integrative genomic approach to aid in the clinical application of 
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precision medicine. The study performed whole exome sequencing (WES), 

targeted sequencing, panel small nucleotide (SNP) microarray genotyping, and 

RNA sequencing on matched tumour and normal samples. The results 

demonstrated that using WES highlighted a greater and more complete 

‘spectrum’ of alterations in comparison to the targeted panel sequencing. Whole 

exome sequencing also allowed investigation of variants involved in drug 

metabolism processes. 

Overall, the integrated approach of this study gave greater clarity and ‘more 

actionable alterations than several commercially available targeted cancer 

panels’, as well as providing a clinically applicable workflow. Using WES and 

RNA sequencing in this clinical study gave a more inclusive genetic profile for 

patient samples, which could be used to make therapeutic decisions, and 

identified more rare somatic mutations in some patients that were initially missed 

by targeted panel sequencing. 

There are many advantages to this type of investigation for patients. Primarily, it 

allows examination at the pathway level, of whether drivers or multiple 

components are altered consistently in the same pathways. Also, cancer panels 

only consist of already well established, characterised and common mutations; 

rarer mutations or those that are functionally documented but not yet considered 

as a driver may be missed, and may have held important clues for treatment 

determination. Additionally, this type of screening allows more accurate 

differentiation of germline and somatic mutations (and also between tumour and 

germline DNA) which can affect the patient and family. Making this distinction is 

important as it can highlight any possible alterations in DNA repair pathways that 

will determine chemotherapy response and thus dictate the dosage and drug 

toxicity administered. These responses cannot be seen with standard panel 

testing (Uzilov, et al., 2016).  

These types of studies show that NGS and integrated omic approaches are 

extremely effective and more reliable at finding ‘actionable’ genetic variants in 

cancer, and should where possible, be incorporated into clinical testing in 

comparison to techniques with much lower resolution and discovery power 

(Garraway, & Baselga, 2012). With these techniques being so readily available, 

it is now more important than ever to strive for continued identification and 
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classification of genes and pathways in breast cancer, so that these can be used 

for diagnostic purposes and to tailor treatment approaches.  

1.4.	High-Throughput	Technologies	

1.4.1	Next-Generation	Sequencing	

The development of DNA sequencing by chain termination and fragmentation 

methods was first established by Sanger and colleagues in 1977 (Sanger, et al., 

1977), and is known today as first generation Sanger sequencing. This technique 

was time consuming and required radioactive material, however was automated 

in 1987 using capillary electrophoresis and fluorochromes (Liu, et al., 2012). This 

became the predominant method of DNA sequencing, but despite being 

considered as the gold standard, still had many limitations. Firstly, the technique 

requires gels or polymers to separate the DNA fragments that are fluorescently 

labelled. The technique has low throughput so only a few samples can be 

analysed in parallel; sample preparation needs to be manual as automation of 

these steps is difficult. Cloning of the DNA fragments into bacteria is needed to 

produce larger sequences, sensitivity is also low for the detection of low-level 

mutations, even those considered to be clinically relevant, and assembly of whole 

genomes de novo is challenging (Fakruddin, & Chowdhury, 2012). 

Finally in 2004, the first draft of the human genome was successfully sequenced 

and published in its entirety (International Human Genome Sequencing 

Consortium, 2004). From this point onwards there was a call for more rapid and 

cheaper technology that addressed the limitations associated with Sanger 

sequencing. In 2005, the pyrosequencing method by 454 Sequencing™ (Life 

Technologies, Roche) was the first next-generation sequencing (NGS) 

technology to be released. By 2010, the founder of the 454 developed and 

released the Ion Torrent Personal Genome Machine (PGM™) (Thermo Fisher, 

Life Technologies) which resulted in faster, cheaper and more user friendly 

sequencing, making the cost of sequencing more accessible to independent 

laboratories; the target of the $1000 genome was reached in 2014 (van Dijk, et 

al., 2014). 

In the past decade, or the ‘omic era’, massively parallel, high-throughput DNA 

sequencing platforms have become a mainstream preference used across 
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academic and industrial laboratories and has transformed genomic and 

transcriptomic research. The advent of bench-top NGS platforms has improved 

time consumption during sequencing, making the technology much more 

translatable to clinical use (Hansen, & Bedard, 2013).  

To utilise this potential offered by such significant shifts in the capability of 

technology, the UK’s landmark 100,000 Genomes Project was initiated in 2013 

by Genomics England. The project aimed to sequence 100,000 whole genomes 

from the UK National Health Service (NHS) patients by 2017. Ultimately, the goal 

of this large-scale and ambitious project was to transform clinical practice using 

genetic information for rare diseases and cancers, and to drive change such that 

WGS is established and adopted as part of routine assessment and care 

(Turnbull et al., 2018).  

1.4.2	Whole	Exome	Sequencing	

Depending on the requirements of sequencing, it may be practical or cost-

effective to carry out whole genome sequencing (WGS). Alternatively, a more 

distinct or targeted region of the genome may be required. In this instance, and 

is the case in the majority of clinical studies, it may be beneficial to use whole 

exome sequencing (WES) which only sequences the protein coding region (1-

2%) of the genome, but is still able to identify a wealth of single nucleotide 

polymorphisms (SNPs) and small insertions and deletions (INDELS). Moreover, 

almost 85% of potential disease causing aberrations are incorporated into this 

minority (van Dijk, et al., 2014).  

One disadvantage of WES is that it doesn’t investigate the impact that non-coding 

alleles might have on diseases. WES is sometimes criticised as sequences other 

than exons can also be very important in disease, e.g. non-coding RNA such as 

microRNA, and the controversially termed ‘junk-DNA’. A particular challenge 

facing WES is defining the exome and which sequences are rightly protein coding 

in the human genome, as our knowledge of protein coding exons is currently 

unfinished. Although currently, WES is a very economic and prolific option for 

gaining a vast amount of information at a reasonable cost (Bamshad, et al., 

2011).  
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1.4.3	Microarrays		

Prior to NGS for cancer genomics was the production and utilisation of DNA 

microarrays, which continue to be used for gene expression (mRNA) analyses, 

especially in cancer research to gather information on potential transcriptomic 

targets and markers. Gene expression microarrays offer a broad view of the 

entire transcriptional activity in a sample (Slonim, & Yanai, 2009). Other 

applications include assessment of gain or loss of genetic material, DNA 

aberration profiling to identify cancer causing genes, SNP arrays for germline 

mutation identification, the study of protein expression, and DNA methylation and 

microRNA expression analysis (Malone, & Oliver, 2011). 

A microarray is the hybridisation (singularly or multiplex) of labelled samples of 

interest, alongside a complementary nucleic acid probe bound to a miniaturised 

silicon thin-film chip or glass slide (Figure 1.6). A microarray chip is made up of 

thousands of individual nucleic acid probes (these can be complementary DNA 

or known oligonucleotides) which match to a short piece of nucleic acid sequence 

from a human (or other known organism). Ultimately, all of the probes combined 

provide a genome-wide view of all coding regions (Malone, & Oliver, 2011). One 

such commercial array platform is manufactured by Affymetrix 

(www.affymetrix.com). Affymetrix GeneChips are the most commonly used 

microarray platforms for expression profiling, able to interrogate the whole 

genome for transcription activity (Auer, et al., 2009). 

This technology can be performed relatively cheaply (in comparison to NGS) in 

a massively parallel manner, yielding results for thousands of genes in one 

experiment. The Minimum Information About a Microarray Experiment (MIAME) 

standards have also been introduced ensuring consistent and reliable results 

across laboratories. However, microarrays are limited in that they tend to focus 

on more common variants and require knowledge of the sequence prior to 

analysis for primers to be designed, as opposed to RNA sequencing, that 

requires no a priori knowledge (Brazma, et al., 2001; Buermans, & den Dunnen, 

2014; Christie, 2005).  
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Figure 1.6. An Affymetrix gene chip, a popular commercial microarray, showing the 
process of hybridisation of labelled RNA probes to a gene chip expression array in 
order to quantitate RNA expression of selected targets (Figure adapted from 
Bumgarner, 2013, and Macgregor, & Squire, 2002). 
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1.4.4	Data	Mining	

There is an unprecedented amount of genomic and transcriptomic data being 

generated worldwide that is freely available for researchers to use; the act of 

extracting novel information from large datasets is known as data mining. There 

are many purposes of biological data mining, such as association analysis (to 

evaluate relationships in data), pathway and network analysis, gene prioritisation, 

function prediction, pharmacological predictions and toxicology, all of which 

provides researchers with great prospects for discovery (Gonzalez, et al., 2016).   

Since the advent of microarrays and NGS, the number and capacity of sequence 

databases have expanded. The Gene Expression Omnibus (GEO, NCBI) is the 

principal and most established public gene expression data repository, including 

microarray, genomic and proteomic experiments for a variety of organisms. The 

goal of GEO was to ‘provide a robust, versatile database in which to efficiently 

store high-throughput functional genomic data’, and currently holds 3848 

separate datasets of nearly 2 million samples (Barrett, et al., 2005). 

Over the years, the explosion in biological data generation has resulted in the 

emergence of many other gene expression databases allowing researchers to 

successfully share genomic data or mine relevant datasets to advance their 

studies and thus, the global knowledge of cancer (Table 1.4). Data from multiple 

cell lines, tissues, clinical samples and matched normal samples are available. 

Although this international data sharing and mining is extremely useful for smaller 

laboratories lacking the resources for WGS or microarray analysis, there are also 

many drawbacks that researchers must be aware of prior to analysis.  

Firstly, variability between sources is the most prominent difficulty with data 

mining – sample collection and processing, raw data processing and data 

conversion or formatting can all result in discrepancies. Regarding microarray 

databases, a variability can be seen between data using different microarray 

platforms, therefore researchers must take this into consideration if using multiple 

different databases. Also as there is likely to be a large number of genes 

corresponding to a relatively small sample size, this kind of data is at risk of being 

prone to false positives, hence there may be issues extracting relevant alterations 

within the data (Piatetsky-Shapiro, & Tamayo, 2003). In general, large data 

collections are intrinsically prone to errors, so this should be kept in mind by the 
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researcher (Werner, et al., 2014). However, despite these pitfalls, data mining is 

an excellent tool for validation purposes, can provide an excellent foundation for 

answering research questions or formulating hypotheses, and is an economical 

way of strengthening research conclusions.  

 

 

 	

Database	 Description	 URL	

CGHub	
	

Sharing	of	42	cancer	types	and	
normal	controls	

www.cghub.ucsc.edu/	
	

COSMIC	
	

Largest	database	of	somatic	
mutations	in	cancer	 http://cancer.sanger.ac.uk	

cBioPortal	
	

Multidimensional	cancer	genomic	
data,	also	supporting	pathway	

exploration	

http://www.cbioportal.org/public-
portal/	

	
Gene	

Expression	
Omnibus	

Genomics	data	repository	for	array	
and	sequenced	based	data	 https://www.ncbi.nlm.nih.gov/geo/	

UCSC	Cancer	
Genomics	
Browser	

Online	analysis	tool	for	cancer	
genomics	and	clinical	data	

	

https://genome-
cancer.soe.ucsc.edu/	

	 	 	

Table 1.4. Examples of prominent cancer related open genomics databases (adapted 
from Yang, et al., (2015b) 
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1.5.	Systems	Biology,	Bioinformatics	&	Data	Integration	

Since high-throughput nucleotide sequencing and microarrays are much more 

accessible to researchers, scientists are now flooded with an unprecedented 

amount of omics data on a daily basis. These advances have put pressure on 

developing more efficient bioinformatics tools to handle the increasing volume of 

biological data, and the challenge of extracting relevant information.  

In spite of developments in high-throughput technologies making omics data 

acquisition and generation relatively straightforward, the potential of this data to 

add to our knowledge of breast cancer is limited by the difficulty in interpretation. 

For example, just one run of WES can provide a researcher with a large amount 

(terabytes) of raw data; larger studies with multiple samples can generate a vast 

amount of data that can be extremely time-consuming to analyse. Hence, 

analysing these results and pinpointing the most pertinent information in cancer 

research can be a mammoth task (Pabinger, et al., 2014).  

1.5.1	A	Bioinformatics	Workflow	

In order to obtain meaningful results from raw sequencing or microarray data, 

data management needs to be structured and the correct tools need to be used 

to match the goal of the research. There are a large number of bioinformatics 

analysis tools and programs (aside from commercial tools) now available for 

various purposes, or sections of workflows, with each potentially requiring 

different operating systems and data formats. Therefore, it is imperative to select 

analysis programs compatible with the data formats generated from each 

platform, and that are compatible with the operating systems preferred by the 

user. The appropriate analysis tools for the desired workflows should be carefully 

considered for the selected application, and time should be taken to meticulously 

formulate a suitable workflow prior to beginning analysis (Pabinger, et al., 2014).  

Regarding bioinformatics analytical pipelines and workflows, existing systems 

published in the literature or commercially available can be used by the 

researcher; various individual platforms may be used simultaneously and 

compared, or users can formulate their own algorithms which commonly involve 

building R scripts. Tokheim, et al., (2016) examined various different ‘driver gene 

prediction methods’ and concluded that each method varied a large amount in its 



	

42	
	

predictions; this poses problems for comparisons between tools and deciding 

which tools are most likely to give the a realistic picture. As there is no current 

set mode of analysis, ‘gold standard’ or leading pipeline, scientists can tailor NGS 

and microarray analysis to their own preferences or expertise (Pabinger, et al., 

2014). This is extremely convenient and allows researchers flexibility, but creates 

a huge amount of variation and disparities between similar studies – ultimately, 

this has led to a ‘snowball’ effect where unique lists upon lists of distinct candidate 

genes have been identified by groups around the world, but many genes have 

not been followed up.   

1.5.2	Pathway	Analysis	

A frequently used approach for analysing genomic or transcriptomic data for the 

identification of genes in cancer is pathway analysis, discussed in more detail in 

Section 3.1. This allows an understanding of the functional biology underpinning 

a set of differentially expressed genes. This approach sorts and condenses a 

comprehensive gene list into smaller sets of related genes that fit into similar 

pathways, and reduces thousands of genes into hundreds of components with 

functional consequences. There are many established and user friendly web-

based pathway repositories and resources such as Gene Ontology, Kyoto 

Encyclopaedia of Genes and Genomes (KEGG), Database for Annotation, 

Visualization and Integrated Discovery (DAVID) and PANTHER, which use 

‘knowledge base driven pathway analysis’ (Khatri, et al., 2012). Another popular 

method for understanding gene expression data is Gene Set Enrichment Analysis 

(GSEA). These methods all use similar principles for pathway analysis, by 

analysing gene sets based on their corresponding biological pathways. These 

examples and other popular bioinformatics tools are shown in Table 1.5.  

 

  

  

  



	

43	
	

 

 

  

Name	 Description	 Interface/	
Programming	 Level	 Reference	

Bioconductor	 Open	source,	for	high	
throughput	omic	data	

R,	command	line	
interface	 Advanced	 Gentleman	et	al.,	

2004	

CHASM	
Prediction	of	SNV	

contribution	to	tumour	
growth	

C++,	Python	 Advanced	 Wong	et	al.,	2011	

DAVID	 Functional	interpretation	of	
lists	of	genes	 Web	interface	 Basic	 Huang	et	al.,	2007	

Gene	Ontology	
(GO)	 Classification	of	genes	 Web	interface	 Basic	 Ashburner	et	al.,	

2000	

GSEA	
Determines	statistically	

significant	groups	of	related	
genes	

Java,	R,	Command	
line	interface	 Advanced	 Subramanian	et	al.,	

2005	

IMPaLA	
Pathway	analysis	of	
transcriptomics	by	
enrichment	analysis	

Web	interface	 Basic	 Kamburov	et	al.,	
2011	

MADGiC	

Prioritises	somatic	
mutations	based	on	

frequency	and	functional	
impact	

R,	command	line	
interface	 Advanced	 Korthauer	and	

Kendziorski,	2015	

MutsigCV	
Analyses	mutation	lists	to	

see	which	ones	are	mutated	
more	than	expected	

Command	line	
interface	 Advanced	 Lawrence	et	al.,	

2013	

OncodriveFM	 Driver	gene	identification	by	
functional	impact	

Perl,	command	
line	interface	 Advanced	 Gonzalez-Perez	and	

Lopez-Bigas,	2012	

PANTHER	 Protein	functional	
classification	 Web	interface	 Basic	 Thomas	et	al.,	2003	

Pathway	
Commons	2	

Pathway	queries	and	
annotation	 Web	portal	 Basic	 Cerami	et	al.,	2011	

Table 1.5. Examples of popular bioinformatics and pathway analysis and enrichment 
tools. Information collated from Omictools (2017). 
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1.5.3	Using	a	Multi-Platform	Approach	for	Gene	Identification	

The advent and progression of sequencing and array technologies over the past 

few decades has revealed a vast amount of information regarding breast cancer, 

and provides researchers with an unmatched ability to continuously identify 

genetic alterations driving the oncogenic process. Gene expression and DNA 

microarrays have steered the way for understanding the heterogeneity of breast 

oncogenesis, suggesting that the behaviour of an individual’s cancer is based on 

the tumour’s genetic profile and pattern of gene expression (Perou, & Børresen-

Dale, 2011). In addition, NGS technology has superseded traditional Sanger 

sequencing, and is evolving rapidly into widespread use across research and 

clinical laboratories for cancer surveillance, allowing researchers to sequence 

whole genomes in parallel.  

  

Figure 1.7. An example of a typical workflow for gene identification using an integrated 
and multi-platform data approach. Bioinformatics analysis can be extremely varied 
between studies and is dependent on available resources and the expertise of the 
researcher. Image based on information from Mo et al., (2013) and Suo et al., (2015). 
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With these technologies being increasingly used for gene investigation, alongside 

the notion that data integration can reveal more information than singular analysis 

alone, a multi-level approach for integrating different types of omic data or 

pathway analysis has risen to the forefront of research, with a large number of 

studies coupling gene expression and genomic data (Suo, et al., 2015) (Figure 

1.7). An extensive and comprehensive example of a multi-level approach is the 

use of five data types by The Cancer Genome Atlas Network (2012). This study 

used genomic DNA copy number arrays, exome sequencing, DNA methylation, 

mRNA arrays, microRNA sequencing and reverse phase protein arrays, and 

integrated data across these platforms to analyse primary breast cancers. This 

integrated analysis provided confirmation of previously known somatic mutations, 

as well as novel subtype associated mutations, GATA3, PIK3CA and MAP3KI in 

the Luminal A subtype (The Cancer Genome Atlas Network, 2012). This type of 

analysis appears to be the most productive in gaining an in-depth view of 

underlying tumour biology.    

1.5.4.	Future	Directions	in	‘Big	Data’	and	‘Omics’	technologies	

Third generation sequencing (TGS) is now emerging with further improvements 

to NGS; the main factors distinguishing TGS from NGS is the lack of PCR steps 

during sample preparation which will decrease time consumption and reduce 

errors arising, and the measurement of signal in real time which can be helpful 

for structural variance predication. These newer technologies, such as Nanopore 

and PacBio, which sequences based on an electric current, aim to increase read 

length and turnover (Liu, et al., 2012).  

This greater turnover will continue to produce large quantities of data, therefore 

systems biology and bioinformatics will play a vital role in the search for cancer 

marker genes. In the past, the ability to interpret, analyse and integrate data has 

greatly fallen behind the ability to generate high quality sequence data. As 

therapeutic resistance and low response rates are prominent causes of therapy 

failure, systems biology approaches can aid in selecting which patients are most 

likely to benefit from specific treatments, thus enhance efficacy and potentially 

reduce emerging resistance, as patients in the future will not be wrongly or over 

treated (Werner, et al., 2014). 
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In the clinical setting, molecular characterisation of solid tumour samples to 

inform clinical decisions is well established (Harbeck, et al., 2014; Russnes, et 

al., 2017). However, accessing samples from patient’s tumours can be extremely 

invasive. More recently, a more easily obtainable source of tumour genetic 

material is via circulating tumour cells (CTCs) which can shed into the vasculature 

and subsequently the bloodstream from many primary tumours, for example 

breast tumours (Yee, et al., 2016). These cells can be collected by a traditional 

blood test, and sequential or multiple samples can be collected over time. 

However, sequencing the genetic material of CTCs in blood using NGS can be 

problematic due to low numbers and impure samples (Yee, et al., 2016).  

To address these problems, whole genome amplification can be used to amplify 

the amount of CTC generic material prior to sequencing from just a few or single 

cells. Studies are continuing to improve purification of CTCs from blood for use 

of NGS in the clinical setting (Yee, et al., 2016). Other alternatives investigate the 

circulation of free nucleic acids and exosomes (Friel, et al., 2010). In order for the 

exceptional capacity and potential for these novel technologies to be utilised in 

the clinic, genes need to be established and characterised to aid diagnosis, 

prognosis prediction, and eventually direct targeted and personalised breast 

cancer treatment. 
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1.6.	Gene	Investigation	in	the	Laboratory:	Harnessing	

Bioinformatics	for	In	Vitro	Investigation	

Although bioinformatics investigation, systems biology methods, and ‘big data’ 

analysis have soared in popularity over the last few years, these methods are far 

from superseding traditional wet lab investigation. In fact, now it is imperative to 

incorporate in silico investigation with laboratory experiments to gain a clearer 

and more accurate picture of biological processes; researchers must question 

whether conclusions drawn from computational investigation can be replicated in 

cell lines, tissues or even patients.  

For gene investigation in cancer, many studies rely on computational biology to 

generate lists of candidate genes from cell line or tissue data, that may be 

mutated, differentially expressed, or function within specific biological pathways. 

From here, researchers may pursue a number of avenues, however arguably the 

most valuable would be to functionally validate and investigate these genes using 

conventional and reliable in vitro and in vivo laboratory techniques. Thus, the 

knowledge of said candidate genes would be more successful in being developed 

in the future as diagnostic, prognostic, or therapeutic markers. In this study, in 

vitro validation has taken place using cell lines, and gene investigation was 

carried out using RNA interference, therefore these methods will be the focus of 

this section.  

1.6.1	Cell	Lines	as	Models	

Research based on immortalised cell lines has been established since the 1950s, 

when HeLa cervical cancer cells were first cloned (Puck, & Marcus, 1955). Now, 

gene exploration using cancer cell lines is still common practice. In fact, an 

extensive amount of foundational and novel knowledge on cancer is the result of 

biological research using cell lines.  

Despite this, cancer cell lines are continuously being scrutinised about whether 

they are representative of the tumours from which they were propagated, and the 

translatability of such research findings to the clinic. Regarding breast cancer 

cells, it’s important to be aware that cell lines may not always mirror the inter- and 

intra-tumour heterogeneity seen in patient tumours, lack the complexity of the 

tumour microenvironment, and the stability of gene expression in cell lines can 



	

48	
	

be unpredictable (Choi, et al., 2014); studies have demonstrated transcriptomic 

drift with prolonged cell culture (Gillet, et al., 2013; Ross, & Perou, 2001). Other 

issues such as cross-contamination and misidentification of cells should also be 

kept in mind, and therefore, to maintain good practice laboratories should perform 

regular cell line authentication (Gillet, et al., 2013). 

Nevertheless, cancer cell lines are considered to be an acceptable experimental 

model for tumours and a basis for screening the efficacy and testing of new 

therapeutics, as well as testing new hypotheses and novel research. If handled 

correctly, chosen with consideration, and good practice is maintained, overall, 

cell lines do well to reflect the behaviour of tumours for initial studies, if their 

limitations are kept in mind (Katt, et al., 2016). 

In relation to gene investigation, cell lines are a prime model for examining novel 

genes as they require little ethical permission for gene manipulation (for example, 

gene knockdown or knockout studies). They are relatively diverse, cheap and 

easy to acquire (multiple cell lines can be compared at low cost), and experiments 

can be performed flexibly and in high-throughput if needs be (Katt, et al., 2016).  

1.6.2	RNA	Interference		

RNA interference (RNAi) is an innate regulatory biological process in cells that 

results in sequence-specific gene silencing (Gavrilov, & Saltzman, 2012). The 

silencing of target genes is mediated by non-coding small interfering RNAs 

(siRNAs) and is shown in Figure 1.8.  

In summary, long double-stranded RNA (dsRNA) molecules are cut and 

separated into 21-25 nucleotide siRNAs by the ribonuclease enzyme Dicer. RNA-

binding protein TRBP together with Dicer, loads this siRNA duplex onto the 

Argonaute protein (AGO2), to create the RNA-induced silencing complex (RISC). 

Argonaute selects the siRNA guide strand, cleaves and removes the passenger 

strand. The guide strand remains tethered to AGO2 and couples with 

complementary mRNA targets which are long enough to be divided, sliced and 

released. Once this process is complete, the RISC is recycled and uses the same 

guide strand to repeat this cycle multiple times (Gavrilov, & Saltzman, 2012)  

Since the discovery of RNAi was published in 1998, its research potential for 

gene suppression, manipulation and regulation has been extremely valuable, 



	

49	
	

especially in the field of oncology research (Fire, et al., 1998; Gavrilov, & 

Saltzman, 2012). Now, using synthetic siRNAs and hijacking this innate RNAi 

pathway for artificial gene knockdown is almost common practice in research 

laboratories (Gavrilov, & Saltzman, 2012). This allows researchers to study the 

effects of genes on cancer growth once expression is switched off, using a 

number of assays or methods that focus on factors such as proliferation, 

apoptosis and migration.  
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Figure 1.8. The mechanism of gene silencing by RNA interference 
(Gavrilov, & Saltzman, 2012). Reproduced under CC BY-NC terms.  
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1.7.	Overall	Conclusions	&	Aims	of	this	Study	

There is an increasing need for greater characterisation of genes across the 

distinct breast cancer subtypes to understand their mechanistic role in 

tumourigenesis within their respective pathways. These may be used in the future 

to aid in the implementation of precision medicine, such as for therapeutic 

exploration or biomarker discovery, or to develop an extensive catalogue of 

genes for which tailored treatment can be built around, addressing the current 

inefficacy of existing breast cancer therapies.  

A multi-method approach for gene identification is a highly strategic, prolific and 

lucrative method for enhancing our knowledge of the molecular foundation 

underpinning breast carcinogenesis, whilst identifying attractive potential targets. 

However, in order to exploit the information generated from sequencing studies, 

the future must focus on addressing the challenges associated with gene 

identification and large-scale omic data, to develop more robust and user-friendly 

bioinformatics pipelines for processing.  

The candidate gene of interest in this study, ASCL2, is a transcription factor 

known to be involved in precursor determination during embryonic and nervous 

system development. This gene has been previously associated with tumour 

progression in colon cancers, proposed as a target of Wnt signalling influencing 

the fate of intestinal stem cells; in a number of other cancers, ASCL2 has also 

been related to poor prognosis. However, despite considerable research into the 

role of ASCL2 in colon cancer, as well as other cancers, its role in breast cancer 

is yet to be defined. 
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The work presented in this thesis aimed to: 

1. Integrate multiple bioinformatics pathway analysis tools to select a novel 

oncogenic candidate gene (ASCL2) from transcriptomic data, for further 

investigation in breast cancer.  

2. Showcase and implement a simple yet integrated in silico analysis 

pipeline, to aid both expert and non-expert researchers with gene 

identification from transcriptomic data. 

3. Investigate the role of the ASCL2 candidate gene in breast cancer cell 

lines, using RNAi and multiple functional assays, to improve 

understanding of its function and shed light on its role in breast cancer 

tumourigenesis.  

4. Investigate the relationship between ASCL2 gene expression and 

clinicopathologic features in patient breast tumours, evaluating the 

suitability of ASCL2 as a possible prognostic indicator in breast cancer. 
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2.1	Transcriptomics	&	Bioinformatics	

2.1.1	Gene	Prioritisation	Using	‘Extreme	Variation’	Analysis	

Publically available Affymetrix microarray (U133 Plus 2.0 Chip) data (mRNA gene 

expression profiles) for the human breast cancer cell lines, MCF7, T47D, BT474, 

MDA-MB-231, and the non-tumourigenic epithelial cell line, MCF10A, were 

downloaded as raw .CEL files from the online repositories Array Express 

(www.ebi.ac.uk/arrayexpress) and Gene Expression Omnibus (GEO) 

(www.ncbi.nlm.nih.gov/geo). All information relating to raw data were recorded, 

such as dates, publication and experimental design; Array Express and GEO 

accession numbers for datasets, publication ID, citations and replicates can be 

found in Tables 2.1 and 2.2. 

An extreme variation filtering analysis (a gene prioritisation algorithm written in R 

by Dr Rifat Hamoudi) (Hamoudi et al., manuscript in preparation) was performed 

across the five cell lines. Briefly, raw data was subjected to normalisation using 

the GCRMA and MAS5 algorithms, based on the noise in the data. For MAS5, 

the gene would pass filtering if its value was more than 200 across 3 or more cell 

lines. For GCRMA, the gene would pass the filtering if its coefficient of variation 

was more than 50%. The extreme variation filtering analysis was applied to the 

normalised cell line data, identifying 915 differentially expressed gene probes.  

The work in this Section (2.1.1) was carried out by Dr Rifat Hamoudi and Dr 

Nadège Presneau, (with James Whitehead), and formed the basis for candidate 

gene selection and pathway analysis in this study. 
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Subtype	 Cell	Line	
Replica	

GEO	Accession	Number	
Array	Express	Number	 PubMed	ID	 Citation/Company	

N
on

-t
um

ou
rig

en
ic
	

MCF10A	 GSE34211	
E-GEOD-34211	

PMID:	22222631	
PMID:	24107449	

Pfizer	
Hook,	et	al.,	2012	

Pavlicek,	et	al.,	2013	

MCF10A	 GSE12790	 PMID:	19567590	
PMID:	21673316	 Hoeflich,	et	al.,	2009	

MCF10A	 GSE29327	
E-GEOD-10890	

PMID:	21673316	
	 Stinson,	et	al.,	2011	

Lu
m
in
al
	A
	 MCF-7	 GSE18912	 PMID:	21220496	 Hou,	et	al.,	2011	

MCF-7	 GSE41445	 PMID:	23894636	 Bayer	Pharma	AG	
Bayer,	et	al.,	2013	

MCF-7	 GSE40057	
GSE40059	 PMID:	23497265	 Luo,	et	al.,	2013	

Lu
m
in
al
	A
	

T47D	 GSE41445	 PMID:	23894636	 Bayer	Pharma	AG	
Bayer,	et	al.,	2013	

T47D	 GSE40057	
GSE40059	 PMID:	23497265	 Luo,	et	al.,	2013	

T47D	 GSE34211	
E-GEOD-34211	

PMID:	22222631	
PMID:	24107449	

Pfizer	
Hook,	et	al.,	2012	

Pavlicek,	et	al.,	2013	

Lu
m
in
al
	B
	 BT474	 GSE12790	 PMID:	19567590	

PMID:	21673316	 Hoeflich,	et	al.,	2009	

BT474	 GSE57083	
E-GEOD-57083	 Citation	missing	 Astra	Zeneca,	2014	

BT474	 E-MTAB-37	 PMID:26107615	 Li,	et	al.,	2015	

Tr
ip
le
	

N
eg
at
iv
e	 MDA-MB231	 GSE41445	 PMID:	23894636	 Bayer	Pharma	AG	

Bayer,	et	al.,	2013	

MDA-MB231	 GSE40057	
GSE40059	 PMID:	23497265	 Luo,	et	al.,	2013	

Table 2.1. Details of the gene expression datasets for the breast cancer cell lines 
downloaded from online repositories.  
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Cell	Line	 Files	Used	for	Extreme	Variation	Analysis	
MCF10A	
n=10	

MCF10A_221004-4.CEL	
MCF10A_GSM320243.CEL	
MCF10A_GSM320244.CEL	
MCF10A_GSM320245.CEL	
MCF10A_GSM320246.CEL	
MCF10A_GSM320247.CEL	
MCF10A_GSM724633.CEL	
MCF10A_GSM724634.CEL	
MCF10A_GSM724635.CEL	
MCF10A_GSM844584_1_PFIZER.CEL	

MCF-7	
n=9	

MCF-7_GSM1017487_mRNA_12a_081206.CEL	
MCF-7_GSM1017488_mRNA_12b_081206.CEL	
MCF-7_GSM1017489_mRNA_12c_111206.CEL	
MCF-7_GSM468593.cel	
MCF-7_GSM468594.cel	
MCF-7_GSM468595.cel	
MCF-7_GSM468596.cel	
MCF-7_GSM468597.cel	
MCF-7_GSM984498_MCF7_HG-U133_Plus_2_.CEL	

T47D	
n=7	

T47D_GSM1017511_mRNA_20a_200907.CEL	
T47D_GSM1017512_mRNA_20b_200907.CEL	
T47D_GSM1017513_mRNA_20c_210907.CEL	
T47D_GSM844714_1_Good_NCI50_WYETH.CEL	
T47D_GSM844715_2_Good_BREAST_WYETH.CEL	
T47D_GSM844716_2_Good_NCI50_WYETH.CEL	
T47D_GSM984496_T47D_HG-U133_Plus_2_.CEL	

BT474	
n=7	

BT474_brst_SS117188_HG-U133_Plus_2_HCHP-85191_.CEL	
BT474_brst_SS117189_HG-U133_Plus_2_HCHP-85192_.CEL	
BT474_brst_SS117190_HG-U133_Plus_2_HCHP-85193_.CEL	
BT474_GSM1374408_Bx051b_035_HG2.CEL	
BT474_GSM1374409_ap071105.CEL	
BT474_GSM1374410_EA08079_80494.CEL	
BT474_GSM320596.CEL	

MDA-
MB231	
n=4	

MDA_MB_231_GSM1017490_mRNA_13a_111206.CEL	
MDA_MB_231_GSM1017491_mRNA_13b_111206.CEL	
MDA_MB_231_GSM1017492_mRNA_13c_111206.CEL	
MDA_MB_231_GSM984500_MDA-MB-231_HG-
U133_Plus_2_.CEL	

Table 2.2. Details of the gene expression files downloaded from online 
repositories for breast cancer cell lines. These were used for the extreme 
variation analysis.  
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2.1.2	Pathway	Enrichment	Analysis		

Extreme variation data was subjected to pathway and ontology enrichment 

analysis using multiple tools (discussed below). Extensive literature reviews were 

undertaken to determine the most suitable methods for this. The purpose of this 

was to identify in terms of gene expression which pathways and processes were 

most active within breast cancer cell lines, to identify candidate genes for further 

functional analysis, as well as to cross-compare the results of the various 

pathway tools.  

2.1.2.1	DAVID,	GO	&	PANTHER	

Database for Annotation, Visualisation and Integrated Discovery (DAVID) 

functional annotation and gene functional classification (Huang et al., 2007), 

Gene Ontology (GO) enrichment analysis (Ashburner et al., 2000), and 

PANTHER gene list analysis (Thomas et al., 2003), were used in succession for 

analysis of extreme variation genes across breast cell lines. For all analyses, a 

threshold of p<0.05 was used to represent statistically significant data, and for 

consistency, the ‘GO terms biological process’ annotation set was used in each 

analysis.  

DAVID (Version 6.8) functional annotation clustering was selected and a high 

classification stringency was used. Genes were identified against 

‘Affymetrix_3Prime_IVT_ID’. Of the extreme variation list, 650 gene IDs were 

recognised. The ‘GOTERM_BP_ALL’ annotation category was selected.  

Statistically significant clustered enrichment scores were ranked.  

For GO (release 2019-02-01) and PANTHER (version 14.0, 2018-12-03) 

analysis, Affymetrix IDs from the extreme variation list were converted to 

Ensembl IDs (www.ensembl.org), of these, 634 genes were mapped. Two 

overrepresentation tests were carried out and combined. The ‘GO biological 

process complete’ overrepresentation test, was assessed using Fisher’s exact 

test, and the Bonferroni correction for multiple testing. The ‘PANTHER GO-slim 

biological process’ overrepresentation test was also used with Fisher’s exact test, 

and corrected using the false discovery rate. For both of these tests, statistically 

significant GO sets were ranked based on their fold enrichment scores.  
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2.1.2.2	Gene	Set	Enrichment	Analysis	(GSEA)	

Gene Set Enrichment Analysis (GSEA) by the Broad Institute was used to 

determine the classes of genes and biological pathways over-represented within 

the list of extreme variation genes (Subramanian, et al., 2005). This represented 

a more in-depth and cell line specific level of pathway enrichment analysis, 

highlighting the differences in gene expression between breast cancer subtypes.  

The GSEA software (Release 2.0) was downloaded via the Broad Institute from 

the Massachusetts Institute of Technology (Subramanian et al., 2005). GSEA 

was performed comparing tumour vs non-tumourigenic (MCF10A) cell lines 

against the MSigDB C5 Gene Ontology (GO) gene set collection (c5.all.v6.1). 

This collection consisted of 5,917 gene sets divided into three categories - 

‘Biological Process’, ‘Cellular Component’ and ‘Molecular Function’. The 

normalised enrichment score (NES) was used as a means to quantify the scale 

of enrichment, and the false discovery rate (FDR) was used to measure statistical 

significance.  

2.1.3	Candidate	Gene	Selection	

For DAVID and combined GO and PANTHER analysis, the genes present in the 

top 20 enriched annotation clusters and the genes present in the top 20 GO 

annotations were extracted respectively. For GSEA analysis, the genes from the 

top 5 significant annotation terms were taken for each cell line. Hence, gene lists 

were created for each analysis tool (Appendix 1). The gene lists were compared 

and candidate genes were selected based on their commonality between 

enriched pathway lists for each analysis. This identified 10 candidate genes. To 

further condense this list for the selection of a single gene, a literature review was 

conducted for each gene; criteria was relevance to other cancers, potential 

oncogenic (favoured above tumour suppressor) function, and possible miRNA 

regulation. Genes previously well characterised in breast cancer were excluded.  
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2.2	Validation	of	ASCL2	in	Patient	Tumours	via	the	METABRIC	

Study 

Microarray data obtained from the Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC) study (Pereira, et al., 2016) was accessed 

through the cBioPortal online web application (Cerami, et al., 2012; Gao et al., 

2013). Primary fresh-frozen breast cancer specimens were clinically annotated 

(samples assigned to the PAM50 intrinsic subtypes) and obtained from tumour 

banks in the United Kingdom and Canada. For transcriptional profiling, RNA was 

isolated from samples and hybridised to the Illumina HT-12 (v3) platform (Curtis, 

et al., 2012). Normalised expression level Z-score data of ±2 was used as a 

threshold to classify clinical breast cancer cases into 3 groups according to the 

expression of ASCL2: upregulated (>+2), downregulated (<-2) and unaltered (-2 

to +2).  

For the METABRIC study, 2509 patient samples were downloaded and analysed. 

The parameters measured were ER status, HER2 status, PR status, PAM50 

subtype, age, overall survival, stage, grade and integrative cluster (proposed by 

Dawson et al., 2013). Owing to missing clinical information or expression level 

data, the total number of valid samples varied for each parameter - e.g. out of 

2509 patient samples, ASCL2 expression was measured in 1904 samples. 

Data was downloaded and patient samples were matched with clinical data using 

Microsoft Excel. In some cases, RStudio, version 3.4.3 (RStudio, Inc., Boston, 

USA) was used during the formatting process. Using SPSS for Windows, version 

24 (SPSS, Inc., Chicago, USA), data was then categorised, numbered, and 

missing values were defined. The differences between molecular parameters 

were compared between ASCL2 expression groups using SPSS generating 

descriptive statistics and graphs.  

Statistical differences in the distribution of ASCL2 expression between receptor 

status, subtype, stage, grade, and integrative cluster were analysed using the 

Pearson Chi-Square (χ2) test. Subsequently, to model the impact of ASCL2 

expression on HER2 receptor status, a logistic regression analysis was 

performed. Comparison between means was analysed using a one-way ANOVA 

(with Tukey post hoc multiple comparisons test) for patient age of onset and 



	

60	
	

overall survival. Estimates of overall survival were also generated using Kaplan-

Meier curves, and statistical significance was based on Mantel-Cox log-rank 

tests. To examine the prognostic significance of ASCL2, univariate and 

multivariate analyses were performed using the Cox proportional hazards 

regression models, to estimate Hazard Ratios (HR) and 95% confidence intervals 

(CI) for associations with overall survival. Gene expression was set as a linear 

variable, and adjusted for other known prognostic factors; ER status, HER2 

status and PR status (all positive vs negative), PAM50 subtype (5 levels), age at 

diagnosis (≤60 vs >60 years), stage (4 levels), grade (3 levels) and integrative 

cluster (10 levels) as categorical covariates. Statistical significance was set at 

<0.05. 
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2.3	Cell	Lines	&	Culture	

The breast cancer cell lines (Table 2.3) were obtained from the American Type 

Culture Collection (ATCC), provided by Dr Nadège Presneau, Dr Miriam Dwek 

(University of Westminster) and Professor Marilena Loizidou (University College 

London). Cells had been previously tested for mycoplasma and genotypes had 

been verified by short tandem repeat (STR) profiling.  

  

	 Immunohistochemical	Markers	 	

Cell	Line	 ER	 PR	 HER2	 Complete	Media	

MCF10a	 -	 -	 -	

Mammary	Epithelial	Cell	Grown	Medium	(MEBM)	
2ml	bovine	pituitary	extract	

0.5ml	human	epidermal	growth	factor	
0.5ml	insulin	

0.5ml	hydrocortisone	
0.5ml	gentamicin-amphotericin	

10%	FBS	
1%	L-glutamine	
1%	Pen/Strep	

MCF7	 +	 +	 -	
Dulbecco’s	Modified	Eagle’s	Medium	(DMEM)	

10%	FBS	
1%	L-glutamine	
1%	Pen/Strep	

T47D	 +	 +	 -	
Roswell	Park	Memorial	Institute	(RPMI)	1640	

10%	FBS	
1%	L-glutamine	
1%	Pen/Strep	

SKBR3	 -	 -	 +	
Roswell	Park	Memorial	Institute	(RPMI)	1640	

10%	FBS	
1%	L-glutamine	
1%	Pen/Strep	

BT474	 +	 +	 +	
Dulbecco’s	Modified	Eagle’s	Medium	(DMEM)	

10%	FBS	
1%	L-glutamine	
1%	Pen/Strep	

MDA-MB-
231	 -	 -	 -	

Dulbecco’s	Modified	Eagle’s	Medium	(DMEM)	
10%	FBS	

1%	L-glutamine	
1%	Pen/Strep	

Table 2.3. Details of the breast cancer cell lines used for molecular investigation in this 
study, including details of the complete growth medium used as recommended by the 
literature.  
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Cell lines were maintained in complete media (Table 2.3) as recommended by 

the American Type Culture Collection (ATCC) or as recommended in the 

literature, supplemented with 10% v/v fetal bovine serum (FBS), 1% v/v l-

glutamine and 1% v/v penicillin streptomycin (unless otherwise stated in the 

following methods) (all purchased from Lonza BioWhittaker, Switzerland). 

2.3.1	Routine	Cell	Maintenance	

Cells were maintained as an adherent monolayer in the appropriate medium, at 

37ºC in 5% CO2 to control for changes in pH. Media and other reagents were 

warmed to 37ºC prior to use. Cells were subcultured (passaged) at 70-80% 

confluence. Medium was removed from flasks, and cells were washed with 5 mL 

phosphate buffered saline (PBS) to remove any residual media. To detach cells, 

1 mL 2.5% Trypsin 10X (Gibco, Thermo Fisher Scientific, United Kingdom) was 

added to the flask, and incubated for 5 minutes at 37ºC. To ensure cells had 

detached, cells were observed under a light microscope. To prevent cells from 

further toxicity, Trypsin was deactivated by adding 5mL of complete media, and 

this mix was added to a 15 mL conical tube. Cell suspensions were centrifuged 

at 189 x g for 3 minutes, and the supernatant was discarded. Cell pellets were 

resuspended in media depending on the split ratio and added to 75 cm2 flasks 

(usually at a density of ~2.1 x 106). Flasks were topped up to a total of 10 mL 

media and incubated.  

All cells were passaged 2-3 times prior to experimental use, allowing cells to 

recover from thawing; passaging was carried out as required. Cells were checked 

multiple times weekly to ensure media pH was kept consistent (as indicated by a 

colour change in the media), and cells were ‘healthy’. Where possible, 

experiments were conducted with cells that had been passaged up to a maximum 

of 10 times to minimise genetic drift or genotypic changes that may have affected 

experimental results.  

2.3.2	Cell	Storage	&	Seeding	from	Frozen	

Frozen stocks at low passages were regularly collected and stored in liquid 

nitrogen until needed.  
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To freeze a stock of cells, cells were prepared as in Section 2.3.1, however, cell 

pellets were instead resuspended in 1 mL freezing media (maintained cold), 

made up of 10% v/v dimethyl sulfoxide (DMSO) (Sigma-Aldrich, United Kingdom) 

plus 90% v/v FBS, and added to a 1.5 mL cryovial. These were placed in a 

freezing container containing 100% isopropyl alcohol and stored in a -80ºC 

freezer for 2 days. Cryovials were moved to liquid nitrogen for long term storage.  

To seed cells from frozen, cell stocks were removed from liquid nitrogen and 

thawed in a water bath at 37ºC. This was transferred to a 15 mL conical tube and 

topped up with 10 mL media. To remove the freezing solution containing DMSO 

(which is toxic to cells), cell suspensions were centrifuged at 189 x g for 3 

minutes, and the supernatant discarded. The cell pellet was then resuspended in 

10 mL media and transferred to a 75 cm2 flask. Cells were observed daily, and 

media was changed accordingly.  

2.3.3	Cell	Counting	

Where a defined seeding density was required, a haemocytometer was used to 

count cells. In this case, cells were prepared as in Section 2.3.1, however, cell 

pellets were resuspended in 1 mL media and mixed thoroughly. To count, 40 µl 

of cells was mixed with 40 µl Trypan blue (Lonza BioWhittaker, Switzerland) (1:1 

dilution) – as only dead cells take up the blue dye, these were excluded to ensure 

that only viable cells are counted. Cells were counted using a haemocytometer 

to determine the volume of cells needed for a set concentration. The number of 

cells seeded were dependant on the size of the flask or well used.   
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2.4	Primer	Design	

Once a gene was selected for analysis, primer sequences were designed and 

the corresponding Affymetric ID probeset was used to find the target sequence. 

Primer 3 (Untergasser, et al., 2012) was then used with specified parameters – 

product size=100-150 bp, primer size optimum=22 bp, primer GC% optimum = 

50%. Once primers had been selected, Blat and In-Silico PCR 

(genome.ucsc.edu), as well as NCBI BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi) 

were used to check specificity. Finally, SNP checker 

(secure.ngrl.org.uk/SNPCheck/snpcheck.htm) was used to check if any validated 

SNPs lay in the regions of either primer.  

Other primer sequences were identified in the literature, and were checked for 

the above parameters using the aforementioned tools prior to use. 

Oligonucleotide primers were purchased from Eurofins Genomics and 

resuspended at 100 pmol/µl in accordance with manufacturer instructions. Primer 

sequences used in this study are shown in Table 2.4.  

 

		 	

Gene	
Symbol	 Forward	(5’	–	3’)	 Reverse	(5’	–	3’)		 Reference	

ASCL2	 CGT	GAA	GCT	GGT	GAA	CTT	GG	 GGA	TGT	ACT	CCA	CGG	CTG	AG	 Tian,	et	al.,	2014	

BIRC5	 CTG	GCA	GCC	CTT	TCT	CAA	
GGA	CC	 CCA	AGT	CTG	GCT	CGT	TCT	CA	 	

CD44	 CCA	TCC	CAG	ACG	AAG	ACA	GT	 CCA	GAG	GTT	GTG	TTT	GCT	CC	 	

CMYC	 GTC	TCC	ACA	CAT	CAG	CAC	
AAC	T	

GTT	CGC	CTC	TTG	ACA	TTC	TCC	
T	 Zhu,	et	al.,	2012	

CTNNB1	 AAA	ATG	GCA	GTG	CGT	TTA	G	 TTT	GAA	GGC	AGT	CTG	TCG	TA	 	

HPRT	 GCT	ATA	AAT	TCT	TTG	CTG	ACC	
TGC	TG	

AAT	TAC	TTT	TAT	GTC	CCC	TGT	
TGA	CTG	G	 	

LGR5	
	

GAG	GAT	CTG	GTG	AGC	CTG	
AGA	A	

CAT	AAG	TGA	TGC	TGG	AGC	
TGG	TAA	 Zhu,	et	al.,	2012	

RPII	 GCA	CCA	CGT	CCA	ATG	ACA	T	 GTG	CGG	CTG	CTT	CCA	TAA	 Radonić,	et	al.,	2004	

Table 2.4. Primer sequences for PCR and RT-qPCR.  
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2.5	RNA	Extraction	&	Quality	Assessment	

2.5.1	miRNAeasy	Mini	Kit,	Qiagen	

Total RNA was extracted from cell lines grown in 75cm2 flasks using the 

miRNAeasy Mini Kit (Qiagen, United Kingdom) following manufacturer’s 

instructions. Working under a Class 2 cabinet, cells were washed with PBS, 

QIAzol lysis reagent was added to flask, and cells were scraped from the surface 

of the flask. The cell suspension was collected, 140 µl chloroform was added, 

and cells were incubated at room temperature for 2 minutes. The sample was 

centrifuged for 15 minutes at 12,754 x g, 4ºC. The upper aqueous phase was 

carefully added to a new collection tube, and 525 µl of 100% ethanol was added. 

This was added to a mini column and centrifuged at 12,281 x g for 15 seconds at 

room temperature. DNA digest was completed by washing the column membrane 

with buffer, and adding a DNase solution to incubate for 15 minutes (room 

temperature). Buffers were added and the sample was centrifuged as per the 

manufacturer’s protocol. The membrane was dried by centrifuging a final time at 

12,281 x g for 1 minute. Nuclease-free water was added to the column and the 

RNA was eluted from the column during the final centrifugation step. RNA was 

stored at -20ºC.  

2.5.2	Microprep	Kit,	Zymo	

To isolate RNA from 6-well plates after siRNA transfection, the Microprep kit 

(Zymo, Cambridge Bioscience, United Kingdom) was used following 

manufacturer’s instructions. Working under a Class 2 cabinet, media was 

removed from wells and cells were washed with PBS. Qiazol lysis reagent, 100 

µl, was added, and cells were scraped from the surface of the flask using a P200 

tip. The cell suspension was collected, vortexed, and 100 µl 100% ethanol was 

added and mixed. This mix was transferred to a column and centrifuged for 30 

seconds at 12,281 x g (all centrifugation steps using this kit was carried out at 

room temperature). To perform a DNase digest, the column was washed and 

centrifuged with 400 µl wash buffer. The DNase mix consisted of 5 µl DNase and 

35 µl digest buffer, which was added to the column and incubated at room 

temperature for 15 minutes. Buffers were added and the column was centrifuged 

in accordance with manufacturer’s protocols – 400 µl Directzol and 700 µl RNA 
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wash buffer respectively. The column was transferred to an RNAse free tube and 

RNA was eluted by centrifuging the column with 15 µl nuclease-free water. 

RNA concentration (ng/µl) was quantified using the NanoDrop 

Spectrophotometer (software ND-2000). For quality control purposes, the 

absorbance ratios of 260/280 nm (~1.8-2.0) and 260/230 nm (~1.8-2.0) were 

used to assess purity. 

2.6	cDNA	Synthesis	

Single-stranded cDNA was synthesised from RNA using the High-Capacity RNA-

to-cDNA™ Kit (Applied Biosystems, Thermo Fisher, USA). The reverse 

transcription (RT) reaction mix was prepared using 2X RT Buffer, 20X RT 

Enzyme mix, nuclease-free H2O and 500 ng of RNA, to a total of 20 µl. A RT 

negative control sample was also made containing all components except the 

20X RT Enzyme. Samples were incubated at 37ºC for 60 minutes, and 95ºC for 

5 minutes, then stored at -20ºC.  

2.7	Polymerase	Chain	Reaction	(PCR)	&	Agarose	Gel	

Electrophoresis	

PCR experiments were performed using the AmpliTaq Gold PCR Mastermix kit 

according to manufacturer’s protocols (Applied Biosystems, Thermo Fisher, 

USA). PCR was used for the purposes of checking primer specificity, qualitatively 

assessing cDNA sample integrity, and checking reference genes. For each 

candidate gene, a mastermix was prepared including 10x Buffer II, 10 mM 

dNTPs, MgCl2, 10 µM Forward and Reverse primer, AmpliTaq Gold, nuclease 

free H2O, and diluted cDNA. Samples were loaded onto a thermo cycler (Techne 

Prime). The following cycles were run: initial denaturation of 95ºC for 5 minutes, 

denaturation, annealing and extension at 95ºC for 10 seconds, 56ºC for 20 

seconds, 72ºC for 30 seconds respectively (35 cycles of each), and a final 

extension of 72ºC for 5 minutes.  

Upon completion, PCR products were separated on an agarose (Fisher Scientific, 

United Kingdom) gel (1.4%) via electrophoresis (100V, 400mA, 45 minutes), and 

visualised using SYBR green dye (Lonza BioWhittaker, Switzerland). These 
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steps were carried out on cDNA, to test all primers, prior to RT-qPCR to ensure 

cDNA was of sufficient quality.  

2.8	PCR	Purification	&	Sanger	Sequencing	

To validate the specificity of the amplified PCR product and primers for ASCL2, 

PCR purification was carried out using the QIAquick PCR Purification Kit (Qiagen, 

United Kingdom), following manufacturer’s protocols. In brief, Buffer PB was 

added to the PCR sample (in a ratio of 5:1). The sample was added to a QIAquick 

spin column and centrifuged at 12,281 x g for 1 minute. 0.75 mL Buffer PE was 

added, and the column was centrifuged. Any flow through was discarded. The 

column was then transferred to a 1.5 mL Eppendorf tube. Finally, to elute the 

DNA sample, 50 µl elution buffer was added directly to the QIAquick membrane 

and this was left to stand for 1 minute before being centrifuged. Purified PCR 

fragments were packaged and sent to GATC Biotech for confirmative LightRun 

Sanger sequencing.  

Upon receipt of results, GATC viewer (www.gatc-biotech.com) and FinchTV 

chromatogram software (digitalworldbiology.com/FinchTV) were used to analyse 

the chromatogram and sequence of ASCL2, and thus confirm the identity of the 

amplified gene.  
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2.9	Quantitative	Reverse	Transcription-PCR	(RT-qPCR)	

Quantitative reverse transcription-PCR (RT-qPCR) was used to check gene 

expression of candidate genes across tumour and normal cell lines. Reactions 

were carried out in a Rotor-Gene cycler using the Rotor-Gene SYBR Green PCR 

kit (Qiagen, United Kingdom) following manufacturer’s instructions. The cycling 

conditions were an initial single hold cycle of 95ºC for 10 minutes (denaturation), 

40 cycles of 95ºC for 10 seconds (primer annealing) and 60ºC for 45 seconds 

(primer extension). A final melt stage was performed at the end of the run to 

generate a melt curve and check reaction specificity (Figure 2.1), heating from 

55ºC to 95ºC at a rate of 1ºC every 5 seconds.  

Each cDNA reaction was performed in duplicate, alongside a negative cDNA 

sample, and a negative non-template control for each pair of primers. All samples 

were also repeated with the reference gene, RNA polymerase II (RPII), chosen 

due to its stable and equal expression across tissues (Radonić, et al., 2004). Melt 

curves (Figure 2.1) were inspected to ensure reliability of data, and Ct values 

were generated from amplification curves (Figure 2.1). Relative quantification of 

gene expression in cell lines was performed using the calculations below. For 

statistical analysis, a one-way non-parametric ANOVA was used to test for 

differences between experimental samples (GraphPad Prism 7 software). 

 

∆CT = mean gene Ct - mean housekeeper Ct 

∆∆CT = ∆CT sample of interest - ∆CT control sample 

Fold change (log) difference = 2^(-∆∆CT) 
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Figure 2.1. RT-qPCR amplification curves and melt curves. A. The typical shape of 
an amplification curve. The threshold level was set manually at the point where the 
curve trends upwards, which was the point at which Ct values were calculated. The 
middle portion of the curve, from cycle 20-25 represents the exponential phase in the 
reaction. Around cycle 30, the lines begin to plateau, indicating a slowing of the 
reaction limited by reagents. B. The typical shape of amplicon peaks seen in a melt 
curve, exemplifying specific gene products, rather than primer dimers or non-specific 
binding i.e. primers are amplifying specific gene products – in this diagram, 2 peaks 
are seen representing the gene of interest and a reference gene.  

A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. 
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2.10	Short	interfering	RNA	(Dicer	siRNA)	Knockdown	of	ASCL2	

siRNAs were obtained from IDT using the TriFECTa Dicer-Substrate RNAi kit 

(Integrated DNA Technologies, Belgium), containing a positive control gene 

duplex Hypoxanthine-guanine phosphoribosyltransferase (HPRT), a non-

targeting negative control duplex (NC), a fluorescently labelled transfection 

control duplex (TYE 563), and three ASCL2 target specific duplexes, which were 

subsequently pooled for experiments (siRNA sequences in Table 2.5). Both 

DharmaFECT (Dharmacon, GE, United Kingdom) and Lipofectamine RNAiMAX 

(Thermo Fisher, United Kingdom) transfection reagents were used to deliver 

siRNA targets.  

 

 

 

 	

siRNA	
Duplex	 Forward	(5’	–	3’)	 Reverse	(5’	–	3’)		

ASCL2	13.1	 GGGUUAUCUAUACAUUUAAAAACCA	 CUCCCAAUAGAUAUGUAAAUUUUUGGU	

ASCL2	13.2	 GCACCAACACUUGGAGAUUUUUCCG	 CCCGUGGUUGUGAACCUCUAAAAAGGC	

ASCL2	13.3	 GAGCGUGAACUUUAUAAAUAAAUCA	 CCCUCGCACUUGAAAUAUUUAUUUAGU	

Table 2.5. Three target-specific Dicer-Substrate siRNA (dsiRNA) duplexes, supplied by 
the TriFECTa kit, for siRNA transfection and knockdown of ASCL2. Gene sequence and 
position of targets are shown in Appendix 3. 
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2.10.1	Dicer	siRNA	Preparation	

Lyophilised control duplexes (1 nmole) and target specific duplexes (2 nmole) 

were briefly centrifuged and resuspended with RNase-free Duplex Buffer 

(100mM KAc/30 mM HEPES pH 7.5) to a final concentration of 20 µM. DsiRNAs 

were vortexed and mixed thoroughly. These were diluted to create working 

solutions at 2 µM. Cells were treated with a final concentration of 10 nM dsiRNA 

per well.  

2.10.2	Knockdown	of	ASCL2	in	Cells	

Cells were seeded into plates (24-well, 0.05 x 106 cells, or 6-well, 0.3 x 106 cells) 

the day before transfection using antibiotic free media. At approximately 24 hours 

after seeding, growth medium was removed from each well, and Opti-MEM 

reduced serum medium (Gibco, Thermo Fisher Scientific, United Kingdom) was 

added. A transfection mixture was prepared containing Opti-MEM, Lipofectamine 

(or DharmaFECT) and the corresponding siRNA duplex, and incubated for 15 

minutes at room temperature. For each siRNA, a final concentration of 10nM was 

added to cells. At 24 hours post transfection, cell transfected with siRNA-TYE 

563 were visualised under a fluorescence microscope (to check transfection was 

successful before proceeding). Cells were then harvested and RNA was 

extracted as in Section 2.5.2.  

The cell lines, MCF7, T47D and SKBR3 were transfected and used for further 

analysis. 

2.10.3	Measurement	of	Knockdown	Efficiency		

Gene expression and percentage knockdown was assessed by RT-qPCR. 

Percentage knockdown was calculated by normalising samples to the reference 

gene, RPII (ΔCt), and the non-targeting negative control siRNA sample (NC) 

(ΔΔCt), then the (1-2-ΔΔCt)*100 equation was used (Section 2.9) (Haimes, & 

Kelley, 2010). In this study, a knockdown of 70% was preferable, however at least 

60% was deemed successful and appropriate for further analysis, resulting in an 

average of approximately 70% across replicates.  
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2.10.4	Knockdown	Optimisation	

To begin with, optimisation was planned with a positive control gene (HPRT) in 

order to establish the correct conditions for siRNA knockdown. Once successful 

knockdown of HPRT was observed via fluorescence microscopy and RT-qPCR, 

knockdown of the ASCL2 gene could proceed. However, optimisation presented 

many challenges, and numerous different experimental and troubleshooting 

conditions were tested (Appendix 2). An in-depth summary of optimisation and 

troubleshooting conditions are described in Appendix 2. A timeline of steps 

proceeding siRNA transfection can be seen in Table 2.7 (at the end of this 

Chapter). 
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2.11	Immunostaining	of	Cells		

MCF7 cells were cultured and transfected as per Section 2.10.2. Once 

approximately 80% confluence was reached (at 48h post transfection) cells were 

washed with PBS and fixed in 10% v/v formalin in PBS for 30 minutes. Formalin 

was removed, cells were washed twice with PBS, and cells were stored in PBS 

at 4°C before analysis. 

Prior to staining, PBS was removed from cells, and cells were incubated with 

blocking solution (5% w/v BSA in PBS) for 30 minutes gently rocking at room 

temperature. Cells were washed twice in PBS. Primary antibody diluted in 5% 

w/v BSA in PBS (Table 2.6) was added to cells and incubated gently rocking 

overnight at 4°C. Cells were then washed multiple times with PBS prior to being 

incubated with secondary fluorescently labelled antibody (Table 2.6) for 1 hour, 

gently rocking at room temperature (protected from light to prevent quenching). 

Cells were washed multiple times in PBS, and incubated with NucRed™ Live 647 

(Invitrogen, Thermo Fisher Scientific, United Kingdom) for 15 minutes at room 

temperature.  

Cells were imaged using the GFP and RFP fluorescence channels at 40X 

magnification using the EVOS FL Auto 2 Cell Imaging System (Thermo Fisher 

Scientific, funded by The Guy Foundation), and processed using ImageJ 

(imagej.nih.gov/ij/).     

Antibody	 Dilution	 Supplier	

Primary	

Rabbit	Anti-ASCL2,	ab107046	 1:500	 Abcam	

Secondary	

Goat	anti-rabbit	IgG	H&L	(Alexa	Fluor	488),	ab150077	 1:500	 Abcam	

Table 2.6. Antibodies used for western blot experiments.  
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2.12	Functional	Investigation	

Table 2.7 summarises the timeline of steps for validation and functional 

investigation experiments subsequent to siRNA knockdown. 

2.12.1	Alamar	Blue	Cell	Viability	Assay	

AlamarBlue® cell viability reagent (Invitrogen, Thermo Fisher Scientific, United 

Kingdom) was used for the assessment of cell viability and proliferation 

subsequent to siRNA knockdown. Analysis was carried out using untreated cells, 

non-targeting negative control cells (siRNA-NC) and siRNA-ASCL2 cells. A ‘no-

cell’ control containing media only was also included.  

Cells were seeded in 24-well plates and transfected with siRNA. AlamarBlue® 

reagent was added to growth medium 24h post-transfection, at a concentration 

of 10% v/v. Cells were then incubated at 37ºC (5% CO2) for 2 hours, then 50 µl 

of the Alamar Blue-medium mixture was transferred to a 96-well plate. 

Absorbance was measured at 570 nm and 600 nm using the SPECTROstar Nano 

microplate reader (BMG Labtech, United Kingdom).   

To assess proliferation, absorbance values were substituted into the following 

equations (Bio-Rad Laboratories, Inc., 2016):  

 

% difference in reduction of alamarBlue® =                                                  x 100% 

 

% different in reduction compared to untreated =                                          x 100%  

 

Where,   

117216 and 80586 = molar extinction coefficients of oxidised AB at 600nm and 

570nm wavelengths respectively.  

A1 and A2 = absorbance values in experimental samples at 570nm and 600nm 

respectively. 

P1 and P2 = absorbance values of untreated samples at 570nm and 600nm 

respectively. 

117216•A1 – 80586•A2 
117216•P2 – 80586•P1 

117216•A1 – 80586•A2 
117216•P1 – 80586•P2 
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Three biological replicates were carried out for the cell lines MCF7 and T47D, 

each of which included 3 technical replicates. For SKBR3, cells followed the 

same pattern as the previous cell lines, and experiments were concluded after 

n=1 (inclusive of 3 technical replicates). After calculating percentage difference 

of Alamar Blue reduction in Excel, values were transferred to GraphPad Prism. 

2.12.2	Trypan	Blue	Assay	

The Trypan blue viability assay was used as a means to estimate cell 

proliferation; the cells that exclude the blue dye can be considered as viable. 

Cells were seeded in a 24 well plate at a density of 0.05 x 106 per well. After 24 

hours, cells were transfected with siRNA and incubated for a further 24 hours. 

The media was removed, cells were washed with PBS and then trypsinised. 

Trypan blue was added to wells at a 1:1 ratio; the cell suspension was collected 

and counted using a haemocytometer under a microscope (x10 objective). The 

four corner squares of the haemocytometer were counted and % viability was 

calculated. For each cell line, at least three biological replicates (each including 

3 technical replicates) were carried out.  

2.12.3	Caspase-Glo®	3/7	Assay	

The Caspase-Glo® 3/7 Assay (Promega, United Kingdom) was used to assess 

caspase activity in cells, therefore corresponding to apoptosis, after siRNA 

knockdown. Analysis was carried out using untreated cells, siRNA-NC and 

siRNA-ASCL2 cells. A ‘blank’ control containing media only was also included. 

Cells were seeded in opaque white 96-well plates (0.02 x 104 cells per well) and 

transfected with siRNA. Caspase reagent was added to growth medium at a ratio 

of 1:1 and mixed well, 24 hours post transfection. Cells were incubated at room 

temperature, away from light, for 30 minutes. The luminescent signal was 

measured using the SPECTROstar Nano microplate reader (BMG Labtech, 

United Kingdom). For each cell line, three biological replicates were carried out, 

each of which included 2 technical replicates.  
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2.12.4	Wound-Healing	Scratch	Assay	

To assess the effect of ASCL2 gene knockdown on cell migration, a wound-

healing scratch assay was performed. This assay was designed based on Yue, 

et al., (2010). Cells were seeded in 6-well plates to reach a high confluence on 

the day of transfection. Immediately after transfection (0h), a P200 pipette tip was 

used to make a scratch in the cell monolayer, across the width of the well. Wells 

were visualised and imaged manually at 0h, 24h and 48h, using a bright-field 

microscope and a DCM310-A digital microscope camera. ScopePhoto image 

software by ScopeTek Ltd (China) was used to capture images.  

When imaging cells, a cross was marked on a plastic sheet placed over the plate 

lid, to ensure the same area was visualised at each time interval. The previous 

image was also referred to at 24h and 48h to ensure imaging was as precise as 

possible.  

Images were analysed in Image J. Firstly, the scale was set for images, where 

pixels were converted to µm. Using the polygon selection tool, the cells at the 

edges of the scratch were traced using straight lines. The area of the scratch was 

then measured. This was repeated 3 times for each image (3 measurements per 

3 time intervals per 3 well treatments), and an average was calculated. Average 

scratch area was then used to calculate the percentage closure between 0h, 24h 

and 48h for each experimental sample. The difference in percentage closure 

between negative controls and ASCL2 knockdown samples was also calculated.  

Experiments were carried out in multiple biological replicates (MCF7, n=6, T47D, 

n=2, SKBR3=3). Scratch area values, and percentage closure values were 

transferred to GraphPad Prism, where unpaired t-tests were used to analyse the 

difference between experimental groups (siRNA-NC vs siRNA-ASCL2).  
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2.12.5	Effect	of	ASCL2	Knockdown	on	Wnt-target	Gene	Expression 

The effect of ASCL2 knockdown on the Wnt signalling pathway was investigated 

by assessing changes in the gene expression of Wnt-related genes. These genes 

were selected based on their involvement in Wnt signalling, their varying roles in 

cancer development, as well as their relation/interaction with ASCL2.  

Cells were grown in 6-well plates and subjected to transfection (Section 2.10.2), 

RNA was extracted from cells (Section 2.5.2), cDNA was synthesised (Section 

2.6), and gene expression was measured by RT-qPCR (Section 2.9). 

Samples were measured in technical duplicates, and biological triplicates for 

each gene and cell line combination. Samples were normalised to a reference 

gene (RPII) (ΔCt) and then against the non-targetting negative control (siRNA-

NC) transfected sample (ΔΔCt) – the change in the expression of genes after 

ASCL2 knockdown was compared to that of genes after non-targeting siRNA 

knockdown.  

The genes measured were as follows: CD44, CCND1 BIRC5 (SURV), CTNNB1, 

LGR5 and C-MYC. Primer sequences can be found in Table 2.4.  

 

2.12.6	Statistical	Analysis 

Unless otherwise stated, statistical analysis of experimental data was performed 

using the GraphPad Prism 7 software. Experimental data is represented as mean 

± SEM, and statistical significance was determined using unpaired t-tests.  
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2.12.7	Summary	of	siRNA	Knockdown	&	Functional	Investigation 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

	 Day	0	 Day	1	(0h)	 Day	2	(24h)	 Day	3	(48h)	

Knockdown	Validation	

Seed	
Cells	

	
Transfect	

Fluorescence	
Check	

Extract	RNA	and	make	
cDNA	 RT-qPCR	

Alamar	Blue	 Treat	2	hrs	 Measure	fluorescence	 	

Immunostaining	 	 Wash,	Fix,	Stain,	
Image	

Trypan	Blue	 Treat	&	count	cells	 	

Caspase	 Treat	30	mins	 Measure	luminescence	 	

Wound	Healing	 	 Image	 Image	 Image	

Table 2.7. Timeline of chronological steps for siRNA knockdown and functional investigation experiments.  
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2.13	Summary	of	Study	Design	&	Methods	 

  

Figure 2.2. Flow chart depicting the in silico and in vitro workflow implemented in this 
study, to select and investigate the role of ASCL2.  

Cell	Line	Gene 
Expression	Data	Downloaded	&	

Processed 
GEO/Array	Express 

List	of	Differentially	Expressed	
Genes	Generated	Using	‘Extreme	

Variation’	Analysis 
R	Script 

Pathway	Enrichment	Analysis 
	

DAVID 
GO	&	Panther 

GSEA 

Literature	Review	of	Overlapping	
Genes	-	Criteria	Including: 

	
Relevance	to	Cancer 

Potential	Oncogenic	Function 
Novelty	in	Breast	Cancer 

Achaete-scute	Complex	Like-2	
(ASCL2) 

Data	Mining	of	Patient	Samples	 
cBioPortal	(METABRIC	data)	

 
Assessment	of	Clinical	Relevance	of	

ASCL2	&	Survival	Analysis 

In	silico	Candidate	Gene	Selection 

Cross	Comparison	 
of	the	Highest-ranked	Genes	

Identified	by	Each	Tool	 

In	vitro	Functional	Investigation 

siRNA	knockdown	(KD)	of	ASCL2	 

Validation	of	gene	KD	by	RT-qPCR 

Validation	of	protein	KD	by	
immunostaining	of	cells 

Cell	Viability	 
Alamar	Blue	&	Trypan	Blue	assays 

Apoptosis	–	Caspase	3/7	Assay 

Migration	–	Wound	Healing	Assay 

Relationship	with	Wnt	genes 
RT-qPCR 

RT-qPCR	validation	in	Cell	Lines 
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Chapter	III	

	

Identification	of	ASCL2	as	a	candidate	gene	in	breast	
cancer,	using	pathway	enrichment	analysis	
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3.1	Introduction	

The clinical heterogeneity observed in breast cancer is mirrored in its complex 

genetic landscape. The search for novel genetic markers and greater molecular 

characterisation is necessary to understand breast carcinogenesis and the 

signalling pathways that are at the core of tumour development. However, 

research potential for the development of novel markers and therapeutic agents 

has been limited in the past, for example, due to the lack of specificity of some 

genes, the low incidence of some genetic changes, or the lack of in-depth 

knowledge of gene function (discussed in Section 1.3.3). The pursuit of 

oncogenes is of prominent research interest now more than ever in the era of 

precision medicine, to better understand the intricacies of each breast cancer 

subtype and in the hope of developing more targeted therapeutics in the future. 

With the emergence of high-throughput techniques within transcriptomics, 

researchers are now able to rank and group large volumes of genetic data. 

Pathway analysis has become a prolific and powerful means of efficiently 

handling gene expression data to advance hypothesis generation and gene 

discovery (Mathur, et al., 2018). Though the phrase ‘pathway analysis’ is 

somewhat broad, in the context of this study it refers to enrichment-based 

analysis, involving the condensing and aggregation of large transcriptomic 

datasets into functional groups of related genes termed gene sets; gene sets 

share a common biological function or property, defined by a reference 

knowledge base. Knowledge bases, such as Gene Ontology (GO) or MSigDB, 

are databases comprising  molecular information relating to regulation, 

interaction and phenotypic associations (Khatri, et al., 2012; Mathur, et al., 2018). 

Large gene lists can be systematically mapped to related GO terms, emphasising 

the most statistically over-represented terms and highlighting the most relevant 

biological factors underpinning the samples of interest. In this way, large gene 

lists are sorted and reduced so biologically meaningful information can be 

extracted (Huang, et al., 2007).  

However, as noted in Section 1.5, selecting the optimal tools from the growing 

number available, and extracting biologically meaningful results has become 

increasingly demanding, especially for the evaluation of interconnecting cancer 

pathways. This process is very complex, involving many steps, and represents 
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an area of cancer research that resides between traditional wet-lab biology and 

systems biology. To bridge this gap, many web-based tools have emerged to 

provide sophisticated in silico analysis with greater accessibility (Zhang, et al., 

2018). 

The pathway tools selected in this study, DAVID, GO and PANTHER, and GSEA, 

(described in Section 1.5.2, Table 1.5) are well established and have been cited 

in numerous publications (DAVID alone has been cited over 33,000 times 

according to PubMed). These tools cover two types of pathway analysis methods. 

Overrepresentation analysis (ORA) (DAVID, GO, PANTHER) results in a list of 

relevant pathways based on the hypothesis that the proportion of differentially 

expressed genes, is greater than expected. Functional class scoring (FCS) 

(GSEA) works on the premise that small yet coordinated expression changes 

may have significant effects on a pathway, in the same way that large expression 

changes do (García-Compos, et al., 2015).  

The objective of this chapter was to formulate a user-friendly pathway analysis 

pipeline, utilising popular and convenient in silico methods, to identify a novel 

candidate gene that may play a role in breast tumourigenesis. To execute this, 

gene expression profiles for multiple breast cancer cell lines were obtained from 

public databases and were subjected to an extreme variation analysis (a gene 

prioritisation and filtering algorithm) to identify a list of differentially expressed 

genes across cell lines (as described in Section 2.1.1) (Hamoudi et al., 

manuscript in preparation). The pathway analysis tools, DAVID, GO and 

PANTHER, and GSEA were used to biologically group the most significantly 

enriched genes in cell lines, to sort and reduce gene expression data into gene 

sets related to biological processes. Subsequently, the tools were cross-

compared, and an in-depth literature review was undertaken, to identify a novel 

candidate gene for further investigation. Finally, the expression of this gene was 

validated in breast cancer cell lines using RT-qPCR.   

 

 	



	

83	
	

3.2	Results	

3.2.1	Pathway	Enrichment	Analysis	Using	DAVID,	GO	&	PANTHER	

Gene expression data from five breast cancer cell lines (BT474, MCF7, MDA-

MB-231, T47D, and MCF10A, representing the non-tumourigenic subtype) were 

downloaded (described in Section 2.1.1). This data underwent extreme variation 

analysis to condense expression data to 915 gene probes, with varying 

expression (log2) across cell lines (Section 2.1.1) (Hamoudi et al., manuscript in 

preparation).   

Extreme variation data was subjected to multiple pathway enrichment analyses, 

using the tools DAVID, GO and PANTHER, and GSEA. The purpose of this was 

to efficiently sort gene expression data into biologically meaningful over-

represented terms and classify genes into functions to ultimately guide and select 

a candidate gene for further investigation. From the extreme variation gene list, 

650 Affymetrix IDs and 634 Ensembl IDs were mapped in DAVID and 

GO/PANTHER analysis respectively. This pipeline is illustrated in Figure 3.1.  
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Figure 3.1. Pathway enrichment analysis pipeline for transcriptomic data: workflow 
of pathway/ontology enrichment analyses and tools used to identify a candidate 
gene(s) for further analysis. Enriched ontologies were selected based on 
commonality between analyses. Data mining of patient samples and in vitro 
investigation will be followed up in subsequent chapters of this thesis.  

Cell	Line	Gene 
Expression	Data	Downloaded	&	

Processed 
GEO/Array	Express 

‘Extreme	Variation’	Analysis	of	
Differentially	Expressed	Genes 

R	Script 

Pathway	Enrichment	Analysis 
	 

DAVID 
GO	&	Panther 

GSEA 

Literature	Review	of	
Overlapping	Genes	 

Criteria: 
Relevance	to	Cancer 

Potential	Oncogenic	Function 
Novelty	in	Breast	Cancer 

Candidate	Gene	Selection 

Data	Mining	of	Patient	Samples	
to	Assess	Clinical	Relevance	of	

Candidate	Gene 
cBioPortal 

In	vitro	Investigation 

Cross	Comparison	 
of	the	Highest-ranked	Genes	

for	Each	Tool	 

RT-qPCR	Validation	in	Cell	Lines 
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Figure 3.2 shows the top 20 (of 348) pathway clusters from DAVID analysis 

exhibiting significant enrichment in breast cancer; among these, regulation of 

peptidases, developmental processes and cell migration/motility had the largest 

enrichment scores. Terms relating to migration and motility, including EMT, 

reoccurred numerous times in this top 20 list, as well as developmental ontologies 

such as reproductive development processes, and ontologies relating to 

apoptosis were also recurrently enriched.   

 

 

 

  

Figure 3.2. DAVID functional annotation clustering analysis using a high 
classification stringency, highlighting the top 20 (of 348) enriched annotated GO and 
pathway clusters, ranked by enrichment score. All top 20 clusters were considered 
statistically significant, P<0.001. Of 915 extreme variation gene IDs, 650 gene IDs 
were mapped.   
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For GO and PANTHER analysis, two overrepresentation tests were carried out 

(GO biological process complete and PANTHER GO-slim biological process 

analyses) shown respectively in Table 3.1 and 3.2. The latter test uses a smaller 

set of GO terms representing those that have been specifically curated and 

decided to be most informative of function and evolutionarily conserved (Mi, et 

al., 2019).  

The Top 20 significantly enriched GO pathways highlighted in Table 3.1, showed 

that enriched biological process ontologies were mainly relating to gland 

(prostate) development and morphogenesis (sitting at the top of the analysis on 

the basis of fold enrichment) EMT, hemostasis, wound healing and embryonic 

skeletal development. PANTHER analysis, shown in Table 3.2, displays 

significant enrichment in ontology terms associated with nervous system 

development and neurogenesis, cell development, cell death and cell adhesion.  

Although different pathway analysis tools were used, built upon differing 

algorithms, they were all configured to use the same GO biological process 

annotation set for consistency. Overall, at a superficial level, the three tools 

discussed so far exhibited a good agreement and identified similar patterns of 

enriched ontology terms in the dataset; terms relating to cell development, 

migration/motility, EMT, cell death/apoptosis, and metabolism were consistently 

enriched in cell line data. It is also of note that the enriched ontologies apparent 

in the cell line expression data aligned well with many cancer hallmarks such as 

sustained angiogenesis, evasion of apoptosis, abnormal metabolic pathways and 

invasion and metastasis (Hanahan, & Weinberg, 2011). In light of this, although 

650 Affymetrix IDs and 634 Ensembl IDs mapped to DAVID and GO/PANTHER 

respectively (compared to the full list of 915 IDs), a broad spectrum of GO terms 

were highlighted in correspondence with oncogenic features, representing that 

this analysis was sufficiently inclusive and wide-ranging, encompassing 

important pathways with biological significance.   
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GO	biological	process	complete	 #	Human	
Reference	

#	Ext	
Var	

Expected	 +/-	 Fold	
Enrichment	

P	value	

hemidesmosome	assembly	
(GO:0031581)	

12	 7	 0.36	 +	 19.47	 5.54E-03	

prostate	gland	morphogenesis	
(GO:0060512)	

24	 10	 0.72	 +	 13.91	 2.47E-04	

prostate	gland	epithelium	
morphogenesis	(GO:0060740)	

22	 8	 0.66	 +	 12.14	 1.42E-02	

prostate	gland	development	
(GO:0030850)	

40	 11	 1.2	 +	 9.18	 1.67E-03	

regulation	of	collagen	metabolic	
process	(GO:0010712)	

42	 10	 1.26	 +	 7.95	 1.86E-02	

gland	morphogenesis	(GO:0022612)	 99	 22	 2.97	 +	 7.42	 5.05E-08	
positive	regulation	of	epithelial	to	
mesenchymal	transition	(GO:0010718)	

46	 10	 1.38	 +	 7.26	 3.76E-02	

cornification	(GO:0070268)	 112	 22	 3.36	 +	 6.56	 4.13E-07	
regulation	of	blood	coagulation	
(GO:0030193)	

77	 14	 2.31	 +	 6.07	 3.19E-03	

regulation	of	hemostasis	
(GO:1900046)	

78	 14	 2.34	 +	 5.99	 3.66E-03	

regulation	of	coagulation	
(GO:0050818)	

81	 14	 2.43	 +	 5.77	 5.48E-03	

regulation	of	epithelial	to	
mesenchymal	transition	(GO:0010717)	

82	 14	 2.46	 +	 5.7	 6.25E-03	

positive	regulation	of	ossification	
(GO:0045778)	

83	 13	 2.49	 +	 5.23	 3.64E-02	

regulation	of	wound	healing	
(GO:0061041)	

130	 20	 3.89	 +	 5.14	 1.30E-04	

negative	regulation	of	epithelial	cell	
proliferation	(GO:0050680)	

124	 18	 3.71	 +	 4.85	 1.49E-03	

digestive	system	development	
(GO:0055123)	

140	 19	 4.19	 +	 4.53	 1.75E-03	

regulation	of	response	to	wounding	
(GO:1903034)	

155	 21	 4.64	 +	 4.52	 4.12E-04	

digestive	tract	development	
(GO:0048565)	

128	 17	 3.83	 +	 4.43	 9.98E-03	

extracellular	matrix	organization	
(GO:0030198)	

333	 42	 9.98	 +	 4.21	 6.91E-10	

embryonic	skeletal	system	
development	(GO:0048706)	

127	 16	 3.8	 +	 4.21	 3.80E-02	

Table 3.1. Gene ontology analysis of extreme variation genes showing the top 20 (of 248) 
enriched biological process ontologies. Of 915 gene IDs, 634 were mapped to the human 
reference list. Results classified as significant using Fisher’s Exact statistical test and 
corrected using the Bonferroni correction for multiple testing (p<0.05) were ranked on the 
basis of fold enrichment score.  
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PANTHER	GO-Slim	Biological	
Process	

#	Human	
Reference	

#	Ext	
Var	

Expected	 Fold	
Enrichment	

P	value	 FDR	

smooth	muscle	contraction	
(GO:0006939)	

9	 4	 0.27	 14.84	 4.11E-04	 4.59E-02	

collagen	fibril	organization	
(GO:0030199)	

13	 5	 0.39	 12.84	 1.28E-04	 2.29E-02	

regulation	of	neurogenesis	
(GO:0050767)	

33	 7	 0.99	 7.08	 1.38E-04	 2.24E-02	

regulation	of	nervous	system	
development	(GO:0051960)	

40	 7	 1.2	 5.84	 3.90E-04	 4.64E-02	

cell	development	(GO:0048468)	 92	 14	 2.76	 5.08	 2.42E-06	 7.20E-04	
cellular	protein	metabolic	process	
(GO:0044267)	

110	 16	 3.3	 4.86	 8.00E-07	 3.58E-04	

multi-organism	process	
(GO:0051704)	

70	 9	 2.1	 4.29	 4.73E-04	 4.02E-02	

regulation	of	multicellular	
organismal	development	
(GO:2000026)	

71	 9	 2.13	 4.23	 5.19E-04	 4.03E-02	

cell	proliferation	(GO:0008283)	 88	 11	 2.64	 4.17	 1.43E-04	 2.14E-02	
cell	differentiation	(GO:0030154)	 350	 35	 10.49	 3.34	 2.97E-09	 5.30E-06	
cell	death	(GO:0008219)	 174	 16	 5.21	 3.07	 1.46E-04	 2.00E-02	
regulation	of	cell	death	
(GO:0010941)	

214	 17	 6.41	 2.65	 4.53E-04	 4.05E-02	

protein	metabolic	process	
(GO:0019538)	

441	 34	 13.21	 2.57	 2.21E-06	 7.88E-04	

cellular	developmental	process	
(GO:0048869)	

506	 39	 15.16	 2.57	 3.41E-07	 2.03E-04	

anatomical	structure	
development	(GO:0048856)	

389	 27	 11.65	 2.32	 1.53E-04	 1.95E-02	

cell	projection	organization	
(GO:0030030)	

354	 24	 10.61	 2.26	 4.82E-04	 3.91E-02	

cell	adhesion	(GO:0007155)	 380	 25	 11.38	 2.2	 4.46E-04	 4.43E-02	
biological	adhesion	(GO:0022610)	 380	 25	 11.38	 2.2	 4.46E-04	 4.19E-02	
developmental	process	
(GO:0032502)	

1035	 68	 31.01	 2.19	 5.58E-09	 4.99E-06	

system	process	(GO:0003008)	 493	 32	 14.77	 2.17	 9.71E-05	 1.93E-02	

Table 3.2. PANTHER analysis of extreme variation genes, showing the top 20 list of 
biological process ontologies. Of 915 gene IDs, 634 were mapped to the human reference 
list. Results classified as significant using Fisher’s Exact statistical test and corrected 
using the false discovery rate (p<0.05) were ranked on the basis of fold enrichment score. 
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3.2.2	Pathway	Enrichment	Analysis	Using	GSEA	

GSEA was performed to examine subtype-cell line specific differences in gene 

expression and to shed further light on pathway functions prior to selection of an 

oncogenic candidate gene. Analysis was completed to compare gene set 

enrichment in the extreme variation data of tumour cell lines vs non-tumourigenic 

cells (MCF10A). The normalised enrichment score (NES) and false discovery 

rate (FDR) were used to assess enrichment.  

GSEA (Table 3.3) revealed that MCF7 Luminal A tumours exhibited significant 

upregulation of genes associated with nervous system development; it is now 

recognised that the nervous system has a large role in cancer development, and 

metastasis, with a primary site of breast cancer metastasis being the brain (Kuol, 

et al., 2018). The top GO gene set enriched in MCF7 cells compared to MCF10A 

cells, ‘Regulation of Nervous System Development’ (Table 3.3), was highlighted 

as 1 of 7 gene sets significant at FDR <25% out of 476 upregulated gene sets. 

Figure 3.3 illustrates the corresponding enrichment plot, exhibiting the highest 

normalised enrichment score in MCF7 cells. The enriched gene probes within 

this gene set are shown in Table 3.3; a number of these are already established 

as oncogenic genes in breast cancer, such as FOXA1, SOX2, BMP5 and BMP7, 

and ID4. In concordance with GSEA analysis, regulation of nervous system 

development was also ranked highly in PANTHER analysis, Table 3.2.  

TNBC tumours (MDA-MB-231) displayed gene sets significantly enriched in 

GTPase mediated signal transduction, while T47D-Luminal A and BT474-

Luminal B showed no significantly enriched gene sets according to the false 

discovery rate values (Table 3.3).  
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Cell	Line/Subtype	 Gene	set	 Gene	Probes	 NES	 Nominal	
p-value	

FDR	q-
value	

MCF7	/	Luminal	A		 GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT	
GO_REGULATION_OF_NEURON_DIFFERENTIATION	
GO_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT	
GO_REGULATION_OF_CELL_PROJECTION_ORGANIZATION	
GO_ENSHEATHMENT_OF_NEURONS	

ASCL1,	CXCL12,	SOX3,	BMP5,	SYT1,	
DSCAM,	OLFM1,	FOXA1,	SOX2,	
PCP4,	ASCL2***,	ID4,	KLK6,	BMP7,	
COL3A1,	PREX1,	EPHA7,	NRCAM,	
PACSIN1,	RET,	DLX1,	TBC1D30,	SBF2	

2.28	
2.24	
2.21	
2.17	
2.14	

<0.001	
<0.001	
<0.001	
<0.001	
<0.001	

0.099**	
0.070**	
0.063**	
0.078**	
0.089**	

T47D	/	Luminal	A	 GO_NEURON_FATE_COMMITMENT	
GO_ORGANIC_ACID_CATABOLIC_PROCESS	
GO_REGULATION_OF_SMALL_GTPASE_MEDIATED_SIGNAL_TRANSDUCTION	
GO_REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION	
GO_MHC_PROTEIN_COMPLEX	

HOXC10,	FOXA1,	DLX1,	PON3,	
ACOX2,	RASGEF1A,	PREX1,	APOE,	
PLCE1,	LPAR1,	PLEKHG4B,	HLA-
DMA,	CD74,	AZGP1	

1.87	
1.85	
1.85	
1.84	
1.71	

<0.05	
<0.05	
<0.05	
<0.05	
<0.05	

1.00	
1.00	
1.00	
1.00	
1.00	

BT474	/	Luminal	B	 GO_SIGNAL_RELEASE	
GO_ORGANIC_ACID_CATABOLIC_PROCESS	
GO_RAS_GUANYL_NUCLEOTIDE_EXCHANGE_FACTOR_ACTIVITY	
GO_CILIARY_PART	
GO_TRANSPORT_VESICLE_MEMBRANE	

FAM3B,	LIN7A,	NRXN3,	TBX3,	
SYTL5,	SYTL2,	GAL,	SYNRG,	CLTA,	
SYT1,	HNMT,	HGD,	PON3,	BCAT1,	
ACOX2,	PREX1,	PLEKHG4B,	MCF2L.	
ERBB2,	RET,	SBF2,	GFRA1,	
RASGEF1A,	GSTM3,	TBC1D30,	
SHANK2,	MARCKS	

2.09	
1.92	
1.92	
1.84	
1.81	

<0.001	
<0.05	
<0.05	
<0.05	
<0.05	
	

0.704	
1.00	
1.00	
1.00	
1.00	

MDA-MB-231	/	
TNBC	

GO_REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION	
GO_REGULATION_OF_SMALL_GTPASE_MEDIATED_SIGNAL_TRANSDUCTION	
GO_POSITIVE_REGULATION_OF_SMALL_GTPASE_MEDIATED_SIGNAL_TRANSDUCTION	
GO_REGULATION_OF_RHO_PROTEIN_SIGNAL_TRANSDUCTION	
GO_ENDOSOME	

NRG1,	LPAR1,	ABCA1,	TGFB2,	PLCE1	 1.99	
1.96	
1.88	
1.88	
1.74	

<0.001	
<0.001	
<0.001	
<0.001	
<0.001	

0.116**	
0.085**	
0.194**	
0.153**	
0.703	

Table 3.3. GSEA investigation showing the top 5 GO gene set results for each cell line ranked normalised enrichment score (NES). Gene probes are 

shown corresponding to their rank. Only gene probes from gene sets with false discovery rate (FDR) <25% were considered significant **Indicates 

significance at FDR <25% *** ASCL2, candidate gene selected in this study, significantly enriched within the regulation of nervous system ontology. 
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Figure 3.3. GSEA enrichment analysis showing an enrichment plot for the ‘regulation 
of nervous system development’ ontology. Panel A represents the enrichment score 
of genes (hits) ordered by a spectrum of correlation from MCF7 cells (tumour, red) to 
MCF10A cells (normal, blue). Panel B shows the ranked list of genes between tumour 
and normal phenotypes. The ‘regulation of nervous system’ development was the top 
most significantly enriched GO gene set in the MCF7 cell line. 
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3.2.3	Cross-comparison	of	Tools	and	Selection	of	ASCL2	

As the GO biological processes most active within transcriptomic cell line data 

had been highlighted, the results of this analysis was further interrogated. The 

gene probes present within each of the top enriched GO terms highlighted by the 

distinct analysis tools (presented in Figure 3.2, Table 3.1, 3.2 and 3.3) were 

extracted and collated.  

The Venn diagram in Figure 3.4 illustrates the number of gene probes identified 

by pathway analysis for each tool, as well as the number of genes commonly 

identified by each tool. Despite the gene sets and enriched ontology terms ranked 

by each tool exhibiting a good agreement overall, there appeared to be 

discrepancies between the tools at the gene probe level. As a result, direct 

comparison indicated there was no identical crossover of gene probes (other than 

the fact that all GSEA gene probes were also present in the high number of 

DAVID gene probes).  

In spite of this, the large number of gene probes identified by DAVID analysis 

compared to the intermediate and small number of genes highlighted by 

combined GO and PANTHER analysis, and GSEA respectively, allowed a large 

number of gene probes (915) to be reduced to a group of 10 genes (Figure 3.4). 

Thus, candidate genes were chosen on the basis of their appearance in enriched 

lists and clusters common to all pathway tools used in this study.  
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Figure 3.4. Venn diagram depicting the number of candidate genes identified by each 
pathway analysis tool, and the number of genes overlapping between tools. Overall, the 
genes present in the cross-section of all analyses (shown in the grey box) were 
considered as the final list of candidate genes. 

DAVID

335

GSEA

25

GO	&	PANTHER

11955	

25	 10	
10	

ASCL1	
BMP5	
FOXA1	
SOX2	
ASCL2	
ID4	
BMP7	
EPHA7	
RET	
TGFB2	

 



	

94	
	

An extensive literature review was subsequently undertaken as described in 

Section 2.1.3 and Figure 3.1. Genes with an already established link to breast 

cancer were omitted leaving ASCL2, which was yet to be defined in breast 

cancer. Previous reports highlighted the role of ASCL2 in colon cancer, more 

specifically as a Wnt-target gene, affirming that this gene had oncogenic potential 

(Giakountis, et al., 2016; Jubb, et al., 2006; Schuijers, et al., 2015). According to 

pathway analysis and in line with the literature, this gene was identified to be 

enriched within developmental processes and nervous system development 

(Table 3.4). Interestingly, ASCL1, a member of achaete-scute complex-like 

family, was also identified in pathway analysis (Figure 3.4); this gene similarly 

controls the development of the nervous system in early embryonic stages and 

has been previously identified as a potential oncogene in lung cancer (Augustyn 

et al., 2014; Borromeo et al., 2016; Wang et al., 2017). These results, alongside 

a systematic review by Wang et al., (2017), suggest that the ASCL family may be 

an interesting family of genes to focus on in future studies. However, for the 

purposes of this study, ASCL2 will be of central focus; a detailed literature review 

and evidence supporting the rationale behind the selection of ASCL2 can be 

found in Section 1.2.3. 

With regards to the GSEA data previously presented (Section 3.2.2), Figure 3.3 

illustrates an enrichment plot for the ‘regulation of nervous system development’ 

ontology. A strong enrichment for the nervous system gene signature was 

observed whereby ASCL2 (0.27 enrichment score) was positively correlated with 

the MCF7 cell line. Within this ranked gene list, ASCL2 was ranked 11 of 20 

genes that were positively correlated with the MCF7 tumour phenotype, and of 

52 genes overall. Of the entire ranked gene list of all gene sets identified in MCF7 

cells, ASCL2 ranked 49 of 692 genes with an enrichment score of 2.79.   
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Tool	 GO	Number	&	Name	

DAVID	 GO:0048856	anatomical	structure	development	
GO:0032502	developmental	process	
GO:0048731	system	development	
GO:0007275	multicellular	organism	development	
GO:0044767	single-organism	developmental	process	

GO/PANTHER	 GO:0050767	regulation	of	neurogenesis		
GO:0051960	regulation	of	nervous	system	development		
GO:0048468	cell	development		
GO:2000026	regulation	of	multicellular	organismal	development	
GO:0030154	cell	differentiation	

GSEA	 GO:0051960	regulation	of	nervous	system	development	

Table 3.4. A summary of the gene ontology terms associated with ASCL2, identified 
in pathway analysis. This information highlights that ASCL2 is a developmental 
gene, involved in the regulation of the nervous system and cell development.   
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3.2.4	Extreme	Variation	Analysis	of	ASCL2	

After cross-comparison between multiple pathway enrichment analyses, process 

of elimination and consideration of novelty, the gene most prominently lacking 

investigation in breast cancer was ASCL2 (Table 3.4). For an indication of the 

differential expression of ASCL2 across breast cancer cell lines, the initial 

extreme variation analysis was referred back to.  

As can be seen from the extreme variation analysis in Figure 3.5, ASCL2 was 

significantly expressed most highly in the luminal subtypes, BT474 and MCF7 

(9.16 and 8.84 respectively). A lower expression was seen in T47D, with lowest 

expression observed in MDA-MB-231 and MCF10A. Here, the expression in 

MCF10A (2.51) was regarded as ‘normal’ or baseline. The lowest expression 

seen in the cancer cell lines was in the triple negative subtype. This data is 

consistent with that of the GSEA analysis whereby ASCL2 was seen to be 

significantly enriched in the MCF7 cell line, thus these findings suggest that 

ASCL2 expression may be associated with the characteristics of MCF7 cells.  

 

  

Figure 3.5. Extreme variation analysis of ASCL2, n<4 per cell line, represented as a 
bar chart and scatter plot. Transcriptomic data highlights statistically significant 
differential expression of breast tumour cell lines compared to a normal-like control, 
MCF10A (mean ± SEM, **p<0.0001). ASCL2 is expressed most in BT474 and MCF7 
respectively, and highly overexpressed compared to non-tumourigenic breast cells.  
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3.2.5	RT-qPCR	Validation	of	ASCL2	Expression	in	Breast	Cancer	Cell	Lines	

The extreme variation analysis highlighted that ASCL2 was expressed most 

highly in BT474, MCF7 and T47D cells respectively, with pathway enrichment 

analysis specifying the involvement of ASCL2 in MCF7 cells. The next step was 

to validate these findings in breast cancer cell lines, ensuring that in silico data 

was concordant with cell lines models prior to continuation of the project.  

Prior to quantitative measurement of gene expression in cell lines, a standard 

PCR was carried out in MCF10A, MCF7, T47D, BT474, SKBR3 and MDA-MB-

231 cells, and samples were run on an agarose gel by standard electrophoresis. 

This was for quality control purposes to improve reliability of data, optimise 

experimental conditions, ensure sample integrity prior to proceeding and to 

ensure PCR products and primers were entirely specific for the ASCL2 gene 

(Appendix 3). The PCR products were visualised and sequenced; Sanger 

sequencing (Appendix 3) validated the gene sequence and the identity of the 

ASCL2 gene was confirmed. Results from PCR analysis indicated that ASCL2 

was expressed only in MCF7 cells (Appendix 3), mostly consistent with in silico 

data; though, no band was visualised in BT474 or T47D cells indicating no 

expression. However, due to the lack of sensitivity and qualitative nature of this 

technique, RT-qPCR was also carried out.  

For quantitative evaluation of ASCL2 gene expression across the cell lines, RT-

qPCR, was undertaken. Figure 3.6 shows the gene expression across cell lines 

relative to the reference gene, RNA polymerase II (RPII), and the non-

tumourigenic cell line, MCF10A; ASCL2 was expressed most highly in MCF7 

cells, concordant with in silico and previous data from PCR analysis. In 

experimental data, T47D and SKBR3 cell lines also showed expression of 

ASCL2, whereas MDA-MB-231 was seen to show little to no ASCL2 expression; 

with the exception of SKBR3, which was not analysed in the previous chapter, 

T47D and MDA-MB-231 cells also matched transcriptomic data in Chapter 3. 

Although, contrary to RT-qPCR data, the expression of BT474 appeared 

inconsistent between in silico and in vitro data, as extreme variation data 

highlighted the greatest gene expression in this cell line. Descriptive data is 

presented in Appendix 4.  
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Due to unforeseen circumstances towards the end of this project, replacement 

MCF7 cell line stocks were obtained from a collaborator (Prof Marilena Loizidou); 

ASCL2 expression matched previous MCF7 cells further validating the 

expression of ASCL2 in MCF7 Luminal A breast cancer cells (data not 

presented). 

 	

Figure 3.6. RT-qPCR analysis: Quantification of relative gene expression highlights 
varied expression of ASCL2 across breast cancer cell lines, particularly in MCF7, 
T47D and SKBR3 cell lines, compared to ‘normal-like’ MCF10A cell line (mean ± 
SEM, n=2, p<0.05). MCF7 exhibited the highest gene expression. The variance in 
error bar size was likely due to biological variation between cell passages.    
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3.3	Discussion 

The work presented in this chapter used multiple computational methods, to 

highlight the most over-represented functional groups of genes from the 

expression profiles of breast cancer cell lines. As a result, ASCL2, a novel 

candidate gene was identified for further investigation in breast cancer, and an 

original pathway analysis pipeline was developed (Figure 3.1). Pathway analysis 

was completed at the beginning of the study, and later reviewed at the end of the 

project.  

A strength of using gene prioritisation (the extreme variation algorithm, by 

Hamoudi et al., manuscript in preparation) combined with a layered pathway 

analysis approach, is that it captures critical aspects of tumour biology, which 

analysing mutation or gene expression data alone lacks. Such comparative 

analysis harnessing the power of multiple methods have been demonstrated to 

outperform the use of single tools, providing more biologically meaningful results 

(Alhamdoosh, et al., 2017). At its core, cancer is a disease of dysfunctional 

pathways, therefore it is imperative that the growing amount of omics data is used 

to understand how genetic disturbances cooperatively impact normal pathway 

function (Frost, & Amos, 2018). This type of investigation not only raises 

awareness of likely genetic candidates in breast cancer, but also provides clues 

as to how these genes function to direct research hypotheses and allow efficient 

research execution. In this case, the gene ASCL2 was selected for further 

investigation, and, extreme variation and GSEA data directed the use of the 

MCF7 cell line for primary laboratory investigation, which is useful as a starting 

point for experimental design and analysis.  

For consistency, analysis tools were selected to use the GO classification and 

annotation database under the ‘biological process’ domain, therefore comparison 

between tools was as reliable as possible. It was also ensured that the tools 

selected in this study encompassed both ORA and FCS methods. These were 

deliberately used in combination to ensure the analysis pipeline was robust, and 

as an attempt to circumvent prominent pitfalls. Although these conventional tools 

have been well recognised in the literature, they were not without their limitations 

(Khatri, et al., 2012).  
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Firstly, ORA treats each gene as an equal, overlooking any expression values 

and concentrating on the quantity of genes only. In doing this, ORA assumes the 

independence of genes and ignores any interactions, co-expression, or 

downstream effects; this results in the reduction of highly complex biological 

interactions in cancer, to a simplistic configuration. Therefore, these methods do 

not account for the dependence among pathways (Khatri, et al., 2012). This type 

of analysis also disregards any genes deemed insignificant based on arbitrary 

thresholds, meaning that false negatives may arise and some information may 

be neglected. In this sense, the stringency of statistical analysis can be seen as 

a challenging equilibrium (Khatri, et al., 2012).  

Secondly, though FCS analysis can be considered as an improvement on ORA, 

FCS still considers pathways independently of one another, therefore omitting the 

biological crosstalk of pathways, and the fact that genes can function in multiple 

pathways - these only consider pathways as overly simplified and independent 

groups. This is challenging to bypass as defining gene sets based on GO terms 

is hierarchical by nature (Khatri, et al., 2012). For example, GSEA assessment 

presented no significant gene sets in T47D and BT474 cell lines; however, this 

may not be completely reflective of the true biological situation – the lack of 

significant gene sets may be a result of more subtle expression. Ultimately, 

cancer is tremendously complex and the development of certain tumour subtypes 

may be the result of multiple gene sets working at lower levels but in synergy, 

rather than one overarching process. Although valuable, these types of analyses 

also ignore important biological information such as the positions of genes in 

pathways, the direction of interaction, and type of interactions with other genes, 

not to mention crosstalk with other pathways. Therefore, multiple stages of 

pathway analysis have been used as a foundation for in vitro work in this study, 

which intends to further investigate the ASCL2 candidate gene in a laboratory 

environment (using cell lines) to shed light on its role in breast tumourigenesis. 

Additionally, large variation in the candidate gene lists produced by each analysis 

tool was observed (Figure 3.4, Appendix 1); of 915 differentially expressed gene 

probes, only 10 genes were found to intersect between tools. These 

discrepancies may be because of innate differences in the tools themselves. 

Each tool uses unique mathematical methods and relies on different 

mathematical assumptions, meaning that results often lack concordance due to 
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intrinsic complexities, and therefore small differences in approaches can lead to 

large discrepancies between outputs. This is exacerbated by the fact that there 

is no ubiquitous algorithmic method for ontology enrichment (Piccolo, & 

Frampton, 2016). Additionally, many knowledge-based computational biology 

tools rely on frequent updates; in this study, the tools used were regularly updated 

to align with constantly growing and newly published data, however, individual 

tools may be updated at different times. For example, the latest DAVID update 

was of 2016, in contrast to the current release of GSEA in 2018, and GO and 

PANTHER in 2019. As carried out in this work, Piccolo, & Frampton, (2016) 

suggest combining approaches to enhance reproducibility. In many reports, a 

single tool may be used for pathway analysis, whereas this study gained added 

value by comparing multiple tools (Alhamdoosh, et al., 2017). 

Although the ranking of genes could be considered as rudimentary in DAVID, GO 

and PANTHER analyses, GSEA was more intricate. In this work, the extreme 

variation gene list was input into DAVID, GO and PANTHER analysis tools as a 

whole, in contrast to the GSEA method which compared the gene expression of 

the gene list of each breast cancer cell line vs MCF10A cells individually. Similarly 

to DAVID, GO and PANTHER, GSEA was designed as a means of identifying 

groups of genes that are over-represented. However, GSEA takes into 

consideration the association of gene expression with a particular phenotype (in 

this case, a tumour); this has allowed researchers to better understand biological 

processes by observing the functional portraits of gene sets in tumours compared 

to normal controls (Subramanian, et al., 2005).  

For DAVID, PANTHER and GSEA analysis tools, the false discovery rate (FDR) 

was used for the assessment of significance rather than the nominal p value (the 

exception to this was GO analysis, where the Bonferroni test for multiple testing 

was used to ensure significance <0.05). This is because the nominal p value 

estimates statistical significance based on the enrichment scores of each gene 

set in isolation. In contrast, the FDR takes into account the size of the gene set 

and multiple hypothesis testing, and adjusts for these. 

However, unlike the generally accepted 0.05 value of significance used in DAVID, 

GO and PANTHER tools, the FDR in GSEA uses 0.25 instead. The FDR is an 

estimation of validity – the probability that an enriched gene set is a false positive. 

Using a generous significance cut off of 0.25 has been designed to account for 
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typical inconsistencies seen in expression datasets, and to avoid potentially 

noteworthy results from being disregarded. The Broad Institute GSEA user 

guidelines suggest this is practical for exploratory gene discovery as a basis for 

the further validation of candidate genes, and that these results (FDR<25%) are 

expected to be the most interesting for further research (Broad Institute, 2019; 

Mootha, et al., 2003; Subramanian, et al., 2005). However, in spite of this more 

lenient cut off, the GSEA method still produced the smallest number of candidate 

genes. 

Aside from analytical limitations, the technical limitation of incomplete gene probe 

mapping and recognition is also a general and common issue associated with the 

use of pathway analysis tools (Khatri, et al., 2012). The gene identifiers input into 

each pathway tool were not entirely recognised or mapped to a reference list, or 

the gene identifiers valid for each tool differed, for example, in DAVID analysis 

650 Affymetrix IDs were mapped to the human reference list. This meant that the 

full list of 915 Affymetrix IDs generated from the extreme variation analysis were 

not analysed. However, this was due to the fact that some genes were mapped 

to multiple Affymetrix IDs, representing multiple transcript isoforms or different 

regions of the same gene (for example, ASCL1 mapped to 209987_s_at and 

209988_s_at probe identifiers). As well as this, some probe IDs could not be 

mapped to a HUGO gene symbol, nevertheless, it could be argued that the 

inability to map these genes to a reference list limits the genes’ experimental 

possibilities; hence, those IDs that weren’t captured within GO terms were 

unlikely to compromise the biological insight of this study, and it was decided that 

no genes of interest were lost of masked in this process. Despite this drawback 

of pathway analysis tools, a large sample of genes were recognised and 

analysed, and consistent patterns between the analyses could be demonstrated. 

Also, most candidate genes identified in Figure 3.4 do show heavy involvement 

in tumourigenesis when browsing the literature, so this issue was not thought to 

affect the integrity of the study. 

Overall, the limitations discussed in this chapter were outweighed by the 

advantages held by these widely used pathway analysis tools. These tools were 

an excellent starting point as they are freely available, and therefore accessible 

to all researchers regardless of their financial means. These tools are relatively 

user-friendly (they don’t require software installation, advanced coding or 
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bioinformatics experience which could limit application), and due to their 

mainstream use and web-application, they can be used on any operating system 

with lots of resources (such as user-guidelines and tutorials) present to ensure 

correct usage. They also do well to reduce the complexity of large volumes of 

data whilst preserving explanatory power (Khatri, et al., 2012), and their usage 

has also lead to the recognition of novel research possibilities due to unexpected 

associations between biological functions (Mathur, et al., 2018). Therefore, these 

tools provide an informative framework from which to build an analysis model for 

the pursuit of candidate genes in breast cancer.  

As well as the identification of a novel candidate gene for further exploration, an 

efficient, strategic and comprehensive pathway analysis pipeline was utilised 

(Figure 3.1). Many methods have been designed for the analysis of large 

transcriptomic datasets, but researching and choosing the correct tool or 

combination of tools can be time-consuming. This model for candidate gene 

selection utilised multiple tools to gain a thorough and consistent picture of the 

pathways and biological processes responsible for driving breast tumourigenesis, 

and therefore hopes to have generated a representative list of candidate genes 

(Figure 3.4). Despite the shortfalls discussed surrounding this type of analysis, 

these have been addressed by using multiple analyses to ‘correct’ for any intrinsic 

biases or inaccuracies in tools; hence genes seen in the cross-over between tools 

were considered to be most likely involved in the breast cancer cell lines 

examined. In light of this, the pipeline used in this study is considered to be 

advantageous as it combines numerous tools in parallel whilst maintaining 

simplicity to bridge the gap between computational scientists and biological 

scientists. As systems biology approaches for pathway analysis is an active and 

continuously growing area of research, this pipeline could be utilised as a 

foundation by researchers of any level of expertise, which could be adapted by 

the user to evolve with the field.  

From a biological standpoint, findings from DAVID, GO and PANTHER analysis 

indicate enrichment in ontologies involving cell development, migration and 

motility, regulation of apoptosis and the EMT; which are considered to be 

trademarks of the Wnt signalling pathway. Adding weight to this was the GSEA 

results, exhibiting the association of MCF7 cells with genes relating to nervous 

system development; Wnt signalling, a highly conserved morphogenic signalling 
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pathway, has also been recognised as crucial for nervous system formation, 

development and maintenance, as well as neural plasticity (Freese, et al., 2010; 

Ille, & Sommer, 2005). This corresponds with the selection of ASCL2, as this 

gene has known involvement in the central nervous system (Liu, et al., 2016), 

development of the neuroectoderm (Simionato, et al., 2008) and has been 

recognised as a target of the Wnt pathway in colon and gastric cancer studies 

(Schuijers, et al., 2015; Zhu, et al., 2012; Tian, et al., 2014; Basu, et al., 2018). 

However, its role has not yet been established in breast cancer. Although this is 

only considered to be foundational evidence, the data presented in this chapter 

substantiates the hypothesis that via Wnt signalling, ASCL2 may be a prominent 

force influencing Luminal A tumours with a similar molecular profile to MCF7 cells. 

It may also be hypothesised from this analysis that tumour cell migration may be 

heavily involved.  

Overall, this chapter demonstrates that a thorough investigation of transcriptomic 

data for candidate gene selection need not be overly complicated, and therefore 

the pipeline (Figure 3.1) used in this study may be utilised by other researchers 

in the future. Given knowledge from the literature regarding ASCL2 in cancer 

discussed in Section 1.2.3, and the ontologies and functions alluded to in pathway 

analysis, it is reasonable to suggest that ASCL2 is likely to exercise its effect 

within the Wnt signalling pathway in breast cancer. The dysfunction of the Wnt 

pathway has a renowned effect on invasion and metastasis in cancer, a primary 

cause of cancer related deaths, therefore, novel targets of the Wnt/β-catenin 

pathway are igniting interest in breast cancer specifically, to benefit from newly 

emerging anti-metastatic drugs (Liang et al., 2016).  

To develop the in silico work presented in this chapter it was important to validate 

these findings in vitro in well-established cell lines. Currently, the use of RT-qPCR 

is the gold standard for confirming microarray data, to ensure that the same 

results can be observed using multiple techniques; this biological replication in a 

different set of samples provides greater power and confidence of conclusions. 

Therefore, to validate the microarray gene expression changes seen in ASCL2, 

RT-qPCR was employed (Ding, et al., 2007; Horgan, & Kenny, 2011; Morey, et 

al., 2006). Results demonstrated that the differential gene expression patterns of 

ASCL2 in breast cancer cell lines mostly mirrored the transcriptomic data; in 

accordance with microarray data, the expression of this gene was significantly 
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different between tumour and non-tumourigenic cells. ASCL2 was differentially 

expressed across the breast cancer cell lines that were chosen to reflect the 

different breast cancer subtypes. ASCL2 was overexpressed most highly in the 

MCF7 Luminal A cell line, as well as T47D (Luminal A) and SKBR3 (HER2+) cell 

lines; as analysis in the previous chapter lacked representation of the HER2 

subtype, the SKBR3 cell line was added to RT-qPCR investigation here. To 

further validate this data, the RNA expression of ASCL2 was checked using the 

Human Protein Atlas (Pontén, et al., 2008);  of 65 cell lines present in the 

database, T47D, MCF7 and SKBR3 cells ranked fifth, seventh and thirteenth 

respectively in terms of ASCL2 gene expression, behind colorectal, placenta and 

myeloid cell lines, as expected from the literature. 

In the next Chapter, the role of ASCL2 will be investigated to improve 

understanding of its function and role in breast tumourigenesis. This will be 

actioned using MCF7 cells primarily (other cell lines may be used for comparison) 

with conventional methods to assess gene function.  
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Investigating	the	potential	role	of	ASCL2	in	breast	

cancer	
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4.1.	Introduction	

The identification of molecular markers over the years has directed detection and 

treatment development, to combat the heterogeneity of breast cancer and thus 

improve mortality rates (Braune, et al., 2018). Therefore, establishing robust and 

specific markers, or key genetic features, is crucial for the development of 

therapeutics or strategic management of the disease.  

The Wnt signalling pathway has emerged as a major driver of breast tumour 

development, and its connection to cancer stem cells (CSCs) has received much 

attention. This is largely because the main challenges associated with cancer, 

such as metastasis, relapse, and therapy resistance, can be attributed to CSCs 

(Kazi, et al., 2016). The deregulation of the Wnt pathway and overexpression of 

the genes present in this cascade, plays a key role in these factors, therefore 

therapeutic blockade of this pathway could be exploited in the future (Kazi, et al., 

2016). Although there are a large number of components and target genes 

present within the Wnt pathway expected to play a role in breast tumour 

development, there has been a lack of exploration in the past.  

Evidence has demonstrated that levels of Wnt signalling varies between breast 

cancer subtypes and that the pathway is highly expressed in breast populations 

enriched with CSCs (Lamb, et al., 2013). Additionally, deliberately activating the 

Wnt pathway in breast cell lines increases cell motility and migratory potential 

(Jang, et al., 2015). Despite this, abnormal activation of this pathway in breast 

cancer is not completely understood, and the exact molecular biology remains 

unclear. 

In Section 1.2.3, Achaete-scute Complex Like-2 (ASCL2) was broadly reviewed, 

and it was noted that this gene, a determinant of neuroblast fate, has been 

established as a Wnt target gene implicated in colorectal cancer (Zhu, et al., 

2012). Published studies in colon cancer have revealed that ASCL2 functions as 

a transcriptional switch in the Wnt pathway, and accumulating evidence points to 

ASCL2 as an interesting gene requiring further exploration. 

Although ASCL2 has been investigated in tumourigenesis (lung squamous cell, 

gastric, osteosarcoma), the majority of work has focused on colon cancer (Zhu, 

et al., 2012; Zuo, et al., 2018; Kwon, et al., 2013; Basu, et al., 2018). Though 
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some studies have emerged more recently suggesting the expression of ASCL2 

in breast cancer (Conway, et al., 2014; Wang, et al., 2017; Xu, et al., 2017), these 

studies have been rather incomprehensive, and within the scope of literature 

searches carried out for this thesis, have not been ongoing. Despite what is 

known about this gene in colon cancer, further research in this area is highly 

prospective and may yield lucrative results.  

Thus, ASCL2, essential for the maintenance of intestinal stem cells and linked 

with the CSC-phenotype in other cancers, is a prime candidate for further 

investigation (van der Flier, et al., 2009). Furthermore, as this gene is a 

transcription factor and known to be an important developmental gene (for 

example, in embryogenesis), this suggests that its biological function may have 

been underrated in the past (Guillemot, et al., 1994; Schuijers, et al., 2015); 

transcription factors account for approximately 20% of all oncogenes currently 

known, they can be attractive ‘drugable’ targets in cancer, and may be 

responsible for aberrant activation of other key regulatory genes (Lambert, et al., 

2018).  

Given that poor survival of breast cancer patients is predominantly due 

metastasis and relapse, investigating genes, such as ASCL2, which could 

potentially be fundamental to these processes in tumorigenesis, are of significant 

interest. As discussed throughout this thesis, ASCL2 is a target of the Wnt-

signalling pathway, and linked with an oncogenic CSC-phenotype typically 

associated with metastasis, relapse, and therapy resistance in cancer. Thus, by 

this reasoning, it could be considered that expression levels of ASCL2 may be 

increased in aggressive breast cancers or those enriched with CSCs, such as 

HER2+ or TNBC tumours. However, Xu et al., (2017) found that high levels of 

ASCL2 were related to high tumour reoccurrence rate, yet found no correlation 

of ASCL2 expression between the subtypes of breast cancer, implying that the 

gene may play a central role in breast tumour development and progression, as 

opposed to a specific role, thereby affecting all or most subtypes. On a cellular 

level, it was hypothesised that overexpression of ASCL2 may contribute to 

increased cellular migration and an aggressive phenotype in breast cancer cells.  

As it stands, there is a scarcity of research conducted on this gene specifically 

relating to the function and clinical implications of this gene in breast cancer, so 

thus far, general assumptions have been drawn and applied from work on other 
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cancers and biological processes, and built upon to form the infrastructure of this 

study. Given what is known about this gene (discussed in Section 1.2.3), current 

evidence suggests that exploring the role of ASCL2 in breast tumourigenesis may 

yield interesting findings. 

In light of this, the aim of this chapter was to investigate the expression and role 

of ASCL2 in breast cancer cells. To assess the relationship between ASCL2 

expression and breast tumourigenesis in vitro, cells were subjected to siRNA 

transfection to knockdown expression of the gene; cellular processes commonly 

disrupted in cancer, such as proliferation, apoptosis, migration and possible 

association with stemness were then investigated.  
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4.2	Results	

4.2.1	Selection	of	Breast	Cancer	Cell	Lines	for	Functional	Analysis	

In Chapter 3, extreme variation analysis highlighted that ASCL2 was expressed 

most highly in BT474, MCF7 and T47D cells respectively, with pathway 

enrichment analysis specifying the involvement of ASCL2 in MCF7 cells. To 

validate this, ASCL2 expression was quantified in six cell lines, demonstrating 

that ASCL2 was expressed most highly in MCF7 cells, and also T47D and SKBR3 

cell lines.  

The combination of in silico and in vitro data was considered and thus the MCF7 

(Luminal A) cell line was the focus of further experiments; as T47D demonstrated 

expression of ASCL2, this cell line was also chosen for further investigation and 

comparison as another Luminal A cell line. Considering all of the evidence, as 

well as the lack of HER2+ representation in the extreme variation datasets, 

SKBR3 cells were chosen for further investigation in additional to Luminal A cell 

lines.  
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4.2.2	Transfection	Validation	and	Knockdown	of	ASCL2	in	Breast	Cancer	Cell	

Lines	

In order to investigate the possible impact of ASCL2 overexpression seen in 

tumour cells (MCF7, T47D, SKBR3) compared to non-tumourigenic cells 

(MCF10A), as well as the involvement of ASCL2 in the Wnt signalling pathway, 

the ASCL2 gene was temporarily silenced using siRNA. It was hypothesised that 

temporarily silencing the gene expression of ASCL2 may result in slowed tumour 

growth or function.  

To validate genetic knockdown prior to data collection, control cells were 

transfected with TYE 563-labelled siRNA. These were visualised under a 

fluorescence microscope 24h post-transfection. The presence of a fluorescent 

signal in approximately 70% of nuclei was observed qualitatively, allowing 

quantitative measurement of knockdown efficiency to continue (Figure 4.1). 

Knockdown of ASCL2 was confirmed and quantified compared to non-targeting 

control siRNA (NC) samples using RT-qPCR. The relative mRNA expression of 

ASCL2 in cell lines are shown in Figure 4.2. Detailed descriptive statistics are 

presented in Appendix 4. All cell lines achieved an average of approximately 70% 

knockdown of ASCL2 (MCF7, 67%, T47D, 70%, SKBR3, 78%), which was used 

as a threshold to represent any true changes in tumour biology via functional 

laboratory investigation (Yang, et al., 2011). However, transfection efficiency was 

seen to vary between biological replicates.  

Functional exploration of ASCL2 in breast cancer proceeded, and evaluated 

several parameters subsequent to gene silencing - cell viability, apoptosis, 

migration, and Wnt-target gene relationships. 
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Figure 4.1. Cell lines transfected with TYE 563-labelled siRNA and visualised 24 
hours post-transfection to qualitatively validate transfection success, with bright-field 
(light) and fluorescence, 4X objective. Once uptake and sufficient gene silencing was 
confirmed, RT-qPCR was completed. MCF7 cells pictured as a representative image. 
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Figure 4.2.  Validation of knockdown efficiency after 24h: mean expression (±SEM) 
of ASCL2 in experimental samples relative to expression in negative control samples 
(relative fold change is shown), as measured by RT-qPCR after knockdown (MCF7, 
n=5, T47D, n=4, SKBR3, n=3, *p<0.0005, **p<0.0001). 
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4.2.3	The	Effect	of	ASCL2	on	Cell	Viability		

Cell viability was measured using two common methods – the Alamar Blue assay 

and the Trypan Blue Exclusion Test. The Alamar Blue assay (a fluorometric 

method) was used as an indicator of cell health and metabolic activity by 

analysing the percentage difference in reduction of Alamar Blue in experimental 

samples compared to untreated controls. However, by nature of estimating cell 

viability based on metabolic activity, results may appear equivocal due to 

potential metabolic reprogramming in cancer cells (discussed further in Section 

4.3). Thus, to validate these findings, the Trypan Blue assay, a dye exclusion 

method, was also used based on the principle that viable cells had intact 

membranes. Incubation times were optimised for these experiments. 

Overall, there was no change in percentage reduction of Alamar Blue after 

ASCL2 knockdown in all 3 cell lines, and to validate this, no change was observed 

in the percentage viability after Trypan Blue staining in MCF7 and SKBR3 cells 

(Figure 4.3 and 4.4). Unpaired t-tests showed no statistically significant 

differences in cell viability between ASCL2-silenced cells and negative controls 

for either method.  
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Figure 4.3. Alamar blue assay: percentage difference in reduction of Alamar Blue 
compared to untreated controls (mean ± SEM), across MCF7 (n=3), T47D (n=3) and 
SKBR3 (n=1) respectively. No changes were observed.  
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Figure 4.4. Trypan blue cell viability assay: percent viability of cells (mean ± 
SEM). No change in viability was observed. (MCF7, n=4, SKBR3, n=3). 
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4.2.4	The	Effect	of	ASCL2	on	Apoptosis	

The Caspase-Glo 3/7 assay was used to determine apoptosis activity in cells. 

Apoptosis activity was judged based on caspase 3 and 7 activities in cells, as 

these are crucial in cell death induction and the promotion of apoptosis (Chen, et 

al., 2016).  In both MCF7 and SKBR3 cells, apoptosis was marginally elevated in 

siRNA-ASCL2 treated cells compared to untreated and siRNA-NC treated cells 

(Figure 4.5). However, since the role of ASCL2 could not be definitively measured 

or statistically established between ASCL2 silenced and negative control 

samples, there was insufficient evidence to confirm a role of ASCL2 in apoptosis.    

Figure 4.5. Caspase 3/7 assay: Measurement of caspase 3/7 activity representative 
of apoptosis shows a minor increase in cells with ASCL2 knockdown (mean ± SEM, 
MCF7 n=4, SKBR3 n=3, *p<0.05). The large error bar size and variation between 
replicates is likely due to variable transfection efficiency.    

T47D cells were omitted due to technical issues 
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4.2.5	The	Effect	of	ASCL2	on	Wound	Healing	&	Migration	

Previous reports in colon and gastric cancers have shown that downregulation of 

ASCL2 has reduced cellular invasion and migration in vitro, therefore suggesting 

that ASCL2 plays a role in promoting the migration of tumour cells (Jubb, et al., 

2006; Tian, et al., 2014; Zhu, et al., 2012; Zuo, et al., 2018). However, this link 

has not been explored in breast cancer.  

Wound closure was measured over 48h in experimental (siRNA-ASCL2) and 

negative control (siRNA-NC) samples. The area of the wound (µm) was 

measured at 0h, 24h and 48h, and percentage closure was calculated between 

time points for each sample. Measurements and descriptive statistics are 

summarised in Appendix 4.   

As can be seen from the microphotographs in Figure 4.6 and the data in Figure 

4.7, there was a clear visual and numerical trend between the rates of wound 

closure in MCF7 cells where ASCL2 expression had been silenced, compared to 

non-targeting siRNA control (NC) cells. Figure 4.6, highlights the observable 

differences in wound closure between MCF7 samples; it can be seen that cells 

migrated closed together, and the wound gap decreased more in control cells 

(untreated and siRNA-NC transfected) compared to siRNA-ASCL2 cells. To 

better observe complete closure of wounds, analysis would have benefited from 

data collection at a time point of 72 hours, however, this was limited by the 

transient nature of siRNA transfection. Figure 4.7 depicts the trend that wound 

closure was slowed in MCF7 cells after ASCL2 silencing with a mean difference 

of 14.9% after 24h and 13.8% after 48h between experimental conditions (Figure 

4.7 C). Figure 4.7 A and B both illustrate that the area of the scratch decreases 

more steadily in MCF7 cells after ASCL2 silencing.    

After 48 hours, no statistical significance was observed when comparing scratch 

area or percentage closure between ASCL2 and NC transfected samples (Figure 

4.7). These findings may be because, despite consistent trends, there was a large 

variation between biological replicates in this assay, which in turn had an effect 

on the determination of statistical significance. This was due to the semi-

quantitative nature of manual measurements, and will be discussed further in 

Section 4.3. Nevertheless, this data was still sufficient for further inquiry that 

ASCL2 may play a role in migration in MCF7/Luminal A breast cancer.  
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Figure 4.6. Microphotographs of scratches made in untreated cells, ASCL2 
transfected cells and NC transfected cells, at 0h and 48h, under a bright-field 
light microscope, x4 objective.  
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Figure 4.7. A & B. Rate of wound closure in MCF7 cells (n=6) over 24 h and 48h in 
ASCL2 and NC transfected samples, as measured by the area of the scratch. Area of 
wound measured at each time point across replicates is presented as mean ± SEM. C. 
Percentage closure of scratches measured at 24h and 48h. 
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The same pattern was observed in Luminal A T47D cells in Figure 4.8 and 4.9. 

Although this appeared less apparent from the microphotographs in Figure 4.8 

compared with MCF7 cells in Figure 4.6, this was seen in the quantitative data in 

Figure 4.9. The graphs in Figure 4.9 highlight that wound closure is slowed in 

T47D cells after ASCL2 silencing with a mean difference between siRNA-ASCL2 

and siRNA-NC transfected samples of 10.22% after 48h. This difference was 

statistically significant (p=0.03), signifying that ASCL2 may contribute to 

enhanced cellular movement and migration.  

Contrary to the trend observed in MCF7 and T47D cells, ASCL2 did not appear 

to be associated with wound healing and migration in SKBR3 cells. Figure 4.10 

and 4.11 highlights that there was no change in the rate of wound closure (area 

of scratch) or percentage closure over 48h.  

A challenge faced using SKBR3 and T47D cell lines was achieving the correct 

cell density for analysis; these cells would have benefitted from being grown to a 

greater confluence to gain a better picture of the growth and movement of cells. 

However, although this was attempted, this resulted in greater cell death and thus 

obstruction of the wound area with detached cells. T47D data collection was also 

problematic due to high volumes of cell death post transfection, hence only two 

replicates were able to be analysed for data collected at 48h. Therefore, further 

optimisation is required for the future.   
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Figure 4.8. Microphotographs of scratches made in untreated cells, ASCL2 
transfected cells and NC transfected cells, at 0h and 48h, under a bright-field 
light microscope, x4 objective. 



	

123	
	

   

Figure 4.9. A & B. Rate of wound closure in T47D cells over 24h (n=3) and 48h (n=2) 
in ASCL2 and NC transfected samples, as measured by the area of the scratch. Area 
of wound measured at each time point across replicates is presented as mean ± SEM. 
C. Percentage closure of scratches measured at 24h and 48h, *p<0.05. 

          A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B        C 
 



	

124	
	

  

Figure 4.10. Microphotographs of scratches made in untreated cells, ASCL2 
transfected cells and NC transfected cells, at 0h and 48h, under a bright-field 
light microscope, x4 objective.  
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Figure 4.11. A & B. Rate of wound closure in SKBR3 cells (n=3) over 24h and 48h in 
ASCL2 and NC transfected samples, as measured by the area of the scratch. Area of 
wound measured at each time point across replicates is presented as mean ± SEM. C. 
Percentage closure of scratches measured at 24h and 48h, *p<0.05. 
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4.2.6	The	Effect	on	Wnt-target	Genes	and	‘Stemness’	Markers	Following	

ASCL2	Silencing		

To further shed light on the relationship between ASCL2 and the Wnt signalling 

pathway in breast cancer, and to confirm if ASCL2 interference in breast cancer 

cells inhibited stem-like properties of cancer cells, 6 genes were selected for 

investigation. The genes C-MYC, CCND1, CD44, CTNNB1, LGR5 and SURV 

(BIRC5) were selected based on their relation/role in Wnt signalling and their 

roles regarding their cellular behaviour (Chen, et al., 2016; Kim, et al., 2017; Wei, 

et al., 2017; Zhu, et al., 2012), intending to mirror the functional investigations in 

this study.  

The differential expression of genes involved in Wnt signalling was measured by 

RT-qPCR. Figure 4.12 A shows a significant reduction in the gene expression of 

the markers CD44, CTNNB1, LGR5 and SURV upon silencing of ASCL2 in MCF7 

cells; conversely, expression of the genes C-MYC and CCND1 were not reduced 

after ASCL2 silencing, but were instead significantly increased compared to the 

expression in negative control cells (siRNA-NC). Expression of the gene SURV 

also showed a marked decrease after ASCL2 knockdown which may back the 

trend from the Caspase-Glo 3/7 assay, suggesting that ASCL2 may play a role in 

the evasion of apoptosis in breast cancer.  

Likewise, Figure 4.12 B illustrates a significant reduction in expression of all Wnt 

markers in T47D cells, following ASCL2 silencing, however little change was 

observed in SKBR3 cells other than in LGR5 in which an increased expression 

was observed, in contrast to Luminal A cells.   

The greatest reduction of mRNA expression after ASCL2 knockdown was seen 

in the genes CD44 and LGR5, in MCF7 and T47D cells. These genes are widely 

known members of Wnt signalling and cancer stem cell markers, therefore this 

data, in line with the literature, suggests that the knockdown of ASCL2 may inhibit 

the action of CSCs or may reduce breast cancer ‘stemness’.   



	

127	
	

 	

Figure 4.12. Changes in relative mRNA expression (fold change, mean ± SEM) of Wnt 
pathway markers and ‘stemness’ genes after silencing ASCL2 compared to NC 
(*p<0.05,**p<0.01). A. MCF7 cells (n=3), the genes CD44, CTNNB1, LGR5, and SURV 
exhibited significantly decreased gene expression when ASCL2 was silenced. 
Conversely, C-MYC and CCND1 showed significantly increased expression. B. T47D 
cells (n=2), the expression of all genes was reduced after ASCL2 knockdown. C. 
SKBR3 cells (n=2), the expression of most genes appeared unchanged after ASCL2 
silencing; although LGR5 showed overexpression, no significant difference was 
observed. Data for CD44 was inconclusive. 
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4.2.7	Validation	of	ASCL2	Protein	Knockdown	in	MCF7	Cells	

To ensure the completeness and rigour of the study, the protein expression of 

ASCL2 was examined to confirm that siRNA knockdown had been translated 

through to the protein level. Immunostaining of MCF7 cells was performed, and 

it was observed that ASCL2 was located within the cytoplasm upon fixation 

(Figure 4.13); however, protein knockdown could not be definitively confirmed. 

Possible reasons for this outcome are discussed in greater detail in Section 4.3 

Although these results were not as anticipated, and functional changes are not 

usually to be expected without an observed change in protein levels after gene 

silencing, the previous experiments maintain validity, as a number of processes 

or feedback pathways may be affected that are currently unknown. The 

significance of these experiments, and this Chapter as a whole, in assessing the 

outcome of ASCL2 knockdown in breast cancer cells is therefore justified by the 

scarcity of information currently available within the literature. 
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Figure 4.13.  Immunofluorescence displaying no change in protein expression after ASCL2 gene knockdown using siRNA in MCF7 cells 
(48h post transfection). It was observed that at the time of fixation, ASCL2 protein was predominantly located in the cytoplasm.   
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4.3	Discussion	

Regarding siRNA experimental data collection in this study, untreated and non-

targeting negative control (NC) duplex transfected cells were used as controls. 

For gene expression analysis and to assess statistical significance in functional 

assays, siRNA-NC treated cells were used for comparison. The siRNA-NC 

treated cells were favoured for experimental comparison over untransfected cells 

as this allowed any non-specific effects to be observed and distinguished from 

sequence-specific effects. 

Prior to beginning functional investigation of ASCL2 it was important to validate 

and optimise the process of gene knockdown. As shown in Appendix 2, a large 

body of time was devoted to optimising this procedure, as this formed the 

foundation of functional investigation. To ensure that the functional effects of 

gene knockdown could be observed, a knockdown of approximately 70% was 

required, and optimisation continued until this could be consistently achieved – 

unfortunately, despite best efforts, knockdown efficiency still varied between 

experiments, and this seems to be reflected in the variation seen between 

biological replicates. Many influencing factors on transfection efficiency were 

scrutinised in the process, including but not limited to cell seeding density, siRNA 

delivery, incubation times, RNA purity and extraction, and cDNA concentration. 

However, transfection efficiency can still vary dramatically from one experiment 

to another due to the inherent and unavoidable cellular toxicity caused by 

transfection methods and reagents; achieving the very fine balance between 

adequate siRNA delivery and toxicity was challenging (Biocompare, 2012). With 

regards to variable transfection efficiency, it is worthwhile mentioning that the 

difficulties faced to maintain knockdown consistency may be exacerbated by the 

intra-tumour heterogeneity of breast cancer cells. To combat this variability, 

multiple replicates were carried out, and this was kept in mind throughout the 

study when analysing data and drawing conclusions.  

One prominent limitation of this analysis was the inability to demonstrate ASCL2 

knockdown at the protein level in MCF7 cells, despite seeing some phenotypic 

effects of the gene silencing. This was attempted using two methods – Western 

Blot (not presented) and immunostaining. Although protein expression of ASCL2 

was observed in MCF7 cells using both techniques, a knockdown of protein 
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expression could not be detected. However, in model disease systems, whereby 

a plethora of factors and circumstances are simultaneously at play at any given 

time, unanticipated results requiring troubleshooting are to be expected.  

With regards to the observed lack of protein knockdown, changes in gene 

expression levels do not always accurately reflect the protein level, and in fact, 

this correlation is often weak (Maier et al., 2009; Vaklavas et al., 2020). this 

inconsistency between mRNA and protein levels has been investigated in 

transcriptomic and proteomic studies, whereby research has found that typically, 

cellular concentrations of proteins to their corresponding mRNAs only correlate 

by approximately 40% (Vogel & Marcotte, 2013). 

A likely explanation may be due to the half-life of ASCL2; very stable proteins 

have a longer half-life, therefore may be highly transcribed or degraded at a 

slower rate, resulting in a longer time required for mRNA reduction to translate to 

the reduction of protein (Boettcher, & McManus, 2015). In this study, protein 

based experiments were measured after 48 hours, but may have benefitted from 

measurement after 72 hours or longer, as protein stability can vary from minutes 

to days. In contrast, the rate of mRNA degradation is restricted to a much tighter 

range, as mRNAs are generally less stable than their protein counterparts (half-

life = 2.6-7 hours versus 46 hours) (Vogel & Marcotte, 2013). This may also be 

attributed to the rate at which mRNA is transcribed in comparison to the rate at 

which protein is translated, which has been estimated to be around 2 copies of 

mRNA versus dozens of the corresponding protein per hour (Vogel & Marcotte, 

2013).  

Overall, levels of cellular protein require the orchestration of a number of 

regulatory processes including the transcription, processing and degradation of 

mRNA, post-transcriptional events, and translation, localisation and modification 

of proteins (Vogel & Marcotte, 2013; Kim et al., 2019). Therefore, a change in 

any one of these events may highly impact the abundance levels of mRNA or 

protein, especially in cancer cells, where the cross-talk of a number of pathways 

is likely to be over activated and highly dynamic in nature.  

From an experimental standpoint, development of the stable expression of 

lentiviral shRNA would be more beneficial to circumvent the issue of transient 

transfection using siRNA, and eventually lead to full protein depletion (Boettcher, 
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& McManus, 2015). Another possible reason was that these experiments could 

have had a poor transfection efficiency prior to protein extraction for western 

blots; to improve certainty of knockdown in samples, the RNA (for RT-qPCR 

validation of efficiency) could have been simultaneously extracted while purifying 

out the corresponding protein for Western Blot analysis. Other reasons may 

include but are not limited to antibody specificity, or the presence of multiple 

different transcripts of the same gene (Bass, et al., 2017). Antibody specificity 

was not validated by testing different antibodies prior to performing western blot 

or immunostaining analyses. Though, this will be done in the future to ensure that 

changes in protein expression can be accurately determined. By correctly 

identifying the most specific antibody, observed expression changes (even no 

expression change) can be more confidently relied upon to reflect the biological 

picture, and rules out the potential of technical or experimental artefacts. In 

addition to this, future work in the continuation of this study will also include the 

MCF10A cell line as comparison control cells in immunofluorescence analysis.  

Previous data from Zhu, et al., (2012) highlighted that ASCL2 knockdown inhibits 

proliferation in colon cancer cells. Although in this study, the results from the 

Alamar Blue cell viability assay showed no change in viability (representing 

proliferation) after knockdown in breast cancer cell lines, the suitability of this 

assay for measurement of proliferation may be scrutinised. The main reason for 

this is that the assay was based on redox changes – this assumes that only live 

cells were metabolically active, where a reduction of Alamar Blue was 

proportional to the amount of ‘viable’ cells (Bio-Rad Laboratories, Inc, 2016). 

Hence, the reliance on metabolic changes in the cells representing changes in 

cell proliferation is problematic for a multitude of reasons.  

Firstly, there are a large number of enzymes present in cells that may be 

responsible for the reduction of Alamar Blue; this makes it difficult to assess 

whether Alamar Blue reduction is due to genetic knockdown altering processes 

like cell death and proliferation, or just a change in cellular metabolism 

(Rampersad, 2012). Secondly, cells use a large amount of energy to push 

invasion and migration in cancer cells; assuming that ASCL2 knockdown results 

in the decrease of migration (based on other findings in this chapter), it follows 

that this could be causing a great demand for energy in cells (Han, et al., 2013). 

To address these shortfalls, the Trypan Blue dye exclusion assay was used to 
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estimate cell viability based on membrane integrity, rather than metabolic activity; 

this confirmed Alamar Blue data and the indication that ASCL2 did not enhance 

cell proliferation. However, using a more direct and sensitive method of 

quantifying cell proliferation may have been more valuable in this case, for 

example, measuring DNA synthesis using an 5-ethynyl-2′-deoxyuridine (EdU) 

staining assay and flow cytometry (Salic, & Mitchison, 2008). Jubb, et al., (2006) 

suggested that ASCL2 promoted cell progression through the G2/M checkpoint 

of the cell cycle in intestinal neoplasia; investigating this using EdU staining would 

be particularly useful for further research into the role of ASCL2 in breast cancer. 

Still, after 48 hours of gene knockdown in this study, no change in protein levels 

could be detected, as well as no effect on cell viability. Therefore, the relationship 

between ASCL2 and cell viability could not be determined. 

Results from the Caspase-Glo 3/7 assay indicated a slight elevation of apoptosis 

in siRNA-ASCL2 treated cells compared to the negative control cells in both 

MCF7 and SKBR3 cell lines. Although this insinuated a possible role of ASCL2 

in apoptosis in breast cancer, evidence was not sufficient to confirm this. As 

previously identified by Wang, et al., (2018) in gastric cancer, it was anticipated 

that ASCL2 silencing would increase apoptosis in breast cancer cells. In contrast 

to this notion, Zhongfeng, et al., (2018) demonstrated that overexpression of 

ASCL2 increased levels of Caspase 3 in neuronal stem cells, thereby promoting 

apoptosis in these cells. Although, it is possible that ASCL2 may act in a context 

dependent manner within different cells. Within this study, there were some 

technical reasons why ASCL2 knockdown did not result in the significant increase 

of apoptosis in breast tumour cells.  

Sundquist, et al., (2006) demonstrated that caspase 3/7 activity was time 

dependent, and increased over the first 7 hours in their study. Therefore, they 

highly recommended that the optimal peak activity was determined consistently 

over a broad time period prior to data collection, as monitoring caspase activity 

prematurely or after its peak could result in a weakened signal leading to false 

conclusions. In this study, apoptosis was measured 24 hours post siRNA 

transfection, which may have been too late to capture peak caspase 3/7 activity; 

measuring caspase 3/7 activity at an earlier time may have shown a more 

pronounced effect of ASCL2 knockdown on apoptosis. Although, collecting 

experimental data too soon post-transfection may result in taking measurements 
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when cell activity is most perturbed by other reagents, for example, apoptotic 

markers may increase as a consequence of transfection-induced toxicity. 

However, this knowledge can be carried forward to improve this study and solidify 

knowledge of ASCL2 in breast cancer. 

It was also noted after experimental analysis that the functional caspase 3 gene 

product is absent in MCF7 cells, which may have been another contributing factor 

in the potential underestimation of apoptosis induced by ASCL2 silencing 

(Jänicke, et al., 1998; Jänicke, 2008; Sundquist, et al., 2006). In light of this 

notion, it could be deliberated that the results seen in this chapter were not 

entirely demonstrative of the real cellular behaviour relating to apoptosis in MCF7 

cells; with further investigation using a different method, such as flow cytometry, 

a greater change in apoptosis after ASCL2 silencing may be observed. However, 

seeing as this is subject to debate, further research is required to confirm this. 

The wound-healing scratch assay was chosen as a core technique to assess cell 

migration in an extremely convenient and economical manner. As discussed by 

Jonkman, et al., (2014), the lack of a standardised method poses a challenge to 

researchers, however the guidelines outlined in this paper were followed within 

the means of resources available. Despite demonstrating clear trends towards 

decreased migration subsequent to ASCL2 silencing in Luminal A cells, the 

difficulties in managing the variability of transfection efficiency between replica 

compromised reproducibility of the assay and posed difficulties for statistical 

analysis in MCF7 cells. Although every effort was made to address these 

reproducibility issues within the assay design, the manual nature of the assay 

meant that there were still a number of limitations.  

For example, a challenge faced was ensuring that scratches made in each well 

for each replicate were the exact same width (the same tip pressure and angle) 

– however, this was combatted by calculating and comparing the percent closure 

of each well (making the scratch at the beginning and end of the assay, relative 

to each well individually). One method to combat this difficulty is the use of silicon 

inserts to ensure gap consistency. As well as this, there was a risk of manually 

imaging a different section of the scratch for each well. Although, every effort was 

made to ensure images were captured precisely for each time point; for example, 

marks were made on plate lids to ensure repeat images were as precise as 

possible, and a 4X objective was used to maximise the field of view of the wound 
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area. However, the reproducibility of the assay could have been improved by 

using an automated live imaging digital camera and more specialised 2D image 

analysis software. Sampling at multiple positions with automated stage control 

would have also been useful to eliminate user-bias. Another complexity of this 

method was that while manually imaging, cells had to be removed from the 

incubator for each time interval, possibly impacting cell growth. Making the 

procedure automated by using an environment-controlled microscope would 

ensure optimal culture conditions were maintained consistently throughout the 

process, eliminating any effects on cell microenvironment and physiology 

(Gough, et al., 2011; Johnston, et al., 2014; Jonkman, et al., 2014).  

Other reproducibility issues could have been attributed to possible variation in 

transfection efficiency for each biological replicate – for example, gene silencing 

of ASCL2 with a transfection efficiency of 65% compared to 80% could have had 

profound differences on the functional effect. This was likely to be causing the 

large variation in scratch migration between biological replicates in MCF7 cells, 

which in turn affected statistical significance in this study (despite the same trends 

across replicates observed, that ASCL2 silencing decreased migration compared 

to negative controls). In spite of best efforts of quality control and experimental 

handling, fluctuating transfection efficiency between biological replicates could 

have given rise to the large variation in the closure of the wound.  

Examining the raw data in Appendix 4, although MCF7 cells closed on average 

a greater percentage between ASCL2 and NC transfected cells compared to the 

same conditions in T47D cells, the variation of data between biological replicates 

was more apparent in MCF7 cells. For example, in MCF7 cells, the mean 

percentage closure after 48h between the two conditions (siRNA-ASCL2 vs 

siRNA-NC) was 13.8%, with a SEM of ±11.53. However, in T47D cells, the 

difference between the mean percentage closures of each condition was 10.22% 

± 3.108. This is reflected in the coefficient of determination (R2) values of 0.1332 

and 0.7299 in MCF7 and T47D cells respectively. Therefore, despite 6 replicates 

in MCF7 cells vs 2 replicates in T47D cells, and a clear graphical trend, the large 

variation has affected the statistical significance in MCF7 cells. It can therefore 

be assumed that repeating this work with more sophisticated technology would 

yield a sounder conclusion and confirm that ASCL2 enhances migration in 

Luminal A breast cancers. 
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With regards to the SKBR3 (HER2+) cell line, ASCL2 silencing did not influence 

cell migration. Untreated cells appeared to close the wound gap much quicker 

than transfected cells, which may have been attributed to the toxicity of the 

transfection process. As there was no change observed in cellular behaviour in 

SKBR3 cells, this may suggest a subtype specific effect of ASCL2. This is 

contrary to work published by Xu, et al., (2017), who claimed to find no differences 

in ASCL2 gene expression between breast cancer subtypes in patient tissue 

samples, but suggest the use of ASCL2 as a prognostic marker in patients. 

Although it could be argued that patient tissue samples are much more 

representative of tumours than cell lines, cell lines are comparatively less 

susceptible to high heterogeneity and provide a relatively stable genetic basis for 

exploration; additionally, the differential expression of ASCL2 has been verified 

at multiple levels in this study (transcriptomic pathway analysis and in vitro 

analysis). Therefore, it is plausible to say that ASCL2 is expressed in breast 

cancer cell lines in a subtype-specific manner. 

Overall, this analysis has presented some evidence that ASCL2 may be involved 

in the collective migration of Luminal A breast cancer cells, however, further 

assessment of migration would improve the reliability of these results. This could 

be done using previously mentioned silicon gap inserts, or using the Boyden 

chamber assay, or Dunn cell chambers, both of which use a chemical 

concentration gradient to follow the movement and migration of cells; however, 

both of these would require time-lapse recording equipment.  

It was summarised in Section 1.2.3 that ASCL2 controls intestinal stem cell fate 

via the downstream effects of Wnt signalling (van der Flier, et al., 2009; Zhu, et 

al., 2012). In colon cancer, ASCL2 regulates cell self-renewal and plasticity 

through EMT, and selective blockade of ASCL2 has been suggested to contribute 

to the reversal of EMT and thus cancer progression (Tian, et al., 2014). With this 

in mind, its role in the ‘stemness’ of colon cancer has received much attention 

within the literature, yet has been neglected in breast cancer. In order to highlight 

this link between ASCL2 and stemness in breast cancer, and its activity within 

the Wnt pathway, genes with Wnt involvement were examined after ASCL2 

silencing.  

Multiple genes were selected in the hope to broadly represent various cancer 

hallmarks and functional parameters relating to cancer within the Wnt signalling 
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pathway. The genes CD44, LGR5, CTNNB1 and C-MYC were chosen as Wnt 

signalling markers of stemness (Kim, et al., 2017; Yang, et al., 2015a; Jang, et 

al., 2015; Zhao, et al., 2017). SURV was chosen as a marker of apoptosis (Chen, 

et al., 2016), and CCND1 was chosen on the basis of being widely overexpressed 

in breast cancer and due to its role in cell cycle regulation and progression (Roy, 

& Thompson, 2006). In primitive terms, these have been chosen to complement 

the investigation of migration (wound-healing), apoptosis and proliferation 

respectively, however it is acknowledged that these genes are all multifaceted in 

their functions. 

The data from this study indicated that upon ASCL2 silencing, the expression of 

stemness-related genes CD44, CTNNB1 and LGR5 decreased in both MCF7 and 

T47D cells. This not only supported the findings from the wound-healing assay in 

this study, but also supported the idea that ASCL2 may be a key gene involved 

in breast cancer stemness via the Wnt signalling pathway. In T47D cells, the 

expression of C-MYC and CCND1 was also reduced after ASCL2 silencing, 

however the opposite trend was observed in MCF7 cells. Although C-MYC has 

been shown to mediate cancer stem cells via sustained activity in triple-negative 

breast cancers (Yin, et al., 2017), amongst other tumour types, the observation 

of overexpression after ASCL2 silencing may be due to another compensatory 

mechanism, as C-MYC also functions to regulate, for example, cell growth and 

proliferation. As both C-MYC and CCND1 are ubiquitous in their functions, a 

single trait cannot be attributed or measured in these genes. Therefore, in this 

case, the mechanism by which C-MYC and CCND1 functions in stemness may 

be context dependent, or may only be present within a small subpopulation of the 

MCF7 tumour cells (Yin, et al., 2017).  

The expression of the gene SURV was also measured as a means to estimate 

the effect of ASCL2 on apoptosis. This gene is also multifunctional but is 

principally recognised for controlling cell division and the inhibition of apoptosis, 

and is associated with therapy resistance and poor prognosis in breast cancer 

(Chen, et al., 2016). Downregulation of SURV subsequent to ASCL2 silencing 

may add weight to the trend observed in the Caspase-Glo 3/7 assay, signifying 

that ASCL2 may contribute to the evasion of apoptosis in breast cancer cells. 

However, the mechanisms of apoptosis involving SURV in tumourigenesis is 

highly complex, therefore this can only be hypothesised rather than confirmed in 
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this study – to elaborate on this, other apoptosis associated genes such as BCL-

2 could also be measured after ASCL2 knockdown.  

Overall, this data suggested that ASCL2 silencing may have inhibited the action 

of cancer stem cells or may have reduced breast cancer ‘stemness’. Results 

demonstrated that ASCL2 did have an effect on the Wnt target genes in breast 

cancer, and therefore may work within this pathway to drive tumourigenesis. To 

strengthen this part of the study, more stemness markers such as Oct4, Sox2 

and CD133 could be added for investigation (Zhu, et al., 2012) 

To summarise the findings of this chapter, as demonstrated, sufficient gene 

knockdown was achieved using anti-ASCL2 siRNAs in all cell lines. In vitro 

functional assays suggested that reducing the expression of this gene had the 

potential to lessen cellular migration within MCF7/T47D Luminal A subtypes, and 

may contribute to the evasion of apoptosis in these breast cancer cells (however, 

this requires additional confirmation). Conversely, it appeared that ASCL2 gene 

knockdown did not impact cell proliferation in the same way. The data described 

also demonstrated that ASCL2 silencing resulted in reduced expression of Wnt 

signalling associated genes; the effect of silencing on CTNNB1 (the gene 

encoding the b-catenin protein, a key player in Wnt signalling), highlighted that 

ASCL2 was likely to exercise its effect on breast tumourignesis, as confirmed in 

colon cancer via the action of the canonical Wnt pathway. In particular, 

knockdown of ASCL2 resulted in the greatest reduction of the stemness marker 

genes CD44 and LGR5, as well as the apoptosis gene SURV, thus confirming 

the trends seen in functional assays and echoing evidence published in colon 

cancer studies (Zhu, et al., 2012). Ultimately, this data provides a sufficient body 

of evidence that ASCL2 is involved in breast tumourigenesis, and although 

mechanisms have not yet been fully elucidated, provides a basis for which further 

hypotheses and research can be conducted.  
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Chapter	V	

 
Assessment	of	molecular	features	and	survival	

outcomes	associated	with	ASCL2	in	patient	breast	
tumours,	to	evaluate	potential	as	a	clinical	or	

prognostic	marker	
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5.1	Introduction	

In recent years, considerable efforts have been made to explore the gene 

expression profiles underlying the distinctive breast cancer subtypes, as well as 

possible markers associated with poorer survival, therapeutic sensitivity and 

clinical outcomes (Dai, et al., 2015; Prat, & Perou, 2011; Reaz, et al., 2018). The 

utility of such genetic markers has been demonstrated in the clinic for some time, 

for example, the expression of the proliferative gene, Ki67, has been used as a 

determinant of chemotherapy response and as an indicator of prognosis 

(Yerushalmi, et al., 2010). Additionally, the identification of novel molecular 

markers for predicting aggressive phenotypes could provide new opportunities 

for future therapy development, or the personalised management of tumours 

across patients (Reaz, et al., 2018).  

However, as knowledge and understanding of the genetic diversity of breast 

cancer advances, the current intrinsic subtype classification has come under 

scrutiny (Russnes, et al., 2017). In light of this, a more extensive and integrated 

classification system was proposed termed the integrative clusters. These 10 

clusters were each linked with likely molecular markers, variable causal biology, 

and thus discrete clinical outcomes in which personalised management and 

treatment approaches could be tailored towards (Dawson, et al., 2013). Still, 

inter- and intra-tumour heterogeneity presents important challenges to 

researchers due to the resultant variations in molecular and clinical 

characteristics (Bedard, et al., 2013). In this respect, the pursuit of a variety of 

functional oncogenic markers to develop biological understanding, improve 

cancer risk models, and enhance marker-based therapies are of significant 

interest within the field of precision medicine for breast cancer (Kalia, 2015).  

The recent application of high-throughput technologies for gene expression 

profiling, and the curation of publically available repositories, means it is now 

possible for large published studies to share clinically relevant datasets. 

Researchers may use these perpetually for candidate gene investigation, to yield 

insights into novel molecular markers and targets, and assist in the clinical 

translatability of oncology research (Cheng, et al., 2015; Y. Yang, et al., 2015b). 

One such resource designed to facilitate gene exploration and discovery is the 
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cBioPortal, an open-access online platform, providing access to large-scale 

datasets from 246 cancer studies (Cerami, et al., 2012; Gao, et al., 2013). 

Within the literature, ASCL2 has been implicated in a number of cancers, alluding 

to the notion that it may be an attractive gene worth exploring as a novel marker 

in breast cancer. Previous studies have reported evidence suggesting the role of 

ASCL2 as a prognostic indicator in tumours; high ASCL2 protein expression was 

associated with advanced tumour stage and poorer differentiation status in lung 

squamous cell carcinoma, and poorer overall and metastasis-free survival in 

osteosarcoma (Hu, et al., 2015; Liu, et al., 2016). However, little is known about 

the role of ASCL2 in breast cancer. One of the few studies exploring the 

relationship between ASCL2 and clinical outcomes in breast cancer was that by 

Xu, et al., (2017); this study used semi-quantitative immunohistochemical 

staining in a small cohort of patients, suggesting that increased ASCL2 protein 

expression was correlated with poorer survival and relapse.  

In the present study, previous analysis of cell line data indicated that ASCL2 

expression was elevated in some breast tumour cells vs non-tumourigenic cells 

(Chapters 3 and 4). To develop these findings, it was hypothesised whether 

elevated ASCL2 expression may be correlated with advanced or aggressive 

breast tumours, as well as poorer patient survival. Further, the association of 

ASCL2 with the distinct intrinsic subtypes or integrative clusters of breast cancer, 

hence its specificity as a potential marker, has not yet been examined. Exploring 

such relationships may be used to identify promising avenues for further 

research, and enable more focussed study of ASCL2.  

The aim of this chapter was therefore to determine the suitability of ASCL2 as a 

clinical or prognostic marker. In order to execute this, the expression levels of 

ASCL2 were analysed among a large cohort of patient breast tumours (n=1904) 

from the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC) study (Curtis, et al., 2012), obtained via the cBioportal (Gao, et al., 

2013). In this Chapter, the association of ASCL2 mRNA expression with clinical 

features such as, subtype, receptor status, age of onset, and overall survival was 

examined to assess the prognostic significance of ASCL2 in breast cancer.  
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5.2	Results	

The work presented in Chapter 3 used in silico methods to identify ASCL2 as a 

potential tumourigenic candidate gene in breast cancer, primarily within the 

Luminal A subtype. This was followed using cell lines in vitro (Chapter 4), 

demonstrating a functional role of ASCL2 in cellular migration, hypothetically 

within the Wnt signalling pathway.  

To accompany the work in cell lines, gene expression data from patient samples 

were explored to examine the clinical impact of ASCL2 and association between 

clinicopathologic features. Data obtained from the METABRIC study (Section 

2.2) (Curtis, et al., 2012; Pereira, et al., 2016)  was accessed through the 

cBioPortal web application (Gao et al., 2013). Expression level Z-score data of 

±2 was used as a threshold to classify clinical breast cancer cases into 3 groups 

according to the expression level of ASCL2: upregulated (overexpressed), 

downregulated and unaltered. The METABRIC dataset contained 2509 samples 

from primary tumours, of which, gene expression data for ASCL2 was recorded 

in 1904 patients. Of these, 3.3% (82) of patient samples were shown to 

overexpress ASCL2 with only one case (0.04%) shown to downregulate ASCL2.  

Descriptive statistics for all clinical parameters and corresponding ASCL2 

expression in the METABRIC cohort is presented in Table 5.1 and 5.2, and can 

also be found in Appendix 5.  
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METABRIC		
Study	

	
Total	

Downregulated	
(≤	-2)	

Unaltered	
(-2	to	+2)	

Upregulated	
(≥	+2)	 P	value	

N	(%)	 N	(%)	 N	(%)	
Age	

Mean	(Years)	
Range	

1,904	
1	

75.13	
-	

1821	
61.05	

21.93,	96.29	

82	
61.75	

32.99,	87.18	
0.497	

Survival	
Mean	(Months)	

Range	
1,904	

1	
58.67	
-	

1821	
125.53	

0.00,	355.20	

82	
114.70	

9.60,	297.23	
0.311	

Stage	
0	
1	
2	
3	
4	

	
4	

475	
800	
115	
9	

	
-	
-	
-	
-	
-	

	
4	(0.3)	

460	(34.2)	
766	(57)	
106	(7.9)	
9	(15.5)	

	
-	

15	(25.9)	
34	(58.6)	
9	(15.5)	

-	

0.224	

Grade	
1	
2	
3	
4	

	
165	
740	
927	
0	

	
-	
-	
-	
-	

	
160	(9.1)	
711	(40.6)	
882	(50.3)	

-	

	
5	(6.3)	

29	(36.7)	
45	(57)	

-	

0.45	

PAM	50	Subtype	
Luminal	A	
Luminal	B	
HER2	+	
Basal	

Claudin-Low	
Normal-like	

	
679	
461	
220	
199	
199	
140	

	
1	(100)	

-	
-	
-	
-	
-	

	
660	(36.4)	
434	(23.9)	
193	(10.6)	
192	(10.6)	
199	(11)	
137	(7.5)	

	
18	(22)	
27	(32.9)	
27	(32.9)	
7	(8.5)	

-	
3	(3.7)	

<0.001*	

Integrative	Cluster	
1	
2	
3	

4ER-	
4ER+	
5	
6	
7	
8	
9	
10	

	
132	
72	
282	
244	
74	
184	
84	
182	
288	
142	
219	

	
-	
-	
-	
-	
-	
-	
-	
-	

1	(100)	
-	
-	

	
126	(6.9)	
68	(3.7)	

275	(15.1)	
238	(13.1)	
71	(3.9)	
163	(9)	
81	(4.4)	
176	(9.7)	
279	(15.3)	
132	(7.2)	
212	(11.6)	

	
6	(7.3)	
4	(4.9)	
7	(8.5)	
6	(7.3)	
3	(3.7)	

21	(25.6)	
3	(3.7)	
6	(7.3)	
9	(11)	

10	(12.2)	
7	(8.5)	

0.010*	

ER	Status	
Positive	
Negative	

	
1458	
445	

	
1	(100)	

-	

	
1396	(76.7)	
425	(23.3)	

	
62	(75.6)	
20	(24.4)	

0.838	

PR	Status	
Positive	
Negative	

	
1008	
895	

	
1	(100)	

-	

	
971	(53.3)	
850	(46.7)	

	
37	(45.1)	
45	(54.9)	

0.222	

HER2	Status	
Positive	
Negative	

	
236	
1668	

	
-	

1	(100)	

	
215	(11.8)	
1606	(88.2)	

	
21	(25.6)	
61	(74.4)	

0.001*	

Table 5.1. Population distribution of the METABRIC study, and association 
between ASCL2 expression and clinicopathologic characteristics of breast 
cancers.  

* For each data type the total number of cases may differ due to missing values or 
incomplete data within the METABRIC dataset.   
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ASCL2	
Z-score	

Downregulated		
(≤	-2)	

Unaltered		
(-2	to	+2)	

Upregulated		
(≥+2)	

N	 Mean	 N	 Mean	 95%	CI	 N	 Mean	 95%	CI	
Stage	 	 	 	 	 	 	 	 	
0	 -	 -	 4	 0.21	 -2.57,	2.99	 -	 -	 -	
1	 -	 -	 460	 -0.2	 -0.28,	-0.13	 15	 2.43	 2.25,	2.60	
2	 -	 -	 766	 -0.04	 -0.10,	0.03	 34	 2.40	 2.29,	2.51	
3	 -	 -	 106	 0.18	 0.02,	0.34	 9	 2.43	 2.22,	2.65	
4	 -	 -	 9	 -0.29	 -1.04,	0.45	 -	 -	 -	

Grade	 	 	 	 	 	 	 	 	
1	 -	 -	 160	 -0.28	 -0.41,	-0.15	 5	 2.64	 2.27,	3.00	
2	 -	 -	 711	 -0.24	 -0.30,	-0.18	 29	 2.45	 2.32,	2.57	
3	 -	 -	 882	 0.07	 0.01,0.13	 45	 2.37	 2.28,	2.46	
4	 -	 -	 -	 -	 -	 -	 -	 -	

PAM	50		
Subtype	 	 	 	 	 	 	 	 	

Luminal	A	 1	 -2.08	 660	 -0.19	 -0.25,	-0.13	 18	 2.35	 2.24,	2.45	
Luminal	B	 -	 -	 434	 -0.34	 -0.42,	-0.26	 27	 2.49	 2.35,	2.62	
HER2	+	 -	 -	 193	 0.53	 0.41,	0.65	 27	 2.38	 2.25,	2.50	
Basal	 -	 -	 192	 0.00	 -0.12,	0,12	 7	 2.35	 2.07,	2.63	

Claudin-Low	 -	 -	 199	 0.04	 -0.06,	0.13	 -	 -	 -	
Normal-like	 -	 -	 137	 -0.03	 -0.17,	0.11	 3	 2.49	 1.17,	3.80	
Cluster	 	 	 	 	 	 	 	 	

1	 -	 -	 126	 -0.28	 -0.43,	0.13	 6	 2.45	 2.13,	2.77	
2	 -	 -	 68	 -0.38	 -0.56,	-0.20	 4	 2.30	 1.87,	2.74	
3	 -	 -	 275	 -0.12	 -0.22,	-0.03	 7	 2.23	 2.11,	2.36	

4ER-	 -	 -	 238	 -0.13	 -0.24,	-0.03	 6	 2.28	 2.08,	2.47	
4ER+	 -	 -	 71	 0.34	 0.13,	0.55	 3	 2.10	 1.91,	2.29	
5	 -	 -	 163	 0.47	 0.33,	0.60	 21	 2.42	 2.26,	2.58	
6	 -	 -	 81	 -0.30	 -0.49,	-0.11	 3	 2.38	 1.32,	3.44	
7	 -	 -	 176	 -0.26	 -0.38,	-0.14	 6	 2.36	 2.15,	2.58	
8	 1	 -2.08	 279	 -0.29	 -0.39,	-0.20	 9	 2.56	 2.32,	2.79	
9	 -	 -	 132	 0.17	 0.01,	0.34	 10	 2.65	 2.39,	2.91	
10	 -	 -	 212	 -0.05	 -0.15,	0.05	 7	 2.35	 2.10,	2.60	

ER	Status	 	 	 	 	 	 	 	 	
Positive	 1	 -2.08	 1394	 -0.19	 -0.24,	-0.15	 62	 2.43	 2.35,	2.51	
Negative	 -	 -	 425	 0.24	 0.16,	0.32	 20	 2.33	 2.19,	2.47	
PR	Status	 	 	 	 	 	 	 	 	
Positive	 1	 -2.08	 971	 -0.23	 -0.28,	-0.18	 37	 2.42	 2.31,	2.52	
Negative	 -	 -	 850	 0.07	 0.01,	0.13	 45	 2.40	 2.31,	2.50	

HER2	Status	 	 	 	 	 	 	 	 	
Positive	 -	 -	 215	 0.40	 0.28,	0.52	 21	 2.43	 2.27,	2.59	
Negative	 1	 -2.08	 1606	 -0.16	 -0.20,	-0.12	 61	 2.40	 2.32,	2.48	

Table 5.2. Association between ASCL2 expression (Z-score) and clinicopathologic 
characteristics of breast cancers in the METABRIC dataset. 

* For each data type the total number of cases may differ due to missing values or 
incomplete data within the METABRIC dataset.   
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5.2.1	Distribution	of	clinicopathological	features	based	on	ASCL2	expression	

The average age of breast cancer onset between tumours with overexpressed, 

unaltered and downregulated ASCL2 was first analysed, as patients presenting 

at a younger age (before 40 years) are known to have more aggressive tumours 

and a reduced overall survival compared to older women (Anders, et al., 2009). 

However, the mean age of onset was approximately 61 years for all ASCL2 

expression groups - a one-way ANOVA (with Tukey post hoc multiple 

comparisons test) showed no significant difference in age of breast cancer onset 

between the upregulated, downregulated and unaltered expression groups of 

ASCL2 (p=0.497, F=0.699).  

Stage and grade were other clinical parameters used to assess the invasive 

capacity and aggression of tumours in patients. Likewise, no difference was 

observed, other than a slight tendency for ASCL2 overexpressing tumours to be 

associated with a higher grade and a more advanced stage (stage 3 and 4 more 

frequently observed where ASCL2 is upregulated (16%) compared with unaltered 

ASCL2 expression (8%)). Analysis of stage and histological grade of tumours 

across ASCL2 expression groups did not show statistical significance (Pearson 

Chi-Square, χ2, p=0.224 and p=0.45 respectively). Overall, breast cancer was 

most frequently diagnosed as Stage 2 across ASCL2 unaltered and upregulated 

tumours. 

As breast cancer is a clinically and biologically heterogeneous disease, 

highlighting the possible genes involved and the underlying gene expression 

patterns of each subtype can provide a clearer portrait to guide clinical 

management. Therefore, the association of ASCL2 expression with intrinsic 

subtype and integrative cluster (10-subtype classification by Curtis, et al., (2012)) 

distribution was investigated.  

The greatest frequency of tumours with overexpressed ASCL2 were found to be 

classified as Luminal B or HER2 Positive (32.9% for each). Luminal A tumours 

represented 22% of samples with increased expression in ASCL2 mRNA, whilst 

the lowest frequency of tumours overexpressing ASCL2 (8.5%) was observed 

within the triple negative subtype (basal and claudin low) (Figure 5.1). The 

highest mean ASCL2 expression was seen in HER2 positive tumours (Figure 

5.1). Despite the large spread of data within each subtype (Figure 5.1 A), the 
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distribution of breast cancer subtypes appeared to be statistically different 

(p<0.001, χ2) between the three ASCL2 expression groups. 
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Figure 5.1. A. Boxplots showing the distribution of ASCL2 gene expression across the intrinsic subtypes. HER2+ cancers appear to exhibit 
the highest expression of ASCL2. B. A histogram showing the frequency of tumours at various expression levels. The majority of HER2+ 
samples were shifted to the right of the histogram, compared to the other subtypes exhibiting a skew towards the left of the histogram.  
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Although the current diagnostic standard of classification is based on the PAM50 

intrinsic subtypes, Curtis, et al., (2012) previously proposed a new and more 

refined integrated classification of breast cancer, based on the combined analysis 

of genomic and transcriptomic information. This defined 10 distinct integrative 

clusters, with different genetic profiles and clinical courses.  

Figure 5.2 illustrates the distribution of ASCL2 gene expression across the 10 

integrative clusters, where it can be seen that cluster 5 exhibited the highest 

mean expression of ASCL2, as well as the greatest percentage of ASCL2 

overexpressing tumours compared to all other clusters (25.6%). Cluster 5 

represented tumours that were HER2 positive (can be ER-/+) with a poor 

prognosis, presenting early and of a higher grade according to (Dawson, et al., 

2013); this was also concordant with subtype data presented in Figure 5.1. 

Among tumours with an unaltered ASCL2 expression, cluster 8 was more 

common, representing 15.3% of cases; cluster 8 was characterised by a 1q gain, 

16q loss, the presence of hormone receptors, and were more likely to be low 

grade Luminal A tumours with a good prognosis. Consistent across all data was 

that the triple negative/basal phenotype was the least associated with ASCL2 

overexpression. The varying distributions of the integrative cluster classifications 

were shown to be statistically significant between expression groups (p=0.01, χ2). 
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Figure 5.2. Boxplots showing the distribution of ASCL2 gene expression across the 
integrative clusters. Clusters have been mapped to the most dominant PAM50 
intrinsic subtype.  n Luminal A  l Luminal B  u HER2 +  p TNBC/Basal  ª Mix 
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Analysis of receptor status highlighted that tumours overexpressing ASCL2 were 

more likely to be ER positive, HER2 negative, and PR negative (based on 

percentage distribution, Appendix 5). However, those that were HER2+ were 

more likely to be correlated with a higher gene expression of ASCL2, which is 

illustrated in Figure 5.3, by the upward shift of ASCL2 expression in the 

distribution of HER2+ tumours. Statistical analysis using a Pearson Chi-Square 

(χ2) test revealed that ER and PR receptor status did not show a significant 

difference between expression groups (p=0.838 and 0.222 respectively). In 

addition, logistic regression analysis was performed to model the relationship 

between ASCL2 expression and HER2 status. Results of this model indicated 

that ASCL2 expression was less associated with negative HER2 status (Odds 

Ratio [OR] = 0.546; 95% confidence interval [CI] = 0.5, to 0.6; p<0.001), indicating 

that ASCL2 expression is approximately 80% more likely to be associated with 

HER2+ tumours.  

  

Figure 5.3. Boxplots showing the distribution of ASCL2 gene expression between 
ER/HER2 positive and negative tumours. There is evidence to show that ASCL2 may 
correlate with HER2 positivity in breast tumours. 
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5.2.2	Analysis	of	ASCL2	as	an	indicator	of	survival	in	patients	

The impact of ASCL2 overexpression on overall patient survival within the entire 

METABRIC cohort was evaluated. Within the whole patient population in this 

study, there was one patient exhibiting a downregulated expression of ASCL2. 

This patient survived for approximately 59 months, which was roughly half the 

time of the rest the cohort (with unaltered or overexpressed ASCL2, Table 5.1). 

However, as this was an isolated case (n=1), it could not be considered as a true 

representation of survival linked to downregulated ASCL2 expression, and was 

therefore excluded from the majority of analyses.  

When evaluated alone, patients with tumours overexpressing ASCL2 had a lower 

mean survival (114.7 months) compared to tumours with unaltered ASCL2 

expression (125.5 months) (Appendix 5). Yet, no statistical significance was 

found to suggest that ASCL2 overexpression in tumours was associated with 

poorer overall survival in breast cancer, in comparison to tumours with unaltered 

ASCL2 expression (Hazard ratio [HR] = 1.12; 95% confidence interval [CI] = 0.9, 

to 1.4; p>0.05). The Kaplan-Meier plot in Figure 5.4 illustrates no significant 

difference in overall survival between tumours with unaltered and upregulated 

ASCL2 gene expression, determined by a log-rank test.  A one-way ANOVA (with 

Tukey post hoc multiple comparisons test) also indicated no significant difference 

(p=0.311, F=1.167) in overall survival between the 3 expression groups. 

However, there is a possibility that these findings could have been attributed to 

large differences between the size of each group (82 tumours overexpressing 

ASCL2 vs 1821 with unaltered expression).   
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Figure 5.4. Kaplan–Meier overall survival analysis comparing breast tumours with no 
alterations or overexpression in ASCL2 within the complete METABRIC cohort. No 
statistically significant difference was observed for overall survival based on ASCL2 
expression, calculated based on the Mantel-Cox log-rank test, and cox regression 
analysis (HR = 1.12; 95% CI = 0.9, to 1.4; p>0.05). Overall survival was defined as 
the time of diagnosis to the time of death.  

 

P=0.230  
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Next, the relationship between subtype (PAM50 intrinsic subtyping vs integrative 

clustering) and patient survival was explored. Firstly, it was determined whether 

ASCL2 overexpression affected overall survival, and therefore patient outcome, 

based on intrinsic subtype classification. Figure 5.5 illustrates the differences 

between overall survival trends in each subtype. Overall, the results revealed that 

there was no statistically significant impact of unaltered or increased ASCL2 

expression on survival across the subtypes, therefore no additional prognostic 

value was provided when subtype was considered (Table 5.3). However, among 

all subtypes, tumours with ASCL2 overexpression did appear to exhibit a 

decreased survival time.  
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Figure 5.5. Kaplan–Meier curves for 
overall survival comparing breast 
tumours with no alterations or 
overexpression in ASCL2 within the 
intrinsic subtypes A. Luminal A, B. 
Luminal B, C. HER2+, D. Basal. 
Overall survival for the claudin low 
subtype is not presented as none of 
these tumours exhibited an increased 
expression of ASCL2. No significant 
differences were observed for overall 
survival depending on ASCL2 
expression between the intrinsic 
subtypes. P values were calculated 
based on the Mantel-Cox log rank test.  

 

N=660 
N=18 

N=434 
N=27 

N=193 
N=27 

N=192 
N=7 
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With regards to the integrative clusters, although Kaplan-Meier curves illustrate 

that overexpression of ASCL2 was associated with overall survival in cases 

classified as cluster 4ER- (Figure 5.6A, p<0.05) and cluster 6 (Figure 5.6C, 

p<0.05), no significant association was exhibited using cox regression analysis 

(Table 5.3). Cluster 4ER- represents tumours which are ER negative and a 

mixture of the intrinsic subtypes, with low level of genomic instability and a 

favourable outcome. By contrast, cluster 6 tumours are considered aggressive 

ER positive/HER2 negative, Luminal A or B tumours with high genetic instability 

and an intermediate prognosis (Dawson, et al., 2013). However, in these two 

clusters, it was observed that the frequency of tumours with ASCL2 

overexpression were much smaller than the number of unaltered cases (cluster 

4ER -, no alteration, n=238 vs overexpressed, n=6; cluster 6, no alteration, n=81 

vs overexpressed, n=3). As the number of tumours overexpressing ASCL2 were 

so low, this is likely to be influencing the estimation of significance compared to 

the other clusters, and therefore calls into question the reliability of the Mantal-

Cox log rank test statistics here.   

Despite cluster 5 tumours presenting the majority of cases overexpressing 

ASCL2 and the highest mean ASCL2 expression, no significant association 

between ASCL2 and overall survival was found (Figure 5.6 B, Table 5.3). As 

previously mentioned, within tumours with an unaltered ASCL2 expression, the 

greatest frequency was classed as cluster 8. However, in this survival analysis, 

cluster 8 tumours with an increased ASCL2 expression appeared to exhibit an 

improved overall survival in this cluster (Figure 5.6 D), contrary to the other 

clusters; nonetheless, this estimation is statistically insignificant, and therefore, 

no significant association between ASCL2 and overall survival was found in 

cluster 8.
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Figure 5.6. Kaplan–Meier curves for 
overall survival comparing breast 
tumours with no alterations or 
overexpression in ASCL2 within the 
integrative clusters. A. Cluster 4ER-, B. 
Cluster 5, C. Cluster 6, D. Cluster 8. 
Overall survival for all intrinsic 
subtypes are not presented, however 
were analysed. No significant 
differences were observed for overall 
survival depending on ASCL2 
expression in cluster 5 despite being 
highlighted as the cluster most 
associated with ASCL2 
overexpression. P values were 
calculated based on the Mantel-Cox 
log rank test.  

N=238 
N=6 

N=163 
N=21 

N=81 
N=3 

N=279 
N=9 
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Finally, to evaluate the association of ASCL2 on overall survival, as a single factor 

in the context of clinicopathologic factors, or adjusted for clinicopathologic factors, 

cox regression analysis was used. This showed that when evaluated alone 

ASCL2 expression was not significantly associated with overall survival in breast 

cancer patients (univariate, HR = 1.04, 95% CI = 0.99, to 1.09; p>0.05), similarly 

to when adjusted for other clinical factors (multivariate, HR = 1.00, 95% CI = 0.94, 

to 1.08; p>0.05) (Table 5.3).   

Overall, these results show that there was no statistically significant relationship 

between ASCL2 expression and overall survival, and therefore no additional 

prognostic value is provided when considering ASCL2 expression in patients 

(Table 5.3).   
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	 Univariate	 Multivariate	

Factor	 HR,	95%	CI	 P	value	 HR,	95%	CI	 P	value	

ASCL2	Expression	 1.04	(0.99	–	1.09)	 0.11	 1.00	(0.94	-	1.08)	 0.878	
ASCL2	Expression	Group		

Unaltered	vs		
Upregulated	

1.12	(0.90	–	1.40)	 0.30	 0.97	(0.70	–	1.34)	 0.840	

Age	
≥60	vs	
	<	60	

	
1.09	(1.02	–	1.17)	
1.01	(0.95	–	1.07)	

	
0.02*	
0.80	

1.36	(1.21	–	1.52)	 0.001*	

ER	Status	
positive	vs		
negative	

	
1.05	(0.99	–	1.10)	
0.95	(0.86	–	1.06)	

	
0.11	
0.36	

0.78	(0.62	–	0.99)	 0.038*	

PR	Status	
positive	vs		
negative	

	
1.00	(0.93	–	1.07)	
1.04	(0.98	–	1.11)	

	
0.99	
0.23	

0.94	(0.81	–	1.08)	 0.342	

HER2	Status	
positive	vs		
negative	

	
1.04	(0.92	–	1.17)	
1.01	(0.96	–	1.07)	

	
0.57	
0.61	

1.13	(0.85	–	1.50)	 0.410	

PAM	50	Subtype	
Luminal	A	
Luminal	B	
HER2	+	
Basal	

Claudin-Low	
Normal-like	

	
1.04	(0.95	–	1.13)	
1.05	(0.97	–	1.14)	
1.04	(0.91	–	1.18)	
0.91	(0.78	–	1.07)	
0.94	(0.77	–	1.16)	
1.05	(0.88	–	1.27)	

	
0.41	
0.26	
0.56	
0.25	
0.59	
0.57	

	
1.00	

1.05	(0.89	–	1.23)	
0.80	(0.62	–	1.04)	
1.00	(0.74	–	1.33)	
1.01	(0.79	–	1.29)	
1.22	(0.96	–	1.54)	

0.16	
-	

0.58	
0.10	
0.97	
0.94	
0.10	

Integrative	Cluster	
1	
2	
3	

4ER-	
4ER+	
5	
6	
7	
8	
9	
10	

	
1.07	(0.91	–	1.26)	
0.89	(0.69	–	1.15)	
1.11	(0.96	–	1.28)	
0.99	(0.77	–	1.27)	
1.09	(0.94	–	1.25)	
1.07	(0.94	–	1.22)	
1.28	(1.01	–	1.63)	
0.97	(0.82	–	1.15)	
0.89	(0.79	–	1.00)	
1.05	(0.90	–	1.21)	
0.86	(0.73	–	1.02)	

	
0.40	
0.36	
0.17	
0.93	
0.26	
0.32	
0.04*	
0.75	
0.06	
0.56	
0.08	

	
1.00	

1.09	(0.78	-.	1.52)	
0.91	(0.70	–	1.20)	
0.91	(0.69	–	1.20)	
0.87	(0.59	–	1.29)	
1.34	(0.93	–	1.93)	
0.95	(0.69	–	1.33)	
0.92	(0.69	–	1.23)	
0.91	(0.69	–	1.19)	
1.08	(0.80	–	1.46)	
0.75	(0.55	–	1.02)	

0.25	
-	

0.63	
0.52	
0.51	
0.49	
0.11	
0.78	
0.59	
0.48	
0.61	
0.07	

Grade	
1	
2	
3	
4	

	
0.96	(0.82	–	1.14)	
1.05	(0.97	–	1.13)	
1.03	(0/96	–	1.10)	

-	

	
0.65	
0.28	
0.42	
-	

	
1.00	

0.98	(0.80	–	1.21)	
0.97	(0.77	–	1.21)	

-	

0.94	
-	

0.88	
0.75	
-	

Stage	
0	
1	
2	
3	
4	

	
0.75	(0.32	–	1.76)	
1.06	(0.96	–	1.17)	
0.97	(0.91	–	1.05)	
1.05	(0.89	–	1.24)	
2.0	(0.78	–	5.01)	

	
0.51	
0.26	
0.48	
0.59	
0.15	

	
1.00	

0.88	(0.12	–	6.37)	
1.27	(0.17	–	9.22)	
1.97	(0.27	–	14.5)	
3.22	(0.40	–	26.1)		

-	
-	

0.90	
0.82	
0.51	
0.27	

Table 5.3. Hazard ratio univariate and multivariate cox regression analysis of the 
relationship between ASCL2 expression and overall survival in patients of the 
METABRIC study. Statistical significance was calculated using the Cox proportional 
hazards regression test.  
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5.3	Discussion	

The results in this chapter suggest that when analysed as a single entity in patient 

tumour samples, higher ASCL2 expression was most associated with HER2+ 

tumours in breast cancer. However, no statistically significant findings suggested 

that ASCL2 overexpression was associated with poorer patient survival in breast 

cancer, when analysed in the whole study population or in the context of other 

clinical features. Therefore, this gene cannot be considered a prognostic marker. 

Results from primary tumour samples indicated that increased expression of 

ASCL2 had a significant correlation with HER2 receptor expression in breast 

cancer (Figures 5.1, 5.2, 5.3). However, this did not exclude tumours with 

upregulated ASCL2 primarily expressing hormone receptors (ER/PR) or of 

Luminal A or B subtypes. Overall, HER2+ tumours appeared to be more likely to 

aberrantly overexpress ASCL2 compared to other tumour subtypes. In addition 

to this, approximately a quarter of all tumours with upregulated ASCL2 were 

classified into integrative cluster 5 associated with HER2+ tumours (whereas all 

other tumours with increased ASCL2 expression were equally distributed among 

the remaining clusters). Although many drugs have emerged in the last decade 

that target HER2, these have been met with challenges including acquired 

resistance (Vu, & Claret, 2012). Hence, exploring the relationship between 

ASCL2 and HER2+ tumours further may shed light on possible mechanisms that 

lead to resistance, to improve patient response to these drugs. Although this 

remains a tenuous link, it may be an avenue worth pursuing. Tumours with 

unaltered expression were mainly associated with cluster 8 (15%), however 

distribution is more equal among clusters, and conversely do not show a strong 

affinity with one cluster in particular.  

To assess the impact of ASCL2 on patient outcomes and as a possible prognostic 

marker, overall survival was examined. Xu, et al., (2017) investigated the clinical 

relevance of ASCL2 in breast cancer by examining specimens from 191 breast 

cancer cases using immunohistochemical staining. The study concluded that 

higher levels of ASCL2 correlated with poorer overall survival, greater tumour 

recurrence and relapse in patients.  

In the present study, overall, patients with tumours overexpressing ASCL2 

survived for approximately 11 months less, which, in clinical terms, could be 
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considered critical. However, statistical analysis indicated otherwise, concluding 

that there was little to no evidence to show that ASCL2 expression was 

associated with patient survival. Though, consistent with the literature, ASCL2 

expression did not affect overall survival based on the breast cancer intrinsic 

subtypes. 

Although the study by Xu, et al., (2017) presented significant survival trends 

relating to ASCL2 expression, their study focussed on protein expression scored 

semi-quantitatively into high and low groups, whereas the present study relied on 

quantitative gene expression data (with an objective, numerical threshold value), 

a larger sample size, and also included an ‘unaltered ASCL2’ group of patients. 

Therefore, it could be assumed that the classification of ASCL2 overexpression 

had a higher and more stringent cut off in the present study. In addition, it could 

be argued that the present study, inclusive of almost 2000 patients, is more 

robust than the study by Xu, et al., (2017) focussing on just under 200 samples. 

However, the findings in this chapter neither support nor reject the work carried 

out by Xu, et al., (2017) due to the differences in study design.  

Nevertheless, with the previous study in mind, to strengthen and expand the 

estimation of the prognostic significance of ASCL2, future work may include 

investigation into tumour recurrence, or disease-specific survival (distinguishing 

patients dying from breast cancer specifically, in comparison to other possible 

causes); this data was not available from the METABRIC dataset. Further 

exploration of this hypothesis could include more datasets such as those from 

The Cancer Genome Atlas (TCGA), available from the cBioPortal, which did 

follow-up on tumour relapse.   

Upon analysing the results obtained from the METABRIC study, there was a 

slight discrepancy in the data mining of primary tumours compared to the data 

mining of cell lines (Chapter 3) and in vitro laboratory work (Chapter 4). Extreme 

variation analysis presented in Chapter 3 pointed to the highest ASCL2 

expression in MCF7 cells. Likewise, RT-qPCR gene expression analysis 

revealed the highest ASCL2 expression in MCF7 and T47D cells (Luminal A), 

and SKBR3 cells (HER2+) respectively, with low expression in BT474 cells 

(Luminal B). Functional analysis also highlighted a potential role of ASCL2 in the 

migration of Luminal A cells, yet no impact was observed in HER2+ cells. 
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Therefore, it was considered that ASCL2 expression was the most associated 

with Luminal A tumours.  

Yet, analysis of clinical cases revealed the strongest correlation (according to 

distribution) with HER2+ tumours and Luminal B tumours. Nevertheless, there 

was evidence supporting the association with Luminal A tumours; ASCL2 was 

overexpressed in 22% of these tumours and approximately three quarters of 

tumours with ASCL2 expression were ER positive. Additionally, analysis of 

receptor status highlighted that tumours overexpressing ASCL2 were more likely 

to be ER positive, HER2 negative, and PR negative (based on percentage 

distribution). From this perspective, data was consistent with the MCF7 cell line 

used for ASCL2 investigation in Chapter 4. However, considering the variability 

in trends observed between cell lines and patient tumour data in this study, it 

remains uncertain whether overexpression of ASCL2 is correlated with HER2 

positivity. Hence, further analysis of the relationship between ASCL2 and HER2 

positivity is required to confirm this. Overall, the possibility that ASCL2 

overexpression may result in susceptibility to a specific breast cancer subtype 

was not entirely confirmed in this study.  

Though the methodology used in this chapter was beneficial within the scope of 

this project, the shortfall with this type of analysis was that it investigated the 

overexpression of ASCL2 as an isolated event in cancer. Cancer is an extremely 

complex and multifaceted process, yet this analysis reduced the complex nature 

of cancer down to a single gene relating to patient survival. The magnitude of the 

impact of ASCL2 overexpression as a single entity is likely to be minute in 

comparison to the expression of the entire genome (Prat, et al., 2014). However, 

it is completely plausible to consider that ASCL2 could be one part of a larger 

puzzle influencing survival; therefore, ASCL2 could be investigated as part of a 

multi gene signature. As of yet, the mechanistic role of this gene in breast cancer 

remains to be discovered, so pinpointing other genes to investigate alongside 

ASCL2 would be the first step to achieving this. It must also be noted that the 

absence of a statistically significant trend between ASCL2 expression and patient 

survival should not be considered as the only marker of clinical outcome. For 

example, ASCL2 may be a contributor to other measures such as therapy 

resistance, or the spread of secondary tumours. Likewise, the predictive potential 

of ASCL2 on these variables could be further explored in the future.  
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Of particular note when analysing the data presented in this chapter was the large 

variation, diversity and spread of data from patient tumours. An explanation for 

this may have been due to the inter-tumour heterogeneity seen between clinical 

breast tumours, compared with in vitro cell culture, which generally consists of a 

uniform cell population (Sun, & Yu, 2015). A further complication of data 

collection and analysis in patients is the genetic and epigenetic heterogeneity 

reported in different parts of the same tumour; oncologists tend to rely on the 

molecular characterisation of a small sample of tumour tissue, which is unlikely 

to represent the true heterogeneity seen within and between patients (Bedard, et 

al., 2013; Zardavas, et al., 2015). This has been observed in many multi-omic 

and single-cell transcriptome profiling studies (Bareche, et al., 2018; Bedard, et 

al., 2013; Chung, et al., 2017).  The heterogeneity observed between the samples 

of this dataset exemplify the challenging nature of gene investigation that 

researchers are attempting to navigate and overcome.  

Despite the use of cell lines being scrutinised over the years, mainly due to their 

questionable representation of tumour biology in situ, and their translatability of 

research findings into the clinic (Choi, et al., 2014), their use in this study was 

warranted. Firstly, because on the whole, laboratory findings have been 

consistent with cell line gene expression data from Array Express and Gene 

Expression Omnibus (GEO) (Chapter 3); additionally, the Human Protein Atlas 

also verified expression of ASCL2 in MCF7, T47D and SKBR3 cells. Secondly, 

the clinical data mining component of this study complements laboratory 

evidence, by taking into account the tumour biology of primary tumours and the 

effect of ASCL2 on clinical parameters in patients. These results can also be used 

to direct the trajectory of further study in the future. Although cell line models are 

not ideal, they are a good pre-clinical model and basis for initial candidate gene 

investigation; ultimately, using cell lines can inform researchers about tumour 

biology prior to investigation using more advanced models (Gillet, et al., 2013; 

Katt, et al., 2016). 

Although clinical investigation added to the breadth of this study, there were 

drawbacks to this analysis which need to be addressed in the future to strengthen 

conclusions. The issue with small sample size is of high priority here. Despite 

2509 patient samples downloaded from the METABRIC study, not all samples 

had full clinical information provided, and therefore not all samples were able to 
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be analysed. This led to missing information that needed to be culled prior to 

statistical analysis. As well as this, owing to the low prevalence of ASCL2 

overexpressing tumours within the METABRIC cohort (3.3%, representing 82 

tumours), a small sample size for such a varied population meant that some 

parameters or ‘events’ could only be measured at very low frequencies. This 

broad spread of data, divided into smaller unbalanced subsets (for example, 

Table 5.1, 18 Luminal A tumours overexpressing ASCL2 vs 660 Luminal A 

tumours with no alteration in ASCL2 expression), complicated statistical analysis 

and may have resulted in a bias towards statistical insignificance (Block, et al., 

2018; Ogden, et al., 2017). Small sample sizes do not have the power to detect 

subtle gene expression changes, and are in essence only applicable when 

expression changes are large (Biau, et al., 2008; van Iterson, et al., 2009). 

Therefore, a greater sample size of tumours overexpressing ASCL2 would lead 

to more reliable conclusions. To target this shortcoming, further data could be 

downloaded from other studies to compile a larger dataset from multiple sources, 

thus integrating ASCL2 gene expression data and clinical information from a 

greater number of primary tumours, rather than from a single dataset (Prat, et al., 

2014). Although caution must be taken to account for differences between study 

designs, this may represent a more relevant approach to investigating the clinical 

impact of ASCL2 in patient tumours.  

Another improvement to further develop this study, could focus on sourcing a 

dataset which includes information on modifiable (age, family history) and non-

modifiable (BMI, childbirths) factors in patients, as well as clinicopathologic 

features of tumours. In the same vein, the results from this dataset may have 

benefitted from the inclusion of factors such as menopausal state, allowing for 

the adjustment of data by other risk factors, potentially improving the estimation 

of ASCL2 as a prognostic indicator. Statistical analysis could also be elaborated 

by the inclusion of power analysis, for the determination of the appropriate 

sample size.  

The cBioPortal web tool was used to access METABRIC data, and was selected 

as it allowed the refined analysis of a single gene (or a select group of genes) 

within a large-scale cancer dataset (Zhang, et al., 2018). This tool was also open-

access, allowing the use of existing public data, as well as being suitable for use 

by researchers at any level, even those with little knowledge in bioinformatics. 
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These factors were in-line with themes discussed in Chapter 3 regarding the 

accessibility and usability of bioinformatics tools to enhance research (Zhang, et 

al., 2018).   

To conclude this chapter, it must be noted that identifying clinically relevant, 

specific and robust markers that translate from the laboratory to the clinic is a 

prominent and pertinent challenge for researchers. Overall, the present study 

was well performed, indicating no statistically significant evidence to support the 

role of ASCL2 as a clinical marker in patient tumours; the hypothesis that higher 

ASCL2 expression may be related to poorer survival in patients was not 

supported by the data presented in this study. However, likely causes influencing 

these findings may be heterogeneity between patient tumours, and the low 

prevalence of elevated ASCL2 expression, therefore further analysis will be 

important for the confirmation of this data. The widespread and varied expression 

of ASCL2 across the subtypes also discounts the possibility of aberrant 

expression being subtype-specific, yet does suggest that this gene may play a 

more fundamental role during tumour development; a view also expressed by Xu, 

et al., (2017). Consistent across all data in this Chapter was that the triple 

negative/basal phenotype was the least associated with ASCL2 overexpression. 

Therefore, even considering the limitations discussed, the work presented in this 

Chapter has contributed to the knowledge of ASCL2 in breast cancer, concluding 

that this gene is not associated with survival.  
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6.1	Overall	Discussion	

Research directed towards improved understanding, identification of novel 

markers and stratification of the complex heterogeneity of breast cancer has led 

to increased patient survival over the past decade; as of 2014, almost 90% of 

patients survived for 5 years or more (National Cancer Institute, 2018). The 

research outlined in this thesis aimed to use an integrated approach to identify a 

novel candidate gene in breast cancer, and investigate its biological function and 

potential as a clinical marker.  

This research provides novel evidence that ASCL2 may be involved in breast 

tumourigenesis by way of influencing cellular migration via the Wnt signalling 

pathway. The evidence gathered in Chapters 3 and 4 employing bioinformatics 

and RT-qPCR, demonstrated the differential expression of ASCL2 across varying 

breast cancer cell lines. Notably ASCL2 expression levels were significantly 

increased in MCF7 cells compared to non-tumourigeneic cells (MCF10A). In 

addition to this, it was proposed that ASCL2 knockdown may have had an anti-

migratory effect in Luminal A cell lines; further supporting this was the enrichment 

of GO terms relating to the regulation of cell migration and motility, wound 

healing, morphogenesis and EMT in breast cancer cell lines (DAVID and GO 

analysis, Chapter 3). Data described also exhibited the reduced expression of 

Wnt signalling associated genes as a result of ASCL2 silencing, in particular, the 

stemness marker genes CD44 and LGR5, and CTNNB1 (β-catenin) suggesting 

that ASCL2 is an upstream regulator of these Wnt pathway genes. This inhibition 

of migration resulting from ASCL2 silencing could be considered as an effect of 

the downregulation of Wnt signalling in breast cancer, however further 

confirmation is needed. Together with previous studies in colon cancer (Tanaka, 

et al., 2019), these findings indicate that the Wnt/ASCL2 pathway may harbour 

key targets for the management of the Wnt pathway in cancer.  

Within a broader context, it could be inferred from this primary analysis that 

ASCL2 may be an oncogene contributing to the migratory and invasive properties 

of certain breast cancer cells and cancer stem cells that push progression 

through the EMT. The EMT is a fundamental biological process within 

embryogenesis, development and wound-healing, yet is also considered a 

malignant driver (Chaffer, et al., 2016). Likewise, ASCL2 has been established 
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as a developmental gene within neurogenesis and embryogenesis (García-

Bellido, & de Celis, 2009; Guillemot, et al., 1994; Oh-McGinnis, et al., 2011). In 

intestinal stem cells it has been shown that ASCL2 correlates directly with LGR5 

expression to regulate stemness (van der Flier, et al., 2009; Yan, et al., 2015). 

Giakountis, et al., 2016 and Schuijers, et al., 2015 also demonstrated that 

alongside TCF4/β-catenin, ASCL2 can activate stem cell gene expression 

programmes in intestinal stem cells through an auto-regulatory positive feedback 

loop involving Wnt signalling in colon cancer. Evidence in colon cancer also 

suggests a role of ASCL2 in EMT (Tian, et al., 2014). Therefore, it could be 

hypothesised that the overexpression of this gene may act in a similar way to 

activate transcriptional programmes in breast cancer, and possibly more 

specifically in breast cancer stem cells (Smith, et al., 2017). Overall, this may 

result in tumour initiation and progression, by over activity of the EMT program, 

modulation of plasticity, increased cell migration, and activation of further 

downstream oncogenic genes within the Wnt pathway (Schuijers, et al., 2015; 

Tian, et al., 2014; Zuo, et al., 2018). Although the relevance of ASCL2 to breast 

cancer stem cells is yet to be established, this study highlights an area requiring 

further attention.  

The work undertaken in Chapter 5 looked to evaluate the expression of ASCL2 

as a potential prognostic indicator and clinical marker. Considering the previously 

observed effects on cellular migration in MCF7 and T47D cells (Chapter 4), one 

might have expected to have seen a correlation between high ASCL2 expression 

and more aggressive tumours in patients (for example, earlier age of onset, 

advanced stage and grade, poorer survival), particularly within Luminal A 

tumours. However, patient data had a largely varied distribution, and no 

significant association between ASCL2 and survival outcomes were identified. 

Thus, the exact impact of ASCL2 on clinicopathologic features remains to be 

elucidated, and this study concluded that ASCL2 cannot be said to be associated 

with patient survival. Though, the variation observed in this clinical data acted to 

highlight the multifaceted complexity and diversity of tumourigenesis within 

patients, as well as the inter-tumour heterogeneity between patients within a 

population (Bedard, et al., 2013).  

Although previous reports have documented ASCL2 as a potential prognostic 

indicator in other cancers (Hu, et al., 2015; Liu, et al., 2016; Xu, et al., 2017), the 
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results from this study suggests that this relationship may be more complex in 

breast cancer. This work suggests that ASCL2 may play more of a core role in 

breast tumourigenesis that encompasses and underpins a variety of tumours, 

rather than a specific role attributed to a single subtype. In this sense, it seems 

unlikely that ASCL2 could be considered as a specific molecular marker, but may 

be investigated as part of a predictive signature or multi-gene test in the future. 

For example, the Oncotype DX Breast Cancer Assay uses RT-qPCR to quantify 

gene expression of a 21-gene panel, for the estimation of overall survival, 

recurrence risk and response to chemotherapy (Cronin, et al., 2007; Harbeck, et 

al., 2014). Moreover, while a minority of breast cancers may be attributed to a 

single specific genetic aberration, most cases are triggered by a combination of 

genetic alterations. Complex diseases like cancer are caused by multiple genes 

that are dysregulated at different points of disease development, resulting in the 

presentation of diverse symptoms and different responses to treatment. 

Across the literature, ASCL2 is involved in a number of developmental processes, 

and has been implicated in some cancers. However its role remains varied and 

occasionally conflicting between tissues, species, and pathologies (Wang, et al., 

2017; Zhongfeng, et al., 2018). This gene has essential roles in trophoblast 

development within the placenta (Bogutz, et al., 2018), epidermal development 

(Moriyama, et al., 2008), maintaining stemness of intestinal stem cells, follicular 

T-helper cell development (Liu, et al., 2014), as an inhibitor of myogenic 

differentiation (Wang, et al., 2017), and as a negative regulator of Schwann cell 

proliferation (Küry, et al., 2002). These examples appear to be reflective of the 

complexity of ASCL2, suggesting both a microenvironment and tissue dependent 

function (Zhongfeng, et al., 2018).  

Within the context of breast cancer, evidence presented in this work and from the 

literature discussed throughout may lead to the future investigation of ASCL2 as 

an ‘accessory driver’, or an epidriver. Currently, no driver mutations have been 

identified in ASCL2, thus it cannot be considered as a driver gene (affirmed by 

the COSMIC database, v87 – www.cancer.sanger.ac.uk). Yet, it is plausible to 

suggest that ASCL2 may have an epistatic effect with varying potency on a 

number of other genes, including driver genes, thus investigation into mutual 

exclusive interactions and genetic co-occurrence could yield significant results. 

An example of an epistatic interaction is the synthetic lethality between BRCA 
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mutations and PARP inhibition. This knowledge is now used in clinical practice 

for breast cancer treatment utilising PARP inhibitors (Gonzalez, et al., 2016; Park, 

& Lehner, 2015). A growing body of evidence suggests that ASCL2 contributes 

to tumourigenesis in a number of cancer types, and has been identified as a 

causative gene in colorectal cancer involved in therapeutic resistance (Tanaka, 

et al., 2019). Although the link between ASCL2 and therapeutic efficacy is yet to 

be examined in breast cancer, this represents an attractive area for further 

research. 

In addition to the research centred on ASCL2, a simple analysis pipeline was 

presented in this thesis that is practical for use on its own, or may be flexibly 

adapted to suit the needs or expertise of the researcher. The advent of rapidly 

evolving omics technologies have given rise to an exponentially growing amount 

of biological data. Studies exploiting these technologies generally use extremely 

convoluted computational workflows, which although lead to the discovery of 

novel and interesting genes, yield little functional knowledge. This pipeline has 

demonstrated that gene inquiry can be kept modest without diminishing 

comprehension. A common value presently held by scientists, is the sharing of 

data and accessibility of tools. Thus, this study prioritised the use of open 

databases for the extraction of freely available transcriptomic cell line and patient 

data for gene investigation.  

The merit of this type of study was the integrated approach consisting of a variety 

of bioinformatics methods for gene identification, laboratory analysis for 

functional investigation, and data mining of patient samples, aiming to bridge the 

gap between laboratory research and clinical application. The study design and 

methods utilised within this project also allowed for the broad investigation of a 

single gene which had been largely overlooked in breast cancer in the past. It is 

anticipated that this study may provoke future research in ASCL2.  

Another strength of this study was the multiple levels of validation. Despite their 

assets, microarray studies are prone to issues relating to reproducibility due to 

the large number of gene probes in comparison to small samples sizes. 

Therefore, combining multiple studies can increase reliability and achieve greater 

precision when estimating differential gene expression (Ramasamy, et al., 2008). 

In this work, microarray data from cell lines were pooled from a number of studies 

to address this. In addition, various pathway tools were compared and combined 
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to allow for comprehensive identification of a candidate gene with oncogenic 

potential. This data was subsequently validated in cell lines and the role of this 

gene was explored in vitro. Finally, a large cohort of patient data was also 

obtained to explore the association of this gene on clinical outcomes in patient 

tumours.  

The in vitro component of this study relied on the growth and maintenance of 

well-established breast cancer cell lines (Lacroix, & Leclercq, 2004). However, it 

is widely acknowledged that cell lines are prone to a number of limitations 

compared to other experimental cancer models, such as primary cell lines, 

patient derived tissue, or animal models. Such limitations include genetic and 

phenotypic drift over passages, the absence of a tumour microenvironment, and 

the lack of biological heterogeneity in comparison to patient tumours (Holliday, & 

Speirs, 2011). Yet, the use of a cell line model was practical for such initial 

investigation, due to their convenience, control over experimental variables, and 

ability to directly compare between experiments and replicates (Burdall, et al., 

2003). This research may be expanded using other tumour models, to uncover a 

greater breadth of knowledge regarding ASCL2 in breast cancer.    

As discussed throughout this thesis, a significant challenge within the area of 

gene investigation and marker identification for the implementation of 

personalised medicine and diagnostics, is tumour heterogeneity. Interpatient 

tumour heterogeneity has been acknowledged for some time, resulting in the 

employment of the intrinsic subtype classification system in the clinic. More 

recently, the issue of intra-tumour heterogeneity has been recognised, meaning 

that the predictive biomarkers present in a tumour may be different depending on 

location, and could be prone to change during progression or metastasis (Bedard, 

et al., 2013). Evidence has also shown that breast cancer cells may exhibit 

subtype plasticity by exhibiting the ability to interconvert between subtypes (Yeo, 

& Guan, 2017). However, despite this challenge, huge strides in progress have 

been made over the last 10 years by fully exploiting omics technologies and 

harnessing the growing amount of biological data already available. This is 

reflected in the growing number of women surviving beyond 5 years (National 

Cancer Institute, 2018).  

 



	

171	
	

6.2	Recommendations	for	Future	Work	

The work presented in this thesis has identified some interesting, yet somewhat 

overlooked, implications in breast cancer, but also highlights a number of 

opportunities for further research. This work has shed light on ASCL2 as a novel 

gene involved in breast carcinogenesis, however some findings and proposed 

mechanisms in this study require additional confirmation and research which 

could be executed in a number of ways.  

To improve on the work detailed in this thesis, it would first be beneficial to 

optimise the consistency of gene knockdown, by performing permanent 

knockdowns via the use of lentiviral construction to improve ‘loss of function’ 

experiments (Boettcher, & McManus, 2015). This could be done by using stable 

expression of short hairpin RNA (shRNA) or the CRISPR/Cas9 system; the 

effects of shRNA transfection are more prolonged than the use of siRNA, 

whereas CRISPR generally yields a more stable, consistent and robust 

knockdown or knockout demonstrating a stronger effect on phenotypes 

(Boettcher, & McManus, 2015).  Both of these techniques may also yield 

validation of a consistent protein knockdown. In addition to this, the study of 

apoptosis and wound-healing in Chapter 4 could be improved to strengthen 

conclusions; flow cytometry and silicon gap inserts along with automated time-

lapse recording equipment could address these issues respectively. Lastly, data 

from other breast cancer studies could be pooled with METABRIC data to 

increase the sample size of tumours with ASCL2 overexpression. As mentioned 

in the previous section, future work including more biologically relevant tumour 

models, such as in vivo models or 3D cell culture (Chen, et al., 2012), would also 

be essential to combat the limitations associated with cell lines. 

To expand on the work detailed in this thesis, the mechanism that leads to the 

overexpression of ASCL2 in MCF7 cells could be investigated. It has been 

previously reported in other cancers that ASCL2 may be epigenetically regulated 

by DNA methylation, the action of miRNAs and the long non-coding RNA, 

WiNTRLINC1 (Conway, et al., 2014; Giakountis, et al., 2016; Tian, et al., 2014; 

Zhu, et al., 2012). Therefore, it may be interesting to pursue this further and 

explore this prospect in vitro in breast cancer. A small number of studies have 

also shown that ASCL2 is involved in therapeutic resistance in colon cancer and 
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postulated its role as a chemoresistance biomarker (Juarez, et al., 2018; Kwon, 

et al., 2013; Tanaka, et al., 2019). With this in mind, it would be worth studying 

this relationship in breast cancer, potentially by assessing the effects of ASCL2 

expression on common chemotherapeutic agents used in the treatment of breast 

cancer, or even the endocrine therapy, tamoxifen, for treatment of Luminal A 

tumours. This could also be expanded to include the monoclonal antibody, 

trastuzumab, targeting the HER2 receptor, as resistance to this drug remains a 

common challenge (Esteva, et al., 2010; Vu, & Claret, 2012). A final consideration 

would be the eventual use of tissue microarrays to assess ASCL2 protein 

expression changes in correspondence with clinical parameters in a high-

throughput manner. 
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6.3	Conclusions	

Identifying and pursuing critical associations within the complex system that is 

breast cancer remains a considerable challenge for researchers. At the time of 

writing this thesis, a PubMed search of ASCL2 returned 171 published studies 

(March 2019). Searching the keywords “ASCL2 cancer” returned 70 results, while 

“ASCL2 breast cancer” revealed 6 results. By comparison, searching “HER2 

breast cancer” gave 17,354 results. This exemplifies how little is known about the 

ASCL2 gene in relation to breast cancer, and highlights a research niche that 

requires attention.  

This project has succeeded in its intentions, yet has also acknowledged a number 

of technical and field-related challenges throughout. Namely, the variability and 

complexity of bioinformatics analysis, the difficulties associated with gene 

investigation, and the vast heterogeneity observed in breast cancer. Ultimately, 

the work presented in this thesis, being the first comprehensive and integrated 

study to examine ASCL2 in breast cancer, has contributed to the understanding 

of the multifaceted function and role of ASCL2 in breast tumourigenesis. This 

study has brought to the forefront the potential of ASCL2 as a novel gene involved 

in breast cancer development, whilst highlighting a number of avenues for further 

research.  
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Appendix	I	–	Candidate	Gene	Lists	Derived	from	Individual	
Pathway	Analysis	Tools	 	
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Appendix	II	–	Optimisation	of	siRNA	Knockdown	of	ASCL2	

 
Experiment & Action Troubleshooting 

Conditions Notes 

Used positive control (HPRT) to 
determine best siRNA dosage 
 
Fluorescence (TYE 563) used to 
check efficiency prior to qPCR 

10nM, 1nM, 0.1nM HPRT 
& with corresponding 
Dharmafect (DF) 
 
3x104 cells per well (24 
well plate) 

Fluorescence observed 
 
Highest knockdown was at 10nm, 
however poor efficiency (45%) 

Tested a higher DF 
concentration 

10nM siRNA + 25nM DF 
10nM siRNA + 10nM DF 
 
3x104 cells per well (24 
well) 

Fluorescence observed 
 
Knockdown improved with higher 
concentration of transfection reagent 
(DF), however poor efficiency 

Checked effect of cell density on 
knockdown efficiency  

10nM siRNA/25nM DF  
 
3, 4, & 5 x104 per well (24 
well) 

Fluorescence observed 
 
No knockdown 

New transfection reagent tested 
(Lipofectamine RNAiMAX) 
 
Increased cell density to account 
for high volume of cells dying 
during transfection 

10pmol siRNA  + 1.5µl 
Lipofectamine 
 
Tested against  
10nM siRNA + 10nM DF 
 
2x105 cells per well (24 
well) 

Fluorescence observed 
 
Inconclusive results - RNA 
concentration was too poor.   
 
Cells were aggregating in the centre 
of the well and were not growing or 
adhering evenly. Cells had almost all 
detached 48 hours after transfection. 

Larger wells (6 well plate) to see 
if greater RNA would enhance 
qPCR estimation  

30pmol siRNA + 9µl 
Lipofectamine  
 
 
1x106 cells per well 
 

Fluorescence observed 
 
RNA purity was extremely poor for 
the HPRT transfected sample. This 
housekeeping gene is crucial for cell 
development, and therefore affecting 
ability of cells to stay alive. Therefore, 
ASCL2 will be tested, before 
considering a new kit. 

Checked individual ASCL2 
siRNA oligonucleotides 

10pmol HPRT, ASCL2  + 
1.5 ul Lipofectamine  
 

Fluorescence observed 
 
Inconclusive knockdown 
RNA purity poor – this needed to be 
addressed 

Attempted reverse transfection  
 

10pmol HPRT, ASCL2  + 
1.5 ul Lipofectamine 
 

Fluorescence could not be observed 
as cells had died 
 
Reverse transfection was not 
effective, therefore reverted back to 
original transfection. 

Pooled 3xASCL2 oligos 
Seeded more cells and care 
taken to ensure cells seeded 
equally – 5x104 

 
New RNA Microprp kit was used 
and cells were scraped from 
wells 

10nM HPRT and pooled 
ASCL2 (x3 oligos) + 1.5 ul 
Lipofectamine 
 

Fluorescence observed 
 
Sufficient knockdown was measured. 
~70% 
 
Cells had grown evenly and RNA 
purity was good. The Microprep kit 
was used for the proceeding 
experiments and care was taken to 
seed cells evenly going forward 

Extracted 24hrs post 
transfection (rather than 48hrs) 
to minimise amount of cells 
detaching 
 

10nM HPRT and pooled 
ASCL2 (x3 oligos) + 1.5 ul 
Lipofectamine 
 

Fluorescence observed 
 
Knockdown successful >70% 
 
Transfection time of 24hrs was used 
for proceeding experiments 
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Appendix	III	–	Sanger	Sequencing	of	ASCL2	&	siRNA	sequences	

	
GATC LightRun Sanger Sequencing 

Chromatogram confirming the sequence of primers and PCR products as ASCL2. 
The forward and reverse primers are shown.  

 

 

 

 

 

 

PCR Analysis 

Varied gene expression of ASCL2 across breast cancer cell lines, demonstrated 
by PCR analysis. This was also used to demonstrate sample integrity, using a 
reference gene, RPII as a control. 	  
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Gene sequence of ASCL2 with siRNA sequences highlighted 
 
Sequence from Ensembl (www.ensembl.org)  
 
 
CAGACCTCCAGGCCCTCCGGGTTAAGGTGCCGCCCAGAGCCCTCAGGCCGGGGGCGCACGGAAACCACAGGCAG
GGTGCGCGTGGAGGGACGGGGAAAGCGGGGCGGGTTGGGGAAGGCGCCCCGGGAACCTGAACCTCCCACCCCGC
CTCAGTCTCGACCACTCCTTAAGCCCCACCCCGCCCCAGGTAAGGCGCAGTCCACCCCCATTCCCAGTAGATTA
ACGCACAGGTGGGGGCGCGCTCGGGACATAGCTGCGCTAGGGGACAGCGCGCCCAGCCCAGTCGCGGGGGCGAG
GAGCAGGGCGGGGCCCAGCAGGAACCCAGCTTTGTTAGCGATGCTCCCCGTGAGCCACGCGCCACGCGTACGCG
CTTCCTCAATGGGGCCGGGCGTGGAGCCGCGCCCTGCGCGATTGGCCAAACGGGTGGCCCACGATTGGCTGAGA
CCCTGGCCCCCGCCTCCTCGGCCCCAGGAGGGTGGGGCGTGGGTGTGGGCTGCGCGGCGCGTGCTGCCCCCGGG
GATCTTGCGCGCCTCCCGAACAGCCGTGTTGTCGCCAGGGCCGCGCCTTCCCTCCCACAGCGCGCGCTGCGCGT
GCGAAGGT 
 
EXON 1 
CTGGCGGCTCTTGGGACTGGCGGGGCTGCGCGCGGGGTTAGGGTGGGGGTACGGGAAGGCTCAACCCAGGACCT
GCGTACCTTGCTTTGGGGGCGCACTAAGCACCTGCCGGGAGCAGGGGGCGCACCGGGAACTCGCAGATTTCGCC
AGTTGGGCGCACTGGGGATCTGTGGACTGCGTCCGGGGGATGGGCTAGGGGGACATGCGCACGCTTTGGGCCTT
ACAGAATGTGATCGCGCGAGGGGGAGGGCGAAGCGTGGCGGGAGGGCGAGGCGAAGGAAGGAGGGCGTGAGAAA
GGCGACGGCGGCGGCGCGGAGGAGGGTTATCTATACATTTAAAAACCAGCCGCCTGCGCCGCGCCTGCGGAGAC
CTGGGAGAGTCCGGCCGCACGCGCGGGACACGAGCGTCCCACGCTCCCTGGCGCGTACGGCCTGCCACCACTAG
GCCTCCTATCCCCGGGCTCCAGACGACCTAGGACGCGTGCCCTGGGGAGTTGCCTGGCGGCGCCGTGCCAGAAG
CCCCCTTGGGGCGCCACAGTTTTCCCCGTCGCCTCCGGTTCCTCTGCCTGCACCTTCCTGCGGCGCGCCGGGAC
CTGGAGCGGGCGGGTGGATGCAGGCGCGATGGACGGCGGCACACTGCCCAGGTCCGCGCCCCCTGCGCCCCCCG
TCCCTGTCGGCTGCGCTGCCCGGCGGAGACCCGCGTCCCCGGAACTGTTGCGCTGCAGCCGGCGGCGGCGACCG
GCCACCGCAGAGACCGGAGGCGGCGCAGCGGCCGTAGCGCGGCGCAATGAGCGCGAGCGCAACCGCGTGAAGCT
GGTGAACTTGGGCTTCCAGGCGCTGCGGCAGCACGTGCCGCACGGCGGCGCCAGCAAGAAGCTGAGCAAGGTGG
AGACGCTGCGCTCAGCCGTGGAGTACATCCGCGCGCTGCAGCGCCTGCTGGCCGAGCACGACGCCGTGCGCAAC
GCGCTGGCGGGAGGGCTGAGGCCGCAGGCCGTGCGGCCGTCTGCGCCCCGCGGGCCGCCAGGGACCACCCCGGT
CGCCGCCTCGCCCTCCCGCGCTTCTTCGTCCCCGGGCCGCGGGGGCAGCTCGGAGCCCGGCTCCCCGCGTTCCG
CCTACTCGTCGGACGACAGCGGCTGCGAAGGCGCGCTGAGTCCTGCGGAGCGCGAGCTACTCGACTTCTCCAGC
TGGTTAGGGGGCTACTGAGCGCCCTCGACCTATGAG 
 
GTAACAGCCGGGAGGCAGGGAGGAGGGAGGGCCGGGGGCCGGGGTGGAGGGACGGGGTGGGCAGGCCCGGCGGG
TCGCGCCCCCAGGAGCCCGCGGAGCCGAGCGCCAGGCCCGAGCGATGGCTTCGATTTCGCTCACTCTTCATTTC
CCCCAAAGTTTTTCAAGCCCGTGCAAGACCGGCGTTTGTTTGTCCGGGATTGCAAAACTTCCCCTCGCGGCTCA
GCCGCCGACGAGGGAGGGGTAGACGAGGGGAGGGGAGCGGCCGTCGGGCCGTTGAGGTCTCTAGTGCTGGCGGA
TCCTGGGGCAGATTGGGGTGCTGGAGGCGGGGTGACTTTGCATTGCAAATCGCGCTCCCGGGCCGGGGCGGCAG
AAATGAGTCGGCGGGCGCGGAGCCCTGACTCACCGCGGCTCCGAGCGCCCGCCCCGCCCCCGCCGTGTCTCAGA
CCGAGTCGCGGCACCCACGGACTCAAGACTCCAAAACCAACCGAGCAAACGAAACTGCCGACTTCGCTTGGGGG
AGGTGCGGGCAGGGCCGGCCCGGGCGGGGTCTGCCCCGGGCCCGCGCCCGCGTTGACGCGCGTTTGGTTCCCCA
CCTTCCCCCCGCAG 
 
EXON 2 
CCTCAGCCCCGGAAGCCGAGCGAGCGGCCGGCGCGCTCATCGCCGGGGAGCCCGCCAGGTGGACCGGCCCGCGC
TCCGCCCCCAGCGAGCCGGGGACCCACCCACCACCCCCCGCACCGCCGACGCCGCCTCGTTCGTCCGGCCCAGC
CTGACCAATGCCGCGGTGGAAACGGGCTTGGAGCTGGCCCCATAAGGGCTGGCGGCTTCCTCCGACGCCGCCCC
TCCCCACAGCTTCTCGACTGCAGTGGGGCGGGGGGCACCAACACTTGGAGATTTTTCCGGAGGGGAGAGGATTT
TCTAAGGGCACAGAGAATCCATTTTCTACACATTAACTTGAGCTGCTGGAGGGACACTGCTGGCAAACGGAGAC
CTATTTTTGTACAAAGAACCCTTGACCTGGGGCGTAATAAAGATGACCTGGACCCCTGCCCCCACTATCTGGAG
TTTTCCATGCTGGCCAAGATCTGGACACGAGCAGTCCCTGAGGGGCGGGGTCCCTGGCGTGAGGCCCCCGTGAC
AGCCCACCCTGGGGTGGGTTTGTGGGCACTGCTGCTCTGCTAGGGAGAAGCCTGTGTGGGGCACACCTCTTCAA
GGGAGCGTGAACTTTATAAATAAATCAGTTCTGTTTACCA 
 
GTGGCTCCTATCACCTACACTTCCCAGGTGACGGCCAGACTTCCGTGGTCACTACTCCTCAAACCCTGCTGCCT
CCTCCGTAGGGTGGGTCTGGGTGAGATCTGGAGTGCAGCCAGGCCGTTGATAGCGGAGCCATTGGGACACCTTG
TGAGGCTGGGGGCATCCTCCAGGAGGTGGTGGGCTGGTGGGTTGTCCAGACAGGGCTACTCGCTGGCTTGGAAG
CTGCAGGCTGGAGGCTGCTGACCCATCCCGAGGGCTGGGGTAAGTGCTGGGTGTGGGGCTAGGCTGAGGTGGTC
TGACCAGAGAGCACCGGCTGTGGGGCTGAGGGCATGGGCTCCTGCGCAGGCCACCACGCTCAGATCTCCACTAA
CGTGGCAGCTGGGCAGCCCAGGGCAAGTGGGTTAACTTGCAAATGGGTTTGACCAGACCCACCTCAACGGCCTC
TGGGAGGAGTTAGTGAGAGGTGCCTGGAGGCTGCCCTCTCGCTAGCTTTGGGTTTTGCCCGCACTGGGGAGGCC
CTGCAGGTCTCCGCTCACCTGAATTCTAAGAGCGGCTCTTGAAAGGAACAAGGAAGGCTTGGAAGCTTTGCGCC
AGGCTCCC  

GGGTTATCTATACATTTAAAAACCA 

GCACCAACACTTGGAGATTTTTCCG 

GAGCGTGAACTTTATAAATAAATCA 
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Appendix	IV	–	Experimental	Descriptive	Data	

	
ASCL2 Extreme Variation Analysis Descriptive Statistics 
 

 
ASCL2 RT-qPCR Descriptive Statistics 
 

Cell Line 
∆CT Relative Fold Change 

n=1 n=2 Mean Std. 
Deviation n=1 n=2 Mean Std. 

Deviation 

MCF10A 13.26 14.1 13.68 0.59 1 1 1 0 

MCF7 7.06 6.17 6.615 0.63 73.26 244.72 158.99 121.24 

MDA-MB-231 13.6 14.48 14.04 0.62 0.79 0.77 0.78 0.01 

BT474 12 14.03 13.015 1.44 2.39 1.05 1.72 0.95 

SKBR3 9.70 10.1 9.9 0.28 11.79 16 13.90 2.97 

T47D 8.89 9.25 9.07 0.25 20.61 28.94 24.77 5.89 

 
ASCL2 Knockdown Descriptive Statistics 
 
Relative mRNA expression of ASCL2 in experimental samples (siRNA-ASCL2) 
compared to non-targeting control (siRNA-NC), across cell lines.  

	
 
 
 
 
 
  

Cell Line Sample Mean Log 2 Expression, ASCL2 
Std. 

Deviation 
P 

MCF10A n=10 2.5 0.16  
BT474 n=7 9.16 0.33 <0.0001 
MCF7 n=9 8.84 0.72 <0.0001 

MDA-MB-231 n=4 2.60 0.28 0.46 
T47D n=7 5.11 0.32 <0.0001 
ZR-75 n=3 5.41 2.51 0.0018 

Cell 
Line 

Sample n=1 n=2 n=3 n=4 n=5 
Mean 

Fold Change 
Percentage 
Knockdown 

Std. 
Deviation 

MCF7 
n=5 

ASCL2 
NC 

0.32 
1 

0.30 
1 

0.38 
1 

0.47 
1 

0.23 
1 

0.34 
1 

66% 
0 

0.09 
0 

T47D 
n=4 

ASCL2 
NC 

0.19 
1 

0.35 
1 

0.43 
1 

0.21 
1 

- 0.30 
1 

70% 
0 

0.11 
0 

SKBR3 
n=3 

ASCL2 
NC 

0.09 
1 

0.34 
1 

- - - 0.20 
1 

80% 
0 

0.12 
0 
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Wound-Healing Assay Descriptive Statistics 
 
Area of wound (µm)  
 

  siRNA n=1 n=2 n=3 n=4 n=5 n=6 Mean Area  
(µm) 

Std. Deviation 
M

C
F

7 

0h ASCL2 383679 551558 362271 449259 374399 304557 404287 85721 

 NC 378105 448258 409788 426729 398355 241273 383751 73799 

24h ASCL2 211266 378455 359391 398369 234676 228101 301710 85618 

 NC 165160 247292 321914 325117 205800 161382 237778 73390 

48h ASCL2 127900 336536 332646 380924 193438 178806 258375 104130 

 NC 90722 189955 300190 289975 174943 113718 193250 87149 

T
47

D
 

0h ASCL2 444636 391440 - - - - 418038 37615 

 NC 393166 376998 - - - - 385082 11432 

24h ASCL2 404135 349472 - - - - 376804 38653 

 NC 341591 311557 - - - - 326574 21237 

48h ASCL2 394491 320579 - - - - 357535 52263 

 NC 310502 312128 - - - - 311315 1149 

S
K

B
R

3 

0h ASCL2 378740 383884 442193 - - - 401606 35244 

 NC 409191 478284 393282 - - - 426919 45189 

24h ASCL2 357963 372861 442766 - - - 391197 45277 

 NC 389790 451297 383435 - - - 408174 37480 

48h ASCL2 342535 359288 407798 - - - 369874 33895 

 NC 368388 437729 372131 - - - 392749 38999 

 
 

Percentage closure after 48h 
 

 siRNA n=1 n=2 n=3 n=4 n=5 n=6 Mean 
% Closure 

MCF7 

ASCL2 66.7 39 8.2 15 48.3 41.3 

13.8 NC 76 57.6 26.7 32 56.1 52.9 

% Closure 9.3 18.6 18.5 17 7.8 11.6 

T47D 

ASCL2 11.3 18.1 - - - - 

9.01 NC 26.6 20.8 - - - - 

% Closure 15.3 2.7 - - - - 

SKBR3 

ASCL2 9.6 6.4 7.8 - - - 

0.028 NC 10 8.5 5.4 - - - 

% Closure 0.4 2.1 -2.4 - - - 
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Appendix	V	–	Data	Mining	Descriptive	Statistics	&	Frequency	
Tables	of	ASCL2	Expression	

 

Age of Onset N Mean Std. 
Deviation Std. Error 

95% Confidence 
Interval for Mean 

Minimum Maximum 
Lower 
Bound 

Upper 
Bound 

Downregulated 1 75.1300 - - - - 75.13 75.13 

Unaltered 1821 61.0495 12.98345 0.30425 60.4528 61.6463 21.93 96.29 

Upregulated 82 61.7487 12.92019 1.42680 58.9098 64.5875 32.99 87.18 

 
 

Overall 
Survival N Mean Std. 

Deviation Std. Error 

95% Confidence 
Interval for Mean 

Minimum Maximum 
Lower 
Bound 

Upper 
Bound 

Downregulated 1 58.6667 - - - - 58.67 58.67 

Unaltered 1821 125.5265 76.25047 1.78685 122.0220 129.0310 0.00 355.20 

Upregulated 82 114.7004 78.03784 8.61784 97.5536 131.8472 9.60 297.23 

 
 

 
 

Grade Grade1 Grade 2 Grade 3 Grade 4 

Downregulated 
Count 0 0 0 0 

Row N % 0.0% 0.0% 0.0% 0.0% 

Unaltered 
Count 160 711 882 0 

Row N % 9.1% 40.6% 50.3% 0.0% 

Upregulated 
Count 5 29 45 0 

Row N % 6.3% 36.7% 57.0% 0.0% 
 
 

ASCL2 
Expression 

Subtype 

Luminal A Luminal B HER2 
Positive Basal Claudin Low Normal 

Mean -0.12 -0.18 0.76 0.08 0.04 0.02 

Median -0.4 -0.53 0.85 -0.03 -0.05 -0.2 

SD 0.92 1.07 1.01 0.94 0.69 0.89 

 
 

Subtype Luminal A Luminal B HER2 Positive Basal Claudin Low Normal 

Downregulated 
Count 1 0 0 0 0 0 

Row N % 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Unaltered 
Count 660 434 193 192 199 137 

Row N % 36.4% 23.9% 10.6% 10.6% 11.0% 7.5% 

Upregulated 
Count 18 27 27 7 0 3 

Row N % 22.0% 32.9% 32.9% 8.5% 0.0% 3.7% 

 
  

Stage .00 Stage 1 Stage 2 Stage 3 Stage 4 

Downregulated 
Count 0 0 0 0 0 

Row N % 0.0% 0.0% 0.0% 0.0% 0.0% 

Unaltered 
Count 4 460 766 106 9 

Row N % 0.3% 34.2% 57.0% 7.9% 0.7% 

Upregulated 
Count 0 15 34 9 0 

Row N % 0.0% 25.9% 58.6% 15.5% 0.0% 
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Integrative 

Cluster 
Downregulated Unaffected Upregulated 

Count Row N % Count Row N % Count Row N % 
Cluster 1 0 0.0% 126 6.9% 6 7.3% 
Cluster  2 0 0.0% 68 3.7% 4 4.9% 
Cluster 3 0 0.0% 275 15.1% 7 8.5% 

Cluster 4ER+ 0 0.0% 238 13.1% 6 7.3% 
Cluster 4ER- 0 0.0% 71 3.9% 3 3.7% 

Cluster 5 0 0.0% 163 9.0% 21 25.6% 
Cluster 6 0 0.0% 81 4.4% 3 3.7% 
Cluster 7 0 0.0% 176 9.7% 6 7.3% 
Cluster 8 1 100.0% 279 15.3% 9 11.0% 
Cluster 9 0 0.0% 132 7.2% 10 12.2% 

Cluster 10 0 0.0% 212 11.6% 7 8.5% 
 
 

Receptor Status 
ER HER2 PR 

Positive Negative Positive Negative Positive Negative 

Downregulated 
Count 1 0 0 1 1 0 

Row N % 100.0% 0.0% 0.0% 100.0% 100.0% 0.0% 

Unaltered 
Count 1396 425 215 1606 971 850 

Row N % 76.7% 23.3% 11.8% 88.2% 53.3% 46.7% 

Upregulated 
Count 62 20 21 61 37 45 

Row N % 75.6% 24.4% 25.6% 74.4% 45.1% 54.9% 
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