Optimization of water extract of Cinnamomum burmannii bark to ascertain its in vitro antidiabetic and antioxidant activities
Ervina, M., Lie, H.S., Diva, J., Caroline, Tewfik, S. and Tewfik, I.

NOTICE: this is the authors' version of a work that was accepted for publication in Biocatalysis and Agricultural Biotechnology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biocatalysis and Agricultural Biotechnology, DOI: 10.1016/j.bcab.2019.101152, 2019.

The final definitive version in Biocatalysis and Agricultural Biotechnology is available online at:
https://dx.doi.org/10.1016/j.bcab.2019.101152

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk
Accepted Manuscript

Optimization of water extract of Cinnamomum burmannii bark to ascertain its in vitro antidiabetic and antioxidant activities

Martha Ervina, Han Sanjaya Lie, Jesslyn Diva, Caroline, Sundus Tewfik, Ihab Tewfik

PII: S1878-8181(19)30134-3
DOI: https://doi.org/10.1016/j.bcab.2019.101152
Article Number: 101152
Reference: BCAB 101152

To appear in: Biocatalysis and Agricultural Biotechnology

Received Date: 7 February 2019
Revised Date: 6 May 2019
Accepted Date: 6 May 2019

Please cite this article as: Ervina, M., Lie, H.S., Diva, J., Caroline, , Tewfik, S., Tewfik, I., Optimization of water extract of Cinnamomum burmannii bark to ascertain its in vitro antidiabetic and antioxidant activities, Biocatalysis and Agricultural Biotechnology (2019), doi: https://doi.org/10.1016/j.bcab.2019.101152.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Cinnamon for Diabetes therapy

Design experiment
water extraction

Optimization extraction equations

TPC (Total Phenolic Content)

DPPH antioxidant

α-glucosidase Inhibitor

LCMS the extract

optimum in vitro antidiabetes and antioxidant activities of *C. burmanii* water extract
Optimization of water extract of *Cinnamomum burmannii* bark to ascertain its in vitro antidiabetic and antioxidant activities

Martha Ervinaa*, Han Sanjaya Liea, Jesslyn Divaa, Carolineb, Sundus Tewfikc, Ihab Tewfikd

aDepartment of Pharmaceutical Biology, Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan 1, Laguna Pakuwon City, Surabaya 60245, East Java, Indonesia. Email: marthaervina@gmail.com; hanxionglie96@gmail.com, jesslyndwa@gmail.com

bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan 1, Laguna Pakuwon City, Surabaya 60245, East Java, Indonesia. Email: catcarol_2000@yahoo.com

cInternational Forum for Public Health, London EN4 8EA, United Kingdom. Email: sundus@ifph.org

dSchool of Life Sciences, University of Westminster, 115 New Cavendish Street, London, UK W1W6UW, United Kingdom. Email: I.Tewfik@westminster.ac.uk

*Correspondence: Martha Ervina, Department of Pharmaceutical Biology, Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan 1, Laguna Pakuwon City, Surabaya 60245, East Java, Indonesia. Phone: +62-83830984029, Fax: +62-31-99005278 Email: marthaervina@gmail.com
Optimization of water extract of *Cinnamomum burmannii* bark to ascertain its in vitro antidiabetic and antioxidant activities

ABSTRACT

The antidiabetic and antioxidant activity of water extract of *Cinnamomum burmannii* bark is well documented. This research aimed to optimize cinnamon water extraction process and verify active components instigating its in vitro antidiabetic activity. The study employed Design Expert 7.0 program to derive factorial design and optimization conditions. The extraction step comprised of three factors (temperature, concentration and time of extraction) and two levels (low and high), with four responses observed (yield, total phenolic content, IC$_{50}$DPPH antioxidant activity, and IC$_{50}$ α-glucosidase inhibition). The polynomial equations revealed influence and interaction among the selected factors to the responses and obtained overlay optimization of factors to responses. The results indicated that optimal temperature, concentration, and extraction time were 980C, 30% and 20 min, respectively. Corresponding DPPH, α-glucosidase, TPC, and yield values were 3.45 µg/ml, 0.50 µg/ml, 259.08 µg GAE/mg of sample, 6.28%, respectively. LCMS analysis of the optimum extract confirmed typical characteristic of *C. burmanii* contents (coumarins, polymers of proanthocyanidins A-type and protonated heterodimer of flavan-3-ol group). The optimized water extract of *C. burmannii* has the potency to assist in complementary therapy to modulate diabetes mellitus.

Keywords: Optimization, factorial design, water extraction, DPPH, diabetes mellitus, *Cinnamomum burmannii*
1. Introduction

World incidence of diabetes mellitus (DM) has shown dramatic increase over the last decade (ADA, 2018; IDF, 2018). DM is described as the chronic endocrine metabolic disease that characterized by elevated blood glucose level and disturbances of carbohydrate, lipid and protein metabolism. The role of free radicals and oxidative stress has been reported in the pathogenesis of DM; in which it triggers insulin resistance to micro and macro-vascular of DM complications (Khan et al., 2015). While, α-glucosidase and α–amylase inhibition are useful methods for phytochemical screening in managing type 2 DM (DM-2), the phenolics raise the attention in DM-2 therapy among secondary metabolic compounds (Shahidi & Ambigaipalan, 2015). Phenolic hydroxyl groups [PHGs] would scavenge reactive oxygen or nitrogen species and produce more stable radical than the initial form. PHGs may also have important role in preventing the onset and propagation of DM oxidative disease. The phenolic containing compounds such as flavonoid, tannins, proanthocyanidins and coumarins were the majority of the natural-occurring antioxidant source (Asif, 2015). In vitro plants based, pre- and clinical trial research has documented phenolic antioxidant as beneficial supplement in DM management and preventing its complication (Lin et al., 2016).

Cinnamomum burmannii (Indonesian Cinnamon, Lauraceae) is a cinnamon species used for daily needs (spice in food) and also as herbs in traditional medicine (Al-Dhuhiab, 2012). In the preclinical study of cinnamon, a reduction of fasting and postprandial plasma glucose and HbA1c has been documented; while its clinical trial on pre-diabetes patients (*with impaired fasting glucose or impaired glucose tolerance*) and pre-treatment HbA1C (Haemoglobin A1C) with aqueous or powder of *C. cassia*, resulted an improvement in glycemic control (Al-Dhuhiab et al., 2013; Megadama, 2015). A large amount of bioactive compounds classes were determined
by extraction technique as well as extraction solvent. Adaramola and Onigbinde (2017) reported that the soxhlet extraction of ginger oil with n-hexane resulted higher antioxidant and TPC (total phenolic content) compared to water distilled-solvent extraction or cold maceration. Ingawale et al. (2018) obtained that TPC, antioxidant and α-glucosidase inhibition of *Xanthium strumarium* L. fruit were optimum on the ultra-sonication extraction with methanol, time and solid to solvent ratio were 60%, 30 min and 1:5, respectively. Previous results on solvents influence reported that DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant of the water extract (infusion) has shown the highest value compare to ethanolic and reference rutin (a flavonoid glycoside). The IC$_{50}$ of *C. burmannii* water extract was 3.03±0.22 µg/mL, while ethanolic extract was 8.36±0.73 µg/mL and rutin was 15.27±0.69 µg/mL (Ervina, Nawu, & Esar, 2016). Hence, the objectives of this study were to optimize cinnamon water extraction process and verify compounds of instigate its in vitro antidiabetic activity from *C. burmanii* bark using factorial design.

2. Materials and Methods

Factorial design (3 factors and 2 levels) has been used in this optimization process, these included: yield percentage (%), TPC (total phenolic content), IC$_{50}$AA (inhibition concentration DPPH antioxidant activity), IC$_{50}$αGI (inhibition concentration of α-glucosidase activity) as responses (Dejaegher & Heyden, 2011).

Table 1 demonstrates these factors and levels: Temperature (98ºC (X_1) as high and 90ºC as low levels); concentration (30% and 10%); time of extraction (20 minutes and 15 minutes). Polynomial equation was applied to interpret the results of each parameter-response and establish the optimized condition of water extract.

2.1. Chemical and reagents
Cinnamomum burmannii (Cb) dried bark was obtained from local region (UPT Materia Medica Batu, East Java, Indonesia; ± 875m above sea levels, with average temperature of ± 20-25°C). The sample was then authenticated and deposited in Pharmacognosy and Phytochemistry Laboratory (document number C07-052-15), Faculty of Pharmacy Widya Mandala Catholic University. All solvent and chemicals used were pro-analytical grade. The employed reagents were ethanol, n-hexane, ethyl acetate, formic acid, methanol, toluene (Mallinckrodt Baker, USA); FeCl₃, AlCl₃, H₂SO₄, acetic acid anhydrate, phosphate buffer (67 mM, pH 6.8), aqua demineralisata, and sodium carbonate bismuth subnitrate, KI and HNO₃ (Dragendorff), HgCl₂ and KI (Mayer's), α-naphtol; cinnamaldehyde, rutin, Folin-Ciocalteu (Merck, KGaA, Darmstadt, Germany); gallic acid, α-glucosidase (from S. cerevisiae), p-nitrophenyl-α-D-glucopyranoside (pNPG), acarbose, 2,2-diphenyl-1-picrylhydrazyl (DPPH) (Sigma Aldrich, Germany). These chemicals were purchased from local suppliers.

2.2. Sample preparation

The bark prepared as outlined in Ervina, Nawu & Esar, study (2016) and the determination of quality parameters was based on national quality standard (IFDA, 2000). The results of sample quality then compared to national herbal pharmacopeia (IHP, 2012). Phytochemical screening of the extract was detected by using spot reagents test (Trease & Evans, 2000).

2.3. Design optimization with factorial design method for extraction

The factorial design method obtained for optimization with 3 factor and 2 level, that was (98°C as high level (+1) and 90°C as low level (-1)); concentration (30% as high level (+1) and 10% as low level (-1)); and extraction time (20 minutes as high level (+1) and 15 minutes as low level (-1)). The number of experiments performed was 2³ = 8 as presented in table 1. The responses obtain %yield, DPPH IC₅₀ AA, TPC (% w/w Gallic acid equivalent (GAE), and IC₅₀ of αGI. A
polynomial equation: \(y = B_0 + B_1X_1 + B_2X_2 + B_3X_3 + B_{12}X_1X_2 + B_{13}X_1X_3 + B_{23}X_2X_3 + B_{123}X_1X_2X_3 \) would obtain for each response and establish the most factor and or interaction influenced the response most. The collected filtrate was evaporated in water bath. The final products were investigated of their identity, physical characteristics (color, odor), and water content.

2.4. Determination of total polyphenol content

Folin Ciocalteau (FC) reagent was employed for total phenolic content (TPC) determination of extracts; based on an earlier reported experiment (Stankovic et al., 2011) by mixing thoroughly extracts or gallic acid (0.02 mL), to 10% FC reagents (0.1 mL) and Na\(_2\)CO\(_3\) 7.5% (0.08 mL). The mixture was then incubated (for 1 hour, at room temperature and in dark conditions), and the absorbance was measured (at 765 nm), using multiscan GO Microplate Reader UV/Vis Spectrophotometer. TPC was analyzed by plotting gallic acid calibration curves (12.5-500 µg/mL) and expressed as the percentage of milligram gallic acid equivalent per milligram of dry extract (% w/w GAE/sample). Rutin was used as the reference standard and blank was prepared to correct absorption.

2.5. In vitro antioxidant activity assay

DPPH scavenging method was used to obtain antioxidant activities of the extracts based on Ervina, Nawu, & Esar studied (2016). IC\(_{50}\) is expression of antioxidant activity and resulted by sample linearity curve of % Inhibition versus sample concentration (% Inhibition = \([(A_{ODPPH} - A_{Sample})/A_{ODPPH}] \times 100 \% \)). Rutin was used as antioxidant reference compound and solvent blank was prepared to correct absorption.

2.6. Determination of \(\alpha \)-glucosidase inhibition
The α-glucosidase activity inhibition (αGI) was determined based on Salehi et al. (2013), method with minor modification. The enzyme used (3 U/mL, 0.02 mL) was resulted from preliminary test. The αGI was obtained as follow: extract or acarbose was dissolved and diluted with phosphate buffer 67 mM, pH 6.8 at various concentrations (0.13 mL), enzyme was added then shake (1 minutes). The mixture was pre-incubated (15 mins at 37°C), following the addition of substrate for the enzyme reaction 5 mM p-nitrophenyl-α-D-glucopyranoside (pNPG) (0.02 mL). The mixture was incubated (15 mins at 37°C) and 0.1 M sodium carbonate (0.08 mL) was added as stopper of the enzyme reaction. The absorbance was measured at 405 nm, using multiscan GO Microplate Reader UV/Vis Spectrophotometer. IC$_{50}$ (the concentration of sample required to inhibit 50% of enzyme activity) of the samples and acarbose were obtained from the linearity curve of the % inhibition versus concentration of the sample. The reagent and solvent blanks also observed to correct absorption in the calculation.

2.7. Statistical analysis

All experiments were carried out in triplicates, the results presented as average values and standard deviations. Statistical mean comparison was performed with SPSS version 24 program (one-way analysis of variance (p values < 0.05); and correlation analysis among dependent factors). Optimization of design analysis used Design-Expert version 7.0 program with the results obtained in the form of polynomials and contour plots.

2.8. Liquid chromatography-mass spectrophotometer of Cinnamon extract

Cinnamon extract was pre-treated with solid phase extraction oasis® HLB Solvents (Waters). The extract was dissolved with methanol and filtered through 0.2 µm syringe filter; injected 5 µl to column. The LC system operation conditions: UPLC (Ultra Performance Liquid Chromatography - ACQUITY UPLC®H-Class system (waters, USA)); C-18 (1.8 µm 2.1x100
mm) column HSS; temperature: 50°C (column), 25°C (room); mobile phase: water + 5mM ammonium formic (A) and acetonitrile+0.1% formic acid; flow rate: 9.2 ml/ min (step gradient) running 23 minutes. Mass spectrometry system (Xevo G2-S QTof (waters, USA)): ES (Electrospray ionization); mode: positive mode; mass analysis range: 50 – 1300 m/z; source temperature: 100°C; desolvation gas flow: 350°C; cone gas flow: 0 L/ hour; desolvation gas flow: 793 L/hour; collision energy: 4 Volt (low energy); rampt collision energy: 25-50 Volt (high energy)

4. Results and discussion

Oxidative stress reactions which are triggered by free radicals; are increased in diabetes pathogenesis complications (Penckofer, Schwertz, & Florczak, 2002; Rahimi, Nikfar, Larijani, & Abdollahi, 2005). Cinnamon has been used as a supplement in managing type 2 diabetes therapy; though effectivity and safety data are needed for long-term trials. Kim et al. (2016) proposed the role of dietary polyphenols in prevention and modulation of type 2 diabetes. It was supposed improving glucose homeostasis by inhibiting α-amylase and α-glucosidase, sodium-dependent glucose transporter 1 (SGLT1) in small intestine. The inhibition would reduce digestion and intestinal glucose absorption of dietary carbohydrate. In the muscle and adipocyte it would stimulate insulin-dependent glucose uptake, activate 51-adenosine-monophosphate protein kinase (AMPK), and modify micro-biome in the large intestine and reduce the inflammation.

Optimization of the process is one of two applications of experimental designs in pharmaceutical sciences. This research was on screening phase in which obtained factors (temperature, concentration and time of extraction) and interaction among factors influenced the response of interest (%yield, TPC, IC50AA, IC50αGI) (Dejaegher & Heyden, 2011).
The quality sample of the dried cinnamon (Table 2) was determined and compared to the standard guidance (IHP, 2008). The results obtained the character and quality of the sample accordance and fulfilled to the cinnamon characteristic (2008). The physicochemical of the extracts were consistent with previous research and added some information data on *C burmannii* phytochemical content, which was glycoside, and coumarins content (Ervina, Nawu & Esar, 2016; Shahidi, & Naczk, 2013). The specific and nonspecific parametric result of *C burmannii* are macroscopic, microscopic, secondary metabolite content, water content, drying shrinkage, ethanol and water soluble content. The phytochemical screening revealed alkaloid, polyphenol, tannin and flavonoids, essential oils, saponins, quinone, triterpenoids, glycosides, and coumarin content of the extracts. Physical appearances of the extracts were from red-brown to brown-black color, have dry consistency, and all have the cinnamon specific odor. The light red color extract might cause little content of phlobatannin (condensed tannin) extractive matter in which observed to all extracts. Though phlobatannin as polymer of phenolic is insoluble in water, it can be filtered in water filtrate and add to the yield result weigh. The fact that, water as extractive solvent has disadvantage compared to ethanol in which solubility of carbohydrate and protein occur, and difficulties to remove water from the extracts. On the other hand, water has multi-advantages in cinnamon extraction as it is safer, inexpensive and simpler to perform compare to others solvents (Bele, Jadhav and Kadam, 2010).

The response of the optimization was determined as in table 3. The equation of response optimization was obtained the influence of each factor and the interaction among them. The yield of the extracts was in a range from 3.22 ± 0.08 to 11.02 ± 0.41%. The lowest was for extract -1, +1, -1 (code 6); while the highest was shown by extract +1, -1, -1 (code 4). Statistical analysis showed the significant difference (p = 0.05 level) to all extracts (extract 1 to 7 and 8),
except of extracts 5 to 6. The polynomial equation for the % yield response was
\[y = 6.274 + 1.539X_1 - 2.027X_2^2 - 0.059X_3 - 0.586X_1X_2 + 0.055X_1X_3 + 0.390X_2X_3 + 0.202X_1X_2X_3. \]
This equation established that temperature and interaction among temperature to extraction time and concentration to time extraction give the positive result; while concentration, extraction time and interaction between temperature and concentration revealed negative effect to the % yield. The yield response influenced more by the temperature (1.539) was also found by Jong et al. (2015), who extracted deer antler plants with hot water in hot water extraction of extract yield.

The TPC with FC method obtained of cinnamon extract and rutin with gallic acid equivalent as shown in table 3. The TPC of extract was ranged from 105.71±18.37 for extract 8 (-1,-1,-1); to 259.08±15.46 µg GAE/mg extract for extract 1 (+1, +1, +1). The statistical analysis of TPC obtained significance difference among all extracts (p = 0.05 significance different level). TPC showed that condition 1 (high temperature, concentration and longer time of extraction) was more efficient in the extraction of polyphenol compounds compared to others. The equation was derived as
\[y = 188.86145 + 29.38359X_1 + 13.781X_2 + 20.489X_3 + 3.736X_1X_2 - 7.224X_1X_3 - 2.981X_2X_3 + 13.029X_1X_2X_3; \] which showed all positive influence of all factors and all factors interaction; while negative interaction were observed on interaction of temperature (X_1) to concentration (X_2) and extraction time (X_3). The temperature was observed as the most factor influence to TPC (29.384).

Scavenging DPPH activities of the extracts were in a concentration-dependent manner (Table 3). IC_{50,AA} extracts 1-5 were lower than rutin reference, while statistical analysis obtained no significant difference among all extracts, except extracts 2 to 3 and extract 6 to rutin. The lowest activity of AA was observed on extract 8; which mean low potency of Cinnamon extract with extraction condition -1 -1 -1. The highest potency showed to extract 1 with IC_{50,AA} 3.45± 0.04
The IC_{50}AA showed the potency of the extracts were comparable to rutin as flavonoid glycoside compound. Antioxidants, which can neutralize free radicals by donating hydrogen, may inhibit or quench the reactive oxygen or nitrogen species. Among these antioxidants are tannins, flavonoid and coumarins. Tannin, the polyphenolic compound which are able to scavenge free radicals, chelates trace metals and bind proteins of oxidative enzymatic activity. The existence of galloyl groups, ortho-dihydroxy and hydroxyl groups structure are among the main determinants of scavenging activity; while the chelating mechanism depends on hydroxyl groups only (Yokozawa et al., 1998).

Tannin was described to enhance glucose uptake and inhibit adipogenesis, thus have benefit for treatment of non-insulin dependent diabetes mellitus (Muthusamy et al., 2008). Other compounds that showed some advantages in managing non-communicable diseases e.g phenolic of flavan-3-ols which exerted antioxidative, antithrombogenic, and antiinflammatory in the pathogenesis of cardiovascular disease. Additionally, proanthocyanidins and flavan-3-ol monomers enhance lowering plasma cholesterol levels, inhibit LDL oxidation, and activate endothelial nitric oxide synthase to prevent platelet adhesion and aggregation that contribute to blood clot formation (Bagchi et al., 2003). The equation of IC_{50} AA determined as y =13.699-4.911X_1-1.845X_2-1.682X_3-0.493X_1X_2-0.776X_1X_3-0.421X_2X_3-0.125X_1X_2X_3. The equation showed all factors (temperature, concentration and extraction time) and obtained negative interaction among all factors to IC_{50} AA of extracts.

Table 3 showed IC_{50}αGI was in the range of 0.485 ±0.004 (extract 1) to 1.044 ±0.012 (extract 8) correspond to acarbose 103.35±1.440 μg/mL. ANOVA analysis revealed significant difference among all extracts and reference. The equation of the IC_{50}αGI was y =0.773-0.127X_1-0.084X_2-0.043X_3+0.026X_1X_2-0.028X_1X_3+0.014X_2X_3-0.027X_1X_2X_3; which showed the slight positive
influence of interaction among temperature and concentration, concentration to extraction time; and negative factors to IC₅₀αGI response. The IC₅₀αGI of extract observed ‘so potent’ compare to that of the ‘reference acarbose’ (oral antidiabetic drug). The IC₅₀α-GI of the extract was 100 – 200 higher than acarbose. Salehi et al. (2013) determined IC₅₀ of Cinnamomum zeylanicum from maceration with methanol solvent. It was 20.8 stronger compared to acarbose; while Shihabudeen, Priscilla, & Thirumurugan (2011) obtained IC₅₀ of methanol soxhletation of C. zeylanicum was 6.32 higher than acarbose. The distinct in findings may be resulted from different employed species of cinnamon, and types of solvents used in extraction which influence the composition (quality and quantity) of the extracted compounds and also different αGI activities of the extracts.

The results of this study found that the high activity of α-glucosidase inhibition is supposed due to TPC containing (Table 3). Correlation analysis of TPC, IC₅₀AA, and IC₅₀αGI exhibited negative correlation among TPC to IC₅₀AA (-0.808), and to IC₅₀ α-GI (-0.754); while a positive correlation of IC₅₀AA to IC₅₀α-GI (0.892); at significance level (p=0.01). The negative correlation means the higher TPC value, the lower concentration of α-glucosidase enzyme (or the stronger activity to scavenge DPPH radical and inhibit α-glucosidase enzyme activity); in which sequence with IC₅₀ of the extracts (Fig. 1). The correlation among those three was also obtained by Miao et al. (2012) who found correlation among hawthorn fruit content of polyphenols, triterpenoids, protocatechuic acid and epicatechin to the alpha-glucosidase inhibitory activity. It was also found contribution of polyphenols (flavonoid, gallic acid, catechin), vanillic acid, and chlorogenic acid to the antioxidant activity. The research also observed that 80% acetone extract has the highest alpha-glucosidase inhibitory, while deionized water extract has the highest DPPH scavenge capacity and ferric reducing power. Furthermore, some research reported that
triterpenoid (Lai et al., 2012), flavonoids (Wang, Cui, & Zhao, 2010) and flavonols, luteolin, myricetin and quercetin (Tadera, Minami, Takamatsu, & Matsuoka, 2006) inhibit α-glucosidase.

Figure 2 portrays contour plot of all optimized factor responses determined (%yield 5-11, TPC 40-50, IC$_{50}$ AA 3.5-20, and IC$_{50}$ αGI 0.5-0.7). The yellow area showed the optimum process with the alternative solution to 6.28% of yield, 3.44 µg/mL of IC$_{50}$AA, 0.50 µg/mL of IC$_{50}$ αGI, and TPC 259.08 µg GAE/mg extract; on temperature 98$^\circ$C, concentration 30% and 20 minutes of time extraction, respectively. This theoretical condition pointed to extract number 1 (+1,+1,+1).

No significance difference was detected in values between theoretical and factual parameters in the validated equation of result.

LCMS chromatogram of optimized extract revealed 19 peaks (Fig.3A). Among these peaks, 11 peaks have percentage above 1%. Two highest peaks were 57.12% and 12.05% on Rt 11.96 and 15.18 minutes respectively. Interestingly both peaks showed similar fragments pattern at m/z 621 (Fig.3B). M/z 620 proposed to be a protonated heterodimer with one monohydroxy-dimethoxylated flavan-3-ol group and one trimethoxylated flavan-3-ol group (Mouls et al., 2011). Other specified m/z is 147 (Fig.3C) in which observed at Rt. 7.7 (1.34%) and 865 at Rt 1.33 (1.62%), and 4.06 (4.61%) (Fig. 3D). These two fragments are characterized fragments of _C burmanii_. Chen, Sun, & Ford (2014) found that at m/z 147, 865 are dominant in _Cb_ and differentiate to other Cinnamon species (_C cassia_, _C verum_ and _C laureiroi_). The m/z 147 and 865 proposed as coumarins and polymers of A-type proanthocyanidins. Though m/z 865 was observed on its highest abundance, it had m/z 1153.2629 that was identified as A-type tetramers respectively. Another Cinnamon’s specific fragment at m/z 133 (cinnamaldehyde) was not found. The compound might not dissolve in water base extraction sequentially. The type-A proanthocyanidins isolated from _Cb_ were proposed to have insulin-like biological activity.
(Anderson et al., 2004) thus verifying its capacity to modulate DM-2 in human studies or biological assays.

4. Conclusion

Water extraction of *C. burmannii* has been optimized with 3 factors (temperature, concentration and time of extraction), 2 levels (high and low) and 4 responses (%yield, TPC, IC$_{50}$AA and IC$_{50}$ α-Gl) by design experiment method. The theoretical optimization equation underpinned optimized of extract 1 (98°C, 30% and 20 minutes). LCMS analysis of the optimum extract verified the typical characteristic of *C. burmanii* contents which are coumarins, polymers of proanthocyanidins A-type and protonated heterodimer of flavan-3-ol group content. The active components can assist in complementary therapy of DM as they possess antidiabetic activity.

Conflicts of interest

All authors declare that there is no conflict of interest.

Acknowledgments

We thank to Faculty Pharmacy

References

Adaramola, B., Onigbinde, A., 2017. Influence of extraction technique on the mineral content and antioxidant capacity of edible oil extracted from ginger rhizome. Chem. Int. 3(1), 1-7

http://isci

IFDA (Indonesian Food and Drug Administration, Indonesian language), 2000. The general standard parameter of herbal drug extract. Ministry of Health The Republic of Indonesia, Jakarta. 3-5, 10-21, 30-37.

IHP (Indonesian Herbal Pharmacopoeia, Indonesian language), 2012. Ministry of Health of The Republic of Indonesia, Jakarta. 41-44.

Table 1. Optimization Design of Indonesian Cinnamon Bark

<table>
<thead>
<tr>
<th>Code</th>
<th>T (X₁) (°C)</th>
<th>C (X₂) (%)</th>
<th>t (X₃) (min)</th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>Notation value</th>
<th>X₁ X₂</th>
<th>X₁ X₃</th>
<th>X₂ X₃</th>
<th>X₁ X₂ X₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98</td>
<td>30</td>
<td>20</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
<td>30</td>
<td>15</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>10</td>
<td>20</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>98</td>
<td>10</td>
<td>15</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>30</td>
<td>20</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>30</td>
<td>15</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>10</td>
<td>20</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>10</td>
<td>15</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Table 2. Phytochemical Characteristic of Results the *C. bark*

<table>
<thead>
<tr>
<th>Parameters</th>
<th>specific</th>
<th>Non-specific (content %)</th>
<th>Chemical screening (reagents test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroscopic</td>
<td>Microscopic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolls bark with coarse surface, length 10-28 cm, cinnamon typical smell, reddish-brown color.</td>
<td>fragments of sclerenchyma fiber, oil cells, schleroids and schlerenchyme fibers, calcium oxalate crystals</td>
<td>Alkaloid + (Dragendorf & Mayer)</td>
<td>5.43± 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flavonoid + (Wilster’s test)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saponin + (foam test)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tannin + (FeCl₃, salt, gelatin)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quinone + (KOH)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triterpenoid + (Liebermann Burchard test)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycoside + (Molish’s test)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coumarin + (NaOH)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Responses Results of the Extracts

<table>
<thead>
<tr>
<th>Experiment (code)</th>
<th>Moisture Content (%)</th>
<th>Yield (%)</th>
<th>TPC (µg GAE/mg sample)</th>
<th>IC<sub>50</sub> (µg/mL)</th>
<th>DPPH AA</th>
<th>α-GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>4.72 ± 0.97</td>
<td>5.79 ± 0.59<sup>c</sup></td>
<td>259.08 ± 15.46<sup>d</sup></td>
<td>3.45 ± 0.04<sup>a</sup></td>
<td>0.485 ± 0.004<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>5.46 ± 1.19</td>
<td>4.61 ± 0.08<sup>b</sup></td>
<td>212.45 ± 11.38<sup>c,d</sup></td>
<td>9.46 ± 0.52<sup>b</sup></td>
<td>0.632 ± 0.003<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>6.16 ± 1.41</td>
<td>9.83 ± 0.13<sup>d</sup></td>
<td>203.95 ± 30.70<sup>b,c</sup></td>
<td>9.19 ± 0.13<sup>b</sup></td>
<td>0.608 ± 0.008<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>4.50 ± 1.53</td>
<td>11.02 ± 0.41<sup>e</sup></td>
<td>197.51 ± 13.26<sup>b,c</sup></td>
<td>13.07 ± 0.15<sup>c</sup></td>
<td>0.705 ± 0.003<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>6.32 ± 1.15</td>
<td>3.46 ± 0.10<sup>a</sup></td>
<td>181.23 ± 8.45<sup>b,c</sup></td>
<td>15.85 ± 0.18<sup>d</sup></td>
<td>0.760 ± 0.007<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>5.39 ± 0.59</td>
<td>3.22 ± 0.08<sup>a</sup></td>
<td>157.82 ± 19.63<sup>b</sup></td>
<td>18.46 ± 0.09<sup>e</sup></td>
<td>0.822 ± 0.007<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>5.36 ± 1.19</td>
<td>5.85 ± 0.30<sup>c</sup></td>
<td>193.16 ± 21.12<sup>b,c</sup></td>
<td>19.32 ± 0.29<sup>f</sup></td>
<td>0.900 ± 0.002<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>4.22 ± 0.97</td>
<td>6.48 ± 0.32<sup>c</sup></td>
<td>105.71 ± 18.37<sup>a</sup></td>
<td>20.53 ± 0.30<sup>e</sup></td>
<td>1.044 ± 0.012<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>18.10 ± 0.33<sup>c</sup></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>103.35 ± 1.440<sup>a</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TPC = total phenolic content, GAE = gallic acid equivalent, IC₅₀ = inhibition concentration, DPPH = 2,2-diphenyl-1-picrylhydrazyl antioxidant activity, α-GI = α-glucosidase inhibition, R = rutin, A = acarbose, different superscriptions in the same column represent for significant difference (α = 0.05)
Table 4. Equation Analysis Results for Each Response

<table>
<thead>
<tr>
<th>Response (y)</th>
<th>Equation analysis of components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>$y = 6.274 + 1.539X_1 - 2.027X_2 - 0.059X_3 - 0.586X_1X_2 + 0.055X_1X_3 + 0.390X_2X_3 + 0.202X_1X_2X_3$</td>
</tr>
<tr>
<td>TPC</td>
<td>$y = 188.861 + 29.383X_1 + 13.781X_2 + 20.489X_3 + 3.736X_1X_2 - 7.224X_1X_3 - 2.981X_2X_3 + 13.029X_1X_2X_3$</td>
</tr>
<tr>
<td>IC$_{50}$AA</td>
<td>$y = 13.699 - 4.911X_1 - 1.845X_2 - 1.682X_3 - 0.493X_1X_2 - 0.776X_1X_3 - 0.421X_2X_3 - 0.125X_1X_2X_3$</td>
</tr>
<tr>
<td>IC$_{50}$αGI</td>
<td>$y = 0.773 - 0.127X_1 - 0.084X_2 - 0.043X_3 + 0.026X_1X_2 - 0.028X_1X_3 + 0.014X_2X_3 - 0.027X_1X_2X_3$</td>
</tr>
</tbody>
</table>

$X_1 =$ temperature, $X_2 =$ concentration, $X_3 =$ extraction time

Fig. 1 3D Correlation graph among responses of total phenolic content (x), IC$_{50}$ antioxidant activity (y) and IC$_{50}$ α-glucosidase inhibition (z) of the water extraction of *C. burmanii* bark.

The color legend shows the value. The blue area of the curve showed the minimum concentration of DPPH IC$_{50}$ antioxidant and α-glucosidase inhibition of the extracts; while yellow to red area obtained of maximum concentrations. Negative correlation of TPC to IC$_{50}$ α-GI (-0.754) and positive relationship IC$_{50}$ AA to IC$_{50}$ α-GI (0.892) at significance 0.01 level.
Fig. 2 Solution 1 of overlay graph among all parameters (yield, TPC, DPPH IC$_{50}$ and IC$_{50}$ α-glucosidase inhibition) for optimization purposes.

The graph designed point in a range of temperature (x) and concentration (y), TPC and yield; while minimum value of IC$_{50}$’s DPPH and α-glucosidase inhibition of Cinnamon water extracts. This graph was resulted by factorial design (3 factors: temperature, concentration and extraction time with 2 level low and high). The yellow area obtained optimum condition area of *C. burmanii* water extraction. TPC = total phenolic content, IC$_{50}$αGI = α-glucosidase inhibition, temp = temperature, cons = concentration.
Fig. 3 LCMS of *C. burmanii* extract (3A) chromatogram peak of UPLC, mass fragments ES positive mode at Rt; (3B) 11.96 min (57.12%) with m/z 621.2999; (3C) 7.7 min (1.34%) with m/z 147.0466; (3D) 4.06 min (4.61%) with m/z 579.1475.
Highlight

- 1st research on optimization on three factors (temperature, concentration and time of extraction) and two levels (low and high) of *C. burmanii* bark water extraction to its yield percentage, TPC and in vitro antioxidant and α-glucosidase enzyme inhibition activity
- IC₅₀α-glucosidase and DPPH antioxidant of Cinnamon water infusion as highly as rutin and acarbose reference compounds
- LCMS of the extract showed characterized content of *C. burmanii*
- Define *C. burmanii* water extract for its potential use to reduce oxidative stress in managing diabetes