
 

 
 
 
WestminsterResearch 
http://www.westminster.ac.uk/research/westminsterresearch 
 
 
Checkpointing of Parallel Applications in a Grid Environment 
 
Kreeteeraj Sajadah 
 
School of Electronics and Computer Science 
 
 
 
This is an electronic version of an MPhil thesis awarded by the University of 
Westminster. 
 
This is an exact reproduction of the paper copy held by the University of 
Westminster library. 
 
 
 
The WestminsterResearch online digital archive at the University of 
Westminster aims to make the research output of the University available to a 
wider audience.  Copyright and Moral Rights remain with the authors and/or 
copyright owners. 
Users are permitted to download and/or print one copy for non-commercial 
private study or research.  Further distribution and any use of material from 
within this archive for profit-making enterprises or for commercial gain is 
strictly forbidden.    
 
 
Whilst further distribution of specific materials from within this archive is forbidden, 
you may freely distribute the URL of WestminsterResearch: 
(http://westminsterresearch.wmin.ac.uk/). 
 
In case of abuse or copyright appearing without permission e-mail 
repository@westminster.ac.uk 



 
 
 
 
 

Checkpointing of Parallel Applications in 
a Grid Environment 

 
 
 
 
 

A dissertation submitted to the University of Westminster for the 
degree of Master of Philosophy 

 
 
 
 

Kreeteeraj SAJADAH 
 
 
 
 
 
 

Supervised by Dr. G. Z. Terstyanszky, Prof. S. C. Winter & Prof. P. Kacsuk 
 
 
 
 
 

December  2011 
 
 
 
 
 
 
 

Centre for Parallel Computing, 
School of Electronics and Computer Science, 

University of Westminster, 
London, United Kingdom 

 

 



 

 

 

 

 

 

 

 

To my dear and beautiful wife Jayshree, my adoring son Hevanshraj and my loving 

parents, Asween Coomar and Vedprabha Sajadah 



Acknowledgements 
  

 

i 
 

 

 

 

 

Acknowledgements 
 

 

 

First and foremost I offer my sincerest gratitude to Dr. Gabor Terstyanszky who has 

given me the possibility of starting my research in this institution offering his supervision 

since the beginning of my study. He provided me with many helpful suggestions, 

important advice and constant encouragement during the course of this work. 

I would also like to express profound gratitude to my advisors, Professor Stephen Winter 

and Professor Peter Kacsuk for their invaluable support, supervision and useful 

suggestions. They were always there to meet and talk about my ideas, to proofread and 

mark up my work. Special thanks go to Dr. Gabor Terstyanszky for organizing my many 

research meetings, for chasing me up during my studies, and for his prompt corrections 

and suggestions during the writing up of my thesis. 

I wish to acknowledge my friends and colleagues from the Centre for Parallel Computing 

for supporting me through my research work. 

Many thanks are due to all those who read this document and spent hours helping me 

amassing the information used here. 

And finally, I wish to thank all my family and beloved friends for all these singular years.



Abstract 
  

 

ii 
 

Abstract 
 
 

 

The Grid environment is generic, heterogeneous, and dynamic with lots of unreliable 

resources making it very exposed to failures. The environment is unreliable because it is 

geographically dispersed involving multiple autonomous administrative domains and it is 

composed of a large number of components. Examples of failures in the Grid 

environment can be: application crash, Grid node crash, network failures, and Grid 

system component failures. These types of failures can affect the execution of 

parallel/distributed application in the Grid environment and so, protections against these 

faults are crucial. Therefore, it is essential to develop efficient fault tolerant mechanisms 

to allow users to successfully execute Grid applications. One of the research challenges in 

Grid computing is to be able to develop a fault tolerant solution that will ensure Grid 

applications are executed reliably with minimum overhead incurred.  

While checkpointing is the most common method to achieve fault tolerance, there is still 

a lot of work to be done to improve the efficiency of the mechanism. This thesis provides 

an in-depth description of a novel solution for checkpointing parallel applications 

executed on a Grid. The checkpointing mechanism implemented allows to checkpoint an 

application at regions where there is no interprocess communication involved and 

therefore reducing the checkpointing overhead and checkpoint size. 

 



List of Figures 
  

 

iii 
 

Contents 

List of Figures vi 

List of Tables viii 

List of Algorithms ix 

1 Introduction.  1 

 1.1 Introduction.............................................................................................................. 1 

 1.2 Fault Tolerance......................................................................................................... 2 

 1.3 Problem Statement………………………………………………………………… 2 

 1.4 Research Challenges................................................................................................. 3 

 1.5 Research Objectives………………………………………………………………. 3 

 1.6 Research Contributions…………………………………………………………… 3 

 1.7 Structure of the Thesis…………………………………………………………….. 4 

2 The Grid Systems and Fault Tolerance. 5 

 2.1 The Grid Systems..................................................................................................... 5 

 2.2 Fault Tolerant Techniques........................................................................................ 9 

 2.3 Existing Fault Tolerant Mechanisms........................................................................ 10 

 2.4 Chapter Summary and Conclusions……………………………………………….. 14 

3 Checkpointing 16 

 3.1 Introduction............................................................................................................... 16 

 3.2 State of the Art.......................................................................................................... 16 

 3.3 The Different Levels of Checkpointing.................................................................... 16 

  3.3.1 Checkpointing Techniques............................................................................ 17 

 3.4 Best Approach for my Research…………………………………………………... 20 

 3.5 Terminology……………………………………………………………………….. 20 



List of Figures 
  

 

iv 
 

 3.6 Different Approaches for Checkpointing and Recovery......................................... 25 

 3.7 Categories of Checkpoint-Based Rollback Recovery............................................... 27 

 3.8 Analysing Existing Checkpointing Solutions........................................................... 32 

  3.8.1 CryoPID…………………………………………………………………… 32 

  3.8.2 DMTCP……………………………………………………………………. 33 

  3.8.3 The InteGrade Grid Middleware…………………………………………... 33 

  3.8.4 Integrating Fault-Tolerance Techniques in Grid Applications……………. 35 

  3.8.5 P-GRADE: A Grid Programming Environment…………………………... 37 

  3.8.6 OPEN MPI………………………………………………………………… 38 

 3.9 Chapter Summary and Conclusions………………………………………………. 41 

4 Improving Checkpointing Solutions 43 

 4.1 Introduction............................................................................................................... 43 

 4.2 Research Proposal..................................................................................................... 43 

  4.2.1 Natural Synchronisation Points (NSP)…………………………………….. 44 

  4.2.2 First Order Approximation………………………………………………… 47 

 4.3 The Improved Checkpoint Mechanism..................................................................... 56 

 4.4 The Improved Checkpoint Model……………………………..…………………... 60 

 4.5 The Improved Checkpoint Algorithms……………...…..………………………… 63 

 4.6 Applicability and Suitability of the Proposed Algorithm.………………………… 66 

 4.7 Chapter Summary and Conclusions.......................................................................... 66 

5 Implementing the Improved Checkpoint Mechanism 68 

 5.1 Introduction............................................................................................................... 68 

 5.2 The OpenMPI Architecture……………………....................................................... 68 

  5.2.1 The OpenMPI Model.................................................................................... 68 

 5.3 Designing the Improved Checkpoint Mechanism..................................................... 72 

 5.4 Implementing the Improved Checkpoint Mechanism…...………..……………….. 76 

 5.5 Chapter Summary and Conclusions.......................................................................... 79 

6 Experimental Results and Analysis. 81 

 6.1 Introduction............................................................................................................... 81 

 6.2 Aim........................................................................................................................... 81 

 6.3 Applications used for Testing................................................................................... 82 



List of Figures 
  

 

v 
 

 6.4 The Testbed............................................................................................................... 83 

 6.5 Testing Process......................................................................................................... 85 

  6.5.1 Data to be gathered during the tests.............................................................. 86 

 6.6 Calculating the Checkpointing Intervals using Young’s First Order 

Approximation……………………………………………………………………. 

 

87 

 6.7 Tests.......................................................................................................................... 89 

  6.7.1 Test Result for PI........................................................................................... 89 

  6.7.2 Test Result for Fire Reduce........................................................................... 107 

  6.7.3 Comparing results between the PI and Fire Reduce applications................. 121 

 6.8 Chapter Summary and Conclusions.......................................................................... 123 

7 Conclusions 124 

 7.1 Knowledge Contributions and Summary of Thesis ………………......................... 124 

 7.2 The Experimental Result Conclusions…………………………………………... 126 

 7.3 Future work............................................................................................................... 127 

References 129 

Bibliography 134 

Appendices 137 

.1 Publications..................................................................................................................... 138 

.2 Sample Checkpoint File.................................................................................................. 139 



List of Figures 
  

 

vi 
 

List of Figures  
 

2.1 Web Services Resource Framework (WSRF)……………………………………….. 8 

3.1 Checkpointing Hierarchy……………………………………………………………. 17 

3.2 Lost and Orphan messages……………………………………………………………… 21 

3.3 Process time diagram……………………………………………………………………………...  22 

3.4 Domino effect due to lost or orphan messages……………………………………… 22 

3.5 A consistent and an inconsistent state………………………………………………. 23 

3.6 Message logging for deterministic replay…………………………………………… 26 

3.7 Checkpoint index and checkpoint interval…………………………………………... 28 

3.8 Parallel application with three processes……………………………………………. 29 

3.9 Globally coordinated checkpoint……………………………………………………. 30 

3.10 The OpenMPI Architecture………………………………………………………….. 39 

4.1 Processes interacting………………………………………………………………… 45 

4.2 Globally coordinated checkpoint – waiting for in-transit messages………………… 45 

4.3 Globally coordinated checkpoint – logging in-transit messages…………………….. 46 

4.4 Checkpointing at natural synchronisation points……………………………………. 46 

4.5 First Order Approximation…………………………………………………………... 51 

4.6 A Checkpointing Mechanism………………………………………………………... 57 

4.7 The Checkpointing Solution………………………………………………………… 58 

4.8 Checkpointing process at Natural Synchronisation Points………………………….. 60 

4.9 Taking a forced checkpoint………………………………………………………….. 61 

4.10 The Restart Process………………………………………………………………….. 62 

5.1 A process fault tolerance infrastructure for Open MPI……………………………… 69 

5.2 The improved OPENMPI Architecture……………………………………………… 72 

5.3 Checkpointing process at Natural Synchronisation Points………………………….. 73 

5.4 Taking a forced checkpoint………………………………………………………….. 74 

5.5 The Restart Process………………………………………………………………….. 75 

6.1 Executing and restarting an MPI application on UoW cluster………………………. 84 

6.2 PI execution model…………………………………………………………………... 89 



List of Figures 
  

 

vii 
 

 
 
 
 

6.3 Execution Time without Failure for PI……………………………………………… 93 

6.4 Execution Time with Failure for PI…………………………………………………. 97 

6.5 Recovery Time for PI………………………………………………………………...  99 

6.6 Percentage increase in execution time for PI………………………………………... 101 

6.7 Percentage change in Time as Compared to Regular Checkpoint for PI……………. 103 

6.8 Average Checkpoint Time for PI……………………………………………………. 104 

6.9 Percentage deviation from optimal value for PI……………………………………... 105 

6.10 NSP vs forced Checkpoint for PI……………………………………………………. 106 

6.11 Execution Time without Failure for Fire Reduce……………………………………. 110 

6.12 Execution Time with Failure for Fire Reduce……………………………………….. 113 

6.13 Recovery Time for Fire Reduce…………………………………………………….. 115 

6.14 Percentage increase in Execution time for Fire Reduce…………………………….. 117 

6.15 Percentage Change in Time as compared to Reg. Checkpoint for Fire Reduce…….. 118 

6.16 Average checkpoint Time for Fire Reduce………………………………………….. 120 

6.17 Percentage deviation from optimal value for Fire Reduce………………………….. 120 

6.18 NSP vs Forced Checkpoint for Fire Reduce………………………………………… 121 



List of Tables 
  

 

viii 
 

List of Tables 
 

 
 

2.1 Fault tolerant mechanisms for existing solutions........................................................ 14 

3.1 A summary of the checkpoint-based rollback recovery categories............................. 31 

6.1 Categories of tests performed...................................................................................... 85 

6.2 Data gathered............................................................................................................... 87 

6.3 Execution without failure for PI application...............................................................  92 

6.4 Execution with failure for PI application.................................................................... 96 

6.5 Recovery Time for PI application............................................................................... 98 

6.6 Percentage increase in Execution time for PI............................................................. 100 

6.7 Percentage change in Time as Compared to Regular Checkpoint for PI.................... 102 

6.8 Average Checkpoint Time for PI................................................................................ 103 

6.9 Execution without failure for fire Reduce................................................................... 109 

6.10 Execution with failure for fire reduce......................................................................... 113 

6.11 Recovery time for fire reduce...................................................................................... 115 

6.12 Percentage increase in Execution time for Fire Reduce.............................................. 116 

6.13 Percentage change in Time as Compared to Regular Checkpoint for fire reduce...... 118 

6.14 Average Checkpoint Time for Fire Reduce................................................................ 119 

   

   



List of Algorithms 
  

 

ix 
 

List of Algorithms 
 

1 Checkpointing:: NSP Algorithm…………………………………………………………..  63 

2 Checkpointing:: Forced Checkpoint Algorithm…………………………………………  64 

3 Restarting:: Restarting an application after a failure……………………………………… 65 



Chapter 1. Introduction  

1 
 

Chapter 1   
 

1 Introduction  
 

1.1 Introduction 
Grid computing can be considered to be a generalised version of the metacomputer 

combining the supercomputing technology with networking and web technology. A 

metacomputer is a collection of any kind of computers that are heterogeneous, 

geographically distributed, connected by a wide-area network and that appears and acts 

as a single computer to an individual. Grid computing has emerged as an important new 

field focusing on large-scale sharing and high-performance which distinguishes it from 

conventional distributed computing systems [20]. The Grid environment utilise available 

resources. This can be in the form of dedicated resources or under used machines over the 

Internet.  

The main difference between Grid computing and conventional high performance 

computing systems such as cluster computing is that Grids tend to be more loosely 

coupled, heterogeneous, and geographically dispersed [1].  

At the very base, Grid computing is a computer network where each computer's resources 

are shared with every other computer in the system. Authorized users are able to access 

resources like processing power, memory and data storage to execute specific tasks. The 

complexity of a Grid computing system varies. We can either have a system that is as 

simple as a collection of similar computers running on the same operating system or as 

complex as inter-networked systems comprised of different computer platforms [1]. 

In Grid computing, a Virtual Organization refers to a dynamic set of individuals or 

institutions defined around a set of resource-sharing rules and conditions. All these 

virtual organizations share some commonality among them, including common concerns 

and requirements, but may vary in size, scope and structure [51]. 



Chapter 1. Introduction  

2 
 

1.2 Fault Tolerance 
Fault tolerance is the ability of an application to continue and completes its execution 

after the application or part of it, fails. There are several ways available to provide fault 

tolerance [52]. One option to solve failures would be to enable a failed application to 

return to a previous consistent state and then re-executes from that point. For example, 

when the current values of a failed application are lost, the object data may return 

(rollback) to previous values, and processes may return to a state in which a message is 

re-sent, if the previous attempt apparently failed. [4] 

It is more difficult to achieve fault tolerance in distributed applications because the 

applications are made up of several processes that communicate by passing messages 

between themselves. One process can fail without the other processes noticing the failure 

thus making the whole application inconsistent in many cases.  

 

1.3 Problem Statement 
While collaborating and sharing different resources in several virtual organizations, 

which is one of Grid computing main objectives, is achievable today, the current Grid 

standards do not provide relevant information to understand fault tolerance in the 

environment. Fault tolerance is a major challenging research area and one of the research 

aims in this area is to enable Grid services to successfully execute long running 

applications on a Grid. To achieve this, it is important to define efficient fault tolerant 

mechanisms to ensure the smooth and successful execution of the parallel applications. 

At the Centre of Parallel Computing (CPC), University of Westminster, PVM (Parallel 

Virtual Machine) and MPI (Message Passing Interface) based applications are executed 

on the Grid and therefore it is crucial to ensure that these applications executed reliably. 

Presently there is no fault tolerant mechanism used by the research centre. This makes 

applications execution quite unreliable mainly when they run for long hours or even days. 

A simple failure, be it at hardware, software or network level will require the re-

execution of the whole application. This implies losing hours or days of execution. So, to 

resolve this problem, finding an appropriate fault tolerance solution to execute our 

parallel applications is important. 



Chapter 1. Introduction  

3 
 

1.4 Research Challenges 
Though there are several fault tolerant solutions, there is still a lot of research work to be 

done in this area in order to develop an efficient solution. The main challenge for this 

research is to find a fault tolerant solution that will enable MPI applications to execute on 

the Grid. The main focus would be to find a solution that is reliable but at the same time 

does not affect the execution time of the application in Grid environment too much due to 

overhead incurred during the checkpointing process. One of the major obstacles in this 

process is the inter-process communication that exists among the different processes 

running during the execution of an application. Dealing with the communication layer 

during the checkpointing process incurs a lot of overhead thus affecting the execution 

time of the application. Another source of overhead is where the checkpoint files should 

be stored. The location of the stable storage has a bearing on the overall time in 

checkpointing and restarting an application. 

 

1.5 Research Objectives 
The first objective of this research was to investigate existing fault tolerant solutions in 

Grid environment and to give critical evaluations where appropriate. The second one is to 

develop, implement and test a novel fault tolerant solution for executing parallel 

applications in the Grid environment. The solution will be implemented at the application 

level and will provide an efficient fault tolerant mechanism that will ensure MPI 

applications recovers reliably during failures without hugely affecting the performance. 

 

1.6 Research Contributions 
The main contribution of this research is the development of a novel approach to 

checkpoint MPI applications in the Grid environment. A coordinated checkpointing 

algorithm has been developed that reliably execute MPI applications on the Grid. The 

solution successfully checkpointed applications at the best possible place and time to 

minimize checkpointing overhead and hence forth improve performance as compared to 

other traditional checkpointing solutions that exist. 

 



Chapter 1. Introduction  

4 
 

1.7   Structure of the Thesis 
Chapter two introduces the Grid and the different protocols supported by the Grid system. 

It also analyses the different fault tolerance mechanisms that exist.  

The third chapter gives an analysis of the different checkpointing techniques and 

algorithms that existing before analysing a few projects that use checkpointing as a fault 

tolerance mechanism.  

Chapter four explains the proposed solution and provides the algorithms for the proposed 

checkpoint/restart process.  

Chapter five explains how the proposed solution has been implemented.  

Chapter six describes the test bed for the proposed solution.  It also gives the tests results 

for all the tests carried out before analysing these results.  

Chapter seven gives a summary of the proposed solution and proposes a few future works 

that can further improve the implemented solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

5 

Chapter 2  
 

2 The Grid Systems and Fault 

Tolerance. 
 

2.1 The Grid Systems. 
The first generation Grid systems enabled users to access Grid resources on demand. The 

main components of the Grid systems were the resource providers, resource consumers 

and a resource information system. As said earlier, the Grid consists of a collection of 

resources. However, to form the Grid, the collection of resources requires middleware 

systems that hide all the details of available resources. The Grid system functionalities 

are normally organized at several hierarchical levels and the layers are as follows: The 

fabric layer is the lowest layer and at this level, resources are connected by the network 

and governed by local resource managers, such as Condor. The Condor Grid middleware 

system provides a job queuing mechanism, scheduling policy, resource monitoring, 

priority scheme, and resource management. Users can submit their jobs (serial jobs or 

parallel jobs) to Condor which places them into a queue. The job manager decides when 

and where to run the jobs, monitors their progress, and eventually informs the user when 

the job execution is complete.The second layer contains the core Grid middleware 

services (e.g. security services, global scheduling, and resource co-allocation). The third 

layer is the Grid support layer and at this level, higher-level services are built on top of 

the base services of the second level. (E.g. resource brokers, workflow managers). The 

fourth layer provides the application services (e.g. Grid portal, analysis and visualization 

tools) [1].  

To create such a layered middleware, the first generation Grid systems adopted the 

Globus middleware; Globus Toolkit 1 (GT1) and Toolkit 2 (GT2). Thus, through the use 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

6 

of Globus Toolkits, it was easier to create usable Grids, enabling high-speed coupling of 

computers, databases and instruments. It also allowed users to run a job on more than one 

machine at the same time, even if these machines are located at geographically different 

regions and owned by different organizations [11]. 

 

The second generation of Grid systems combines the Web Services technology with the 

Grid concept. Web services are a distributed computing technology that allows the 

creation of applications based on the client/server model. Web services are platform and 

language independent and they use open and known protocols, such as the HyperText 

Transport Protocol (HTTP), Web Services Description Language (WSDL) and Simple 

Object Access Protocol (SOAP). The Web services architecture is based upon 

interactions among three components: Web services provider, Web services registry 

(Universal Description, Discovery, and Integration - UDDI) and Web services client [53]. 

Web services are non-transient and stateless services. They are called stateless services 

because these services do not maintain state information between message calls. All 

information that is required by a Web service has to be stored either in a persistent 

storage or is passed to it by the caller. This implies that Web services cannot remember 

result from one invocation to another. This is a problem for the Grid environment where 

often a set of related computations are executed rather than a single computation. Web 

services can only execute a set of related computation if they pass the result from one 

computation to the other as a parameter. Web Services are called non-transient services 

because they outlive all their clients. This implies that, a Web service still holds the result 

of the computation executed by the last client. Therefore, a new client accessing the Web 

service can access the result of the previous user [14].  

So, a Web service is not a very efficient solution because in distributed systems, there are 

some situations when transient and stateful services are required. Grid Services can solve 

this problem and this is one of the main reasons for extending Web services definition by 

the Open Grid Services Architecture (OGSA) and Open Grid Services Infrastructure 

(OGSI). Grid services could solve Web services problems, incorporating the concepts of 

well-defined interfaces, stateful Web services, inheritance of Web services interfaces, 

asynchronous notification of state change, references to instances of services, collections 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

7 

of service instances and service state data that augments the constraint capabilities of 

Extensible Markup Language (XML) Schema. Thus, Web services are the foundation for 

Grid services, which are the basis of OGSA, OGSI, and therefore, GT3 [2] [54].  

The aim of OGSA is to define a new common and standard architecture for Grid-based 

applications. It defines what Grid services are, what they are capable of and what types of 

technologies they should be based on [6]. The development of OGSA represents an 

evolution of the Globus Toolkit 2.0, in which the key concepts of factory, registry, 

reliable and secure invocation among others, exist, but in a less general and flexible form 

than Globus Toolkit 3, and without the benefits of a uniform interface definition language 

[15]. OGSI is a formal and technical specification of the concepts described in OGSA, 

including Grid Services [17] [18]. 

 

However, OGSI was created with the view that it will eventually be converged with Web 

services standards, making Web services and Grid services become the same thing. 

Unfortunately, this did not happen because the convergence was unsuccessful [7]. This 

was mainly because the OGSI Grid services have several drawbacks as listed below: 

• OGSI is a complex specification with too many standards in it and OGSI 

developers do not currently use most of them [21]. 

• OGSI does not work well with present Web services and XML tooling. For 

example, OGSI uses XML Schema with substantial use of xsd:any, attributes, 

etc. These features cause problems with, for example, JAX-RPC [21]. 

• OGSI’s concepts are very object oriented. Even though lots of Web Services 

systems have object-oriented implementations, Web services themselves are not 

supposed to be object-oriented. But OGSI takes many concepts from object 

oriented paradigm (such as statefulness, the factory/instance model, etc.) 

 

To solve this problem, the Web Services Resource Framework (WSRF) has been created. 

This standard replaces OGSI and has made it easier to converge Grid services with Web 

services. (See Figure 2.1(a)).  This is the third generation Grid system. 

 

 

http://www.globus.org/wsrf


Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

8 

 

 

 

 
 
 
 
 
 

Unlike OGSI which was a “patch over Web services”, WSRF integrates itself into the 

Web services standards, as shown in figure 2.1(b). OGSA is based directly on Web 

services instead of being based on OGSI Grid services [10]. The WSRF makes 

convergence with Web services possible by solving OGSI’s drawbacks. The solutions to 

the three drawbacks listed above are: 

● The OGSI functionality has been split into six independent specifications (instead 

of one long specification) making it simpler for adoption [27]. 

● WSRF uses standard XML Schema mechanisms that are familiar to developers 

and are supported by available tooling [11]. 

● Because Web services cannot have state, WSRF separates the service from the 

state. Support for factory/instance services also disappears, even though design 

pattern can be used to implement it. 

The Globus Toolkit 4 is a WSRF implementation. It provides an API for implementing 

stateful Web services which target distributed heterogeneous environments [13]. 

 
 
 

 

 

 

OGSA/OGSI 

Web Services 

WSRF 

Figure 2.1: Web Services Resource Framework (WSRF) 

Applications 

OGSA 

Web services 

(a) (b) 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

9 

2.2 Fault Tolerant Techniques. 
Currently, the most common techniques used to manage failures in Grid environment are: 

● Retrying: If an application crashes, it can be re-executed on a specified Grid 

resource a certain number of times [49].  

● Replication: This technique makes replicas of an application that are executed on 

different Grid resources. As long as not all replicated applications crash, the 

application will be executed successfully [49]. 

● Checkpointing: When an application is executed, it is checkpointed at various 

intervals and the checkpoints are stored in a stable storage. If at some point the 

application fails, the last checkpointed state is retrieved from the stable storage 

and the application is re-executed from that point rather from the beginning [49].  

 

Retrying is the simplest failure recovery technique to use. If an application failure is 

detected this application would be retried on a specific Grid resource a certain number of 

times with a predefined time interval between the tries [5]. 

 

In Replication, the application will be replicated on different Grid resources. As long as 

not all replicated applications crash, the application execution would succeed.  When an 

application is executed, the underlying system simultaneously submits the application 

execution request to a specific number of Grid resources. Once one of the applications 

has executed successfully, the replicated applications are stopped [5].  

 

Checkpointing is an efficient fault tolerance technique for long running applications in 

distributed, parallel systems. Presently, there are many checkpoint libraries and program 

development libraries which support checkpointing. With these checkpointing facilities, 

checkpoint-enabled applications can be developed by linking these applications with the 

checkpointing libraries. With checkpointing, when an application fails, it is allowed to be 

restarted from the recently checkpointed state rather than from the beginning. 

Checkpointing is a common fault tolerant mechanism to manage failures in the Grid 

environment as it is very efficient for environments with high failure rates [5].  



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

10 

2.3 Existing Fault Tolerant Mechanisms. 
In this section, a few existing fault tolerant solutions have been analysed. These solutions 

have been selected because they are all providing a fault tolerant solution for 

parallel/distributed applications running on a Grid environment. The solutions cover a 

range of existing fault tolerance mechanisms such as retrying, replication and 

checkpointing among others.   

 

The E-Demand project was mainly developed to protect Grid applications against both 

malicious and erroneous services through the use of a fault tolerant mechanism based on 

replication. In this project, a coordination service was implemented which uses 

replication to solve job failures and resources failures. When a job is submitted to a 

coordinated service(s), the service determines the most appropriate nodes to send the 

replicas to, and subsequently sends them to these nodes. The nodes then process the job 

until they complete or until they fail. The coordinated service then evaluates the results of 

the nodes and randomly selects a node requesting it to send the result back to the client 

[12]. 

 

The Fraunhofer failure handling framework was developed to make Grid workflows fault 

tolerant by providing two types of fault management mechanisms; the Implicit Fault 

Management and the Explicit Fault Management mechanisms. The Implicit Fault 

Management is included in the Grid middleware and is invoked by lower-level services 

regarding fault management of each job. The mechanism is based on retrying and is 

introduced automatically whenever a job fails when being submitted or executed. The 

Explicit Fault Management mainly refers to the inclusion of user-defined fault 

management jobs within the Grid workflow. A user-defined fault management job is 

executed whenever there is a specific failure (disk full, timeout, etc.). For example, in a 

Grid workflow, we can specify that if a job A is being executed and it does not complete 

after a specified time (the job fails due to timeout), the job B will be executed. Else job C 

will be executed. Here all the three jobs are the same except that they are executed on 

different resources [17].  

 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

11 

Among the fault tolerant mechanisms that already exist, the Grid Workflow System 

(Grid-WFS) framework is a promising solution. It is a flexible failure handling 

framework for the Grid as it supports retrying, replication, checkpointing, replication 

with checkpointing, alternative task and workflow level redundancy [9]. Alternative task 

mechanism makes use of different implementations available for a certain computation 

(each implementation, however, has different execution characteristics). For example, if 

there are two implementations A and B, for an application, we can include both 

implementations in the workflow so that if one application fails (say A), the other 

application is executed. Here, application B will only start if application A fails. This 

mechanism is similar to retrying except that instead of retrying the same application, you 

are executing a different version of the application. Workflow level redundancy 

mechanism is similar to the alternative task mechanism except that here, the different 

implementations available for a certain computation are run in parallel. For example, if 

there are two implementations A and B for a given application, both applications will be 

executed at the same time on different resources. The result of the application that 

terminates first is taken. This mechanism is similar to replication except that here you are 

running different implementation model of the same application in parallel [19]. 

 

The GriphyN project was developed to generate and manage Grid workflows, ensuring 

their proper execution in the Grid environment. It uses “abstract” and “concrete” 

workflow generators to generate workflows automatically. Different abstract and 

concrete workflow models can be generated for a particular Grid workflow [3]. The 

availability of set of different workflow models ensures the successfully execution of a 

given Grid workflow. For example, if a particular workflow model is being executed and 

subsequently fails, an alternative model can be adopted an executed. Their fault tolerant 

solution also includes retrying and replication. The solution also provides the alternative 

task mechanism which is similar to the one described in the Grid-WFS framework [31] 

[32]. 

 

Another fault tolerant mechanism for Grid was developed for P-GRADE. It contains a 

parallel checkpoint and migration module that enables the checkpoint and migration of 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

12 

generic PVM programs either inside a Grid site, like a cluster, or among Grid sites when 

the PVM programs are executed as Condor or Condor-G jobs. To provide fault-tolerance, 

application-wide checkpoint save is performed, and the checkpoint information is stored 

on a stable storage server for roll-back if necessary. The checkpointing system is 

triggered by a grapnel server which is an extra co-ordination process that is part of the 

application and generated by P-GRADE. When a PVM application is executed, a 

checkpoint library is loaded at process start-up. This library is activated by receiving a 

predefined checkpoint signal sent by the grapnel server which then reads the process 

memory image and passes this information to a Checkpoint Server. 

 

Analysis of existing Fault Tolerant Mechanisms 
In this section, the advantages and disadvantages of each of solutions are discussed. 

 

E-Demand 

The advantage of this solution is that it does not require any extra software to be supplied 

from the client application. The same application just needs to be executed concurrently 

on several Grid resources. However, this fault tolerance solution consumes extra 

processing power which is a major drawback mainly in dedicated Grids.  

 

Fraunhofer framework  

The main advantage of the Fraunhofer framework is its flexibility as it provides a set of 

fault tolerance solutions. However, it uses only retrying to implicitly solve job failure. 

This is not the best option because retrying on it own is not effective in the Grid 

environment where the rate of failures of a job varies a lot. Sometimes the failure rates 

can be high and sometimes it can be low. When the rate of failure is high, retrying 

mechanism is not recommended because the expected completion time for a job using 

this mechanism is very big. Moreover, the mechanism is only concerned with job failure 

in the workflow. There is no consideration about other types of failures (e.g. node failure, 

network partitioning) that can in one way or the other affect the proper execution of a 

Grid workflow. 

 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

13 

Grid-WFS 

The Grid-WFS supports multiple failure recovery techniques as opposed to most other 

systems described above. It supports retrying, replication, checkpointing, replication with 

checkpointing, alternative task and workflow level redundancy and looks more promising 

than the other two solutions. Another advantage of this framework is that the fault 

tolerant solutions are not hard-coded in application code but are specified using high-

level workflow structure which is separated from the application code. The main 

disadvantage of Grid-WFS framework is its cost benefit. Providing all these fault tolerant 

mechanisms is an expensive approach. Another disadvantage of this model is that it does 

not provide any solution for node crashes, network partitioning or any other hardware 

failures. Workflow level redundancy is not a very efficient solution considering that it 

will require extra processing power to execute the different jobs in parallel.  

 

GriphyN 

The main advantage of GriphyN is that it provides multiple fault tolerant options to 

provide fault tolerance. The solution does not require any change at the OS level, system 

level or application level thus making it portable. However, both the concrete and 

abstract workflow models are based on retrying and replication. Replication, as mention 

earlier, consumes extra processing power thus affecting performance while retrying is not 

the best solution in the Grid environment as explained earlier. Moreover, generating 

various abstract and concrete workflows, requires the re execution of the whole workflow 

when a failure occurs. This is not a good solution as it could be that only of job in the 

workflow has caused the failure. So re-executing the whole workflow will be a waste of 

time and resources.  

 

P-GRADE 

The advantage of the P-GRADE framework is that it supports automatic checkpointing of 

parallel applications.  Checkpointed jobs can be migrated to other host in case of host 

failure. However, P-GRADE can only checkpoint PVM applications. It cannot 

checkpoint MPI applications Moreover, the checkpointing algorithm used does not 

consider any options to reduce overheads during checkpointing (e.g. inter process 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

14 

communication, size of data checkpointed, checkpoint intervals, etc). This means that the 

checkpointing process can have a negative impact on the execution time of applications.   

 

2.4 Chapter Summary and Conclusions 
This chapter gives a brief description of the Grid systems and its evolution before 

analysing a few fault tolerance solutions that have been used in different projects.  The 

table 2.1 below gives a summary of the fault tolerant mechanism(s) adopted by each 

solution described in section 2.3. 

 

 Re-Trying Replication Checkpointing 
E-Demand  X  
Fraunhofer X   
Grid-WFS X X X 
GriphyN X X  
P-GRADE   X 
 

 

 

In this chapter we saw three main fault tolerance mechanisms; retrying, replication and 

checkpointing. All the three solutions have proved to be successful in the Grid 

environment though each one has their own advantages and disadvantages.  

For this research, the checkpointing solution was chosen for the following reasons: 

1. The solution that will be implemented will mainly be used for long running 

parallel applications and checkpointing has proved to be very efficient for long 

running applications. 

2. The application will be executed on a dedicated cluster and replication will affect 

performance as it will consume too many resources.  

3. Grid environment is generic, heterogeneous, and dynamic with lots of unreliable 

resources. This is not ideal for long running applications which use retrying as a 

fault tolerance solution. Each time there is a failure, the application will need to 

Table 2.1: Fault tolerant mechanisms for existing solutions 



Chapter 2. The Grid Systems and Fault Tolerance. 

 

 
 

15 

be re-executed from the beginning. This will definitely affect the execution time 

of the application. On the other hand, checkpointing is more suited because even 

though there are lots of unreliable resources in the Grid, applications do not need 

to restart from the beginning when a failure occurs. This will significantly 

improve the execution time as compared to retrying. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3. Checkpointing 

 

 
 

16 

Chapter 3  
 

3 Checkpointing 
 

3.1 Introduction  
Having analysed the different fault tolerant methods, we concluded that checkpointing is 

best suited for the Grid environment. In the main part of this chapter, different 

checkpointing techniques were explored and before deciding which techniques is best 

suited for this research work. 

 

3.2 State of the Art  
Today, checkpointing is often used to implement rollback-recovery in distributed 

environment. This tends to be deployed in large-scale parallel processing environments, 

such as those used in high-performance computing. Application based checkpointing has 

been the most commonly used mechanism in such environment mainly for applications 

that run for hours or days. The checkpointing interval is usually measured in minutes 

(e.g. every half an hour), and therefore the performance impact of checkpointing is 

lessened over the long time it takes to run the application [24].  

 

3.3 The Different Levels of Checkpointing 
Checkpointing is a process where a program’s state is saved, usually to stable storage, so 

that it may be reconstructed later in time. Checkpointing provides the backbone for fault 

tolerance and process migration among others [16]. 
 



Chapter 3. Checkpointing 

 

 
 

17 

3.3.1 Checkpointing Techniques  

There are three levels where checkpointing can be implemented and they differ in the 

level of user/programmer involvement. As shown in Figure 3.1, these levels are: 

• OS checkpointing. 

• Compiler based checkpointing. 

• Application based checkpointing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Checkpointing 

OS application Compiler 

Log-based rollback recovery Checkpoint-based rollback recovery 

uncoordinated Ckpt with message log coordinated Communication-induced 

Rollback-
dependencyGr

aph 

Checkpoint 
Graph 

Minimal Chkpt 
coordination 

Synchronised 
checkpoint 

clocks 

Non-blocking 
Chkpt 

coordination 

Model-based 
chkpting 

Index-based 
Comm-induced 

Chkpting 

Optimistic Casual Pessimistic 

Memory 
Exclusion 

Chkpt  
Buffering 

Copy-on-write 
Buffering 

Incremental 
Checkpointing 

Chkpt 
Compression 

Figure 3.1: Checkpointing Hierarchy 



Chapter 3. Checkpointing 

 

 
 

18 

OS Checkpointing  
Some operating systems provide checkpointing support inside the operating system 

kernel without any effort on the part of the programmer or user. The underlying operating 

system provides automatic recovery. The checkpoints can be triggered on a periodic 

basis, or the user program may issue a system call to initiate the checkpoint.  

The main advantages of this technique are: The programmer is released from 

consideration of faults. The programmer only needs to specify the interval between 

checkpoints and the checkpointing process is transparent.   

Some of its disadvantages are: Because the checkpointing mechanism is implemented at 

the system-level, it knows nothing about the semantics of the application. Only the 

exchanging of messages and the corresponding send/receive events are relevant. The 

application is seen as a “black-box” and the checkpointing scheme has no knowledge 

about its internal characteristics. As a result, system-level transparent checkpointing 

mechanisms typically take gross measures, such as logging all messages or backing up all 

the processes [27].  

 

Compiler Based Checkpointing  
In this technique, support for checkpointing is provided inside the compiler. It uses static 

program analysis to assist the optimisation of checkpointing [50]. Here, checkpointing is 

performed at regular intervals by the program itself. To achieve transparency, the 

program is complied with a checkpointing library. The compiler performs data and 

control flow analysis on the program, inserting checkpoints at regions where the amount 

of data to be saved is small [23]. 

The advantage of this technique is that, the placement of checkpoints is transparent to the 

programmer. The idea is to exploit the knowledge of the compiler to insert the 

checkpoints at the best places possible and to exclude some inappropriate areas of 

memory so as to reduce the size of the checkpoint file. Just like Operating System 

checkpointing, it operates transparently without requiring the programmer to modify the 

application to insert checkpoint and recovery code [25] [27]. 

Although it can be an effective technique it lacks portability since not all the compilers 

will include support for checkpointing. It will also be difficult to use in 



Chapter 3. Checkpointing 

 

 
 

19 

parallel/distributed applications that communicate through message-passing since the 

compiler cannot determine the state of the communication channels at the time of the 

checkpoint. [6]. 

 

Application Based Checkpointing. 
The main method to provide support for checkpointing in this technique is through a run-

time library. This approach is not transparent to the user. The checkpoint contents and the 

places where checkpoints should be taken have to be defined by the application program. 

The programmer chooses points within the execution of the application such that the 

collections of checkpoints taken by all processes will produce global consistent 

checkpoints. Additionally, the programmer needs to implement the checkpointing and 

recovery code, including the decision of which data structures to store on stable storage at 

each checkpoint. The recovery code reads the stored data structures in the checkpoints 

and reconstructs the connections among the processes in the application [25]. 

This checkpointing technique is excellent for checkpointing parallel/distributed 

applications in a Grid environment as it is portable.   The programmer can specify exactly 

which data should be saved in a checkpoint operation thus considerably reducing the size 

of the checkpoint, and consequently, reducing the performance overhead of the 

checkpoint operation. The programmer has flexibility in controlling the rate of 

checkpointing.  

The principal disadvantage of this technique is the involvement of the programmer. 

Requiring the application to include checkpointing and recovery code reduces 

productivity and increases the programmer burden. Making wrong decision about what to 

checkpoint can result in checkpointing or recovering code that may prevent recovery 

[25]. 

 

 

 

 

 



Chapter 3. Checkpointing 

 

 
 

20 

3.4 Best Approach for This Research 
So far, the application based checkpointing mechanism looks most promising for this 

research. This is mainly because on a Grid environment, portability is very important. 

Parallel and distributed programs involve a lot of inter-process communication and 

therefore a compiler based checkpointing mechanism will not be appropriate.  

Furthermore, to improve performance, it is important to reduce the size of the 

checkpointing file as much as possible and OS checkpointing techniques do not allow 

this.  

Though application based checkpointing can be a bit tedious, a good programmer can 

easily implement the solution and benefit the various advantages of this technique. 

 

3.5 Terminology 
This section explains a few terminologies commonly used in checkpointing. Through the 

thesis, these terms are mentioned on various occasions.  Without proper knowledge of 

these terms, it will be difficult to understand the different steps involved in the 

checkpointing process. 

 

Lost and Orphan Message 
Figure 3.2 illustrates two processes whose local checkpoints do not form a consistent 

checkpoint.  
Message m1 from p1 to p2 is a lost message. A message is called a lost message when it is 

registered as being sent by a process but is not received by any other process. In this 

scenario we can see that the local checkpoint for p1 shows that a message was sent to p2 

but the local checkpoint of p2 does not show receipt of any message m1 from p1. Lost 

messages may occur when in-transit messages between two processes are not captured by 

a checkpointing mechanism. Therefore when these two checkpoint files are restored for 

the application to continue, p2 will never receive the message m1 (unless retransmitted) 

and this can lead to a failure [45].  

Message m2 from p1 to p2 is an orphan message. A message is called an orphan message 

when it is registered as being received by some processes but there is no information as to 



Chapter 3. Checkpointing 

 

 
 

21 

which process sent that message. In Figure 3.2 below, the local checkpoint of P2 has 

received a message from P1. However, the local checkpoint of P1 has no records of 

having sent a message m2 to P2. When there is a failure and we restart the application, it 

would be a situation where P2 had received a message that P1 had not yet sent. This is an 

impossible situation in a failure-free execution of the application. [22]. 

 

 

 

 

 

 

 

 

 

In-Transit Messages 
A lost message is also called and in-transit message. A message is in-transit with respect 

to a global state if it is recorded as being sent by a given process but not as being received 

by other process. Checkpointing algorithms have to log such in-transit messages in order 

to restore the state of channels when a computation has to be resumed from a consistent 

global state after a failure has occurred. Coordinated checkpointing algorithms can log in-

transit messages on stable storage. Some algorithms may wait until all in-transit messages 

have been delivered before a checkpoint can be taken [24] [26]. 

 

Figure 3.3 shows an application in progress.  Every time, we need to take a global 

consistent checkpoint, we have to make sure that there are no inconsistencies. In the 

figure below, Ckpt1 is an inconsistent checkpoint and Ckpt2 is a consistent checkpoint. 

(In this section, I used black bars to represent a local checkpoint). Ckpt1 is an 

inconsistent checkpoint because we have an orphan message m1. Ckpt2 is a consistent 

checkpoint as both m5 and m6 are in-transit (lost) messages. As explained above, in-

transit messages need to be logged to ensure consistency.  

 

Figure 3.2. Lost and Orphan messages 

 

 

P1 

P2 

         Local checkpoint 
 
 
 

m1 
 
 
 

m2 
 
 
 

(Lost message) (orphan message) 



Chapter 3. Checkpointing 

 

 
 

22 

 

 

 

 

 
 

 

Domino Effect 
As said earlier, in a message-passing distributed system, messages induce inter-process 

dependencies during failure-free operation. Upon a failure of one or more processes these 

dependencies may force some of the processes that did not fail to roll back, creating a 

rollback propagation. [45]. 

 

 
 
 

Consider the Figure 3.4 above. It shows an execution in which processes take their 

checkpoints without coordinating with each other. Each process starts its execution with 

an initial checkpoint. Suppose process P1 fails and rolls back to checkpoint B. The 

rollback invalidates the sending of message m4, putting process P0 in an inconsistent 

state. Therefore P0 must roll back to checkpoint A to invalidate the receipt of message 

P0 
 
 
P1 
 
 

 

X     Failure 

A 

B 
 
 

mo   
 
 

m2 
 

m4 
 

m4 
 

Recovery line 
 Checkpoint 

x1 x2 x3 x4 

m1   
 
 

m3 
 

Figure 3.4. Domino effect due to lost or orphan messages 

 

Figure 3.3: Process time diagram  

Ckpt 1 - inconsistent Ckpt 2 - consistent 

m1 

m2 
m3 

m4 
m6 

m5 
P1 

P2 

A 



Chapter 3. Checkpointing 

 

 
 

23 

m4. This cascaded rollback may continue and eventually may lead to the domino effect, 

which causes the system to roll back to the beginning of the computation, in spite of all 

the saved checkpoints. In our example shown above, the cascading rollbacks due to the 

failure of process P1 may result in a recovery line that consists of the initial set of 

checkpoints, effectively causing the loss of all the work done by all processes. To prevent 

the domino effect, processes need to coordinate their checkpoints so that the recovery line 

is advanced as new checkpoints are taken. [24]. 
 

Consistent and Inconsistent States  
Figure 3.5 below shows two examples of global state. In Figure 3.5 (a) we have a 

consistent state and in Figure 3.5 (b) we have an inconsistent state.  

In Figure 3.5 (a), we have a consistent global checkpoint because there are no lost or 

orphan messages. Even if message m1 has been sent but not yet received, the state is 

consistent because it is a situation in which the message has left the sender and is still 

traveling across the network. So, during the checkpointing process, the in-transit 

messages will also be saved as part of the checkpoint process which will be re-

transmitted when the application is re-started in case of failure. 

On the other hand, we have an inconsistent global checkpoint in Figure 3.5 (b). This is 

because process P2 receives m2 but the state of process P1 does not reflect sending it. 

This gives rise to inconsistency resulting to a failure when the application is restarted 

from the checkpoint state [30]. 

 

 

 

 

 

 

 

 

P1 

P2 

m1 

(a) 
(b) 

Consistent state 

m2 
P1 

P2 

Inconsistent state 

Figure 3.5: A consistent and an inconsistent state  

         Local checkpoint 
 
 
 



Chapter 3. Checkpointing 

 

 
 

24 

Non-deterministic Events and Deterministic Intervals 
To understand log-based rollback recovery, we must first understand what a 

nondeterministic event and a deterministic state interval is. In log-based rollback 

recovery, a process execution can be modelled as a sequence of deterministic state 

intervals, each starting with the execution of a nondeterministic event [45]. (Log-based 

checkpointing is explained in the next section).  

 

Non-deterministic events. A process execution is a sequence of state intervals, each 

started by an event. This event is called a non-deterministic event. Examples of 

nondeterministic events include receiving messages, receiving input from the outside 

world, or undergoing an internal state transfer within a process based on some 

nondeterministic action such as the receipt of an interrupt. For example, in Figure 3.4 

above, the execution of process P0 has 3 non-deterministic events; the receipt of message 

m0, m3, m4 [32] [45]. 

 

Deterministic intervals.  It is the interval between successive non-deterministic events. 

In Figure 3.4 above, the execution of process P0 is a sequence of four deterministic 

intervals x1, x2, x3 and x4 [45]. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3. Checkpointing 

 

 
 

25 

3.6 Different Approaches for Checkpointing and 

Recovery 
There are many approaches that exist and that can be adopted to implement 

checkpointing. These approaches, as shown in Figure 3.1, above can be classified into 

two groups.  

1. Checkpoint-based rollback recovery [30]. 

2. Log-based rollback recovery [30]. 

 
 
Checkpoint-Based Rollback Recovery 
Checkpoint-based rollback recovery relies only on checkpoints to achieve fault-tolerance. 

When an application fails, checkpoint-based rollback recovery restores the system state to 

the most recent consistent set of checkpoints.  

The main advantage of this approach is that checkpoint-based protocols are simpler to 

implement than log-based rollback recovery because they do not need to detect, log, or 

replay nondeterministic events.  

But the disadvantage of checkpoint-based rollback recovery is that it does not guarantee 

that pre failure execution can be deterministically regenerated after a rollback. Therefore, 

checkpoint-based rollback recovery is not suited for applications that require frequent 

interactions with the outside world, since such interactions require that the observable 

behaviour of the system during recovery be the same as during failure-free operation 

[31].  

 

Log-based Rollback Recovery 
Log-based rollback recovery combines checkpointing with logging of nondeterministic 

events. The information needed to replay each event during recovery is logged in each 

event’s determinant. A determinant is a file that contains all the necessary information 

necessary to replay an event during recovery [36]. Therefore, by logging and replaying 

the nondeterministic events, a process can deterministically recreate its pre-failure state.  



Chapter 3. Checkpointing 

 

 
 

26 

Consider the example in Figure 3.6 where an execution in which the only non-

deterministic events are message deliveries: 

 

 

 

  
 
 
 
 

 

Assume that processes P1 and P2 fail before logging the determinants corresponding to 

the deliveries of m6 and m5, respectively, while all other determinants survive the failure. 

So, message m7 becomes an orphan message because process P2 cannot regenerate m6 

during recovery and P1 cannot regenerate m7 without m6. This makes process P0 an 

orphan process and thus force it to roll back as well. Processes P0 rollback to checkpoint 

A and replay the delivery of message m4 to reach state X while process P2 roll back to 

checkpoint C and replay the delivery of message m2 to reach state Z. Process P1 rolls 

back to checkpoint B and replays the deliveries of m1 and m3 respectively to reach state 

Y. States X, Y and Z form the maximum recoverable state, that is, the most recent 

recoverable consistent system state [30]. 

During recovery, log-based rollback-recovery protocols force the execution of the system 

to be identical to the one that occurred before the failure, up to the maximum recoverable 

state. Therefore, the system always recovers to a state that is consistent with the input and 

output interactions that occurred up to the maximum recoverable state [45]. 

mo   
 
 

m1  
 
 

m3 
 
 

m2 
 
 

m6 
 

m4 
 
 

m7 
 
 

m5 
 
 

A 

B 
Y 

X 

Figure 3.6: Message logging for deterministic replay [30]. 
 

X 
X 

Po 
 
 

P1  
 
 
P2 
 
 m5 and  m6 upon failure C Z 

Maximum recovery state 



Chapter 3. Checkpointing 

 

 
 

27 

The main advantage of log-based rollback recovery is that it enables a system to recover 

beyond the most recent set of consistent checkpoints. This approach is suitable for 

applications that interact with the outside world which consists of all input and output 

devices that cannot roll back [45]. 

The main disadvantage of this method it that the checkpointing process can results in a 

performance overhead due the logging process. Overhead is induced mainly because each 

message must be copied to the local memory of the process. This may directly affect 

communication throughput and latency. Another source of overhead is due to the volatile 

log that is regularly flushed on stable storage to free up space. Another disadvantage 

would be the size of the checkpoint files due to the logging of non-deterministic events 

[29]. 

 

For this research, the best option would be the checkpoint-based rollback recovery 

approach. This is because the main focus would be on providing a solution that does not 

incur too much checkpointing overhead during the checkpointing process while at the 

same time ensuring that the size of the checkpoint file are kept to a minimal size. 

Logging non deterministic events will definitely slow down the checkpointing process 

and increase the size of the checkpointing files. 

 

3.7 Categories of Checkpoint-Based Rollback Recovery  
The three most common checkpoint-based rollback recovery categories are: 

1. Uncoordinated Checkpointing. 

2. Coordinated Checkpointing. 

3. Communication-induced Checkpointing. 

 

Uncoordinated Checkpointing 
In uncoordinated checkpointing, each process is allowed to take its checkpoints 

independently, regardless of the dependencies that exist among processes due to message 

passing. To determine a consistent global checkpoint during recovery, processes record 



Chapter 3. Checkpointing 

 

 
 

28 

the dependencies among their checkpoints during failure-free operation.  Consider the 

Figure 3.7 below: 

 

 
 

 

Here in Figure 3.7, 

x = the checkpoint index. 

I and J = the checkpoint interval between two successive checkpoints. 
 

If during interval I, process P0 sends a message m to process P1, it will piggyback the 

pair (0,x) on m. Therefore, when P1 receives m during interval J, it records the 

dependency from I to J which will later be saved onto the stable storage when P1 takes 

checkpoint Cb. 

If a failure occurs, the recovering process initiates rollback by broadcasting a dependency 

request message to collect all the dependency information maintained by each process. 

Based on the global dependency information collected, the initiator calculates the 

recovery line and broadcasts a rollback request message containing the recovery line. 

Upon receiving this message, a process whose current state belongs to the recovery line 

simply resumes execution, otherwise it rolls back to an earlier checkpoint as indicated by 

the recovery line [26]. 

P1 

P0 

Cc 

 

Ca Cb 

m 

I 

Cd 

( 0,x) 

J 

Figure 3.7: Checkpoint index and checkpoint interval. 
 



Chapter 3. Checkpointing 

 

 
 

29 

The main advantage of uncoordinated checkpointing is that each process can take a 

checkpoint when it is suitable. For example, a process may decide to take checkpoints 

where the amount of state information to be saved is small, thus reducing overhead. This 

means that failure free performance overhead is low compared to other checkpoint based 

recovery techniques [45]. 

There are quite a few disadvantages with this uncoordinated checkpointing. One of the 

biggest problems of this method is that there is the possibility of the domino effect. This 

will cause the lost of a large amount of useful work mainly when the processes need to 

rollback back to the beginning of the computation due to no recovery line. Another 

problem could be that we may end up with a lot of useless checkpoints that will never be 

part of global consistent states. Taking unnecessary checkpoints affects performance as it 

incurs checkpointing overhead and do not contribute in advancing the recovery line [32]. 

 

Coordinated Checkpointing  
Coordinated checkpointing requires processes to coordinate their checkpoints in order to 

form a consistent global state. When the checkpoint process is triggered, all 

communications are blocked. One of the processes called the coordinator process takes a 

checkpoint and then broadcasts a checkpoint request message to all the other processes. 

When a process receives this message, it stops its execution, flushes its communication 

channels, takes a tentative checkpoint and sends an acknowledgement back to the 

coordinator process. When the coordinator process has received an acknowledgement 

from all the other processes, it broadcasts a commit message to all the processes. Upon 

receiving the commit message, every process makes the tentative checkpoint permanent. 

The process is then free to resume execution and exchange messages with other processes 

[45]. In Figure 3.8 below there are three processes running, exchanging messages along 

the way.   

 

 

 

 

P1 

P2 

P3 

Figure 3.8: Parallel application with three processes 



Chapter 3. Checkpointing 

 

 
 

30 

When we need to take a checkpointing, each process will receive a checkpoint request. 

The processes stop their execution and then sent notification messages to all the other 

processes (represented by the blue dashed arrows in Figure 3.9) that they are ready to 

take a checkpointing. Only when all the processes have notify each other and all the in-

transit messages have been delivery that a checkpoint can be taken. 

 

 

 

 

 

 

 

The main advantage of coordinated checkpointing is that the recovery process is simple 

as it is not prone to the domino effect because each process always restarts from its most 

recent checkpoint. Unlike uncoordinated checkpointing, this approach requires each 

process to maintain only one permanent checkpoint on stable storage, reducing storage 

overhead and eliminating the need for garbage collection [27]. 

 The main disadvantage of this approach is that every process has to block for the entire 

duration until the checkpointing process has completed. Large overhead is involved 

during the broadcast of checkpoint request message and commit message [27] [35]. 

 

Communication-Induced Checkpointing 
In this approach, the checkpointing process avoids domino effect while allowing some of 

their process to take some of their checkpoints independently. The checkpoints that a 

process takes independently are called local checkpoints, while those that a process is 

forced to take are called forced checkpoints. Forced checkpoints are taken to prevent 

creation of useless checkpoints. Requests for forced checkpoints are piggybacked on 

application messages. The receiver of each application message uses the piggybacked 

information to determine if it has to take a forced checkpoint to advance the global 

recovery line. A process takes a forced checkpoint only if past communication and 

checkpoint patterns lead to creation of useless checkpoints [8].  

P1 

P2 

P3 

Figure 3.9: Globally coordinated checkpoint  



Chapter 3. Checkpointing 

 

 
 

31 

As said, communication-induced checkpointing allows processes to take some of their 

checkpoints independently while preventing the domino effect. However, forced 

checkpoint must be taken before the application may process the contents of the message. 

This may lead to high latency and overhead. Moreover, if a large number of forced 

checkpoints are taken, it will nullify the benefit accrued from the autonomous local 

checkpoints [19].  

 

Best Category for this Research 
The following table gives a summary of the checkpoint-based rollback recovery 

categories. 

 
 

 
Uncoordinated 
Checkpointing 

Coordinated 
Checkpointing 

Communication 
Induced Checkpointing 

Garbage 
collection No No No 

Checkpoints per 
process Several 1 several 
 

Domino effect? 
 

Possible No No 
Orphan 
Messages? Possible No Possible 

Rollback extent Unbounded Last global 
checkpoint 

Possibly several 
checkpoint 

Complex 
Recovery Yes No Yes 
 

Output Commit 
 

Not possible Very slow Very slow 
 

 

 

Coordinated checkpointing is more suitable mainly because of its simpler design and 

recovery characteristics. Coordinated checkpoint has the advantage of a low overhead as 

long as the execution stays fault free. Its drawbacks are the synchronization cost before 

the checkpoint, the cost of synchronized checkpoint and the restart cost after a fault [33]. 

The performance of coordinated checkpoint is also related to where the global checkpoint 

file will be stored. If the checkpoint images are stored remotely on an independent 

Table 3.1: A summary of the checkpoint-based rollback recovery categories 



Chapter 3. Checkpointing 

 

 
 

32 

checkpoint server, it will induce high overhead during the checkpointing and restart 

process, even if the checkpoint system uses several checkpoint servers [38]. However, 

most of the overhead problems in coordinated checkpointing can be solved to a 

reasonable level and this is the aim of this research work. 

 

3.8 Analysing Existing Checkpointing Solutions 
In this section, several checkpointing mechanisms implemented in different solutions to 

ensure reliability of applications have been analysed. A brief overview of each solution is 

given before its advantages and disadvantages was analysed. The analysis mainly focuses 

on how the fault tolerance solution provides reliability, flexibility, portability and 

performance. 

 

3.8.1 CryoPID 
CryoPID is a checkpointing package that is used to capture the state of a running process 

and save it to a checkpoint file. It is supported by the Linux kernel (2.4 and 2.6), Intel 

8086 CPU and AMD64. It can stop processes at any time to take a checkpoint before 

restarting it. It allows for progress migration between machines and between kernels of 

different versions. CryoPID checkpoints a parent process together with all its associated 

child processes and deals with the file system. Using CryoPID, you can save the dynamic 

libraries, open files, sockets and FIFO’s associated with the process into the checkpoint. 

The checkpointing package consists of a program called freeze that captures the state of a 

running process and writes it into a file. To restart the checkpoint, you simply run it as it 

is self-executing and self-extracting [55].  

 

Critical Analysis 
The main advantages of this checkpointing package are: 

• No root privileges are needed to run the checkpoint.  

• There is no need to modify the kernel. 

• There is no need to recompile/relink the checkpointed application. 

 



Chapter 3. Checkpointing 

 

 
 

33 

The main disadvantage of CryoPID is that is cannot be used to checkpoint multi-process 

applications.  

 

3.8.2 DMTCP  
DMTCP (Distributed MultiThreaded Checkpointing) is a transparent user-level 

checkpointing package for parallel/distributed applications. It transparently checkpoints 

applications consisting of many nodes, processes, and threads as well as desktop 

applications [56]. No re-compilation and no re-linking to the applications are required.  

According to J. Ansel et al. [57], DMTCP can checkpoint user-level, multithreaded, 

distributed processes connected with sockets. The checkpointing time is fast, with 

negligible overhead while not checkpointing.  

 

Critical Analysis 
The main advantage is that it requires no system privileges to operate thus making 

DMTCP to easily bundled with the application. 

The main disadvantage of DMTCP is that it gives good checkpointing response when 

running on a small size cluster. However, the checkpointing time and checkpointing 

overhead associated increases as the number of nodes increases on the cluster. The 

checkpointing package has not been tested in a Grid environment and therefore we do not 

know how efficient and reliable it is such environment. Another disadvantage of DMTCP 

is that it does not yet support Infiniband or Myrinet for OpenMPI [57]. 

 

3.8.3 The InteGrade Grid Middleware.  
Researchers at the University of Sao Paulo have implemented a checkpoint-based 

rollback recovery of parallel BSP (Bulk Synchronous Parallel) applications running on 

the InteGrade middleware.  

The checkpointing mechanism periodically saves application state to permit to restart its 

execution from the last saved global checkpoint in case of failure. A precompiler 

automatically instruments the source-code of a C/C++ application, adding code for 

saving and recovering application state. They have also implemented runtime libraries 



Chapter 3. Checkpointing 

 

 
 

34 

necessary for the generation of checkpoints, monitoring application execution and node 

failures, and coordination among processes in BSP applications. A failure detector 

monitors the application execution. In case of failure, the application is restarted from the 

last saved global checkpoint. 

The checkpointing precompiler saves the execution stack and the heap state which 

contains important data to be used during recovery. It is also responsible for checkpoint 

generation coordination.  

The runtime libraries provide basic functionality for checkpointing of single processes, 

and specific functionality for checkpointing BSP applications. They provide a C API that 

allows applications written in both C and C++ to use them. The basic checkpointing 

functionality is provided by functions to manipulate the checkpoint stack, to save the 

stack data to a file, and to recover checkpointing data [28].  

 

Critical Analysis 
The main advantage of this model is that it only saves the data necessary to recover the 

application during the checkpointing process. This reduces the checkpointing and restart 

overhead.  

The main disadvantage of the scheme is that it involves periodically stopping normal 

execution in order to save a checkpoint. Moreover, they store their checkpointing files 

only locally and this can be a problem in case the machine where the process was 

executing becomes unavailable. Another current restriction is that the saved data is 

architecture dependent. This dependency arises due to differences in data representation 

and memory alignment. Making the checkpoint portable requires saving data in a 

platform independent format else lots of time is wasted in converting the saved data into 

relevant format before restarting the process on another location [28]. 

 

 

 

 



Chapter 3. Checkpointing 

 

 
 

35 

3.8.4 Integrating Fault-Tolerance Techniques in Grid 

Applications. 
Researchers have developed coordinated checkpointing mechanisms for two algorithms: 

Single Program Multiple Data applications (SPMD) checkpointing and 2-phase commit 

distributed checkpointing (2PCDC).  

 

SPMD Checkpointing 
SPMD applications are common in Grids. An SPMD application is an application that 

contains a loop that performs calculations on a subset of the data and exchanges 

information periodically. Checkpoints are inserted at points in the program to 

successfully obtain a consistent checkpoint.  

The global checkpoint files are stored on a checkpoint server.  An application manager 

controls the creation of objects and is responsible for determining when a checkpoint is 

consistent. When a checkpoint occurs, each process takes a local checkpoint and forwards 

the checkpoint file to the checkpoint server. Once the application manager receives a 

confirmation from each process, it informs the checkpoint server that the checkpoint is 

consistent. Each process has an interface that consists of functions to save and restore the 

local state, to notify the manager that it is alive, to notify the manager that a checkpoint 

has been taken successfully and to determine whether the process is in recovery mode. 

As mentioned, the application manager is also responsible for determining if a process is 

alive or has failed. If a process has failed, the application manager then proceeds to 

restart the application by killing and restarting each process. The processes then request 

the necessary state from the checkpoint server and restart [37]. 

 

“2-Phase Commit” Distributed Checkpointing 
2-Phase Commit Distributed Checkpointing (2PCDC), is an algorithm which relieves 

developers from the burden of establishing consistent checkpoints. The basic idea behind 

2PCDC is to produce a consistent application checkpoint atomically. Atomicity ensures 

that the algorithm can tolerate failures when it is in progress and it also ensures the 

existence of at least one consistent checkpoint at any given time. The algorithm ensures 



Chapter 3. Checkpointing 

 

 
 

36 

that no in-transit messages are lost by capturing in-transit messages. The 2PCDC 

algorithm proceeds in two phases. In the first phase, a coordinator process requests the 

other processes to take a checkpoint. A process can either accept or reject the request. To 

accept the request, the process need to send a “Yes” reply to the coordinator and to reject 

the request, a process need to send a “No” reply to the coordinator. Each process then 

waits for the coordinator’s decision. While waiting, each process also forward any in-

transit message to the checkpoint server and informs the coordinator that it has received 

an in-transit message. The coordinator will trigger the checkpointing process only if all 

processes reply “Yes”. This is the end of the first phase. If the decision is “Yes”, the 

coordinator informs the checkpoint server that the checkpoint is consistent and sends its 

decision to all processes. If the decision is “No”, the coordinator informs the checkpoint 

server to discard the local checkpoints just stored.  

To prevent orphan messages, a participant is not allowed to initiate communication with 

another once it has taken a local checkpoint. The algorithm handles lost messages by 

including a message count with each participant’s reply. To determine whether all in-

transit messages have been caught, the coordinator sums the count from each participant. 

If the total number of sent messages equals the number of received messages then all in-

transit messages have been caught and the set of local checkpoints and in-transit 

messages form a consistent checkpoint [37]. 

The recovery protocol also proceeds in two phases. During the first phase, the 

coordinator process sends protocol information to each process. The information sent 

informs processes that they are in recovery mode. Each process then retrieves its state 

and the in-transit messages from the checkpoint server and informs the coordinator that it 

is ready to proceed. The coordinator then awaits the ready notification from each process. 

In the second phase, the coordinator informs each process to proceed [37]. 

 

Critical Analysis 
The main advantage of these two algorithms is that they work well in a Grid 

environment. They are coordinated checkpointing mechanisms which ensure that 

consistent global checkpointing are taken efficiently. 



Chapter 3. Checkpointing 

 

 
 

37 

However, both approaches have not considered any ways to improve the checkpointing 

process so as to reduce checkpointing overhead. Also, they designed these algorithms to 

cope with permanent host failures. They assumed that a host will fail by crashing and that 

it will never recover. But this is not always the case and in such situation, it can be a 

further waste of time trying to look for another host. 

They also assumed that the hosts on which the checkpoint servers are located and the host 

that starts the application do not fail. However, if this failure assumption is violated, that 

is, the host on which a checkpoint server is located crashes permanently, then the 

application will cease to be restartable.  

 

3.8.5 P-GRADE: A Grid Programming Environment 
P-GRADE provides a high-level graphical environment to develop parallel applications 

transparently both for parallel systems and the Grid. P-GRADE implements an automatic 

checkpoint mechanism for parallel programs which supports the migration of parallel 

jobs inside the workflow providing a fault-tolerant workflow execution mechanism. It 

contains a parallel checkpoint and migration module that enables the checkpoint and 

migration of generic PVM programs either inside a Grid site, like a cluster, or among 

Grid sites when the PVM programs are executed as Condor or Condor-G jobs [39]. 

 

The Checkpoint Mechanism  
Their checkpointing algorithm is based on coordinated, non-blocking checkpointing with 

no modification of the underlying message passing system necessary. The checkpointing 

procedure is controlled by a library called the GRAPNEL library. So no modification of 

the user code or the underlying message passing library is required to support process and 

application migration. The GRAPNEL Server performs a consistent checkpoint of the 

whole application. Checkpoint files contain the state of the individual processes including 

in-transit messages so the whole application can be rebuilt at any time and on the 

appropriate site. The checkpoint system can migrate PVM processes both inside a cluster 

and among clusters [39]. 

 

 



Chapter 3. Checkpointing 

 

 
 

38 

Critical Analysis 
The main advantage of this model is its ability to checkpoint and migrate a PVM 

application in a grid environment. It is a coordinated, non-blocking checkpointing 

algorithm that performs checkpointing at regular intervals. 

 The main problem with the algorithm is that it can only checkpoint PVM applications 

either running on a cluster, or among Grid sites when the PVM programs are executed as 

Condor or Condor-G jobs. The mechanism has not emphasised on minimizing 

checkpointing and restart overhead. 

 

3.8.6 OPEN MPI 
MPI stands for the Message Passing Interface [47]. MPI is a standardized API typically 

used for parallel and/or distributed computing. Open MPI is a free, open source MPI 

implementation. Open MPI is therefore able to combine the expertise, technologies, and 

resources from all across the High Performance Computing community in order to build 

the best MPI library available [48]. Open MPI provides a stable platform for third party 

research and commercial development [31]. 

 

The Open MPI architecture 
Open MPI consists of three layers that combine to provide a full featured MPI (See 

Figure 3.10). Below the user application is the Open MPI (OMPI) layer that presents the 

application with the expected MPI specified interface.  Below that is the Open Run-Time 

Environment (ORTE) layer. This layer provides a uniform parallel run-time interface 

regardless of system capabilities. The third layer is the Open Portable Access Layer 

(OPAL). This layer abstracts the irregularities of a specific system away to provide 

maximum portability.  Below the OPAL layer, is the checkpoint/restart system available 

for the operating system running on the machine. Open MPI uses the Modular 

Component Architecture (MCA) to define the OPAL Checkpoint and Restart Service 

(CRS) framework as a uniform API for checkpoint/restart systems. The OPAL CRS 

design allows for checkpoint/restart of MPI applications running on heterogeneous 

systems [41]. 



Chapter 3. Checkpointing 

 

 
 

39 

 

 

 

 

 
 

 

 

 

 

 
 

The Checkpoint/Restart System 
The checkpoint/restart system is responsible for preserving and restoring the state of a 

single process on a single machine. Once the checkpoint/restart system has completed a 

checkpoint, it must provide Open MPI with a structure containing a reference to the 

checkpoint image (or images) generated, denoted by the term snapshot reference [46]. 

 

The Checkpoint/Restart Protocol 

Open MPI uses the snapshot references from all of the processes to create a global 

snapshot of the application during the checkpointing process. The creation of the global 

snapshot is determined by the checkpoint/restart protocol. By using snapshot references 

instead of the actual files to create the global checkpoint snapshot, Open MPI can 

combine snapshot references from different checkpoint/restart systems into a single 

global snapshot, allowing checkpoints on heterogeneous systems.  

Further, by using the global snapshot, Open MPI could arrange for the migration of a 

single process or the storage of the global snapshot to a remote server, without requiring 

knowledge of the checkpoint/restart system used or how the checkpoint images have been 

preserved [41]. 

 

Figure 3.10: The OpenMPI Architecture [40] 

User Application 

Operating System 

Checkpoint/restart system 

OMPI 

ORTE 

OPAL 



Chapter 3. Checkpointing 

 

 
 

40 

The Checkpoint and Restart Service (CRS) Framework 

When a process receives a checkpoint, a function called the “Opal Entry Point” function 

first calls intra-layer coordination callback with the “CHECKPOINT” state indicating 

that the layers are to prepare for a checkpoint. Once the coordination function has 

finished, the “Opal Entry Point” function initiates the checkpoint by using the “Opal Crs 

Checkpoint” function. Through OpenMPI’s component system, “CHECKPOINT” 

invokes the back-end checkpoint/ restart system to begin the process checkpoint.  Once 

the checkpoint is done, the backend checkpoint function return’s indicate if execution is 

to continue or restart [40]. 

 

The main functions of the API are:  

1. Checkpoint() - The “Checkpoint” function initiates the checkpoint of a single 

process, identified by its PID, by calling the checkpoint/restart system’s 

checkpoint routines [40].  

2. Restart() - The “Restart” function initiates the restart of a single process from a 

snapshot reference by interacting with the checkpoint/restart system’s restart 

functionality[40].  
 

Critical Analysis 
The OpenMPI in itself is not a checkpointing mechanism. However it provides a solution 

to enable existing checkpointing mechanism to plug in its architecture in order to provide 

fault tolerance to MPI applications running in the grid. The main advantage of the 

solution is its ability to migrate processes without requiring knowledge of the 

checkpoint/restart system used or how the checkpoint image(s) have been preserved. 

As other solutions, OpenMPI needs to coordinate in-transit messages to ensure no lost or 

orphan messages. This adds to the checkpointing overhead resulting in longer 

checkpointing and restart time. 

 

 

 

 



Chapter 3. Checkpointing 

 

 
 

41 

3.9 Chapter Summary and Conclusions 
In uncoordinated checkpoints protocols without message log, the checkpoints of each 

process are executed independently of the other processes and no further information is 

stored on a reliable media leading to the well known domino effect (processes may be 

forced to rollback up to the execution beginning). Since the cost of a fault is not known 

and there is a chance for losing the whole execution, these protocols are not used in 

practice. Communication induced checkpointing tries to take advantage of both 

uncoordinated and coordinated checkpoint techniques. Based on the uncoordinated 

approach, it piggy backs causality dependencies in all messages and detects risk of 

inconsistent state. When such a risk is detected, some processes are forced to checkpoint. 

In coordinated checkpointing, processes needs to be organised to form a consistent global 

state. During the checkpoint process, all communications are blocked. A coordinator 

process manages the checkpoint process by communicating will all the processes in a 

predefined way to ensure all the communication channels are save together with the 

process’s state.  

Most of the projects analysed in section 3.8 described above has adopted the coordinated 

checkpointing approach as it is most suitable for the Grids environment due to its 

characteristics. Each solution has its own advantages and disadvantages. The first 

checkpoint mechanism is a checkpointing package that can be adopted by different 

architectures to incorporate a checkpointing mechanism in their solutions. CryoPID is an 

application-level checkpointing mechanism that can easily be adopted by application 

without the need to re-compile and re-link the application. However, the solution is not 

suitable for checkpointing multi process applications. The second checkpoint mechanism 

is also a checkpointing package that can be adopted by different architectures to 

incorporate a checkpointing mechanism in their solutions. Just like CryoPID, DMTCP 

does not require system privileges and the checkpointing process is fast. However, the 

checkpointing time and checkpointing overhead increases as the number of nodes 

increase thus affecting performance. No approach has been considered to reduce 

overhead during the checkpointing and restart process. Moreover, DMTCP has not yet 

been tested in the Grid environment. The third solution provides a good fault tolerance 

solution allowing the user to decide where to place checkpoint requests and what files to 



Chapter 3. Checkpointing 

 

 
 

42 

save. However, the solution does not take into consideration any approach to improve 

performance. Moreover, the solution is not portable, restricting its use in the Grid 

environment. The fourth solution uses the coordinated checkpointing process to 

checkpoint their application. The solution is basic without considering how to improve 

the performance by looking into issues such the checkpoint intervals, the size of the 

checkpoint files saved and the location of the saved checkpoint file. The fifth solution 

works very well for checkpointing PVM application. It also enables migration of PVM 

applications in case of permanent node failure.  However, the solution is specific to PVM 

applications and also fails to consider criteria to improve the performance of the 

checkpointing process. 

Likewise, Open MPI is a very good solution for checkpointing MPI application but the 

fault tolerance solution is still at a primitive phase. It does the basic checkpointing of MPI 

application without looking into methods to decrease overheads incurred during the 

checkpointing process.  



Chapter 4. Improving Checkpointing Solutions 

 

 43 

Chapter 4  
 

4 Improving Checkpointing 

Solutions 
 

4.1 Introduction 
In this chapter, the proposed solution is explained. A detailed description about 

checkpoint interval, First Order Approximation (FOA) and Natural Synchronisation 

Points (NSP) and eventually the new approach are explained.  

 

Terminology 
This section explains a few terminologies commonly used in this chapter.  

The First Order Approximation, also referred as FOA is the mathematical derivation 

implemented by John Young [43] to calculate the best checkpointing interval for a 

particular application. 

A forced synchronisation point is a region in a parallel application where synchronisation 

of processes is required during the checkpointing process. Synchronisation will ensure 

that no orphan or lost messages occurs during the checkpointing process. 

A Critical Region is a user defined region round a predefined regular checkpointing 

interval. 

 

4.2 Research Proposal  
From the previous chapters, we concluded that application based coordinated 

checkpointing is an appropriate solution for this research because it gives the programmer 

more flexibility to develop an algorithm that can improve performance. This 



Chapter 4. Improving Checkpointing Solutions 

 

 44 

checkpointing method gives the programmer the flexibility to control the rate of 

checkpointing thus enabling him to choose a rate that has minimal performance overhead. 

The programmer exploits the knowledge about the application to insert checkpoints at the 

points in the execution where the amount of data to be stored is small. To reduce the cost 

of checkpoints and thus improve performance, an algorithm was developed that ensures 

that checkpoints are taken at the best possible checkpoint intervals and the amount of 

information save being restricted to a minimal.  To achieve these goals, the following 

areas were explored to implement a new algorithm: 

− A technique to find the most suitable checkpoint intervals in an application. The 

First Order Approximation can be used as a starting point to determine these 

checkpoint intervals. 

− Identification of points in the application at which checkpoints will be taken. 

Points within the execution of the application must be identified such that the 

collections of checkpoints taken by all processes will yield global consistent 

checkpoints and the intervals yield improved performance. Performance will 

improve mainly by exploiting the knowledge of the application to insert 

checkpoints at the points in the execution where there is minimal overhead. 

 

4.2.1 Natural Synchronization Points 
Normally, when a coordinated global checkpoint is taken, messages should be 

synchronized to ensure that all in-transit messages are preserved. Performance wise, this 

can be improved by trying to eliminate unnecessary idle time involved during the 

synchronisation process. When taking a checkpoint, processes are forced to block their 

computations to perform synchronisation, which degrades performance. Synchronisation 

requires extra communications among processes. The checkpointing process also has to 

take into consideration the communication messages, logging in-transit messages or 

waiting for in-transit messages to be delivered before checkpoints can be taken. 

Therefore, coordinated checkpointing suffers from high overhead which affects 

performance a lot [26]. 

 

 



Chapter 4. Improving Checkpointing Solutions 

 

 45 

The Synchronisation Process 
Consider the Figure 4.1 below which illustrates an interaction among three processes. To 

perform a checkpoint, processes must synchronise the messages to ensure we do not lose 

any of them. Figures 4.2 and 4.3 illustrate how the checkpoint is taken. 

 

 

 

 

 

 

Horizontal dashed lines denote processes idled by synchronization. Dashed arrows 

represent extra communication that is required for synchronization to happen. Short 

vertical bars denote the times at which local checkpoints are taken.  

In Figure 4.2, processes have to wait for the in-transit messages to be delivered before a 

checkpoint can be taken. To achieve this, synchronization among processes must occur. 

The processes stop their execution and then sent notification messages to all the other 

processes (represented by the dashed green arrows) that they are ready to take a 

checkpointing. Only when all the processes have notified each other and all the in-transit 

messages have been delivered that a checkpoint can be taken [44]. 

 

 

 

 

 

 

 

To improve the checkpointing process, in-transit messages can be logged rather than wait 

for them to be delivered. Figure 4.3, is similar to Figure 4.2 except that the 

synchronisation process is shorter and therefore the checkpointing process happens 

quicker. On the other hand however, the restarting processes will take longer because 

P1 

P2 

P3 

Figure 4.2: Globally coordinated checkpoint – waiting for in-transit messages 

P1 

P2 

P3 

Figure 4.1: Processes interacting 



Chapter 4. Improving Checkpointing Solutions 

 

 46 

apart from restore the checkpoint files, we need to restore the in-transit messages as well 

[44]. 

 

 

 

 

 

 

 

Identifying Natural Synchronisation Points 
In parallel programs, the periodic exchange of boundary information establishes natural 

points for taking application consistent checkpoints, e.g., at the top or the bottom of the 

main loop. In addition, at the end of iteration the size of the global checkpoint state is 

often minimal. There are also other existing synchronization points such as barriers and 

collective operations that represent natural consistent global states. Also, at these points 

the state of the process stack is useless and therefore need not be stored, thus reducing the 

size of the checkpoints. These regions are called Natural Synchronization Points. Placing 

checkpoints in these regions is beneficial as it helps avoid the overhead of forcing a 

global consistent state to take a global checkpoint. So, programmers can use these natural 

synchronization points of the application to perform global consistent checkpointing. 

There is no need to worry about the state of the communication channels or in-transit 

messages, because there are no inter-process communications at these points [27].  

 

 
 
 
 
 
 
 
 
 
 
 

P1 

P2 

P3 

Figure 4.3: Globally coordinated checkpoint – logging in-transit messages 

P1 

P2 

P3 

NSP 1 NSP 2 

Ckpt1 Ckpt2 

Figure 4.4: Checkpointing at natural synchronisation points 

NSP = Natural Synchronisation point 



Chapter 4. Improving Checkpointing Solutions 

 

 47 

Figure 4.4 above, shows two natural synchronisations points; NSP1 and NSP2. At these 

points, no messages flow across the natural synchronisation points. So, taking 

checkpoints at NSP1 and NSP2 guarantee that there will not be any lost or orphan 

messages thus ensuring consistent checkpointing. 

 

Problem with checkpointing at Natural synchronisation points only 
Because there is no pattern in the occurrence of natural synchronisation points, we cannot 

rely only on these points for checkpointing. This is because we may have long periods 

between two successive natural synchronisation points and not taking a checkpointing for 

a long period may affect the efficiency of our checkpointing mechanism.  

 

4.2.2 First Order Approximation 
To improve the checkpointing mechanism, we must ensure that checkpoints are not taken 

at all natural synchronisations points but at intervals that will ensure the best 

performance. To achieve this, the First Order Approximation Method proposed by John 

W. Young was analysed. Young developed a mathematical formula based on Maclaurin 

expansion to calculate more appropriate intervals to perform checkpoints. He named it 

the “optimal checkpointing interval” [43].  

 

Order of Approximation 
In science, engineering, and other quantitative disciplines, orders of approximation refer 

to formal or informal terms for how precise an approximation is. They indicate 

progressively more refined approximations: in increasing order of precision, a zeroth 

order approximation, a first order approximation, a second order approximation, and so 

forth [58]. 

Scientists use the zeroth-order approximation for a first estimate at an answer. A zeroth-

order approximation of a function is a constant value, or a flat line with no slope. That is, 

a polynomial of degree 0. They use the first-order approximation for a further estimate at 

an answer. A first-order approximation of a function is a linear approximation, straight 

line with a slope. That is, a polynomial of degree 1. Scientists use the second order 



Chapter 4. Improving Checkpointing Solutions 

 

 48 

approximation for a decent-quality answer. A second-order approximation of a function 

is a quadratic polynomial, geometrically, a parabola. That is, a polynomial of degree 2 

[59]. 

 

Maclaurin Expansion 
Maclaurin expansions can be used to represent certain functions in polynomial forms, 

which can then be used to provide different order of approximation. A polynomial series 

is a mathematical expression consisting of added terms, terms which consist of a constant 

multiplier and one or more variables raised to integral powers. For example, 3x
2 

- 2x + 7 

and 5y + 8x
3
are polynomials [60]. 

Under certain conditions mathematical functions can be written as polynomial series.  For 

example, the quadratic function f(x) = (x +1)
2
, can be represented as f(x) = x

2 
+ 2x + 1 

which is a polynomial series. This kind of expansion is a special case of the more general 

Binomial Theorem [60]. For example, 

 

(1+ x)n  = 1 + n x + n (n-1)x2  + n (n-1) (n-2) x3 +n (n-1) (n-2) (n-3) x4    +  …               (1) 

                                     2!                    3!                                4! 

 

Where the ‘+…’ indicates that it is an open-ended polynomial that goes to infinity. The 

factorial number 2! means 2*1; 3! means 3*2*1; etc [60]. For example, for n= 4, the 

above Binomial Theorem results in (1+x)4 = 1+4x+6x2+4x3+ x4 . 

Therefore, using the Binomial Expansion we can have polynomial representations of 

functions of the type (1 + x)
n
. However, to represent transcendental functions (e.g. sine, 

log, exponential) as polynomial series, Maclaurin series are used with some assumptions 

[60]. 

Consider a function f(x).  Assume the function can be expanded as: 

 

f(x) = a0 + a1x + a2x2+a3x3+a4x4+a5x5 + a6x6+…                                                         (2)  

        



Chapter 4. Improving Checkpointing Solutions 

 

 49 

As we can see, the function has been expanded as a polynomial series. At present, the 

polynomial series has undetermined coefficients a0, a1, a2, a3, a4, a5, a6, ... 

If we put x = 0 in the above series, assuming the function exists at x = 0, we get: 

   

f(0) =  a0                                                                                                                               (3) 

 

Next, assuming that the function and its polynomial representation are differentiable, then 
 
 
f '(x) = a1 + 2a2x + 3a3x2+4a4x3+5a5x4+6a6x5 + …                                                      (4) 

 

By putting the value of x to be 0 in this series and assuming the differential of the 

function exists at x = 0, we get  

 

f '(0)  =  a1      or   a1 = f '(0)                                                  (5) 

 

Next, assuming that the function and its polynomial representation are now twice 

differentiable, then 

 

f ''(x) =  2a2 + 3*2a3x+4*3a4x2+5*4a5x3+6*5a6x4 + …                              (6) 

 

By putting the value of x to be 0 in this series and assuming the second differential of the 

function exists at x = 0, we get  

 

f ''(0) = 2*1*a2     or     a2 = f ''(0) / 2!                                                           (7) 

                                                                                                          
Similarly, 

 

 a3 = f '''(0)/ 3! ,  a4 = f (iv)(0)/4! ,   a5= f (v)(0)/5! , …                          (8) 

 



Chapter 4. Improving Checkpointing Solutions 

 

 50 

So, with the unknown coefficients found in terms of the value of the function and its 

derivatives at x = 0, the general Maclaurin Theorem of any infinitely differentiable 

function f(x) can be written as: 

 

f(x)= f (0) + f '(0)x +  f ''(0) x2 + f '''(0) x3 + f (iv)(0) x4 +  f (v)(0) x5+ f (vi)(0) x6+…      (9) 

                                     2!              3!                4!                 5!               6! 

 

For example, using Maclaurin expansion, the function ex, can be represented in a 

polynomial form as follows: 

 

ex = 1 + x + x2/2! + x3/3!+ x4/4! + x5/5! +…                                            (10) 

 

because, 

f(0) = e0 =1 

f '(0) = e0 =1 

f ''(0) = e0 =1,  etc. 

 

 

Young’s First Order of Approximation. 
Young’s First Order of Approximation is specifically based on the explicit requirements 

for calculating checkpointing intervals. It takes into considerations factors that affect the 

checkpointing of applications during their execution to calculate the checkpoint intervals, 

which he calls the “optimal checkpointing intervals”.  For this reason, Young’s First 

Order Approximation was adopted for this research. Young uses Maclaurin expansion to 

derive his First Order Approximation formula.  Consider the Figure 4.5 below which 

shows the execution of an application starting from time t=0 and fails at a time ti 

 

 

 

 

 



Chapter 4. Improving Checkpointing Solutions 

 

 51 

 

 

 

 

 

 

 
 

 

 

 

The execution time of the job may be considered as a succession of the intervals Tc, the 

time interval between checkpoints, and Ts the time to save information at a checkpoint 

taken alternately until a failure occurs. Such failure may occur during either an interval 

Tc or Ts. In either case, execution of the program is resumed from the point in the 

program at which the previous checkpoint was successfully taken. The rerun or recovery 

time tr incurred due to the occurrence of such failure is then the time from the end of the 

previous interval Ts to the point of failure, as shown on the time line in Figure 4.5 [43]. 

Accordingly to Young, when the length of the interval ti between failures lies between: 

 n(Tc + Ts ) and (n + 1)( Tc + Ts ), n = 0, 1, . . . , then ti is composed of n intervals of 

length (Tc + Ts), plus the rerun time tr. That is,  

 

ti = tr + n (Tc + Ts)                                                                                                         (11) 

  

The extra time spent (tl) due to the occurrence of the failure consists of the time n Ts 

taken to do the checkpointing prior to the occurrence of the failure, plus tr. That is,  

 

tl= n Ts + tr                                                                                                                                                                               (12) 

 

From the previous expression this may be written as  

 

tl = ti - nTc.                                                                                                                                                                                (13) 

Ts 

Ts Ts 

Tc Tc 

 t = 0 

Ts 

Tc Tc 

Point of failure 

Restarting Point 

Rerun  
Time tr 

Figure 4.5: First Order Approximation [43] 

ti 



Chapter 4. Improving Checkpointing Solutions 

 

 52 

In the Grid environment, the occurrence of failures tends to be unpredictable. So, sticking 

to Young’s mathematical assumption, we take the occurrence of failures as a Poisson 

process, with failure rate λ.  Based on this, the mean time Tf between failures is Tf = l/λ, 

and the density function P(x) for the time interval of length x between failures is given by 

P(x) = λe-λx which means that the probability that the interval between failures is of 

length ti is given by λe-λt
i ∆t, where t < ti < t+∆t [43].  

But the probability that the interval between failures is of length ti is precisely the 

probability that the lost time is of duration tl. Therefore, denoting by Tl the total time lost 

due to reruns caused by failures and to the time required for the process of checkpointing 

prior to the occurrence of failures, we have 

 

 

Tl = ∑     ∫                    [t – nTc] (λ e -λt) dt                                                  

                           (14)  

=   λ   ∫    t e –λt  dt  -  λTc   ∑   n ∫                 e -λt dt 

 
 
 
Integrating, we obtain 
 
 
 
Tl = 1/λ + Tc  ∑    n [ exp( - λ (n+1) (Tc+Ts)) – exp (- λ n (Tc+Ts))]                            (15) 

 
 
 
Factoring out the series we obtain 
 

 

Tl = 1/λ - Tc  (1 - exp( - λ  (Tc+Ts))) exp (- λ (Tc+Ts)) ∑  n exp( - λ (n-1) (Tc+Ts))     (16)  

 

 

The series is in the form of the derivative with respect to r of the geometric series with 

common ratio. 

(n+1) (Tc+Ts) 

n (Tc+Ts) 

∞ 

n=0 

(n+1) (Tc+Ts) 

n (Tc+Ts) 

∞ 

n=1 

∞ 

 0 

∞ 

n=1 

∞ 

n=1 



Chapter 4. Improving Checkpointing Solutions 

 

 53 

r = exp (- λ  (Tc+Ts ) )                                                                                                   (17) 

 
 
Hence its sum is 
 

1 / [ 1 -  exp (- λ  (Tc+Ts ) ) ]2           (18) 

 
 
Therefore, 

 

Tl = 1/λ - Tc  (1 - exp( - λ  (Tc+Ts))) exp (- λ (Tc+Ts)) / [ 1 -  exp (- λ  (Tc+Ts ) ) ]2  (19) 

 

which simplifies to  

 

Tl = 1/λ +Tc  / [1 - exp( λ  (Tc+Ts) ) ]                                                                           (20) 
 

 

To find the value of Tc which minimizes Tl , we differentiate T1 with respect to Tc , 

equate the result to zero, and solve for Tc 

 
 
dTl       1 - exp(  λ  (Tc+Ts)) - Tc  ( - exp( λ (Tc+Ts) ) )   
        =                                                                             = 0                                        (21) 
dTc                           [1 - exp( λ (Tc+Ts) ) ]2 
 
 

 

This means that: 

 

eλTc eλTs (1-λTc) – 1 = 0                                                                                              (22) 

 

Using the Maclaurin expansion of eλTc as far as the second degree term because Tc is 

small, we get: 

 

eλTc =  1 + λTc + λ2Tc
2

 /2! = 1 + λTc + λ2Tc
2/2                                                            (23) 



Chapter 4. Improving Checkpointing Solutions 

 

 54 

Replacing in equation above, we get 

 

(1 + λTc + λ2Tc
2/2) eλTs (1-λTc) – 1 = 0                                        (24)  

 

Simplifying, 

 

(1 + λTc + λ2Tc
2/2) (1-λTc) eλTs = 1                                                       (25)  

 

(1-λTc+ λTc - λ2Tc
2

 + λ2Tc
2/2 - λ3Tc

3/2) eλTs = 1                              (26)  

 

Ignoring degrees above the second degree, we get: 

 

(1-λTc+ λTc - λ2Tc
2

 + λ2Tc
2/2) eλTs = 1                        (27)  

 

Further simplifying, 

 

(1 - λ2Tc
2/2) eλTs = 1.                        (28)  

 

1 - λ2Tc
2/2  = 1/ eλTs                                              (29)  

 

1 - λ2Tc
2/2  = e-λTs                                            (30)  

 

1 - e-λTs  =  λ2Tc
2 / 2                                  `                    (31) 

 

Therefore, the expression becomes:  

 

1/2 λ2  Tc
2  = 1 - e-λTs                             (32)  

 

Since Tf = l/λ, and in practice Ts<< Tf, we may use the second order approximation to    

e-λTs to obtain 



Chapter 4. Improving Checkpointing Solutions 

 

 55 

e-λTs = 1 - λTs + λ2Ts
2

 /2! = 1 - λTs + λ2Ts
2/2                                                             (33) 

 

Therefore, replacing in equation 32, we get: 

 

1/2 λ2  Tc
2  = 1 – (1 - λTs + λ2Ts

2/2)                     (34) 

 

Simplifying, we get 

 

 Tc
2  =  2 Ts/λ  - Ts

2           (35) 

 

Replacing l/λ by Tf , we get 

 

 Tc
2 = 2TsTf – Ts

2.          (36) 

 

Neglecting the term Ts
2 as being of second order with respect to 2TsTf , we obtain  

 

Tc =       2TsTf                                                                                                              (37) 
 

Where  

Ts is the time required to save information at a checkpoint (Ts). 

Tf  is the mean time between failures (Tf ) 

 

This is a simple result, and easy to apply in practice [43].  

 

As mentioned earlier, the Grid environment refers to the Internet-connected computing 

environment in which computing and data resources are geographically distributed in 

different administrative domains with different policies for security and resource uses. 

The computing resources are heterogeneous, ranging from single PCs and workstations, 

cluster of workstations, to supercomputers. With Grid technologies large-scale 

applications can be constructed over the Grid environment. However, the execution of 

applications on the Grid environment poses significant challenges due to the diverse 



Chapter 4. Improving Checkpointing Solutions 

 

 56 

failures and error conditions encountered during execution. Failures or error conditions 

occur mainly because of the unreliable nature of the Grid environment. Examples of 

failures and error conditions include hardware failures, software errors and many other 

sources of failures (e.g. network congestion, excessive CPU load, etc). Certain type of 

errors can be detected before execution of an application mainly if these errors are at an 

application level. However, because of the nature of the Grid, it is difficult to have total 

control on the resources where applications are being executed. Therefore it can be 

difficult to detect errors associated to these resources before the execution of the 

application. This may lead to unpredictable failures during the execution of the 

application. That is we cannot say for sure if the application will complete successfully or 

may fail at certain points. It is also difficult to predict how many times the application 

may fail and when a failure is likely to occur [11]. 

 

4.3 The Improved Checkpoint Mechanism 
Taking checkpoints at intervals defined by the First Order Approximation still involves 

synchronisation of messages and capturing in-transit messages. On the other hand, taking 

checkpoint at natural synchronisation points only may not be very effective because there 

are no patterns in their occurrences. There can be situations where a set of natural 

synchronisation points occur in quick successions. It is not efficient to take checkpoint at 

each of these points because it will affect the performance of the application. There can 

also be situations where we have long periods between two successive natural 

synchronisation points and not taking a checkpointing for a long period reduces the 

reliability of the application. 

A better solution would be to use a combination of both the natural synchronization 

points and the First Order Approximation before making a checkpointing decision. This 

mechanism is named the “Improved Checkpoint Mechanism”. Using this technique, the 

most appropriate places to take checkpoints can be selected. The solution takes 

checkpoints at natural synchronization points which are closest to the Young’s 

checkpoint intervals. The Figure 4.6 below explains how the checkpointing intervals are 

chosen. The vertical lines represent the Young’s checkpointing intervals and the natural 

synchronization points. The bracket represents the critical region; a region within which a 



Chapter 4. Improving Checkpointing Solutions 

 

 57 

checkpoint may be taken. First, the checkpoint interval needs to be calculated using the 

First Order Approximation formula.  Then, the natural synchronization points (Barriers, 

iteration and collective information) in the application need to be determined so that 

checkpoint calls can be inserted where appropriate. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The decision to select a checkpoint is based on the Young’s checkpoint interval, the 

natural synchronisation points and the critical region. Whenever an application receives a 

checkpointing signal, we may need to take a checkpoint. The checkpointing process is 

triggered by signals sent to the coordinator process whenever synchronization points are 

encountered. Once the coordinated process receives a signal, it checks whether this signal 

is within the critical region. If not, no checkpointing is performed.  However, if the signal 

occurs within the critical region, we will need to take a checkpoint. Within that region, 

there may be more than one natural synchronization points and the one closest to 

Young’s checkpointing interval is the best choice. For our purpose, the checkpoint image 

at the first natural synchronization point encountered is saved. This is because we cannot 

predict if we will get a better solution further along the execution line within that critical 

region. If no natural synchronization points are met within the critical region, we will 

have to force a checkpointing at the end of the critical region. In such cases, the 

Ns1 

Ns2 Ns4 

Ns3 Ns5 

Ns6 

Ns7 

Ns8 

Ns9 

Ns10 

Op1 Op2 Op3 Op4 Op5 Op6 

First Order approximation (Op) 
Natural Synchronisation pts (Ns) 
Critical Region                               {     } 
 
 Figure 4.6: A Checkpointing Mechanism 



Chapter 4. Improving Checkpointing Solutions 

 

 58 

checkpointing mechanism will perform synchronization to ensure there are no lost or 

orphan messages. The coordinated process will make sure that the checkpointing images 

together with the in-transit messages are saved. Once the checkpoint is taken, all the 

processes will resume their normal execution. In case of a failure, the coordination 

process will initiate the rollback mechanism. If the checkpoint to be restored was taken at 

a natural synchronization point, the rollback mechanism will load each process image 

from the checkpointing file and the execution process is resumed. We do not have to 

worry about the in-transit messages. However, if the checkpoint to be restored was not 

from a natural synchronization point, then we will need to restore the in-transit messages 

as well to ensure consistency. 

 

For example, consider the model solution shown in Figure 4.7 below. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assume that, through the First Order Approximation, the calculated checkpoint interval 

was 8 minutes and a critical region of 4 minutes around the checkpoint interval was 

defined. 

Based on the proposed methodology, the first checkpoint that is stored is Ns1 (9.5 min).  

As execution continues, we reach Ns2 (14.5 min) where a decision has to be taken on 

whether or not to take the checkpoint. Ns3 (17 min) is a better solution because it is 

Figure 4.7: The Checkpointing Solution 

Op1 Op2 Op3 Op4 Op5 Op6 

4 min 

Ns1 

Ns2 

Ns3 

Ns4 

Ns5 

Ns6 

Ns7 

Ns8 

Ns9 Fs1 

First Order approximation (Op) 
Natural Synchronisation pts (Ns) 
Forced Synchronisation pts (Fs) 
Critical Region                                   {     } 
Saved Checkpoints  



Chapter 4. Improving Checkpointing Solutions 

 

 59 

nearer to the Young’s checkpoint interval Op2. However, since we cannot forecast what 

will happen, it is best to take a checkpoint at Ns2. As we move towards Op3, we get the 

natural synchronisation point Ns4. Because it is outside the critical region it is not 

considered. As we move on, we enter another critical region and store the checkpoint at 

Ns5 (25 min). Unfortunately, within the fourth critical region there are no natural 

synchronisation points. In that case, we need to force a checkpoint (Fs1 - 32 min) as soon 

as we leave that critical region. The program continues execution and enters another 

critical region which contains the natural synchronisation points Ns6 (38.5 min), Ns7 (39 

min) and Ns8 (41.5 min). However, a checkpoint is taken at the first synchronisation 

point, Ns6. As the program continues, another checkpoint is taken at Ns9 (50 min). 

From the First Order Approximation, we deduced that best option for checkpoint 

intervals should be 8 minutes. If checkpoints are taken at selected points based on the 

proposed solution, the average time between checkpoints is 8.3 minutes. However, here, 

less time was needed to save the checkpoints. So, the overall execution time for the 

application in a failure free environment will be better. It also implies that in case of 

failure the application will be restarted quicker as we will not have to worry about 

restoring the communication messages. Therefore, the proposed solution provides a better 

checkpointing solution with improved performance. 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Improving Checkpointing Solutions 

 

 60 

4.4 The Improved Checkpoint Model 
The Figure 4.8 below gives a generalised description on how a checkpoint at a natural 

synchronisation point will be taken.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Application 

Process 1 

Child process 

Local disk Local disk 

Figure 4.8: Checkpointing process at Natural Synchronisation Points 

Process 0 

Checkpoint 

Running 
Normally 

Running 
Normally 

 
 
 
 
 

Initiates checkpoint 
Initialise checkpointing 

Initialise checkpointing 

Invoke checkpointing 
process 

ready to checkpoint ready to checkpoint 

Capture snapshot 

Capture snapshot 

Monitor and aggregate 
global snapshot 

Monitor and aggregate Monitor and aggregate 

snapshot  
snapshot  

Stable 
Storage 

Monitor 
processes  

snapshot  

Trigger checkpointing 



Chapter 4. Improving Checkpointing Solutions 

 

 61 

The Figure 4.9 below shows how a forced checkpoint can be taken.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Application 

Process 1 

Child Process 

Local disk 
Local disk 

Figure 4.9: Taking a forced checkpoint 

Process 0 

Checkpoint 
Running 
Normally 

Running 
Normally 

 
 
 
 

Initiates checkpoint 

Invoke checkpointing 
process 

ready to checkpoint ready to checkpoint 

Capture snapshot 

Capture snapshot 

Monitor and aggregate 
global snapshot 

Monitor and aggregate 

Monitor and aggregate 

snapshot  
snapshot  

Stable 
Storage 

Monitor 
processes  

snapshot  

Monitor Monitor 

Trigger checkpointing 

Coordinate Do synchronisation 

Do synchronisation 

Sync messages 

Ready to save Ready to save 

Initialise checkpointing 

Initialise checkpointing 



Chapter 4. Improving Checkpointing Solutions 

 

 62 

The Figure 4.10 below shows how the restart process will happen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Application 
 
 
 
 
 
 
 
 
 
 

 Application 
 
 
 
 
 
 
 
 

Application terminates due to an error.... 

Process 1 

Child Process 

Process 0 

Restart 

Running 
Normally 

Running 
Normally 

 
 
 

Spawning  
Processes 

Monitor 
processes  Monitor Monitor 

Stable 
Storage 

snapshot  

 
 
 
Process 0 

 
 
 
Process 1 

Spawn Spawn 

restore comm. channels? 

Restart 
Process Restart 

Restart 

Child Process 

Figure 4.10: The Restart Process 



Chapter 4. Improving Checkpointing Solutions 

 

 63 

4.5 The Improved Checkpoint Algorithms 
To checkpoint an application at natural synchronization points, the first step is to find out 

the Young’s Checkpoint Time (OCT) which is determined by the First Order 

Approximation. While the application is running, we might get a few natural 

synchronization points. At a given time, determined by TIME2-TIME1, if we get a 

natural synchronization point, then we need to decide if we are going to take a 

checkpoint.  A checkpoint will only be taken if we are in a critical region and no 

checkpoint (no_of_checkpoints =0) has yet been taken in that region. If this is the case, 

the checkpointing mechanism is triggered to initiate the checkpointing process. Because 

we are checkpointing at natural synchronizations points, we don’t need to coordinate the 

communication channels to manage in-transit messages. So, the next step is to save the 

snapshot returned. Finally, the no_of_checkpoints is incremented so that if we get another 

natural synchronization point in the same critical region, we do not take another 

checkpoint. 

 
 
 

Algorithm 1: Checkpointing:: NSP Algorithm  
 

 
1: OCT: Calculated integer value using FOA 

2: Initial Execution Region: 0 

3: TIME1 : start time 

4: TIME2 : current execution time. 

5: Current Region: NULL 

6: Critical Region: No 

7: No_of_checkpoint: 0 

8: Current Region  ←  TIME2 - TIME1 

9: Critical region ← Region(Current Region) 

10: if Critical Region = yes then 

11:       if no_of_checkpoint  = 0 then 

12:            Initiate Checkpoint Process 

13:            (snapshot)  ← CHECKPOINT() 

14:             no_of_checkpoint = no_of_checkpoint + 1. 



Chapter 4. Improving Checkpointing Solutions 

 

 64 

15:      else   

16:             do nothing. 

17:      end if 

18: end if 

 

In case of a forced checkpoint, the algorithm is quite similar to the above algorithm 

expect that in the case, we need to ensure synchronization of in-transit messages.  So, 

once we reach the end of a critical region (End_Current_Critical_Region), we need to 

check whether there has been a checkpoint in that critical region. If no checkpoint was 

taken, we need to force a checkpoint. When the checkpointing mechanism is triggered, 

the checkpointing process is started. In this case however, we need to manage in-transit 

messages. Once done, the snapshot returned by the CHECKPOINT API is saved. 

 
 
Algorithm 2: Checkpointing:: Forced Checkpoint Algorithm  
 

 
1: OCT: Calculated integer value using FOA 

2: End_Current_Critical_Region: no. 

3: TIME1 : start time 

4: TIME2 : current execution time. 

5: Current Region: NULL 

6: Critical Region: No 

7: No_of_checkpoint: 0 

8: Current Region  ←  TIME2 - TIME1 

9: Critical region ← Region(Current Region) 

10: if Critical Region = no then 

11:       if  End_Current_Critical_Region = yes then 

12:               if no_of_checkpoint = 0 then 

13:                       Initiate checkpointing process 

14:                       coordinate checkpoint    

15:                       (snapshot)  ← CHECKPOINT( ) 

16:                       no_of_checkpoint = no_of_checkpoint + 1. 



Chapter 4. Improving Checkpointing Solutions 

 

 65 

17:               else   

18:                    do nothing. 

19:               end if 

20:       end if 

21: end if 

 

To restart an application from a checkpoint file, a RESTART API should be executed. 

The checkpoint/restart mechanism will check if it has received a request to restart the 

application. Then the RESTART function will spawn the processes. In case the 

checkpoint was taken at a natural synchronization point, the return the TYPE will be 

“NSP”. If so, the application will start executing straight after. If the TYPE is 

“FORCED”, then the checkpoint/restart mechanism will need to restore and coordinate 

the communication channels before the application can resume. 

 

 
Algorithm 3: Restarting:: Restarting an application after a failure 
 

 
1: STATE:NULL 

2: (TYPE) ← RESTART () 

3:      If TYPE=NSP then 

4:       Restore process state 

5:       Start execution 

6:     else 

7:           Restore process state 

8:           Restore in-transit messages 

9:          start execution 

10: end if 

 

 

 

 



Chapter 4. Improving Checkpointing Solutions 

 

 66 

4.6 Applicability and Suitability of the Proposed 

Algorithm 
In a Grid environment, checkpointing is a technique that helps tolerate the errors leading 

to losing the effect of work of long-running applications. The main property which 

should be induced by checkpointing techniques in such systems is in preserving system 

consistency in case of failure. Nowadays, Grid computing is used in a wide range of 

fields, from bioinformatics to economics. A range of applications can be executed on the 

Grid including Barnes–Hut simulation, Monte Carlo simulation, Brute-Force 

cryptographic techniques and Finite-State machine simulation among others [61]. 

Furthermore, many research institutions are using Grid computing to address complex 

computational challenges. The University of Westminster, for example, has been testing 

its GEMLCA Grid environment using the “Urban Car Traffic Simulation”. Therefore, the 

business companies or research institutions will need a certain degree of fault tolerance 

while executing the application on the Grid environment.  

The proposed checkpointing solution is suitable for MPI applications executed in a Grid 

environment. Therefore, business companies and research institutions who are 

performing extensive computations/simulations on the Grid environment using MPI 

based parallel applications can easily adopted the proposed checkpointing solution to 

make their application fault tolerant. All they need to do is to link their application to the 

proposed solution by importing the libraries written and do some minor modifications to 

their application to support the checkpointing mechanism. This will ensure that their 

application execute reliably in the Grid environment while at the same time incurring 

minimal overhead. This is very beneficial as it will provide a performance benefit 

solution, which is the main aim of the Grid. 

 

4.7 Chapter Summary and Conclusions 
The chapter starts by describing the proposed solution and the different components that 

are part of the solution such as the First Order Approximation and the Natural 

synchronisation points. It then gives design models of the proposed solution explaining 

how the checkpointing process at a natural synchronisation point and at a non natural 



Chapter 4. Improving Checkpointing Solutions 

 

 67 

synchronisation point will work. It also gives a design model of the restarting process 

showing how application will be restored from a global snapshot. Finally, it describes the 

checkpointing and restart algorithms and gives an overview of the applicability and 

suitability of the proposed algorithms. 

The proposed checkpointing mechanism is an innovative way to checkpoint parallel 

applications running on a Grid environment. The solution takes into consideration the 

necessity to execute long running applications reliably keeping in mind the need to 

reduce checkpointing overhead to improve performance. The solution exploiting different 

areas to achieve its goal mainly the natural synchronizations points that exist in 

parallel/distributed applications and the regular checkpointing intervals determined using 

the First Order Approximation.  A critical region has been defined in order to ensure that 

the checkpoints taken during the execution of an application does not deviate too much 

from the Young’s checkpointing interval.  Therefore the proposed solution provides a 

better and more efficient way to perform the checkpoint/restart process. The next step is 

to implement the mechanism to provide an efficient and reliable fault tolerant solution to 

applications executed on Grids. 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 68 

Chapter 5  
 

5 Implementing the Improved 

Checkpoint Mechanism  
  

5.1 Introduction 
In this chapter, the steps taken to implement the proposed checkpointing model are 

explained. The first section explains openMPI and BLCR which was adopted to 

implement the proposed solution.   The second section further elaborates on the design 

models explained in chapter 4. The last section explains the implementation in brief, 

showing the pseudo code for the implemented solution. 

 

5.2 The OpenMPI Architecture 
Having proposed a checkpointing solution, the next step was to design and implement the 

solution. OpenMPI with Berkeley Lab Checkpoint/Restart (BLCR) [42] was a good 

starting point to implement the proposed solution rather that starting from scratch.  In this 

section OpenMPI is described [40] [41].  

 

5.2.1 The OpenMPI Model 
In chapter 3, the OpenMPI architecture and the checkpoint and restart service framework 

was briefly explained. In this section, the functionality of the model that makes it a viable 

solution for the proposed checkpointing solution was explored. 

Figure 5.1 below shows the fault tolerant solution provided by openMPI to ensure MPI 

applications are executed reliably in a distributed environment. The components involved 

are: The Snapshot Coordinator (SnapC), Remote File Management (FileM), 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 69 

Checkpoint/Restart Coordinate Protocol (CRCP), Interlayer Notification Callback (INC), 

Checkpoint/Restart Service (CRS) [41].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

The Snapshot Coordinator  
Upon receiving a checkpoint/restart request, the Snapshot Coordinator will initiate the 

local checkpoint operation for each process.  The Snapshot Coordinator will also monitor 

the checkpointing process to ensure that all the local checkpoints have successfully 

completed. Once the local checkpoints are taken snapshot coordinator aggregates the 

local checkpoints into a global checkpoint file and save it to the stable storage [40]. 

Figure 5.1: A process fault tolerance infrastructure for Open MPI [40] 

 
mpirun 

P5 

P0 

P1 

P2 P4 

P3 

           Remote File Manaement (FileM)  

           Checkpoint/Restart Coordinate Protocol (CRCP) 

            Interlayer Notification Callback (INC) 

            Snapshot Coordinator (SnapC) 

            Checkpoint/Restart Service (CRS) 

        

 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 70 

Interlayer Notification Callback (INC) 
Single process checkpoint/restart services usually exclude the state of open files and 

communication channels from the checkpoint file of the process. As a result, the different 

layers within Open MPI need to receive notification surrounding all checkpoint and 

restart requests. The main layers are:  OPAL, ORTE and OMPI as explained in chapter 3. 

Each of these layers requires notification during the checkpointing and restart process. 

So, they register an INC providing each layer ample opportunity to take necessary action 

around a checkpoint/restart request [41]. 

 

Checkpoint/Restart Coordination Protocol (CRCP) 
For a parallel/distributed application, a checkpoint file consists of the state of the 

processes and all associated communication channels. Single process checkpoint/restart 

services do not preserve the state of the communication channels. So, the CRCP 

protocols ensure a consistent distributed execution during process failure and recovery by 

managing the communication messages [41]. 

 

Checkpoint/Restart Service (CRS) 
This is a framework for single process checkpoint/restart services. Services must capture 

a snapshot of a single process on the local system, save the snapshot to the stable storage, 

and be able to restart the process from that snapshot if a failure happens.  

The CRS framework, also known as the OPAL CRS MCA framework, provides a simple 

API for the Open MPI layers to interact with a checkpoint/restart service. Berkeley Lab 

Checkpoint/Restart (BLCR) is the checkpoint/restart mechanism that OpenMPI uses by 

default.  The two main functions of the API are CHECKPOINT() and RESTART(). 

These functions enable Open MPI to request a checkpoint internally as well as still 

retaining support for user requested checkpoints via command line tools [42]. 

 
 
 

 
 
 

int CHECKPOINT( pid_t pid, snapshot_handle_t *snapshot, int *state); 

int RESTART( snapshot_handle_t *snapshot, bool spawn_child, pid_t *child_pid); 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 71 

The CHECKPOINT function initiates the checkpoint of a single process, identified by its 

process ID (PID), by calling the checkpoint/restart mechanism’s checkpoint routines. 

This function returns a snapshot handle representing the snapshot reference. This function 

also returns the state of the system following the checkpoint that is used by the interlayer 

coordination callbacks (INC). The state is expected to be one either CONTINUE or 

RESTART. If after CONTINUE, it implies that the application will continue its 

execution after the checkpoint has been taken. If the state is RESTART, the RESTART 

function will initiate the restart of a single process from a snapshot reference by 

interacting with the checkpoint/restart mechanism’s restart functionality [40][41].  

 

To trigger a checkpoint or restart a checkpointed MPI application, Open MPI uses: ompi 

checkpoint and ompi restart.  To send a checkpoint request to mpirun, the user specifies 

the PID of the application to the ompi checkpoint command:  

 

 

 

When this command completes, the user is presented with a string name referencing the 

global snapshot that can be used to restart the parallel application. To restart the parallel 

application, the user specifies the global snapshot name to the ompi restart command, as 

seen below.  

 

 

 

Berkeley Lab Checkpoint/Restart (BLCR) 

As mentioned earlier in this sub section, OpenMPI uses BLCR as the default 

checkpoint/restart mechanism. BLCR provides a checkpoint/restart solution on Linux 

systems. It can be used either with processes on a single computer, or on parallel jobs 

such as MPI applications which may be running across multiple machines on a cluster. 

The Checkpoint/Restart mechanism allows you to save one or more processes to a file 

and later restart them from that file. To checkpoint an application, it needs to be safely 

stopped at any point in its execution, so that a checkpoint can be taken.  

shell$ ompi_checkpoint [OPTIONS] mpirun_pid 

 

shell$ ompi_restart [OPTIONS] global_snapshot_reference 
 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 72 

To initiate a checkpoint within an application, BLCR sends it a signal.  User applications 

that need to be checkpointed must be loaded with the BLCR checkpoint library, which 

registers a signal handler for the checkpoint signal [42]. 

 

Remote File Management (FileM) 
This framework provides the ability to transfer local process snapshots to and from stable 

storage device(s) as required by the checkpoint/restart mechanism [41].  

 

5.3 Designing the Improved Checkpoint Mechanism 
In order to implement the proposed solution, a few functions had to be written that would 

then be integrated at the application level. Therefore, some modifications had to be made 

to the MPI application to support the proposed solution. 

 

 

 

 

 

 
 

 

 
 

The integration of the proposed solution is simple. All the users need to do is to include 

the implemented API in their MPI application. This can be achieved either by adding the 

functions in the c file or storing them in a library and calling the library file. The only 

changes to the MPI application would be to include the mychkpt( ) function at natural 

synchronisation points. The functions are explained further below. 

Operating System 

Checkpoint/restart system 

User Application 

OMPI 

ORTE 

OPAL 

Improved Checkpoint 
 

Figure 5.2: The improved OPENMPI Architecture 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 73 

The Improved Checkpoint Model 
The Figure 5.3 below describes how a checkpoint at a natural synchronisation point is 

taken.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMPI with BLCR MPI Application 

Process 1 

Child process 

Local disk Local disk 

Figure 5.3: checkpointing process at Natural Synchronisation Points 

Process 0 

Checkpoint 

Running 
Normally 

Running 
Normally 

enter the “Opal Entry 
Point” function 

Initiates checkpoint 
Initialise chkpting 

Initialise chkpting 

Invoke checkpointing 
process 

ready to chkpt ready to chkpt 

Capture snapshot 
Capture snapshot 

Monitor and aggregate 
local checkpoints into a 

global snapshot Monitor and aggregate Monitor and aggregate 

snapshot handle 
snapshot handle 

Stable 
Storage 

Monitor 
processes  

snapshot 
reference 

Trigger checkpointing 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 74 

The figure below describes how a forced checkpoint is taken.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMPI with BLCR MPI Application 

Process 1 

Child Process 

Local disk 
Local disk 

Figure 5.4: Taking a forced checkpoint 

Process 0 

Checkpoint 

Running 
Normally 

Running 
Normally 

enter the “Opal Entry 
Point” function 

Initiates checkpoint 

Initialise chkpting 

Initialise chkpting 

Invoke checkpointing 
process 

ready to chkpt ready to chkpt 

Capture snapshot 

Capture snapshot 

Monitor and aggregate 
global snapshot 

Monitor and aggregate 

Monitor and aggregate 

snapshot handle 
snapshot handle 

Stable 
Storage 

Monitor 
processes  

snapshot 
reference 

Monitor Monitor 

Trigger checkpointing 

Coordinate Do synchronisation 

Do synchronisation 

Sync messages 

Ready to save Ready to save 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 75 

The figure below describes how the restart process happens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MPI Application 
 
 
 
 
 
 
 
 
 
 

OMPI with BLCR MPI Application 
 
 
 
 
 
 
 
 

Application terminates due to an error.... 

Process 1 

Child Process 

Process 0 

restart 

Running 
Normally 

Running 
Normally 

CRS:  RESTART 

Monitor 
processes  Monitor Monitor 

Stable 
Storage 

snapshot 
reference 

 
 
 
Process 0 

 
 
 
Process 1 

Spawn Spawn 

restore comm. channels? 

enter the “Opal Entry 
Point” function Restart 

Restart 

Child Process 

Figure 5.5: The Restart Process 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 76 

5.4 Implementing the Improved Checkpoint Mechanism 
Having developed the model, the next step was to write the APIs that would allow us 

achieve our desired goal.  

 

The createcheckpointthread() function 
The createcheckpointthread() function was created a child thread which is used to monitor 

the main application and triggering a forced checkpoint when required by calling the 

myfirstthread() function. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

The myfirstthread()  function 
The myfirstthread() function is executed by a child thread created by the main application. 

It is responsible for triggering the forced checkpoints. 

 

 

 

 

 

 

 

void createcheckpointthread(int rank,int argc, char **argv) 

{ 

Define a pthread; 

Assign predefined values to an array of type struct. In this array, we will specify the 

optimal checkpoint interval.       

  if(rank==0) /* i.e. in main */ 

      { 

       Create a pthread and call the myfirstthread() routing passing the array data as  

       argument. 

      } 

} 

 

void *myfirstthread(void *threadarg) 

{ 

Assign arguments to new variable of the thread_data; /* the optimal checkpoint interval 

value is passed to this function. 

   

 struct thread_data *my_data; 

 calculate criticalendrange  /*if optimal =701s, then criticalendrange = 175s */ 

 myfirstextrasleeptime = 175 + 1; 

 

  

 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

 

 

        

 

 

 

 

 

 

 

 

 

 

 

          for(;;) 

     { 

        Get time passed since the program has started. 

          time_previous_checkpoint_taken=time_new_checkpoint_taken; /* if the program  

          has just started, both values are 0 */ 

         previous_checkpoint_count=new_checkpoint_count; /* this gives the number of  

         checkpoints taken during a cycle. */ 

           

          if(loopcount==0) 

          { 

                           

                                    time_new_checkpoint_taken = mytime;  

                Force another checkpoint. 

        } 

        else 

        { 

                       A checkpoint has already occurred in the critical region. 

 

        } 

              }  

              

      loopcount++; 

     } 

 

} 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 78 

The mychkpt()  function 
To trigger a checkpoint at natural synchronization points within the critical region, the 

mychkpt() function was implemented. The “Algorithm 1” explains how it ensures that a 

checkpoint is taken only at a natural synchronization point within a critical region. The 

pseudo code below explains the function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

void mychkpt( ) 

{ 

    Get the optimal checkpoint time. 

    Determine in which region is the program presently running. /* the first cycle is 

zero, second cycle is one, etc) 

Determine the critical range. 

    

         if(still within the same cycle) 

             { 

                do nothing to counts. 

   } 

   if (move to the next cycle) 

      { 

                                        /* this is to ensure that we don’t take a checkpoint if one is  

                                            already taken in the same critical range. That is in  the  

                                            region before the optimal checkpoint time is reached. 

             

                                            previous_end_range_count = new_start_range_count; 

             new_start_range_count=0; 

      } 

                 if (moved to more than one cycle) 

      { 

       We don’t need to worry when the last checkpoint was taken.  

                                       previous_end_range_count = 0; 

        new_start_range_count = 0; 

      }         

   if((no checkpoint has occurred yet in the present critical region just 

after the previous checkpoint interval))  

         { 

   Take a checkpoint by calling: writefifo(rank); 

                              }  

 

 

 

 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5 Chapter Summary and Conclusions 
This chapter summarises the OpenMPI and BLCR application that was adopted to 

implement the proposed solution. The first section describes the different components of 

OpenMPI that are important in the checkpointing process. It also explains the BLCR 

single process checkpointing mechanism. The second section describes the proposed 

solution giving some design models on how the checkpoint/restart process works. 

The third section describes how the proposed solution was implemented, giving 

pseudocodes of the APIs that was developed. 

           else 

         { 

   A checkpoint already taken. 

          } 

    previous_d_value=new_d_value; 

   } 

   else if( we are outside a critical region) 

   { 

    Do not take a checkpoint. 

   } 

   else if (it is in the critical region  before the new optimal 

checkpoint interval) 

   { 

                                     Take a checkpoint by calling: writefifo(rank); 

                                    

       else 

         { 

          one checkpoint has already been taken. 

         } 

 

   } 

 

} 



Chapter 5. Implementing the Improved Checkpoint Mechanism  
 

 

 80 

The OpenMPI was successfully installed on the University of Westminster cluster and the 

checkpointing solution was successfully implemented and integrated in the MPI 

applications to be tested. 



Chapter 6. Experimental Results and Analysis. 
 

 81 

Chapter 6   
 
 

6 Experimental Results and 
Analysis. 
 
 

6.1 Introduction 
In this chapter, the proposed checkpointing solution was tested on a cluster and the 

outcomes were analysed. The purpose of this chapter was to analyse the efficiency of the 

proposed solution as compared to other checkpointing techniques. This was achieved by 

performing a series of testbed experiments followed by an analysis of the results 

obtained. Therefore, this chapter is divided into two sections - Experimental Results and 

Analysis.  

The first section describes the methodology used for conducting the testbed experiments 

and consecutively presents the experimental results themselves. The second section 

provides a discussion based on an interpretation of the experimental results and concludes 

over the required criteria by which the proposed solution is expected to improve the 

checkpointing   process in Grids.  

 

6.2 Aim  
This chapter provides a set of results obtained over a number of tests carried out. The 

results were analysed to prove the proposed research contribution is viable. The tests 

described below prove that this research’s contribution improves the performance of 

checkpointing and restarting MPI applications as compared to existing checkpointing 

methods. 

The tests provide concrete results to support the efficiency of the contribution. Through 

the testing process, we were also able to determine the best “critical region” to further 

optimise the proposed solution. 



Chapter 6. Experimental Results and Analysis. 
 

 82 

6.3 Applications used for Testing 
The following two open source MPI applications were used to test the proposed 
checkpointing solution: 
 

1. PI 
2. Fire Reduce 

 
 

These two applications were chosen because they are open source. Moreover, it was 

possible to vary the execution time of these applications to suite the testing requirements.  

The main difference between the two applications is the occurrence of the natural 

synchronisation point. In the PI application, the occurrence of the natural synchronisation 

point is when the collective operation MPI_REDUCE() is called.  MPI_REDUCE()  

occurs at irregular intervals and therefore it is difficult to know when the natural 

synchronisation point will occur during execution of the application. 

The “Fire Reduce” MPI application has a natural synchronisation point at the bottom of a 

“for” loop in the main section of the application. This means that every time the program 

loops, we will get a natural synchronisation point. Tests were carried on these two MPI 

applications to demonstrate that the proposed checkpointing mechanism works well in 

any type of MPI applications. 

 

PI 
This MPI application calculates the value of PI.  All processes contribute to the 

calculation, with the master averaging the values for PI. This version uses a collective 

operation to collect results before averaging them. 

(Collective operations represent natural consistent global states for checkpointing. 

Examples of collective communication operations are broadcast, scatter/gather and 

reduction.)  

 

 

 

 



Chapter 6. Experimental Results and Analysis. 
 

 83 

Fire Reduce 
This application is a forest fire simulation in which a forest is modelled as an NxN grid of 

trees. One tree starts to smoulder, and each iteration nearby trees have some chance of 

catching fire. The simulation runs until the fire burns out.  

The main reason for choosing the “PI” and “Forest Fire” MPI applications was because 

they are open source and the execution time could be varied to the testing requirements. 

The problem with these applications is that they are simple programs which take a few 

seconds to checkpoint and thus a bit more difficult to show improvements in the 

checkpoint process. 

 

6.4 The Testbed 
The tests were carried on the nodes of the University of Westminster (UoW) cluster.  It 

was performed in an isolated environment where the nodes were solely used for testing 

my research contribution. Each test was repeated at least ten times to minimise side 

effects that may arise in case some background processes runs randomly.  

 

The Checkpoint Testbed Architecture 
Figure 6.1 shows how an MPI application was submitted on the University of 

Westminster cluster. The MPI application runs on the cluster and the “Improved 

Checkpoint Mechanism” triggered checkpoint process based on the criteria discussed 

from the research contribution.  
 

 

 

 

 

 

 

 



Chapter 6. Experimental Results and Analysis. 
 

 84 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            UoW Cluster 
 
 
 

 
                                                                                        

User submit MPI 
application 

 
Node 32 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

OPEN MPI 
with BLCR 

 

Application with 
checkpointing API  

Trigger checkpointing 
process 

Perform checkpointing 

Resume Execution 
Stable 

Storage User kills 
application 

Restore application 
state from checkpoint 

file + ( restore 
communication layer 

if necessary) 

Resume Execution 

Figure 6.1: Executing and restarting an MPI application on UoW cluster 



Chapter 6. Experimental Results and Analysis. 
 

 85 

6.5 Testing Process 
Two sets of test for each application were carried out under these conditions: 

1. Application executed without any failure occurring. 

2. Application execution with failure induced.  

 

To induce failure, the application was manually terminated by killing it. This process 

caused a failure to the application thus allowing the testing of the proposed checkpoint 

solution both when the application was executed without failure and with failure. Both set 

of test were evaluated to determine the efficiency of the proposed solution under the 

different conditions. 

 

Under each of the above conditions, the following was performed: 

1. Running application without performing checkpoints. 

2. Running application with checkpoints at ad hoc regular intervals.  

3. Running application with checkpoints performed at intervals based on the First 

Order Approximation.  

4. Checkpoint the application at natural synchronisation points (NSP) only. 

5. Checkpoint the application using the proposed solution. This was performed three 

times with varying critical ranges (10%, 25% and 40% of the Young’s 

Checkpointing Interval). 

The table 6.1 below summarises the tests that was carried out. 

 Execution time without failure Execution time with failure 

No checkpoints   

Checkpoint at ad hoc regular interval   

Checkpoint at Young’s interval   

Checkpoint at NSP.   

Proposed checkpoint with 10% critical range   

Proposed checkpoint with 25% critical range   

Proposed checkpoint with 40% critical range   

Table 6.1: Categories of tests performed  



Chapter 6. Experimental Results and Analysis. 
 

 86 

6.5.1 Data to be gathered during the tests. 
For each test performed, the data gathered was used to determine: 

1. The average time between checkpoints. 

2. The number and type of checkpoints saved. The checkpoint type can either be a 

checkpoint at a natural synchronisation point or a checkpoint at a non-natural 

synchronisation point. 

3. The recovery time in case of a failure. The tests showed how quickly a failed 

application recovered under each checkpointing method adopted. The recovery 

time was obtained by calculating the difference between the execution time 

without failure and the execution time with failure. 

4. Percentage increase in execution time. This showed the increase in execution time 

when performing checkpointing as opposed to the execution time without taking 

any checkpoint. 

5. The best possible critical range for the proposed solution. 

6. Percentage change in time as compared to checkpoints performed at regular 

intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6. Experimental Results and Analysis. 
 

 87 

 

 

 

6.6 Calculating the Checkpointing Intervals using 

Young’s First Order Approximation. 
To calculate the checkpoint time for the PI and Fire Reduce application based on 

Young’s First Order Approximation (FOA), we needed to find out the number of errors 

obtained when each application were executed for a period of time as well as the time to 

take a single checkpoint.  

 

Checkpointing Interval for PI using Young’s FOA.  
Number of errors in 200 hours of running = 9  

Time to perform 1 checkpoint ≈ 3.1 seconds. 

  
 

 Recovery 

time after 

failure  

% increase 

in 

execution 

time 

 

% change in 

Time as 

Compared to 

Regular 

Checkpoint 

Average 

Checkpoint 

Time 

% deviation 

from 

Young’s 

FOA 

Checkpoint 

value 

NSP vs 

forced 

Checkpoint 

No checkpoints       
Checkpoint at   ad hoc 
regular interval       

Checkpoint at Young’s 

FOA interval       
Checkpoint at NSP.       
Proposed  checkpoint 

with 10% critical range       

 Proposed checkpoint 

with 25% critical range       

Proposed  checkpoint 

with 40% critical range       

Table 6.2: Data Gathered  



Chapter 6. Experimental Results and Analysis. 
 

 88 

Using the first order approximation, the following result was calculated: 

1. The mean time between failures Tf = (200*3600)/9 = 80000s 

2. The optimum checkpoint interval Tc = sqrt(2*3.1*80000) ≈ 701s 

 

Checkpointing Interval for Fire Reduce using Young’s FOA 
Number of errors in 150 hours of running = 11. 

Time to perform 1 checkpoint ≈ 2.9 seconds. 

 
Using the first order approximation, the following result was calculated: 

Tf = (150*3600)/11 ≈ 49090.91s. 

Tc = sqrt(2*2.9*49090.91) ≈ 535s 

 
In cases where Ts is not negligible as compared to Tf, Young’s second order 

approximation can be used to determine the checkpointing intervals.   The formula is as 

follows: 

 

Tc =       2TsTf – Ts
2.                                                                                                      (38) 

 

 

Where  

Ts is the time required to save information at a checkpoint (Ts). 

Tf  is the mean time between failures (Tf ) 

 

For testing PI and Fire_Reduce, Young’s First Order Approximation was used because Ts 

is very small as compared to Tf. For example in the case of fire reduce, Ts is 

approximately 2.9 seconds and Tf is approximately 49090.91 seconds.  

 
Using the First Order Approximation, the checkpointing value is: 
 
 
Tc ≈ 534.517 ≈ 535s             

 
 



Chapter 6. Experimental Results and Analysis. 
 

 89 

Using the second order approximation, the value is: 
 
Tc  =         (2*2.9*49090.91)  - (2.92)       ≈  534.509  ≈ 535s.                                   (39) 
 

 
Similarly, for PI, Ts (3.1s) is very small as compared Tf (80000). The difference between 

the results obtained using Young’s First Order and Second Order Approximation is 

negligible. 

 

It should be noted that the proposed solution uses Young’s First Order of Approximation 

to calculate the best possible regular checkpoint interval for a given application.  If there 

are better solutions to determine the best possible regular checkpointing interval, they can 

be used instead.  

 

6. 7 Tests 
This section explains how the tests were carried out and the results obtained. 
 
6.7.1 Test Result for PI 
Figure 6.2 below shows the execution time line of the PI application. The checkpoint 

time obtained using the Young’s FOA is 701 seconds and there are 6 natural 

synchronisation points along the execution line at approximately 203, 353, 608, 962, 

1131, 1402 and 1556 seconds.  

 

 

 
 
   
 
 
 
 
 
 
 
 

203 

353 

701 

608 

1402 

962 

1131 

1556 

Figure 6.2: PI execution model 



Chapter 6. Experimental Results and Analysis. 
 

 90 

Without Failure 
 

Execution without failure 

No checkpoints 

Execution 
time Comments 

1899  
1845  
1901  
1946 Ignored 
1860  
1895  
1922 Ignored 
1903  
1897  
1864  
1901  

Average time 1885  
 

Execution without failure 

Taking checkpoint every 200 
seconds. 

Execution 
time Comments 

1912  
1925  
1922  
1867 Ignored 
1931  
1840 Ignored 
1916  
1926  
1826 Ignored 

Average time 1922  
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6. Experimental Results and Analysis. 
 

 91 

Execution without failure 

Taking checkpoint at NSP. 

Execution 
time Comments 

1912  
1884  
1889  
1934 Ignored 
1925 Ignored 
1889  
1899  
1913  

 1905  
Average time 1899  

 
Execution without failure 

Taking checkpoint at Young’s 
FOA Checkpoint Interval. 

Execution 
time Comments 

1905  
1782 Ignored 
1905  
1897  
1948  
1910  
1902  
1882 Ignored 

Average time 1900  
 

Execution without failure 

Taking checkpoint at using the 
“Improved Checkpointing 
Mechanism” with a critical 
range of 10% of Young’s 
Checkpoint value 

Execution 
time Comments 

1904  
1880  
1883  
1885  
1842 Ignored 
1895  
1900  
1892  
1913  
1909  

Average time 1896  
 
 
 



Chapter 6. Experimental Results and Analysis. 
 

 92 

Execution without failure 

Taking checkpoint at using the 
“Improved Checkpointing 
Mechanism” with a critical 
range of 25% of Young’s 
Checkpoint value 

Execution 
time Comments 

1879  
1886  
1787 Ignored 
1887  
1838 Ignored 
1873  
1905  
1908  
1902  

Average time 1891  
 

Execution without failure 

Taking checkpoint at using the 
“Improved Checkpointing 
Mechanism” with a critical 
range of 40% of Young’s 
Checkpoint value 

Execution 
time Comments 

1944 Ignored 
1891  
1859  
1901  
1903  
1893  
1728 Ignored 
1903  

Average time 1892  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.3: Execution without failure for PI application  



Chapter 6. Experimental Results and Analysis. 
 

 93 

 
 
 
 
 

The result in figure 6.3 shows: 

1. Execution time without checkpointing: Time (1885s) 

2. Checkpoint at ad hoc regular intervals (every 200s) : Checkpoints files (9), Time 

(1922 s) 

3. Checkpoint at Young’s Checkpoint Intervals (YCI@701) : Checkpoints files (2), 

Time (1900s) 

4. Checkpoint at Natural Synchronisation Points (NSP): Checkpoint files (6), Time 

(1899). 

5. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

10% of Young’s checkpoint interval (ICM @ 10% of YCI): Checkpoints files (2), 

Time (1896 s). 

6. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

25% of Young’s checkpoint interval (ICM @ 25% of YCI): Checkpoints files (2), 

Time (1891 s) 

Figure 6.3: Execution Time without Failure for PI 



Chapter 6. Experimental Results and Analysis. 
 

 94 

7. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

40% of Young’s checkpoint interval (ICM @ 40% of YCI): Checkpoints files (2), 

Time (1892 s) 

 
 
With Failure 
 

Execution with failure 

Taking checkpoint every 200 
seconds. 

Execution 
time Comments 

2195 Ignored 
1987 Ignored 
2075  
2084  
2090  
2093  
2088  
2090  
2080  

Average time 2086  
 

Execution with failure 

Taking checkpoint at NSP. 

Execution 
time Comments 

1873 Ignored 
2040  
2043  
2057  
2040  
2049  
2035  
1846 Ignored 
2061  

Average time 2046  
 
 
 
 
 
 
 
 
 



Chapter 6. Experimental Results and Analysis. 
 

 95 

Execution with failure 

Taking checkpoint at Young’s 
FOA Checkpoint Interval. 

Execution 
time Comments 

2063  
2052  
2064  
2066  
2055  
2089  
2089  
2056  
2055  
2130 Ignored 

Average time 2065  
 
 

Execution with failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism”  with a critical 
range of 10% of Young’s 
Checkpoint value 

Execution 
time Comments 

2040  
1956 Ignored 
1980 Ignored 
2081  
2025  
2029  
2024  
2080  
2022  
1901 Ignored 

Average time 2043  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6. Experimental Results and Analysis. 
 

 96 

Execution with failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism”  with a critical 
range of 25% of Young’s 
Checkpoint value 

Execution 
time Comments 

2031  
2065  
2030  
2044  
2020  
2040  
2045  
1999 Ignored 
1990 Ignored 

Average time 2039  
 

Execution with failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism”  with a critical 
range of 40% of Young’s 
Checkpoint value 

Execution 
time Comments 

2054  
2025  
2044  
2045  
2030  
2056  
2045  
2039  
2024  

Average time 2040  
 
 
 
 
 

Table 6.4: Execution with failure for PI application  



Chapter 6. Experimental Results and Analysis. 
 

 97 

 
 

 
 
 

The result in figure 6.4 shows: 

1. Checkpoint at ad hoc regular intervals (every 200 s) : Checkpoints files (9), Time 

(2086 s) 

2. Checkpoint at Young’s Checkpoint Intervals (YCI@701) : Checkpoints files (2), 

Time (2065 s) 

3. Checkpoint at Natural Synchronisation Points (NSP) : Checkpoint files (6), Time 

(2046s). 

4. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

10% of Young’s checkpoint interval (ICM @ 10% of YCI): Checkpoints files (2), 

Time (2043 s) 

5. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

25% of Young’s checkpoint interval (ICM @ 25% of YCI): Checkpoints files (2), 

Time (2039 s) 

Figure 6.4: Execution Time with Failure for PI 



Chapter 6. Experimental Results and Analysis. 
 

 98 

6. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

40% of Young’s checkpoint interval (ICM @ 40% of YCI): Checkpoints files (2), 

Time (2040 s) 

 

Recovery Time 
Table 6.5 and Figure 6.5 below show the recovery time for each method. The result 

shows that it is much faster to recover checkpoints taken at natural synchronisation 

points. This is because its does not require restoring in-transit messages and their 

coordination to restart the application. 

 

 
Recovery Time 

 Execution 
Time with 
failure 

Execution 
time without 
failure 

Recovery 
Time 

Taking checkpoint every 200 
seconds. 
 

2086 1922 164 

Taking checkpoint at NSP. 
 
 

2046 1899 147 

Taking checkpoint at Young’s FOA 
Checkpoint Interval. 
 

2065 1900 165 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 10% of 
Young’s Checkpoint value 

2043 1896 147 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 25% of 
Young’s Checkpoint value. 

2039 1891 148 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism”  
with a critical range of 40% of 
Young’s Checkpoint value. 

2040 1892 148 

 
 
 

Table 6.5: Recovery Time for PI application 



Chapter 6. Experimental Results and Analysis. 
 

 99 

 
 
 

 

 

Percentage increase in Execution time 
The percentage change in execution time is shown in Figure 6.6 below. The best result is 

for checkpointing using the “Improved Checkpoint Mechanism” with critical regions of 

25% and 40% of Young’s Checkpoint Interval. This is mainly because both checkpoints 

are taken at natural synchronisation points resulting in a quicker execution time.  

 

 

 

 

 

 

 

 

 

Figure 6.5: Recovery Time for PI 



Chapter 6. Experimental Results and Analysis. 
 

 100 

Percentage increase in Execution time 
 Execution 

Time 
Percentage increase in 
Execution time 

No checkpoints 
 
 

1885  

Taking checkpoint every 200 
seconds. 
 

1922 ((1922-1885)/1885)*100= 1.96 
 

Taking checkpoint at NSP. 
 
 

1899 ((1899-1885)/1885)*100= 0.74 

Taking checkpoint at Young’s FOA 
Checkpoint Interval. 
 

1900 ((1900-1885)/1885)*100= 0.80 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism”  
with a critical range of 10% of 
Young’s Checkpoint value. 

1896 ((1896-1885)/1885)*100= 0.58 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 25% of 
Young’s Checkpoint value. 

1891 ((1891-1885)/1885)*100= 0.32 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 40% of 
Young’s Checkpoint value. 

1892 ((1892-1885)/1885)*100= 0.37 

 

 
 
 
 
 
 
 

Table 6.6: Percentage increase in Execution time for PI 



Chapter 6. Experimental Results and Analysis. 
 

 101 

 
 
 

 

 

Percentage change in Time as Compared to Ad hoc Regular Checkpoint 
Therefore checkpointing at NSPs improves the performance. Table 6.7 and Figure 6.7 

below shows that the most efficient solution would be taking checkpoint when using the 

“Improved Checkpoint Mechanism” with a critical region of 25% of Young’s Checkpoint 

value ( ICM @ 25% of YCI). There is an improvement of more that 83% as compared to 

the time it takes to execute an application with checkpoint at ad hoc regular intervals. 

 

 

 

 

 

 

 

 

 

Figure 6.6: Percentage increase in execution time for PI 



Chapter 6. Experimental Results and Analysis. 
 

 102 

Percentage change in Time as Compared to Ad hoc Regular Checkpoint 
 Percentage 

increase in 
Execution 
time 

percentage decrease in Time 
as Compared to reg. chkpt 
 

Taking checkpoint every 200 
seconds. 
 

1.96 (100 + ((1.96-1.96)/1.96)*100) 
= 100 

Taking checkpoint at NSP. 
 
 

0.74 (100 - ((1.96-0.74)/1.96)*100)  
= 37.76      

Taking checkpoint at Young’s FOA 
Checkpoint Interval. 
 

0.80 (100 - ((1.96-0.8)/1.96)*100) 
= 40.82 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 10% of 
Young’s Checkpoint value. 

0.58 (100 - ((1.96-0.58)/1.96)*100) 
= 29.59 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 25% of 
Young’s Checkpoint value. 

0.32 (100 - ((1.96-0.32)/1.96)*100) 
= 16.33 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 40% of 
Young’s Checkpoint value. 

0.37 (100 - ((1.96-0.37)/1.96)*100) 
= 18.88 

 

 Table 6.7: Percentage change in Time as Compared to Regular Checkpoint for PI 



Chapter 6. Experimental Results and Analysis. 
 

 103 

 
 

 

Average Checkpoint Time 
 Checkpoint taken at 

(seconds) 
Average 
checkpoint time 

Taking checkpoint every 200 seconds. 
 

200,400,600,800,1000
,1200,1400,1600,1800 

200 

Taking checkpoint at NSP. 
 
 

208, 353, 608, 962, 
1131, 1556 
 

259 

Taking checkpoint at Young’s FOA 
Checkpoint Interval. 
 

701, 1402 
 

701 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 10% of 
Young’s Checkpoint value. 

631, 1473 
 

736 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 25% of 
Young’s Checkpoint value. 

605, 1548 
 

774 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 40% of 
Young’s Checkpoint value. 

421, 1526 
 

763 

Table 6.8: Average Checkpoint Time for PI 

Figure 6.7: Percentage change in Time as Compared to Regular Checkpoint for PI 



Chapter 6. Experimental Results and Analysis. 
 

 104 

The checkpoint interval using Young’s FOA for this application is 701 seconds. In this 

case, the best solution is when a checkpoint is taken at 701 seconds. However, the 

proposed solution does not deviate too much from Young’s Checkpoint Interval value as 

shown in the Figure 6.8 below. 

 

 
 

 

By further analysing the result shown in the Table 6.8 above, we can conclude that taking 

checkpoint using the “Improved Checkpoint Mechanism” with a critical region of 10%, 

25% and 40% of Young’s Checkpoint Interval deviate around 5%, 10% and 8% 

respectively as compared to the ad hoc checkpoint interval (200s) and checkpoint at NSP 

which deviates by 72% and 63% respectively as shown on the Figure 6.9 below. 

 

 

 

Figure 6.8: Average Checkpoint Time for PI 



Chapter 6. Experimental Results and Analysis. 
 

 105 

 
 

 

As we saw earlier, there is a decrease in execution time when checkpoints are taken at 

natural synchronisation points. Therefore if a checkpoint is taken at a NSP rather than a 

forced checkpoint, the performance is better.   

Figure 6.10 shows that the bigger the critical interval, the higher is the chance of getting a 

NSP for checkpointing. 

 

 

 

Figure 6.9: Percentage deviation from Young’s Checkpoint value for PI 



Chapter 6. Experimental Results and Analysis. 
 

 106 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: NSP vs. forced Checkpoint for PI 



Chapter 6. Experimental Results and Analysis. 
 

 107 

6.7.2 Test Results for Fire Reduce 
 

Fire Reduce - Execution without failure 

No checkpoints 

Execution 
time Comments 

1100  
1120  
1067 Ignored 
1056 Ignored 
1081  
1086  
1112  
1101  
1103  
1160 Ignored 

Average time 1100  
 
 

Execution without failure 

Taking checkpoint every 100 
seconds. 

Execution 
time Comments 

1139  
1133  
1086 Ignored 
1089 Ignored 
1180  
1180  
1150  
1143  
1144  

Average time 1153  
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6. Experimental Results and Analysis. 
 

 108 

Execution without failure 

Taking checkpoint at Young’s 
FOA Checkpoint Interval. 

Execution 
time Comments 

1141  
1135  
1122  
1166  
1130  
1121  
1116  
1133  
1046 Ignored 

Average time 1133  
 
 

Execution without failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism” with a critical 
range of 10% of Young’s 
Checkpoint value 

Execution 
time Comments 

1173 Ignored 
1189 Ignored 
1102  
1121  
1096  
2002 Ignored 
1126  
1106  
1116  
1101  

Average time 1110  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6. Experimental Results and Analysis. 
 

 109 

Execution without failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism”  with a critical 
range of 25% of Young’s 
Checkpoint value 

Execution 
time Comments 

1120  
1106  
1111  
1082  
1106  
1170 Ignored 
1060  
1175 Ignored 
1176 Ignored 
1173 Ignored 

Average time 1108  
 
 

Execution without failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism” with a critical 
range of 40% of Young’s 
Checkpoint value 

Execution 
time Comments 

1181 Ignored 
1111  
1127  
1099  
1090  
1112  
1106  
1115  
1170 Ignored 

Average time 1109  
 

 

 

 

 

 

 

 

 

Table 6.9: Execution without failure for Fire Reduce 



Chapter 6. Experimental Results and Analysis. 
 

 110 

Without Failure 

 
 

 

The result in Figure 6.11 shows: 

1. Execution time without checkpointing: Time (1100s) 

2. Checkpoint at ad hoc regular intervals (every 100s) : Checkpoints files (11), Time 

(1153 s) 

3. Checkpoint at Young’s Checkpoint Intervals (every 535s): Checkpoints files(2), 

Time (1133 s). 

4. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

10% of Young’s checkpoint interval (ICM @ 10% of YCI): Checkpoints files (2), 

Time (1110 s) 

5. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

25% of Young’s checkpoint interval (ICM @ 25% of YCI): Checkpoints files (2), 

Time (1108 s) 

6. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

40% of Young’s checkpoint interval (ICM @ 40% of YCI): Checkpoints files (2), 

Time (1109 s) 

Figure 6.11:  Execution Time without Failure for Fire Reduce 



Chapter 6. Experimental Results and Analysis. 
 

 111 

With Failure 
 

Execution with failure 

Taking checkpoint every 100 
seconds. 

Execution 
time Comments 

1270  
1240  
1248  
1196 Ignored 
1235  
1270  
1257  
1235  
1243  
1260  

Average time 1251  
 
 

Execution with failure 

Taking checkpoint at Young’s 
FOA Checkpoint Interval. 

Execution 
time Comments 

1230  
1248  
1224  
1241  
1212  
1136 Ignored 
1220  
1175 Ignored 
1251  
1244  

Average time 1234  
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6. Experimental Results and Analysis. 
 

 112 

Execution with failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism” with a critical 
range of 10% of Young’s 
Checkpoint value 

Execution 
time Comments 

1225 Ignored 
1202  
1118 Ignored 
1201  
1211  
1180  
1150  
1216  
1172  
1224 Ignored 

Average time 1190  
 
 

Execution with failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism”  with a critical 
range of 25% of Young’s 
Checkpoint value 

Execution 
time Comments 

1170  
1205  
1192  
1165  
1180  
1204  
1170  
1227 Ignored 
1229 Ignored 
1198  

Average time 1186  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6. Experimental Results and Analysis. 
 

 113 

Execution with failure 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism”  with a critical 
range of 40% of Young’s 
Checkpoint value 

Execution 
time Comments 

1207  
1118 Ignored 
1162  
1205  
1117 Ignored 
1197  
1170  
1188  
1175  

Average time 1186  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 6.12: Execution Time with Failure for Fire Reduce 

Table 6.10: Execution with failure for fire reduce 



Chapter 6. Experimental Results and Analysis. 
 

 114 

The result in Figure 6.12 shows: 

1. Checkpoint at ad hoc regular intervals (every 100 s): Checkpoints files (10), Time 

(1251 s) 

2. Checkpoint at Young’s Checkpoint Intervals (every 535s): Checkpoints files (2), 

Time (1234 s) 

3. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

10% of Young’s checkpoint interval (ICM @ 10% of YCI):  Checkpoints files (2. 

Both at NSP), Time (1190 s) 

4. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

25% of Young’s checkpoint interval (ICM @ 25% of YCI): Checkpoints files (2. 

Both at NSP), Time (1186 s) 

5. Checkpoint using “Improved Checkpoint Mechanism” with a critical range of 

40% of Young’s checkpoint interval (ICM @ 40% of YCI):  Checkpoints files (2. 

Both at NSP), Time (1186 s) 

 
 
Recovery Time 
Table 6.11 and Figure 6.13 below show the recovery time for each method. The result 

shows that it is faster to recover checkpoints taken at natural synchronisation points. This 

is because it does not require restoring in-transit messages and their coordination to 

restart the application. 

 

 

 

 

 

 

 

 

 

 



Chapter 6. Experimental Results and Analysis. 
 

 115 

Recovery Time 
 Execution 

Time with 
failure 

Execution 
time without 
failure 

Recovery 
Time 

Taking checkpoint every 100 
seconds. 
 

1251 1153 98 

Taking checkpoint at Young’s FOA 
Checkpoint Interval. 
 

1234 1133 101 

Taking checkpoint at using the 
“Improved Checkpointing 
Mechanism” with a critical range of 
10% of Young’s Checkpoint value 

1190 1110 80 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism”  
with a critical range of 25% of 
Young’s Checkpoint value 

1186 1108 78 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism”  
with a critical range of 40% of 
Young’s Checkpoint value 

1186 1109 77 

 
 
 
 

 

 
Figure 6.13: Recovery Time for Fire Reduce 

Table 6.11: Recovery time for fire reduce 



Chapter 6. Experimental Results and Analysis. 
 

 116 

Percentage increase in Execution time 

Percentage increase in Execution time 
 Execution 

Time 
Percentage increase in 
Execution time 

No checkpoints 
 
 

1100  

Taking checkpoint every 100 
seconds. 
 

1153 ((1153-1100)/1100)*100= 4.75 
 

Taking checkpoint at Young’s FOA 
Checkpoint Interval. 
 

1133 ((1133-1100)/ 1100)*100= 2.96 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 10% of the 
optimal time. 

1110 ((1110-1100)/ 1100)*100= 0.84 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism”  
with a critical range of 25% of 
Young’s Checkpoint value 

1108 ((1108-1100)/ 1100)*100= 0.65 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism”  
with a critical range of 40% of 
Young’s Checkpoint value 

1109 ((1109-1100)/ 1100)*100= 0.74 

 

 

 

The percentage change in execution time is shown in Table 6.12 above and Figure 6.14 

below. The best results are obtained when checkpoints are taken at the “Improved 

Checkpointing Mechanism” with a critical region of 10%, 25% and 40% of Young’s 

Checkpoint Interval (ICM @ 25% of YCI). This is mainly because both checkpoints are 

taken at Natural Synchronisation Points resulting in a quicker execution time.  

 

Table 6.12: Percentage increase in Execution time for Fire Reduce 



Chapter 6. Experimental Results and Analysis. 
 

 117 

 
 

 

Percentage change in Time as Compared to Ad hoc Regular Checkpoint 
Therefore checkpointing at NSP improves the performance. The Table 6.13 and Figure 

6.15 below show that the most efficient solution would be taking checkpoint using the 

“Improved Checkpoint Mechanism” with a critical region of 25% of Young’s Checkpoint 

Interval (ICM @ 25% of YCI). There is an improvement of more that 86 % as compared 

to the time it takes to execute an application with checkpoint at ad hoc regular intervals. 

In this example, the result is very good in all the three critical range options. 

 

 

 

 

 

 

 

 

 

Figure 6.14: Percentage increase in Execution time for Fire Reduce 



Chapter 6. Experimental Results and Analysis. 
 

 118 

Percentage change in Time as Compared to Ad hoc Regular Checkpoint 
 Percentage 

increase in 
Execution 
time 

percentage decrease in Time 
as Compared to reg chkpt 
 

Taking checkpoint every 100 
seconds. 
 

4.75 (100 + ((4.75-4.75)/ 
4.75)*100) = 100 

Taking checkpoint at Young’s FOA 
Checkpoint Interval. 
 

2.96 (100 - ((4.75-2.96)/ 4.75)*100) 
= 62.30 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism”  with a critical range 
of 10% of Young’s Checkpoint 
value 

0.84 (100 - ((4.75-0.84)/ 4.75)*100) 
= 17.76 

Taking checkpoint at using the 
“Improved Checkpoint 
Mechanism” with a critical range of 
25% of Young’s Checkpoint value. 

0.65 (100 - ((4.75-0.65)/ 4.75)*100) 
= 14.71 

Taking checkpoint at using 
“Improved Checkpoint 
Mechanism” with a critical range of 
40% of Young’s Checkpoint value. 

0.74 (100 - ((4.75-0.74)/ 4.75)*100) 
= 15.57 

 

 

 
Figure 6.15:  Percentage Change in Time as compared to Ad hoc Reg. Checkpoint for Fire Reduce 

Table 6.13: Percentage change in Time as Compared to Ad hoc Regular Checkpoint for fire reduce 



Chapter 6. Experimental Results and Analysis. 
 

 119 

Average Checkpoint Time 
The checkpoint time using Young’s FOA for this application is 535 seconds. In this case, 

the best solution is when a checkpoint is taken every 535 seconds. However, the proposed 

solution does not deviate too much from Young’s FOA Checkpoint Interval value. The 

lowest range while checkpointing with the proposed solution is 428 seconds as show in 

Table 6.14 and Figure 6.16. Figure 6.17 below shows that results obtained when 

checkpoints are taken using the “Improved Checkpoint Mechanism” with a critical region 

of 10%, 25% and 40% of Young’s Checkpoint Interval (ICM @ 25% of YCI) deviate 

around 5%, 13% and 20% respectively as compared to ad hoc regular checkpoint which 

deviates by 81%. Taking checkpoint using a critical range of 10% of Young’s Checkpoint 

Interval looks the best solution. However, the risk of missing a NSP in that region is 

bigger.  

 
 

Average Checkpoint Time 
 Checkpoint taken at 

(seconds) 
Average checkpoint time 

Taking checkpoint every 100 
seconds. 
 

100,200,300,400, 
500, 600, 700, 800, 
900,1000, 1100 

100 

Taking checkpoint at Young’s FOA 
Checkpoint Interval. 
 

535,  1070 535 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism”  
with a critical range of 10% of 
Young’s Checkpoint value. 

482, 1018 
 

509 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 25% of 
Young’s Checkpoint value. 

403, 938 
 

469 

Taking checkpoint at using the 
“Improved Checkpoint Mechanism” 
with a critical range of 40% of 
Young’s Checkpoint value. 

322, 857 
 

428 

 
 
 
 

Table 6.14: Average Checkpoint Time for Fire Reduce 



Chapter 6. Experimental Results and Analysis. 
 

 120 

 
 
 

 

 

 
 

 

Figure 6.16: Average checkpoint Time for Fire Reduce 

Figure 6.17: Percentage deviation from Young’s Checkpoint value for Fire Reduce 



Chapter 6. Experimental Results and Analysis. 
 

 121 

For the experimental tests it can be concluded that there is a decrease in execution time 

when checkpoints are taken at Natural Synchronisation Points. Therefore if a checkpoint 

is taken at a NSP rather than a forced checkpoint, the performance is better.   

Figure 6.18 shows that the bigger the critical interval, the higher is the chance of getting a 

NSP for checkpointing. In this example, we were able to get a NSP in all the three critical 

regions selected. 

 

 
 

 

6.7.3 Comparing results between the PI and Fire Reduce 

applications 
In the PI application, the occurrence of NSP varied along the time line and there were 

situations where we had to force a checkpoint as there was no occurrence of any NSPs 

within a critical region. 

Figure 6.18: NSP vs. Forced Checkpoint for Fire Reduce 



Chapter 6. Experimental Results and Analysis. 
 

 122 

In the “Fire Reduce” application, test regarding taking checkpoints at natural 

synchronisation points was not carried as the occurrence of natural synchronisation points 

were too quick and this caused the application to fail a few times.  

Irrespective of the difference, both applications have shown that the proposed solution 

has improved the execution time.  

 

Execution time without failure 
In both cases the best execution time was achieved when the critical region was at a range 

of 25% of Young’s Checkpoint value. 

The execution time for PI application is 1891 seconds as compared to 1992 seconds if the 

proposed solution was not used. 

The execution time for Fire Reduce application is 1100 seconds as compared to 1153 

seconds if the proposed solution was not used. 

 

Execution time with failure 

In this case as well, the both applications achieve the best result when the critical region 

is in a range of 25% of Young’s Checkpoint value. 

The execution time for PI application is 2039 seconds as compared to 2086 seconds if the 

proposed solution was not used. 

The execution time for Fire Reduce is 1186 seconds as compared to 1251 seconds if the 

proposed solution was not used. 

 

Recovery time 
Under the proposed checkpointing solution both the PI and Fire reduce showed that the 

recovery time is better. 

The PI application takes 147 seconds to recover as compare to 165 seconds if application 

was checkpointed at Young’s checkpoint intervals only and 164 seconds if application 

was checkpointed using a user defined checkpointing interval. 

The Fire Reduce application takes 77 seconds to recover as compare to 101 seconds if 

application was checkpointed at Young’s Checkpoint Intervals only and 98 seconds if 

application was checkpointed using a user defined checkpointing interval. 



Chapter 6. Experimental Results and Analysis. 
 

 123 

Average Checkpoint Time 
Both applications show that the average checkpointing time is not too far from Young’s 

Checkpoint value. 

For the PI application, the average checkpointing time is, in the worse case, an increase 

of 10% from Young’s Checkpoint time and at best an increase of 5 % from the Young’s 

Checkpoint time. 

For the PI application, the average checkpointing time is in the worse case an increase of 

20% from Young’s Checkpoint value and at best an increase of 4 % from Young’s 

Checkpoint value. 

So, both solutions show a good improvement in the execution time as compared to taking 

checkpoint at regular interval or at Young’s checkpointing interval.  

 

6.8 Chapter Summary and Conclusions 
In the test carried of “Fire Reduce” application, checkpoints at Natural Synchronisation 

Points where not taken because there is a natural synchronisation point at the end of the 

main loop and this loop is executed in repeatedly until the programs end.  

From the sets of test performed, we can definitely confirm that the proposed solution 

does improve the checkpointing performance. Using the “Improved Checkpoint 

Mechanism”, the checkpointing time is quite small hence the improvement in execution 

time is not significant. However, the longer the checkpointing times for applications, the 

more significant will be the improvement. 

The test also confirmed that checkpoint taken at Natural Synchronisation Point is better 

than forcing a checkpoint which requires coordination among the processes. 

The ideal critical range seems to be at twenty-five percent of the Young’s Checkpoint 

Interval.  

Therefore, based on the experimental results, it can be concluded that the proposed 

solution with a critical range of twenty-five percent of Young’s checkpoint interval will 

definitely provide a better checkpointing solution than existing MPI checkpointing 

solutions. 



Chapter 7. Conclusions 

 
 

124 

Chapter 7  
 

7 Conclusions 
 

7.1 Knowledge Contributions and Summary of Thesis 
The Grid environment is generic, heterogeneous, and dynamic with lots of unreliable 

resources making it very exposed to failures. Therefore, it is essential to develop efficient 

fault tolerant mechanisms to allow users to successfully execute Grid applications. The 

main objective of this research was to design and implement a checkpointing mechanism 

for parallel/distributed applications to ensure that applications run reliably in the Grid 

environment with minimal overhead incurred during the checkpointing and restart 

process. 

Most of the existing checkpointing solutions for Grid applications checkpoint their 

application at a periodic interval defined by the user. This is not the best solution as the 

application can end up taking either too many checkpoints or too few checkpoints. 

Moreover, they do not have features that reduce overhead induced during the 

checkpoint/restart process.  This is a concern mainly when the purpose of the Grid is to 

provide efficiency in terms of performance.  

One of the main challenges was to design and implement a solution that will ensure that 

parallel/distributed applications can executed efficiently and reliably by defining 

effective checkpoint intervals and ensuring that the checkpointing and restart process at 

these intervals incur minimal overhead. Checkpoint overhead is incurred due to the inter 

process communications that occur among processes. To ensure a consistent checkpoint, 

the communication layer should be dealt with effectively to prevent lost or orphan 

messages that may lead to an inconsistent global checkpointing. So, the first objective 

was to find out methods to reduce the overhead incurred during the checkpointing 

process. To achieve this goal, MPI applications were analysed to identify points in the 

application at which checkpoints could be taken.  We found that parallel applications 



Chapter 7. Conclusions 

 
 

125 

contain regions where no interprocess communications occurs among processes. These 

regions are known as Natural Synchronisation Points. Additionally, at these points, the 

size of the global checkpoint state is minimal. Therefore, these points look very 

promising to checkpoint the application. However, because there is no pattern in the 

occurrence of natural synchronisation points, we could not rely only on these points for 

checkpointing.  

Therefore, the second objective was to find out how to improve the checkpointing 

mechanism so that checkpoints are not taken at all natural synchronisations points but at 

intervals that will ensure the best performance. To achieve this, the First Order 

Approximation Method proposed by John W. Young was adopted [43]. By using a 

combination of both the Natural Synchronization Points and the First Order 

Approximation, a novel solution was developed that would improve the checkpointing 

process of MPI applications. This mechanism was named the “Improved Checkpoint 

Mechanism”. The mechanism allows a checkpoint to be taken at a Natural 

Synchronization Point close to a Young’s Checkpoint Interval within a region called the 

Critical Region.  If no natural synchronisation point is obtained within the Critical 

Region, a checkpoint is forced as the end of the Critical Region.   

Having successfully achieved the second objective, the next challenge was to design a 

model and write the algorithms based on this novel solution and eventually implement 

the solution. After successfully designing the model and written the algorithms, the 

application was implemented. OPENMPI with BLCR was adopted as a starting point 

mainly because it is a coordinated checkpointing solution which is suitable for the Grid 

environment. Using OPENMPI/BLCR as a starting point, the proposed solution was 

successfully implemented. A set of APIs was successfully implemented that were 

effectively integrated at the application level to achieve the design aims. The novel 

checkpointing solution was successfully tested and positive outcomes. 

 

The thesis gives a thorough description of a novel solution for checkpointing parallel 

applications executed in Grid environment. It starts by giving an overview of the research 

challenges that triggered this research project. It then introduces the Grid and the fault 

tolerant techniques that are commonly used in the Grid environment such as retrying, 



Chapter 7. Conclusions 

 
 

126 

replication and checkpointing before analysis some existing fault tolerant solutions.  

Through the analysis of these solutions we concluded that checkpointing is most suited 

for the Grid environment because of its unreliable nature.  

Having select checkpointing as the research base, the next steps were to study existing 

checkpointing mechanisms and solutions to decide which technique is the best suited 

option for this research. After considering checkpointing techniques such as Operating 

System checkpointing, Compiler based checkpointing and Application based 

checkpointing, the different approaches for checkpointing and Recovery were described 

and existing checkpointing mechanisms were analysed. Through this process, we 

concluded that coordinated checkpointing was most suited for this research because of its 

simpler design and recovery characteristics.  However, one of the major drawbacks of 

this solution was the overhead incurred during the checkpointing and restart process. To 

tackle this shortcoming, a novel solution named the “Improved Checkpoint Mechanism” 

was developed, which is described in chapter 4. The solution would improve the 

checkpointing process and minimise overhead incurred during the checkpointing and 

restart process. Chapter five of the thesis explained the implementation of the proposed 

solution which is based on the designed model and the algorithms written. A few APIs 

were implemented and their pseudo codes were written. As explained above, these APIs 

were successfully integrated at the application level and tests were successfully carried 

out to confirm the efficiency and reliability of the proposed solution. 

 

7.2 The Experimental Result Conclusions 
The purpose of the tests were twofold; one was to check if the proposed solution gives a 

better result as compared to other checkpointing strategies and second was to find out the 

best range for the Critical Region.  

To test the proposed checkpointing solution, two applications; “PI” and “Fire_Reduce” 

were used.  These two applications were chosen because they are open source and their 

execution time could be varied to suite the testing requirements.  The University of 

Westminster’s Grid was used as the test bed.  

The application was tested when executed in a failure free environment and when a 

failure is induced. Under each condition above, the following tests were carried: running 



Chapter 7. Conclusions 

 
 

127 

the application without performing checkpoints; checkpoint the application at an ad hoc 

regular intervals; checkpoint the application at intervals based on the Young’s First Order 

Approximation; checkpoint the application at natural synchronisation points (NSP) only 

and checkpoint the application using the proposed solution. When testing the proposed 

solution, three different sets of test were performed with varying critical ranges (10%, 

25% and 40% of the Young’s Checkpointing Interval). 

The test results showed that the proposed solution gave better results as compared to the 

other checkpointing strategies. The execution time was faster, the recovery time was 

better and the checkpoint interval was very close the Young’s Checkpoint Intervals. 

Moreover, the test also confirmed that the best critical range is 25% of Young’s 

Checkpoint Interval. 

Therefore we concluded that the proposed checkpointing solution successfully achieved 

the research aims by providing a better checkpointing option with improved performance. 

 

7.3 Future Work 
One important research area associated with proposed solution would be to analyse and 

implement a solution that will allow to efficiently reduce the size of the checkpointing 

file. By studying the checkpointing files, a solution can be designed and implemented to 

ensure that only data needed to successfully restart the application is saved during the 

checkpointing process.  One method to achieve this is to avoid rewriting portions of the 

process states that do not change between consecutive checkpoints. 

In the proposed solution, the critical region was determined through a series of tests. It 

was found that the best range for the critical range would be 25% of Young’s 

checkpointing interval. However, this conclusion is based on statistical analysis. A better 

method would be to use mathematical derivations to determine the best critical region for 

a given application. In this case, the researcher will need to study the occurrence of 

natural synchronisation points in parallel applications and then perform some 

mathematical research. 

Another research area would be to develop an algorithm that will further improve the 

criteria to select the best options among the set of natural synchronisation points that may 

exist within a Critical Region. Ideally the Natural Synchronisation Point closest to the 



Chapter 7. Conclusions 

 
 

128 

Young’s Checkpoint Interval is the best option. One method would be to buffer a 

checkpoint file temporarily, replacing it with the better option as we move along the 

execution line within a Critical Region. When we reach the end of the critical region, the 

checkpoint image in the buffer is confirmed as permanent checkpoint file.  



References 

 
 

129 

References 
 
 
 
 
 
[1] M. Baker: Ian Foster on Recent Changes in the Grid Community. IEEE 

Distributed Systems Online, February 2004. 

[2] K. Czajkowski et al: From Open Grid Services Infrastructure to WSResource 

Framework: Refactoring & Evolution. March 2004. 

http://www-106.ibm.com/developerworks/library/ws-

resource/ogsi_to_wsrf_1.0.pdf 

[3] E. Deelman et al: Workflow Management in GriphyN.  Grid Resource 

Management, J. Nabrzyski, J. Schopf, and J. Weglarz editors, Kluwer, 2003. 

[4] E. Deelman et al: Mapping Abstract Complex Workflows onto Grid 

Environments. 

Journal of Grid Computing, 2003. 

[5] V. Dialani et al: Transparent Fault Tolerance for Web Services based 

Architectures. In the proceedings of the Eighth International Europar 

Conference (EURO-PAR'02). Padeborn, Germany, August 2002. 

[6] L. Ferreira et al: Introduction to Grid Computing with Globus. 2003 

http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf 

[7] I. Foster et al: The Physiology of the Grid:  An Open Grid Services 

Architecture for Distributed Systems Integration.  Open Grid Service 

Infrastructure WG, Global Grid Forum, June 2002. 

[8] J.M Helary et al.: Preventing Useless Checkpoints in Distributed 

Computations.  SRDS 1997. Proceedings of the 16th Symposium on Reliable 

Distributed Systems, 1997. 

[9] A. Hoheisel: Dynamic Workflows for Grid Applications.  Cracow Grid 

Workshop 2003, Cracow, Poland, 2003.  

[10] W. Hoschek: Introduction to Grids and Globus. March, 2000. 

http://wwwpdp.web.cern.ch/wwwpdp/te/globus/intro.html.  

http://www-106.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ogsi_to_wsrf_1.0.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf
http://wwwpdp.web.cern.ch/wwwpdp/te/globus/intro.html


References 

 
 

130 

[11] S. Hwang et al: Grid workflow:A Flexible Failure Handling Framework for the 

Grid.  12th  IEEE International Symposium on High Performance Distributed 

Computing, 2003.  

[12] S. Hwang and C. Kesselman: A Flexible Framework for Fault Tolerance in the 

Grid.  Journal of Grid Computing, September 2003. 

[13] B. Jacob et al: Enabling Applications for Grid Computing with Globus. IBM 

Redbook, June 2003. 

http://www.redbooks.ibm.com/redbooks/pdfs/sg246936.pdf 

[14] J. Joseph et al: Introduction to Grid Computing.  

http://www.informit.com/articles/article.asp?p=169508&seqNum=4 

[15] B. Sotomayor: http://www.casa-sotomayor.net/gt3-tutorial/ multiplehtml/ 

pt01.html 

[16] Y. Robert et al.: High Performance computing – HiPC 2006.  13th  International 

conference, Bangalore, India, 2006 

[17] P. Townend and J. Xu: Fault Tolerance within a Grid Environment.  

In Proceedings of U.K. e-Science 2nd All Hands Meeting, Simon J. Cox Eds., 

Nottingham Conference Centre, 2003. 

[18] S. Tuecke et al: Open Grid Services Infrastructure (OGSI).  Global Grid Forum 

Draft Recommendation, 2003.http://citeseer.ist.psu.edu/634383.html 

[19] A. N. Tuong: Integrating Fault-Tolerance Techniques in Grid Applications, 

Ph.D. thesis, University of Virginia, 2000. 

[20] WS-Resource Framework.  Globus Alliance and IBM in conjunction with HP 

2004.  http://www.globus.org/wsrf. 

[21] D. Zou et al: Fault-Tolerant Grid Architecture and Practice.  Journal of 

Computer Science and Technology, 2003 

[22] S. Bogomolov, A. Bondarenko, A. Fyodorov:  Fault Tolerance Software 

Library for Support of Real-Time Embedded Systems. 

[23]  J. S. Plank: An overview of Checkpointing in Uniprocessor and Distributed 

Systems, focusing on Implementation and performance. 

 

 

http://www.redbooks.ibm.com/redbooks/pdfs/sg246936.pdf
http://www.informit.com/articles/article.asp?p=169508&seqNum=4
http://www.casa-sotomayor.net/gt3-tutorial/%20multiplehtml/%20pt01.html
http://www.casa-sotomayor.net/gt3-tutorial/%20multiplehtml/%20pt01.html
http://citeseer.ist.psu.edu/634383.html
http://www.globus.org/wsrf


References 

 
 

131 

[24] D. Pei et al.: Design and Implementation of a Low-Overhead File 

Checkpointing Approach. The Fourth International Conference, High 

Performance Computing in the Asia-Pacific Region, 2000.  

[25] E.N. Elnozahy, J.S. Plank, W.K. Fuchs :  Checkpointing for Peta-Scale 

Systems: A Look into the Future of Practical Rollback-Recovery. Dependable 

and Secure Computing, IEEE Transactions, April 2004. 

[26] A. Mostefaoui and M. Raynal: Efficient Message Logging for Uncoordinated 

Checkpointing Protocols. In Proceedings of EDCC, 1996.  

[27] L. M. Silva, J.G. Silva :  System-Level versus User-Defined Checkpointing. 

Reliable Distributed Systems proceedings. Seventeenth IEEE Symposium, 

October 1998. 

[28] R.Y Camargo et al.: Checkpointing-based rollback recovery for parallel 

applications on the InteGrade grid middleware. MGC Proceedings of the 2nd 

workshop on Middleware for grid computing, 2004. 

[29] V. A. Ogale: Try, try till you succeed: Multiple checkpointing and rollback in 

distributed systems. 2004 

[30] G. Zheng: Checkpoint-based methods. 

 https://charm.cs.uiuc.edu/papers/FTCCharm.www/node3.html 

[31] Open MPI: Open Source High Performance Computing. Available online at:  

 http://www.open-mpi.org/ 

[32] G.Suri et al.: Reduced overhead logging for rollback recovery in Distributed 

Shared Memory. In Proc. of the 25th Annual International Symp. on Fault-

Tolerant Computing, 1995. 

[33] S. Mishra and D. Wang: Choosing an Appropriate Checkpointing and 

Recovery Algorithm for Distributed Applcations. In 11th ISCA International 

Conference on Computers and their Applications, San Francisco, CA, March 

1996. 

[34] A. Bouteiller et al.: Coordinated checkpoint versus message log for fault 

tolerant MPI. IEEE International Conference on Cluster Computing, 2003. 

 

 

https://charm.cs.uiuc.edu/papers/FTCCharm.www/node3.html


References 

 
 

132 

[35] J.S.Plank et al.: Memory Exclusion: Optimising the performance of 

Checkpointing Systems. Technical Report UT-CS-96-335, University of 

Tennessee, August, 1996.  

[36] A. Goldchleger et al.: Running Highly-Coupled Parallel Applications in a 

Computational Grid. Proceedings of the 22th Brazilian Symposium on 

Computer Networks, 2004. 

[37] G. Zheng,  L.Shi and L.V.Kale: FTC-Charm++: An In-Memory Checkpoint-

Based Fault Tolerant Runtime for Charm++ and MPI.  Cluster Computing, IEEE 

International Conference, September 2004. 

[38] S. Krishnan: An Architecture for Checkpointing and Migration of Distributed 

Components on the Grid. Indiana University Indianapolis, IN, USA. November 

2004. 

[39] P. Kacsuk et al.: P-GRADE: A Grid Programming Environment. Journal of 

Grid Computing, volume 1, issue 2, pages: 171 – 197, 2003.  

[40] J. Hursey et al.: A Checkpoint and Restart Service Specification for Open MPI. 

Indiana University Computer Science tech report TR635. July 2006 

[41] J. Hursey et al.: The Design and Implementation of Checkpoint/Restart Process 

Fault Tolerance for Open MPI. Parallel and Distributed Processing Symposium. 

March 2007 

[42] J. Duell et al.: The Design and Implementation of Berkeley Lab’s Linux 

Checkpoint/Restart. Berkeley Lab Technical Report. December 2002 

[43] J. W. Young: A first order approximation to the optimum checkpoint interval. 

Communications of the ACM, volume 17, pages: 530 – 531, September 1974. 

[44]  K. M. Chandy and L. Lamport: Distributed snapshots - determining global 

states of distributed systems. ACM Trans. Comput. Syst.1985. 

[45] E. N. M. Elnozahy, et al.: A survey of rollback-recovery protocols in message 

passing systems. ACM Computing Surveys. Volume 34 Issue 3, September 

2002. 

[46] E. Garbriel, et al.: Open MPI: goals, concept, and design of a next generation 

MPI implementation. In Proceedings, 11th European PVM/MPI Users’ Group 

Meeting, 2004. 



References 

 
 

133 

[47] Message Passing Interface Forum: MPI - A Message Passing Interface. In 

Proc. of Supercomputing ’93, pages 878–883. IEEE Computer Society Press, 

November 1993. 

[48] S. Sankaran et al. : The LAM/MPI checkpoint/restart framework: System-

initiated checkpointing. International Journal of High Performance Computing 

Applications, 2005. 

[49] S. Haider et al.: Fault Tolerance in Distributed Paradigms. 2011 International 

Conference on Computer Communication and Management, Singapore, 2011. 

[50] M. Beck, J.S. Plank and G. Kingsley: Compiler-Assisted Checkpointing. IEEE 

TCOS, 1995.  

[51] Virtual organization (grid computing). Available online at:  

 http://en.wikipedia.org/wiki/Virtual_organization_(grid_computing) 

[52] B. Monien and R. Feldmann: Euro-Par 2002 Parallel Processing. 8th 

international Euro-Par conference Padeborn, Germany, August 2002.   

[53] G. K. Saha: Fault tolerance in web services. ACM New York, USA, March 

2006. 

[54] Towards Open Grid Services Architecture. Available online at:  

http://www.globus.org/. 

[55] CryoPID - A Process Freezer for Linux. http://cryopid.berlios.de/ 

[56] DMTCP: Distributed MultiThreaded CheckPointing.  

http://dmtcp.sourceforge.net/ 

[57] J. Ansel, K. Arya and G. Cooperman: DMTCP: Transparent Checkpointing 

for Cluster Computations and the Desktop. Parallel & Distributed Processing. 

IEEE International Symposium. IPDPS 2009.  

[58] Order of Approximation: http://en.wikipedia.org/wiki/Orders_of_approximation 

[59] Taylor Series Approximation: http://www.mathsci.sharif.edu 

[60] Maclaurin Series: http://mathinsite.bmth.ac.uk/pdf/macseries_theory.pdf 

[61] Parallel computing: http://en.wikipedia.org/wiki/Parallel_computing 
 

http://mathinsite.bmth.ac.uk/pdf/macseries_theory.pdf
http://en.wikipedia.org/wiki/Parallel_computing


Bibliography 
 

 
 

134 

Bibliography 
 
 
 
 
J. Duell, P. Hargrove, and E. Roman: Requirements for Linux Checkpoint/Restart. 

Berkeley Lab Technical Report, May 2002 

J. Duell, P. Hargrove, and E. Roman: The Design and Implementation of Berkeley 

Lab's Linux Checkpoint/Restart. Berkeley Lab Technical Report, December 2002 

E. Roman: A Survey of Checkpoint/Restart Implementations. Berkeley Lab Technical 

Report, July 2002 

S. Sankaran et al: The LAM/MPI Checkpoint/Restart Framework: System-Initiated 

Checkpointing. In LACSI Symposium, October 2003.  

P. H. Hargrove and J.C. Duell: Berkeley Lab Checkpoint/Restart (BLCR) for Linux 

Clusters In Proceedings of SciDAC 2006: June 2006.  

Y. Bertot, B. Grégoire and X. Leroy: A Structured Approach to Proving Compiler 

Optimizations Based on Dataflow Analysis. In Proc. TYPES, 2004, pp.66-81.    

 E. Roman: A Survey of Checkpoint/Restart Implementations Lawrence Berkeley 

National Laboratory Technical Report, 2003 

Y.Ling, J.Mi and X.Lin: A Variational Calculus Approach to Optimal Checkpoint 

Placement. IEEE Trans. Computers 50(7): 699-708 (2001) 

J. Christmansson, M. Hiller and M. Rimén: An Experimental Comparison of Fault 

and Error Injection. Proceedings of the 9th International Symposium on Software 

Reliability Engineering (ISSRE-9), pp. 396-378, 1998 

A. Ziv and J. Bruck: An on-line algorithm for checkpoint placement. IEEE Trans. 

Computers, vol. 46, pp. 976-985, September 1997. 

M. Russinovich, Z. Segall and D. P. Siewiorek: Application Transparent Fault 

Management in Fault Tolerant Match. FTCS 1993: 10-19 

Y.Tamir and T.M.Frazier: Application-Transparent process-level error recovery for 

multicomputers. In Proceedings of the Hawaii International Conference on System 

Sciences, pp. 296-305, January 1989 

G. Bronevetsky et al: Application-level checkpointing for shared memory programs. In 



Bibliography 
 

 
 

135 

ASPLOS(2004) 235-247 

R.Y.D. Camargo, A. Goldchleger, F. Kon,  and A. Goldman: Checkpointing BSP 

parallel applications on the InteGrade Grid middleware. Presented at Concurrency and 

Computation: Practice and Experience, 2006, pp.567-579.  

M. Beck, J. S. Plank and G.Kingsley: Compiler-assisted checkpointing .Technical 

report UT-CS-94-269, University of Tenessee, December, 1994. 

F. Karablieh, R.A. Bazzi, and M. Hicks: Compiler-Assisted Heterogeneous 

Checkpointing. In Proc. SRDS, 2001, pp.56-56. 

J. Long, W.K. Fuchs, and J.A. Abraham: Compiler-Assisted Static Checkpoint 

Insertion. In Proc. FTCS, 1992, pp.58-65.    

C. C. Li and W. K. Fuchs: Compiler-Assisted Full Checkpointing. IEEE Transactions 

on Software Engineering, Submitted 1991. 

C-C. J. Li and W. K. Fuchs: CATCH - Compiler-Assisted Techniques for 

Checkpointing. 20th International Symposium on Fault Tolerant Computing, 1990.  

A. N. Norman, S.-E. Choi, and C. Lin: Compiler-generated staggered checkpointing. 

In Proceedings of the 7th workshop on Workshop on  languages, compilers, and run-

time support for scalable systems (LCR), pages 1–8, New York, NY,USA, 2004.  

J. Plank, M. Beck and G. Kingsley: Compiler-assisted memory exclusion for fast 

checkpointing. IEEE Technical Committee on Operating Systems and Application 

Environments, Special Issue on Fault-Tolerance, 1995. 

J. Hong, S. Kim and Y. Cho: Cost Analysis of Optimistic Recovery Model for Forked  

Checkpointing. IEICE Transactions on Information  and Systems, Vol. E86-D, No. 9, 

pp. 1534–1541, Septempber 2003 

P. Kacsuk, T. Kiss and G. Sipos: Solving the Grid Interoperability Problem by P-

GRADE Portal at Workflow Level, Future Generation Computing Systems: 

International Journal of Grid Computing: Theory, Methods and Applications, Volume 

24, July 2008. 

D.B. Johnson: Efficient Transparent Optimistic Rollback Recovery for Distributed 

Application Programs. In Proceedings of the 12th Symposium on Reliable Distributed 

Systems (SRDS 1993), pp. 86-95, IEEE Computer Society, Princeton, NJ, 

October 1993. 



Bibliography 
 

 
 

136 

D. Thain and M. Livny:  Error Scope on a Computational Grid: Theory and Practice. 

In Proceedings HPDC, 2002. 

J. Leon, A. L. Fisher, and P. Steenkiste: Fail-safe PVM: a portable package for 

distributed programming with transparent recovery. Carnegie Mellon University, CMU-

CS-93-124, February 1993. 

J.C. Smolens et al.: Fingerprinting: Bounding Soft-Error-Detection Latency and 

Bandwidth. IEEE Micro, Vol. 24, No. 6, November, 2004 

G. Suri, B. Jannsens and W.K. Fuchs: Reduced Overhead Logging for Rollback 

Recovery in Distributed Shared Memory. Twenty-Fifth International Symposium on 

Fault-Tolerant Computing, 1995 

F. Warg and P. Stenström,  "Reducing misspeculation overhead for module-level 

speculative execution",  in Proc. Conf. Computing Frontiers, 2005, pp.289-298. 

P.E. Chung et al.: Winckp: A Transparent Checkpointing and Rollback Recovery Tool 

for Windows NT Applications. In Proc. FTCS, 1999.  

O. Laadan, D.B. Phung and J. Nieh: Transparent Checkpoint-Restart of Distributed 

Applications on Commodity Clusters. In Proc. CLUSTER, 2005.          

M. Rieker, J. Ansel and G. Cooperman: Transparent User-Level Checkpointing for 

the Native Posix Thread Library for Linux. In Proc. PDPTA, 2006. 

L.M. Silva, J.G. Silva, and S. Chapple: Portable Transparent Checkpointing for 

Distributed Shared Memory. In Proc. HPDC, 1996. 

D.F. Bacon: Transparent Recovery in Distributed Systems. Presented at Operating 

Systems Review, 1991, pp.91-94. 

T. M. Frazier and Y. Tamir: Application-Transparent Error-Recovery  Techniques for 

Multicomputers. Proceedings of the 4th Conf on Hvpercubes, Concurrent Computers 

and Applications . Monterey, CA, Mar. 1989. 

E.N. Elnozahy and W. Zwaenepoel: Manetho-Transparent Rollback-Recovery with 

Low Overhead, Limited Rollback, and Fast Output Commit. Presented at IEEE Trans. 

Computers, 1992. 

 K. H. Kim:  Programmer-Transparent Coordination of Recovering Concurrent 

Processes: Philosophy and Rules for Efficient Implementation.  In Proceedings of IEEE 

Trans. Software Eng. 1988. 



 

 137 

 

 
 

Appendices



Publications 
 

 
 

138 

 

.1 Publications 
 

K. Sajadah, G.  Terstyanszky, S.Winter and P. Kacsuk: Checkpointing of parallel 

applications in a grid environment. In: Kacsuk, Peter K. and Lovas, Robert and Nemeth, 

Zsolt, (eds.) Distributed and parallel systems: in focus: desktop grid computing. 

Springer, Boston, MA, pp. 179-187. ISBN 9780387794471, 2008 

K. Sajadah, G.  Terstyanszky, S.Winter and P. Kacsuk: A checkpointing mechanism 

for the Grid environment. In: Proceedings of the UK e-Science All Hands Meeting 2008, 

Edinburgh, UK, 8th - 11th September 2008. National e-Science Centre, Edinburgh, 2008 



Sample Checkpoint File 

 139 

 

.2 Sample Checkpoint File 

 
The checkpoint file contains the necessary information necessary to restart an application 

fro a given point after failure. This section analyses the content of a checkpoint file. 

The “ompi_global_snapshot_1616.ckpt” file for example contains directories: 0, 1, 2, 3 

and 4 and files “global_snapshot_meta.data” and “restart-appfile”. 

Each of these directories contains the checkpoint file of each process obtained using the 

BLCR uniprocess checkpointing solution. 

For example folder “0” contains the following directories: 

 

 

 

 

 

 

“opal_snapshot_0.ckpt” for example contains the checkpoint file for process 0. The 

directory contains the following files: 

 

 

 

 

“ompi_blcr_context.1629” is the actual checkpoint file created by the BLCR 

checkpointing mechanism.  

“snapshot_meta.data” gives information about the checkpointing file. For example, it will 

give information about the process ID, the tools used to perform checkpointing and the 

name of the checkpointing file. 

opal_snapshot_0.ckpt 

opal_snapshot_1.ckpt 

opal_snapshot_2.ckpt 

opal_snapshot_3.ckpt 

 

ompi_blcr_context.1629 

snapshot_meta.data 

 



Sample Checkpoint File 

 140 

 

The “global_snapshot_meta.data” file is used to put all the local checkpoint files into a 

global checkpoint file. It contains a sequence number for each global checkpoint 

performed. 

The following snapshot of the file is obtained when the first checkpoint is performed: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The “Seq:0” implies it is the first checkpoint taken. Snapshot Reference references a 

process number. For example “Snapshot Reference: opal_snapshot_0.ckpt” references the 

process 0.  

Snapshot Location gives the location of a given checkpoint file. For example: “Snapshot 

Location: /home/raj/ompi_global_snapshot_1616.ckpt/0” indicates where 

“opal_snapshot_0.ckpt” is found. 

Using these files, Openmpi is able to create a global checkpointing file. 

The “restart-appfile” file is normally formed if the application has been restarted. The 

content of the file depends on the restart command used to restart the application. 

################################################# 
# Seq: 0 
# Timestamp: Sun Jul 18 23:56:18 2010 
# Process: 1574699009.0 
# OPAL CRS Component: blcr 
# Snapshot Reference: opal_snapshot_0.ckpt 
# Snapshot Location: /home/raj/ompi_global_snapshot_1616.ckpt/0 
# Process: 1574699009.1 
# OPAL CRS Component: blcr 
# Snapshot Reference: opal_snapshot_1.ckpt 
# Snapshot Location: /home/raj/ompi_global_snapshot_1616.ckpt/0 
# Process: 1574699009.2 
# OPAL CRS Component: blcr 
# Snapshot Reference: opal_snapshot_2.ckpt 
# Snapshot Location: /home/raj/ompi_global_snapshot_1616.ckpt/0 
# Process: 1574699009.3 
# OPAL CRS Component: blcr 
# Snapshot Reference: opal_snapshot_3.ckpt 
# Snapshot Location: /home/raj/ompi_global_snapshot_1616.ckpt/0 
# Timestamp: Sun Jul 18 23:56:18 2010 
# Finished Seq: 0 
############################################################# 
 
 



Sample Checkpoint File 

 141 

For example, if we want to restart and application from the second checkpoint file 

created, we will use the following command: 

 

 

 

(N.B:- if you are running on the cluster, use: ompi-restart -s 1 -mca btl ^openib -mca 

snapc_base_global_snapshot_dir /tmp ompi_global_snapshot_12941.ckpt). 

This will create the “restart-appfile” file and the content of the file will be as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This file describes the location of the local checkpoints files of the four processes created 

when the second checkpoint was triggered. The “Old Process Name” is the name given to 

each process in the will  “global_snapshot_meta.data” file. 

 
 

ompi-restart -s 1 ompi_global_snapshot_1616.ckpt 

 

 
########################## 
# 
# Old Process Name: 1574699009.0 
# 
-np 1 -am ft-enable-cr  opal-restart -mca crs_base_snapshot_dir 
/home/raj/ompi_global_snapshot_1616.ckpt/1 opal_snapshot_0.ckpt 
# 
# Old Process Name: 1574699009.1 
# 
-np 1 -am ft-enable-cr  opal-restart -mca crs_base_snapshot_dir 
/home/raj/ompi_global_snapshot_1616.ckpt/1 opal_snapshot_1.ckpt 
# 
# Old Process Name: 1574699009.2 
# 
-np 1 -am ft-enable-cr  opal-restart -mca crs_base_snapshot_dir 
/home/raj/ompi_global_snapshot_1616.ckpt/1 opal_snapshot_2.ckpt 
# 
# Old Process Name: 1574699009.3 
# 
-np 1 -am ft-enable-cr  opal-restart -mca crs_base_snapshot_dir 
/home/raj/ompi_global_snapshot_1616.ckpt/1 opal_snapshot_3.ckpt 
############################### 
 


	2.1 The Grid Systems.
	3.2 State of the Art
	3.3.1 Checkpointing Techniques
	Communication-Induced Checkpointing
	Best Category for this Research
	G. K. Saha: Fault tolerance in web services. ACM New York, USA, March 2006.

