

WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

The challenge of ATM performance measurement Cook, A.J.

Presented at the Global Workshop on Aviation System Performance, Tianjin, China, 21 - 23 July 2016.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

The challenge of ATM performance measurement

Dr Andrew Cook
Principal Research Fellow
University of Westminster, London

Overview

- Comparing three regions
- New metrics & sampling insights
- Multiple targets

Challenges & opportunities

Acknowledgments

SESAR 2020 Exploratory Research: Research & Innovation Action. University of Westminster (coordinator), Innaxis, EUROCONTROL, Icelandair, Norwegian Air Shuttle, SWISS, Belgocontrol.

Chinese Journal of Aeronautics.
Submitted paper.
Andrew Cook, Seddik Belkoura, Massimiliano Zanin.

	Europe	US	China
Airline liberalisation	 within EU: main change - deregulation int. routes, 1993 beyond EU: series bilaterals and 'open sky' agreements 	 major industry liberalisation first started in US, 1978 major EU-US multilateral agreement, 2008 	 official separation military jurisdiction, 1980 merged into three large airline groups, 2002 regionals emerged essentially as supplementary
Major operators, alliances, ownership	Lufthansa Group (Star Alliance) Ryanair (LCC; no global alliance) IAG (oneworld) Air France-KLM (SkyTeam) wholly/majority private holdings	American Airlines (oneworld) Delta (SkyTeam) Southwest (LCC; no global alliance) United Airlines (Star Alliance) public companies	Air China (Star Alliance)* China Eastern (SkyTeam)* China Southern (SkyTeam)* Hainan Airlines (no global alliance)† * majority state shareholdings † largest privately-owned airline
Airport strategic schedule control	yes	no	yes

	Europe	US	China
ATFM service provision	41 states (EUROCONTROL)	Federal Aviation Administration	Air Traffic Management Bureau (CAAC)
	63 en-route centres	20 air route traffic ctrl centres	7 ATFM regions
Primary management	at-gate	airborne	airborne
MIT	very limited	yes (->TBM)	yes
Special use airspace	core	coast	core
ATFM / AO/ airport CDM	yes	yes	yes

- Common
 - mergers into airline groups; global alliance affiliations
- Europe and US
 - established free-markets
 - growth in LCCs; demarcation breaking down in Europe
- China
 - from fully planned, to more market economy
 - competition, <u>e.g.</u> between three largest groups; few LCCs
- ATFM, mainly similarities; key characterising features:
 - Europe: fragmentation
 - US: large weather systems (airport flows)
 - China: special use airspace

Data level by region	Europe	US	China
Focus on arrival or departure delay	departure	arrival	arrival
Delay threshold	≥ 5 mins	≥ 15 mins	> 5 mins
Main delay causes reported	airline weather ATFM, weather ATFM, airports ATFM, en-route reactionary	airline weather ATFM reactionary security	airline weather ATFM military

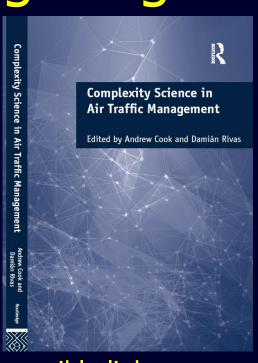
(2014)

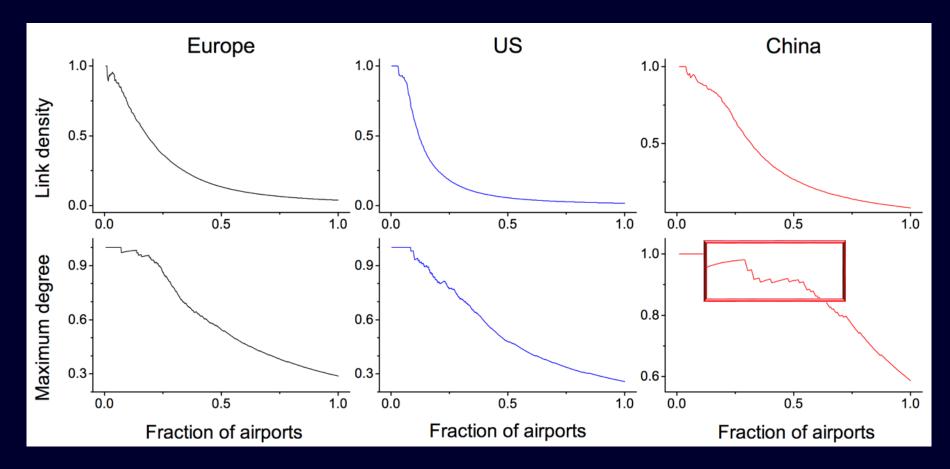
	Europe	US	China
Total airports			
Total [*] pax (m)			
Total [*] flights (m)			just yet
Delayed ≥ 5 mins		ot Publicly available:	
Delayed ≥ 15 mins		+ publicly a	
Avg. delay (mins)	table n	01 1	
Reactionary delay	Sorry		
ATFM delay			
Cancelled			

^{*} International and domestic

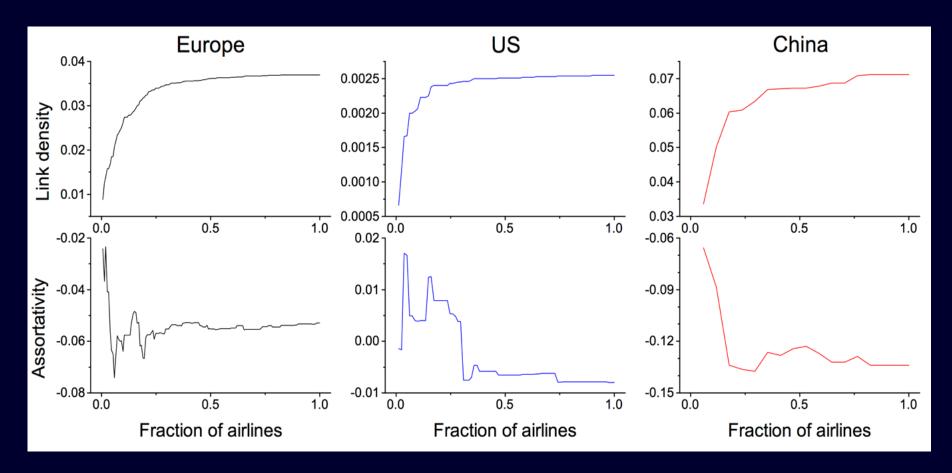
Do the top 30 airports give us 80% of the metric? What does the shape of the curve look like there?

- Primary ATM data sources (don't always agree)
 - pure trajectory (radar track) data
 - network manager (e.g. ATFM) delay data, with causes
 - airline data (e.g. delay & cancellation) (various channels)
- Need to assess in appropriate context
 - exogenous (weather, airport/sector capacities, strikes, military)
 - robustness (schedule, flight scope, range checks, last-filed FPL)
 - reporting protocols (e.g. reactionary ('knock-on') delay)
- Sampling frameworks (Europe c.f. US), carriers:
 - in US required report performance data if ≥ 1% total domestic scheduled service passenger revenues (+ some report voluntarily)
 - in EU operating > 35 000 flights per year within EU airspace
 - in 2014: US = 16, EU = 100; both IFR ≈ 70%

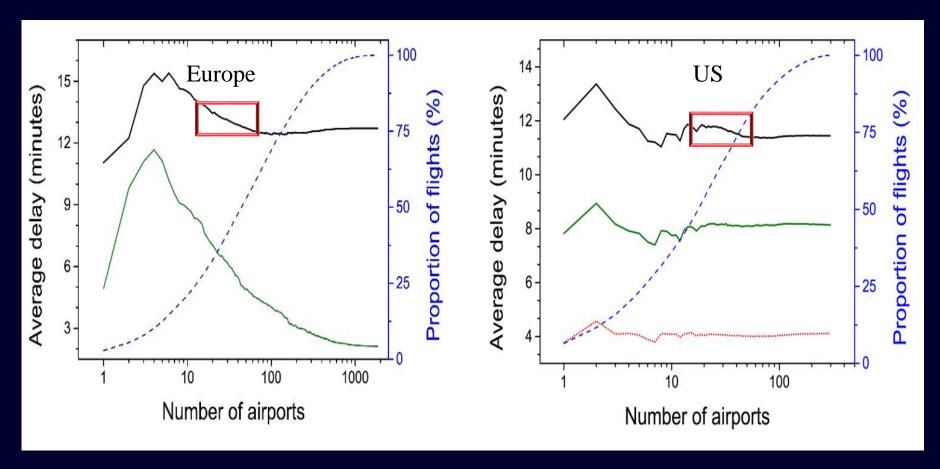

Data level by region	Europe	US	China
Lower delineation (no aircraft types or delay data)	OpenFlights*		
No. of airports	497	595	185
No. of airlines	153	81	17
Higher delineation (with aircraft types and delay data)	ALL-FT+ [†]	RITA¶	N/A
No. of airports	1854	286	_
No. of airlines	100	16	_

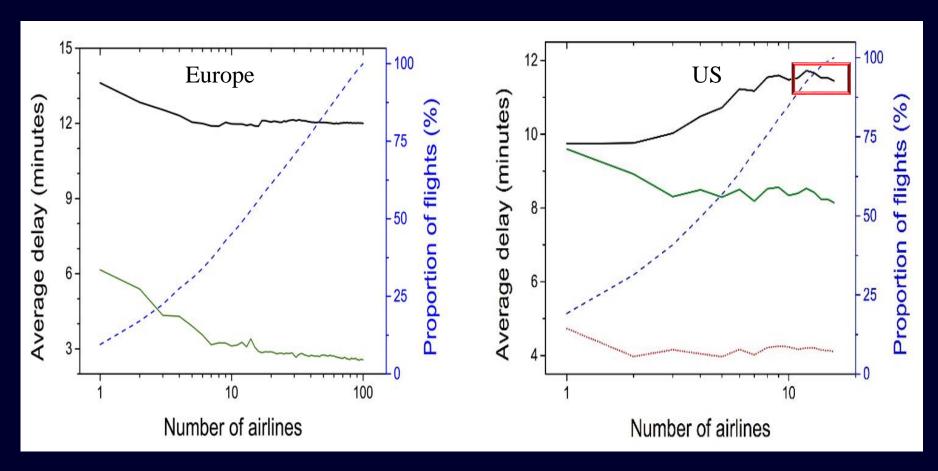

^{*} Open source repository, flights and airport data, worldwide coverage. Flights for June 2015.

[†] EUROCONTROL; all intra-European IFR flights, March through December, 2011.


[¶] OTP data, Research and Innovative Technology Administration (RITA), US DoT. Intra-US flights, March through December, 2011.

- Complexity science: networks (CNT)
 - multiple components; uncertainty
 - non-linear dynamics: emergent behaviour
 - non-analytical models, e.g. ABM
 - metrics & methods (community detection)
- ComplexWorld network
 - SESAR ER (NEXTOR)
- Some simple metrics
 - link density: active links in the network / all possible links
 - maximum degree: degree of the most connected node
 - assortativity (degree correlation): correlation coefficient between the degrees of pairs of nodes connected by a link
 - -1 => all nodes connected to nodes of different degree




(OpenFlights data)

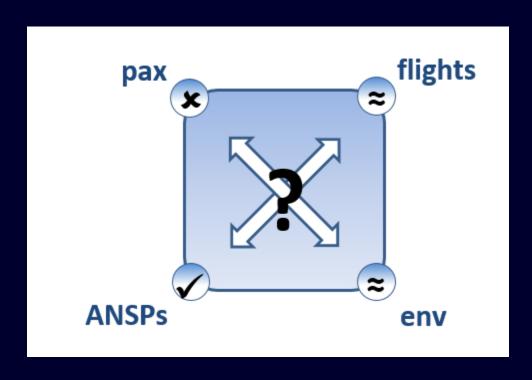
(OpenFlights data)

(ALL-FT+ & RITA data)

(ALL-FT+ & RITA data)

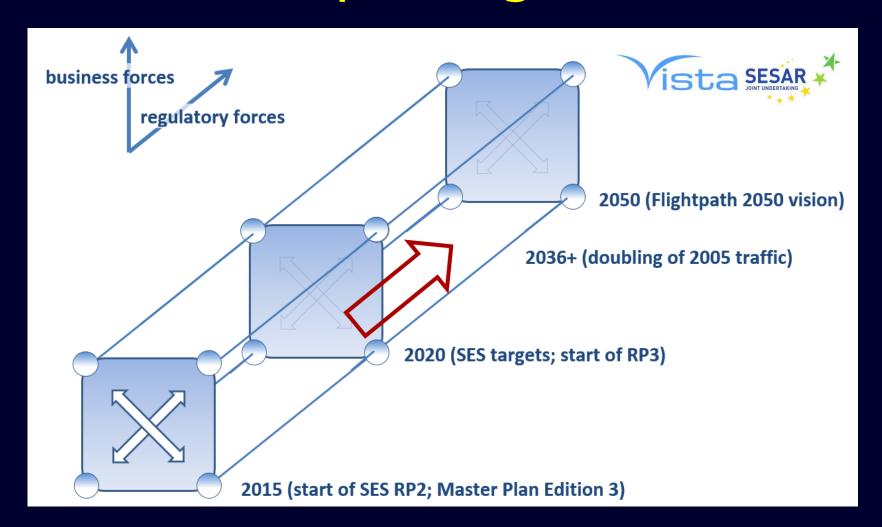
- Literature demonstrates many sampling constraints
 - <u>purposive</u>, e.g. most connected airports / region of airspace
 - limited to data from (a) given airline(s) (or alliance)
 - data quality/availability for smaller airports / smaller airlines/LCCs
 - data purchase cost
 - computational cost (including data cleaning; 14%)
- Larger airports and airlines are often over-represented
- Non-saturation => often no obvious sampling threshold by which nodes may be safely discarded
- Top 34 airports (Europe & US) => ≈2% error
 - caution thus advised regarding changes of this order

	Europe	US	China
Programme	SESAR	NextGen	ATMB Strategic Development Programme
Target year	2035	2025*	2030
Baseline year (for relative changes)	2005	2009	2015
(ICAO) KPAs (11)			
Safety	Improve safety 10-fold	Comm. carrier fatalities ≤ 6.2 per 100 million pax	Reduce ATC-attributable accident rate by 20% by flight volume
Capacity	Increase capacity 3-fold	12% increase, core airports	Increase capacity 3-fold
Efficiency	Reduce avg dly by 1-3 min [†] En-route ATFM avg dly 0.5 mins [¶]	Reduce delays by 27%	Average ATC-attributable delay < 5 mins
Environment	10% reduction in impact of flights on environment	Reduce fuel burned per km by ≥ 2% annually	Reduce CO ₂ by 10% (kg/km)


^{*} Selected targets shown relate to intermediate target year 2018. Delay reduction allocated to efficiency KPA for ease of comparison.

[†] Declared within SES Performance Scheme within capacity KPA; target relative to 2012.

[¶] Corresponding target set within SES Performance Scheme for 2015-2019.



- Passenger context: ultimate customer
 - Advisory Council for Aeronautics Research in Europe; and White Paper (both 2011)
 - "highly ambitious goals" (x5)
 - "90% of travellers within Europe are able to complete their journey, door-to-door within 4 hours."
 - 'Destination 2025' (FAA, 2011) qualitative
- Pax delay > flight delay
 - often dominates delay costs & behaviour
 - 1.6 1.7 (US); 1.3 1.9 (Europe)
 - flight-centric assessment only (x3)
 - how measure progress?

KPIs established for 2015 (all in Single European Sky Performance Scheme, RP2)

Challenges & opportunities

Challenges & opportunities

- Metrics methods
 - more focus: costs (cancellation), propagation, predictability
 - often cannot see differences in flight-centric metrics only
 - US analyses more advanced; several pax-centric metrics proposed
 - complementarity: complexity & classical metrics & methods
- Metrics trade-offs
 - basic' (e.g. flexibility and predictability)
 - monetised v. non-monetised (resilience)
 - regulatory v. market forces
 - KPAs, stakeholders: horizontal & vertical

- local v. network (resilience engineering: polycentric governance best)
- capture of non-linearity effects in models

Challenges & opportunities

Data

- how much of a network is 'enough'?
- more work ahead on sampling protocols; clearly need smaller airports
- focus on particular airlines or routes is fine, but not a network proxy
- accessibility: still a challenge in Europe
- performance assessment advances: mandate- and data-driven
- big data: diversity / open architectures, integrity dynamic metrics?
- Standardisation and collaboration
 - EU-US harmonised KPI reporting, in coordination with ICAO
 - collaborations between China and US, China and EUROCONTROL
 - ATFM delay established as a proven leading indicator
- Performance assessment harmonisation across regions
 - account for different operational /market / regulatory contexts
 - balance between standardisation and adaptability
 - mutual international learning and research

Thank you

airspace-research@westminster.ac.uk