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Abstract: Metabolic reengineering using nanoparticle delivery represents an innovative 

therapeutic approach to normalizing the deregulation of cellular metabolism underlying many 

diseases, including cancer. Here, we demonstrated a unique and novel application to the treatment 

of malignancy using a short-chain fatty acid (SCFA)-encapsulated lipid-based delivery system – 

liposome-encapsulated acetate nanoparticles for cancer applications (LITA-CAN). We assessed 

chronic in vivo administration of our nanoparticle in three separate murine models of colorectal 

cancer. We demonstrated a substantial reduction in tumor growth in the xenograft model of 

colorectal cancer cell lines HT-29, HCT-116 p53+/+ and HCT-116 p53-/-. Nanoparticle-induced 

reductions in histone deacetylase gene expression indicated a potential mechanism for these 

anti-proliferative effects. Together, these results indicated that LITA-CAN could be used as an 

effective direct or adjunct therapy to treat malignant transformation in vivo.
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Plain language summary
Non-digestible carbohydrates inhibit the growth of certain cancers. These effects are linked 

to short-chain fatty acids (SCFAs), such as acetate, which are produced by the breakdown of 

non-digestible carbohydrates in the gut. The exact mechanisms by which SCFAs inhibit cancer 

growth are unknown, and finding out is complicated by their large number of biological functions, 

including sugar, fat and cholesterol metabolism and secretion of appetite-controlling hormones. 

In addition, the use of SCFAs as a cancer therapy is limited by the difficulty in safely delivering 

sufficiently high levels to specific sites within the body.

In this study, we packaged the SCFA acetate within special nanoparticles, termed liposome-

encapsulated acetate nanoparticles for cancer applications (LITA-CAN). We showed that 

LITA-CAN delivery leads to a substantial reduction in tumor growth in three different mouse 

models of colorectal cancer. In addition, we showed that LITA-CAN reduce expression of 

histone deacetylase (HDAC) proteins, key enzymes involved in cell division and growth. 

Together, these results indicated that LITA-CAN could be used as an effective therapy to treat 

malignant transformation.

Introduction
Dietary supplementation with fermentable carbohydrates (FC) has been shown to 

attenuate malignant growth in certain cancers.1,2 These effects are linked to the produc-

tion of short chain fatty acids (SCFAs), predominantly acetate, propionate and butyrate, 

which are generated by fermentation of FC by microbiota in the colon.3 The anti-

tumorigenic effects attributed to SCFAs are, in turn, thought to arise from their altering 
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expression of histone deacetylase (HDAC) enzymes.1,4 

HDACs are important epigenetic markers that play a key role 

in modulating the expression of genes involved in cellular 

proliferation, apoptosis and differentiation.5,6 As such, they 

represent an integrated target for cancer therapy, with the 

ineffectual metabolism of SCFA in cancer cells hypothesized 

to lead to an accumulation of acetyl-CoA in the nucleus, 

where it functions as an HDAC inhibitor.7

Previous studies have attempted to target and disrupt 

the altered cellular metabolism in colonic cancer cells via 

supplementation with SCFA.1,8 However, the ubiquitous 

role of SCFAs in metabolism, combined with a short tissue 

half-life, an adversely low pH in solution and the nontargeted 

nature of oral and peripheral administrations limits their 

therapeutic potential.9 Indeed, reductions in tumor growth, 

mediated by butyrate inhibition of HDAC enzymes, are 

limited by a short half-life and first-pass hepatic clearance 

following peripheral delivery.10 Liposomal encapsulation 

of therapeutic agents addresses a number of these issues 

by improving bioavailability, extending treatment effects 

and potentially reducing dosing.11 Liposomes are an effec-

tive tool for drug conveyance, in part because they can be 

engineered with properties that enhance functional delivery 

to specific locations.12 Polyethylene glycol (PEG)-lipids can 

be incorporated into the lipid bilayer to enhance biocompat-

ibility and increase circulation times.13 This modification is 

especially effective in passively targeting malignant tissue, 

with increased liposomal uptake through leaky tumor micro-

vasculature and prolonged retention time due to reduced 

lymphatic drainage occurring via the enhanced permeability 

and retention (EPR) effect.14,15

We have previously demonstrated that peripheral admin-

istration of PEGylated nanoparticles containing anticancer 

Survivin siRNA leads to a significant reduction in tumor 

growth in a murine xenograft model of breast cancer.16 

In addition, we have formulated lipid-encapsulated acetate 

(LITA) nanoparticles which, following peripheral delivery 

in obese mice, resulted in improvements in a wide range 

of metabolic outcomes.17 Here, we encapsulated acetate 

within specifically formulated liposome-encapsulated acetate 

nanoparticles for cancer applications (LITA-CAN) and 

assessed their effects in three xenograft murine models of 

human colorectal cancer.

Material and methods
Materials and experimental animals
All in vivo experiments were carried out in compliance with 

the Animals (Scientific Procedure) Act 1986. Mice were 

supplied by Harlan, UK. Mice were housed four per cage 

in a temperature-controlled room at ~25°C with alternating 

12-hour light/dark periods (light: 8:00–20:00) with ad libitum 

access to food and water. All experiments were carried out 

with ethical approval from the local ethical review committee 

of Imperial College London in compliance with the UK 

Home Office Animals (Scientific Procedure) Act 1986 under 

the project license 70/6656.

Preparation of liposome nanoparticles
Nanoparticle design was based upon our previous studies, 

where PEGylated liposomes were formulated encapsulating 

acetate for uptake in the peripheral tissues17 or specifically 

designed for preferential uptake in xenograft tumors.16 

Liposomes were prepared by the thin film hydration method,18 

with constituent molar ratios depending on the proportion 

of N1-cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine 

(CDAN)/1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC)/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

N-methoxy PEG2000 (DSPE-PEG2000)/cholesterol (Chol). 

Optimization of components was performed to maximize 

size and acetate encapsulation. For xenograft delivery, 

the molarity percentage of DSPE-PEG2000 in the liposome 

membrane was increased from 1% to 5% compared to 

previous constitutions (Figure S1), to prolong circulation 

and enable preferential accumulation in tumor tissue via the 

EPR effect. Liposomes were prepared with either acetate 

(1 M, pH 2.3) to form LITA-CAN or 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES; 4  mM, NaCl 

135 mM, pH 6.5) for use as control. The lipid layer was 

sonicated with acetate or HEPES for 1 hour at 30°C in the 

dark, buffered to a pH of 7.0 and dialyzed overnight using the 

Float-A-Lyzer G2 device. Particle size was determined using 

a Malvern Zetasizer system (Malvern Instruments, Malvern, 

UK). LITA-CAN were constituted with 1% rhodamine 

(LITA-CAN-Rhd; Figure S1) for imaging purposes.

Quantification of acetate inside 
LITA-CAN
The presence and concentration of acetate within LITA-CAN 

were determined using 1H NMR spectroscopy.17

Tumor efficacy and tissue processing
Xenograft models from three different colorectal cancer cell 

lines were investigated to explore the therapeutic potential 

of LITA-CAN; HT-29, HCT-116 wild-type p53 (HCT 116 

p53+/+) and HCT-116 isogenic knocked-out p53 (HCT 116 

p53-/-). The HT-29 cells were obtained from ATCC Cell 

Lines (LGC Standards, Middlesex, UK). HCT-116 p53+/+ 

and HCT-116 p53-/- lines were provided by Professor 
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Joseph Bertarnd, Karolinska Institutet, Sweden, via Bert 

Vogelstein, Johns Hopkins Oncology Centre. Ethical and 

legal approval was obtained for all cell line usage from 

the local ethical review committee of Imperial College 

London in accordance with the Human Tissue Act of 2004. 

Cell lines were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM; Sigma-Aldrich Co., St Louis, MO, USA), 

supplemented with 10% fetal calf serum (FCS; Sigma-

Aldrich Co.) in an incubator at 37°C with 5% CO
2
. Cells 

were maintained every 3–5  days while never exceeding 

15 passages. For generating luciferase-stable clones from 

HCT-116 p53+/+ and HCT-116 p53-/- for in vivo visual-

ization, cell lines were transfected using polyethylenimine 

(PEI) polymers mixed with the pGL4.20 [luc2/Puro] Vec-

tor (Promega Corporation, Fitchburg, WI, USA) in a 4:1 

ratio. Stable clones from each cell line (HCT-116 p53+/+ 

and HCT-116 p53-/-) were selected in puromycin for 

2 weeks. To confirm the success of stable clones and check 

luciferase expression levels, Steady-Glo Luciferase Assay 

System (Promega Corporation) was used. Tumorigenicity 

was established in all models by subcutaneously injecting 

2.5×105 cells of colon cancer cell line into the left flank of 

6- to 8-week-old nude mice (BALB/c nu/nu). Confirmation 

of subcutaneous nude mouse xenograft tumors required 

14–20 days.

In vivo distribution of LITA-CAN-Rhd 
in HT-29 xenograft mice
Once tumors were palpable, HT-29 animals were injected 

intraperitoneally (i.p.) with LITA-CAN-Rhd (200  µL, 

2.6 mg/kg of body weight, n=3). After 2 hours of adminis-

tration, tissue samples were collected and frozen at -80°C. 

A cryostat (Olympus Corporation, Tokyo, Japan) was used 

to generate 7 μm slices and subsequently stained with 4′,6-

diamidino-2-phenylindole (DAPI). Images were obtained 

using an Olympus IX71 microscope (Leica Microsystems, 

Wetzlar, Germany).

Effects of LITA-CAN administration 
on xenograft tumor metastasis
Mice were injected i.p. with LITA-CAN or controls (2.6 mg/kg, 

200 μL volume) every 3 days for 4 weeks in each of the three 

xenograft models: HT-29 (n=6/group), HTC-116 p53+/+ 

(n=8/group) and HTC-116 p53-/- (n=8/group). Tumor 

volume was monitored every 2–4 days by a caliper to deter-

mine the volume estimated assuming an ellipsoid shape 

using the following equation: V = L × W × D × π/6. After 

4 weeks, the tumors were excised, weighed and portioned to 

either formalin solution (Sigma-Aldrich Co.) for histological 

evaluation or snap frozen in liquid nitrogen and stored 

at -80°C for subsequent extraction of mRNA.

Hepatic HDAC expression
Western blot was performed on liver samples from HT-29 

mice to examine the effects of LITA-CAN on expression 

of class I, II and IV HDAC proteins. Raw signals for each 

were quantified and background subtracted using the Li-COR 

Odyssey software (LI-COR Biotechnology; Lincoln, NE, 

USA) and normalized to β-actin. Quantification of protein 

expression was performed using ImageJ software (NIH, 

Maryland, USA).

Tumor assessment by bioluminescent 
imaging luciferase
Luminescent visualization of tumors in HCT-116 p53 wild 

type and knockout animals was carried out at week 3 using a 

IVIS 2000 small-animal in vivo imaging system and an IVIS 

200 cooled CCD camera system (Xenogen Corp., Almeda, 

CA, USA) and IGOR software (Wavemetrics Corporation, 

Portland, OR, USA). Animals received a 100-µL i.p. injection 

of d-luciferin (15 mg/mL; Gold Biotechnology, St Louis, 

MO, USA) under 1%–2% inhaled isoflurane anesthesia. 

An average of 10 kinetic bioluminescent acquisitions were 

collected between 0 and 30 minutes after substrate injection 

to confirm a peak photon emission recorded as maximum 

photon efflux per second. Data analyses and background 

correction were carried out using total photon flux emission 

(photons/s) in a region of interest (ROI) covering the entire 

xenograft tumor region.

Statistical analysis
Unless otherwise noted, all statistical analyses were per-

formed using GraphPad Prism (La Jolla, CA, USA). Data 

are presented as mean ± standard deviation (SD). Statistical 

significance was calculated with Student’s t-test, two-way 

analysis of variance (ANOVA) with Bonferroni post-hoc 

test for multiple comparisons and generalized estimating 

equation (GEE) analysis where appropriate.

Results
Nanoparticle preparation, quantification 
of size and encapsulated acetate 
concentration
Liposome size and acetate encapsulated concentrations for 

nanoparticles of CDAN/DSPC/Chol/DSPE-PEG2000 variants 

are shown in Table S1. LITA and corresponding control 

nanoparticles were formulated using a CDAN/DSPC/Chol/ 

DSPE-PEG2000 molar ratio of 32:32:31:5. LITA-CAN-Rhd 
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nanoparticles contained 1% of 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 

(DOPE-rhodamine) component, with 1% less cholesterol 

(32:32:30:5:1). Zetasizer analysis of nanoparticles revealed 

comparable sizes between LITA (108.2±3.3 nm, 25°C) and 

corresponding control nanoparticles (100.7±2.1 nm, 25°C). 
1H NMR analysis revealed that the optimal encapsulated 

acetate concentration for LITA liposomes was 6.13 mM.

In vivo distribution of LIP-CAN-Rhd
Tumorigenicity in nude mice (BALB/c nu/nu) was estab-

lished by injecting colon cancer cell line HT-29. Once tumors 

were palpable, animals were injected i.p. with LITA-CAN-

Rhd (200 µL, 2.6 mg/kg; n=3). After 2 hours, tissue samples 

were collected, frozen and 7 μm slices generated using a 

cryostat. A nuclear stain (DAPI) was initially allied to the 

microscope slide to ensure the region being observed was in 

fast tissue (Figure 1A), and a rhodamine-specific filter was 

used to confirm the presence of fluorescent-labeled LITA-

CAN-Rhd in the tumor (Figure 1B).

Effects of LITA-CAN delivery in an HT-29 
colorectal cancer xenograft tumor model
Compared to control nanoparticles, LITA-CAN delivery 

led to a significant reduction in tumor size (LITA-CAN: 

106.8±113.3 mm2 vs control: 269.7±87.46 mm2, P,0.05; 

Figure 1C and D), weight (LITA-CAN: 0.046±0.032  mg 

vs control: 0.33±0.04 mg, P,0.01; Figure 1E) and volume 

after 4 weeks of therapy (LITA-CAN: 123.0±118.7 mm3 vs 

control: 254.2±93.6 mm3, P,0.05; Figure 1F).

Hepatic HDAC expression
Quantitative reverse transcription polymerase chain reac-

tion (RT-PCR) of xenograft liver mRNA revealed a clear 

downregulation of Class I HDACs in LITA-CAN-injected 

animals, including HDAC-1 (P,0.05), HDAC-2 (P,0.05), 

HDAC-3 (P,0.001) and HDAC-4 (P,0.01) compared to 

controls (Figure 2). Sirtuins (SirTs) were also affected by 

LITA administration with a significant reduction in SirT1 

(P,0.05; Figure 2).

Effects of LITA-CAN delivery in an 
HCT 116 p53+/+ and HCT 116 p53-/- 
colorectal cancer xenograft tumor model
No differences in tumor size were recorded between LITA-

CAN and controls in either HCT-116 p53+/+ (P=0.27; 

Figure 3A) or HCT-116 p53-/- (P=0.41; Figure 3D) mice, 

with similar nonsignificant trends toward reduced growth 

(HCT-116 p53+/+: P=0.20, Figure 3B; HCT-116 p53-/-: 

P=0.61, Figure 3E). Regarding luciferase monitoring of 

Figure 1 LITA-CAN-Rhd localization and the effects of LITA-CAN in an HT-29 xenograft model of colorectal cancer.
Notes: LITA-CAN-Rhd identification in the xenograft tumor by histological fluorescence imaging. (A) DAPI staining confirmed fast tissue. (B) Rhodamine-specific filter. 
The effects of LITA-CAN administration on HT-29 derived xenograft tumor metastasis; BALB/c nu/nu mice received an i.p. injection (2.6 mg/kg) of either LITA-CAN or 
control liposomes every 3 days for a 4-week period. Tumors were extracted and weighed at the end of the 4 weeks study. (C) Representative tumors extracted from LITA-
CAN and control mice. (D) Tumor size at 4 weeks. (E) Tumor weight. (F) Tumor volume as measured by a caliper over the 4 weeks. Data are presented as mean ± SEM 
and analyzed using Student’s t-test or GEE (GraphPad Prism). n=6/group. *P,0.05 and **P,0.01. (A and B) Magnification ×100.
Abbreviations: LITA-CAN-Rhd, LITA-CAN constituted with 1% rhodamine; LITA-CAN, liposome-encapsulated acetate nanoparticles for cancer applications; DAPI, 4′,6-
diamidino-2-phenylindole; i.p., intraperitoneally; SEM, standard error of the mean; GEE, generalized estimating equation.
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tumor size, LITA-treated groups again showed nonsignificant 

trends toward reduced luminescence compared to the control 

groups (HCT-116 p53+/+: P=0.24, Figure 3C; HCT-116 

p53-/-: P=0.74, Figure 3F). Representative bioluminescence 

images are shown in Figure S2.

Discussion
Here, we described the preparation and therapeutic appli-

cation of acetate encapsulating LITA-CAN liposomes to 

correct the impaired cellular metabolism associated with 

malignancy. Our data show that systemic administration of 

LITA-CAN leads to their accumulation in tumor tissue and, 

in the HT-29 murine xenograft model of colorectal cancer, 

mediates a reduction in growth. Furthermore, LITA-CAN-

induced alterations in HDAC and SirT mRNA expression 

indicate a potential epigenetic mechanism responsible for 

these beneficial effects.

Our initial work developing liposome formulations 

revealed that the percentage molarity of each component 
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Figure 2 The effects of LITA-CAN on liver mRNA expression in an HT-29 
xenograft model of colorectal cancer.
Notes: Quantitative changes in the expression of xenograft tumor liver mRNA at 
the end of 4 weeks of chronic LITA-CAN administration (i.p. injection every 3 days 
for 4  weeks of LITA-CAN or control (2.6 mg/kg) in an HT-29 xenograft model 
of colorectal cancer). Data represent fold change observed in LITA-CAN animals 
compared to controls; mRNA expression normalized β-actin. Quantification of 
protein expression was performed using ImageJ software. Data are presented as 
mean ± SEM and analyzed by Student’s t-test (GraphPad Prism). n=6/group. *P,0.05, 
**P,0.01 and ***P,0.001.
Abbreviations: LITA-CAN, liposome-encapsulated acetate nanoparticles for 
cancer applications; i.p., intraperitoneally; SEM, standard error of the mean.

Figure 3 The effects of LITA-CAN administration on size, volume and luminescence in HTC-116 p53+/+ and HTC-116 p53-/- xenograft models of colorectal cancer.
Notes: The effects of LITA-CAN administration on HTC-116 p53+/+ (A–C) and HTC-116 p53-/- (D–F) derived xenograft tumor metastasis; BALB/c nu/nu mice 
received an i.p. injection (2.6 mg/kg) of either LITA-CAN or control liposomes every 3 days for a 3-week period. Tumors were extracted and weighed at the end of the 
3 weeks study; tumor size at 3 weeks in (A) HTC-116 p53+/+ and (D) HTC-116 p53-/-. Tumor growth in (B) HTC-116 p53+/+ and (E) HTC-116 p53-/-. Luciferase 
activity in (C) HTC-116 p53+/+ and (F) HTC-116 p53-/-. Data are presented as mean ± SEM and analyzed by two-way ANOVA with Bonferroni post hoc test or student’s 
unpaired t-test. n=8/group.
Abbreviations: LITA-CAN, liposome-encapsulated acetate nanoparticles for cancer applications; i.p., intraperitoneally; SEM, standard error of the mean; ANOVA, analysis 
of variance.
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plays an integral role in optimizing both the nanoparticle size 

and the permissible concentration of encapsulated acetate. In 

addition to maximizing the concentration of encapsulating 

acetate, LITA-CAN were specifically formulated with an 

increased 5% DSPE-PEG2000 to promote greater systemic 

stability, longer circulation times and increased tumor 

uptake.19 Furthermore, heavily PEGylated liposomes 100 nm 

in diameter, such as LITA-CAN, are particularly well suited 

to enter tumor volumes via the EPR effect.14 This increased 

molarity percentage of DSPE-PEG2000 and apposite size led 

to a preferential accumulation of LITA-CAN in the tumor 

tissue. In addition to these data, our previous work has con-

firmed the integrity of the LITA nanoparticle complex to 

successfully and securely encapsulate acetate. In the same 

study, toxicological assessment of liver and adipocyte struc-

ture and function revealed no morphological abnormalities, 

inflammation or changes in the size or volume of adipocytes, 

following in vivo LITA delivery.17

Acetate plays a central role in cellular metabolism, 

functioning as a key intermediate in the synthesis of fatty 

acids and cholesterol in the liver. Furthermore, oxidation of 

acetate derived from carbohydrates, fats and proteins is the 

initial step in the tricarboxylic acid (TCA) cycle, a funda-

mental energy producing pathway in all aerobic organisms.20 

While oxidative phosphorylation generates the majority of 

energy required in normal differentiated cells, cancer cells 

rely primarily on aerobic glycolysis, a metabolic shift termed 

the Warburgh effect that comprises attenuation of energy 

production via mitochondrial beta-oxidation.21 This defective 

energy metabolism, linked to impaired mitochondrial func-

tion, characterizes nearly all tumors, and offers the potential 

for effective targeted therapy.22–24

Within malignant cells, the inhibition of glucose uptake 

and metabolism by products of SCFA breakdown are thought 

to preferentially inhibit aerobic glycolysis and suppress 

uncontrolled cell growth.22,25 The anti-proliferative effects of 

SCFA have been linked to the enteric generation of acetate 

in several models of malignancy,1,4 with additional studies 

further linking these changes to SCFA-induced alterations in 

the activities of HDAC enzymes.5,10 In line with these data, 

we demonstrated that LITA-CAN administration leads to a 

significant reduction in the tumor growth and a concomitant 

reduction in the selected HDAC expression. The decreased 

expression of HDAC SirT1 is of particular note given its 

established role as an inhibitor of apoptosis and promoter 

for tumorigenesis.26 Furthermore, the observed reduc-

tion in SirT1 coupled with no effect on SirT2 expression 

mirrors in vitro data examining the effects of acetate and 

dichloroacetate (DCA), an analog of acetate with significant 

antitumor effects.27 DCA is proposed to inhibit pyruvate 

dehydrogenase kinase, shifting metabolism from glycolysis 

to oxidative phosphorylation, thus diminishing the Warburg 

effect.27 This in turn creates a substantial increase in the 

reactive oxygen species (ROS) production and subsequent 

cell death,28 and it is conceivable that LITA-CAN work in a 

comparable manner.

Taken together, these data indicate the anti-proliferative 

effects of our nanoparticle therapy are underpinned by the 

suppression of HDAC enzymes. However, given the ubiq-

uitous role of acetate in cellular metabolism, the influence 

of acetate-induced metabolic reprogramming should not 

be overlooked.24,29 The LITA-CAN-induced attenuation 

of tumor growth in the HT-29 animals was not instanta-

neous with differential growth rates only apparent 3 weeks 

post commencement of administration. This suggests that 

acetate needs to be present for a significant period of time, 

saturating the tumor environment, before cellular responses 

can take place. Finally, we noted that HT-29 and HCT-116 

p53+/+ xenografts appear more substantially affected by 

LITA-CAN administration than HCT-116 p53-/-, suggest-

ing a role for p53 in LITA-CAN-induced anticancer effects. 

Individual colorectal cancer cell lines are characterized by 

their surface markers and colony morphology, which can 

self-renew and differentiate into multiple lineages. HCT-116 

is a highly aggressive cell line that shows no ability to dif-

ferentiate and does not express CDX-1, an intestine-specific 

transcription factor, while HT-29 has an intermediate capac-

ity to differentiate.30 Indeed, the aggressive nature of the 

HCT-116 cell line resulted in necrotic tumors at the end of 

the third week of experimentation. As a result, this required 

animals to be culled and prevented our assessment of the 

effects of LITA-CAN into a fourth week in this model. 

Additional work into the exact mechanism by which LITA-

CAN exerts its anti-proliferative effects will be required to 

understand the differing response we recorded in individual 

xenograft models.

Given the heterogeneity in cancer pathophysiology, it is 

important to note that the anti-tumorigenic effects of acetate 

we and others have observed in colonic cell lines may not 

be universally applicable. On the contrary, additional studies 

examining hepatocellular carcinomas, brain metastases and 

glioblastomas suggest that acetate may represent a key energy 

substrate for progression of such tumors.30,31 Indeed, in these 

models, suppression of acetate metabolism via inhibition of 

acetyl co-A synthetase 2 may represent a viable therapy.31 

Therefore, while the nanoparticle delivery vector we have 
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used represents a practical means of targeting tumorigenic 

tissue, selecting which therapeutic agents to encapsulate will 

depend on the type of malignancy being targeted.

Conclusion
We have manufactured and evaluated acetate-carrying 

nanoparticles that are preferentially delivered to tumors. 

Chronic administration of LITA-CAN led to reduced tumor 

growth in an HT-29 xenograft model of colorectal cancer, 

potentially via epigenetic modification. These data indicate 

that LITA nanoparticle systems, with appropriate modifica-

tions, are capable of altering the development of pathogenic 

signatures indicative of cancer.
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Table S1 Liposome-encapsulated acetate variant compositions and nanoparticle dimensions

Lipid Lipid variation Size (nm) Acetate encapsulated (mM)

LITA main formulation CDAN/DSPC/Chol/DSPE-PEG2000 80–110 4.41
DSPC DSPE 35–80 1.70

DLPC (C12) 35–150 1.02
10% DSPC 15–100 4.19
50% DSPC 30–110 0.51

Chol DC-Chol 25–45 0.00
10% Chol 20–1,000 2.79
50% Chol 20–160, 1,000+ 0.00

DSPE-PEG2000 DSPE-PEG500 0–150 0.00
DSPE-PEG10000 35–80 6.13

CDAN DDAB 0.03
10% CDAN 2.4×104 1.28
50% CDAN 100–300 0.04

Abbreviations: LITA, liposome-encapsulated acetate; CDAN, N1-cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine; DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; 
PEG, polyethylene glycol; DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; DDAB, dimethyldioctadecyl ammonium 
bromide; DLPC, 1,2-dilauroyl-sn-glycero-3-phosphocholine; DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol.

Figure S1 LITA nanoparticle design principles and percentage molar composition of formulations.
Abbreviations: LITA-CAN, liposome-encapsulated acetate nanoparticles for cancer applications; PEG, polyethylene glycol; CDAN, N1-cholesteryloxycarbonyl-3,7-
diazanonane-1,9-diamine; DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; DOPE-rhodamine, 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl); LIP-CAN-Rhd, contains an additional 1% of DOPE-rhodamine for histological analysis.
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Figure S2 Bioluminescence imaging for murine xenograft models of HCT 116 p53+/+ and HCT 116 p53-/-.
Notes: Representative images of the murine xenograft model of HCT 116 p53+/+ and HCT 116 p53-/- after 3 weeks of chronic LITA-CAN or control (HEPES) nanoparticle 
i.p. injections. Color indicates luciferase activity, which is correlated with counts given on the scale.
Abbreviations: LITA-CAN, liposome-encapsulated acetate nanoparticles for cancer applications; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; 
i.p., intraperitoneally.
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