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Abstract 

This thesis tackles the need of ultra-low power electronics in the power limited passive 

Near Field Communication (NFC) systems. One of the techniques that has proven the 

potential of delivering low power operation is the Adiabatic Logic Technique. However, 

the low power benefits of the adiabatic circuits come with the challenges due to the 

absence of single opinion on the most energy efficient adiabatic logic family which 

constitute appropriate trade-offs between computation time, area and complexity based 

on the circuit and the power-clocking schemes. Therefore, five energy efficient 

adiabatic logic families working in single-phase, 2-phase and 4-phase power-clocking 

schemes were chosen. 

Since flip-flops are the basic building blocks of any sequential circuit and the existing 

flip-flops are MUX-based (having more transistors) design, therefore a novel single-

phase, 2-phase and 4-phase reset based flip-flops were proposed. The performance of 

the multi-phase adiabatic families was evaluated and compared based on the design 

examples such as 2-bit ring counter, 3-bit Up-Down counter and 16-bit Cyclic 

Redundancy Check (CRC) circuit (benchmark circuit) based on ISO 14443-3A standard. 

Several trade-offs, design rules, and an appropriate range for the supply voltage scaling 

for multi-phase adiabatic logic are proposed.  

Furthermore, based on the NFC standard (ISO 14443-3A), data is frequently encoded 

using Manchester coding technique before transmitting it to the reader. Therefore, if 

Manchester encoding can be implemented using adiabatic logic technique, energy 

benefits are expected. However, adiabatic implementation of Manchester encoding 

presents a challenge. Therefore, a novel method for implementing Manchester encoding 

using adiabatic logic is proposed overcoming the challenges arising due to the AC 

power-clock. 

Other challenges that come with the dynamic nature of the adiabatic gates and the 

complexity of the 4-phase power-clocking scheme is in synchronizing the power-clock 
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phases and the time spent in designing, validation and debugging of errors. This 

requires a specific modelling approach to describe the adiabatic logic behaviour at the 

higher level of abstraction. However, describing adiabatic logic behaviour using 

Hardware Description Languages (HDLs) is a challenging problem due to the 

requirement of modelling the AC power-clock and the dual-rail inputs and outputs. 

Therefore, a VHDL-based modelling approach for the 4-phase adiabatic logic technique 

is developed for functional simulation, precise timing analysis and as an improvement 

over the previously described approaches. 
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1 Introduction 

1.1 Overview 

In the last five years, the use of Near Field Communication (NFC) enabled contactless 

cards (tag) and handheld devices (reader) such as mobile phones have shown a 

tremendous increase. The increased usage in the exchange of various types of 

information, such as telephone numbers, pictures, MP3 files and digital authorizations 

for contactless payment between two NFC-enabled devices has led the designers to 

make low energy consumption, a very high priority.  

In a passive NFC system, a reader (e.g a smartphone), and a tag communicate by means 

of Radio Frequency (RF) field [1]. NFC passive tags are battery-less and are powered 

by radio waves from the reader, thus, needs to be energy efficient due to limited power 

resources [2]. The increased hardware complexity due to add-on functionalities, such as 

security and data-storage [3] has the associated cost in terms of high energy dissipation 

in passive NFC tags. In addition, the increased number of retransmissions when a reader 

detects an error in tag-to-reader data communication [4] also causes the energy 

dissipation in a passive NFC system to increase [5]. The high energy dissipation of the 

passive tags demands the supply of high transmission power from the reader to start the 

communication [6] and restricts the maximum working distance from the reader [7]. 

Therefore, if the tag is made energy efficient it can bring large interrogation range with 

better accuracy without increasing the energy consumption of the reader. In addition, 

the power transmitted by the reader to energize the tag can also be reduced which will 

help to increase the energy saving and battery lifetime of the reader.  
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Manchester coding is one of the techniques used for encoding the data during the tag to 

the reader transmissions [8]-[10]. It also makes possible to detect the collisions bitwise. 

Therefore, energy efficient implementation of the Manchester encoding is one of the 

aims of this thesis. This thesis deals with the ISO/IEC 14443A standard [11]-[13] which 

specifies the standard protocol, commands and other parameters required for the 

communication between a reader and a tag. 

The 2015 International Technology Roadmap Semiconductor (ITRS) shows that despite 

technology advances in materials such as high-K gate isolator and copper interconnect; 

scaling trends are barely keeping up in terms of density and are failing in terms of 

energy performance [14]. Consequently, an important area of research is the design and 

implementation of energy efficient data transmission coding and an error detection 

module for passive NFC system. 

One of the design techniques which has the potential for low power (and in existence 

for more than two decades) is the “Adiabatic Logic Technique”. It is one of the 

promising solutions at the circuit level to achieve a reduction in energy albeit at some 

cost in terms of performance. Adiabatic circuits use slowly changing ramp like power-

clock which rises and falls linearly. This slowly changing power-clock allows 

approximately constant current charging/discharging and by avoiding the current 

surges, the circuit dissipates less energy [15], [16]. The power-clock in adiabatic circuits 

serves as both the power supply as well as the clock for timing the circuit operation [17]. 

The adiabatic circuits also make possible delivery and the storage of the energy back to 

the power supply during the discharging process which can be recovered using a power-

clock generator. Therefore, this fact supports the argument that the adiabatic logic 

technique is promising and makes an attractive implementation method for the passive 

NFC systems instead of non-adiabatic logic design.  

Adiabatic logic designs have been widely studied and various energy efficient logic 

families have been proposed [18]-[23]. These can be divided into two types, “Fully 

Adiabatic” [23] and “Quasi-Adiabatic” (also known as partial energy recovery logic) 

[24], [25]. The term “Fully Adiabatic Logic” refers to logic families that can 

theoretically operate without losses. Therefore, an important property of fully adiabatic 

circuits is the recovery of, in principle; all the energy supplied to the circuit thereby 

ideally resulting in zero dissipation. Alternatively, the term “Quasi-Adiabatic Logic” 
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describes the logic that operates with lower energy but involves some practical losses 

arising due to the threshold voltage degradation of transistors. Such losses are referred 

to as Non-Adiabatic Loss (NAL). Quasi-adiabatic logic circuits are designed to recover 

only a proportion of the delivered energy and are likely to be less complex and occupy 

less area than fully adiabatic designs. In this thesis, quasi-adiabatic logic is considered 

and for practical reasons will be referred to as adiabatic logic.  

With various multi-phase adiabatic logic designs existing in the open literature showing 

energy-efficient operation compared to the non-adiabatic designs (conventional CMOS 

designs), the challenge comes from the fact that, there exist divided opinions on the 

adiabatic logic family as to which is the most energy efficient and constitutes an 

appropriate trade-off between energy efficiency, computation time, circuit complexity, 

The term computation time refers to the time taken by the circuit for executing one 

complete computation, which can be multiplication, division, addition, subtraction, 

square rooting, modulo operations and many more. Power-Clock Generator (PCG) 

complexity or power-clocking scheme complexity. Additionally, for making the 

decision several parameters need to be considered such as the impact of the adiabatic 

load as well as adiabatic logic families on the PCG, the impact of the power-clocking 

scheme on the computation time of the adiabatic system and on the energy dissipation 

of the PCG. Therefore, investigating an energy-efficient adiabatic logic working with 

different power-clocking schemes and finding the appropriate trade-offs between these 

is one of the aims of this thesis. 

Another concern for the implementation of a large adiabatic system, which arises due to 

the complexity of the power-clocking scheme, is the lengthy design, validation and 

debugging times when simulating at the circuit level. This gives rise to the need for a 

specific rapid modelling approach such as the use of a Hardware Description Language 

(HDL) that can be used to depict the behavioural and functional aspect of the adiabatic 

logic at a higher abstraction level before the simulations at the transistor level are 

performed for energy measurements. The functional errors at this level can easily be 

detected and corrected, decreasing the overall time in design and verification 

significantly. Existing HDL models mostly represent the functionality aspect of the 

adiabatic logic gates rather than their precise behaviour which is associated with the 

adiabatic implementation [26]-[28]. Existing approaches use square waveform that 

makes the modelling for adiabatic systems the same as that for the conventional CMOS 
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systems. In reality, the power-clock of the adiabatic system is a trapezoidal waveform. 

Due to this, the behaviour of the adiabatic logic depicted by transistor level simulations 

(SPICE simulations) will not match that of its HDL models. However, modelling the 

behaviour of adiabatic logic is challenging due to the difficulty of modelling the 

trapezoidal power-clock. Therefore, in this thesis, an HDL-based modelling approach 

describing the behaviour of the 4-phase adiabatic logic technique is also developed for 

functional simulation. The proposed modelling method demonstrates a systematic 

approach for precise timing analysis and is an improvement over the previously 

described approaches distinctly. Additionally, capturing the exact timing errors and 

detecting invalid inputs and circuit operation. 

1.2 Scope and Objectives of the Research 

The objective is to exploit the energy-efficient traits of the Adiabatic Logic Technique 

for the implementation of the energy-efficient NFC passive systems. 

 Study and understand the 4 parts of ISO 14443 and ECMA 340 standards and 

identify the most “power-hungry” parts of the digital processing unit (DPU) in 

NFC passive systems. 

 Adiabatic Logic technique has proven its energy efficient traits however, which 

logic family presents the best trade-offs in terms of energy, area, latency and 

Power-Clock Generator complexity needs to be investigated. 

 Designing the power-hungry sub-modules of the digital controller unit using 

various multi-phase (single-phase, 2-phase and 4-phase) adiabatic logic families 

in order to establish the trade-offs. 

 Design with adiabatic logic specifically 4-phase is non-trivial and time 

consuming. This demands for the development of a new modelling technique 

(HDL) for the implementation of the adiabatic circuits for easy and fast 

verification. 

1.3 Motivation 

In order to tackle the need for ultra-low power operation in NFC passive tags, it is of 

utmost importance to the first concentrate on investigating the most energy efficient 

adiabatic logic family from the existing multi-phase adiabatic logic families based on 
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the energy efficiency, computation time and the complexity of the power-clocking 

scheme. Secondly, the energy efficiency of the complete adiabatic system is often 

degraded due to the high energy dissipation of the power-clock generator; therefore, 

finding the adiabatic family which delivers energy efficient operation in an adiabatic 

system including the Power-Clock Generator is one of the objectives of this thesis.  

In a passive NFC system, when multiple passive tags are present within the working 

range of the reader, they transmit the data at the same time. This causes the tags 

collision problem leading to increased authentication time and energy consumption. 

Manchester coding makes possible of detecting collision bitwise. Similarly, whenever 

the data is transferred from the tag to the reader, Cyclic Redundancy Code (CRC) value 

is calculated and is appended at the end of the data stream to detect an error in the 

transmitted data. Thus, implementing Manchester coding and CRC as per ISO 14443-

3A standard [13] using adiabatic logic technique is one of the main aims of this thesis. 

Additionally, a Hardware Description Language (HDL) model that can depict the 

functional and behavioural aspect of the adiabatic logic as accurately as depicted by the 

transistor level design (SPICE simulation) is required to reduce the design and 

validation time in large adiabatic systems. Therefore, another goal of this thesis is to 

identify the shortcomings of the existing HDL models and develop a new model as an 

improvement over the existing models.   

1.4 Original Contributions to Knowledge 

It is believed that this work will contribute to the international academic research on 

adiabatic logic and its application in energy-efficient passive NFC systems. Specifically, 

the work done on the VHDL-based modelling will reduce the design time of the 4-phase 

adiabatic systems. Additionally, it helps realising (through VHDL modelling) the 

system which includes both the adiabatic and the conventional CMOS implementation 

in the same system.  

The original contributions that this project has so far added to the state-of-the-art can be 

summed up as follows: 

1. Any sequential design would require flip-flops as a memory element. To design 

adiabatic flip-flops with reset, resettable adiabatic buffers are required. Existing 

resettable flip-flops, however, are based on the 2:1 multiplexer’s (MUX). 
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a. The proposition of novel single-phase and 2-phase resettable buffers for the flip-

flop designs using; Clocked Adiabatic Logic (CAL) and Complementary Pass-

transistor Adiabatic Logic (CPAL). Prior to this, the resettable flip-flops were 

based on 2:1 MUXs, used as one of the resettable stages. As a result, having an 

increased number of transistors and an extra input terminal causing energy, 

routing, latency, and area overhead. The work is described in Chapter 3 of this 

thesis and is published in the proceedings of PRIME 2016 [29]. 

b. The proposition of novel 4-phase resettable buffer circuits for the flip-flop design 

using three adiabatic logic families namely; Improved Efficient Charge Recovery 

Logic (IECRL), Positive Feedback Adiabatic Logic (PFAL) and Efficient 

Adiabatic Charge Recovery Logic (EACRL). In addition, using the proposed three 

resettable adiabatic flip-flops, 2-bit twisted ring counters were implemented as 

design examples. The resettable counter shows a maximum increment in energy 

consumption of 5% compared to the non-resettable counter. This work is 

described in Chapter 3 and is published in the proceedings of PRIME 2016 [29]. 

c. The design, implementation, and layout of the existing and the proposed resettable 

flip-flops based on the different power-clocking schemes using all the five (multi-

phase) adiabatic logic families to act as a proof of concept. Compared to the 

existing resettable flip-flops, the proposed resettable flip-flops using; PFAL, 

IECRL, EACRL, and CAL show an improvement in energy consumption of 

approximately 14%, 3%, 10%, and 3% respectively. However, the existing 

resettable flip-flops implemented using CPAL shows 0.5% less energy 

consumption compared to the proposed resettable flip-flops. The work is 

described in Chapter 3 of this thesis and is published in the proceedings of 

ECCTD 2017 [30].  

2. The trade-offs between adiabatic logic families working on single-phase, 2-phase and 

4-phase power-clocking scheme in terms of energy, complexity, latency, and area are 

proposed. Thus, enabling the designers and researchers to use quantitative 

information in selecting the required power-clocking scheme and adiabatic logic 

families. 

a. The design and implementation of 3-bit Up-Down counter using multi-phase 

adiabatic logic for establishing systematic and appropriate performance trade-off 

in terms of complexity, energy, latency, and area. Based on the simulation results, 
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4-phase adiabatic logic namely; PFAL shows better performance compared to the 

other adiabatic logic families. This work is also described in Chapter 3 and is 

published in the proceedings of ECCTD 2017 [30]. 

3. Cyclic Redundancy Check (CRC) is one of the main components used in passive 

NFC systems, whenever the data is transmitted. Therefore, performance trade-offs 

including robustness under Process-Voltage-Temperature (PVT) variations and 

supply voltage scaling between multi-phase adiabatic logic families in a large 

adiabatic system are worthy of investigation.  

a. The 16-bit CRC was implemented as deployed in an application for the passive 

NFC system, using multi-phase adiabatic logic families. A generic methodology 

and strategy for the design of multi-phase adiabatic CRC employing single-phase, 

2-phase or 4-phase power-clocking scheme was proposed. The bit-serial CRC 

design is modified by incorporating more functionality allowing for the use of any 

CRC-16 generator polynomial and any initial load values. This work is described 

in Chapter 4 and is published in the Elsevier Journal, Integration, The VLSI 

Journal [31]. 

b. Impact of voltage scaling and Process Voltage Temperature (PVT) variations on 

multi-phase adiabatic implementations were investigated for TSMC 180nm 

CMOS process at 1.8V supply voltage. It was discovered that the benefit of using 

adiabatic logic deteriorates for supply voltages scaled less than 1.2V. Therefore, 

an optimal range for the supply voltage scaling was proposed for better Energy 

Saving Factor (ESP) and correct functionality. This work is described in Chapter 

4 and is published in the Elsevier Journal, Integration, The VLSI Journal [31]. 

c. When the energy dissipation of the total system comprising of the power-clock 

generator was considered, it was discovered that the total energy of the system 

employing single-phase and 2-phase adiabatic logic was approximately 3x and 2x 

times respectively more when compared to the 4-phase adiabatic system. Moreover, 

IECRL system shows the least energy consumption followed by PFAL. This work 

is described in Chapter 4 of this thesis and is published in Elsevier Journal, 

Integration, The VLSI Journal [31]. 

4. VHDL modelling of the Adiabatic Logic. 
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a. To overcome the synchronization problem arising due to the complexity of the 4-

phase power-clocking scheme to reduce the design, validation and debugging time, 

a new method for modelling 4-phase adiabatic logic in VHDL was proposed. 

Shortcomings of the existing (Hardware Description Language (HDL) modelling 

approaches were also identified. A very close to the exact behaviour of the 

trapezoidal power-clock was represented by presenting all the four periods 

distinctively using VHDL. The verification and applicability of the modelling 

were done using a 2-bit ring counter and a 3-bit Up-Down Counter. This work is 

described in Chapter 5 of this thesis and is published in the proceedings of 

PATMOS 2018 [32] and the extended version of this work is in the special issue 

of the Elsevier Journal, Integration, the VLSI Journal [33]. 

b. The proposed modelling is easy and can be used for designing large complex 

adiabatic system, eventually reducing the amount of time needed for the design 

and validation of such systems. The VHDL code of the NOT/BUF gate is further 

enhanced by incorporating an invalid condition check in cascade logic designs. 

Additionally, the gate level adiabatic modelling of the primitive AND and OR 

gates were also done. The enhanced proposed modelling demonstrates the error of 

using a square waveform as a power-clock in acquiring precise timing. A more 

complex circuit that of a 16-bit CRC is used to show the robustness of the 

proposed VHDL-based modelling approach for the 4-phase adiabatic logic 

technique for functional and timing simulation. This work is described in Chapter 

5and is also submitted to IEEE Trans. On Circuits and Systems-I [34].  

5. A novel method of Manchester encoding using the adiabatic logic technique for 

energy minimization is proposed. First, the time period of the data bit stream is 

doubled such that each bit in the data bit stream occurs twice consecutively. This 

way the mirror image of the actual data bit stream is generated. Then the flipping of 

the mirror bits takes place which generates the Manchester coded bit stream ready to 

be sent to the reader. The adiabatic implementation is advantageous as no separate 

clock needs to be added to the data stream. In fact, as the input has the same 

frequency as that of the power-clock, the power-clock and the data can easily be 

recovered at the reader from the Manchester coded data stream. This work is 

described in Chapter 6 of this thesis and is submitted to DATE 2019 [35]. 
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1.5 Research Methodology 

The methodology adopted for the design of an energy efficient adiabatic 

implementation of the passive NFC system is briefly described below; 

First, in order to use the adiabatic logic technique for designing an energy efficient 

passive NFC system, there is a case for examining the various adiabatic logic families. 

In particular, the adiabatic logic families working on multi-phase power-clocking 

schemes such as single-phase, 2-phase and 4-phase targeted to low energy consumption 

system design. Additionally, investigating the trade-offs amongst multi-phase adiabatic 

logic families in terms of the computation time, area and complexity. 

Second, the power-clock generator in adiabatic logic is equally important as the 

adiabatic logic used to undertake computations and the energy benefits and performance 

trade-off obtained when using single-phase, 2-phase and 4-phase adiabatic systems 

including PCG were also established. 

Third, in tandem with the establishment of trade-offs between adiabatic logic families 

working with different power-clocking schemes, design, and development of CRC and 

Manchester encoding compatible to the ISO/IEC 14443Acommunication protocol for 

NFC application was implemented as a necessary milestone towards the energy efficient 

adiabatic implementation of the passive NFC system. 

Fourth, due to the complexity of synchronization in a large 4-phase adiabatic system, 

debugging of errors becomes difficult, thus, increasing the overall verification time. 

Therefore, a method for modelling adiabatic logic circuits using an industry standard 

hardware description language (VHDL) was carried out. 

Finally, from the research work carried out, the applicability of the adiabatic logic 

technique for the energy efficient applications to the passive NFC system has been 

demonstrated. 

All the work was carried out at Applied DSP and VLSI Research Group (ADVRG) of 

the Department of Engineering. The research group’s Cadence EDA tools made it 

possible to simulate, model and analyze the proposed circuits. 
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1.6 Thesis Structure 

Chapter 1 is the introduction chapter. 

Chapter 2 presents the background on adiabatic switching principle, multi-phase power-

clocking scheme and a detailed background of the adiabatic logic families working with 

a multi-phase power-clocking scheme.  

Chapter 3 looks at five of the most energy-efficient multi-phase adiabatic logic families 

and explores their potential and performance trade-offs in terms of energy, throughput 

(computation time), complexity and area. Novel resettable adiabatic buffers for the five 

chosen adiabatic logic families are proposed for their application to counters and Cyclic 

Redundancy Check (CRC) circuits. Adiabatic flip-flops and 2-bit twisted ring counters 

were designed to evaluate and compare the energy efficiency of the proposed resettable 

buffers with the existing resettable designs [36], [37]. Additionally, a 3-bit Up-Down 

Counter using the five adiabatic families were designed to evaluate the performance 

trade-offs between these adiabatic logic families working with different power-clocking 

schemes. 

Chapter 4 introduces the NFC protocol as depicted in the ISO/IEC standard 14443 [11]-

[13] and ECMA 340 [84] for contactless cards. The design of a 16-bit CRC using the 

chosen adiabatic logic families discussed in chapter 2 is presented. The performance 

trade-offs between energy, computation time, area, power-clocking scheme, robustness 

under PVT variations and supply voltage scaling is investigated in this chapter. A 

methodology is proposed to minimize the design time and synchronization issue by 

implementing a CRC design which is suitable for a range of adiabatic power-clocking 

strategies, specifically 4-phase, 2-phase and single-phase. Additionally, the CRC design 

can be scaled up or down by adding or removing the CRC slices in the datapath and 

flip-flops in the register unit for an application other than the NFC. 

Chapter 5 presents the VHDL (Very High-Speed Integrated Circuit (VHSIC) Hardware 

Descriptive Language) modelling of 4-phase adiabatic logic circuits in a realistic 

fashion. The shortcomings of the existing modelling approaches are presented, and the 

proposed modelling is discussed and exposed. The functional aspects of the models are 

verified for a variety of gates, counters and CRC designs as reported in Chapters 3 and 

4. Moreover, the models are designed such that, precise timing of the computation in an 
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adiabatic system can be determined. The functional errors at this level of abstraction 

(behavioural) can be easily detected and corrected. Therefore, decreasing the overall 

time in the design, debugging and verification of the functionality of a complex 

adiabatic system before finally verifying the circuit operation using the transistor level 

SPICE simulation. 

Chapter 6 presents a novel method of Manchester encoding using the adiabatic logic 

technique for energy minimization. A brief discussion of Manchester encoding followed 

by the design and hardware implementation using adiabatic logic technique is presented. 

Based on the performance trade-offs of Chapter 4 of this thesis, the proposed design 

was implemented using two adiabatic logic families namely; Positive Feedback 

Adiabatic Logic (PFAL) and Improved Efficient Charge Recovery Logic (IECRL) 

which are compared in terms of energy for the range of frequency variation. 

Furthermore, to confirm that the power-clock generator energy consumption depends on 

the adiabatic logic family, the energy comparison was measured including the power-

clock generator designed using 2-stepwise charging circuit (SWC) and the FSM 

controller. 

Chapter 7 presents the conclusions drawn from this research and proposes future 

research directions. 
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2 Adiabatic Logic Families and Techniques 

Over the past 25 years, many energy-efficient fully-adiabatic or quasi-adiabatic logic 

families have been proposed as an alternative for low power circuit technique where 

speed is of secondary concern [15]-[25]. Though this approach has been in existence for 

more than two decades, its full potential remains unexplored. In this chapter, the basic 

principle of adiabatic switching, multi-phase power-clocking scheme, loss mechanisms 

and history of quasi-adiabatic logic families are discussed. To maintain the focus of the 

thesis, only quasi-adiabatic logic families driven by single-phase, 2-phase and 4-phase 

power-clocking schemes are discussed. Based on the survey of the quasi-adiabatic logic 

families, the five most energy efficient quasi-adiabatic logic families working on the 

multi-phase (single-phase, 2-phase and 4-phase) power-clocking schemes are chosen 

which forms the foundation of the research carried out in this thesis.  

2.1 Introduction 

Due to the increased usage of battery-less applications (e.g. smartcards) and rising 

energy density due to the technology shrinkage, energy-efficiency has become a major 

concern in the design of large systems. In the simplest conventional CMOS logic, an 

inverter is shown in Figure 2.1, the load capacitance (CL) gets charged through the MOS 

transistor (P1), the output node voltage rises from 0 to supply voltage (VDD), and CLVDD
2 

amount of energy is supplied from the power supply [15]. Half of this energy gets 

dissipated in the pMOS transistor and the other half gets stored on the output load 

capacitance. During the high-to-low transition, the output capacitance starts discharging 

and the stored energy will be dissipated in the nMOS transistor (N1). So, every time 

when the output node discharges, it losses 2

2

1
DDLVC  amount of energy [15]. This loss of 
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energy to heat during charging and discharging happens because the transitions are 

abrupt: the transistor is turned on and current flows through the transistor's resistive 

channel to charge or discharge the capacitor. Since the energy drawn from the power 

supply depends on the rate at which the charges are drawn from the source, hence 

lowering the rate by slowly charging the output load capacitance through slowly 

changing AC power-clock rather than a DC, will result in less energy dissipation.  

 

Figure 2.1: CMOS inverter. 

One of the pioneering works was done by Teichmann [38], where the author discusses 

the adiabatic logic design issues, designed various arithmetic circuits, and implemented 

an adiabatic CORDIC-based DCT as a test vehicle to demonstrate the system-level 

applicability of adiabatic logic for ultra-low-power digital signal processing [39]. In 

[40] the behaviour of adiabatic logic circuits in weak inversion or the sub-threshold 

regime was analysed for a 22nm CMOS technology. Through extensive post-layout 

simulation, it was demonstrated that the sub-threshold adiabatic circuits can save 

significant energy compared with an equivalent non-adiabatic implementation. Over the 

years, adiabatic logic techniques have also found their applications in energy efficient 

power-analysis attack resilient logic designs [41]-[45]. It has been shown that by careful 

design and exploiting charge-sharing between the two output nodes in adiabatic logic, 

during the idle phase of the power clock, the circuit can be made secure for 

cryptographic applications [41]-[45]. Moreover, recent work has demonstrated the 

applicability of the adiabatic principle to adiabatic capacitive logic demonstrating the 

effectiveness of the technique to achieve ideally zero-power logic dissipation [46], [47]. 
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2.2 Adiabatic Switching Principle 

“Adiabatic” is a term of Greek origin that has spent most of its history associated with 

classical thermodynamics [28]. It refers to a system in which a transition occurs without 

energy (usually in the form of heat) being either lost to or gained from the system. In 

the context of electronic systems, rather than heat, the electronic charge is preserved. 

Thus, the adiabatic circuits would operate ideally with zero dissipation that may be 

approached as the logic switching is slowed down. Decreased energy consumption with 

increased ramping time (Tr) is, therefore, the defining property of adiabatic switching 

[24], [25].In addition, this slowly charging process gives an additional advantage of 

pumping the stored energy back to the power supply during the discharging process 

which can be recovered using an AC power-clock generator [48]-[54]. However, in 

order to have less dissipation, all the nodes should share the same principle of charging 

and discharging. The principles include; 1) never turn the switch ON when there is any 

potential across it; 2) never turn the switch OFF when there is current flowing through it 

[24]. These two rules are observed to reduce the energy dissipation by making sure that 

current surges do not occur and are avoided by design. In practice, these rules are 

applied by charging the output load capacitance of the circuit using a slowly ramp-like 

power-clock called trapezoidal waveform, changing from 0 to VDD and back to 0 and 

maintaining four equal Power-Clock periods called Evaluation (E), Hold (H), Recovery 

(R) and Idle (I).  

Figure 2.2 shows the Power-Clock (PC) and the input signal, IN_H. To follow the 

adiabatic switching principle, IN_H should be stable when PC is evaluating. 

Furthermore, IN_H should start ramping down when the PC is stable (Hold). By 

observing these, adiabatic principles are followed, and lower energy dissipation is 

achieved. 
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Figure 2.2: Relation between Power-clock (PC) and the input signal (IN_H). 

Figure 2.3 shows a simple setup of the transient response using a ramp for the series RC 

circuit. CL is the load capacitance, R is the resistance of the charging path, Vramp is the 

voltage source changing from 0 to VDD and Tr is the time taken to charge the load 

capacitance, CL. Following this, the charge that will be delivered is Q=CLVDD, the 

current drawn from the voltage source is
rT

Q
I  , and the energy dissipated over time, Tr 

in the charging path will be, 
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Likewise, the same amount of energy will be dissipated during the discharging process. 

Thus, the energy dissipated (Adiabatic Loss) over one cycle will be the total energy 

dissipated in the charging and discharging of the load capacitance.   

 22
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Figure 2.3: A simple RC series circuit. 

An exact analysis of the energy dissipation can be found in [24]. From equations (2.1) 

and (2.2) it can be inferred that energy dissipation can be reduced, ideally to zero by 

choosing Tr>>RC, but at the expense of increased operational time. At the opposite 

extreme, when Tr<<RC the dissipation approaches that of the conventional CMOS with 

constant supply voltage.  

On the other hand, in the conventional CMOS circuits, when Tr is very small or abrupt 

charging and discharging, compare to the time constant of the circuit (RCL), the current, 

i in the circuit is: 

dt

dV
Ci C

L  

The voltage across the resistor will be  

dt

dV
RCiRV C

LR   

From the Kirchhoff's voltage law, VDD equals the sum of the capacitor voltage (Vc) and 

resistor voltage (VR).  

dt

dV
RCVV C

LCDD   

The voltage across the capacitor will be: 
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And the current is given by 
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When the load capacitor is charged through a resistance, the energy is lost in the form of 

heat in the resistor which is termed as non-adiabatic energy and is given by: 

 𝐸𝑁𝐴 = ∫ 𝑖2𝑅𝑇𝑟
∞

0
=

1

2
𝐶𝐿𝑉𝐷𝐷

2  (2.5) 

The energy stored on the load capacitor, CL is given by: 
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In the conventional charging, the energy dissipated depends on the load capacitor and 

the supply voltage, however; in the adiabatic switching the energy dissipated is 

proportional to R. Therefore if the resistance of the charging path is decreased, the 

energy dissipation also decreases. 

Figure 2.4 (a) and (b) show the voltage curves and peak current graphs for longer and 

shorter ramping time using a voltage ramp respectively. If the ramping time of the ramp 

voltage, Vramp, is longer and higher than the RC time constant of the circuit then the 

voltage, VC will track the ramp voltage with only a small dissipation as given by (2.1) 

and will result in smaller and constant peak current. On the other hand, for the shorter 

ramping times of the ramp voltage, the voltage, VC will lag the ramp voltage and will 

reach the supply voltage VDD in a characteristic exponential decay curve. The current 

graph in Figure 2.4 (b) is a typical exponential charging current graph for a 

conventional RC step response whose peak current is 10 times higher than the peak 

current value of Figure 2.4 (a). 
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(a) 

 

(b) 

Figure 2.4:(a) Longer Ramping Time (b) Shorter (steeper) Ramping Time. 
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The same charging technique can also be used to discharge the logic from VDD back to 0. 

The following section discusses the power-clock requirement for multi-phase adiabatic 

logic families. 

2.3 Multi-Phase Power-Clocking Scheme 

Unlike static CMOS logic, due to being clock-powered, the adiabatic logic families 

derived from static Differential Cascode Voltage Switch (DCVSL) requires a separate 

power-clock supply. Depending on the adiabatic logic families, power-clocks are 

generated either using an inductor-based resonant circuit [48] or using a capacitor-based 

Step Wise Charging (SWC) circuit [49]-[54]. The SWC based power-clock generator 

proposed in [54] has been used in the adiabatic system simulations presented in Chapter 

4 and 6 of this thesis. 

Figure 2.5 shows the single-phase, 2-phase and 4-phase power-clocking schemes for 

multi-phase adiabatic logic families. The single-phase and 4-phase power-clocking 

schemes can be broken down into four equal periods namely Evaluation (E), Hold (H), 

Recovery (R) and Idle (I). Whereas, 2-phase power-clock have an idle period 3 times 

larger than each of the evaluation, hold and recovery periods. The latency, TLatency, for 

all the three power-clocking schemes is defined as the minimum time required for the 

first input to process to the output. 
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Figure 2.5: Comparison of single-phase, 2-phase and 4-phase power-clocking scheme. 

For single-phase, power-clocking scheme signals ACLK_H and ACLK_L are used and 

are called the auxiliary clocks. PC is the Power-Clock. Tclk,1-phase is the duration of one 

power-clock phase of the single-phase power-clocking scheme. As shown in Figure 2.5, 

the first output of a single-phase cascaded logic is available at time T1and the second 

output is available at time T2, which is after two power-clock phases. Thus, the output 

of the cascaded single-phase based sequential logic remains valid for two consecutive 

power-clock phases, resulting in a lower throughput and a higher latency.  

Similarly, for 2-phase power-clocking scheme, PC1 and PC2 are the two phases of the 

power-clock. Tclk,2-phase is the duration of one power-clock phase of the 2-phase power-

clocking scheme. In the case of 2-phase power-clocking scheme, due to its longer idle 
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period compared to single-phase and 4-phase power-clocks, also results in lower 

throughput and higher latency for sequential circuits. PC1, PC2, PC3, and PC4 are the 4 

phases of the 4-phase power-clocking scheme. Tclk,4-phase is the duration of one power-

clock phase of the 4-phase power-clocking scheme. Adiabatic logic using a 4-phase 

power-clocking scheme gives higher throughput but leads to more complex power-

clock requirement compared to the single-phase and 2-phase power-clocking schemes. 

However, it is obvious that as the number of phase’s increase the throughput and 

latency improves and complexity increases but its energy and area is dependent on the 

adiabatic logic families used. Thus, at this point, it is hard to conclude that out of the 

multi-phase adiabatic logic which one is the most energy efficient and has better 

performance in terms of energy, area, throughput, latency, robustness against PVT 

variations and power-clock generator complexity. However, this will be investigated 

and discussed in the rest of the thesis in chapters 3, 4, and 6 respectively. 

2.4 Losses in Adiabatic Logic 

In an ideal adiabatic system, losses are governed by (2.2) and are recognized as 

Adiabatic Loss (AL). Nevertheless, due to the shrinking device geometries into the sub-

µm regime and the presence of a threshold voltage drop, Vth drop in transistors lead to 

additional losses. These additional losses can govern and exhibit a lower bound for 

energy dissipation in an adiabatic system. For instance, due to the shrinking device 

geometries, leakage currents can dominate the overall energy dissipation. One of the 

dominant leakage currents is the so-called sub-threshold current which is expressed as 

[38]: 
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 , VT is the thermal voltage, Vth, is the threshold voltage of 

the device, VGS and VDS are the gate to source and drain to source voltages,  W and L are 

the effective transistor width and length, respectively. Cox is the gate oxide capacitance; 

0 is the carrier mobility and is the subthreshold swing coefficient.  
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For the condition when VDS is zero, no leakage current will flow. However, the leakage 

current will increase to its maximum for the values of VDS that are multiples of the 

thermal voltage. The leakage current flows from PC to ground during evaluation, hold 

and recovery periods and leads to dissipation of charge that cannot be recovered. All the 

losses due to leakage can be summarized in a mean current, leakI ,  that leads to energy 

consumption per cycle of: 

f
IVE leakDDleak

1
  (2.8) 

Energy consumption due to leakage losses increases for lower frequencies [38]. This is 

because the Leakage Loss (LL) is gathered over a longer time interval (longer ramping 

time).  

In this thesis, all the simulations have been performed using the TSMC 180nm CMOS 

Process, and the frequency of operation of the application is centered around 13.56MHz, 

therefore, leakage losses will not impact the energy dissipation significantly and thus, 

are not dealt with. 

 

(a)   (b) 

Figure 2.6: NOT/BUF gate using (a) PFAL [55] (b) IECRL [22]. 

The NOT/BUF gate using Positive Feedback Adiabatic Logic, PFAL [55], and 

Improved Efficient Charge Recovery Logic, IECRL [22] are shown in Figure 2.6 (a) 

and (b) respectively. During the recovery period of PC, in PFAL and IECRL, the charge 

at one of the output nodes (following PC) is recovered until PC doesn’t fall below the 

threshold voltage of the cross-coupled pMOS transistors (P1 and P2). This leads to a 
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residual charge at one of the output nodes. The residual charge is either reused in the 

next cycle if the inputs remain the same or is discharged to the ground if different inputs 

arrive. Similarly, in IECRL, (where the evaluation network is connected between the 

output nodes and the ground) in the evaluation period, the output node cannot instantly 

follow the rising PC until PC reaches the threshold voltage of the cross-coupled pMOS 

transistors (P1 and P2). This forces the output node to follow PC abruptly, leading to 

energy dissipation. All these losses/dissipations are due to the threshold voltage and 

lead to Non-Adiabatic Losses (NAL) which is expressed as: 

    2

,
2

1
pthNAL CVE      (2.9) 

It should be noted that, unlike AL and LL, NAL is independent of the frequency of 

operation. AL is proportional to the frequency of operation however; LL is inversely 

proportional to the frequency of operation (2.8). It is also worth mentioning that, an 

optimum operating frequency exists for adiabatic logic families, where minimum 

energy dissipation per cycle at a particular frequency is observed. 

The three losses in the adiabatic circuits are discussed in [38]. The overall total energy 

dissipation (ETD) in adiabatic logic design is obtained by summing the effects of all the 

three loss mechanisms and is given by (2.10). Where EAL, ENAL, and Eleak  are mentioned 

in equations 2.2, 2.8 and 2.9 respectively. 

 ETD =EAL + ENAL + Eleak (2.10) 

2.5 Quasi-Adiabatic Logic Families 

Over the last 25 years, a plethora of quasi-adiabatic logic families resulting in different 

levels of energy saving has been proposed. Quasi-adiabatic circuits are divided into 

diode-based and transistor-based logic designs. Due to the high energy and area 

consumption of the diode-based logic, only the transistor-based logic designs are chosen 

for investigation in this thesis. Since the transistor-based adiabatic logic families are 

based on DCVSL CMOS logic, all the adiabatic logic techniques have a common 

structure, consisting of the cross-coupled pMOS pairs powered by the power-clock and 

dual-rail input and output signals. A complete adiabatic logic system consists of two 

major component blocks, first is the logic block and other is the charge recovery block 
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as shown in Figure 2.7. The charge recovery block is part of the power-clock generator 

as it is responsible for the recovery of charge back to the power supply during the 

discharging/recovery phase of the power-clock. 

 

Figure 2.7: A basic block diagram of the adiabatic logic system. 

A substantial list may not be complete, of the transistor based quasi-adiabatic logic 

families and their power-clocking scheme requirement is shown below in Table 2.1. 

Table 2.1: List of transistor-based quasi-adiabatic logic families and their power-

clocking schemes. 

Quasi-Adiabatic Logic Families Power-

clock 

2N2P-2N [24] 8 

2N-2N2P [25] 4 

Positive Feedback Adiabatic Logic (PFAL) [55] 4 

2N-2P [56] 4 

Efficient Charge Recovery Logic (ECRL) [57] 4 

Clocked Adiabatic Logic (CAL) [58] 1 

Complementary Adiabatic MOS Logic (CAMOS) [59] 4 

Dynamic Adiabatic MOS Logic (DAMOS) [60] 4 

Energy Efficient Logic (EEL) [61] 4 

Pass-transistor Adiabatic Logic (PAL) [62] 2 

Forward Body-bias MOS (FBMOS) [63] 4 

Improved Efficient Charge Recovery Logic (IECRL) [22] 4 
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PAL-2N [64] 4 

Bootstrapped NMOS Charge Recovery Logic (BNCRL) [65] 4 

True Single-phase Energy recovering Logic (TSEL) [66] 1 

Source Coupled Adiabatic Logic (SCAL) [67] 1 

NMOS Energy Recovery Logic (NERL) [68] 4 

Adiabatic Differential Cascode Voltage Switch Logic (ADCVSL) [69] 2 

High Efficient energy recovery logic (HEERL) [70] 4 

Efficient Adiabatic Charge Recovery Logic (EACRL) [19] 4 

Improved Pass Gate Adiabatic Logic (IPGAL) [71] 4 

Complementary Pass-transistor Energy Recovery Logic (CPERL) [72] 2 

Complementary Pass-transistor Adiabatic Logic (CPAL) [20], [76] 2/4 

Improved Positive Feedback Adiabatic Logic (IPFAL) [73] 4 

Dual Transmission Gate Adiabatic Logic (DTGAL) [74] 4 

Clocked Transmission Gate Adiabatic Logic (CTGAL) [75] 2 

 

Though the list in Table 2.1 does not claim to be exhaustive, it still gives a general idea 

of the progress of the work done on the topic of adiabatic logic techniques. Since the 

implementation and the distribution of multiphase power-clocking schemes require 

additional area, energy consumption, and increased complexity, logic families with 

more than 4-phases are not considered. Out of the various 4-phase adiabatic logic 

families reported in Table 2.1, IECRL, EACRL,  and PFAL were chosen as they are 

considered to be the most energy efficient adiabatic logic families in the literature. 

However, the 4-phase power-clocking scheme complicates the design due to multiple 

power-clock generators. This issue can result in area, and energy overhead that could 

offset the advantages achieved. It should be noted that the single and 2-phase adiabatic 

logic designs will have less complex power-clock generator compared to that of the 4-

phase adiabatic logic designs. However, due to high latency, it is not clear if the energy 

benefits would be obtained in comparison to 4-phase designs. Therefore, it was decided 

to investigate the single-phase, 2-phase and 4-phase adiabatic logic designs and to draw 

out the performance trade-offs between multi-phase adiabatic logic families based on 

energy efficiency, area, and latency/throughput and complexity. TSEL and SCAL 

circuits use single-phase power-clock, but the additional reference voltage and current 

increase the design complexity. Additionally, they are difficult to design due to the 

choice of reference voltage concerning the clock frequency [66], [67]. On the other 
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hand, because of its simple structure, CAL (Clocked Adiabatic Logic) is considered for 

realizing complicated circuits in the literature. In Ref. [77] it has been shown that the 

use of CAL for designing large adiabatic systems can save a considerable amount of 

energy in comparison to conventional CMOS. Thus, CAL was considered for the 

single-phase power-clocking scheme [58]. Many 2-phase adiabatic logic designs have 

been proposed in the literature however, the most energy efficient of all is CPAL due to 

its zero NAL at the output nodes and thus, was considered.  

2.5.1 Improved Efficient Charge Recovery Logic (IECRL) 

 

(a) (b) 

Figure 2.8: (a) IECRL buffer [25] (b) Output Waveform. 

In 1994, Denker [25] proposed a high performance improved ECRL logic family circuit 

shown in Figure 2.8 (a). IECRL is also called as 2N-2N2P and is an improvement over 

ECRL [57]. The only difference between ECRL and IECRL is that IECRL has a pair of 

cross-coupled nMOS transistors in addition to the cross-coupled pMOS. Thus, IECRL 

has cross-coupled inverters and is very similar to a standard SRAM cell. In Figure 2.8 

(a), the cross-coupled inverters provide a pull-down path to ground or a non-floating 

node during the recovery phase, thus, reducing the coupling effect and decreasing NAL 

(2.9) during the recovery phase of PC. IECRL requires 4-phase power-clocks for 

cascaded logic and suffers from NAL during the evaluation and the recovery period of 

PC because of the threshold voltage degradation. During the evaluation period of the 

power-clock, when the input has already ramped to VDD, the PC is still at zero voltage 

value (IDLE). The power-clock starts rising when the input is stable. Only when PC 

ramps above the threshold voltage, |Vth,p| of the pMOS transistors, one of the output 

nodes starts following the power-clock causing NAL. 
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The basic operation and working of IECRL are described in [22]. Figure 2.8 (b) shows 

the operation waveforms of IERCL buffer circuit along with its NAL. Similarly, NAL 

occurs during the recovery period of the power-clock. 

2.5.2 Positive Feedback Adiabatic Logic (PFAL) 

 

(a) (b) 

Figure 2.9: (a) PFAL buffer [55] (b) Output Waveform. 

In 1996, A. Vetuli et al. [55] proposed a new adiabatic logic family which makes use of a 

CMOS positive feedback amplifier. The logic is called Positive Feedback Adiabatic 

Logic, PFAL and requires a 4-phase power-clocking scheme for cascaded logic. PFAL is 

very similar to IECRL, having its evaluation tree connected between the power-clock 

and the output nodes. Figure 2.9 (a) shows the schematic of the PFAL buffer gate. The 

equivalent resistance at the two output nodes is smaller in comparison to IECRL due to 

the formation of transmission gate pairs between P1, N3, and P2, N4. PFAL do not 

suffer from NAL during the evaluation period of the power-clock because the output 

node follows PC through the nMOS transistors until PC is below the threshold voltage, 

|Vth,p|, of the pMOS transistor. However, it suffers from NAL during the recovery 

period when PC falls below the threshold voltage, |Vth,p|, of the pMOS transistor, 

leaving a residual charge on the output node. This residual charge gets discharged non-

adiabatically at the start of the next cycle when the new inputs are evaluated. Figure 2.9 

(b) shows the operation waveform of the PFAL buffer circuit. It can be seen that PFAL 

suffers from NAL only during the recovery phase of the PC only. 
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2.5.3 Efficient Adiabatic Charge Recovery Logic (EACRL) 

   

(a)                                                                    (b) 

Figure 2.10: (a) EACRL buffer [19] (b) Output Waveform. 

In 2001, Varga et al. [19] proposed a dual-rail energy Efficient Adiabatic Charge 

Recovery Logic, EACRL. This structure has an advantage over IECRL as it completely 

eliminates NAL during the evaluation period of PC. Similar to the IECRL logic, EACRL 

also requires 4-phase PC for cascaded logic. Figure 2.10 (a) shows an EACRL buffer 

gate. It uses a pair of cross-coupled pMOS transistors and duplicate evaluation trees; one 

connected between the output nodes and the ground and other connected between the PC 

and the output nodes. EACRL do not suffer from NAL during the evaluation period of 

PC. Similar to PFAL, it suffers from NAL during the recovery period when PC falls 

below the threshold voltage, |Vth,p|, of the pMOS transistor, leaving a charge on the 

output node. This charge gets discharged non-adiabatically either at the start of the next 

cycle when the new inputs are evaluated or is reused in the next cycle if the inputs do 

not change. 

Figure 2.10 (b) shows the operation waveform of the EACRL buffer gate. During the 

recovery period of the PC, the two output nodes get coupled due to the absence of cross-

coupled nMOS transistors. As a result, the output node which should be held at zero 

goes to a negative value. This results in the non-adiabatic dynamic loss and is called 

coupling effect. Figure 2.10 (b) shows NAL arising due to the threshold voltage 

degradation and the coupling effect. 
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2.5.4 Complementary Pass-transistor Adiabatic Logic (CPAL) 

 

(a) (b) 

Figure 2.11: (a) CPAL buffer [20] (b) Output Waveform. 

Pass-transistor Adiabatic Logic, PAL was first introduced by Oklobdzija and 

Maksimovic [62] in 1997. It uses a 2-phase power-clocking scheme for cascaded logic. 

The author claims that PAL outperforms the previously proposed adiabatic logic families 

in terms of energy consumption. The claim was based on the performance of 1600-stage 

PAL shift register. Then in 2003, Jaiping et al. [20] proposed a new logic family, called 

Complementary Pass-transistor Adiabatic Logic, CPAL which works on a 4-phase 

power-clocking scheme for cascaded logic. But later in 2005, the author demonstrated 

that the cascaded CPAL logic can be driven using a 2-phase non-overlapping power-

clocking scheme [76].  

Figure 2.11 (a) shows the CPAL buffer circuit which uses a PFAL buffer with the 

evaluation tree (N5-N8) designed using pass-transistors, connected to the gates of the 

nMOS pull-ups (N3-N4) also called bootstrapped transistors. Since the node X_H or 

X_L gets boosted, the CPAL circuit eliminates NAL at the two output nodes. The 

energy dissipation of the two-phase CPAL circuit includes mainly two terms: full-

adiabatic energy loss (2.2) on the output nodes and non-adiabatic energy loss on internal 

nodes X_H (or X_L). The more detailed description of its NAL on internal nodes is 

analyzed in [76]. Figure 2.11 (b) shows the operation waveform of the CPAL buffer 

circuit and the NAL on node ‘X_H’ and ‘X_L’. An additional non-adiabatic dynamic 

loss occurs due to the coupling effect, where the output node (which should be at zero) 

goes to a negative voltage value when the PC voltage level falls below the threshold 
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voltage of one of the nMOS transistors N1 or N2 during the recovery phase such that it 

gets coupled to the node following PC. 

2.5.5 Clocked Adiabatic Logic (CAL) 

 

(a) (b) 

Figure 2.12: (a) CAL buffer [58] (b) Output Waveform. 

In 1995, Maksimovic et al. [58] proposed a logic called Clocked Adiabatic Logic 

(CAL). It works on a single-phase power-clocking scheme. The CAL buffer gate is 

similar to that of 2N-2N2P but has clocked nMOS transistors (N3, N4) between the 

evaluation nMOS transistors (N5, N6) and the output nodes. Figure 2.12 (a) shows the 

schematic of the CAL buffer gate. The clocked nMOS transistors use a pair of auxiliary-

clocks (ACLK_H and ACLK_L) which allows operation from a single-phase PC. A 

more detailed description can be found in [78]. Although this adiabatic logic family 

seems to have a simplified Power-Clock Generator (due to the requirement of single-

phase PC) but the use of the auxiliary clock signals for cascaded logic, makes it 

complex and results in area and energy overhead. Figure 2.12 (b) shows the operation 

waveform of the CAL buffer gate. Due to the stacking of transistors at the two output 

nodes, it has higher NAL (compared to other adiabatic logic families discussed above) 

arising because of larger threshold voltage degradation. 

Despite the various interesting multi-phase energy-efficient adiabatic logic families 

been proposed in the last 25 years, each encompassing many novel ideas and saving 

considerable energy compared to static CMOS, there still remains several practical 

implementations in the design of complex adiabatic circuits than are unexplored; i) 

Selection of a multi-phase adiabatic logic for an application specific design; ii) buffer 
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insertion for handling synchronization issue incurring area overhead; iii) latency and 

throughput as multiple power-clock phases require different computation time. This is 

because pipelining is inherent in adiabatic logic and it can only perform one logic 

evaluation per clock phase. Thus, every gate introduces a phase delay in propagating 

from input to output. This can be seen in Figure 2.5; and iv) the non-adiabatic loss 

compromising the energy efficiency. 

2.6 Summary 

In this chapter, the concept of the adiabatic switching principle and quasi-adiabatic logic 

has been introduced. Since the work on power-clock generation has been done 

extensively in the literature, a brief discussion of the power-clock generation through 

the inductor and capacitor-based circuits was introduced. The thesis deals with 

investigating the performance of the single, 2-phase and 4-phase adiabatic logic families. 

Therefore, a detailed discussion of the multi-phase power-clocking schemes for multi-

phase adiabatic logic designs is presented.  

In order to give the idea of the sources of energy dissipation in the adiabatic logic 

technique, loss mechanism is discussed. In quasi-adiabatic logic designs, primarily three 

losses are present. Adiabatic Losses (AL) and losses due to leakage which are called as 

Leakage Losses (LL) are frequency dependent. Non-Adiabatic losses (NAL) however, 

are not the function of frequency. The list of existing adiabatic logic families based on 

the multi-phase power-clocking scheme published in the last 25 years has been 

presented in Table 2.1. On the basis of the proven performance in the literature, five 

quasi-adiabatic logic families were chosen from Table 2.1. The chosen adiabatic logic 

families for the performance evaluation based on energy, area, computational time, and 

circuit and power-clock complexity are: IECRL, PFAL, EACRL, CPAL, and CAL. Out 

of these, IECRL, PFAL, EACRL are based on 4-phase power-clocking scheme. CPAL 

is based on 2-phase power-clocking scheme and CAL works with single-phase power-

clocking scheme. A brief discussion of the above mentioned quasi-adiabatic logic 

families along with their advantages and disadvantages is presented. EACRL, for 

instance, requires a dual evaluation network but has zero NAL during the evaluation 

period of the PC and thus will be energy efficient. PFAL has reduced NAL and the 

equivalent resistance of the charging path however, it presents a large load to the power-

clock (number of transistors connected to the PC). Similarly, CAL uses the least 
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complex power-clocking scheme but requires auxiliary clock for cascaded logic. 

Practically, it is difficult to design a high-performance system having minimum energy, 

latency, area, and complexity using adiabatic logic techniques, However, trade-offs can 

be established that enable the designer to design an application specific efficient 

adiabatic logic system. 
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3 Design and Evaluation of Adiabatic Resettable 

Buffers, Flip-flops, and Sequential Circuit 

Designs 

In this chapter, novel resettable adiabatic buffer circuits for the design of resettable 

adiabatic flip-flops are proposed. The energy and area of the proposed resettable flip-

flops are compared to that of the existing MUX-based and on-resettable flip-flops for 

each of the five chosen quasi-adiabatic logic families (discussed in Chapter 2 of this 

thesis). The Chapter also discusses the design of a 2-bit twisted ring and 3-bit Up-Down 

counter in order to extend the comparison of the five multi-phase adiabatic logic 

families beyond energy dissipation. The work in this chapter is based on the full-custom 

design with results presented for pre-layout and post-layout simulations. All the 

simulations were performed using the Spectre simulator in Cadence EDA tool based on 

TSMC 180nm CMOS process technology. The power-clock used is a trapezoidal wave, 

ramping from 0V to 1.8V. The transistor sizes for all the designs were set at the 

technology minimum (Wn=Wp=Wmin=220nm, Ln=Lp=Lmin=180nm).  

3.1 Introduction 

In adiabatic circuits, PC provides both the power and synchronization (clock for timing 

the operations of the logic gates) to each logic gate. This suggests that adiabatic circuits 

are implicitly pipelined where data propagate through one logic gate in each phase. A 

single buffer logic gate represents a latch which passes the input to the output when PC 

starts ramping from zero to VDD. Since the output follows PC, the output signal is set to 

zero when the PC falls from VDD to ground thus, a signal can never be stored. 

Consequently, an adiabatic D flip-flop is structured using a cascaded buffer chain. An n-  
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(a) (b) 

 

(c) 

   

(d)       (e) 

Figure 3.1: 2:1 MUX using (a) IECRL, (b) EACRL, (c) PFAL, (d) CAL and (e) CPAL. 

phase PC will have n-stages of buffers to construct one flip-flop. The D flip-flops 

designed using IECRL, PFAL and EACRL use 4-phase power-clocking scheme, 

whereas, CPAL and CAL use 2-phase and single-phase power-clocking scheme 

respectively. Several adiabatic flip-flops have been reported in the literature with some 
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using the adiabatic MUX/NMUX as a resettable stage to provide reset terminal [36], 

[37], [79], [80]. Figure 3.1 shows the 2:1 MUX implementation for the five chosen 

adiabatic logic families.  

Using the MUX as one of the stages incur area overhead due to an extra input terminal 

and transistor counts causing increased energy, area consumption, and layout 

complexity. To alleviate the problem of increased energy, area and complexity, five 

novel resettable buffer circuits are proposed and are used for the design of resettable 

flip-flops. The energy consumption of the proposed resettable flip-flops is comparable to 

their non-resettable counterparts, despite using more number of transistors. Additionally, 

they require less area compared to the MUX-based resettable flip-flops. To evaluate the 

performance trade-offs of five adiabatic logic families, using different power-clocking 

scheme, 2-bit twisted ring counter and 3-bit Up-Down counter are designed and 

simulated. 

3.2 Design of Resettable Adiabatic Buffers 

The buffer logic is the basic cell in the design of adiabatic flip-flops. In order to realize 

resettable adiabatic flip-flops, buffers of all the five chosen adiabatic logic families have 

been modified to incorporate the reset terminal for the design of resettable buffer. The 

modification adds several features which makes it suitable for low power applications 

with 10% increment in layout area compared to that of non-resettable buffers. First, the 

resettable buffers give low resistance output by connecting either in parallel to the 

pMOS cross-coupled transistor or to nMOS evaluation network or cross-coupled nMOS 

transistors and forming a transmission gate pair. As a result, the proposed resettable 

buffer circuits consume similar or less energy compared to the non-resettable buffers. 

Second, when in reset mode, resettable buffers help in reducing NAL by providing one 

of the output nodes to either connect to PC or ground. 

3.2.1 Resettable IECRL Buffer 

The schematic of the resettable buffer gate using IECRL is shown in Figure 3.2 (a). 

When ‘reset_H’ signal is high (‘reset_L’ is low), transistor N6 turns ON and pulls down 

the node ‘Out’ to ground. Similarly, transistor N7 also turns ON and the node ‘OutR_L’ 

starts following PC. At the same time, ‘reset_L’ signal is low and disconnects the path 

between the node ‘OutR_L’ and ground. Figure 3.2 (b) shows the operation of the 
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resettable IECRL buffer. The transistors N6 and N7 also help in eliminating NAL in the 

evaluation period during the reset operation. 

When the ‘reset_H’ signal is low (‘reset_L’ is high), resettable IECRL buffer works 

similar to that of the non-resettable buffer. The transistors N6 and N7 are turned OFF, 

however, due to the voltage difference between the drain and source their resistance and 

capacitance will be reflected at the output nodes. The decrease in resistance causes a 

reduction in AL, whereas, NAL at the output nodes increases as it is directly 

proportional to the capacitance. Due to the decreased AL and increased NAL, the 

overall energy dissipation increases slightly. 

  

(a) (b) 

Figure 3.2: (a) Resettable IECRL buffer (b) Output Waveform for 10fF load. 

3.2.2 Resettable PFAL Buffer 

The schematic and the corresponding output waveform of the resettable buffer gate 

using PFAL is shown in Figure 3.3 (a) and (b). PFAL resettable buffer has even lesser 

equivalent resistance at node ‘OutR_L’ during the reset and normal operation than 

IECRL resettable buffer. When reset signal ‘reset_H’ is high (‘reset_L’ is low), 

transistor N6 turns ON and node ‘OutR_L’ follows PC albeit not all the way to the 

supply voltage. Similarly, transistor N7 turns on and pulls down the node ‘OutR_H’ to 

ground. On the other hand, ‘reset_L’ signal is low; it disconnects the path of node 

‘OutR_H’ from PC via transistor N3. 

When the ‘reset_H’ signal is low (‘reset_L’ is high), resettable PFAL buffer works 

similar to its non-resettable counterpart. Like discussed above for IECRL, transistors N6 
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and N7 are turned OFF, however, due to the voltage difference between the drain and 

source their resistance and capacitance will be reflected at the output nodes causing a 

reduction in AL and increment in NAL, such that, the resultant energy dissipation 

increases slightly. 

  

(a) (b) 

Figure 3.3: (a) Resettable PFAL buffer (b) Output Waveform for 10fF load. 

3.2.3 Resettable EACRL Buffer 

The schematic and the corresponding output waveform for the resettable buffer gate 

using EACRL is shown in Figure 3.4 (a) and (b). Since the logic is based on duplicate 

evaluation network, EACRL resettable buffer uses duplicate reset inputs; one connected 

between the output and the ground and the other connected between the input and the 

output. The AND/NAND implementation using EACRL is similar to the resettable 

buffer circuit of Figure 3.4 (a).  

When ‘reset_H’ signal is high (‘reset_L’ is low), transistors N7 and N8 are turned ON 

and N6 and N5 are turned OFF, the path from PC to node ‘OutR_H’ and ground to node 

‘OutR_L’ is cut-off. At this instant, transistors N7 and N8 help in reducing the AL by 

reducing the equivalent resistance at the output nodes ‘OutR_H’ and ‘OutR_L’. Due to 

the duplicate evaluation network, the variation in EACRL energy consumption across 

the ramping time is less compared to the other adiabatic logic designs. When ‘reset’ 

signal is low (‘reset_L’ is high), the resettable EACRL buffer works similar to that of 

the non-resettable EACRL buffer but reduces the output resistance at both the output 

nodes compared to the other four adiabatic logic families. 
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(a) (b) 

Figure 3.4: (a) Resettable EACRL buffer (b) Output Waveform for 10fF load. 

3.2.4 Resettable CPAL Buffer 

The schematic and the corresponding waveform of the resettable buffer gate using 

CPAL is shown in Figure 3.5. (a) and (b). Since the CPAL logic is based on pass-

transistors, in the resettable buffer circuit, the reset inputs are provided to the nMOS 

transistor N9 and N10 to pass logic ‘0’ and ‘1’ to the complementary intermediate 

nodes Y_H and Y_L. When ‘reset_H’ signal is high (‘reset_L’ low) transistor N10 turns 

ON and passes logic ‘1’ (‘reset_H’ high) with a drop of one threshold voltage, but high 

enough to turn ON the transistor, N4. Thus, the node ‘OutR_L’ follows PC. At the same 

instant, transistor N9 also turns ON and the gate of transistor N3 is set at ‘0’ voltage 

which switches it OFF. Because node ‘OutR_L’ follows PC, transistor N1 turns ON and 

node ‘OutR_H’ is pulled down to the ground. The complementary reset input terminal 

‘reset_L’ helps in disconnecting the input ‘IN_H’ and complementary input ‘IN_L’ 

signals to reach to the intermediate nodes Y_H and Y_L through transistor N11 and 

N12, ensuring normal operation. When the ‘reset_H’ signal is low (‘reset_L’ is high), 

resettable CPAL buffer works similar to that of the non-resettable CPAL buffer. 
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(a)  

 

(b) 

Figure 3.5: (a) Resettable CPAL buffer (b) Output Waveform for 10fF load. 

3.2.5 Resettable CAL Buffer 

The reset input used in the CAL buffer is an asynchronous input having priority over the 

auxiliary input signal, ACLK_H. Figure 3.6 (a) and (b) shows the schematic and the 

output waveform of the resettable CAL buffer. When ‘reset_H’ signal is high (‘reset_L’ 

is low), irrespective of the auxiliary clock input transistor, N4, the node ‘OutR_H’ is 

pulled down to the ground, which turns ON the transistor P1, forcing the node 

‘OutR_L’ to follow PC. The AND/NAND adiabatic implementation using CAL is 

similar to the CAL resettable buffer circuit. At the same instant, the complementary 

reset signal ‘reset_L’ turns the transistor, N5 OFF, thus disconnecting the input and the 

output node ‘OutR_L’. The resettable CAL buffer work similar to that of the non-
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resettable CAL buffer when ‘reset_H’ signal is low (‘reset_L’ is high). The resistance at 

the ‘OutR_H’ node reduces due to the transistor, N6, causing the overall energy 

dissipation to increase slightly. 

 

(a) 

 

(b) 

Figure 3.6: (a) Resettable CAL buffer (b) Output Waveform for 10fF load. 

3.3 Design of Resettable Adiabatic Flip-flops 

This section discusses and compares the energy performance of the proposed and the 

existing MUX-based resettable flip-flops and non-resettable flip-flops using five multi-

phase adiabatic logic families. Because the proposed resettable buffers provide low 

resistance at the output nodes, the overall energy consumption is either less or 

comparable to their non-resettable buffer counterparts. Additionally, the energy 

consumption of the proposed resettable flip-flops is comparable to that of the non-

resettable flip-flops and thus makes it suitable for energy-efficient applications.  
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Flip-flops are the inherent building blocks of all the synchronous systems. Considering 

the operational characteristic of the adiabatic circuits, the designs of adiabatic flip-flops 

should be different from that of the conventional CMOS flip-flops [81]. Adiabatic D-

flip-flops can be built using a cascaded buffer chain where the input is shifted to the 

output through the n-stage buffer chain (depending upon the adiabatic logic style) by 

one clock period. Because the output of the single-phase CAL buffer follows the input 

with 360o phase-lag and uses auxiliary clock signal the input ‘D_H’ is just shifted to the 

output terminal ‘Q_H’ through the two-stage CAL buffer chain by two clock periods. 

Similarly, the output of the two-phase CPAL buffer follows the input with a 180° phase 

lag, hence the input ‘D_H’ is shifted to the output terminal ‘Q_H’ through the two-stage 

CPAL buffer chain by one clock period. Additionally, considering the fact that the 

outputs of all the 4-phase buffers, namely; IECRL, PFAL, and EACRL follow the input 

with a 90o phase-lag, the D flip-flop is constructed using 4 stages of the buffer. Due to 

the long idle period, 2-phase power-clocking scheme has high computation time 

compared to the 4-phase power-clocking scheme even for the same ramping time. 

The existing resettable D flip-flops are implemented either using single-phase CAL [79] 

or 2-phase CPAL [37]. They use adiabatic MUX/NMUX as their second resettable stage. 

The major disadvantage of this is that the output from the flip-flops can only be fed to 

any subsequent logic after the second stage. Thus, the subsequent stage has to wait for 

the output for complete one cycle. This reduces the throughput of the circuit. This 

drawback has now been resolved by the proposed resettable adiabatic flip-flops. For all 

the five proposed resettable adiabatic flip-flops, the output can be fed to the subsequent 

logic stage even after the first stage. This increases the throughput and gives the 

flexibility of tapping the outputs from the required phase. Moreover, the proposed 

resettable flip-flops using CAL and CPAL have an advantage in terms of the area 

(transistor count) over the existing MUX-based resettable flip-flops using CAL and 

CPAL. 

The first stage of the adiabatic flip-flops requires a resettable buffer and the other stages 

use non-resettable buffers. The structures of the 4-phase, 2-phase and single-phase 

resettable D flip-flops are shown in Figures 3.7, 3.8 and 3.9 respectively. It should be 

noted that the 4-phase power-clock, 2-phase non-overlapping power-clock and single-

phase power-clock with non-overlapping auxiliary clocks ‘ACLK_H’ and ‘ACLK_L’ 

are shown in Figure 2.5 of Chapter 2. The reset input used in the resettable designs is an 
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asynchronous signal having priority over other input signals and thus must be stable 

before the beginning of the evaluation period of the power-clock to meet the adiabatic 

constraints.  

 

Figure 3.7: Resettable adiabatic flip-flop using 4-phase power-clocks. 

 

Figure 3.8: Resettable adiabatic flip-flop using 2-phase power-clocks. 

 

Figure 3.9: Resettable adiabatic flip-flop using single-phase power-clock and auxiliary 

clocks. 

The full-custom layouts of the proposed 4-phase flip-flop using PFAL are shown in 

Figure 3.10 (a). The 4-phase flip-flops using IECRL and EACRL have the same number 

of stages. The only difference is in the layout area which is summarised in Table 3.1. 

The full-custom layouts of the proposed flip-flops using CPAL and CAL are shown in 

Figure 3.10 (b) and (c) respectively. Table 3.1 summarises the layout area used by non-

resettable, existing MUX-based resettable and proposed resettable flip-flops for all the 

five adiabatic logic styles. 
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(a) 

 

(b) 

 

(c) 

Figure 3.10: Proposed resettable flip-flop layouts for (a) PFAL (b) CPAL (c) CAL. 
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Table 3.1: Comparison of layout area of non-resettable, existing MUX-based resettable 

and proposed resettable flip-flops. 

Adiabatic Logic 

Families 

Area (µm)2 

Non-Resettable 

Flip-flop 

Existing MUX-based 

Resettable Flip-Flop 

Proposed Resettable 

Flip-flop 

CPAL 5.68 x 17.28 6.44 x 17.32 8.99 x 18.40 

CAL 6.44 x 9.68 7.71 x 12.48 6.44 x 10.91 

PFAL 6.46 x 18.75 7.72 x 23.16 6.98 x 19.29 

EACRL 6.07 x 20.89 8.24 x 30.75 6.97 x 24.75 

IECRL 6.24 x 17.68 7.51 x 22.35 6.56 x 18.73 

 

From Table 3.1, it can be seen that the proposed resettable flip-flops consume less area 

as compared to the existing MUX-based design for all the adiabatic logic families, 

except CPAL. Because both the CPAL buffer and MUX use the same number of 

transistors, thus, the area of the MUX-based CPAL flip-flop is less. However, both the 

MUX-based resettable and non-resettable flip-flops use the same number of transistors, 

but the area of former is larger than that of the later as the former uses an extra input pin 

requiring extra routing space. 

The energy consumption is measured per clock-cycle and each of the adiabatic flip-flops 

is compared at ramping times ranging from 2.5ns to 2000ns under an output load 

capacitance of 100fF. The energy consumption of the flip-flops was measured through 

simulations for the periodic sequence of “101010….”, thereby, giving the maximum 

average energy consumed per cycle. Figure 3.11 (a), (b) and (c) illustrate the relationship 

between pre-layout energy consumption and ramping time for non-resettable, existing 

MUX-based and proposed resettable flip-flops respectively. It can be seen that the 

energy consumption of the proposed flip-flops is much less compared to the existing 

MUX-based design. The MUX-based flip-flops using EACRL and PFAL consume 

approximately 16%, more energy, whereas IECRL and CAL consume approximately 3% 

to 5% more energy when compared to non-resettable counterparts. The energy 

consumption of the MUX-based CPAL is similar to that of the non-resettable flip-flop 

for the entire range of ramping time with an increment of approximately 0.5%. 
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(a) 

 

(b) 

 

(c) 

Figure 3.11: Pre-layout energy consumption versus ramping time of (a) Non-resettable 

(b) Existing MUX-based (c) Proposed resettable flip-flops. 
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From Figure 3.11 (c), the proposed resettable flip-flops using PFAL, CPAL, CAL, and 

IECRL consume approximately 0.5% to 1% more energy compared to the non-resettable 

flip-flops. On the other hand, due to the decrease in the output resistance of the proposed 

buffer using EACRL, its energy consumption shows a decrement of approximately 6% 

compared to the non-resettable flip-flop. Flip-flop using CPAL consumes minimum 

energy at longer ramping times, however, as the ramping time is made shorter its energy 

dissipation increases. The post-layout simulation results in Figure 3.12 (a), (b) and (c) 

show a similar trend as shown by the pre-layout simulations. The difference is in terms 

of the increased energy consumption due to the addition of the parasitic resistance and 

capacitance of the routing metal layers.  

 

(a) 

 

(b) 
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(c) 

Figure 3.12: Post-layout energy consumption (per cycle) versus ramping time of flip-

flops (a) Non-resettable (b) Existing MUX-based (c) Proposed resettable. 

Figure 3.13 (a) and (b) show the effect of loading on energy consumption of the 

proposed resettable flip-flops at the ramping time of 25ns. From Figure. 3.13 (a), the 

energy consumption of IECRL and CAL is maximum due to NAL present during both 

the evaluation and the recovery period. However, EACRL and PFAL consume the same 

amount of energy for the load capacitance value higher than 50fF, as both suffer from 

NAL only during the recovery period. Since, EACRL also suffers from energy loss due 

to the absence of cross-coupled nMOS transistors causing higher coupling loss at the 

output nodes, its energy at zero capacitive load is highest. The advantage of having zero 

NAL at the output nodes makes CPAL consume the least energy at smaller values of 

load capacitances but as the load capacitance increases to 500fF, its energy consumption 

becomes almost similar to that of PFAL and EACRL. Although flip-flop using CPAL is 

able to work up to the ramping time of 2.5ns, the output nodes of the flip-flop are not 

charged up fast enough resulting in the voltage difference between the output node and 

PC. Hence, the CPAL circuit dissipates more energy. Similarly, due to the addition of 

parasitics after the post-layout simulation, CPAL consumes the least energy until the 

load capacitance value of 160fF. Beyond that, EACRL and PFAL consume the least 

energy as can be seen from Figure 3.13 (b). 
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(a) 

 

(b) 

Figure 3.13: Energy per cycle under different load capacitances at the ramping times of 

25ns (a) pre-layout (b) post-layout. 

In order to compare the performance of the non-resettable and resettable adiabatic flip-

flops, 2-bit twisted ring counter was designed using each of the five adiabatic logic 

families and was evaluated in the next section. 

3.4 Design of 2-bit Twisted Ring Counters using Adiabatic Logic 

The twisted ring counter is able to self-initialize from an all-zeros state and does not 

have any external inputs (only flip-flops no logic gates), and therefore, was used as a 

vehicle for comparing five non-resettable adiabatic flip-flops. Commonly, a resettable 
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flip-flop is needed as it forces the logic into a known state at the beginning of the 

simulation time. The 2-bit twisted ring counter consisting of two D flip-flops 

implemented using 4-phase, 2-phase and single-phase adiabatic logic designs are shown 

in Figure 3.14 (a), (b) and (c) respectively. The outputs, ‘Q0_H’, and ‘Q1_H’ represent 

the Least Significant Bit (LSB) and the Most Significant Bit (MSB) respectively.  

 

(a) 

 

(b) 

 

(c) 

Figure 3.14: 2-bit resettable twisted ring counter using adiabatic logic with power-

clocking scheme (a) 4-phase(b) 2-phase (c) Single phase. 
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When the reset signal ‘res_H’ is logic ‘1’, the output of the 2-bit twisted ring counter 

‘Q0_H’ and ‘Q1_H’ goes to zero and the complement outputs, ‘Q0_L’ and ‘Q1_L’ 

follow the power-clock. The outputs of the 2-bit twisted ring counter using five 

adiabatic logic families along with the signals, reset, resetb and power-clock are shown 

in Figure 3.15 (a), (b), (c), (d) and (e). It can be seen that the outputs of the 2-bit twisted 

ring counter implemented using IECRL, PFAL, EACRL, and CAL suffer from NAL. 

The region encircled shows this NAL arising due to threshold voltage degradation on 

one of the outputs. On the other hand, CPAL doesn’t show NAL on the output nodes 

but has a non-adiabatic dynamic loss due to the coupling effect on the low-level output 

node (output node not following the power-clock). The flip-flop design using CAL 

works on single-phase power-clock however, due to the use of auxiliary clock inputs, 

the cascaded logic becomes complex. Also, from Figure 3.15 (d), the output of CAL 

implementation shows that each stage of the twisted ring counter is valid for two power-

clock periods, hence large latency for sequential circuit design. 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

Figure 3.15: Output waveforms of 2-bit resettable twisted ring counter using (a) IECRL, 

(b) PFAL, (c) EACRL, (d) CAL, (e) CPAL. 

The 2-bit non-resettable and resettable twisted ring counter circuits using the five 

chosen adiabatic logic families were also designed to verify if the trend of energy 

consumption remains the same for the larger circuit at various ramping times. The 

energy consumed by 2-bit twisted ring counters was measured over its four states under 

zero external load capacitance. The energy consumption of the non-resettable and the 

resettable 2-bit twisted ring counter for EACRL, IECRL, PFAL, CPAL, and CAL are 

shown in Figures 3.16 (a) and (b) respectively. Because of the decreased output 

resistance, the difference in the energy of the resettable twisted ring counter using 

EACRL and PFAL compared to that of the non-resettable counter are approximately 5% 

and 2% respectively for a ramping time longer than 10ns. Whereas, the energy 

consumption of the 2-bit resettable twisted ring counter using IECRL, CAL and CPAL 

are approximately 18% more than their non-resettable counterparts. The energy 

performance of CAL is worst for both the non-resettable and the resettable counters, 

though not much variation in its energy consumption is observed at shorter ramping 

times. Similarly, the non-resettable and the resettable counters using EACRL show 

steady variations in energy consumption for ramping times ranging from 2.5ns to 500ns. 

Overall, the PFAL based design of both the non-resettable and the resettable counters 

show the approximately 2% difference in energy consumption at all ramping times. 
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(a) 

 

(b) 

Figure 3.16: Pre-layout energy consumption per cycle of 2-bit twisted ring counter (a) 

non-resettable (b) resettable. 

To further evaluate and compare the performance of the five multi-phase adiabatic logic 

families, a 3-bit Up-Down counter was used as an application example.  

3.5 Design of 3-bit Up-Down Counters using Adiabatic Logic 

In the past, various examples like 16-bit Carry Look Ahead (CLA) [55], 8-bit multiplier 

[21], mode-10 counter [37] and [80], etc. have been demonstrated to show the 

comparison between different adiabatic logic families and the conventional CMOS 

design in terms of energy efficiency. In [82], [83], the authors have discussed the 
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performance issues of adiabatic logic design in comparison to conventional CMOS 

design but lacked to give a comparison which encompasses performance issues amongst 

multi-phase adiabatic logic families. Despite the authors claim in [84] that, single and 2-

phase adiabatic logic namely CAL and CPAL reduces the latency by half and cut down 

the number of buffers required significantly, this is not universally true instead it is a 

design specific scenario. In order to suggest appropriate performance trade-offs, a 3-bit 

Up-Down counter is designed and simulated using each of the five energy-efficient 

adiabatic logic families. Figure 3.17 (a) shows the design used for single-phase and 2-

phase adiabatic logic families whereas, Figure 3.17 (b) is the design used for 4-phase 

adiabatic logic families. The counter starts counting up or down depending on ‘UD’ 

input signal when reset is low. It counts down when the ‘CU’ signal is high (‘CD’ signal 

low) and counts up ‘CU’ signal is low (‘CD’ signal is high). The Boolean expressions 

for Q0_Hn+1
 – Q2_Hn+1 are given by; 

  D0_H = Q0_Hn+1=res_L.(Q0_H)n 

D1_H = Q1_Hn+1=res_L.[Q1_Hn  (Q0_Hn  CU)]    (3.1) 

D2_ H= Q2_Hn+1=res_L.[Q0_Hn.CD.(Q1_Hn Q2_Hn) +  

  Q0_Ln.CU.(Q1_Hn Q2_Hn) + Q2_Hn 
.(CU Q0_Hn)] 

As can be seen from Figure 3.17 (b) and equation (3.1), to implement a function D2_H 

a minimum of 3 cascade levels are required. In the case of a single-phase, 2-phase and 

4-phase designs; 3 power-clock periods that is 12Tr, 1.5 power-clock period that is 9Tr 

and 3/4 power-clock period that is 3Tr are required respectively. For synchronizing the 

LSB bit of the counter output, ‘Q0_H’ with ‘Q1_H’ and ‘Q2_H’ output bits in the 

single and 2-phase design, two buffers are added, whereas, in 4-phase designs, the 

correct intermediate signals from the D flip-flops are used as inputs to the XOR/XNOR 

and AND/NAND gate. As seen in the previous sections, both single-phase and 2-phase 

designs have high latency. The structures of their Up-Down counter are different 

compared to 4-phase design, in order to save the area and synchronization buffers. The 

first two and the first three stages of ‘Q1_H’ and ‘Q2_H’ respectively of the single-

phase and 2-phase counter are realized using the combinational logic function thus, 

saving 4 synchronization buffers circuits.  
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(a) 
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(b) 

Figure 3.17: Up-Down counter design for (a) single-phase and 2-phase (b) 4-phase. 

The outputs of the Up-Down counter for single-phase, 2-phase and 4-phase adiabatic 

logic designs are shown in Figure 3.18 (a), (b) and (c) respectively. The reset signal 

‘res_H’ is an asynchronous signal having priority over all other signals. 
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(a) 

 

      (b) 

 

(c) 

Figure 3.18: Up-Down counter outputs for (a) Single-phase (b) 2-phase (c) 4-phase. 
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The energy consumption of the counter is averaged over fifteen counts, counting from 

seven down to zero and back to seven. Figure 3.19 (a) shows the average energy 

consumption per count of the five adiabatic logic designs and non-adiabatic 

(conventional CMOS) for an Up-Down counter under a load capacitance of 10fF at 

ramping times ranging from 2.5ns to 250ns. Because the CAL and IECRL logic designs 

have an evaluation network connected between the output and the ground, they also 

suffer from NAL in the evaluation period of the power-clock apart from the recovery 

period. As the ramping time becomes shorter, the AL combined with NAL makes the 

output node lagging behind the power-clock thus increasing the energy dissipation. 

SinceNAL is directly proportional to the node capacitance and the threshold voltage; 

different adiabatic logic families have different NAL. As the ramping time becomes 

longer, the leakage loss dominates both AL and NAL, whereas, NAL dominate AL [85]. 

Due to the fact that each state of the CAL design takes four power-clock cycles, the 

energy performance of CAL counter is worst at all the ramping times as shown in 

Figure 3.19 (a). Similarly, the CPAL design, which takes two power-clock cycles for 

each count exhibits the second worst energy. In the case of the EACRL logic, since it 

has dual evaluation network (more number of transistors), the leakage losses dominate 

over AL and NAL at longer ramping times and thus increased energy compared to 

IECRL. The PFAL counter design shows the minimum energy at all the ramping times. 

IECRL and PFAL have the same number of transistor counts; however, as the former 

have higher output resistance and NAL it consumes more energy at the shorter ramping 

time. But as the ramping time is increased, its energy consumption drastically decreases 

and becomes lesser than that of EACRL at a ramping time longer than 30ns.  

Figure 3.19 (b) shows the effect of loading on energy consumption of the Up-Down 

counter at the ramping time of 25ns. Though CAL is less complex, however, due to the 

low throughput of CAL sequential design, its energy is worst and even crosses the 

energy dissipation of the non-adiabatic at higher capacitance value which is mainly due 

to its high NAL. In Figure 3.19 (b), the increase and decrease in the energy dissipation 

of IECRL and EACRL respectively at 10fF load capacitance is because of the higher 

NAL of IECRL. On the other hand, at load capacitance higher than 100fF, the energy 

consumption of EACRL is exactly similar to that of PFAL. This is because as the load 

capacitance value increases, the effective load at the output nodes will mainly comprise 

of the load capacitance rather than its internal load capacitance. Both PFAL and 
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EACRL have a similar NAL however, due to more number of transistors in EACRL, it 

consumes more energy due to its dual evaluation network giving higher internal node 

capacitance at the output nodes compared to the other logic designs at lower load 

capacitance values. 

 

(a) 

 

(b) 

Figure 3.19: Energy consumption versus (a) Ramping time (b) Load capacitance. 

3.6 Performance Results 

Based on the simulation results of flip-flop design, 2-bit twisted ring counter and 3-bit 

Up-Down counter the comparison of five adiabatic logic techniques are tabulated in 
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Table 3.2. The energy consumption in Table 3.2 is measured for ramping time 25ns at 

zero load capacitance value. 

Table 3.2: Comparison of area and energy across the range of sequential circuit designs. 

Adiabatic 

Logic 

Families 

Proposed Resettable 

Flip-Flops 

2-bit resettable 

Twisted Ring 

Counter 

3-bit Up-Down 

counter      

Area: No. 

of 

Transistors 

Energy 

per 

cycle 

(fJ) 

Area: No. 

of 

Transistors 

Energy 

per state 

(fJ) 

Area: No. 

of 

Transistors 

Energy 

per 

count 

(fJ) 

IECRL 27 2.50 54 3.55 189 19.10 

PFAL 27 2.40 54 2.95 189 18.13 

EACRL 28 3.80 56 6.13 222 26.88 

CPAL 24 2.50 48 6.00 238 37.02 

CAL 18 2.60 36 9.63 212 

 

95.00 

Table 3.2 shows that the CAL logic uses least transistors for designing sequential 

designs comprising only of buffer logic gates. However, for a more complex sequential 

logic (3-bit counter) comprising of combinational circuits and buffer, its area increases. 

On the other hand, the EACRL logic uses maximum transistors for the design of less 

complex sequential circuits which do not employ combinational logic gates, whereas, 

CPAL uses the maximum transistors for the design of 3-bit counter. However, for a 3-

bit counter, design EACRL energy consumption is approximately 71% and 27% less 

compared to single-phase and 2-phase adiabatic logic respectively. CAL uses the least 

complex power-clock network, however, due to the auxiliary clock inputs, it has high 

latency and low throughput, therefore consuming maximum energy compared to the 2-

phase and 4-phase adiabatic sequential logic designs. Similarly, the CPAL logic uses 

less complex power-clocking scheme, however, due to its high circuit complexity, it 

uses more transistors for designing the complex sequential circuits. All the 4-phase 

adiabatic designs have high complexity due to the power-clocking scheme, however, 

due to the complex evaluation network of the EACRL, its complexity and area 

requirement is maximum. Overall, out of the five adiabatic logic families, PFAL and 

IECRL prove to be a better choice in terms of energy consumption, area, and circuit 
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complexity (single evaluation network). Based on the simulation results tabulated in 

Table 3.2, the performance of the five adiabatic logic families in terms of Complexity 

and computation time is tabulated in Table 3.3. 

Table 3.3: Comparison of complexity and throughput of the multi-phase adiabatic logic 

designs. 

Multi-phase 

Adiabatic Logic 

Design 

Circuit 

Complexity 

Power-clock 

Complexity 

Computation 

Time 

IECRL Low High High 

PFAL Low High High 

EACRL Very High High High 

CPAL High Medium Medium 

CAL Medium Low Low 

3.7 Summary 

This chapter explored the design of new resettable buffers. The resettable buffers are 

implemented for five multi-phase adiabatic logic families namely, IECRL, PFAL, 

EACRL, CPAL and CAL. The proposed novel adiabatic resettable buffers are used for 

the design of the resettable flip-flops. The performance of the proposed resettable flip-

flops is compared to that of the existing MUX-based resettable adiabatic flip-flops. The 

proposed resettable flip-flops lead to decreased energy and area consumption compared 

to the existing MUX-based resettable adiabatic flip-flops. Using the proposed resettable 

flip-flops, a 2-bit twisted ring counter was designed using five adiabatic logic families 

as the design example for the performance evaluation. Overall, the PFAL based design 

of both the non-resettable and the resettable counters shows the minimum 

(approximately 2%) difference in energy consumption at all the ramping times. 

Since the twisted ring counter does not contain any combination of logic thus, in order 

to facilitate the performance of the multi-phase adiabatic logic design, 3-bit Up-Down 

counter using five multi-phase adiabatic logic families were designed. The CAL logic 

design is worst in performance based on computation time, area (transistor count) and 

the energy consumption, however, its complexity (in terms of power-clocking scheme)  
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is lowest compared to the 2-phase and 4-phase power-clocking scheme. Similarly, the 

energy and area efficiency of CPAL decreases drastically for a more complex sequential 

circuit design (3-bit counter). 
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4 Design and Performance Trade-offs of Multi-

phase Adiabatic Implementation of CRC 

Algorithm for NFC Application 

Cyclic Redundancy Check (CRC) is ubiquitously common in all the communication 

protocol as it is an efficient way of detecting errors. In this chapter, the use of quasi-

adiabatic logic techniques in implementing a 16-bit CRC design compatible with the 

ISO/IEC 14443A-3 [13] communication protocol for low energy Near Field 

Communication (NFC) application is presented. As the performance trade-offs of multi-

phase quasi-adiabatic logic designs have already been evaluated in the previous chapter. 

This chapter re-investigates it by including robustness against Process Voltage 

Temperature (PVT) variations for the implementing CRC design using multi-phase 

adiabatic logic. A design methodology is proposed to minimize the design time and 

synchronization issue by implementing a CRC design which is suitable for a range of 

adiabatic clocking strategies, specifically 4-phase, 2-phase, and single phase. The CRC 

design is programmable for applications other than CRC due to its loadable initial value 

and CRC-16 generator polynomial. In addition, a system level implementation of CRC 

using adiabatic logic design including Power-Clock Generator (PCG) for different 

power-clocking strategies is implemented and compared based on energy consumption. 

In the end, the comparison of the multiphase adiabatic implementations and non-

adiabatic implementation (conventional CMOS) is performed in terms of energy 

benefits, throughput, latency, complexity, robustness, and area. 
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4.1 Introduction 

CRC is widely used in all data-communication, transmission and memory devices as a 

powerful method for detecting errors. One of the traditional hardware solutions for the 

CRC calculation is a bit-serial approach using a Linear Feedback Shift Register (LFSR) 

consisting of XOR gates and flip-flops [86], as shown in Figure 4.1. G1, G2,…Gn-1 are 

the generator polynomial, M(x) is the message and CRC0 to CRCn-1 are the calculated 

CRC values. The bit-serial approach has a low throughput since every n-bit data word 

requires n clock-cycles to calculate the CRC value. Depending on the application, a 

generator polynomial is used which gives a high probability of error detection [87]. For 

very high-speed data transmission, researchers have proposed numerous hardware and 

software-based CRC implementations. These include a parallel software 

implementation based on look-up algorithms [88] and hardware implementations based 

on z-transforms [89], matrix formulation [90]-[92] and pipelining [93]. These parallel 

approaches focus mainly on fast error detection when processing large data messages. 

These parallel approaches are mainly used for accessing storage devices when the data 

message is parallel or in the case when the fast data transfer rate is required such as in 

case of the fiber optic in a local area network. Software solutions have several 

drawbacks, for instance, they are slow, occupy processor resources, and requires ROM 

storage for the lookup table. Nevertheless, in all the references cited above, nothing has 

been mentioned about the energy consumption. 

 

Figure 4.1: A bitwise serial LFSR for n-bit CRC generator. 

In the literature, researchers have mostly demonstrated the low energy benefits of 

adiabatic implementations of counters [29], multiplexers and arithmetic units [82]. 

There exist very few papers [77], [39] which demonstrate the benefits of the adiabatic 

logic technique in a complex adiabatic circuit which also includes a power-clock 
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generator. It should be noted that adiabatic circuit/core combined with the power-clock 

generator is/will be referred as the adiabatic system. In literature, most of the papers 

demonstrated the energy benefits of various adiabatic designs/logic families over the 

non-adiabatic designs, however, there exists no work which compares the performance 

of the multi-phase adiabatic logic designs based on the adiabatic system architecture 

(array-based or iterative), energy consumption (with and without PCG), computation 

time, area, robustness (PVT variation), circuit and power-clock complexity. Practically, 

it is difficult to design an efficient adiabatic system however, trade-offs between energy, 

throughput, area, robustness, and complexity can be established that enables the 

designer to design efficient adiabatic logic systems.  

Architectures can be designed either using an array-based approach or the iterative 

approach. An array-based approach consumes a large area due to the duplication of 

logic used in each stage. This is relaxed in the iterative approach, however, at the 

expense of high complexity due to synchronization problems. The majority of the 

designs follow the array-based approach, like a logarithmic signal processor using a 

single-phase power-clock [77] and a CORDIC based DCT using a 4-phase power-clock 

[39] as it is easy to synchronize the gates in the array-based approaches. There also 

exists designs which are iterative in nature like counters, CRC, etc. where the output is 

fed back to the input. For designing these systems, the designer needs to have a perfect 

understanding of the power-clock synchronization. Since adiabatic logic operates in the 

mid-frequency range favoring low-data-rate communication systems, the timing was 

never an issue. Because of the multi-phase adiabatic logic techniques, the area 

consumption, synchronization, and complexity have always been the challenges for 

adiabatic circuit designs. In a system design using an iterative approach where the 

control signal is used to trigger multiple blocks or modules like the counter unit, 

datapath unit, a register unit, etc, the design becomes tedious and cumbersome because 

of the synchronization problem.  However, it saves a large amount of area and energy. 

Furthermore, if the iterative systems are designed properly, there is always a chance of 

reducing the synchronization buffers with the adiabatic logic gates. 

4.2 ISO/IEC and ECMA 

The international organization for standardization widely known as ISO is an 

international standard-setting body composed of representatives from various national 
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standards organizations. NFC system has been standardized by a number of globally 

accepted standard bodies. The first Radio Frequency (RF) Near Field Communication 

(NFC) standard was ECMA 340 [94], based on the Air Interface of ISO/IEC 14443A 

and JIS X6319-4.ECMA 340 was approved as the ISO/IEC 18092 standard [95]. In 

parallel major credit card companies (Europay, Mastercard, and Visa) have introduced 

the payment standard EMVCo based on ISO/IEC 14443A and ISO/IEC 14443B. Within 

the NFC Forum, both groups harmonized the air interfaces. They are named NFC-A 

(ISO/IEC 14443 A based), NFC-B (ISO/IEC 14443 B based) and NFC-F (FeliCa-based) 

[96]. 

The ISO/IEC 14443 standard is a four-part international standard for contactless smart 

cards operating at 13.56 MHz in close proximity (~10cm) with a reader antenna [11]-

[13], [95]. This ISO standard describes the modulation and transmission protocols 

between the card and the reader to create interoperability for the contact-less smart card 

products. The ISO 14443 standard defines a protocol stack from the radio layer up to a 

command protocol as shown in Figure 4.2 (a). There are two versions of the radio layer 

ISO 14443-2 [12], with different modulation and bit encoding methods. These versions 

are known as the type A and type B versions of the ISO 14443 standard. Similarly, ISO 

14443 specifies two versions of the packet framing and low-level protocol part such as 

initialization and anti-collision (ISO 14443-3) [13]. The topmost layer of the ISO 

protocol stack defines a command interface (ISO 14443-4) for transferring information. 

 

(a) (b) 

Figure 4.2: (a) ISO 14443 protocol stack (b) New command Protocol. 

A new command protocol, NFCIP-1 [94] which replaces the topmost part of the stack of 

Figure 4.2 (a) is shown in Figure 4.2 (b). The peer-to-peer communication between two 

NFC devices is made possible by mechanisms defined in the Near Field 

Communication-Interface and Protocol specification, NFCIP-1. This key NFC 
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specification is also known as ECMA-340 [94] and ISO 18092standard [95]. NFCIP-1 

includes two communication modes which allow an NFC device to communicate with 

other NFC devices in a peer-to-peer manner as well as with NFCIP-1 based NFC tags. 

The more in-depth details of the NFC specification can be found in [11]-[13] and [94]-

[96].  

4.3 Application of CRC in NFC 

NFC is the emerging RF technology for short-range wireless communication that 

exchanges data between a reader, such as a phone or a sensor and a target such as 

another reader or a microchip embedded in a device. NFC is compatible with the most 

existing Radio Frequency Identification (RFID) and contactless smartcard system as it 

is an evolution of RFID and smartcard technology, however, its architecture is different 

in principle. RFID and contactless smartcards have a reader/tag structure. An NFC 

device can be both a reader (NFC-enabled device) and a target (NFC tag). 

Two communication modes are supported by the NFC device; active and passive 

communication mode. The Frame Format of the data transmission in the NFC protocol 

of ISO/IEC 14443-3 and ECMA 340 standard are shown in Figure 4.3 contains 5 fields 

namely; preamble, SYNC, length, payload, and 16-bit CRC to check errors [94], [95]. 

Preamble 

(48-bit min.) 

SYNC 

(16-bit) 

Length  

(8-bit) 

Payload CRC  

(16-bit) 

Figure 4.3: NFC Frame Format [94]. 

The process of encoding and decoding is carried out by a sixteen-stage cyclic register 

with an appropriate feedback and is based on ITU-T Recommendation V.41 [97] and 

the circuit is shown in Figure 4.1.CRC specifications for multiple bit-rate as per the 

standard for NFC Type-A [13] is tabulated in Table 4.1. The CRC frame is a function of 

k data bits which consist of all the data bits in the frame excluding the parity bits, the 

start of frame bits (Sof), end of frame bits (Eof) and a CRC bit itself. Since the data is 

encoded in bytes, the number of bits k; is a multiple of 8. For checking errors, two CRC 

bytes are sent in the standard frame [94] after the data bytes and before the Eof bits. The 

CRC calculation is cyclic which incorporates the current CRC value of the data (MSB 

first) and the CRC value of the previous data bytes. For large data blocks, the CRC 
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value from the preceding data byte is used as the starting value for the subsequent data 

byte. The LFSR carries a bit by bit multiplication in the Galois Field 2 (GF2) modulo. 

The division is then performed through shifting and feedback into the LFSR so that the 

result (CRC) is the value of the register once the whole message has been processed. 

Table 4.1: CRC specification as given in ISO/IEC 14443 standard for NFC Type-A. 

Bit rates Length Polynomial Pre-set value 

106 kbps (fc/128) 16 bits x16 + x12 + x5 + 1 ‘6363’ 

212 kbps (fc/64) 16 bits x16 + x12 + x5 + 1 ‘0000’ 

424 kbps (fc/32) 16 bits x16 + x12 + x5 + 1 ‘0000’ 

The CRC calculation is cyclic, which incorporates the current CRC value of the data 

(MSB first) and the CRC value of the previous data bytes. Let M(x), G(x), Q(x) and R(x) 

represent the message polynomial, generator polynomial, quotient polynomial, and 

remainder polynomial respectively. The message, M(x) is a k-bit payload which is 

operated upon to form an n-k bit CRC detection block, where n is the length of the 

complete block. The algorithm for the CRC calculation for NFC is described in the 

following steps. 

Step 1: The original k-bit payload, M(x) is multiplied by xn-k to shift the data and the 

pre-set value is appended.  

Step 2: The result is then divided by the generator polynomial G(x) to form the quotient 

Q(x) and remainder R(x).  

Step 3: The transmission polynomial T(x) is formed by appending the payload, M(x) 

and the remainder, R(x). 

Step 4: At the receiver, the CRC calculation on the transmitted block, T(x) is done to 

check for errors in the transmission.  

Step 5: After the transmission, the received message is processed with step 1 to 2 albeit 

with the received message replacing M(x). If the remainder, R(x) produced is zero, the 

transmission is assumed to be error-free. 

The more detailed description of CRC algorithms is specified in [98]. The appending 

shall be done so that the bit ordering does not change. For example, as specified in 
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Annex B of ISO/IEC 14443-3 [13] and Annex A of ECMA-340 NFCIP-1 [94], the 

following message bit stream shown in Figure 4.4 produces the CRC value R(x) of the 

register 0xCF26 (least significant bits to most significant bit). The modified CRC 

algorithm for NFC application is given in Appendix A. 

          1st data byte   2nd data byte     1st CRC byte 2nd CRC byte 

Sof 01001000 00101100 01100100 11110011 Eof 

‘0x12’    ‘0x34’ ‘0x26’            ‘0xCF’ 

Figure 4.4: Message stream and its corresponding CRC value. 

4.4 Design Methodology 

A modification in conventional LFSR which fulfills the criteria for an ISO/IEC-14443 

standard is presented. Using the conventional CRC only a single bit-rate with an initial 

value of zeros can be loaded whereas; the proposed design is valid for a multiple data 

bit-rate and every initial load value. The proposed CRC design using adiabatic logic 

also has the flexibility to be used for different power-clocking schemes (single-phase, 2-

phase and 4-phase) without modifying the design. Although, CRC is implemented for 

NFC-A application it can be easily modified to accommodate different CRC 

applications like mobile networks, Ethernet, USB, high-level data link control, etc [87]. 

A wide range of generator polynomials is presented in [88] along with their applications. 

With the proposed strategy, an n-bit CRC can be implemented by replicating n “slices” 

of circuitry. This approach enables CRCs of every number of bits to be readily created, 

thus decreases design time and synchronization issues [83]. 

An n-bit CRC is designed using n-blocks of CRC slices in the datapath. Each block of 

CRC slices has four logic gates connected in a cascade manner. Out of the n-blocks, n-1 

are identical having the same logic gates connected in the same order. However, the 

Least Significant Bit (LSB) of the CRC slice has the position of the XOR gate different 

than that of the identical blocks. This is due to the synchronization of the feedback 

signal with the input message bits. A single block slice requires three stages or phases 

of the power-clock but due to the iterative nature of the CRC implementation, the 

number of stages should either be a multiple of two in the case of single-phase (because 

of auxiliary clock signals) and 2-phase designs or a multiple of four in the case of 4-
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phase logic designs. Thus, a buffer is added in each slice to have an even number of 

stages for correct synchronization and functionality. Each slice in the CRC datapath 

implemented using 4-phase adiabatic logic takes one power-clock cycle, whereas 

single-phase and 2-phase designs take four and two power-clock cycles respectively. 

The controller generates the control signals for the CRC design. The CRC starts the 

computation when the signals ‘New message’ and ‘R_count_H’ are logic ‘1’. The input 

message, M(x) is provided to the CRC datapath serially using a multiplexer used as a 

test circuitry for the CRC design.  To synchronize the CRC computation and the input 

message, the counter outputs act as the select lines for this multiplexer which provides 

serial input to the CRC datapath and the register unit. 

The speedup technique is used as described in [89] to increase the throughput. The 

buffers in the counter are replaced with the functional logic gates (AND/OR/XOR). 

Thus, the throughput and latency of 4-phase designs are improved by ½ of the power-

clock cycle whereas, in the case of 2-phase and single-phase CRC design, an 

improvement of one power-clock cycle and two power-clock cycles respectively is 

achieved. In addition, the technique also reduces the buffers required for 

synchronization by four in the counter unit. 

For a message word-length of 16 bits, the 16-bit CRC datapath requires 64 power-clock 

cycles using a single-phase power-clocking scheme, whereas, 32 and 16 power-clock 

cycles are required for 2-phase and 4-phase adiabatic logic respectively. In general, for 

the message word-length of k-bits, an n-bit CRC datapath requires 4k, 2k and k power-

clock cycles for single-phase, 2-phase and 4-phase adiabatic logic designs respectively. 

Where k is always greater than or equal to n. Since the presented work is in accordance 

to ISO/IEC 14443 standard for NFC, a 16-bit CRC is designed based on the 

methodology and strategy used in describing n-bit CRC. The CRC is implemented using 

all the five adiabatic logic families and tested for its functionality and robustness against 

PVT variations. All the components including the multiplexer (providing input serially) 

are designed using adiabatic logic. 

4.5 Hardware Implementation of 16-bit CRC using Adiabatic Logic 

The typical CRC is implemented using Linear Feedback Shift Register (LFSR) having 

serial input message data bits. A block diagram of the 16-bit CRC design is shown in 

Figure 4.5. All the adiabatic logic designs have differential input and output signals, 
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however, for the simplicity and better understanding, complementary signals are not 

shown in Figure 4.5. The complementary signals are denoted by ‘_L’ added at the end 

of all the signals used denoting active low signals. The advantage of the proposed 

architecture is that it can be used for multi-phase power-clocking scheme design. The 

designer only has to replace the unit with the specific adiabatic logic style with an 

appropriate power-clocking scheme. The main part of the CRC design is its datapath 

which is responsible for computing the CRC value. The 16-bit input message (M(x)) is 

provided to the CRC datapath through a 16:1 multiplexer at every count of the counter. 

To be consistent with the protocol, MSB is the first bit transmitted as shown in Figure 

4.5. Since each block in the datapath has a latency of 4 power-clock phases, a delay cell 

is added at the output of the 16:1 multiplexer to synchronize the final CRC values from 

the CRC datapath and the input message, M(x). Finally, the final CRC value gets 

appended at the end of the message bits using a 32-bit register unit. The functionality of 

the proposed CRC architecture is verified by taking the example specified in Annex B 

of the ISO/IEC 14443-3 protocol [13].  

 

Figure 4.5: Block diagram of the 16-bit CRC Design and its message, M(x) format. 

CRC is initialized using the reset input 'RES_H' which clears the CRC unit, the register 

unit, the controller unit, resets the counter and load the pre-set value ‘0x6363’. When 

‘RES_H’ signal is set low and the ‘new message’ bit is logic ‘1’, the counter starts 
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counting. With every count, the message (M(x)) is serially sent to the CRC datapath for 

the computation. At the same time, the message bit is stored in the register unit after a 

delay of 1 power-clock cycle. The final CRC value is calculated when the last message 

bit is sent to the datapath, and the counter reaches the value ‘1111’. Then the calculated 

final CRC value from the datapath gets appended to the register unit with the message 

while the counter returns to the value ‘0000’. The appended CRC value and the message 

word are retained during the wait period in the specially designed register unit, while 

the values in the CRC datapath are cleared to zero. The wait period lasts for two power-

clock cycles and after that, the counter starts counting again automatically allowing the 

CRC to re-calculate its value. To calculate the new CRC value either the new message 

bits or the generator polynomial along with the load values can be provided during the 

wait period. 

The CRC design has a number of advantages. Firstly, it can be used for different power-

clocking schemes. Secondly, all the control signals remain the same for multi-phase 

adiabatic logic designs. Thus, the designer has only to pick the required adiabatic logic 

family and replace the gates with their chosen adiabatic logic family gates saving design 

time and eliminating synchronization issues. Thirdly, the use of a polynomial generator 

unit and initial load value makes it reusable for other applications of 16-bit CRC. 

In order to have the reusable CRC design for multi-phase clocking scheme and for 

applications other than NFC, the implementation has associated hardware cost. Firstly, 

the generator polynomial unit incurs an area overhead of twelve 2-input AND gates and 

twelve 2:1 multiplexer. Secondly, for the CRC designs using multi-phase adiabatic 

logic, the register unit of the single-phase and 2-phase implementations use 

approximately 50% more buffers. 

The controller comprises a counter which generates the states and a decoder 

(combinational logic) that generates the synchronization signals for the CRC. The 

counter is designed using D flip-flops. It has two inputs, ‘R_count_H’ (coming from the 

decoder) and the ‘New message’. The ‘New message’ input is an active high external 

input. Initially, it is zero when the counter is in the reset state. The counter starts 

counting when both the ‘New message’ and ‘R_count_H’ signal values are logic ‘1’. In  
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4.5.1 Controller (Counter and Decoder) 

 

(a) 

 

(b) 

Figure 4.6: Controller (a) 4-bit Counter (b) Decoder. 

general, the adiabatic D-flip-flop is structured using a cascaded buffer chain, but in this 

case, the buffers are replaced with the logic gates (AND/OR/XOR) which saves exactly 

twelve buffer gates. For the test purpose, the 16-bit new message is provided to the 

CRC datapath using 16:1 multiplexer. Figure4.6 (a) shows the functional part and the 
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synchronization buffers used in the 4-bit counter. The inputs ‘Q0_L’, ‘Q1_L’, and 

‘Q2_L’ are the complementary signals of ‘Q0_H’, ‘Q1_H’, and ‘Q2_H’ which are not 

shown for simplicity.  

The outputs of the counter ‘Q0_H’, ‘Q1_H’, ‘Q2_H, and ‘Q3_H’ are the inputs to the 

decoder along with the external reset input ‘RES_H’ as shown in Figure 4.6 (b). The 

decoder automatically provides activation reset signals (‘R_count_H’, ‘R0_H’, ‘R1_H’, 

‘R2_H’) to the counter and the datapath. The signal, ‘R0_H’ is the input to the AND 

gate in generator polynomial bit blocks of the CRC datapath. Whereas, the signal, 

‘R3_H’ is the select input for the 2:1 multiplexer in the CRC bit blocks which selects 

the initial load value when logic ‘1’. The new generator polynomial along with the load 

values can be provided during the wait period. The signal, ‘R4_H’ is an inverted signal 

of ‘R3_H’ which is delayed by four buffer gates. It is used as a wait signal to the 

register unit that generates a wait period of two power-clock cycles. The decoder 

performs three tasks; firstly, it generates a retain signal which helps to retain the final 

CRC value in the register unit. Secondly, it reset the CRC datapath, the counter unit, 

and the register unit before the computation begins and after the final CRC value is 

computed. Lastly, the buffers in the decoder serve the purpose of synchronizing the 

decoder output with different units of the CRC design for correct calculation of the 

CRC value.  

The use of the signals from the decoder makes the CRC design to calculate the CRC 

value continuously until the counter reaches the value ‘1111’. Because each bit blocks 

in the CRC unit is having four logic gates connected in the cascade manner, the 

implementation of the controller remains fixed for all the power-clocking schemes. 

4.5.2 CRC Datapath 

The CRC design is based on the serial LFSR design [86] which has been modified in 

accordance with the specification outlined in ISO 14443-3 type A protocol. The CRC 

datapath consists of the CRC unit and the generator polynomial unit. The CRC unit 

computes the CRC value based on the generator polynomial (g1_H…..g15_H). The 

generator polynomial, G(x) for NFC applications, is x16+x12+x5+1. A wide range of 

generator polynomials is presented in [89] along with their applications. Since the 

binary value of the MSB and LSB of the generator polynomial is always one, the 

polynomial generator unit consists of fifteen 2-input AND gates each followed by 2:1  
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Figure 4.7: CRC Datapath 
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multiplexers. The hex value ‘0x8810’ corresponds to G(x) (‘g1_H’, ‘g2_H’, ……., 

‘g15_H’) is fed along with the reset signal, ‘R0_H’. The output of the AND gate 

triggers the multiplexer to select either a zero or the XOR function of the input message 

bit with the MSB bit of the CRC Unit (‘CR15_H’) as shown in Figure 4.7. The outputs 

from the generator polynomial bit blocks are fed into the XOR gates of the respective 

CRC bit blocks. 

A 16-bit CRC has sixteen-bit blocks with one LSB bit block and fifteen identical blocks 

(1 to 15) as shown in Figure 4.7. Each identical block uses four logic gates which 

incorporate a synchronization buffer, a resettable buffer for resetting the datapath, XOR 

gate for generator polynomial representation and 2:1 multiplexer for initial bit loading 

for different bit-rates (b0, b1,…., b15). The initial load value (0x6363) is loaded in the 

CRC datapath during reset operation when ‘R3_H’ signal is logic ‘1’. Two different 

resettable signals, ‘R1_H’ and ‘R2_H’ are used to synchronize the CRC unit due to the 

different position of the resettable buffers in the CRC bit blocks and the LSB of CRC. 

The design can be reused either for a higher bit or for lower bit CRC depending on the 

application by adding the identical CRC bit blocks or by eliminating it. Figure 4.7 

shows two feedforward paths and a feedback path. Both the feedforward paths comprise 

of four cascade gates. Since the feedforward path 2 has a fixed latency of four logic 

gates (two XOR gates and two MUXs), a buffer is added in the feedforward path 1 for 

synchronization. Thus, the n-bit CRC datapath implementation has a fixed overhead of 

n-buffer logic gates due to the synchronization. 

The same concept is applied for CRC implementation using single-phase and 2-phase 

power-clocking scheme. Thus, all the multi-phase logic designs use the same design 

with the same signals as shown in Figure 4.5. The overhead in terms of synchronization 

in implementing the datapath of 2n bit CRC is 2n buffer gates. 

4.5.3 Register Unit 

The CRC value is appended to a message bit stream in the register unit. Typically, a 

message bit stream is stalled using a delay cell comprises of four adiabatic buffer gates 

to synchronize it with the CRC value which has a latency of four gates. A single-bit 

register comprises of four buffer logic stages connected in a cascade manner. The first 

three stages consist of a buffer logic (shown in Chapter 3 of this thesis) and the last 

stage consists of a novel retain buffer logic. Figure 4.8 shows the retain buffer logic 
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circuits for all the five adiabatic logic families. The ‘RET_L’ is an active low input. It 

performs a function of retaining the final CRC value using the wait signal, ‘R4_H’ from 

the decoder. As soon as the computation is over, the ‘RET_L’ input signal is logic ‘0’, 

cutting-off the two output nodes from the power-clock and the ground respectively. 

Thus, the logic value gets retained because of the cross-coupled nMOS and pMOS 

transistors. 

In the case of EACRL logic (having dual-evaluation network), duplicate retain 

transistors were insufficient. It is because the logic suffers from the coupling effect due 

to the absence of nMOS cross-coupled transistors where both the output nodes get 

coupled when ‘RET_L’ input goes low. Thus, two extra cross-coupled nMOS 

transistors, N9 and N10 are used as shown in Figure 4.8 (c). The cross-coupled 

transistors pair P1, N9, and P2, N10 reduces the coupling effect and helps in providing 

the complementary output signals at the two output nodes. Conventionally, to construct 

a 1-bit register using a single-phase and 2-phase adiabatic logic, two buffer stages are 

required (see Chapter 3 of this thesis). However, due to the synchronization issue and 

using the design for the multi-phase power-clocking scheme, the number of stages used 

in a single bit register of CRC is twice the conventional case.  

 

(a) (b) 

 

(c)      (d) 
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(e) 

Figure 4.8: Adiabatic retain logic (a) IECRL (b) PFAL (c) EACRL (d) CPAL (e) CAL. 

4.6 Simulation Results 

For meaningful simulations and to compare CRC implementation using different 

adiabatic logic designs, the transistor sizes were set to the technology minimum for high 

energy efficiency [90]. The simulations were done using Spectre simulator in Cadence 

EDA tool based on TSMC 180nm CMOS process technology at ‘Typical-typical (TT) 

process corner.  

For a single-phase and 4-phase adiabatic logic designs, each power-clock is generated 

using the trapezoidal wave, ramping from 0 to VDD, having an equal duration of 

Evaluation (E), Hold (H), Recovery (R) and Idle (I) periods as shown in Figure 2.5 of 

Chapter 2 of this thesis. The ramping time (Tr) of the power-clock is one-quarter of the 

power-clock time-period (TCLK,1-phase/4-phase). In the case of 2-phase clocking scheme, due 

to the non-overlapping requirement of the power-clock the Idle period is three times that 

of each Evaluation, Hold or Recovery period. Hence the ramping time (Tr) of the 2-phase 

power-clock is one-sixth of the power-clock time-period (TCLK,2-phase). Because the 

adiabatic and non-adiabatic designs do not share the same ramping time, the clock 

frequency of the non-adiabatic implementation is chosen such that its frequency of 

operation is same as that of an adiabatic implementation keeping the rise time and fall 

time constant across the chosen frequency range. For example, for a ramping time of 

2.5ns, the time period of one power-clock cycle is 10ns thus, the clock period for the 

non-adiabatic implementation is taken as 10ns with constant rising and falling time of 

10ps. To measure the energy dissipation and avoiding excessive data dependencies, the 

average energy per computation was measured for ten random message input 
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combinations. It was measured at various frequencies ranging from 1MHz to 100MHz, 

load capacitances, supply voltage scaling and PVT variations for all the five adiabatic 

and non-adiabatic CRC implementations. Also, the computation time in terms of power-

clock-cycles for various message word-lengths was extrapolated. In the end, a 

comparison at the adiabatic system level including PCG and between adiabatic logic 

families was performed and energy saving percentage was calculated for each of them. 

4.6.1 Impact of Frequency on Energy Dissipation 

The energy per computation at varying power-clock frequencies was measured for an 

output load capacitance of 10fF connected at the output of the register unit. Here, the 

energy per computation implies to the energy dissipated in one complete computation 

(i.e. generating the final CRC value after all the message bits have been sent). Figure 

4.9 shows that the energy of all the adiabatic implementations outperforms the non-

adiabatic implementation and show significant energy benefits compared to 

conventional CMOS. Energy Saving (ES) is calculated and is defined as the difference 

in the energy consumption of non-adiabatic and adiabatic implementations divided by 

the energy dissipation of the non-adiabatic implementation. The formula for “Energy 

Saving Percentage” (ESP) is given by (4.1) 

100NA TD

NA

E E
ESP

E


     (4.1) 

 

Figure 4.9: The energy per computation of the 16-bit CRC for a 16-bit message length 

at varying frequency 
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In the calculation of the energy saving, the energy dissipation of PCG is not included. 

Out of the five adiabatic logic designs, PFAL exhibits the maximum ESP of 

approximately 84.5% at 100MHz, whereas, at 10MHz and 1MHz frequencies, IECRL 

implementation exhibits the maximum ESP of approximately 91% and 96% 

respectively. The energy consumption per computation and the ESP of the five adiabatic 

logic families at frequencies simulated are reported in Table 4.2.  

Table 4.2: Energy per computation for adiabatic logic families and non-adiabatic 

implementation at the frequencies simulated. 

CRC Implementation 
Frequency (MHz) 

1 10 100 

Non-adiabatic Energy (pJ) 58.81 54.93 53.93 

CAL 
Energy 23.72 26.65 38.74 

ESP 59.67 51.48 28.17 

CPAL 
Energy 9.51 9.27 13.25 

ESP 83.83 83.13 75.43 

IECRL 
Energy 2.46 4.87 8.63 

ESP 95.83 91.13 83.99 

EACRL 
Energy 8.02 8.19 11.30 

ESP 86.36 85.10 79.05 

PFAL 
Energy 4.98 5.65 8.37 

ESP 91.54 89.71 84.48 

The single-phase, CAL design is least beneficial in comparison to the other adiabatic 

implementations. Unlike the adiabatic logic using 2-phase and 4-phase power clocking 

schemes, in a single-phase cascaded CAL logic, the inputs from the previous stages 

always have the same phase as the power-clock, except with a small delay. As the wait 

signal, ‘R4_H’ is connected to the ‘RET_L’, the input of 32 retain transistors, and the 

propagation delay increases as the power-clock speed is increased (shorter ramping 

time). As a result, the input reads the wrong value which gets propagated to the register 

outputs. Hence, for a shorter ramping time (higher frequency), the sizing of the logic 

gate generating the ‘R4_H’ signal in CAL controller was done leading to increased 

energy dissipation. On the other hand, at the simulated frequencies, the IECRL design 

shows the minimum energy per computation at frequencies lower than 25MHz 

approximately whereas, PFAL consumes the minimum energy above 25MHz. 
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4.6.2 Impact of Load Capacitance on Energy Dissipation 

Figure 4.10 shows energy per computation at varying load capacitances at 10MHz. It 

can be seen that the variations in the energy dissipation of CAL and the IECRL logic 

with load variation are steeper as compared to the rest of the logic designs presented. At 

load capacitance greater than 60fF, IECRL crosses the energy dissipation of CPAL and 

becomes the second worst (after CAL). Out of the five adiabatic logic designs, the CAL 

implementation consumes the maximum energy. It is also worth mentioning that the 

non-adiabatic design outperforms the CAL logic at load capacitance values greater than 

100fF. On the other hand, PFAL consumes the least energy at load capacitance values 

greater than 20fF. However, the advantage of the low energy consumption of the 2-

phase CPAL logic (due to zero NAL at the two output nodes) diminishes mainly 

because of the high computation time incurred by the CRC datapath. 

 

Figure 4.10: The energy per computation at varying load capacitances. 

Considering the EACRL design, it dissipates more energy in comparison to PFAL and 

IECRL at lower capacitive load as shown in Figure 4.10. However, as the load increases 

beyond 50fF, the advantage of zero NAL in the evaluation phase overpowers its 

disadvantages of higher input/output node capacitances (due to dual evaluation logic) 

and the coupling effect. Thus, it dissipates less energy than that of IECRL at higher 

capacitive loading. In addition, when compared to PFAL, due to more number of 

transistors, EACRL consumes approximately 55% more energy at zero load capacitance. 

But at 200fF, the load capacitance dominates the internal node capacitance of EACRL 
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and consequently, the difference in the energy dissipation of PFAL and EACRL reduces. 

EACRL dissipates approximately 4.3% more energy than PFAL. 

4.6.3 Impact of Supply Voltage Scaling on Energy Dissipation 

Energy in both adiabatic and non-adiabatic implementations can be reduced by supply 

voltage scaling according to the quadratic dependence of the energy dissipation on the 

supply voltage (2.2) and (2.6).  

However, in adiabatic logic, reducing VDD also increases the ON-resistance, RON, of the 

transistor in the charging path (4.2), thus increases the energy dissipation [38]. Hence, 

the energy benefits of the reduced supply voltage in adiabatic circuits are less. 
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Assuming negligible NAL and leakage, ETD = EAL then substituting (2.6) and (4.3) in 

(4.1), the effect of voltage scaling on ES in an adiabatic circuit can be derived (4.4).  
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Figure 4.11 shows the effect of voltage scaling on energy per computation for five 

adiabatic and non-adiabatic CRC implementations at 10MHz and at 10fF load 



84 

 

capacitance. From (4.4) and Figure 4.12, it can be seen that the adiabatic techniques 

largely suffered from voltage scaling in terms of ESP and functionality. PFAL and 

IECRL show a similar reduction in ESP as the voltage is scaled down, except the fact 

that the former fails to deliver the correct functionality at 0.6V (voltage closer to the 

threshold voltage). Also, due to the higher voltage drop of pass transistors in CPAL, it 

malfunctions at 1V and less. Thus, it makes CPAL highly vulnerable logic at lower 

voltages. As expected, CAL shows minimum ESP and goes below zero, approximately 

5% at 0.6V. This implies that the energy dissipation of the non-adiabatic 

implementation becomes less than that of CAL design. 

 

Figure 4.11: Energy per computation at the varying supply voltage. 

 

Figure 4.12: ESP at the varying supply voltage. 
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It can be summed up that, ESP of adiabatic logic designs shows a steeper response at 

supply voltage less than 1.2V. In addition, the reduction in supply voltage will also 

degrade the noise margin both in non-adiabatic and adiabatic implementations. Thus, 

for the adiabatic logic families, an optimal range for the supply voltage scaling is 

proposed. It is named as “Adiabatic Voltage Scaling Range” for better ESP and proper 

functionality and is stated as; 

  VDD ≥ 2Vth    (4.5) 

4.6.4 Impact of Process Voltage Temperature (PVT) variation on the Energy 

Dissipation 

The robustness of the CRC design using adiabatic logic against PVT variations is 

investigated by running the PVT analysis in Analog Design Environment (ADE). All the 

CRC implementations were simulated for five corners to ensure correct operation. Figure 

4.13 shows the energy per computation measured for the adiabatic and non-adiabatic 

designs at 10MHz and 10fF load capacitance.  

Temperature plays an important role in the energy dissipation of the adiabatic circuit due 

to the dependency of on adiabatic energy dissipation on RON. The increase in temperature 

causes RON to increase, causing the adiabatic logic to dissipate more at a higher 

temperature. The worst-case energy dissipation was measured for the Fast-Fast (FF) 

process corner at a 1.98V supply voltage and 100oC temperature. Similarly, for the best 

case, slow-slow (SS), 1.62V and 0oC were considered. Whereas for the skewed corners 

slow-fast (SF), and fast-slow (FS), the designs were simulated for 1.62V and 100oC 

temperature giving energy dissipation close to the SS corner and for the FS corner 1.98V 

and 0oC, close to the FF corner. For typical-typical corner (TT), 1.8V and 27oC 

temperature is the default value. 

In SF corner, the CAL implementation malfunctions, therefore its energy dissipation is 

not measured. On the other hand, CPAL design shows large variations in the energy 

consumption at extreme corners (FF and SS) compared to the other adiabatic logic 

designs presented. However, out of the five adiabatic CRC implementations, PFAL and 

EACRL show constant ESP approximately 90% and 85% respectively at all process 

corner. Whereas IECRL shows ESP of 85% at FS corner and 91% at rest of the four 

process corners. 
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Figure 4.13: Energy per computation at five process corners. 

4.6.5 Impact of Message Word-Length on Computation Time 

The datapath of the CRC for all the 4-phase and 2-phase 16-bit CRC designs, take 64 

power-clock phases for the computation of 16-bit message word-length. An additional 

seven phases, four for the counter and three for 16:1 multiplexer are required for the 

message bits to arrive at the input of the CRC datapath. Another four phases are 

required by the CRC value to be appended with the message word in the register unit. 

Thus, the total of 75 power-clock phases equivalent to 18.75 power-clock cycles is 

required by the 4-phase designs for CRC computation. Whereas, for the 2-phase design, 

37.5 power-clock cycles are required for the complete computation. Although the 

single-phase design has the lowest power-clock complexity, however, it requires 75 

power-clock cycles in total. Therefore, resulting in the lowest throughput and highest 

energy dissipation. 

The non-adiabatic design requires 18 clock-cycles, approximately 3/4th less as 

compared to that required by the 4-phase adiabatic logic designs. This is because the 

adiabatic implementation of the multiplexer test circuit requires three power-clock 

phases whereas non-adiabatic requires none. Figure 4.14 shows the extrapolated result 

of the computation time at varying message word-length using the multi-phase power-

clock designs and the non-adiabatic design for the 16-bit CRC code. 
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Figure 4.14: Computation time versus message bit length. 

4.6.6 Power-Clock Generation (PCG) 

Unlike static CMOS logic, adiabatic circuits are powered from the clock, requiring a 

separate “power-clock” supply. PCG will consume a significant amount of the energy 

(analogous to the clock generation in conventional CMOS). It is important to bear in 

mind that PCG will be able to supply considerably more circuitry than the CRC 

presented here. Nevertheless, it is appropriate to consider its energy too, which is often 

neglected in adiabatic papers present in the open literature. Here, a 4-phase PCG based 

on StepWise Charging (SWC) circuit is used, as found in [51]. The complete adiabatic 

system was designed which comprises of the power-clock generator and the adiabatic 

core.  

The adiabatic core contains the CRC. The required power-clock phases come from 

PCG. Single-phase, 2-phase, and 4-phase power-clock generators were designed using 

2-step charging circuit. To generate 2-phase power-clock two 2-step charging circuits 

were required. Similarly, for 4-phase power-clock, four 2-step charging circuits were 

required. For a single-phase, only one 2-step charging circuit was required and the 

auxiliary clocks were supplied using a trapezoidal power source. What also has to keep 

in mind that generating power-clock of the same ramping time for 2-phase and single/4-

phase clocking scheme, the power-clock frequency is different. 



88 

 

The simulations were performed for a ramping time of 25ns for the power-clocks with 

supply-voltage 1.8V VDD and 10fF capacitive load attached to the output of the adiabatic 

core. The reference CLK for generating the power-clock frequency of 25ns ramping 

time (10MHz) was taken to be 40MHz and 60MHz for single/4-phase and 2-phase 

clocking schemes respectively. The frequency of operation for non-adiabatic was taken 

to be 10MHz. The value of the tank capacitance used in the 2-stepwise charging circuit 

of the single-phase, 2-phase, and 4-phase PCG was 5pF. In the 2-step-charging circuit, 

keeping the length of the switches minimum, the width of the switches were taken based 

on the logic families. For a single phase and 2-phase designs, the width of the pMOS 

and nMOS was chosen to be 1u and 0.5u respectively whereas for PFAL and IECRL, 

the width was taken as 0.25u for all the transistors. In the case of EACRL, due to its 

dual evaluation network, the pMOS width was taken as 4u and nMOS width was 2u.  

Table 4.3: Energy dissipation per computation by an adiabatic system (including PCG) 

and the non-adiabatic design. 

Logic Design Styles EPCG(pJ) ETOTAL SYSTEM(pJ) 

Non-Adiabatic -- 54.93 

CPAL 101.03 107.27 

CAL 113.55 134.82 

PFAL 44.17 48.53 

EACRL 48.39 59.74 

IECRL 29.36 36.93 

Table 4.3 reports the energy consumed by the adiabatic system (including PCG) and the 

non-adiabatic design for computing the CRC value. In comparison to the non-adiabatic 

design, only PFAL and IECRL show a decrease in energy dissipation. It is also worth 

mentioning that the energy consumption of the signal generator for SWC has not been 

considered. In addition, the energy dissipation of the adiabatic system can be made 

lower by using step charging circuits with more than 2-steps [49]. It has not been 

possible to include the clock distribution overhead for non-adiabatic as the figures can 

be misleading and not reflect reality. Moreover, it will very much be design and layout 

specific, dependent, how well they are optimised and the tools used. However, the 

comparison between adiabatic and non-adiabatic in Table 4.3 reported an unfavorable 

outcome for the adiabatic circuit since the dissipation of the clock generator and 



89 

 

distribution network present in almost all the non-adiabatic circuits are not considered, 

it is clear from Table 4.3 that IECRL is superior to non-adiabatic regardless of the clock 

distribution network. 

Based on the simulation results for a 16-bit message word-length for 16-bit CRC, the 

performance trade-offs of the multi-phase adiabatic logic design is tabulated in Table 

4.4. The only difference in the structure of PFAL and IECRL logic is in the connection 

of the evaluation network. They both have the same and a minimum number of 

transistor counts. On the other hand, the CPAL logic design uses approximately 40% 

more transistors compared to PFAL and IECRL whereas, CAL and EACRL design 

consume 25% and 20% more transistors respectively. This increase of CPAL transistor 

counts is because of the twice the number of buffers needed in the register unit due to 

the synchronization issue. 

Table 4.4: Performance trade-offs between multi-phase adiabatic 16-bit CRC 

implementation for a 16-bit message word-length. 

Adiabatic 

Logic 

Families 

Area 
(in terms of 

transistor 

counts) 

Robustness 
against 

PVT 

Variations 

Computation 

Time 
(power-clock 

cycles) 

Circuit 
Complexity 

Power-clock 
Complexity 

ETOTAL 

SYSTEM 

(pJ) 

CPAL 3012 Medium 75 High Medium 107.27 

CAL 2696 Low 37.50 Medium Low 134.82 

PFAL 2150 High 18.75 Low High 48.53 

EACRL 2582 High 18.75 High High 59.74 

IECRL 2150 High 18.75 Low High 36.93 

The impact of increased message word-length is more on the computation time 

(throughput) of single-phase and 2-phase designs rather than the 4-phase design. The 

area is mostly incurred by the register unit rather than the other CRC components, 

therefore, the impact of increased message word-length is not much on the area of the 

CRC design for all the five adiabatic logic designs. Since the CRC datapath 

implementation requires four cascade logic for a single bit CRC bit-slice, the advantage 

of single phase (CAL) and 2-phase (CPAL) designs in terms of transistor count and 

throughput diminishes. It can be seen that the 4-phase schemes are more efficient in 

terms of area and throughput. They also show high robustness against PVT variations. 
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The power-clock complexity depends on the number of SWC circuits needed to 

generate the required power-clock phase and the area utilized by the controller circuitry. 

A single-phase PCG requires one SWC circuits and two flip-flops and two 2-inputs 

logic gates for the controller. Whereas the 2-phase power-clock generator requires two 

SWC circuits, three flip-flops, and nineteen 2-input logic gates. On the other hand, all 4-

phase power-clock generator is designed using four SWC circuits, two flip-flops, and 

eight 2-inputs and single-input logic gates.   

4.7 Summary 

This chapter presents the exhaustive survey of single-phase, two-phase and four-phase 

adiabatic logic families based on the 16-bit adiabatic implementation of CRC for NFC 

application. A methodology for selecting generically “efficient” design is based on 

achieving optimum trade-offs between energy, area, computation time, robustness 

against PVT variations, supply voltage scaling, power-clocking scheme, and power-

clock generator complexity. 

The 4-phase adiabatic logic designs outperform the single-phase and 2-phase adiabatic 

logic designs. The CAL complexity is lowest due to the use of single-phase power-

clocking scheme, however, its performance is worst based on computation time, 

throughput, latency, robustness, and energy dissipation. Even though the three 4-phase 

adiabatic logic designs have high complexity due to the 4-phase power-clock 

requirement, they show high robustness against PVT variations and energy efficiency 

compared to the single-phase and 2-phase designs. The 4-phase EACRL has the highest 

area and energy due to the complex evaluation network compared to IECRL and PFAL. 

On the other hand, IECRL dissipates more energy at higher capacitance load and less 

energy at lower capacitance load when compared to PFAL. 

Energy saving deteriorates when PCG is considered. The results show that only IECRL 

consume less energy compared to the non-adiabatic design (without considering the 

energy dissipation of the clock drivers, clock distribution network and clock generator). 

The system energy comparison in Table 4.3 and performance comparison between 

adiabatic logic techniques in Table 4.4 will enable the designers to use quantitative 

information in selecting the required n-phase adiabatic logic to design an effective 

feedback system. 
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5 VHDL Modelling for Timing Characterization 

Functionality obtained in previous chapters is based on SPICE simulations of transistor-

level circuits using Spectre simulator in Cadence. From these, certain inferences were 

drawn about the synchronization of power-clock phases for correct operation and the 

time spent in debugging errors in a large adiabatic system. Therefore, if the dual-rail 4-

phase adiabatic logic can be modeled using Hardware Description Languages (HDL), 

time for design, functional verification and error debugging can be significantly reduced. 

This is the main motivation of this chapter. In this chapter, (VHSIC Hardware 

Description Language) VHDL based models for the simulations of the dual-rail4-phase 

adiabatic logic technique are presented. The functional aspects of the models are 

verified for the 4-phase adiabatic circuit designs used in Chapters 3 and 4. Moreover, 

the models are designed such that, precise timings of the computation in the 4-phase 

adiabatic system can be determined. This feature is included as a secondary objective of 

the VHDL modelling. 

5.1 Introduction 

The verification of the functionality and the low energy traits of adiabatic logic in 

comparison to non-adiabatic logic is generally performed using the SPICE simulations 

at the transistor level. But as the size and complexity of the adiabatic system increases, 

the amount of time required in designing and validating the design increases. 

Additionally, due to the complexity of synchronizing the power-clock phases, 

debugging of errors becomes difficult and time-consuming. This gives rise to a need for 

specific modelling approach that can be used to describe the adiabatic logic behaviour at 

a higher level of abstraction before the simulations at the transistor level are performed 

for energy measurements. Such a model would allow functional errors to be detected 
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and corrected, decreasing the overall time in designing and verifying the functionality of 

complex adiabatic systems. Moreover, as both the adiabatic and non-adiabatic uses the 

same process technology and can be fabricated on the same wafer, the precise modelling 

of both the logic with proper interfacing [100] can save a considerable amount of time 

arising due to the synchronization complexity. The designing of adiabatic circuits 

requires much more efforts in contrast to the non-adiabatic logic for which well-

developed tools exist. The major difference between the two is that the adiabatic logic 

designs use slowly changing ac power-clock supply instead of dc power-supply. 

The use of adiabatic logic techniques instead of non-adiabatic logic (conventional 

CMOS) design can decrease the energy consumption of a large system considerably 

[54]. Based on the performance comparison results of adiabatic logic techniques 

presented in Chapter 4, the VHDL modelling for the 4-phase adiabatic logic has been 

done. VHDL is valid and is efficiently used for signal levels ‘0’ and ‘1’ having zero 

rises and fall time ideally. However, in adiabatic logic, due to the dual-rail encoding of 

inputs and outputs and the multi-phase clocking scheme, the waveforms are more 

complex. In addition to the logic ‘1’ and logic ‘0’, the adiabatic power-clock supply 

uses two transition levels where the power-clock is a ramp. The transition from logic ‘0’ 

to logic ‘1’ known as charging/evaluation period and transition from logic ‘1’ to logic 

‘0’ known as discharging/recovery period. The 4-phase power-clock is modeled such 

that all the four periods share the same time. The more detailed description of the 

power-clocking scheme is given in Chapter 2 of this thesis.  

In the literature, few research papers exist that details the modelling of adiabatic logic 

using HDL. Not much attention has been given to the higher-level simulation of the 

adiabatic logic designs due to the complex power-clock generation requirements. 

According to the authors best knowledge and literature review, the first modelling of 

adiabatic logic was done by M. Vollmer and J. Gotze in 2005 [26]. They described a 

systolic array of CORDIC devices using adiabatic logic modeled in VHDL. Their work 

included the description of the adiabatic logic block but did not model the dual-rail 

behaviour and used one global clock net instead of 4-phase power-clock for cascade 

designs. A year later, Laszlo Varga et.al. [27] described two-level pipelining scheduling 

of adiabatic logic using integer linear programming formulation and a heuristic 

scheduling. The authors presented the VHDL description for functional simulation of 

the synthesized adiabatic datapath together with the non-adiabatic part of the digital 



93 

 

system. This approach focused mainly on producing a pipeline schedule of the power-

clock behaviour of the adiabatic logic but did not model the power-clock and used the 

single-rail encoding of the adiabatic logic. In 2010, David John Willingham in his Ph.D. 

thesis [28] reported Asynchrobatic Logic in Verilog, an industry standard HDL. First, 

the author demonstrated the idea in a single-rail scheme and then extended it to dual-rail, 

which was found to be missing in Vollmer and Laszlo’s modelling. Though the dual-rail 

implementation proves to be advantageous in detecting invalid circuit operations, the 

author did not model the power-clock in HDL, instead uses square waveform changing 

from logic ‘1’ to ‘0’ and vice versa. 

The main drawback of all the existing approaches is that none have shown the actual 

representation of an adiabatic logic technique [24] by representing all the four periods 

namely; evaluation, hold, recovery and idle of the power-clock in HDL. Instead, the 

power-clock is represented as a square waveform with only two logic levels (logic ‘1’ 

and logic ‘0’) like that of the non-adiabatic logic. Here, the logic ‘1’ corresponds to the 

hold period and logic ‘0’ corresponds to the idle period. The remaining two periods, 

which are ramp; one changing from 0 to VDD corresponds to the evaluation and other 

from VDD to 0 corresponding to the recovery period, have been skipped or merged with 

hold and idle periods. Ideally, all the four periods should share the same time, for 

correctly representing the adiabatic waveform/power-clock and follow the adiabatic 

principles. Thus, unlike SPICE-level simulation, when the inputs and power-clock are 

in the same phase then the output will still be valid using the existing modelling 

approaches. This invalid operation will lead to a wrong functionality and will be 

difficult and time-consuming to be detected errors in a large circuit. The error in the 

encoding of HDL using the existing approach is given in the next section. 

Therefore, in this study, VHDL-based modelling for the 4-phase adiabatic logic 

technique is developed for functional simulation. It represents the 4-phase power-

clocking scheme and includes a systematic approach for precise timing analysis. This is 

the novel contribution which captures the exact timing behaviour and detects the 

circuit’s invalid operation by checking the generated complementary outputs. The 

modelling includes the dual-rail representation of the input/output signals. The four 

periods of the power-clock explicitly defined as a function in VHDL. The conceptual 

block diagram for an adiabatic NOT/BUF gate is given in Figure 5.1. The power-clock 

generator block comprises of two flip-flops working as a 2-bit counter. The input to the 
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power-clock generator is the clock signal (CLK). The four states of the counter are 

assigned to the four periods of the power-clock. The adiabatic conversion block 

comprises of a 2-bit counter and depending on the pulse input levels (IN_H, IN_L) the 

adiabatic outputs (A_H, A_L) are generated. The adiabatic core is a NOT/BUF gate 

generating both the complementary outputs (Out_H, Out_L). 

 

Figure 5.1: A conceptual block diagram of an adiabatic system where the adiabatic core 

is a NOT/BUF gate. 

5.2 Encoding of HDL Models 

The most difficult part of modelling the adiabatic logic using conventional HDLs is that 

these languages are made entirely for encoding two logic levels (‘0’ and ‘1’) and is 

either ‘level’ or ‘edge’ sensitive. In order to define a cell library with HDL functional 

models of the adiabatic cells which can be used with conventional HDL simulators in 

the design of a large adiabatic circuit, power-clock of the adiabatic logic needs to be 

suitably encoded for all the four periods (Figure 2.2 in Chapter 2 of this thesis). In the 

literature, the voltage-level encoding style for adiabatic logic has been used which is 

similar to the non-adiabatic logic designs. With the adiabatic logic, having trapezoidal 

power-supply, the gates operating during a specific period must follow the adiabatic 

principle. In addition, each adiabatic logic gates such as MUX, AND/NAND, OR/NOR 

and XOR/XNOR must be sequential that combines the logic functionality with storage 

capability, therefore, requires a different encoding approach. In this work, two encoding 

styles are discussed i.e. previously used voltage-level encoding style and the proposed 

multi-level event-based encoding style. 
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5.2.1 Voltage-level Event-based Approach 

So far voltage-level event-based approach is commonly used for encoding the behaviour 

of the power-clock in adiabatic logic. It uses two logic levels to represent the four 

periods of the adiabatic power-clock. The logic ‘1’ of the power-clock signal represents 

Evaluation (E) and Hold (H) period of the trapezoidal power-clock, whereas, the logic 

‘0’ represents the Recovery (R) and Idle (I) period of the trapezoidal waveform. Figure 

5.2 shows the voltage-level encoding style. The adiabatic logic modeled using this style 

uses the clock signal as the power-clock.  

 

Figure 5.2: Voltage level event-based encoding. 

Although the author [36] included the checking of the invalid states on the positive-edge 

of the power-clock, the drawback of this style still exists. Here the output does not 

follow the power-clock; rather it is a function of the input being processed (which is not 

the case with adiabatic circuits). For example, in an adiabatic buffer gate, when the 

inputs are valid (logic ‘1’) during the positive-edge of the clock, the complementary 

output nodes follow the complementary inputs. However, in the case of SPICE 

simulation, one of the outputs follows the power-clock depending on the input being 

processed whereas its complementary node is discharged to ground. This difference has 

been removed in the proposed encoding scheme by making sure that the outputs follow 

the power-clock, not the inputs. Moreover, as stated above, voltage-level encoding for 

adiabatic power-clock doesn’t follow the adiabatic principle for cascade logic. Thus, the 

adiabatic logic design can malfunction if either the PC is delayed or the input arrives 

early such that the power-clock rising edge aligns with the falling edge of the input. 

5.2.2 Multi-level Event-based Approach 

In the proposed approach, the hold and the idle periods of the power-clock are 

represented as logic ‘1’ and logic ‘0’ similar to that of the voltage-level encoding. 
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Whereas, the evaluation and the recovery period are encoded with an intermediate state 

marked as ‘X’, for the duration of the ramp period. This approach is not straightforward, 

as apart from generating the power-clock which has three logic levels, the adiabatic 

inputs must also be generated with three logic levels for proper functionality and timing 

analysis. The trapezoidal power-clock is modeled as three logic levels as shown in 

Figure 5.3. The four periods of the power-clock are defined as an edge function in 

VHDL which is aggregated into a package named “Adiabatic_signal”. The package is 

shared between different VHDL models to develop the cell library of the basic adiabatic 

logic gates. The approach can also be easily used for single-phase and 2-phase adiabatic 

logic techniques, although it will not be straightforward in the case of 2-phase adiabatic 

logic due to its long idle period.   

 

Figure 5.3: Multi-level event-based encoding. 

5.3 HDL Modelling of 4-phase Adiabatic Logic Technique 

VHDL is used to model the 4-phase adiabatic logic technique to capture the circuit 

description. One of the advantages of modelling is that the design can be simulated with 

logic simulators and can be interfaced with the non-adiabatic logic designs for energy 

efficiency. Generally, the circuit behaviour and the timing extracted from SPICE 

simulation are used to develop the VHDL models. First, the trapezoidal power-clock 

used at the transistor level is encoded as a multi-level in standard logic (shown in Figure 

5.4) to capture the behaviour of adiabatic logic. This is followed by the gate-level 

modelling and interconnection modelling (pulse input to adiabatic conversion). Other 

than simulating the circuit behaviour in HDL, the main objective is to measure the 

computation time of the circuit so that for a large system, the throughput can easily be 

calculated. Moreover, like SPICE simulation, the proposed modelling approach for 

adiabatic logic detects invalid complementary inputs by checking on to the 
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complementary outputs. Also, the conventional CMOS circuits required for the power-

clock and adiabatic input generation are similar to that of the controller used to generate 

signals for PCG [101]. 

The method used is presented as follows. 

1) Modelling the behaviour of the trapezoidal AC power-clock. 

2) Generation of dual-rail adiabatic signals from dual-rail pulse input. 

3) Developing a VHDL model library. 

4) Modelling invalid inputs. 

 

Figure 5.4: Encoding trapezoidal waveform in standard logic. 

5.3.1 Modelling Trapezoidal AC Power-clock 

To realize the adiabatic power-clock in standard logic using a multi-level approach, as 

depicted in Figure 5.3, four states are required. Each state is encoded based on the 

voltage level needed. The four states can be easily generated using two flip-flops 

counting from “00” to “11”.For simplicity, the counter output is forced externally as the 

input to the power-clock generator block using the clock signal ‘CLK’ as a two-bit 

number, generating four states. Figure 5.5 shows the circuit simulation of the power-

clock for a time period of 200ns. The VHDL code for power-clock generation is shown 

below in Listing 5.1: 

 

Figure 5.5: HDL simulation for generating a power-clock signal. 
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Listing 5.1: VHDL code for a power-clock generation. 

5.3.2 Generating Dual-rail Adiabatic Signals from Dual-rail Pulse Input. 

One of the key requirements for adiabatic logic to perform correctly is the generation of 

the adiabatic inputs using a multi-level encoding approach. In adiabatic logic, the input 

must be stable (hold period) during the evaluation period of the power-clock. This 

behaviour is captured in the proposed modelling by having the input to arrive one phase 

before the power-clock such that more realistic modelling representing the adiabatic 

logic is realized. Similar to the power-clock generator block, the pulse input to adiabatic 

conversion block consists of the two-bit clock signal ‘CLK’ forced externally to 

generate four states. Depending on the dual-rail signals it's equivalent dual-rail adiabatic 

outputs are generated. Figure 5.6 shows the VHDL simulations for the generation of 

adiabatic input signals. The adiabatic inputs can be generated for any power-clock phase 

required by simply assigning the states to the ‘CLK’ signal. The VHDL code for the 

same is shown in Listing 5.2. It also shows the modelling of invalid pulse inputs to its 

equivalent adiabatic outputs.  

1. LIBRARY IEEE; 
2. USE IEEE.STD_LOGIC_1164.ALL; 
3. USE IEEE.STD_LOGIC_ARITH.ALL; 
 

4. ENTITY GENERATE_ADIABATIC_CLOCK IS 
5. port (CLK: in std_logic_vector (1 downto 0); PC : out 

std_logic); 

6. END ENTITY GENERATE_ADIABATIC_CLOCK; 
 

7. Architecture Behavioural of GENERATE_ADIABATIC_CLOCK IS 
 

8. Begin  
9. Process (CLK) IS 
10. Begin 
11. if CLK ="00" then  // IDLE PERIOD // 

12. PC<='0'; 

13. elsif CLK = "01" then  // EVALUATE PERIOD //  

14. PC<='X'; 

15. elsif CLK = "10" then  // HOLD PERIOD // 

16. PC<='1'; 

17. elsif CLK = "11" then  // RECOVERY PERIOD // 

18. PC<='X'; 

19. End if; 

20. End Process; 
21. End Architecture Behavioural; 
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Figure 5.6: VHDL simulation for generating the adiabatic input signals. 

 

1. LIBRARY IEEE; 
2. USE IEEE.STD_LOGIC_1164.ALL; 
3. USE IEEE.STD_LOGIC_ARITH.ALL; 
 

4. ENTITY PULSE_INP_to_ADIABATIC IS 
5. port (IN_H, IN_L : in std_logic; CLK: in std_logic_vector(1 

downto 0);A_H, A_L : out std_logic); 

6. END ENTITY DC_TO_ADIABATIC; 
 

7. Architecture Behavioural of PULSE_INP_to_ADIABATIC is 
8. Begin  
9.  Process (CLK) is 
10.     Begin 

 

11. if CLK ="00" then 
12. if IN_H ='1' and IN_L ='0' then 

13.       A_H<='X'; 

14.       A_L<='0'; 

15.   elsif IN_L ='1' and IN_H ='0' then 

16.       A_H<='0'; 

17.       A_L<='X'; 

18.   elsif IN_H ='1' and IN_L ='1' then //Invalid State// 

19.       A_H<='X'; 

20.       A_L<='X'; 

21.   elsif IN_H ='0' and IN_L ='0' then //Invalid State// 

22.       A_H<='0'; 

23.       A_L<='0'; 

24.   End if; 

 

25. elsif CLK = "01" then 
26. if IN_H ='1' and IN_L ='0' then 

27. A_H<='1'; 

28.    A_L<='0'; 

29. elsif IN_L ='1' and IN_H='0' then 

30.       A_H<='0'; 

31.       A_L<='1'; 
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Listing 5.2: VHDL code for converting DC inputs to adiabatic inputs. 

5.3.3 Developing a VHDL Model Library 

To model the adiabatic logic gates, VHDL primitives are compared to equivalent 

adiabatic gates based on the multi-level encoding approach. Table 5.1 shows the truth 

table of the two basic primitives AND and OR. The not gate is not shown as 

behavioural modelling of the NOT/BUF adiabatic gate has been done. In Table 5.1 and 

5.2, the outputs in red indicate the one that is not matched with the adiabatic logic 

modelling. The proposed modelling uses ‘x’ and ‘z’ as intermediate and invalid states 

respectively. Thus, the operation involving either of them with ‘1’ and ‘z’ produces an 

invalid output ‘z’, marked in red for the adiabatic logic modelling. In addition, the OR 

operation of the adiabatic logic modelling involving ‘z’ with ‘0’ produces an invalid 

output marked with ‘z’ in Table 5.2. Table 5.2 is used to write a user-defined primitive 

for AND and OR as a function in VHDL. The functions utilize case statement control 

structure and are named ‘Aand’ and ‘Aor’ in Adiabatic_2INP_GATES package body. 

32. elsif IN_H ='1' and IN_L ='1' then  //Invalid State// 

33.       A_H<='1'; 

34.       A_L<='1'; 

35.  elsif IN_H ='0' and IN_L ='0' then //Invalid State// 

36.    A_H<='0'; 

37.    A_L<='0'; 

38. End if; 

 

39. elsif CLK = "10" then 

40.  if IN_H ='1' and IN_L ='0' then 

41.    A_H<='X'; 

42.    A_L<='0'; 

43. elsif IN_L ='1' and INP_H='0' then 

44.    A_H<='0'; 

45.    A_L<='X'; 

46. elsif IN_H ='1' and IN_L ='1' then //Invalid State// 

47.    A_H<='X'; 

48.    A_L<='X'; 

49. elsif IN_H ='0' and IN_L ='0' then //Invalid State// 

50.    A_H<='0'; 

51.    A_L<='0'; 

52. End if; 

 

53. elsif CLK = "11" then 

54. A<='0'; 

55. Ab<='0'; 

56. End if; 

57. End Process; 

58. End Architecture behavioural; 
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Their VHDL codes are shown in Listings 5.3. The lines 12-21 represent the Aor and 

lines 27-38 represents the Aand. 

Table 5.1: Basic logic gates AND and OR. 

 

Table 5.2: Basic logic gates AND and OR for adiabatic logic modelling. 
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Listing 5.3: User-defined primitives as functions in a user-defined package 

In addition, the logic level simulation and timing verification of the adiabatic logic 

circuits with standard tools is possible only after defining the functions for power-clock 

periods namely; EVALUATE_edge, HOLD_edge, RECOVERY_edge and the 

1. LIBRARY IEEE; 
2. USE IEEE.STD_LOGIC_1164.ALL; 
3. PACKAGE Adiabatic_2INP_GATES IS 
4. FUNCTION Aor  (L, R : std_ulogic) RETURN UX01Z; 
5. FUNCTION Aand (L, R: std_ulogic) RETURN UX01Z; 
6. END Adiabatic_2INP_GATES; 
 

7. PACKAGE BODY Adiabatic_2INP_GATES IS 
 

//User Defined Adiabatic OR// 

 

8. FUNCTION Aor (L, R : std_ulogic) RETURN UX01Z is 
9.  VARIABLE sel: std_logic_vector (1 downto 0); 

10.    begin 

11. sel:= L&R; 

12.      case sel is 
13.      when "00"=> return '0'; 

14.      when "01"=> return '1'; 

15.      when "10"=> return '1'; 

16.      when "11"=> return '1'; 

17.      when "0X"=> return 'X'; 

18.      when "X0"=> return 'X'; 

19.      when "XX"=> return 'X'; 

20.      when others=> return 'Z'; 

21.   end case; 
22.  END FUNCTION; 
 

// User Defined Adiabatic AND// 

 

23.  FUNCTION AandL, R : std_ulogic) RETURN UX01Z is 
24.  VARIABLE sel: std_logic_vector (1 downto 0); 

25.    begin 

26.      sel:= L&R; 

27.      case sel is 

28. when "0Z"=> return '0'; 

29. when "Z0"=> return '0'; 

30. when "00"=> return '0'; 

31. when "10"=> return '0'; 

32. when "01"=> return '0'; 

33. when "0X"=> return '0'; 

34. when "X0"=> return '0'; 

35. when "XX"=> return 'X'; 

36. when "11"=> return '1'; 

37. when others=> return 'Z'; 

38. end case; 
39.   END FUNCTION; 
40. End PACKAGE BODY Adiabatic_2INP_GATES; 
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IDLE_edge in the package that is used by all the adiabatic HDL description files by 

placing the ‘USE’ directive in the program. The VHDL package defining the power-

clock periods are shown in Listing 5.4. The function for EVALUATE_edge is 

represented by the lines 10-13, HOLD_edge by the lines 14-17, RECOVERY_edge by 

the lines 18-21 and lines 22-25 represent the IDLE_edge of the power-clock. 

 

Listing 5.4: User-defined four power-clock periods as functions in a package. 

1. LIBRARY IEEE; 
2. USE IEEE.STD_LOGIC_1164.ALL; 
3. PACKAGE Adiabatic_signal IS 
4. FUNCTION EVALUATE_edge(SIGNAL s :std_ulogic) 

RETURNBOOLEAN; 

5. FUNCTION HOLD_edge(SIGNAL s : std_ulogic) RETURN BOOLEAN; 
6. FUNCTION RECOVERY_edge(SIGNAL s : std_ulogic) RETURN 

BOOLEAN; 

7. FUNCTION IDLE_edge(SIGNAL s : std_ulogic) RETURN BOOLEAN; 
8. END Adiabatic_signal; 
 

9. PACKAGE BODY Adiabatic_signal IS 
 

10. FUNCTION EVALUATE_edge(SIGNAL s : std_ulogic) RETURN 
BOOLEAN is 

11. Begin 
12. RETURN (s'EVENT AND(To_X01(s) = 'X') AND 

(To_X01(s'LAST_VALUE)= '0')); 

13. END FUNCTION; 
 

14. FUNCTION HOLD_edge(SIGNAL s :std_ulogic) RETURN BOOLEAN is  
15. Begin 
16. RETURN (s'EVENT AND (To_X01(s) = '1') AND 

(To_X01(s'LAST_VALUE)= 'X')); 

17. END FUNCTION; 
 

18. FUNCTION RECOVERY_edge(SIGNAL s : std_ulogic) RETURN 
BOOLEAN is  

19. Begin 
20. RETURN (s'EVENT AND (To_X01(s) = 'X') AND 

(To_X01(s'LAST_VALUE)= '1')); 

21. END FUNCTION; 
 

22. FUNCTION IDLE_edge(SIGNAL s :std_ulogic) RETURN BOOLEAN is 
23. Begin 
24. RETURN (s'EVENT AND (To_X01(s) = '0') AND 

(To_X01(s'LAST_VALUE)= 'X')); 

25. END FUNCTION; 
26. End PACKAGE BODY Adiabatic_signal; 
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Then the development of VHDL model for the NOT/BUF adiabatic gate is collectively 

done using the power-clock generation, package defining the four periods of the 

adiabatic signal and pulse input to adiabatic inputs conversion. The VHDL code for the 

NOT/BUF adiabatic gate is given in Listing 5.5. The package is defined in line 4. Line 6 

defines the input/output ports of the gate and line 15 describes the signals similar to the 

wires in a schematic used to interconnect the components. Line 17-18 defines the 

component instantiation for the adiabatic power-clock and adiabatic input generation. 

The behaviour of the adiabatic NOT/BUF gate is captured in lines 19-73. Apart from 

checking the invalid input condition in each of the four periods, an invalid state is also 

checked for the NOT/BUF gate for cascade designs in lines 69-71. The four periods of 

the power- clock in Listing 5.5 are defined as a level sensitive signals due to the use in 

cascade logic designs, otherwise, the stages ahead of the first will be stuck at logic ‘0’. 

The output waveform using the SPICE simulation and the proposed modelling is shown 

in Figure 5.7 (a) and (b) respectively. The VHDL simulation shows the precise timing 

similar to the SPICE simulation. 

 

1. LIBRARY IEEE; 

2. USE IEEE.STD_LOGIC_1164.ALL; 

3. USE IEEE.STD_LOGIC_ARITH.ALL; 

4. USE work.Adiabatic_signal.all;    //Package Definition// 

 

5. ENTITY Proposed_Buf IS 

6. port (IN_H, IN_L: in std_logic; CLK: in std_logic_vector(1 

downto 0); Out_H, Out_L: out std_logic); 

7. END ENTITY Proposed_Buf; 

 

8. Architecture Behavioural of Proposed_Buf IS 

9. Component DC_TO_ADIABATIC  

10. port (IN_H, IN_L : in std_logic; CLK : in std_logic_vector(1 

downto 0);  A_H, A_L : out std_logic); 

11. End Component; 

 

12. Component GENERATE_ADIABATIC_CLOCK 

13. port(CLK: in std_logic_vector (1 downto 0); PC : out 

std_logic); 

14. End Component; 

 

15. Signal A_H, A_L, PC :std_logic; 
16. Begin 
17. INPUT1: DC_TO_ADIABATIC port map(IN_H,IN_L,CLK,A_H,A_L);  

18. CLK1: GENERATE_ADIABATIC_CLOCK  port map(CLK, PC); 

19. Process (PC, A_H, A_L) is 
20. Begin 

// IDLE PERIOD // 

21. if PC=’0’  then      

22.   Out_H <=PC; 

23.   Out_L<= PC; 
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Listing 5.5: VHDL code for adiabatic NOT/BUF gate. 

// EVALUATION PERIOD // 

24. elsif PC=’X’ and HOLD_edge (A_H) and HOLD_edge (A_L)  

then//Invalid State// 

25.   Out_H<=‘Z’;       

26.   Out_L<=’Z’; 

27. elsif PC=’X’ and HOLD_edge (A_H) then  

28.   Out_H <= PC;  

29.   Out_L<='0'; 

30. elsif PC=’X’ and HOLD_edge (A_L) then  

31.   Out_H <= '0';  

32.   Out_L<=PC; 

33. elsif PC='X' and RECOVERY_edge (A_H) then 

34.   Out_H<=‘Z’;       

35.   Out_L<=’Z’; 

36. elsif PC='X' and RECOVERY_edge (A_L) then 

37.   Out_H<=‘Z’;       

38.   Out_L<=’Z’; 

// HOLD PERIOD // 

39. elsif PC=’1’ and RECOVERY_edge (A_H) and RECOVERY_edge (A_L) 

then //Invalid State// 

40.   Out_H<=‘Z’;       

41.   Out_L<=’Z’; 

42. elsif PC=’1’ and RECOVERY_edge (A_H) then  

43.   Out_H<= PC;  

44.  Out_L<='0'; 

45. elsif PC=’1’ and RECOVERY_edge (A_L) then 

46. Out_H<= '0';  

47. Out_L<=PC; 

48. elsif PC=’1’ and IDLE_edge (A_H) then  

49.   Out_H<=‘Z’;       

50.   Out_L<=’Z’; 

51. elsif PC=’1’ and IDLE_edge (A_L) then 

52.   Out_H<=‘Z’;       

53.   Out_L<=’Z’; 

// RECOVERY PERIOD // 

54. elsif PC=’X’ and IDLE_edge (A_H) and IDLE_edge (A_L)  

then    //Invalid State// 

55.  Out_H<=‘Z’;       

56.  Out_L<=’Z’; 

57. elsif PC=’X’ and IDLE_edge (A_H) then 

58. Out_H<= PC;  

59. Out_L<='0'; 

60. elsif PC=’X’ and IDLE_edge (A_L) then 

61. Out_H<= '0';  

62. Out_L<=PC; 

63. elsif PC='X' and EVALUATE_edge (A_H) then 

64.  Out_H<=‘Z’;       

65.  Out_L<=’Z’; 

66.  elsif PC='X' and EVALUATE_edge (A_L) then 

67.  Out_H<=‘Z’;       

68.  Out_L<=’Z’; 

// INVALID STATE // 

69. elsif A_H='Z' and A_L='Z' then  

70.   Out_H<='Z';  

71.   Out_L<='Z' 

72. End if; 

73. End Process; 

74. End Architecture Behavioural; 
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       (a)  

 

       (b) 

Figure 5.7: Simulation results for NOT/BUF gate (a) SPICE (b) VHDL. 

5.3.4 Modelling Invalid Complementary Inputs 

The operation of the adiabatic logic gates, although conceptually simple, can be 

somewhat complex to model accurately. This is due to the two cross-coupled inverters 

forming a latch, which retains the last value stored at the output. For example: if both 

the complementary inputs are logic ‘0’ (invalid states), the complementary outputs will 

retain the last value stored. That is if the last value is logic ‘1’ and logic ‘0’ on the two 

output nodes ‘Out_H’ and ‘Out_L’ respectively then the same value will be retained. 

This can be seen in Figure 5.8. This, invalid input in a large circuit will be difficult to 

debug, especially in the case when functionally, logic ‘1’and ‘0’ is expected on the two 

output nodes. In addition, this invalid circuit operation will lead to high energy 

consumption, due to the non-adiabatic losses. On the other hand, if the complementary 

inputs are invalid by being at logic ‘1’, the complementary output nodes will be charged 
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through the pMOS transistor (which follows the power-clock)and at the same instant, 

the nMOS transistor will be discharging the output nodes to ground. Therefore, the 

output nodes will settle at some intermediate value as can be seen from Figure 5.7 (a) 

and 5.8. 

The proposed HDL model can easily identify both these classes or invalid inputs by 

ensuring the complementary output nodes to be at high impedance state ‘z’, when 

invalid inputs are logic ‘1’ consistent with the SPICE simulation Whereas when the 

invalid inputs are logic ‘0’, the complementary output nodes are also at logic ‘0’. The 

above invalid operations are shown in Figure 5.7 (b). This helps in identifying the value 

of the invalid inputs clearly. 

 

Figure 5.8: SPICE simulation for PFAL NOT/BUF gate showing invalid outputs. 

For all the other adiabatic logic gates such as AND/NAND, OR/NOR, XOR/XNOR and 

MUX/DeMUX, the functional behaviour can be described similar to the adiabatic 

NOT/BUF gate. However, the modelling of the above logic gates is performed by 

combining the functional part and the adiabatic NOT/BUF. This is because the 

modelling is done considering the dual-rail inputs thus, the state checking complexity of 

the HDL behavioural increases for an increased number of inputs due to the 

complementary inputs. The NOT/BUF gate used helps in following the adiabatic 

principle and identifying the invalid complementary inputs while synchronizing the 

outputs for correct timing characterization. 
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Figure 5.9 shows how the dual-rail 2-input AND/NAND gate, is conceptualized as a 

logic function combined with a NOT/BUF gate for timing characterization in VHDL. 

The collection of all the logic gates described in VHDL formed the cell library.  

 

Figure 5.9: Conceptualization of 2-input AND/NAND gate for timing characterization. 

5.4 Error in Modelling of Existing Approach 

As stated in section 5.2, voltage-level encoding can result in circuit malfunctioning due 

to the violation of the adiabatic principle. As a result, the circuit will fail to maintain 

precise timing with that of the simulated waveform at the transistor level. Thus, to 

calibrate our proposed modelling, in case, if either the input or the power-clock arrives 

early or gets delayed the two output nodes should discharge to ground, identifying an 

invalid input has occurred and the modelling follows the adiabatic principle. Figure 10 

(a) shows the cascade buffer chain designed using PFAL NOT/BUF gate connected in 

cascade. The gate working in power-clock phase 1 (PC1) produces the first stage output 

denoted as ‘Q01_H’ and ‘Q01_L’. The fourth stage works in power-clock phase 4 (PC4) 

and produces the final stage outputs denoted by ‘Q0_H’ and ‘Q0_L’. Figure 10 (b) 

shows the condition of an early arrival and delayed input for the existing modelling 

using square-waveform. It can be seen in Figure 10 (b) that for the delayed input 

condition, the outputs follow the adiabatic principle by generating logic ‘0’ for the 

existing approach. However, when the input arrives early, the output follows the power-

clock, thus violating the adiabatic principle. Therefore, in the existing approach, a 

timing window exists between the input and the power-clock for correct circuit and 

timing operation. The same condition can occur if the power-clock is either delayed or 

arrives early. In a small circuit such errors can be easily detected manually, but for a 

large complex circuit, detection of such errors will be time-consuming and very difficult 
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to debug. In addition, the circuit will fail to maintain precise timing that agrees with that 

of the SPICE simulated waveform. 

 

(a) 

 

(b) 
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(c) 

Figure 5.10: Schematic of the cascade buffer chain. (b) Simulated waveforms of input 

timing variations for the existing approach using square-waveform. (c) Simulated 

waveform using the proposed approach. 

To overcome the drawbacks highlighted earlier on in the paper and identify the invalid 

inputs correctly, the power-clock of the adiabatic logic is encoded for all the four 

periods. It can be seen from Figure 10 (c) that the proposed modelling approach will fail 

if the wrong input signal or the power-clock (delayed or arrived early) is supplied. This 

gate generation failure will be similar to that of the SPICE simulation. 

The proposed modelling approach is much more precise, however, it generates a glitch 

for the delayed input condition, which reduces as it is passed through a cascade 

NOT/BUF gates which can be seen in Figure 10 (c). The glitch arises due to the signal 
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‘X’ being used for encoding both the ramps (evaluation and recovery period). It can 

however be removed if two different signals such as ‘U’ and ‘X’ are used for encoding 

the two ramps. However, this glitch is insufficient to cause any functionality and timing 

error which the existing logic exhibits. The simple ‘X’ was used for simplicity and it 

works well with the timing requirement. 

5.5 Simulation Results 

Using the cell library, a 2-bit ring counter and a 3-bit Up-Down counter structural 

models were successfully verified. The circuit functionality and timing verification are 

done using HDL Designer from Mentor Graphic. The time period of the power-clock is 

taken as 100ns, having an equal time period for the four periods of the power-clock i.e. 

25ns each. The 4-phase adiabatic logic family used for the SPICE simulation is PFAL. 

The simulation setup for the SPICE analysis is similar to that of the VHDL so that the 

uniformity and comparability are maintained across both the simulations. The VHDL 

codes for the above two designs are included in Appendix B of this thesis, whereas the 

VHDL simulations alongside with the SPICE level simulations are presented for the 

ring counter and Up-Down counter. 

The structural level of abstraction is used which combines the components to form a 

large adiabatic system. In order to work in a cascade manner, first, the 4-phase power-

clock is generated each having a 90o phase difference between them. Figure 5.11 shows 

the output waveform of the 4-phase power-clock generation. The VHDL code for the 

same is given in Appendix B. 

 

Figure 5.11: 4-phase power-clock. 
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A single-rail and a dual-rail resettable input NOT/BUF gate have been designed. The 

single-rail is simple which is used only when the resettable buffer is working in power-

clock phase 1 (PC1). Here the reset input ‘res_H’ has not been converted from pulse 

input to adiabatic input. When ‘res’ is at logic ‘0’, the counter outputs (Q0_H and Q1_H) 

are at logic ‘0’, whereas the complementary outputs (Q0_L and Q1_L) follows the 

power-clock depending on the dual-rail inputs. For allowing state checking and 

detecting invalid circuit operation, the dual-rail resettable NOT/BUF gate is also 

designed. The VHDL codes for both are given in appendix B. 

There is no variation in the timing of the VHDL simulation to that of the SPICE (circuit) 

simulation of the 2-bit ring counter. The two output waveforms are shown in Figure 

5.12 (a) and (b). 

 

      (a) 

 

      (b) 

Figure 5.12: 2-bit ring counter output waveforms (a) VHDL (b) SPICE. 
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As the ring counter does not employ any combination logic, a 3-bit Up-Down counter 

was also modeled. Based on the circuit diagram of the 4-phase Up-Down counter in 

Chapter 3 of this thesis, the VHDL code is written which is given in the Appendix B. 

Here, the dual-rail resettable NOT/BUF gate is used. The block diagram is given in 

Figure 5.13 showing the inputs and the 4-phase power-clocks to the adiabatic core 

which are being generated by the pulse input to the adiabatic conversion block and the 

4-phase power-clock generator respectively. Figure 5.14 (a) and (b) shows the VHDL 

simulation waveforms alongside the SPICE simulation waveform for 3-bit Up-Down 

counter. The counter design shows the accuracy of the modelling in terms of timing and 

the representation of the adiabatic logic technique. 

 

Figure 5.13: Block diagram of the 3-bit Up-Down counter.     
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(a) 

 

 (b) 

Figure 5.14: 3-bit Up-Down counter output waveforms (a) VHDL (b) SPICE. 

To further demonstrate the applicability of the cell library in the structural modelling of 

adiabatic VLSI circuits, a 16-bit CRC for the 16-bit message word length designed in 

Chapter 4 of this thesis was also modeled and simulated successfully. 
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The CRC is initialized using the reset input 'RES_H' which resets the counter to “0000” 

state and load the pre-set value “0x6363” to the CRC datapath. When ‘RES_L’ signal is 

set ‘0’, CRC starts the computation. The controller signal ‘R0_L’ is the complementary 

signal of ‘R0_H’, used to select the required generator polynomial. The signals ‘R1_H’ 

and ‘R2_H’ from the controller are the inputs to the CRC datapath acting as the reset 

signals whereas, the signal ‘R3_H’ serves as the select signal which loads the pre-set 

value to the CRC datapath during the reset operation. The CRC value is calculated when 

the last message bit is sent, and the counter reaches “1111” state. Then the calculated 

CRC value from the datapath and the message bits get appended to the register unit 

while the counter returns to “0000” state. The CRC value in the CRC datapath is cleared 

and loaded with the pre-set value. The reset period lasts for two power-clock cycles and 

after that, the counter starts counting again automatically allowing the CRC to re-

calculate its value. 

Figure 5.15 (a) and (b) shows the VHDL and the SPICE simulation waveforms for 16-

bit CRC. Both the simulation was run on the same platform with the same resources. 

The SPICE simulation using the high performance spectre simulator XPS-MS takes 117% 

longer than the VHDL ModelSim simulator. The VHDL simulation result shows the 

precise time modelling when compared to the SPICE result. The only difference is the 

delay gained by the VHDL implementation at the start of the simulation. This is because, 

in VHDL modelling, the pulse inputs are converted to the adiabatic inputs which are 

then passed through the buffer gates for generating inputs for the cascade logic working 

in the respective power-clock phases. Whereas, in transistor level design the inputs are 

given based on the requirement of the power-clock input phase for the cascade logic. If 

the inputs in transistor level design are processed similar to the VHDL design, then both 

the simulations will have the same initial delay at the start of the simulation. 
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(a) 
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(b) 

Figure 5.15: 16-bit CRC waveforms output waveform (a) VHDL (b) SPICE. 

It can be concluded for the VHDL implementation of the 16-bit CRC that the modelling 

approach presented in this chapter shows the possibility of an efficient design approach 

for timing characterization of a high-end complex adiabatic system.  

5.6 Summary 

This chapter discusses the existing approaches for modelling the adiabatic logic 

technique. In particular, the shortcomings of the existing VHDL modelling approaches 

are identified and as a solution, a new multi-level event-based approach is proposed. 



118 

 

The proposed HDL modelling of adiabatic logic circuits shows that the precise timing 

as that of the SPICE simulation can be achieved. The modelling of the 4-phase adiabatic 

logic technique includes the generation of dual-rail adiabatic signals from dual-rail 

pulse input, developing VHDL model library with basic adiabatic primitive AND and 

OR gates (‘Aand’ and ‘Aor’) and modelling invalid complementary inputs. The exact 

behaviour of the trapezoidal power-clock is also represented by presenting all the four 

periods distinctively using VHDL.  

For the verification and applicability of the proposed approach, 2-bit ring counter, 3-bit 

Up-Down counter, and ISO 14443 benchmark circuit, 16-bit CRC are modeled. The 

simulation results confirm the precise timing of VHDL modelling. The proposed 

modelling is easy and can be used for designing a large complex system, eventually 

reducing the amount of time needed for design validation. However, whilst HDL 

simulation is essential for early functional check and error detection, the use of SPICE 

simulation is still required to measure energy consumption. The novel use of all the four 

edges of a power-clock has enhanced the robustness and reliability of the proposed 

modelling for the design of the large complex adiabatic system. 
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6 Manchester Coding using Adiabatic Logic 

Technique 

Energy plays an important role in NFC passive tags as they are powered by radio waves 

from the reader. The ISO/IEC 14443 [12] standard utilizes Manchester coding for the 

data transmission from the passive tag to the reader for NFC type-A passive 

communications. This chapter proposes a novel method of Manchester encoding using 

the adiabatic logic technique for energy minimization. The chapter also discusses the 

challenge associated with the implementation of Manchester encoding using adiabatic 

logic. The design is implemented by generating the replica bits of the actual data bit and 

then flipping the replica bits, for generating the Manchester coded bits. Based on the 

performance trade-offs discussed in Chapter 4 of this thesis, the proposed design was 

implemented using two adiabatic logic families namely; Positive Feedback Adiabatic 

Logic (PFAL) and Improved Efficient Charge Recovery Logic (IECRL) which are 

compared in terms of energy dissipation for the range of frequencies. Furthermore, to 

investigate the impact of adiabatic logic family on the power-clock generator the energy 

dissipation of the complete adiabatic system was measured including the power-clock 

generator designed using 2-StepWise Charging circuit and a controller generating 

control signals is considered.  

6.1 Introduction 

The energy cost in passive NFC system consists of first initializing the communication 

(powering the tag) and then exchange of information wirelessly between the reader and 

the tag [5]. When the tag comes near the reader, it initiates the communication and the 
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data through modulation is transmitted between the reader and the tag [102]. In order to 

reduce the error rate and improve data efficiency, the data is encoded before being 

modulated. Different encoding techniques are used for the data to be transmitted from 

the reader to the tag and vice-versa. Miller coding is used to transmit data from the 

reader to the tag, whereas, Manchester coding is used for the data transfer from the tag 

to the reader [8]-[10]. A dynamic binary search algorithm [103] is used to initialize and 

select an NFC-A tag, where Manchester coding makes it possible to detect collision 

bitwise as per ISO 14443-3A standard [13]. Cyclic Redundancy Code (CRC) which is 

added to the end of the transmitted data was done and presented in Chapter 4 of this 

thesis. In this chapter, adiabatic implementation of the Manchester coding is presented. 

6.2 Initialization and Anti-collision (ISO/IEC 14443-3A) 

When a tag comes within the working field of the reader, the communication between 

the tag and the reader is first established. Two scenarios can occur, first it may happen 

that the reader is already communicating with another tag, secondly, multiple tags are 

present simultaneously in the working field of the reader. A way must be provided to 

allow interference-free communication with a single tag. Establishing communication 

between a tag and a reader and the anti-collision methods to be used for selecting one 

tag from multiple are described in part 3 of ISO/IEC 14443 [13]. The standard contains 

specifications for two types of tags, Tag-A and Tag-B. Each type uses different coding 

schemes and anti-collision methods. Anti-collision method for multiple tag 

identification is divided into two main algorithms: Binary tree-based deterministic for 

Type-A tag [103] and Aloha-based probabilistic for the Type-B tag [104]. Additionally, 

Type-A tag uses Manchester coding before sending the data for load modulation using 

Amplitude Shift Keying (ASK), whereas, Type-B uses Non-Return to Zero (NRZ) 

coding of data which is sent to the reader after load modulation using Binary Phase 

Shift Keying (BPSK). Table 6.1 summarizes the modulation schemes, coding and anti-

collision method for these two types of tags. 

In this thesis, an NFC type-A tag has been considered. A variant of the binary search 

algorithm which is a dynamic binary search algorithm [103] is used to initialize and 

select Type-A tag. When the reader gets the acknowledge command, Answer to Request 

type-A (ATQA), from the tag, it recognizes that one tag is present within the reader’s 

field. It then initiates the anti-collision procedure which allows reading the type-A 
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unique identifier (UID) by transmitting the SELECT command. If the reader determines 

the complete UID, it transmits a SELECT command with the UID transmitted by the tag. 

The tag with the corresponding UID confirms this command by transmitting a SELECT 

acknowledge (SAK).  

Table 6.1: Modulation, Coding and Anti-collision method for ISO 14443-3 [13]. 

NFC passive 

tag 
Modulation scheme Coding Method 

Anti-collision 

method 

Type-A 
Amplitude Shift 

Keying (ASK) 
Manchester Binary search 

Type-B 
Binary Phase Shift 

Keying (BPSK) 

Non-Return to Zero 

(NRZ) 
Aloha 

However, if two or more tags are located in the reader’s field, they react simultaneously 

to the reader’s SELECT command and starts sending their UIDs and the reader will 

receive the data superimposed on each other. If the reader detects the collision, it 

responds by transmitting bit-oriented anti-collision frames [13]. The bit-oriented anti-

collision frame is divided into two parts. The valid bits before the collision is the first 

part. After the collision have been detected the reader sends back this part of the UID 

followed by a ‘1’ bit. Only the tag whose part of the UID that matches with that of the 

data transmitted by the reader will send the remaining bits to the reader which forms the 

second part of the anti-collision frame. Thus, the amount of bit transmission is reduced 

as the selected tag sends only the bits after the collision has occurred. In general, the 

dynamic binary search algorithm decreases the collision bits step by step to achieve the 

goal of identifying the conflicting tags. This improves the communication quantity and 

reduces the communication time. The detailed anti-collision algorithm is given in part 3 

of the ISO/IEC 14443A standard and the example is given in Annex A of the same [13]. 

Detecting a collision bit position in the reader is the foundation of the binary search 

algorithm. In this algorithm, the data from the tags are encoded using Manchester 

encoding. It detects the collision by the fact that the superimposition will cause the 

carrier to be modulated by the subcarrier for the full duration of one or more of the bit 

interval. For example, consider two 8-bit ID numbers 11100101 and 10101000 that 

have different bits at the second, fifth, sixth and eighth place from left to right, which 

the reader can not determine clearly the signal on these four bits, so the received signals 
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become 1?10??0?. Where, ? represents an uncertainty which results in collision bit at 

the second, third, sixth and eighth places. The conventional and the proposed 

Manchester encoding is discussed in the next section. Figure 6.1 shows the collision of 

two-bit sequences with Manchester coding (Type A). 

 

Figure 6.1: Collision of two Manchester encoded bitstream. 

6.3 Adiabatic Implementation of Manchester Encoding 

Coding techniques define how accurately, efficiently and robustly a message is 

constructed from the data that needs to be communicated. Manchester code (also known 

as Phase Encoding (PE) or bi-phase) is a line code in which the encoding of each data 

bit has at least one transition and occupies the same time [9]. The idea is to have 

multiple transitions in the data bitstream for a long sequence of ‘1’ and ‘0’ data. 

Manchester encoding is based on the synchronous clock encoding technique and 

provides a means of adding the data rate clock to the message [9]. It uses “two-level 

state changes” to represent 0 and 1. Logic ‘0’ is indicated by a ‘0’ to ‘1’ transition and 

logic ‘1’ is indicated by a ‘1’ to ‘0’ transition. Bi-phase Manchester code is one, where 

logic ‘1’ is encoded as the transition from ‘0’ to ‘1’, and vice versa. Manchester code 

reports an error when the state doesn't change in a clock cycle, indicating the collision 

of data. So, when the reader receives bits from the tags and some bits do not change, the 

reader can know which bits are conflicting with each other. The waveform for a 

Manchester encoded bit stream ‘11100101’ is shown in Figure6.2. The simplest way of 

implementing the Manchester encoding requires an exclusive NOR (XNOR) function 

between the clock (CLK) and the data bit stream, whereas, exclusive OR (XOR) for bi-

phase Manchester encoding. 
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Figure 6.2: Manchester encoding waveform for multiple data bits. 

Manchester coding using the adiabatic logic technique is challenging due to the 

following reasons; 

1) In the adiabatic logic technique, the input and the power-clock both have the same 

time-period (frequency), having a 90o phase difference. In addition, the output follows 

the power-clock depending on the input. 

2) If the two different power-clock frequencies are used in the same circuit then it may 

be necessary to generate them separately. This will add to the complexity of the power-

clock generator incurring overhead in terms of energy consumption and area of the 

complete adiabatic system. 

3) The use of two different frequencies will violate the adiabatic principle and cause the 

energy dissipation to increase. This is specifically due to the fact that the output 

following the power-clock. 

Therefore, for the adiabatic implementation, a new method and hardware are required 

for encoding the data bit stream such that the long strings of 1s and 0s are avoided. One 

of the advantages of the adiabatic implementation is that no separate power-clock needs 

to be added to the data bit stream. In fact, as the input has the same time period as that 

of the power-clock, the clock and the data can easily be recovered at the receiver side 

from the Manchester coded data. Figure 6.3 shows the relationship between the input 

and PC for PFAL NOT/BUF gate.  
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Figure 6.3: Relationship between PC, input and output waveforms in the adiabatic logic 

technique. 

Since the adiabatic logic has the constraints due to PC and the input having the same 

time period, in the proposed method the time-period of the data bit stream is doubled 

such that each bit in the data bit stream occurs twice consecutively. This way the replica 

image of the actual data bit stream is created. After this, the flipping of the replica bits 

takes place which generates the Manchester coded bit stream ready to be sent to the 

reader. This complete process ensures that there are no consecutive ‘1’ and ‘0’ in the 

transmitted coded data bit stream. Figure 6.4 shows the Manchester encoding using the 

proposed method. The encoding of the data bit stream is described as follows; 

Step 1: Data bit stream stored in the register implemented using adiabatic logic. 

Step 2: Using a 2-state counter, each bit in the data bit stream from the register is read 

twice in consecutive power-clock cycles, such that each bit from the actual data stream 

is replicated and forms a bit pair. Each pair in the data stream contains the actual and the 

replica bits. The second bit of each pair in the replicated bitstream is the replica bit. 

Step 3: The complement of the replicated bit stream is generated. 

Step4: The replicated bit stream and its complement are multiplexed to form 

Manchester coded data bit stream. 
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Figure 6.4: Manchester encoding waveform using adiabatic logic for multiple bits. 

From Figure 6.4, it can be seen that every single data bit is encoded into an actual and 

replica bit. Manchester code using adiabatic logic can be defined as a code in which the 

encoding of each bit of double length occurs in pairs for two power-clock cycles and 

has exactly one transition either from ‘1’ to ‘0’ or vice-versa. So, when the reader 

receives Manchester coded bits from multiple tags and some bits do not change in a bit 

pair then the collision exists in that particular bit pair. Figure 6.5 shows the collision 

when two Manchester coded data using the proposed method arrives in the reader for 

identifying the collision bits.  

 

Figure 6.5: Collision of two Manchester encoded data using the proposed method. 

The hardware requirement for the proposed Manchester encoding using adiabatic logic 

is as simple as the conventional encoding method which requires XOR gates. However, 

the proposed method requires a few more logic gates for replicating the bit stream and 

multiplexing it to generate the Manchester encoded data. Unlike conventional CMOS 

logic, the adiabatic logic generates complementary signals which give the advantage of 

generating both phase and bi-phase Manchester encoded data at the same time. 
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The adiabatic design of the Manchester coding for the 8-bit data stream is shown in 

Figure 6.6 (a), whereas, Figure 6.6 (b) shows the corresponding output waveforms of 

the 2-state counter, replicated bits stream, and Manchester coded signal. The input bits 

stream b1_H -- b8_H is taken as ‘11100101’ as an example. 

 

(a) 

 

(b) 

Figure 6.6: Proposed Manchester encoding (a) Circuit diagram (b) Output waveforms. 

For generating the replica bits, the proposed encoding method uses a two-state counter. 

A two-state counter is one whose count remains in the same state for two consecutive 

power-clock cycles. Figure 6.7 shows the circuit for the two-state counter. The counter 

counts from “000” state to “111”. The output of the counter is the select input to the 8:1 
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multiplexer which sends each bit to 2:1 multiplexer serially. 8:1 multiplexer is designed 

using two 4:1 and one 2:1 multiplexer. The circuit design for 2:1 multiplexer is depicted 

in Figure 3.1 in Chapter 3 of this thesis. After this, the replicated data bit stream and its 

complementary data stream are multiplexed. The Manchester encoded signal is 

generated by sequentially turning the switch ON and OFF between the replicated and its 

complementary data bit streams. The select signal to the 2:1 Multiplexer is generated by 

the XOR operation between the LSB bit of the counter and its delayed bit (by one 

power-clock cycle) to maintain synchronization between the bit stream and the counter. 

The delay of one power-clock cycle is generated by connecting four buffer gates in 

cascade. The circuit diagram is depicted in Figure 3.7 in Chapter 3 of this thesis. 

 

Figure 6.7: 2-state counter. 

The only disadvantage of the proposed method is the increase in the number of effective 

transitions and an effective doubling of the bit duration to two power-clock cycles. This 
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doubles the computation time, however, it is expected to be energy efficient due to the 

adiabatic implementation. To the author’s best knowledge, this is the first time 

Manchester encoding using adiabatic logic technique is proposed and implemented. 

6.4 Simulation Results 

Based on the performance results presented in previous Chapters 3 and 4, the 4-phase 

adiabatic logic families have been chosen. Specifically, the 4-phase adiabatic logic 

families used for the SPICE simulation are PFAL and IECRL. The transistor sizes for 

both were set to the technology minimum. The simulations were performed with the 

Spectre simulator using the Cadence EDA tool in a ‘typical-typical’, TT process corner 

using TSMC 180nm CMOS process at 1.8V power supply.  

Since the implementation of Manchester encoding is a part of initialization and anti-

collision of the ISO standard 14443-3 [13], the energy dissipation was measured as the 

energy per cycle for 40 data bits. The energy measurement is taken at various PC 

frequencies ranging from 1MHz to 100MHz for a load capacitance of 10fF. Figure 6.8 

shows the simulation waveform for PFAL at 10MHz PC frequency for 40 bits data 

stream. The waveform shows the 2-state counter, replicated data bit stream and the 

phase and bi-phase Manchester encoded data along with 4-phase power-clock. When 

the ‘RES’ is logic ‘1’ the complete system is at zero states. The system starts the 

computation when the ‘RES’ signal goes to logic ‘0’.  

The comparison of energy per power-clock cycle of PFAL and IECRL is shown in 

Table 6.2. It can be seen that IECRL implementation has the lowest energy compared to 

PFAL. The increment in PFAL energy is not significant from 1 MHz to100MHz in 

comparison to that of IECRL. Though, Table 6.2 shows IECRL consumes minimum 

energy, however, as stated in Chapter 2 under section 2.5 that increase in load 

capacitance will increase its energy consumption due to the non-adiabatic losses 

occurring during both the evaluation period and the recovery period [30], [31]. 
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Figure 6.8: SPICE simulation waveform for the proposed Manchester encoding. 
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Table 6.2: Comparison of Energy per power-clock cycle of PFAL and IECRL. 

 Energy Consumption per power-clock cycle (fJ) 

Frequency (MHz) 1 10 100 

PFAL 253.30 253.78 310.38 

IERCL 119.98 119.46 304.77 

Figure 6.9 shows the graph for the two adiabatic logic families at varying load 

capacitance at 10MHz PC frequency. It is observed that IECRL show a steeper response 

in energy consumption as the load capacitance increases in comparison to PFAL. 

Nevertheless, the above comparison is inconclusive without taking consideration of the 

power clock generator. 

 

Figure 6.9: Energy consumption per power-clock cycle vs load capacitance. 

As stated in Chapter 4, the Power Clock Generator (PCG) circuitry is an important part 

of an adiabatic logic design. It accounts for a significant amount of energy compared to 

the adiabatic design as it is designed using conventional CMOS logic. PCG used for the 

simulation is a 4-phase PCG using SWC circuit. The clock frequency (CLK) is taken as 

40MHz generating a power-clock frequency of 10MHz (ramping time of 25ns), supply-

voltage is 1.8V and 10fF capacitive load attached to the output of the adiabatic core. 

The complete adiabatic system designed comprises the power-clock generator and the 

adiabatic core is shown in Figure 6.10. PCG is implemented using a 2-step charging 

circuit. 
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Figure 6.10: Complete Adiabatic System with 4-phase PCG using SWC circuit. 

The tank capacitance (CT) chosen for both the logic families is 5pF. The aspect ratio of 

the SWC circuit for both the logic families is taken to be the same for fair comparison 

and evaluation of the two adiabatic logic families. The adiabatic core is the Manchester 

encoding circuit. 

Table 6.3: Comparison of energy per power-clock cycle of the adiabatic system using 

PFAL and IECRL. 

 Energy Consumption per power-clock cycle (pJ) 

 Controller SWC+core Total 

PFAL 1.040 1.524 2.565 

IERCL 1.002 1.098 2.10 

Table 6.3 reports the energy consumed by the adiabatic system including the power-

clock generator for encoding the data bit stream into Manchester code.  From 

Figure6.10, it can be seen that the adiabatic core is the load to the SWC, hence the 

energy is measured for the controller and the SWC by measuring the current at the 

supply voltage (VDD) separately. It is also worth noting that, that the energy 

consumption of the controller for the SWC is almost constant for all system size [54] for 

the fixed power-clock cycle. More importantly, the energy consumption of the SWC for 

the PFAL family is approximately 40% more in comparison to IECRL. This is because 

the evaluation network of the PFAL family being connected between the power-clock 

and the output as depicted in Figure 2.6 (a) of Chapter 2. This connection adds on the 

extra capacitance of a minimum of two nMOS transistors (drain terminal) connected to 
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the power-clock in addition to the two pMOS transistors. As a result, PFAL presents a 

large load capacitance to SWC. On the other hand, IECRL has its evaluation network 

connected between the output nodes and the ground, as a result, PC is connected only to 

the two pMOS transistors, as depicted in Figure 2.6 (b). Therefore, IECRL shows a 

decrease in capacitance value compared to PFAL, hence shows a reduction in energy 

dissipation of SWC. 

6.5 Summary 

This Chapter gives a brief discussion of the initialization and anti-collision protocol 

based on ISO/IEC 14443A standard. Specifically, the use of Manchester encoding for 

data transmission is discussed. It is one of the important parts in wireless data 

communication and is used in the anti-collision algorithm to increase the data efficiency 

which aids in identifying the collision bit in the reader after transmission. In addition, 

challenges associated with the implementation of Manchester encoding using adiabatic 

logic technique is discussed.  Furthermore, a novel method of encoding data bit stream 

into Manchester coding using a 4-phase adiabatic logic technique is proposed. The 

proposed implementation generates phase and bi-phase Manchester encoding data 

simultaneously, as depicted in Figure 6.2, due to the dual-rail adiabatic logic design. 

Since the power-clock and the input have the same time period, the adiabatic 

implementation has an advantage over conventional CMOS method, i.e. it does not 

require a clock signal to be exclusively XORed with the data bit stream. At the receiver 

side, the decoding of the received Manchester coded data takes place, where the actual 

data and the clock is decoded and will be checked for collision. The only disadvantage 

the proposed method has is that it doubles the effective bit duration. However, as the 

working frequency of NFC technology is centered around 13.56MHz, the proposed 

method can easily be used for such applications. From the simulation results, it is 

concluded that IECRL consumes less energy compared to PFAL at 10fF load 

capacitance. If the load capacitance increases the IECRL adiabatic core energy will 

increase but it is anticipated that the overall system energy will not be more compared 

to PFAL due to the extra capacitance (a minimum of two pMOS transistors). 
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7 Conclusion and Future Work 

This Chapter summarises the achievements of this research work in a reflective manner 

and provides the author's recommendations for further work relating to the adiabatic 

approach. 

7.1 Research Summary 

The main motivation of this thesis was to exploit the energy efficient traits of the 

adiabatic logic technique to deliver the ultra-low power operation for NFC applications.  

Chapter 2 reported in this thesis builds the foundation on the general background of the 

adiabatic logic technique and several adiabatic logic families working on single-phase, 

2-phase and 4-phase power-clocking schemes. Due to the divided opinions on the most 

energy efficient adiabatic logic family which also constitute an appropriate trade-off 

between computation time, circuit complexity and power-clocking scheme complexity, 

five of the most energy efficient adiabatic logic families namely; CAL, CPAL, IECRL, 

EACRL and PFAL were chosen for further research and scrutiny which has formed the 

basis of this research.  

Due to the requirement of resettable buffers in sequential logic designs, novel resettable 

buffers for the five chosen adiabatic logic families were designed. The proposed novel 

adiabatic resettable buffers used for the design and layout implementation of resettable 

flip-flops shows a reduction in energy and layout area consumption compared to the 

existing MUX-based resettable adiabatic flip-flops. Additionally, it has been shown 

through the design of 2-bit twisted ring counter and 3-bit Up-Down counter that PFAL 

and IECRL driven by a 4-phase power-clocking scheme constitute appropriate 
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performance trade-offs between energy consumption, computation time, power-clocking 

scheme and circuit complexity. This has been discussed in Chapter 3 of this thesis. 

To enable future designers and researchers in this subject area to use quantitative 

information on selecting the required power-clocking scheme and robust adiabatic logic 

family, a 16-bit CRC test circuit was implemented using the five chosen adiabatic logic 

families as an application and system component of an NFC tag. A methodology and 

strategy for CRC implementation using adiabatic logic working on single-phase, 2-

phase and 4-phase power-clocking scheme was proposed. A modification in the bit-

serial CRC design was also done by incorporating more functionality which allows for 

the use of any CRC-16 generator polynomial and any initial load values. Significant 

differences in functionality and robustness under voltage scaling and PVT variations 

among multiphase adiabatic implementations were discovered. Moreover, considering 

the supply voltage scaling, it has been shown that the benefit of using adiabatic logic 

deteriorates for supply voltage less than 1.2V. Therefore, a functional range for the 

supply voltage scaling is proposed for better Energy Saving Factor (ESP) and correct 

functionality. Finally, based on the performance trade-offs between energy dissipation, 

computation time, area, robustness under PVT variation, supply-voltage scaling and 

power-clock generator complexity in a large adiabatic system, it was concluded that 

IECRL shows the best performance results followed by PFAL. This has been described 

in Chapter 4 of this thesis. 

To overcome the problem of excessive design time and difficulty of identifying and 

debugging the errors in a large adiabatic system arising due to the complexity of the 4-

phase power-clocking scheme, a new modelling approach using VHDL for a 4-phase 

dual-rail adiabatic logic family was proposed. The shortcomings of the existing 

modelling approaches are reported. The proposed modelling provides the solution to the 

shortcomings of the existing modelling approaches. The modelling of the 4-phase 

adiabatic logic technique comprises of the generation of dual-rail adiabatic signals from 

dual-rail pulse input, developing VHDL model library and modelling invalid 

complementary inputs. The accurate behaviour of the trapezoidal power-clock was 

represented by presenting all the four periods distinctively using VHDL. For the 

verification and applicability of the proposed approach, 2-bit ring counter, 3-bit Up-

Down counter, and 16-bit CRC circuits were modeled. The simulation results confirm 
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the precise timings of VHDL modelling. The proposed modelling is easy and can be 

used for designing large complex adiabatic systems, ultimately reducing the amount of 

time needed for design validation. This aspect of the work was covered in Chapter 5 of 

this thesis. The method is also applicable for single phase and 2-phase power-clocking 

scheme.  

Finally, a novel method of encoding data bits into Manchester coding using the 

adiabatic logic technique is presented. The proposed implementation generates phase 

Manchester, as well as bi-phase Manchester, encoded data simultaneously due to the 

dual-rail adiabatic logic design. In the adiabatic logic technique, since the power-clock 

and the input have the same frequency, the adiabatic implementation has an advantage 

over conventional CMOS method, that is, it does not require a clock signal to be 

exclusively XORed with the data bits. At the receiver side, the decoding of the received 

Manchester coded data take place, where the actual data bit stream and the clock are 

decoded and will be checked for collision. The only disadvantage the proposed method 

has is that it doubles the bit duration which makes the proposed method applicable for 

application working at low frequency. From the simulation results, it is concluded that 

at an adiabatic system designed using IECRL family consumes 40% less energy 

compared to PFAL at 10fF load capacitance. This aspect of the work is discussed in 

Chapter 6 of this thesis. 

7.2 Novelty Contributions (listed in the order of significance) 

The contents of this section are in order of significance, unlike Chapter 1 Section 1.4, 

which is in chronological order. 

1. VHDL modelling of the Adiabatic Logic. 

To overcome the synchronization problem arising due to the complexity of the 4-

phase power-clocking scheme and to reduce the design, validation and debugging 

time, a new method for modelling 4-phase adiabatic logic in VHDL was proposed. 

This will enable the designers and researchers to design and validate the adiabatic 

design in a short span of time ahead of actually designing the transistor level 

schematic. Additionally, the existing modelling approaches model the adiabatic 

circuits using square shaped power-clock (as is done for modelling the 
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conventional CMOS circuits) instead of trapezoidal power-clock and therefore, 

fails to follow the adiabatic principles.  

a. Shortcomings of the existing (Hardware Description Language (HDL) modelling 

approaches were identified. A very close to the exact behaviour of the trapezoidal 

power-clock was represented by modelling all the four periods distinctively using 

VHDL. The verification and applicability of the modelling were verified using a 

2-bit ring counter and a 3-bit Up-Down counter.  

b. The proposed modelling is easy and can be used for designing large complex 

adiabatic systems, eventually reducing the amount of time needed for the design 

and validation of such systems. The VHDL code of the NOT/BUF gate is further 

enhanced by incorporating an invalid condition check in cascade logic designs. 

Additionally, the gate level adiabatic modelling of the primitive AND and OR 

gates were also done. The enhanced proposed modelling demonstrates the error 

due to the use of a square power-clock in acquiring precise timing. A more 

complex circuit such as a 16-bit CRC is used to show the robustness of the 

proposed VHDL-based modelling approach for the 4-phase adiabatic logic 

technique for functional and timing simulations.   

2. A novel method of Manchester encoding using the adiabatic logic technique for 

energy minimization is proposed. First, the time period of the data bit stream is 

doubled such that each bit in the data bit stream occurs twice consecutively. This 

way the mirror image of the actual data bit stream is generated. Then the flipping of 

the mirror bits takes place which generates the Manchester coded bit stream ready 

to be sent to the reader. The adiabatic implementation is advantageous as no 

separate clock needs to be added to the data stream. In fact, as the input has the 

same frequency as that of the power-clock, the power-clock and the data can easily 

be recovered at the reader from the Manchester coded data stream. This is the first 

time in the literature where adiabatic implementation of the Manchester encoding is 

done for the energy efficient implementation of the NFC applications.  

3. Cyclic Redundancy Check (CRC) is one of the main components used in passive 

NFC systems, whenever the data is transmitted. Therefore, for the implementation 

of the energy efficient NFC systems, performance trade-offs including robustness 

against Process-Voltage-Temperature (PVT) variations and supply voltage scaling 

between multi-phase adiabatic logic families in a large adiabatic system are worthy 

of investigation. This provides quantitative information to the designers and 
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researchers if the supply voltage scaling benefits the performance of the adiabatic 

systems. Furthermore, for the completeness of the evaluation and trade-offs 

proposition, it is important to investigate the performance of the multiphase 

adiabatic logic families in the presence of the Power-Clock Generator. This will 

help the designers to choose the appropriate adiabatic logic family.  

a. The 16-bit CRC was implemented as deployed in an application for the passive 

NFC system, using multi-phase adiabatic logic families. A generic methodology 

and strategy for the design of multi-phase adiabatic CRC employing single-phase, 

2-phase or 4-phase power-clocking scheme was proposed. Additionally, the bit-

serial CRC design is modified by incorporating more functionality allowing for 

the use of any CRC-16 generator polynomial and any initial load values.  

b. Impact of voltage scaling and Process Voltage Temperature (PVT) variations on 

multi-phase adiabatic implementations were investigated for TSMC 180nm 

CMOS process at 1.8V supply voltage. It was discovered that the benefit of using 

adiabatic logic deteriorates for supply voltages scaled less than 1.2V. Therefore, 

an optimal range for the supply voltage scaling was proposed for better Energy 

Saving Factor (ESP) and correct functionality.  

c. When the energy dissipation of the total system comprising of the power-clock 

generator was considered, it was discovered that the total energy of the system 

employing single-phase and 2-phase adiabatic logic was approximately 3x and 2x 

times respectively more when compared to the 4-phase adiabatic system. Moreover, 

IECRL system shows the least energy consumption followed by PFAL. Any 

sequential design would require flip-flops as a memory element.  

4.  The trade-offs between adiabatic logic families working on single-phase, 2-phase 

and 4-phase power-clocking scheme in terms of energy, complexity, throughput, 

and area are proposed. Thus, enabling the designers and researchers to use 

quantitative information on selecting the required power-clocking scheme and 

adiabatic logic families. 

a. The design and implementation of 3-bit Up-Down counter using multi-phase 

adiabatic logic for establishing systematic and appropriate performance trade-offs 

in terms of complexity, energy, throughput, and area. Based on the simulation 

results, 4-phase adiabatic logic namely; PFAL shows better performance 

compared to the other adiabatic logic families.  
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5. To design adiabatic flip-flops with reset, resettable adiabatic buffers are required. 

Existing resettable flip-flops, however, are based on the 2:1 multiplexer’s (MUX). 

a. The proposition of novel single-phase, 2-phase and 4-phase resettable buffers for 

the design of flip-flops using; Clocked Adiabatic Logic (CAL), Complementary 

Pass-transistor Adiabatic Logic (CPAL), Improved Efficient Charge Recovery 

Logic (IECRL), Positive Feedback Adiabatic Logic (PFAL) and Efficient 

Adiabatic Charge Recovery Logic (EACRL). Prior to this, the resettable flip-flops 

were based on 2:1 MUXs, used as one of the resettable stages. As a result, having 

an increased number of transistors and an extra input terminal causing energy, 

routing, latency, and area overhead.  

b. The design, implementation, and the layout of the existing and the proposed 

resettable flip-flops based on the different power-clocking schemes using all the 

five(multi-phase) adiabatic logic families to act as a proof of concept. In 

Compared to the existing resettable flip-flops, the proposed resettable flip-flops 

using; PFAL, IECRL, EACRL, and CAL show an improvement in energy 

consumption of approximately 14%, 3%, 10%, and 3% respectively. However, the 

existing resettable flip-flops implemented using CPAL shows 0.5% less energy 

consumption compared to the proposed resettable flip-flops.  

7.3 Future Work 

The adiabatic logic technique can be used in many applications where power 

consumption is the critical importance rather than speed due to its energy efficient 

operation. Other than the application mentioned in this thesis, it can also be considered 

for applications such as medical devices. The author would like to make the following 

recommendations for future work.  

7.3.1 Development of new adiabatic logic with high energy efficiency to the power-

clock generator. 

The overall energy saving deteriorates when the power-clock generator is considered. 

The energy dissipation of the power-clock generator comprises of the energy consumed 

by the controller and stepwise charging circuit. Based on the literature review and the 

work presented in Chapter 3 of this thesis, it was concluded that PFAL is the most 

energy-efficient adiabatic logic design approach. However, when the power-clock 
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generator was considered, it was found that IECRL consumes the least energy out of the 

five adiabatic logic designs [31]. This is because of the energy consumed by the 

StepWise Charging (SWC) circuit. In PFAL, the evaluation network is connected 

between the power-clock and the output, whereas, in IECRL it is connected between the 

output and ground. Hence, when the power-clock is supplied through SWC, an extra 

capacitance due to the evaluation network connection in PFAL increases the energy 

consumption of the system including the power-clock generator. Therefore, a new 4-

phase adiabatic logic which doesn’t load the power-clock generator and at the same 

time has less Non-Adiabatic Losses (NAL) is worthy of investigation.  

7.3.2 Development of CAD Tools 

The design of conventional CMOS is easily facilitated by the existence commercially 

available CAD tools. The design of adiabatic systems is time-consuming and difficult 

due to the complexity of the power-clocking scheme specifically, the 4-phase power-

clocking scheme. The work presented in Chapter 5 includes the functional simulation of 

the adiabatic logic for detecting errors before designing a large adiabatic system at the 

transistor level and reduces the time consumed in identifying and debugging of errors. 

In order to expedite the design of large complex adiabatic systems, the development of 

CAD tool for logic synthesis and automatic routing is essential. 

7.3.3 Development of Adiabatic System in Deep Sub-micron Technology 

There exist a couple of research papers that have investigated adiabatic logic at near-

threshold [97], [98] and sub-threshold [89] for deep sub-micron CMOS technology. The 

work in the papers describe the adiabatic flip-flops and sequential circuits only. It would 

be worthwhile to investigate and compare the energy, area, and performance of the large 

adiabatic systems like communication protocol in NFC or arithmetic unit used in 

cryptosystem for smartcard applications(below 45nm), including the power-clock 

generator to give a more realistic and objective measure and plot the way for the future. 

7.3.4 Development of the Complete Initialization and Anti-collision for NFC-A using 

the Adiabatic Logic Technique 

Passive tags used for NFC application have a high cost because of the increased 

hardware complexity, which includes security for the transaction and data-storage 

circuitry for storing information. This causes an increase in the tag energy requirements 
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as they need more energy for powering-up the circuitry, processing and transmit data 

messages [108], [5]. Moreover, when collisions occur due to multiple tags in the 

reader’s proximity it results in wastage of bandwidth, energy and increased 

identification time of the passive system due to the increase in re-transmission. Anti-

collision protocol is the main part of the digital processing unit in the NFC tag. The 

Anti-collision algorithms are proposed to reduce the collisions [9], [104] such that the 

number of re-transmissions is reduced. There are few energy-based performance 

evaluations of the anti-collision protocol for passive RFID systems that can be found in 

the literature [105]-[109], [5] [6]. However, the use of lower-power techniques for 

implementation of the initialization and anti-collision protocol for passive NFC system 

remains unexplored. 
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Appendix A: C Code for Cyclic Redundancy 

Check (CRC) 

This appendix gives the C code for 16-bit CRC described in Chapter 4 of this thesis. 

A. 16-bit CRC Algorithm for NFC application 

CRC Algorithm (msgbit, NM, Load_value, Reset, Gen_pol, 

crcout) 

if (Reset = '1' and NM = '1') then 

   count = "0000"; 

   crctemp[15 : 0] = Load_value [15 : 0]; 

   L='0'; 

Else 

For (i=0; i<N; i++) 

crctemp(0)n+1 = [L. Load_value(0) + (L'(msgbit[N-1-

i]crctemp(N-1)n))]Reset' 

For (j=1; j< N; j++) 

crctemp(j)n+1 ={[L. Load_value(j)+L'.crctemp(j-

1)n][Gen_pol(j). (msgbit(N-1-i)crctemp(N-1)n)]} Reset'  

End for 

count = count + '1' 

End for 
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End if 

if (count="FFFF") then    

crcout = crc_temp; 

rc_temp = Load_value (15 downto 0);    

L= '1' 

count = "0000" 

Else 

crcout="0000000000000000"; 

End if 
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Appendix B: VHDL Code for Adiabatic Logic 

Technique 

This appendix gives the VHDL modelling of 4-phase adiabatic logic technique that is 

described in Chapter 5 of this thesis. 

B1. 4-Phase Power-Clock Generation 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY FOUR_PHASE_PCLK IS 

port (CLK: in std_logic_vector (1 downto 0); PC1, PC2, PC3, 

PC4:out std_logic); 

END ENTITY FOUR_PHASE_PCLK; 

 

Architecture behavioural of FOUR_PHASE_PCLK is 

 

BEGIN  

Process (CLK) is 

BEGIN 

if CLK ="00" then 

    PC1<='0'; 

    PC2<='X'; 

    PC3<='1'; 

    PC4<='X'; 

elsif CLK = "01" then 

    PC1<='X'; 

    PC2<='0'; 

    PC3<='X'; 

    PC4<='1'; 

elsif CLK = "10" then 

    PC1<='1'; 

    PC2<='X'; 

    PC3<='0'; 

    PC4<='X'; 
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elsif CLK = "11" then 

    PC1<='X'; 

    PC2<='1'; 

    PC3<='X'; 

    PC4<='0'; 

End if; 

End process; 

End Architecture behavioural; 

--------------------------------------------------------------------------------------------------------- 

B2. Adiabatic Logic Gates 

--------------------------------------------------------------------Single-rail Resettable Buffer 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work.Adiabatic_signal.all; 

 

ENTITY Proposed_Reset_Buf IS 

port (A_H, A_L, PC, RST : in std_logic; Out_H, Out_L : out 

std_logic); 

END ENTITY Proposed_Reset_Buf; 

 

Architecture behavioural of Proposed_Reset_Buf is 

BEGIN 

 

Process (RST, PC, A_H, A_L) is 

 

BEGIN 

if RST = '0' then   // RESET condition // 

        Out_H <= '0'; 

        Out_L <= PC; 

else 

     // IDLE PERIOD //  

if PC='0'  then 

        Out_H <= '0'; 

        Out_L <= '0'; 

elsif PC='0' and EVALUATE_edge (A_H) and EVALUATE_edge(A_L) then 

        Out_H <='Z'; 

        Out_L <='Z'; 

     // EVALUATE PERIOD // 

elsif PC='X' and HOLD_edge (A_H) and HOLD_edge(A_L) then 

        Out_H <='Z'; 

        Out_L <='Z'; 

elsif PC='X' and HOLD_edge (A_H) then 

        Out_H <= PC;  

        Out_L <='0'; 

elsif PC='X' and HOLD_edge (A_L) then 

        Out_H <= '0'; 

        Out_L <= PC; 



156 

 

    // HOLD PERIOD // 

elsif PC='1' and RECOVERY_edge (A_H) and RECOVERY_edge (A_L) 

then 

        Out_H <='Z'; 

        Out_L <='Z'; 

elsif PC='1' and RECOVERY_edge (A_H) then 

        Out_H <= PC;  

        Out_L <='0'; 

elsif PC='1' and RECOVERY_edge (A_L) then 

        Out_H <= '0'; 

        Out_L <= PC; 

    // RECOVERY PERIOD // 

elsif PC='X' and IDLE_edge (A_H) and IDLE_edge (A_L) then 

        Out_H <='Z'; 

        Out_L <='Z'; 

elsif PC='X' and IDLE_edge (A_H) then 

        Out_H <= PC;  

        Out_L <='0'; 

elsif PC='X' and IDLE_edge (A_L) then 

        Out_H <= '0'; 

        Out_L <= PC; 

    End if; 

  End if; 

End Process; 

End Architecture behavioural; 

----------------------------------------------------------------------Dual-rail Resettable Buffer 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work. Adiabatic_2INP_GATES.all;    // User Defined Adiabatic 

Logic Gates // 

 

ENTITY Proposed_ Proposed_dual_reset_buf IS 

port (A_H, Res_H, A_L, Res_L, PC : in std_logic; Out_H, Out_L : 

out std_logic); 

END ENTITY Proposed_ Proposed_dual_reset_buf; 

 

Architecture behavioural of Proposed_dual_reset_buf is 

 

Component Proposed_Buf  

port (A_H, A_L : in std_logic; PC : in std_logic; Out_H, Out_L : 

out std_logic); 

End Component; 

 

SIGNAL Z_H, Z_L: std_logic; 

 

BEGIN 

 

C01: Proposed_Buf port map (Z_H, Z_L, PC, Out_H, Out_L); 

 

 Z_H <= Aand (A_H,Res_H); 

 Z_L <=Aor (A_L,Res_L); 
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End Architecture behavioural; 

------------------------------------------------------------------------------2-input AND/NAND 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work. Adiabatic_2INP_GATES.all;    // User Defined Adiabatic 

Logic Gates // 

 

ENTITY Proposed_ANDNAND2 IS 

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out 

std_logic); 

END ENTITY Proposed_ANDNAND2; 

 

Architecture behavioural of Proposed_ANDNAND2 is 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

SIGNAL Z_H, Z_L: std_logic; 

 

BEGIN 

 

C01: Proposed_Buf port map (Z_H, Z_L, PC, AND2, NAND2); 

 

 Z_H <= Aand (A_H, B_H); 

 Z_L <= Aor (A_L, B_L); 

 

End Architecture behavioural; 

-----------------------------------------------------------------------------------2-input OR/NOR 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic 

Logic Gates // 

 

ENTITY Proposed_ORNOR2 IS 

port (A_H, B_H, A_L, B_L, PC: in std_logic; OR2, NOR2: out 

std_logic); 

END ENTITY Proposed_ORNOR2; 

 

Architecture behavioural of Proposed_ORNOR2 is 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

SIGNAL Z_H, Z_L: std_logic; 
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BEGIN 

 

C01: Proposed_Buf port map (Z_H, Z_L, PC, OR2, NOR2); 

 

 Z_H <= Aor (A_H, B_H); 

 Z_L <= Aand (A_L, B_L); 

 

End Architecture behavioural; 

-------------------------------------------------------------------------------3-input AND/NAND 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic 

Logic Gates // 

 

ENTITY Proposed_ANDNAND3 IS 

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; AND3, 

NAND3: out std_logic); 

END ENTITY Proposed_ANDNAND3; 

 

Architecture behavioural of Proposed_ANDNAND3 is 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

 SIGNAL Z_H, Z_L: std_logic; 

 

BEGIN 

 

C01: Proposed_Buf port map (Z_H, Z_L, PC, AND3, NAND3); 

 

 Z_H <= Aand (Aand (A_H, B_H), C_H); 

 Zb<=Aor (Aor (A_L, B_L), C_L); 

 

End Architecture behavioural; 

-----------------------------------------------------------------------------------3-input OR/NOR 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic 

Logic Gates // 

 

ENTITY Proposed_ORNOR3 IS 

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; OR3, NOR3: 

out std_logic); 

END ENTITY Proposed_ORNOR3; 
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Architecture behavioural of Proposed_ORNOR3 is 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

 SIGNAL Z_H, Z_L: std_logic; 

 

BEGIN 

 

C01: Proposed_Buf port map (Z_H, Z_L, PC, OR3, NOR3); 

 

 Z_H <=Aor (Aor (A_H, B_H), C_H); 

 Z_L <=Aand (Aand (A_L, B_L), C_L); 

 

End Architecture behavioural; 

------------------------------------------------------------------------------2-input XOR/XNOR 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic 

Logic Gates // 

 

ENTITY Proposed_XORXNOR2 IS 

port (A_H, B_H, A_L, B_L, PC: in std_logic; XOR2, XNOR2: out 

std_logic); 

END ENTITY Proposed_XORXNOR2; 

 

Architecture behavioural of Proposed_XORXNOR2 is 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

 Signal Z_H, Z_L: std_logic; 

Begin 

  

C01: Proposed_Buf port map (Z_H, Z_L, PC, XOR2, XNOR2); 

 

  Z <= Aor (Aand (A_L, B_H), Aand (A_H, B_L)); 

  Zb <= Aor (Aand (A_L, B_L), Aand (A_H, B_H)); 

 

End Architecture behavioural; 

----------------------------------------------------------------------------------------------------- 
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B3. 2-bit Adiabatic Ring-counter 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY Ring_Counter_2bit is 

port (CLK: in std_logic_vector (1 downto 0); RES: in std_logic; 

Q0_H, Q0_L, Q1_H, Q1_L: inout std_logic); 

END ENTITY Ring_Counter_2bit; 

 

Architecture Structural of Ring_Counter_2bit IS 

 

Component FOUR_PHASE_PC 

port (CLK: in std_logic_vector (1 downto 0); PC1, PC2, PC3, PC4: 

out std_logic); 

End Component; 

 

Component Proposed_Reset_Buf  

port (A_H, A_L, PC: in std_logic; RST: in std_logic; Out_H, 

Out_L: out std_logic); 

End Component; 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

SIGNAL PC1, PC2, PC3, PC4: std_logic;  

SIGNAL Q01_H, Q01_L, Q02_H, Q02_L, Q03_H, Q03_L, Q11_H, Q11_L, 

Q12_H, Q12_L, Q13_H, Q13_L: std_logic; 

 

BEGIN 

 

CLK1: FOUR_PHASE_PCLK port map (CLK, PC1, PC2, PC3, PC4); 

n0: Proposed_Reset_Buf port map (Q1_L, Q1_H, PC1, RES, Q01_H, 

Q01_L); 

n1: Proposed_Buf port map (Q01_H, Q01_L, PC2, Q02_H, Q02_L); 

n2: Proposed_Buf port map (Q02_H, Q02_L, PC3, Q03_H, Q03_L);  

n3: Proposed_Buf port map (Q03_H, Q03_L, PC4, Q0_H, Q0_L); 

n4: Proposed_Reset_Buf port map (Q0_H, Q0_L, PC1, RES, Q11_H, 

Q11_L); 

n5: Proposed_Buf port map (Q11_H, Q11_L, PC2, Q12_H, Q12_L); 

n6: Proposed_Buf port map (Q12_H, Q12_L, PC3, Q13_H, Q13_L);  

n7: Proposed_Buf port map (Q13_H, Q13_L, PC4, Q1_H, Q1_L); 

 

END Architecture structural; 
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-------------------------------------------------------------------------------------------------------- 

B4. 3-bit Up-Down counter      

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY Proposed_UP_DOWN_Counter3 is 

port (CLK: in std_logic_vector(1 downto 0); RST_H, RST_L, UD_H, 

UD_L: in std_logic; Q0_H, Q0_L, Q1_H, Q1_L, Q2_H,Q2_L: inout 

std_logic); 

END ENTITY Proposed_UP_DOWN_Counter3; 

 

Architecture structural of Proposed_UP_DOWN_Counter3 is 

 

Component DC_TO_ADIABATIC  

port (INP_H, INP_L: in std_logic; CLK: in std_logic_vector(1 

downto 0); A_H, A_L: out std_logic); 

End Component; 

 

Component FOUR_PHASE_PC 

port (CLK: in std_logic_vector(1 downto 0); PC1, PC2, PC3, PC4: 

out std_logic); 

End Component; 

 

Component Proposed_dual_reset_buf  

port (A_H, A_L, RES_H, RES_L, PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

Component Proposed_ANDNAND2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out 

std_logic); 

End Component Proposed_ANDNAND2; 

 

Component Proposed_XORXNOR2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; XOR2, XNOR2: out 

std_logic); 

End Component Proposed_XORXNOR2; 
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Component Proposed_ORNOR3 

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; OR3, NOR3: 

out std_logic); 

End Component Proposed_ORNOR3;  

 

SIGNAL RES_H, RES_L: std_logic;  

SIGNAL PC1, PC2, PC3, PC4, CU, CD: std_logic; 

SIGNAL Q01_H, Q01_L, Q02_H, Q02_L, Q03_H, Q03_L: std_logic; 

SIGNAL Q110_H, Q110_L, Q111_H, Q111_L, Q112_H, Q112_L, Q113_H, 

Q113_L, Q11_H, Q11_L, Q12_H, Q12_L, Q13_H, Q13_L: std_logic; 

SIGNAL Q210_H,Q210_L, Q211_H,Q211_L, Q212_H,Q212_L, Q213_H, 

Q213_L, Q220_H, Q220_L, Q221_H, Q221_L, Q222_H, Q222_L, Q223_H, 

Q223_L, Q21_H, Q21_L, Q22_H, Q22_L, Q23_H, Q23_L: std_logic; 

 

BEGIN 

 

CLK1: FOUR_PHASE_PCLK port map (CLK, PC1, PC2, PC3, PC4); 

INPUT1: DC_TO_ADIABATIC port map (UD_H, UD_L, CLK, CD, CU); 

INPUT2: DC_TO_ADIABATIC port map (RST_H, RST_L, CLK, RES_H, 

RES_L); 

 

C01: Proposed_dual_reset_buf port map (Q0_L, Q0_H, RES_H, RES_L, 

PC1, Q01_H, Q01_L); 

C02: Proposed_Buf port map (Q01_H, Q01_L, PC2, Q02_H, Q02_L); 

C03: Proposed_Buf port map (Q02_H, Q02_L, PC3, Q03_H, Q03_L); 

C04: Proposed_Buf port map (Q03_H, Q03_L, PC4, Q0_H, Q0_L); 

C110: Proposed_Buf port map (CD, CU, PC1, Q110_H, Q110_L); 

C111: Proposed_Buf port map (Q110_H, Q110_L, PC2, Q111_H, 

Q111_L);  

 

C112: Proposed_XORXNOR2 port map (Q02_H, Q111_H, Q02_L, Q111_L, 

PC3, Q112_H, Q112_L); 

C113: Proposed_XORXNOR2 port map (Q112_H, Q13_H, Q112_L, Q13_L, 

PC4, Q113_H, Q113_L); 

C11: Proposed_dual_reset_buf port map (Q113_H, Q113_L, RES_H, 

RES_L, PC1, Q11_H, Q11_L); 

C12: Proposed_Buf port map (Q11_H, Q11_L, PC2, Q12_H, Q12_L); 

C13: Proposed_Buf port map (Q12_H, Q12_L, PC3, Q13_H, Q13_L); 

C14: Proposed_Buf port map (Q13_H, Q13_L, PC4, Q1_H, Q1_L); 

 

C210: Proposed_XORXNOR2 port map (Q11_H, Q21_H, Q11_L, Q21_L, 

PC2, Q210_H, Q210_L);    

C211: Proposed_ANDNAND2 port map (Q01_H, Q110_L, Q01_L, Q110_H, 

PC2, Q211_H, Q211_L);   

C212: Proposed_ANDNAND2 port map (Q01_L, Q110_H, Q01_H, Q110_L, 

PC2, Q212_H, Q212_L);   

C213: Proposed_XORXNOR2 port map (Q110_H, Q01_H, Q110_L, Q01_L, 

PC2, Q213_H, Q213_L); 
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C220: Proposed_ANDNAND2 port map (Q210_H, Q211_H, Q210_L, Q211_L, 

PC3, Q220_H, Q220_L);    

C221: Proposed_ANDNAND2 port map (Q210_L, Q212_H, Q210_H, Q212_L, 

PC3, Q221_H, Q221_L);   

C222: Proposed_ANDNAND2 port map (Q213_L, Q22_H, Q213_H, Q22_L, 

PC3, Q222_H, Q222_L); 

C223:  Proposed_ORNOR3 port map (Q220_H, Q221_H, Q222_H, Q220_L, 

Q221_L, Q222_L, PC4, Q223_H, Q223_L);  

C21:  Proposed_dual_reset_buf port map (Q223_H, Q223_L, RES_H, 

RES_L, PC1, Q21_H, Q21_L); 

C22: Proposed_Buf port map (Q21_H, Q21_L, PC2, Q22_H, Q22_L); 

C23: Proposed_Buf port map (Q22_H, Q22_L, PC3, Q23_H, Q23_L); 

C24: Proposed_Buf port map (Q23_H, Q23_L, PC4, Q2_H, Q2_L);  

 

END Architecture structural;   

------------------------------------------------------------------------------------------------------- 

B5. 16-bit CRC for 16-bit message word 

-----------------------------------------------------------DC pulse train to Adiabatic for PC3 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY DC_TO_ADIABATIC_PC3_INP IS 

port (INP_H, INP_L: in std_logic; CLK: in std_logic_vector(1 

downto 0); A_H, A_L: out std_logic); 

END ENTITY DC_TO_ADIABATIC_PC3_INP; 

 

Architecture behavioural of DC_TO_ADIABATIC_PC3_INP is 

 

BEGIN 

 

Process (CLK, INP_H, INP_L) is 

 

  BEGIN 

 

if CLK ="00" then  

 if INP_H ='1' and INP_L ='0' then 

  A_H <='X'; 

  A_L <='0'; 

elsif INP_L ='1' and INP_H ='0' then 

  A_H <='0'; 

  A_L <='X'; 

End if; 

 

Elsif CLK = "01" then 

  A_H <='0'; 



164 

 

  A_L <='0'; 

 

elsif CLK = "10" then 

if INP_H ='1' and INP_L ='0' then 

  A_H <='X'; 

  A_L <='0'; 

 elsif INP_L ='1' and INP_H='0' then 

  A_H <='0'; 

  A_L <='X'; 

End if; 

 

elsif CLK = "11" then 

if INP_H ='1' and INP_L ='0' then 

  A_H <='1'; 

  A_L <='0'; 

     elsif INP_L ='1' and INP_H='0' then 

  A_H <='0'; 

  A_L <='1'; 

End if; 

 

End if; 

End Process; 

End Architecture behavioural; 

--------------------------------------------------------------------------------------4-bit Counter 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY Counter_4_bit is 

port (PC1, PC2, PC3, PC4, R_count_H, R_count_L, NM_H, NM_L: in 

std_logic; Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q0_H, Q0_L, Q1_H, 

Q1_L, Q2_H, Q2_L, Q3_H, Q3_L: inout std_logic); 

END ENTITY Counter_4_bit; 

 

Architecture structural of Counter_4_bit is 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

Component Proposed_ANDNAND2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out 

std_logic); 

End Component Proposed_ANDNAND2; 

 

Component Proposed_ORNOR2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; OR2, NOR2: out 

std_logic); 

End Component Proposed_ORNOR2; 
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Component Proposed_ORNOR3 

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; OR3, NOR3: 

out std_logic); 

End Component Proposed_ORNOR3;  

 

Component Proposed_ANDNAND3 

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; AND3, 

NAND3: out std_logic); 

End Component Proposed_ANDNAND2; 

 

SIGNAL RST_H, RST_L: std_logic; 

SIGNAL Q01_H, Q01_L, Q02_H, Q02_L, Q03_H, Q03_L, Q04_H, Q04_L, 

Q05_H, Q05_L: std_logic; 

SIGNAL Q11_H, Q11_L, Q12_H, Q12_L, Q13_H, Q13_L, Q14_H, Q14_L, 

Q15_H, Q15_L, Q16_H, Q16_L, Q17_H, Q17_L: std_logic; 

SIGNAL Q21_H, Q21_L, Q22_H, Q22_L, Q23_H, Q23_L, Q24, Q24b, Q25, 

Q25_L, Q26_H, Q26_L, Q27_H, Q27_L, Q2_3_H, Q2_3_L: std_logic; 

SIGNAL Q31_H, Q31_L, Q32_H, Q32_L, Q33_H, Q33_L, Q34_H, Q34_L, 

Q35_H, Q35_L, Q3_3_H, Q3_3_L: std_logic; 

 

BEGIN 

 

C00: Proposed_ANDNAND2 port map (R_count_H, NM_H, R_count_L, 

NM_L, PC4, RST_H, RST_L);  

C01: Proposed_ANDNAND2 port map (RST_H, Q0_L, RST_L, Q0_H, PC1, 

Q01_H, Q01_L); 

C02: Proposed_ANDNAND2 port map (RST_H, Q1_H, RST_L, Q1_L, PC1, 

Q02_H, Q02_L); 

C03: Proposed_ANDNAND2 port map (Q2_H, Q3_H, Q2_L, Q3_L, PC1, 

Q03_H, Q03_L); 

C04: Proposed_Buf port map (Q01_H, Q01_L, PC2, Q04_H, Q04_L); 

C05: Proposed_ANDNAND2 port map (Q02_H, Q03_H, Q02_L, Q03_L, PC2, 

Q05_H, Q05_L); 

C06: Proposed_ORNOR2 port map (Q04_H, Q05_H, Q04_L, Q05_L, PC3, 

Q0_3_H, Q0_3_L); 

C07: Proposed_Buf port map (Q0_3_H, Q0_3_L, PC4, Q0_H, Q0_L); 

 

C10: Proposed_ANDNAND3 port map (RST_H, Q1_L, Q0_H, RST_L, Q1_H, 

Q0_L, PC1, Q11_H, Q11_L); 

C11: Proposed_ANDNAND2 port map (Q0_H, RST_H, Q0_L, RST_L, PC1, 

Q12_H, Q12_L);      

C12: Proposed_ANDNAND2 port map (Q2_H, Q3_H, Q2_L, Q3_L, PC1, 

Q13_H, Q13_L);  

C13: Proposed_ANDNAND3 port map (RST_H, Q1_H, Q0_L, RST_L, Q1_L, 

Q0_H, PC1, Q14_H, Q14_L); 

C14: Proposed_Buf port map (Q11_H, Q11_L, PC2, Q15_H, Q15_L);   

C15: Proposed_ANDNAND2 port map (Q12_H, Q13_H, Q12_L, Q13_L, PC2, 

Q16_H, Q16_L);   
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C16: Proposed_Buf port map (Q14_H, Q14_L, PC2, Q17_H, Q17_L);    

C17: Proposed_ORNOR3 port map (Q15_H, Q16_H, Q17_H, Q15_L, Q16_L, 

Q17_L, PC3, Q1_3_H, Q1_3_L);  

C18: Proposed_Buf port map (Q1_3_H, Q1_3_L, PC4, Q1_H, Q1_L);  

 

C20: Proposed_ANDNAND3 port map (RST_H, Q2_H, Q3_H, RST_L, Q2_L, 

Q3_L, PC1, Q21_H, Q21_L); 

C21: Proposed_ORNOR2 port map (Q1_L, Q0_L, Q1_H, Q0_H, PC1, 

Q22_H, Q22_L); 

C22: Proposed_Buf port map (RST_H, RST_L, PC1, Q23_H, Q23_L); 

C23: Proposed_Buf port map (Q2_L, Q2_H, PC1, Q24_H, Q24_L); 

C24: Proposed_Buf port map (Q21_H, Q21_L, PC2, Q25_H, Q25_L); 

C25: Proposed_ANDNAND3 port map (Q22_H, Q23_H, Q24_L, Q22_L, 

Q23_L, Q24_H, PC2, Q26_H, Q26_L);      

C26: Proposed_ANDNAND3 port map (Q23_H, Q22_L, Q24_H, Q23_L, 

Q22_H, Q24_L, PC2, Q27_H, Q27_L); 

C27: Proposed_ORNOR3 port map (Q25_H, Q26_H, Q27_H, Q25_L, Q26_L, 

Q27_L, PC3, Q2_3_H, Q2_3_L);  

C28: Proposed_Buf port map (Q2_3_H, Q2_3_L, PC4, Q2_H, Q2_L);    

 

C30: Proposed_ANDNAND2 port map (RST_H, Q3_H, RST_L, Q3_L, PC1, 

Q31_H, Q31_L);  

C31: Proposed_ANDNAND2 port map (RST_H, Q1_H, RST_L, Q1_L, PC1, 

Q32_H, Q32_L); 

C32: Proposed_ANDNAND2 port map (Q0_H, Q2_H, Q0_L, Q2_L, PC1, 

Q33_H, Q33_L); 

C33: Proposed_Buf port map (Q31_H, Q31_L, PC2, Q34_H, Q34_L); 

C34: Proposed_ANDNAND2 port map (Q32_H, Q33_H, Q32_L, Q33_L, PC2, 

Q35_H, Q35_L); 

C35: Proposed_ORNOR2 port map (Q34_H, Q35_H, Q34_L, Q35_L, PC3, 

Q3_3_H, Q3_3_L); 

C36: Proposed_Buf port map (Q3_3_H, Q3_3_L, PC4, Q3_H, Q3_L); 

 

END Architecture structural; 

------------------------------------------------------------------------------------------Controller 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY Controller is 

port (PC1, PC2, PC3, PC4, NM_H, NM_L, RESET_H, RESET_L: in 

std_logic; Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q2_H, Q2_L, Q3_H, 

Q3_L, R_count_H, R_count_L, R0_H, R0_L, R1_H, R1_L, R2_H, R2_L, 

R3_H, R3_L: inout std_logic; R4_H, R4_L: out std_logic); 

END ENTITY Controller; 

 

Architecture Structural of Controller is 
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Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

Component Proposed_ANDNAND2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out 

std_logic); 

End Component Proposed_ANDNAND2; 

 

Component Proposed_ORNOR2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; OR2, NOR2: out 

std_logic); 

End Component Proposed_ORNOR2; 

 

Component Counter_4_bit IS 

port (PC1, PC2, PC3, PC4, R_count_H, R_count_L, NM_H, NM_L: in 

std_logic; Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q0_H, Q0_L, Q1_H, 

Q1_L, Q2_H, Q2_L, Q3_H, Q3_L: inout std_logic);  

End ComponentCounter_4_bit; 

 

SIGNAL RX_H, RX1_H, RX2_H, RX3_H, RX4_H, RX_L, RX1_L, RX2_L, 

RX3_L, RX4_L: std_logic; 

SIGNAL Q0_H, Q0_L, Q1_H, Q1_L: std_logic; 

SIGNAL CTR1_H, CTR1_L, CTR2_H, CTR2_L, CTR3_H, CTR3_L: std_logic; 

 

BEGIN 

 

count01: Counter_4_bit port map (PC1, PC2, PC3, PC4, R_count_L, 

R_count_H ,NM_L, NM_H, Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q0_H, 

Q0_L, Q1_H, Q1_L, Q2_H, Q2_L, Q3_H, Q3_L); 

 

C01: Proposed_ANDNAND2 port map (Q0_H, Q1_H, Q0_L, Q1_L, PC1, 

CTR1_H, CTR1_L); 

C02: Proposed_ANDNAND2 port map (Q2_H, Q3_H, Q2_L, Q3_L, PC1, 

CTR2_H, CTR2_L); 

C03: Proposed_ANDNAND2 port map(CTR1_H, CTR2_H, CTR1_L, CTR2_L, 

PC2, CTR3_H, CTR3_L); 

C21: Proposed_ORNOR2 port map(CTR3_H, RESET_H, CTR3_L, RESET_L, 

PC3, R_count_H, R_count_L); 

 

B01: Proposed_Buf port map (R_count_H, R_count_L, PC4, RX_H, 

RX_L); 

B02: Proposed_Buf port map (RX_H, RX_L, PC1, RX1_H, RX1_L); 

B03: Proposed_Buf port map (RX1_H, RX1_L, PC2, R0_H, R0_L); 

B04: Proposed_Buf port map (R0_H, R0_L, PC3, R1_H, R1_L); 

B05: Proposed_Buf port map (R1_H, R1_L, PC4, R2_H, R2_L); 

B06: Proposed_Buf port map (R2_H, R2_L, PC1, R3_H, R3_L);  
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B07: Proposed_Buf port map (R3_H, R3_L, PC2, RX2_H, RX2_L); 

B08: Proposed_Buf port map (RX2_H, RX2_L, PC3, RX3_H, RX3_L); 

B09: Proposed_Buf port map (RX3_H, RX3_L, PC4, RX4_H, RX4_L); 

B10: Proposed_Buf port map (RX4_H, RX4_L, PC1, R4_H, R4_L);  

 

END Architecture structural; 

-------------------------------------------------------------------------------------2:1 Multiplexer 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work.Adiabatic_2INP_GATES.all;//User Defined Adiabatic Logic 

Gates // 

 

ENTITY Proposed_2_1_MUX IS 

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H, 

Out_L: out std_logic); 

END ENTITY Proposed_2_1_MUX; 

 

ARCHITECTURE Structural OF Proposed_2_1_MUX IS 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

SIGNAL X_H, X_L: std_logic; 

 

BEGIN 

 

C01: Proposed_Buf port map (X_H, X_L, PC, Out_H, Out_L); 

X_H <= Aor (Aand (S_L, A_H), Aand (S_H, B_H)); 

X_L <= Aand (Aor (S_L, B_L), Aor (S_H, A_L)); 

 

END ARCHITECTURE Structural; 

-------------------------------------------------------------------------------------4:1 Multiplexer 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic 

Logic Gates // 

 

ENTITY Proposed_4_1_MUX IS 

port (A_H, B_H, C_H, D_H, A_L, B_L, C_L, D_L, S0_H, S0_L, S1_H, 

S1_L, PC: in std_logic; Out_H, Out_L: out std_logic); 

END ENTITY Proposed_4_1_MUX; 
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ARCHITECTURE Structural OF Proposed_4_1_MUX IS 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

SIGNAL X_H, X_L: std_logic; 

BEGIN 

 

C01: Proposed_Buf port map (X_H, X_L, PC, Out_H, Out_L); 

 

X_H <= Aor (Aor (Aand (Aand (S0_L, S1_L), A_H), Aand (Aand (S0_H, 

S1_L), B_H)), Aor (Aand (Aand (S0_L, S1_H), C_H), Aand (Aand 

(S0_H, S1_H), D_H))); 

 

X_L <= Aand (Aand (Aor (Aor(S0_H, S1_H), A_H), Aor (Aor (S0_L, 

S1_H), B_L)), Aand (Aor (Aor (S0_H, S1_L), C_L), Aor (Aor (S0_L, 

S1_L), D_L))); 

 

END ARCHITECTURE Structural; 

-------------------------------------------------------------------------------------8:1 Multiplexer 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY Proposed_8_1_MUX IS 

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, A_L, B_L, C_L, D_L, 

E_L, F_L, G_L, H_L, S0_H, S1_H, S2_H, S0_L, S1_L, S2_L, PC1, PC2: 

in std_logic; Out_H, Out_L: out std_logic); 

END ENTITY Proposed_8_1_MUX; 

 

ARCHITECTURE Structural OF Proposed_8_1_MUX IS 

 

Component Proposed_4_1_MUX 

port (A_H, B_H, C_H, D_H, A_L, B_L, C_L, D_L, S0_H, S1_H, S0_L, 

S1_L, PC: in std_logic; Out_H, Out_L: out std_logic); 

End Component; 

 

Component Proposed_2_1_MUX 

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H, 

Out_L: out std_logic); 

End Component; 

 

SIGNAL T_H, T_L, U_H, U_L: std_logic; 
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BEGIN 

 

MUX1: Proposed_4_1_MUX port map (A_H, B_H, C_H, D_H, A_L, B_L, 

C_L, D_L, S0_H, S1_H, S0_L, S1_L, PC1, T_H, T_L);   

MUX2: Proposed_4_1_MUX port map (E_H, F_H, G_H, H_H, E_L, F_L, 

G_L, H_L, S0_H, S1_H, S0_L, S1_L, PC1, U_H, U_L); 

MUX3: Proposed_2_1_MUX port map (T_H, U_H, T_L, U_L, S2_H, S2_L, 

PC2, Out_H, Out_L); 

 

END ARCHITECTURE Structural; 

----------------------------------------------------------------------------------16:1 Multiplexer 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY Proposed_16_1_MUX IS 

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, L_H, 

M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, I_L, 

J_L, K_L, L_L, M_L, N_L, O_L, P_L, S0_H, S1_H, S2_H, S3_H, S0_L, 

S1_L, S2_L, S3_L, PC1, PC2, PC3: in std_logic; Out_H, Out_L: out 

std_logic); 

END ENTITY Proposed_16_1_MUX; 

 

ARCHITECTURE Structural OF Proposed_16_1_MUX IS 

 

Component Proposed_8_1_MUX 

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, A_L, B_L, C_L, D_L, 

E_L, F_L, G_L, H_L, S0_H, S1_H, S2_H, S0_L, S1_L, S2_L, PC1, PC2: 

in std_logic; Out_H, Out_L: out std_logic); 

End Component; 

 

Component Proposed_2_1_MUX 

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H, 

Out_L: out std_logic); 

End Component; 

 

SIGNAL X_H, V_H, W_H, X_L, V_L, W_L: std_logic; 

BEGIN 

 

MUX1: Proposed_8_1_MUX port map (A_H, B_H, C_H, D_H, E_H, F_H, 

G_H, H_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, S0_H, S1_H, 

S2_H, S0_L, S1_L, S2_L, PC1, PC2, V_H, V_L);   

MUX2: Proposed_8_1_MUX port map (I_H, J_H, K_H, L_H, M_H, N_H, 

O_H, P_H, I_L, J_L, K_L, L_L, M_L, N_L, O_L, P_L, S0_H, S1_H, 

S2_H, S0_L, S1_L, S2_L, PC1, PC2, W_H, W_L); 
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MUX3: Proposed_2_1_MUX port map (V_H, W_H, V_L, W_L, S3_H, S3_L, 

PC3, Out_H, Out_L); 

 

END ARCHITECTURE Structural; 

----------------------------------------------------------------------------------Controller + MUX 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY controller_MUX IS 

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, L_H, 

M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, I_L, 

J_L, K_L, L_L, M_L, N_L, O_L, P_L, PC1, PC2, PC3, PC4, NM_H, 

NM_L, RESET_H, RESET_L: in std_logic; R_count_H, R_count_L, R0_H, 

R0_L, R1_H, R1_L, R2_H, R2_L, R3_H, R3_L: inout std_logic; 

Msg_IN_L, Msg_IN_L, R4_H, R4_L: out std_logic); 

END ENTITY controller_MUX; 

 

ARCHITECTURE structural OF controller_MUX IS 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

Component Controller 

port (PC1, PC2, PC3, PC4, NM_H, NM_L, RESET_H, RESET_L: in 

std_logic; Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q2_H, Q2_L, Q3_H, 

Q3_L, R_count_H, R_count_L, R0_H, R0_L, R1_H, R1_L, R2_H, R2_L, 

R3_H, R3_L: inout std_logic; R4_H, R4_L: out std_logic); 

End Component Controller; 

 

Component Proposed_16_1_MUX 

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, L_H, 

M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, I_L, 

J_L, K_L, L_L, M_L, N_L, O_L, P_L, S0_H, S1_H, S2_H, S3_H, S0_L, 

S1_L, S2_L, S3_L, PC1, PC2, PC3: in std_logic; Out_H, Out_L: out 

std_logic); 

End Component Proposed_16_1_MUX; 

 

SIGNAL Q0_3_H, Q1_3_H, Q2_H, Q3_1_H, Q0_3_L, Q1_3_L, Q2_L, 

Q3_1_L, Q3_H, Q3_L: std_logic; 

 

BEGIN 

 

B01: Proposed_Buf port map (Q3_H, Q3_L, PC1, Q3_1_L, Q3_1_L); 



172 

 

controller01: Controller port map (PC1, PC2, PC3, PC4, NM_H, 

NM_L, RESET_H, RESET_L, Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q2_H, 

Q2_L, Q3_H, Q3_L, R_count_H, R_count_L, R0_H, R0_L, R1_H, R1_L, 

R2_H, R2_L, R3_H, R3_L, R4_H, R4_L); 

MUX1: Proposed_16_1_MUX port map (A_H, B_H, C_H, D_H, E_H, F_H, 

G_H, H_H, I_H, J_H, K_H, L_H, M_H, N_H, O_H, P_H, A_L, B_L, C_L, 

D_L, E_L, F_L, G_L, H_L, I_L, J_L, K_L, L_L, M_L, N_L, O_L, P_L, 

Q0_3_H, Q1_3_H, Q2_H, Q3_1_H, Q0_3_L, Q1_3_L, Q2_L, Q3_1_L, PC4, 

PC1, PC2, Msg_IN_H, Msg_IN_L);  

 

END ARCHITECTUREstructural; 

------------------------------------------------------CRC_Generator_Polynomial_bit_block 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY CRC_Generator_Polynomial_bit_block IS 

port (CR0_H, CR0_L, PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, L0_H, L0_L, G1_H, G1_L, CR15_xor_IN_H, CR15_XOR_IN_L, 

ZERO, ONE: in std_logic; CR1_H, CR1_L: out std_logic); 

END ENTITY CRC_Generator_Polynomial_bit_block; 

 

ARCHITECTURE structural OF CRC_Generator_Polynomial_bit_block IS 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

Component Proposed_dual_reset_buf  

port (A_H, Res_H, A_L, Res_L, PC : in std_logic; Out_H, Out_L : 

out std_logic); 

End Component; 

 

Component Proposed_ANDNAND2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out 

std_logic); 

End Component Proposed_ANDNAND2; 

 

Component Proposed_XORXNOR2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; XOR2, XNOR2: out 

std_logic); 

End Component Proposed_XORXNOR2; 

 

Component Proposed_2_1_MUX 

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H, 

Out_L: out std_logic); 
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End Component; 

 

SIGNAL CD1_H, CD2_H, CD3_H, CD1_L, CD2_L, CD3_L: std_logic; 

SIGNAL SEL_GP1_H, SEL_GP1_L, GP1_H, GP1_L: std_logic; 

SIGNAL ZERO1, ZERO2, ZERO3, ONE1, ONE2, ONE3, Load0_H, Load0_L: 

std_logic; 

 

BEGIN 

 

B001: Proposed_Buf port map (ZERO, ONE, PC1, ZERO1, ONE1); 

B002: Proposed_Buf port map (ZERO1, ONE1, PC2, ZERO2, ONE2); 

B003: Proposed_Buf port map (ZERO2, ONE2, PC3, ZERO3, ONE3); 

 

A01: Proposed_ANDNAND2 port map (R0_L, G1_H, R0_H, G1_L, PC3, 

SEL_GP1_H, SEL_GP1_L); 

MUX1: Proposed_2_1_MUX port map (ZERO3, CR15_xor_IN_H, ONE3, 

CR15_xor_IN_L, SEL_GP1_H, SEL_GP1_L, PC4, GP1_H, GP1_L);   

B004: Proposed_Buf port map (CR0_H, CR0_L, PC3, CD1_H, CD1_L); 

RB01: Proposed_dual_reset_buf port map (CD1_H, CD1_L, R1_L, R1_H, 

PC4, CD2_H, CD2_L); 

X01: Proposed_XORXNOR2 port map (CD2_H, GP1_H, CD2_L, GP1_L, PC1, 

CD3_H, CD3_L);  

MUX2: Proposed_2_1_MUXport map (CD3_H, Load0_H, CD3_L, Load0_L, 

R3_H, R3_L, PC2, CR1_H, CR1_L);   

 

END ARCHITECTURE structural; 

------------------------------------------------------------------------------------CRC_Datapath 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITY CRC_Datapath IS 

port (MSG_IN_H, MSG_IN_L, PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, 

R1_L, R2_H, R2_L, R3_H, R3_L: in std_logic; Load_H, Load_L: in 

std_logic_vector(15 downto 0); G_H, G_L : in std_logic_vector(15 

downto 1); ZERO, ONE : in std_logic; CR_H, CR_L: inout 

std_logic_vector(15 downto 0)); 

END ENTITY CRC_Datapath; 

 

ARCHITECTURE Structural OF CRC_Datapath IS 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 
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Component Proposed_dual_reset_buf  

port (A_H, Res_H, A_L, Res_L, PC : in std_logic; Out_H, Out_L : 

out std_logic); 

End Component; 

 

Component Proposed_XORXNOR2 

port (A_H, B_H, A_L, B_L, PC: in std_logic; XOR2, XNOR2: out 

std_logic); 

End Component Proposed_XORXNOR2; 

 

Component Proposed_2_1_MUX 

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H, 

Out_L: out std_logic); 

End Component; 

 

Component CRC_Generator_Polynomial_bit_block  

port (CR0_H, CR0_L, PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, L0_H, L0_L, G1_H, G1_L, CR15_xor_IN_H, CR15_XOR_IN_L, 

ZERO, ONE: in std_logic; CR1_H, CR1_L: out std_logic); 

End Component;   

 

SIGNAL L_H, L_L, CR15_xor_IN_H, CD11_H, CD12_H, CR15_xor_IN_L, 

CD11_L, CD12_L: std_logic; 

 

BEGIN 

 

BF01: Proposed_Buf port map (Load_H(0),Load_L(0), PC1, L_H, L_L); 

XN01: Proposed_XORXNOR2 port map (CR_H(15), MSG_IN_H, CR_L(15), 

MSG_IN_L, PC3, CR15_xor_IN_H, CR15_xor_IN_L); 

BF17: Proposed_Buf port map (CR15_xor_IN_H, CR15_xor_IN_L, PC4, 

CD11_H, CD11_L); 

RB01: Proposed_dual_reset_buf port map (CD11_H, CD11_L, R2_L, 

R2_H, PC1, CD12_H, CD12_L); 

MUX1: Proposed_2_1_MUX port map (CD12_H, L_H, CD12_L, L_L, R3_H, 

R3_L, PC2, CR_H(0), CR_L(0)); 

CRC_Gen_Poly_block1: CRC_Generator_Polynomial_bit_block port map 

(CR_H (0), CR_L(0), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, Load_H(1), Load_L(1), G_H(1), G_L(1), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(1), CR_L(1)); 

CRC_Gen_Poly_block2: CRC_Generator_Polynomial_bit_block port map 

(CR_H(1), CR_L(1), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, Load_H(2), Load_L(2), G_H(2), G_L(2), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(2), CR_L(2)); 

CRC_Gen_Poly_block3: CRC_Generator_Polynomial_bit_block port map 

(CR_H(2), CR_L(2), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, Load_H(3), Load_L(3), G_H(3), G_L(3), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(3), CR_L(3)); 

CRC_Gen_Poly_block4: CRC_Generator_Polynomial_bit_block port map 

(CR_H(3), CR_L(3), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 
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R3_H, R3_L, Load_H(4), Load_L(4), G_H(4), G_L(4), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(4), CR_L(4)); 

CRC_Gen_Poly_block5: CRC_Generator_Polynomial_bit_block port map 

(CR_H(4), CR_L(4), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, Load_H(5), Load_L(5), G_H(5), G_L(5), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(5), CR_L(5)); 

CRC_Gen_Poly_block6: CRC_Generator_Polynomial_bit_block port map 

(CR_H(5), CR_L(5), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, Load_H(6), Load_L(6), G_H(6), G_L(6), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(6), CR_L(6)); 

CRC_Gen_Poly_block7: CRC_Generator_Polynomial_bit_block port map 

(CR_H(6), CR_L(6), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, Load_H(7), Load_L(7), G_H(7), G_L(7), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(7), CR_L(7)); 

CRC_Gen_Poly_block8: CRC_Generator_Polynomial_bit_block port map 

(CR_H(7), CR_L(7), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, Load_H(8), Load_L(8), G_H(8), G_L(8), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(8), CR_L(8)); 

CRC_Gen_Poly_block9: CRC_Generator_Polynomial_bit_block port map 

(CR_H(8), CR_L(8), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L, 

R3_H, R3_L, Load_H(9), Load_L(9), G_H(9), G_L(9), CR15_xor_IN_H, 

CR15_XOR_IN_L, ZERO, ONE, CR_H(9), CR_L(9)); 

CRC_Gen_Poly_block10: CRC_Generator_Polynomial_bit_block port 

map (CR_H(9), CR_L(9), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, 

R1_L, R3_H, R3_L, Load_H(10), Load_L(10), G_H(10), G_L(10), 

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(10), CR_L(10)); 

CRC_Gen_Poly_block11: CRC_Generator_Polynomial_bit_block port 

map (CR_H(10), CR_L(10), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, 

R1_L, R3_H, R3_L, Load_H(11), Load_L(11), G_H(11), G_L(11), 

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(11), CR_L(11)); 

CRC_Gen_Poly_block12: CRC_Generator_Polynomial_bit_block port 

map (CR_H(11), CR_L(11), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, 

R1_L, R3_H, R3_L, Load(12), Load_L(12), G_H(12), G_L(12), 

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(12), CR_L(12)); 

CRC_Gen_Poly_block13: CRC_Generator_Polynomial_bit_block port 

map (CR_H(12), CR_L(12), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, 

R1_L, R3_H, R3_L, Load_H(13), Load_L(13), G(13), Gb(13), 

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(13), CR_L(13)); 

CRC_Gen_Poly_block14: CRC_Generator_Polynomial_bit_block port 

map (CR_H(13), CR_L(13), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, 

R1_L, R3_H, R3_L, Load(14), Loadb(14), G_H(14), G_L(14), 

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(14), CR_L(14)); 

CRC_Gen_Poly_block15: CRC_Generator_Polynomial_bit_block port 

map (CR_H(14), CR_L(14), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, 

R1_L, R3_H, R3_L, Load_H(15), Load_L(15), G_H(15), G_L(15), 

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(15), CR_L(15)); 

 

END ARCHITECTURE Structural; 
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-----------------------------------------------------------16-bit CRC for 16-bit message word 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.all; 

USE IEEE.std_logic_arith.all; 

 

ENTITYMUX_Controller_CRC_Datapath IS 

port (IN1_H, IN2_H, IN3_H, IN4_H, IN5_H, IN6_H, IN7_H, IN8_H, 

IN9_H, IN10_H, IN11_H, IN12_H, IN13_H, IN14_H, IN15_H, IN16_H, 

IN1_L, IN2_L, IN3_L, IN4_L, IN5_L, IN6_L, IN7_L, IN8_L, IN9_L, 

IN10_L, IN11_L, IN12_L, IN13_L, IN14_L, IN15_L, IN16_L: in 

std_logic; CLOCK : in std_logic_vector(1 downto 0); NM_H, NM_L, 

RESET_H, RESET_L: in std_logic; R_count_H, R_count_L, R0_H, R0_L, 

R1_H, R1_L, R2_H, R2_L, R3_H, R3_L, R4_H, R4_L, Msg_IN_H, 

Msg_IN_L: inout std_logic; LV_H, LV_L, GP1_H, GP1_L : in 

std_logic_vector(15 downto 1); 

ZERO1, ONE1: in std_logic; CR_H, CR_L: inout std_logic_vector(15 

downto 0)); 

END ENTITY MUX_Controller_CRC_Datapath; 

 

ARCHITECTURE Structural OF MUX_Controller_CRC_Datapath IS 

 

Component DC_TO_ADIABATIC  

port (INP_H, INP_L: in std_logic; CLK: in std_logic_vector(1 

downto 0); A_H, A_L: out std_logic); 

End Component; 

 

Component FOUR_PHASE_PC 

port (CLK: in std_logic_vector(1 downto 0); PC1, PC2, PC3, PC4 : 

out std_logic); 

End Component; 

 

Component Proposed_Buf  

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L: 

out std_logic); 

End Component; 

 

Component DC_TO_ADIABATIC_PC3_INP  

port (INP_H, INP_L: in std_logic; CLK: in std_logic_vector(1 

downto 0); A_H, A_L: out std_logic); 

End Component; 

 

Component controller_MUX 

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, L_H, 

M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, I_L, 

J_L, K_L, L_L, M_L, N_L, O_L, P_L, PC1, PC2, PC3, PC4, NM_H, 

NM_L, RESET_H, RESET_L: in std_logic; R_count_H, R_count_L, R0_H, 

R0_L, R1_H, R1_L, R2_H, R2_L, R3_H, R3_L, R4_H, R4_L, Msg_IN_H, 

Msg_IN_L: inout std_logic); 
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END COMPONENT controller_MUX; 

 

Component CRC_Datapath 

port (MSG_IN_H, MSG_IN_L, PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, 

R1_L, R2_H, R2_L, R3_H, R3_L: in std_logic; Load_H, Load_L, G_H, 

G_L: in std_logic_vector(15 downto 1); ZERO, ONE : in std_logic; 

CR_H, CR_L: inout std_logic_vector(15 downto 0)); 

END COMPONENT CRC_Datapath; 

 

SIGNAL A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, 

L_H, M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, 

I_L, J_L, K_L, L_L, M_L, N_L, O_L, P_L: std_logic; 

SIGNAL A1_H, B1_H, C1_H, D1_H, E1_H, F1_H, G1_H, H1_H, I1_H, 

J1_H, K1_H, L1_H, M1_H, N1_H, O1_H, P1_H, A1_L, B1_L, C1_L, D1_L, 

E1_L, F1_L, G1_L, H1_L, I1_L, J1_L, K1_L, L1_L, M1_L, N1_L, O1_L, 

P1_L: std_logic; 

SIGNAL  ZERO, ONE, NM11_H, NM11_L, NM12_H, NM12_L, NM1_H, NM2_H, 

NM1_L, NM2_L, RES1_H, RES1_L, RES2_H, RES2_L, RES_H, RES_L: 

std_logic; 

SIGNAL GP_H, GP_L: std_logic_vector (15 downto 1); 

SIGNAL Load_H, Load_L: std_logic_vector (15 downto 0); 

SIGNAL PC1, PC2, PC3, PC4: std_logic; 

 

BEGIN 

 

CLK1: FOUR_PHASE_PCLK port map (CLOCK, PC1, PC2, PC3, PC4); 

 

INPUT1: DC_TO_ADIABATIC_PC3_INP port map (IN1_H, IN1_L, CLOCK, 

A1_H, A1_L); 

INPUT2: DC_TO_ADIABATIC_PC3_INP port map (IN2_H, IN2_L, CLOCK, 

B1_H, B1_L); 

INPUT3: DC_TO_ADIABATIC_PC3_INP port map (IN3_H, IN3_L, CLOCK, 

C1_H, C1_L); 

INPUT4: DC_TO_ADIABATIC_PC3_INP port map (IN4_H, IN4_L, CLOCK, 

D1_H, D1_L);    

INPUT5: DC_TO_ADIABATIC_PC3_INP port map (IN5_H, IN5_L, CLOCK, 

E1_H, E1_L); 

INPUT6: DC_TO_ADIABATIC_PC3_INP port map (IN6_H, IN6_L, CLOCK, 

F1_H, F1_L);    

INPUT7: DC_TO_ADIABATIC_PC3_INP port map (IN7_H, IN7_L, CLOCK, 

G1_H, G1_L); 

INPUT8: DC_TO_ADIABATIC_PC3_INP port map (IN8_H, IN8_L, CLOCK, 

H1_H, H1_L); 

INPUT9: DC_TO_ADIABATIC_PC3_INP port map (IN9_H, IN9_L, CLOCK, 

I1_H, I1_L); 

INPUT10: DC_TO_ADIABATIC_PC3_INP port map (IN10_H, IN10_L, CLOCK, 

J1_H, J1_L); 

INPUT11: DC_TO_ADIABATIC_PC3_INP port map (IN11_H, IN11_L, CLOCK, 

K1_H, K1_L); 
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INPUT12: DC_TO_ADIABATIC_PC3_INP port map (IN12_H, IN12_L, CLOCK, 

L1_H, L1_L);   

INPUT13: DC_TO_ADIABATIC_PC3_INP port map (IN13_H, IN13_L, CLOCK, 

M1_H, M1_L); 

INPUT14: DC_TO_ADIABATIC_PC3_INP port map (IN14_H, IN14_L, CLOCK, 

N1_H, N1_L); 

INPUT15: DC_TO_ADIABATIC_PC3_INP port map (IN15_H, IN15_L, CLOCK, 

O1_H, O1_L); 

INPUT16: DC_TO_ADIABATIC_PC3_INP port map (IN16_H, IN16_L, CLOCK, 

P1_H, P1_L); 

BF01: Proposed_Buf port map (A1_H, A1_L, PC3, A_H, A_L);  

BF02: Proposed_Buf port map (B1_H, B1_L, PC3, B_H, B_L); 

BF03: Proposed_Buf port map (C1_H, C1_L, PC3, C_H, C_L);  

BF04: Proposed_Buf port map (D1_H, D1_L, PC3, D_H, D_L);   

BF05: Proposed_Buf port map (E1_H, E1_L, PC3, E_H, E_L);  

BF06: Proposed_Buf port map (F1_H, F1_L, PC3, F_H, F_L); 

BF07: Proposed_Buf port map (G1_H, G1_L, PC3, G_H, G_L);  

BF08: Proposed_Buf port map (H1_H, H1_L, PC3, H_H, H_L);  

BF09: Proposed_Buf port map (I1_H, I1_L, PC3, I_H, I_L);  

BF010: Proposed_Buf port map (J1_H, J1_L, PC3, J_H, J_L); 

BF011: Proposed_Buf port map (K1_H, K1_L, PC3, K_H, K_L);  

BF012: Proposed_Buf port map (L1_H, L1_L, PC3, L_H, L_L);   

BF013: Proposed_Buf port map (M1_H, M1_L, PC3, M_H, M_L);  

BF014: Proposed_Buf port map (N1_H, N1_L, PC3, N_H, N_L); 

BF015: Proposed_Buf port map (O1_H, O1_L, PC3, O_H, O_L);  

BF016: Proposed_Buf port map (P1_H, P1_L, PC3, P_H, P_L);  

 

INPUT17: DC_TO_ADIABATIC port map (RESET_H, RESET_L, CLOCK, 

RES1_H, RES1_L); 

INPUT18: DC_TO_ADIABATIC port map (NM_H, NM_L, CLOCK, NM1_H, 

NM1_L); 

 

BF017: Proposed_Buf port map (RES1_H, RES1_L, PC1, RES2_H, 

RES2_L); 

BF018: Proposed_Buf port map (RES2_H, RES2_L, PC2, RES_H, RES_L);   

BF019: Proposed_Buf port map (NM1_H, NM1_L, PC1, NM11_H, NM11_L); 

BF020: Proposed_Buf port map (NM11_H, NM11_L, PC2, NM12_H, 

NM12_L); 

BF021: Proposed_Buf port map (NM12_H, NM12_L, PC3, NM2_H, NM2_L);   

 

INPUT19: DC_TO_ADIABATIC port map (ZERO1, ONE1, CLOCK, ZERO, 

ONE); 

INPUT24: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(1), GP1_L(1), 

CLOCK, GP_H(1), GP_L(1)); 

INPUT25: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(2), GP1_L(2), 

CLOCK, GP_H(2), GP_L(2)); 

INPUT26: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(3), GP1_L(3), 

CLOCK, GP_H(3), GP_L(3)); 
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INPUT27: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(4), GP1_L(4), 

CLOCK, GP_H(4), GP_L(4)); 

INPUT28: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(5), GP1_L(5), 

CLOCK, GP_H(5), GP_L(5)); 

INPUT29: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(6), GP1_L(6), 

CLOCK, GP_H(6), GP_L(6)); 

INPUT30: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(7), GP1_L(7), 

CLOCK, GP_H(7), GP_L(7)); 

INPUT31: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(8), GP1_L(8), 

CLOCK, GP_H(8), GP_L(8)); 

INPUT32: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(9), GP1_L(9), 

CLOCK, GP_H(9), GP_L(9)); 

INPUT33: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(10), GP1_L(10), 

CLOCK, GP_H(10), GP_L(10)); 

INPUT34: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(11), GP1_L(11), 

CLOCK, GP_H(11), GP_L(11)); 

INPUT35: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(12), GP1_L(12), 

CLOCK, GP_H(12), GP_L(12)); 

INPUT36: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(13), GP1_L(13), 

CLOCK, GP_H(13), GP_L(13)); 

INPUT37: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(14), GP1_L(14), 

CLOCK, GP_H(14), GP_L(14)); 

INPUT38: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(15), GP1_L(15), 

CLOCK, GP_H(15), GP_L(15)); 

 

INPUT40: DC_TO_ADIABATIC port map (LV_H(0), LV_L(0), CLOCK, 

Load_H(0), Load_L(0)); 

INPUT41: DC_TO_ADIABATIC port map (LV_H(1), LV_L(1), CLOCK, 

Load_H(1), Load_L(1)); 

INPUT42: DC_TO_ADIABATIC port map (LV_H(2), LV_L(2), CLOCK, 

Load_H(2), Load_L(2)); 

INPUT43: DC_TO_ADIABATIC port map (LV_H(3), LV_L(3), CLOCK, 

Load_H(3), Load_L(3));  

INPUT44: DC_TO_ADIABATIC port map (LV_H(4), LV_L(4), CLOCK, 

Load_H(4), Load_L(4)); 

INPUT45: DC_TO_ADIABATIC port map (LV_H(5), LV_L(5), CLOCK, 

Load_H(5), Load_L(5)); 

INPUT46: DC_TO_ADIABATIC port map (LV_H(6), LV_L(6), CLOCK, 

Load_H(6), Load_L(6)); 

INPUT47: DC_TO_ADIABATIC port map (LV_H(7), LV_L(7), CLOCK, 

Load_H(7), Load_L(7));  

INPUT48: DC_TO_ADIABATIC port map (LV_H(8), LV_L(8), CLOCK, 

Load_H(8), Load_L(8)); 

INPUT49: DC_TO_ADIABATIC port map (LV_H(9), LV_L(9), CLOCK, 

Load_H(9), Load_L(9)); 

INPUT50: DC_TO_ADIABATIC port map (LV_H(10), LV_L(10), CLOCK, 

Load_H(10), Load_L(10)); 

INPUT51: DC_TO_ADIABATIC port map (LV_H(11), LV_L(11), CLOCK, 

Load_H(11), Load_L(11)); 
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INPUT52: DC_TO_ADIABATIC port map (LV_H(12), LV_L(12), CLOCK, 

Load_H(12), Load_L(12)); 

INPUT53: DC_TO_ADIABATIC port map (LV_H(13), LV_L(13), CLOCK, 

Load_H(13), Load_L(13)); 

INPUT54: DC_TO_ADIABATIC port map (LV_H(14), LV_L(14), CLOCK, 

Load_H(14), Load_L(14)); 

INPUT55: DC_TO_ADIABATIC port map (LV_H(15), LV_L(15), CLOCK, 

Load_H(15), Load_L(15)); 

 

Cont_MUX1: controller_MUX port map (A_H, B_H, C_H, D_H, E_H, F_H, 

G_H, H_H, I_H, J_H, K_H, L_H, M_H, N_H, O_H, P_H, A_L, B_L, C_L, 

D_L, E_L, F_L, G_L, H_L, I_L, J_L, K_L, L_L, M_L, N_L, O_L, P_L, 

PC1, PC2, PC3, PC4, NM2_H, NM2_L, RES_H, RES_L, R_count_H, 

R_count_L, R0_H, R0_L, R1_H, R1_L, R2_H, R2_L, R3_H, R3_L, R4_H, 

R4_L, Msg_IN_H, Msg_IN_L); 

CRC_Dpath1: CRC_Datapath port map (MSG_IN_L, MSG_IN_L, PC1, PC2, 

PC3, PC4, R0_H, R0_L, R1_H, R1_L, R2_H, R2_L, R3_H, R3_L, Load_H, 

Load_L, GP_H, GP_L, ZERO, ONE, CR_H, CR_L); 

 

END ARCHITECTURE Structural; 


