
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Adiabatic Approach for Low-Power Passive Near Field

Communication Systems

Maheshwari, S.

This is an electronic version of a PhD thesis awarded by the University of Westminster.

© Mr Sachin Maheshwari, 2018.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

Adiabatic Approach for Low-Power

Passive Near Field Communication

Systems

University of Westminster

Sachin Maheshwari

A thesis submitted in partial fulfillment of the requirements

of the University of Westminster for the degree of

Doctor of Philosophy

September 2018

i

Author’s Declaration

By submitting this thesis, I hereby declare that the research work contained therein is

my own, original work, that I am the sole author. No part of this thesis has been

submitted in support of an application for any other degree. Where other sources of

information have been used, they have been quoted. Finally, this work has been solely

conducted at the Applied DSP and VLSI Research Group (ADVRG), Department of

Engineering at the University of Westminster.

Sachin Maheshwari

Copyright© 2018 University of Westminster

All rights reserved

ii

To my family

For their understandings, love, and support

iii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor Dr.

Viv Bartlett for his great guidance and encouragement during the first three years of my

research studies. His retirement was an absolute shock for me but was gratified to have

done a significant part of my research during his presence. His deep insight,

understanding capability, motivation and above all, his critical thinking which has

helped me in each and every step to get going when I felt stuck.

I am also indebted to the head of the Department Professor Izzet Kale, my second

supervisor as well as a first supervisor (4th year PhD.) for giving me the opportunity to

carry out my research and funding my studies at the University of Westminster. His

constant support and encouragement during the course of my studies will always be

appreciated and for which I am truly grateful.

I would like to thank the examination committee: Dr. Adem Coskun, my accessor, Dr.

Andzrej Tarczynaski, my Chair and my supervisors for their efforts in assessing this

thesis.

Also, I thank all the lecturers and staff members at the Department of Engineering

among whom I spent the last four years.

I would like to thank my family for their encouragement, love, and unconditional

support despite being far for them, throughout my research studies. Without them, I

would have never reached this far.

My final and the most heartfelt acknowledgment go to Dr. Himadri Singh Raghav, who

supported and encouraged me in the tough time.

This work was supported by Cavendish Research Scholarship whose contribution is

gratefully acknowledged.

iv

Abstract

This thesis tackles the need of ultra-low power electronics in the power limited passive

Near Field Communication (NFC) systems. One of the techniques that has proven the

potential of delivering low power operation is the Adiabatic Logic Technique. However,

the low power benefits of the adiabatic circuits come with the challenges due to the

absence of single opinion on the most energy efficient adiabatic logic family which

constitute appropriate trade-offs between computation time, area and complexity based

on the circuit and the power-clocking schemes. Therefore, five energy efficient

adiabatic logic families working in single-phase, 2-phase and 4-phase power-clocking

schemes were chosen.

Since flip-flops are the basic building blocks of any sequential circuit and the existing

flip-flops are MUX-based (having more transistors) design, therefore a novel single-

phase, 2-phase and 4-phase reset based flip-flops were proposed. The performance of

the multi-phase adiabatic families was evaluated and compared based on the design

examples such as 2-bit ring counter, 3-bit Up-Down counter and 16-bit Cyclic

Redundancy Check (CRC) circuit (benchmark circuit) based on ISO 14443-3A standard.

Several trade-offs, design rules, and an appropriate range for the supply voltage scaling

for multi-phase adiabatic logic are proposed.

Furthermore, based on the NFC standard (ISO 14443-3A), data is frequently encoded

using Manchester coding technique before transmitting it to the reader. Therefore, if

Manchester encoding can be implemented using adiabatic logic technique, energy

benefits are expected. However, adiabatic implementation of Manchester encoding

presents a challenge. Therefore, a novel method for implementing Manchester encoding

using adiabatic logic is proposed overcoming the challenges arising due to the AC

power-clock.

Other challenges that come with the dynamic nature of the adiabatic gates and the

complexity of the 4-phase power-clocking scheme is in synchronizing the power-clock

v

phases and the time spent in designing, validation and debugging of errors. This

requires a specific modelling approach to describe the adiabatic logic behaviour at the

higher level of abstraction. However, describing adiabatic logic behaviour using

Hardware Description Languages (HDLs) is a challenging problem due to the

requirement of modelling the AC power-clock and the dual-rail inputs and outputs.

Therefore, a VHDL-based modelling approach for the 4-phase adiabatic logic technique

is developed for functional simulation, precise timing analysis and as an improvement

over the previously described approaches.

vi

Table of Contents

Author’s Declaration ... i

Acknowledgments .. iii

Abstract ... iv

Table of Contents ... vi

List of Figures .. x

List of Tables .. xiii

List of Abbreviations ... xiv

List of Symbols ... xvi

1 Introduction ... 1

1.1 Overview .. 1

1.2 Scope and Objectives of the Research ... 4

1.3 Motivation .. 4

1.4 Original Contributions to Knowledge .. 5

1.5 Research Methodology... 9

1.6 Thesis Structure .. 10

1.7 List of Publications .. 11

2 Adiabatic Logic Families and Techniques .. 13

2.1 Introduction .. 13

vii

2.2 Adiabatic Switching Principle.. 15

2.3 Multi-Phase Power-Clocking Scheme ... 20

2.4 Losses in Adiabatic Logic .. 22

2.5 Quasi-Adiabatic Logic Families .. 24

2.5.1 Improved Efficient Charge Recovery Logic (IECRL) 27

2.5.2 Positive Feedback Adiabatic Logic (PFAL) .. 28

2.5.3 Efficient Adiabatic Charge Recovery Logic (EACRL) 29

2.5.4 Complementary Pass-transistor Adiabatic Logic (CPAL) 30

2.5.5 Clocked Adiabatic Logic (CAL) .. 31

2.6 Summary .. 32

3 Design and Evaluation of Adiabatic Resettable Buffers, Flip-flops, and

Sequential Circuit Designs ... 34

3.1 Introduction .. 34

3.2 Design of Resettable Adiabatic Buffers ... 36

3.2.1 Resettable IECRL Buffer ... 36

3.2.2 Resettable PFAL Buffer ... 37

3.2.3 Resettable EACRL Buffer ... 38

3.2.4 Resettable CPAL Buffer .. 39

3.2.5 Resettable CAL Buffer .. 40

3.3 Design of Resettable Adiabatic Flip-flops ... 41

3.4 Design of 2-bit Twisted Ring Counters using Adiabatic Logic 49

3.5 Design of 3-bit Up-Down Counters using Adiabatic Logic 54

3.6 Performance Results... 60

3.7 Summary .. 62

4 Design and Performance Trade-offs of Multi-phase Adiabatic

Implementation of CRC Algorithm for NFC Application 64

4.1 Introduction .. 65

4.2 ISO/IEC and ECMA .. 66

4.3 Application of CRC in NFC ... 68

4.4 Design Methodology .. 70

4.5 Hardware Implementation of 16-bit CRC using Adiabatic Logic 71

4.5.1 Controller (Counter and Decoder) ... 74

4.5.2 CRC Datapath .. 75

4.5.3 Register Unit .. 77

viii

4.6 Simulation Results ... 79

4.6.1 Impact of Frequency on Energy Dissipation ... 80

4.6.2 Impact of Load Capacitance on Energy Dissipation 82

4.6.3 Impact of Supply Voltage Scaling on Energy Dissipation 83

4.6.4 Impact of Process Voltage Temperature (PVT) variation on the Energy

Dissipation ... 85

4.6.5 Impact of Message Word-Length on Computation Time 86

4.6.6 Power-Clock Generation (PCG) .. 87

4.7 Summary .. 90

5 VHDL Modelling for Timing Characterization ... 91

5.1 Introduction .. 91

5.2 Encoding of HDL Models .. 94

5.2.1 Voltage-level Event-based Approach .. 95

5.2.2 Multi-level Event-based Approach .. 95

5.3 HDL Modelling of 4-phase Adiabatic Logic Technique 96

5.3.1 Modelling Trapezoidal AC Power-clock ... 97

5.3.2 Generating Dual-rail Adiabatic Signals from Dual-rail Pulse Input. 98

5.3.3 Developing a VHDL Model Library ... 100

5.3.4 Modelling Invalid Complementary Inputs ... 106

5.4 Error in Modelling of Existing Approach .. 108

5.5 Simulation Results ... 111

5.6 Summary .. 117

6 Manchester Coding using Adiabatic Logic Technique 119

6.1 Introduction .. 119

6.2 Initialization and Anti-collision (ISO/IEC 14443-3A) 120

6.3 Adiabatic Implementation of Manchester Encoding...................................... 122

6.4 Simulation Results ... 128

6.5 Summary .. 132

7 Conclusion and Future Work .. 133

7.1 Research Summary... 133

7.2 Novelty Contributions (listed in the order of significance) 135

7.3 Future Work ... 138

7.3.1 Development of new adiabatic logic with high energy efficiency to the

power-clock generator. .. 138

ix

7.3.2 Development of CAD Tools .. 139

7.3.3 Development of Adiabatic System in Deep Sub-micron Technology 139

7.3.4 Development of the Complete Initialization and Anti-collision for NFC-A

using the Adiabatic Logic Technique .. 139

References .. 141

Appendix A: C Code for Cyclic Redundancy Check (CRC)................................... 152

A. 16-bit CRC Algorithm for NFC application .. 152

Appendix B: VHDL Code for Adiabatic Logic Technique 154

B1. 4-Phase Power-Clock Generation ... 154

B2. Adiabatic Logic Gates .. 155

B3. 2-bit Adiabatic Ring-counter .. 160

B4. 3-bit Up-Down counter ... 161

B5. 16-bit CRC for 16-bit message word .. 163

x

List of Figures

Figure 2.1: CMOS inverter... 14

Figure 2.2: Relation between Power-clock (PC) and the input signal (IN_H) 16

Figure 2.3: A simple RC series circuit ... 17

Figure 2.4:(a) Longer Ramping Time (b) Shorter (steeper) Ramping Time 19

Figure 2.5: Comparison of single-phase, 2-phase and 4-phase power-clocking scheme

 ... 21

Figure 2.6: NOT/BUF gate using (a) PFAL [55] (b) IECRL [22]. 23

Figure 2.7: A basic block diagram of the adiabatic logic system 25

Figure 2.8: (a) IECRL buffer [25] (b) Output Waveform. ... 27

Figure 2.9: (a) PFAL buffer [55] (b) Output Waveform. ... 28

Figure 2.10: (a) EACRL buffer [19] (b) Output Waveform. ... 29

Figure 2.11: (a) CPAL buffer [20] (b) Output Waveform ... 30

Figure 2.12: (a) CAL buffer [58] (b) Output Waveform.. 31

Figure 3.1: 2:1 MUX using (a) IECRL, (b) EACRL, (c) PFAL, (d) CAL and (e) CPAL

 ... 35

Figure 3.2: (a) Resettable IECRL buffer (b) Output Waveform for 10fF load 37

Figure 3.3: (a) Resettable PFAL buffer (b) Output Waveform for 10fF load 38

Figure 3.4: (a) Resettable EACRL buffer (b) Output Waveform for 10fF load 39

Figure 3.5: (a) Resettable CPAL buffer (b) Output Waveform for 10fF load 40

Figure 3.6: (a) Resettable CAL buffer (b) Output Waveform for 10fF load 41

Figure 3.7: Resettable adiabatic flip-flop using 4-phase power-clocks 43

Figure 3.8: Resettable adiabatic flip-flop using 2-phase power-clocks 43

Figure 3.9: Resettable adiabatic flip-flop using single-phase power-clock and auxiliary

clocks... 43

Figure 3.10: Proposed resettable flip-flop layouts for (a) PFAL (b) CPAL (c) CAL 44

Figure 3.11: Pre-layout energy consumption versus ramping time of (a) Non-resettable

(b) Existing MUX-based (c) Proposed resettable flip-flops ... 46

Figure 3.12: Post-layout energy consumption (per cycle) versus ramping time of flip-

flops (a) Non-resettable (b) Existing MUX-based (c) Proposed resettable 48

xi

Figure 3.13: Energy per cycle under different load capacitances at the ramping times of

25ns (a) pre-layout (b) post-layout .. 49

Figure 3.14: 2-bit resettable twisted ring counter using adiabatic logic with power-

clocking scheme (a) 4-phase(b) 2-phase (c) Single phase. ... 50

Figure 3.15: Output waveforms of 2-bit resettable twisted ring counter using (a) IECRL,

(b) PFAL, (c) EACRL, (d) CAL, (e) CPAL ... 53

Figure 3.16: Pre-layout energy consumption per cycle of 2-bit twisted ring counter (a)

non-resettable (b) resettable .. 54

Figure 3.17: Up-Down counter design for (a) single-phase and 2-phase (b) 4-phase ... 57

Figure 3.18: Up-Down counter outputs for (a) Single-phase (b) 2-phase (c) 4-phase ... 58

Figure 3.19: Energy consumption versus (a) Ramping time, (b) Load capacitance 60

Figure 4.1: A bitwise serial LFSR for n-bit CRC generator .. 65

Figure 4.2: (a) ISO 14443 protocol stack (b) New command Protocol 67

Figure 4.3: NFC Frame Format [94] .. 68

Figure 4.4: Message stream and its corresponding CRC value...................................... 70

Figure 4.5: Block diagram of the 16-bit CRC Design and its message, M(x) format ... 72

Figure 4.6: Controller (a) 4-bit Counter (b) Decoder ... 74

Figure 4.7: CRC Datapath .. 76

Figure 4.8: Adiabatic retain logic (a) IECRL (b) PFAL (c) EACRL (d) CPAL (e) CAL

 ... 79

Figure 4.9: The energy per computation of the 16-bit CRC for a 16-bit message length

at varying frequency .. 80

Figure 4.10: The energy per computation at varying load capacitances 82

Figure 4.11: Energy per computation at the varying supply voltage 84

Figure 4.12: ESP at the varying supply voltage ... 84

Figure 4.13: Energy per computation at five process corners .. 86

Figure 4.14: Computation time versus message bit length .. 87

Figure 5.1: A conceptual block diagram of an adiabatic system where the adiabatic core

is a NOT/BUF gate ... 94

Figure 5.2: Voltage level event-based encoding .. 95

Figure 5.3: Multi-level event-based encoding.. 96

Figure 5.4: Encoding trapezoidal waveform in standard logic 97

Figure 5.5: HDL simulation for generating a power-clock signal 97

Figure 5.6: VHDL simulation for generating the adiabatic input signals 99

xii

Figure 5.7: Simulation results for NOT/BUF gate (a) SPICE (b) VHDL 106

Figure 5.8: SPICE simulation for PFAL NOT/BUF gate showing invalid outputs 107

Figure 5.9: Conceptualization of 2-input AND/NAND gate for timing characterization

 ... 108

Figure 5.10: Schematic of the cascade buffer chain. (b) Simulated waveforms of input

timing variations for the existing approach using square-waveform. (c) Simulated

waveform using the proposed approach. ... 110

Figure 5.11: 4-phase power-clock .. 111

Figure 5.12: 2-bit ring counter output waveforms (a) VHDL (b) SPICE 112

Figure 5.13: Block diagram of the 3-bit Up-Down counter ... 113

Figure 5.14: 3-bit Up-Down counter output waveforms (a) VHDL (b) SPICE 114

Figure 5.15: 16-bit CRC waveforms output waveform (a) VHDL (b) SPICE 117

Figure 6.1: Collision of two Manchester encoded bitstream 122

Figure 6.2: Manchester encoding waveform for multiple data bits 123

Figure 6.3: Relationship between PC, input and output waveforms in the adiabatic logic

technique. .. 124

Figure 6.4: Manchester encoding waveform using adiabatic logic for multiple bits ... 125

Figure 6.5: Collision of two Manchester encoded data using the proposed method ... 125

Figure 6.6: Proposed Manchester encoding (a) Circuit diagram (b) Output waveforms

 ... 126

Figure 6.7: 2-state counter ... 127

Figure 6.8: SPICE simulation waveform for the proposed Manchester encoding....... 129

Figure 6.9: Energy consumption per power-clock cycle vs load capacitance 130

Figure 6.10: Complete Adiabatic System with 4-phase PCG using SWC circuit. 131

xiii

List of Tables

Table 2.1: List of transistor-based quasi-adiabatic logic families and their power-

clocking schemes .. 25

Table 3.1: Comparison of layout area of non-resettable, existing MUX-based resettable

and proposed resettable flip-flops ... 45

Table 3.2: Comparison of area and energy across the range of sequential circuit designs

 ... 61

Table 3.3: Comparison of complexity and throughput of the multi-phase adiabatic logic

designs ... 62

Table 4.1: CRC specification as given in ISO/IEC 14443 standard for NFC Type-A ... 69

Table 4.2: Energy per computation for adiabatic logic families and non-adiabatic

implementation at the frequencies simulated. ... 81

Table 4.3: Energy dissipation per computation by an adiabatic system (including PCG)

and the non-adiabatic design ... 88

Table 4.4: Performance trade-offs between multi-phase adiabatic 16-bit CRC

implementation for a 16-bit message word-length.. 89

Table 5.1: Basic logic gates AND and OR ... 101

Table 5.2: Basic logic gates AND and OR for adiabatic logic modelling 101

Table 6.1: Modulation, Coding and Anti-collision method for ISO 14443-3 [13] 121

Table 6.2: Comparison of Energy per power-clock cycle of PFAL and IECRL 130

Table 6.3: Comparison of energy per power-clock cycle of the adiabatic system using

PFAL and IECRL .. 131

xiv

List of Abbreviations

AL Adiabatic Loss

ASK Amplitude Shift Keying

ATQA Answer to Request for Type-A

BPSK Binary Phase Shift Keying

CAL Clocked Adiabatic Logic

CLA Carry Look Ahead

CPAL Complementary Pass-transistor Adiabatic Logic

CRC Cyclic Redundancy Code

DCVSL Differential Cascode Voltage Switch

EACRL Efficient Adiabatic Charge Recovery Logic

ECMA European Computer Manufacturers Association

EoF End of Frame

ES Energy Saving

ESP Energy Saving Percentage

IECRL Improved Efficient Charge Recovery Logic

IEC International Electrotechnical Commission

ISO International Standard Organization

ITRS International Technology Roadmap Semiconductor

LSB Least Significant Bit

MSB Most Significant Bit

NAL Non-Adiabatic Loss

NFC Near Field Communication

NFCIP Near Field Communication-Interface and Protocol

NRZ Non-Return-to-Zero

PC Power-Clock

PCG Power-Clock Generator

PE Phase encoding

PFAL Positive Feedback Adiabatic Logic

xv

PVT Process Voltage Temperature

RFID Radio Frequency IDentification

SAK Select Acknowledge

SoF Start of Frame

SWC StepWise Charging

UID Unique IDentifier

xvi

List of Symbols

CL Load Capacitance

Cox Gate Oxide Capacitance in a CMOS Transistor

EAL Energy Dissipated by Adiabatic Loss

Ediss Energy Dissipated during Charging Process

Eleak Energy Dissipated by Leakage Loss

ENAL Energy Dissipated by Non-Adiabatic Loss

ENA Energy Dissipated by Non-Adiabatic (Conventional CMOS)

Estored Energy Stored on the Load Capacitor

ETD Total Energy Dissipated in Adiabatic Logic

f Frequency

I Current

𝐼 l̅eak Mean Leakage Current

ID Sub-threshold Current

ID0 Sub-threshold Current at zero bias

L Effective Length of the CMOS Transistor

P Power

Q Charge

R Resistance of the Charging Path

RON ON-Resistance of the Charging Path in a CMOS Transistor

Tr Ramping Time

V Voltage

VC Voltage across the Capacitor

VT Thermal Voltage

Vth Threshold Voltage of the CMOS Transistor

VR Voltage across the Resistor

Vth,p Threshold Voltage of the pMOS Transistor

VDD Supply Voltage

Vramp Ramp Voltage charging from 0 to VDD

xvii

VGS Gate-Source Voltage in a CMOS Transistor

VDS Drain-Source Voltage in a CMOS Transistor

W Width of the CMOS Transistor

µo Carrier Mobility

η Sub-threshold Swing Coefficient

α Switching Activity Factor

1

1 Introduction

1.1 Overview

In the last five years, the use of Near Field Communication (NFC) enabled contactless

cards (tag) and handheld devices (reader) such as mobile phones have shown a

tremendous increase. The increased usage in the exchange of various types of

information, such as telephone numbers, pictures, MP3 files and digital authorizations

for contactless payment between two NFC-enabled devices has led the designers to

make low energy consumption, a very high priority.

In a passive NFC system, a reader (e.g a smartphone), and a tag communicate by means

of Radio Frequency (RF) field [1]. NFC passive tags are battery-less and are powered

by radio waves from the reader, thus, needs to be energy efficient due to limited power

resources [2]. The increased hardware complexity due to add-on functionalities, such as

security and data-storage [3] has the associated cost in terms of high energy dissipation

in passive NFC tags. In addition, the increased number of retransmissions when a reader

detects an error in tag-to-reader data communication [4] also causes the energy

dissipation in a passive NFC system to increase [5]. The high energy dissipation of the

passive tags demands the supply of high transmission power from the reader to start the

communication [6] and restricts the maximum working distance from the reader [7].

Therefore, if the tag is made energy efficient it can bring large interrogation range with

better accuracy without increasing the energy consumption of the reader. In addition,

the power transmitted by the reader to energize the tag can also be reduced which will

help to increase the energy saving and battery lifetime of the reader.

2

Manchester coding is one of the techniques used for encoding the data during the tag to

the reader transmissions [8]-[10]. It also makes possible to detect the collisions bitwise.

Therefore, energy efficient implementation of the Manchester encoding is one of the

aims of this thesis. This thesis deals with the ISO/IEC 14443A standard [11]-[13] which

specifies the standard protocol, commands and other parameters required for the

communication between a reader and a tag.

The 2015 International Technology Roadmap Semiconductor (ITRS) shows that despite

technology advances in materials such as high-K gate isolator and copper interconnect;

scaling trends are barely keeping up in terms of density and are failing in terms of

energy performance [14]. Consequently, an important area of research is the design and

implementation of energy efficient data transmission coding and an error detection

module for passive NFC system.

One of the design techniques which has the potential for low power (and in existence

for more than two decades) is the “Adiabatic Logic Technique”. It is one of the

promising solutions at the circuit level to achieve a reduction in energy albeit at some

cost in terms of performance. Adiabatic circuits use slowly changing ramp like power-

clock which rises and falls linearly. This slowly changing power-clock allows

approximately constant current charging/discharging and by avoiding the current

surges, the circuit dissipates less energy [15], [16]. The power-clock in adiabatic circuits

serves as both the power supply as well as the clock for timing the circuit operation [17].

The adiabatic circuits also make possible delivery and the storage of the energy back to

the power supply during the discharging process which can be recovered using a power-

clock generator. Therefore, this fact supports the argument that the adiabatic logic

technique is promising and makes an attractive implementation method for the passive

NFC systems instead of non-adiabatic logic design.

Adiabatic logic designs have been widely studied and various energy efficient logic

families have been proposed [18]-[23]. These can be divided into two types, “Fully

Adiabatic” [23] and “Quasi-Adiabatic” (also known as partial energy recovery logic)

[24], [25]. The term “Fully Adiabatic Logic” refers to logic families that can

theoretically operate without losses. Therefore, an important property of fully adiabatic

circuits is the recovery of, in principle; all the energy supplied to the circuit thereby

ideally resulting in zero dissipation. Alternatively, the term “Quasi-Adiabatic Logic”

3

describes the logic that operates with lower energy but involves some practical losses

arising due to the threshold voltage degradation of transistors. Such losses are referred

to as Non-Adiabatic Loss (NAL). Quasi-adiabatic logic circuits are designed to recover

only a proportion of the delivered energy and are likely to be less complex and occupy

less area than fully adiabatic designs. In this thesis, quasi-adiabatic logic is considered

and for practical reasons will be referred to as adiabatic logic.

With various multi-phase adiabatic logic designs existing in the open literature showing

energy-efficient operation compared to the non-adiabatic designs (conventional CMOS

designs), the challenge comes from the fact that, there exist divided opinions on the

adiabatic logic family as to which is the most energy efficient and constitutes an

appropriate trade-off between energy efficiency, computation time, circuit complexity,

The term computation time refers to the time taken by the circuit for executing one

complete computation, which can be multiplication, division, addition, subtraction,

square rooting, modulo operations and many more. Power-Clock Generator (PCG)

complexity or power-clocking scheme complexity. Additionally, for making the

decision several parameters need to be considered such as the impact of the adiabatic

load as well as adiabatic logic families on the PCG, the impact of the power-clocking

scheme on the computation time of the adiabatic system and on the energy dissipation

of the PCG. Therefore, investigating an energy-efficient adiabatic logic working with

different power-clocking schemes and finding the appropriate trade-offs between these

is one of the aims of this thesis.

Another concern for the implementation of a large adiabatic system, which arises due to

the complexity of the power-clocking scheme, is the lengthy design, validation and

debugging times when simulating at the circuit level. This gives rise to the need for a

specific rapid modelling approach such as the use of a Hardware Description Language

(HDL) that can be used to depict the behavioural and functional aspect of the adiabatic

logic at a higher abstraction level before the simulations at the transistor level are

performed for energy measurements. The functional errors at this level can easily be

detected and corrected, decreasing the overall time in design and verification

significantly. Existing HDL models mostly represent the functionality aspect of the

adiabatic logic gates rather than their precise behaviour which is associated with the

adiabatic implementation [26]-[28]. Existing approaches use square waveform that

makes the modelling for adiabatic systems the same as that for the conventional CMOS

4

systems. In reality, the power-clock of the adiabatic system is a trapezoidal waveform.

Due to this, the behaviour of the adiabatic logic depicted by transistor level simulations

(SPICE simulations) will not match that of its HDL models. However, modelling the

behaviour of adiabatic logic is challenging due to the difficulty of modelling the

trapezoidal power-clock. Therefore, in this thesis, an HDL-based modelling approach

describing the behaviour of the 4-phase adiabatic logic technique is also developed for

functional simulation. The proposed modelling method demonstrates a systematic

approach for precise timing analysis and is an improvement over the previously

described approaches distinctly. Additionally, capturing the exact timing errors and

detecting invalid inputs and circuit operation.

1.2 Scope and Objectives of the Research

The objective is to exploit the energy-efficient traits of the Adiabatic Logic Technique

for the implementation of the energy-efficient NFC passive systems.

 Study and understand the 4 parts of ISO 14443 and ECMA 340 standards and

identify the most “power-hungry” parts of the digital processing unit (DPU) in

NFC passive systems.

 Adiabatic Logic technique has proven its energy efficient traits however, which

logic family presents the best trade-offs in terms of energy, area, latency and

Power-Clock Generator complexity needs to be investigated.

 Designing the power-hungry sub-modules of the digital controller unit using

various multi-phase (single-phase, 2-phase and 4-phase) adiabatic logic families

in order to establish the trade-offs.

 Design with adiabatic logic specifically 4-phase is non-trivial and time

consuming. This demands for the development of a new modelling technique

(HDL) for the implementation of the adiabatic circuits for easy and fast

verification.

1.3 Motivation

In order to tackle the need for ultra-low power operation in NFC passive tags, it is of

utmost importance to the first concentrate on investigating the most energy efficient

adiabatic logic family from the existing multi-phase adiabatic logic families based on

5

the energy efficiency, computation time and the complexity of the power-clocking

scheme. Secondly, the energy efficiency of the complete adiabatic system is often

degraded due to the high energy dissipation of the power-clock generator; therefore,

finding the adiabatic family which delivers energy efficient operation in an adiabatic

system including the Power-Clock Generator is one of the objectives of this thesis.

In a passive NFC system, when multiple passive tags are present within the working

range of the reader, they transmit the data at the same time. This causes the tags

collision problem leading to increased authentication time and energy consumption.

Manchester coding makes possible of detecting collision bitwise. Similarly, whenever

the data is transferred from the tag to the reader, Cyclic Redundancy Code (CRC) value

is calculated and is appended at the end of the data stream to detect an error in the

transmitted data. Thus, implementing Manchester coding and CRC as per ISO 14443-

3A standard [13] using adiabatic logic technique is one of the main aims of this thesis.

Additionally, a Hardware Description Language (HDL) model that can depict the

functional and behavioural aspect of the adiabatic logic as accurately as depicted by the

transistor level design (SPICE simulation) is required to reduce the design and

validation time in large adiabatic systems. Therefore, another goal of this thesis is to

identify the shortcomings of the existing HDL models and develop a new model as an

improvement over the existing models.

1.4 Original Contributions to Knowledge

It is believed that this work will contribute to the international academic research on

adiabatic logic and its application in energy-efficient passive NFC systems. Specifically,

the work done on the VHDL-based modelling will reduce the design time of the 4-phase

adiabatic systems. Additionally, it helps realising (through VHDL modelling) the

system which includes both the adiabatic and the conventional CMOS implementation

in the same system.

The original contributions that this project has so far added to the state-of-the-art can be

summed up as follows:

1. Any sequential design would require flip-flops as a memory element. To design

adiabatic flip-flops with reset, resettable adiabatic buffers are required. Existing

resettable flip-flops, however, are based on the 2:1 multiplexer’s (MUX).

6

a. The proposition of novel single-phase and 2-phase resettable buffers for the flip-

flop designs using; Clocked Adiabatic Logic (CAL) and Complementary Pass-

transistor Adiabatic Logic (CPAL). Prior to this, the resettable flip-flops were

based on 2:1 MUXs, used as one of the resettable stages. As a result, having an

increased number of transistors and an extra input terminal causing energy,

routing, latency, and area overhead. The work is described in Chapter 3 of this

thesis and is published in the proceedings of PRIME 2016 [29].

b. The proposition of novel 4-phase resettable buffer circuits for the flip-flop design

using three adiabatic logic families namely; Improved Efficient Charge Recovery

Logic (IECRL), Positive Feedback Adiabatic Logic (PFAL) and Efficient

Adiabatic Charge Recovery Logic (EACRL). In addition, using the proposed three

resettable adiabatic flip-flops, 2-bit twisted ring counters were implemented as

design examples. The resettable counter shows a maximum increment in energy

consumption of 5% compared to the non-resettable counter. This work is

described in Chapter 3 and is published in the proceedings of PRIME 2016 [29].

c. The design, implementation, and layout of the existing and the proposed resettable

flip-flops based on the different power-clocking schemes using all the five (multi-

phase) adiabatic logic families to act as a proof of concept. Compared to the

existing resettable flip-flops, the proposed resettable flip-flops using; PFAL,

IECRL, EACRL, and CAL show an improvement in energy consumption of

approximately 14%, 3%, 10%, and 3% respectively. However, the existing

resettable flip-flops implemented using CPAL shows 0.5% less energy

consumption compared to the proposed resettable flip-flops. The work is

described in Chapter 3 of this thesis and is published in the proceedings of

ECCTD 2017 [30].

2. The trade-offs between adiabatic logic families working on single-phase, 2-phase and

4-phase power-clocking scheme in terms of energy, complexity, latency, and area are

proposed. Thus, enabling the designers and researchers to use quantitative

information in selecting the required power-clocking scheme and adiabatic logic

families.

a. The design and implementation of 3-bit Up-Down counter using multi-phase

adiabatic logic for establishing systematic and appropriate performance trade-off

in terms of complexity, energy, latency, and area. Based on the simulation results,

7

4-phase adiabatic logic namely; PFAL shows better performance compared to the

other adiabatic logic families. This work is also described in Chapter 3 and is

published in the proceedings of ECCTD 2017 [30].

3. Cyclic Redundancy Check (CRC) is one of the main components used in passive

NFC systems, whenever the data is transmitted. Therefore, performance trade-offs

including robustness under Process-Voltage-Temperature (PVT) variations and

supply voltage scaling between multi-phase adiabatic logic families in a large

adiabatic system are worthy of investigation.

a. The 16-bit CRC was implemented as deployed in an application for the passive

NFC system, using multi-phase adiabatic logic families. A generic methodology

and strategy for the design of multi-phase adiabatic CRC employing single-phase,

2-phase or 4-phase power-clocking scheme was proposed. The bit-serial CRC

design is modified by incorporating more functionality allowing for the use of any

CRC-16 generator polynomial and any initial load values. This work is described

in Chapter 4 and is published in the Elsevier Journal, Integration, The VLSI

Journal [31].

b. Impact of voltage scaling and Process Voltage Temperature (PVT) variations on

multi-phase adiabatic implementations were investigated for TSMC 180nm

CMOS process at 1.8V supply voltage. It was discovered that the benefit of using

adiabatic logic deteriorates for supply voltages scaled less than 1.2V. Therefore,

an optimal range for the supply voltage scaling was proposed for better Energy

Saving Factor (ESP) and correct functionality. This work is described in Chapter

4 and is published in the Elsevier Journal, Integration, The VLSI Journal [31].

c. When the energy dissipation of the total system comprising of the power-clock

generator was considered, it was discovered that the total energy of the system

employing single-phase and 2-phase adiabatic logic was approximately 3x and 2x

times respectively more when compared to the 4-phase adiabatic system. Moreover,

IECRL system shows the least energy consumption followed by PFAL. This work

is described in Chapter 4 of this thesis and is published in Elsevier Journal,

Integration, The VLSI Journal [31].

4. VHDL modelling of the Adiabatic Logic.

8

a. To overcome the synchronization problem arising due to the complexity of the 4-

phase power-clocking scheme to reduce the design, validation and debugging time,

a new method for modelling 4-phase adiabatic logic in VHDL was proposed.

Shortcomings of the existing (Hardware Description Language (HDL) modelling

approaches were also identified. A very close to the exact behaviour of the

trapezoidal power-clock was represented by presenting all the four periods

distinctively using VHDL. The verification and applicability of the modelling

were done using a 2-bit ring counter and a 3-bit Up-Down Counter. This work is

described in Chapter 5 of this thesis and is published in the proceedings of

PATMOS 2018 [32] and the extended version of this work is in the special issue

of the Elsevier Journal, Integration, the VLSI Journal [33].

b. The proposed modelling is easy and can be used for designing large complex

adiabatic system, eventually reducing the amount of time needed for the design

and validation of such systems. The VHDL code of the NOT/BUF gate is further

enhanced by incorporating an invalid condition check in cascade logic designs.

Additionally, the gate level adiabatic modelling of the primitive AND and OR

gates were also done. The enhanced proposed modelling demonstrates the error of

using a square waveform as a power-clock in acquiring precise timing. A more

complex circuit that of a 16-bit CRC is used to show the robustness of the

proposed VHDL-based modelling approach for the 4-phase adiabatic logic

technique for functional and timing simulation. This work is described in Chapter

5and is also submitted to IEEE Trans. On Circuits and Systems-I [34].

5. A novel method of Manchester encoding using the adiabatic logic technique for

energy minimization is proposed. First, the time period of the data bit stream is

doubled such that each bit in the data bit stream occurs twice consecutively. This

way the mirror image of the actual data bit stream is generated. Then the flipping of

the mirror bits takes place which generates the Manchester coded bit stream ready to

be sent to the reader. The adiabatic implementation is advantageous as no separate

clock needs to be added to the data stream. In fact, as the input has the same

frequency as that of the power-clock, the power-clock and the data can easily be

recovered at the reader from the Manchester coded data stream. This work is

described in Chapter 6 of this thesis and is submitted to DATE 2019 [35].

9

1.5 Research Methodology

The methodology adopted for the design of an energy efficient adiabatic

implementation of the passive NFC system is briefly described below;

First, in order to use the adiabatic logic technique for designing an energy efficient

passive NFC system, there is a case for examining the various adiabatic logic families.

In particular, the adiabatic logic families working on multi-phase power-clocking

schemes such as single-phase, 2-phase and 4-phase targeted to low energy consumption

system design. Additionally, investigating the trade-offs amongst multi-phase adiabatic

logic families in terms of the computation time, area and complexity.

Second, the power-clock generator in adiabatic logic is equally important as the

adiabatic logic used to undertake computations and the energy benefits and performance

trade-off obtained when using single-phase, 2-phase and 4-phase adiabatic systems

including PCG were also established.

Third, in tandem with the establishment of trade-offs between adiabatic logic families

working with different power-clocking schemes, design, and development of CRC and

Manchester encoding compatible to the ISO/IEC 14443Acommunication protocol for

NFC application was implemented as a necessary milestone towards the energy efficient

adiabatic implementation of the passive NFC system.

Fourth, due to the complexity of synchronization in a large 4-phase adiabatic system,

debugging of errors becomes difficult, thus, increasing the overall verification time.

Therefore, a method for modelling adiabatic logic circuits using an industry standard

hardware description language (VHDL) was carried out.

Finally, from the research work carried out, the applicability of the adiabatic logic

technique for the energy efficient applications to the passive NFC system has been

demonstrated.

All the work was carried out at Applied DSP and VLSI Research Group (ADVRG) of

the Department of Engineering. The research group’s Cadence EDA tools made it

possible to simulate, model and analyze the proposed circuits.

10

1.6 Thesis Structure

Chapter 1 is the introduction chapter.

Chapter 2 presents the background on adiabatic switching principle, multi-phase power-

clocking scheme and a detailed background of the adiabatic logic families working with

a multi-phase power-clocking scheme.

Chapter 3 looks at five of the most energy-efficient multi-phase adiabatic logic families

and explores their potential and performance trade-offs in terms of energy, throughput

(computation time), complexity and area. Novel resettable adiabatic buffers for the five

chosen adiabatic logic families are proposed for their application to counters and Cyclic

Redundancy Check (CRC) circuits. Adiabatic flip-flops and 2-bit twisted ring counters

were designed to evaluate and compare the energy efficiency of the proposed resettable

buffers with the existing resettable designs [36], [37]. Additionally, a 3-bit Up-Down

Counter using the five adiabatic families were designed to evaluate the performance

trade-offs between these adiabatic logic families working with different power-clocking

schemes.

Chapter 4 introduces the NFC protocol as depicted in the ISO/IEC standard 14443 [11]-

[13] and ECMA 340 [84] for contactless cards. The design of a 16-bit CRC using the

chosen adiabatic logic families discussed in chapter 2 is presented. The performance

trade-offs between energy, computation time, area, power-clocking scheme, robustness

under PVT variations and supply voltage scaling is investigated in this chapter. A

methodology is proposed to minimize the design time and synchronization issue by

implementing a CRC design which is suitable for a range of adiabatic power-clocking

strategies, specifically 4-phase, 2-phase and single-phase. Additionally, the CRC design

can be scaled up or down by adding or removing the CRC slices in the datapath and

flip-flops in the register unit for an application other than the NFC.

Chapter 5 presents the VHDL (Very High-Speed Integrated Circuit (VHSIC) Hardware

Descriptive Language) modelling of 4-phase adiabatic logic circuits in a realistic

fashion. The shortcomings of the existing modelling approaches are presented, and the

proposed modelling is discussed and exposed. The functional aspects of the models are

verified for a variety of gates, counters and CRC designs as reported in Chapters 3 and

4. Moreover, the models are designed such that, precise timing of the computation in an

11

adiabatic system can be determined. The functional errors at this level of abstraction

(behavioural) can be easily detected and corrected. Therefore, decreasing the overall

time in the design, debugging and verification of the functionality of a complex

adiabatic system before finally verifying the circuit operation using the transistor level

SPICE simulation.

Chapter 6 presents a novel method of Manchester encoding using the adiabatic logic

technique for energy minimization. A brief discussion of Manchester encoding followed

by the design and hardware implementation using adiabatic logic technique is presented.

Based on the performance trade-offs of Chapter 4 of this thesis, the proposed design

was implemented using two adiabatic logic families namely; Positive Feedback

Adiabatic Logic (PFAL) and Improved Efficient Charge Recovery Logic (IECRL)

which are compared in terms of energy for the range of frequency variation.

Furthermore, to confirm that the power-clock generator energy consumption depends on

the adiabatic logic family, the energy comparison was measured including the power-

clock generator designed using 2-stepwise charging circuit (SWC) and the FSM

controller.

Chapter 7 presents the conclusions drawn from this research and proposes future

research directions.

1.7 List of Publications

[SM1] Sachin Maheshwari, V. A. Bartlett and IzzetKale, "4-phase resettable quasi-

adiabatic flip-flops and sequential circuit design," 12thConference on Ph.D. Research in

Microelectronics and Electronics (PRIME), Lisbon, Portugal, pp. 1-4, June 2016.

[SM2] Sachin Maheshwari, V. A. Bartlett and Izzet Kale, "Adiabatic flip-flops and

sequential circuit design using novel resettable adiabatic buffers," 23rdEuropean

Conference on Circuit Theory and Design (ECCTD), Catania, Italy, pp. 1-4, September

2017.

[SM3] Sachin Maheshwari, V.A.Bartlett and Izzet Kale “Energy Efficient

Implementation of Multi-phase Quasi-Adiabatic Cyclic Redundancy Check in near field

communication” Integration, The VLSI Journal, Elsevier, vol. 62, pp. 341-352, 2018.

doi.org/10.1016/j.vlsi.2018.04.002

12

[SM4] Sachin Maheshwari, V.A.Bartlett and Izzet Kale “VHDL-based Modelling

Approach for the Digital Simulation of 4-phase Adiabatic Logic Design”

28thInternational Symposium on Power and Timing Modelling, Optimization and

Simulation (PATMOS), Costa Brava, Spain, pp. 111-117, July 2018. (Amongst top 10

papers)

[SM5] Sachin Maheshwari, V.A.Bartlett and Izzet Kale “Modelling, Simulation, and

Verification of 4-phase Adiabatic Logic Design: A VHDL-Based Approach”

Integration, The VLSI Journal, Elsevier, 2019. (Available online)

doi.org/10.1016/j.vlsi.2019.01.007

[SM6] Sachin Maheshwari and Izzet Kale “Adiabatic Implementation of Manchester

Encoding for Passive NFC System” Design, Automation, and Test in Europe

(DATE’19), Florence, Italy, pp. 1615-1618, March 2019.

[SM7] Sachin Maheshwari, V.A.Bartlett and Izzet Kale “VHDL-based Modelling

Approach for Functional Simulation and Verification of Adiabatic Circuits” IEEE

Trans. on Circuits and Systems-I, 2019. (Revision Submitted)

[SM8] Sachin Maheshwari and Izzet Kale “Impact of Adiabatic Logic Families on the

Power-Clock Generator Energy Efficiency” 15th Conference on Ph.D. Research in

Microelectronics and Electronics (PRIME), Switzerland, July 2019. (Accepted)

13

2 Adiabatic Logic Families and Techniques

Over the past 25 years, many energy-efficient fully-adiabatic or quasi-adiabatic logic

families have been proposed as an alternative for low power circuit technique where

speed is of secondary concern [15]-[25]. Though this approach has been in existence for

more than two decades, its full potential remains unexplored. In this chapter, the basic

principle of adiabatic switching, multi-phase power-clocking scheme, loss mechanisms

and history of quasi-adiabatic logic families are discussed. To maintain the focus of the

thesis, only quasi-adiabatic logic families driven by single-phase, 2-phase and 4-phase

power-clocking schemes are discussed. Based on the survey of the quasi-adiabatic logic

families, the five most energy efficient quasi-adiabatic logic families working on the

multi-phase (single-phase, 2-phase and 4-phase) power-clocking schemes are chosen

which forms the foundation of the research carried out in this thesis.

2.1 Introduction

Due to the increased usage of battery-less applications (e.g. smartcards) and rising

energy density due to the technology shrinkage, energy-efficiency has become a major

concern in the design of large systems. In the simplest conventional CMOS logic, an

inverter is shown in Figure 2.1, the load capacitance (CL) gets charged through the MOS

transistor (P1), the output node voltage rises from 0 to supply voltage (VDD), and CLVDD
2

amount of energy is supplied from the power supply [15]. Half of this energy gets

dissipated in the pMOS transistor and the other half gets stored on the output load

capacitance. During the high-to-low transition, the output capacitance starts discharging

and the stored energy will be dissipated in the nMOS transistor (N1). So, every time

when the output node discharges, it losses 2

2

1
DDLVC amount of energy [15]. This loss of

14

energy to heat during charging and discharging happens because the transitions are

abrupt: the transistor is turned on and current flows through the transistor's resistive

channel to charge or discharge the capacitor. Since the energy drawn from the power

supply depends on the rate at which the charges are drawn from the source, hence

lowering the rate by slowly charging the output load capacitance through slowly

changing AC power-clock rather than a DC, will result in less energy dissipation.

Figure 2.1: CMOS inverter.

One of the pioneering works was done by Teichmann [38], where the author discusses

the adiabatic logic design issues, designed various arithmetic circuits, and implemented

an adiabatic CORDIC-based DCT as a test vehicle to demonstrate the system-level

applicability of adiabatic logic for ultra-low-power digital signal processing [39]. In

[40] the behaviour of adiabatic logic circuits in weak inversion or the sub-threshold

regime was analysed for a 22nm CMOS technology. Through extensive post-layout

simulation, it was demonstrated that the sub-threshold adiabatic circuits can save

significant energy compared with an equivalent non-adiabatic implementation. Over the

years, adiabatic logic techniques have also found their applications in energy efficient

power-analysis attack resilient logic designs [41]-[45]. It has been shown that by careful

design and exploiting charge-sharing between the two output nodes in adiabatic logic,

during the idle phase of the power clock, the circuit can be made secure for

cryptographic applications [41]-[45]. Moreover, recent work has demonstrated the

applicability of the adiabatic principle to adiabatic capacitive logic demonstrating the

effectiveness of the technique to achieve ideally zero-power logic dissipation [46], [47].

15

2.2 Adiabatic Switching Principle

“Adiabatic” is a term of Greek origin that has spent most of its history associated with

classical thermodynamics [28]. It refers to a system in which a transition occurs without

energy (usually in the form of heat) being either lost to or gained from the system. In

the context of electronic systems, rather than heat, the electronic charge is preserved.

Thus, the adiabatic circuits would operate ideally with zero dissipation that may be

approached as the logic switching is slowed down. Decreased energy consumption with

increased ramping time (Tr) is, therefore, the defining property of adiabatic switching

[24], [25].In addition, this slowly charging process gives an additional advantage of

pumping the stored energy back to the power supply during the discharging process

which can be recovered using an AC power-clock generator [48]-[54]. However, in

order to have less dissipation, all the nodes should share the same principle of charging

and discharging. The principles include; 1) never turn the switch ON when there is any

potential across it; 2) never turn the switch OFF when there is current flowing through it

[24]. These two rules are observed to reduce the energy dissipation by making sure that

current surges do not occur and are avoided by design. In practice, these rules are

applied by charging the output load capacitance of the circuit using a slowly ramp-like

power-clock called trapezoidal waveform, changing from 0 to VDD and back to 0 and

maintaining four equal Power-Clock periods called Evaluation (E), Hold (H), Recovery

(R) and Idle (I).

Figure 2.2 shows the Power-Clock (PC) and the input signal, IN_H. To follow the

adiabatic switching principle, IN_H should be stable when PC is evaluating.

Furthermore, IN_H should start ramping down when the PC is stable (Hold). By

observing these, adiabatic principles are followed, and lower energy dissipation is

achieved.

16

Figure 2.2: Relation between Power-clock (PC) and the input signal (IN_H).

Figure 2.3 shows a simple setup of the transient response using a ramp for the series RC

circuit. CL is the load capacitance, R is the resistance of the charging path, Vramp is the

voltage source changing from 0 to VDD and Tr is the time taken to charge the load

capacitance, CL. Following this, the charge that will be delivered is Q=CLVDD, the

current drawn from the voltage source is
rT

Q
I , and the energy dissipated over time, Tr

in the charging path will be,

rrrdiss RTIVITPTE 2

r

r

r

diss
T

RQ
RT

T

Q
E

2
2

 2

DDL

r

L
diss VC

T

RC
E (2.1)

Likewise, the same amount of energy will be dissipated during the discharging process.

Thus, the energy dissipated (Adiabatic Loss) over one cycle will be the total energy

dissipated in the charging and discharging of the load capacitance.

 22
DDL

r

L
AL VC

T

RC
E (2.2)

17

Figure 2.3: A simple RC series circuit.

An exact analysis of the energy dissipation can be found in [24]. From equations (2.1)

and (2.2) it can be inferred that energy dissipation can be reduced, ideally to zero by

choosing Tr>>RC, but at the expense of increased operational time. At the opposite

extreme, when Tr<<RC the dissipation approaches that of the conventional CMOS with

constant supply voltage.

On the other hand, in the conventional CMOS circuits, when Tr is very small or abrupt

charging and discharging, compare to the time constant of the circuit (RCL), the current,

i in the circuit is:

dt

dV
Ci C

L

The voltage across the resistor will be

dt

dV
RCiRV C

LR

From the Kirchhoff's voltage law, VDD equals the sum of the capacitor voltage (Vc) and

resistor voltage (VR).

dt

dV
RCVV C

LCDD

The voltage across the capacitor will be:

18

LRC

t

DDC eVV 1 (2.3)

And the current is given by

LRC

t

DD e
R

V
i 1 (2.4)

When the load capacitor is charged through a resistance, the energy is lost in the form of

heat in the resistor which is termed as non-adiabatic energy and is given by:

 𝐸𝑁𝐴 = ∫ 𝑖2𝑅𝑇𝑟
∞

0
=

1

2
𝐶𝐿𝑉𝐷𝐷

2 (2.5)

The energy stored on the load capacitor, CL is given by:

DDDD V

C
C

L

V

Cstored dtV
dt

dV
CdtiVE

00

2

0 2

1
DDL

V

CCLstored VCdVVCE
DD

 (2.6)

In the conventional charging, the energy dissipated depends on the load capacitor and

the supply voltage, however; in the adiabatic switching the energy dissipated is

proportional to R. Therefore if the resistance of the charging path is decreased, the

energy dissipation also decreases.

Figure 2.4 (a) and (b) show the voltage curves and peak current graphs for longer and

shorter ramping time using a voltage ramp respectively. If the ramping time of the ramp

voltage, Vramp, is longer and higher than the RC time constant of the circuit then the

voltage, VC will track the ramp voltage with only a small dissipation as given by (2.1)

and will result in smaller and constant peak current. On the other hand, for the shorter

ramping times of the ramp voltage, the voltage, VC will lag the ramp voltage and will

reach the supply voltage VDD in a characteristic exponential decay curve. The current

graph in Figure 2.4 (b) is a typical exponential charging current graph for a

conventional RC step response whose peak current is 10 times higher than the peak

current value of Figure 2.4 (a).

19

(a)

(b)

Figure 2.4:(a) Longer Ramping Time (b) Shorter (steeper) Ramping Time.

20

The same charging technique can also be used to discharge the logic from VDD back to 0.

The following section discusses the power-clock requirement for multi-phase adiabatic

logic families.

2.3 Multi-Phase Power-Clocking Scheme

Unlike static CMOS logic, due to being clock-powered, the adiabatic logic families

derived from static Differential Cascode Voltage Switch (DCVSL) requires a separate

power-clock supply. Depending on the adiabatic logic families, power-clocks are

generated either using an inductor-based resonant circuit [48] or using a capacitor-based

Step Wise Charging (SWC) circuit [49]-[54]. The SWC based power-clock generator

proposed in [54] has been used in the adiabatic system simulations presented in Chapter

4 and 6 of this thesis.

Figure 2.5 shows the single-phase, 2-phase and 4-phase power-clocking schemes for

multi-phase adiabatic logic families. The single-phase and 4-phase power-clocking

schemes can be broken down into four equal periods namely Evaluation (E), Hold (H),

Recovery (R) and Idle (I). Whereas, 2-phase power-clock have an idle period 3 times

larger than each of the evaluation, hold and recovery periods. The latency, TLatency, for

all the three power-clocking schemes is defined as the minimum time required for the

first input to process to the output.

21

Figure 2.5: Comparison of single-phase, 2-phase and 4-phase power-clocking scheme.

For single-phase, power-clocking scheme signals ACLK_H and ACLK_L are used and

are called the auxiliary clocks. PC is the Power-Clock. Tclk,1-phase is the duration of one

power-clock phase of the single-phase power-clocking scheme. As shown in Figure 2.5,

the first output of a single-phase cascaded logic is available at time T1and the second

output is available at time T2, which is after two power-clock phases. Thus, the output

of the cascaded single-phase based sequential logic remains valid for two consecutive

power-clock phases, resulting in a lower throughput and a higher latency.

Similarly, for 2-phase power-clocking scheme, PC1 and PC2 are the two phases of the

power-clock. Tclk,2-phase is the duration of one power-clock phase of the 2-phase power-

clocking scheme. In the case of 2-phase power-clocking scheme, due to its longer idle

22

period compared to single-phase and 4-phase power-clocks, also results in lower

throughput and higher latency for sequential circuits. PC1, PC2, PC3, and PC4 are the 4

phases of the 4-phase power-clocking scheme. Tclk,4-phase is the duration of one power-

clock phase of the 4-phase power-clocking scheme. Adiabatic logic using a 4-phase

power-clocking scheme gives higher throughput but leads to more complex power-

clock requirement compared to the single-phase and 2-phase power-clocking schemes.

However, it is obvious that as the number of phase’s increase the throughput and

latency improves and complexity increases but its energy and area is dependent on the

adiabatic logic families used. Thus, at this point, it is hard to conclude that out of the

multi-phase adiabatic logic which one is the most energy efficient and has better

performance in terms of energy, area, throughput, latency, robustness against PVT

variations and power-clock generator complexity. However, this will be investigated

and discussed in the rest of the thesis in chapters 3, 4, and 6 respectively.

2.4 Losses in Adiabatic Logic

In an ideal adiabatic system, losses are governed by (2.2) and are recognized as

Adiabatic Loss (AL). Nevertheless, due to the shrinking device geometries into the sub-

µm regime and the presence of a threshold voltage drop, Vth drop in transistors lead to

additional losses. These additional losses can govern and exhibit a lower bound for

energy dissipation in an adiabatic system. For instance, due to the shrinking device

geometries, leakage currents can dominate the overall energy dissipation. One of the

dominant leakage currents is the so-called sub-threshold current which is expressed as

[38]:

T

DS

T

thGS

V

V

V

VV

DD eeII 10

 (2.7)

Where
L

eVCW
I Tox

D

8.12

0
0

 , VT is the thermal voltage, Vth, is the threshold voltage of

the device, VGS and VDS are the gate to source and drain to source voltages, W and L are

the effective transistor width and length, respectively. Cox is the gate oxide capacitance;

0 is the carrier mobility and is the subthreshold swing coefficient.

23

For the condition when VDS is zero, no leakage current will flow. However, the leakage

current will increase to its maximum for the values of VDS that are multiples of the

thermal voltage. The leakage current flows from PC to ground during evaluation, hold

and recovery periods and leads to dissipation of charge that cannot be recovered. All the

losses due to leakage can be summarized in a mean current, leakI , that leads to energy

consumption per cycle of:

f
IVE leakDDleak

1
 (2.8)

Energy consumption due to leakage losses increases for lower frequencies [38]. This is

because the Leakage Loss (LL) is gathered over a longer time interval (longer ramping

time).

In this thesis, all the simulations have been performed using the TSMC 180nm CMOS

Process, and the frequency of operation of the application is centered around 13.56MHz,

therefore, leakage losses will not impact the energy dissipation significantly and thus,

are not dealt with.

(a) (b)

Figure 2.6: NOT/BUF gate using (a) PFAL [55] (b) IECRL [22].

The NOT/BUF gate using Positive Feedback Adiabatic Logic, PFAL [55], and

Improved Efficient Charge Recovery Logic, IECRL [22] are shown in Figure 2.6 (a)

and (b) respectively. During the recovery period of PC, in PFAL and IECRL, the charge

at one of the output nodes (following PC) is recovered until PC doesn’t fall below the

threshold voltage of the cross-coupled pMOS transistors (P1 and P2). This leads to a

24

residual charge at one of the output nodes. The residual charge is either reused in the

next cycle if the inputs remain the same or is discharged to the ground if different inputs

arrive. Similarly, in IECRL, (where the evaluation network is connected between the

output nodes and the ground) in the evaluation period, the output node cannot instantly

follow the rising PC until PC reaches the threshold voltage of the cross-coupled pMOS

transistors (P1 and P2). This forces the output node to follow PC abruptly, leading to

energy dissipation. All these losses/dissipations are due to the threshold voltage and

lead to Non-Adiabatic Losses (NAL) which is expressed as:

 2

,
2

1
pthNAL CVE (2.9)

It should be noted that, unlike AL and LL, NAL is independent of the frequency of

operation. AL is proportional to the frequency of operation however; LL is inversely

proportional to the frequency of operation (2.8). It is also worth mentioning that, an

optimum operating frequency exists for adiabatic logic families, where minimum

energy dissipation per cycle at a particular frequency is observed.

The three losses in the adiabatic circuits are discussed in [38]. The overall total energy

dissipation (ETD) in adiabatic logic design is obtained by summing the effects of all the

three loss mechanisms and is given by (2.10). Where EAL, ENAL, and Eleak are mentioned

in equations 2.2, 2.8 and 2.9 respectively.

 ETD =EAL + ENAL + Eleak (2.10)

2.5 Quasi-Adiabatic Logic Families

Over the last 25 years, a plethora of quasi-adiabatic logic families resulting in different

levels of energy saving has been proposed. Quasi-adiabatic circuits are divided into

diode-based and transistor-based logic designs. Due to the high energy and area

consumption of the diode-based logic, only the transistor-based logic designs are chosen

for investigation in this thesis. Since the transistor-based adiabatic logic families are

based on DCVSL CMOS logic, all the adiabatic logic techniques have a common

structure, consisting of the cross-coupled pMOS pairs powered by the power-clock and

dual-rail input and output signals. A complete adiabatic logic system consists of two

major component blocks, first is the logic block and other is the charge recovery block

25

as shown in Figure 2.7. The charge recovery block is part of the power-clock generator

as it is responsible for the recovery of charge back to the power supply during the

discharging/recovery phase of the power-clock.

Figure 2.7: A basic block diagram of the adiabatic logic system.

A substantial list may not be complete, of the transistor based quasi-adiabatic logic

families and their power-clocking scheme requirement is shown below in Table 2.1.

Table 2.1: List of transistor-based quasi-adiabatic logic families and their power-

clocking schemes.

Quasi-Adiabatic Logic Families Power-

clock

2N2P-2N [24] 8

2N-2N2P [25] 4

Positive Feedback Adiabatic Logic (PFAL) [55] 4

2N-2P [56] 4

Efficient Charge Recovery Logic (ECRL) [57] 4

Clocked Adiabatic Logic (CAL) [58] 1

Complementary Adiabatic MOS Logic (CAMOS) [59] 4

Dynamic Adiabatic MOS Logic (DAMOS) [60] 4

Energy Efficient Logic (EEL) [61] 4

Pass-transistor Adiabatic Logic (PAL) [62] 2

Forward Body-bias MOS (FBMOS) [63] 4

Improved Efficient Charge Recovery Logic (IECRL) [22] 4

26

PAL-2N [64] 4

Bootstrapped NMOS Charge Recovery Logic (BNCRL) [65] 4

True Single-phase Energy recovering Logic (TSEL) [66] 1

Source Coupled Adiabatic Logic (SCAL) [67] 1

NMOS Energy Recovery Logic (NERL) [68] 4

Adiabatic Differential Cascode Voltage Switch Logic (ADCVSL) [69] 2

High Efficient energy recovery logic (HEERL) [70] 4

Efficient Adiabatic Charge Recovery Logic (EACRL) [19] 4

Improved Pass Gate Adiabatic Logic (IPGAL) [71] 4

Complementary Pass-transistor Energy Recovery Logic (CPERL) [72] 2

Complementary Pass-transistor Adiabatic Logic (CPAL) [20], [76] 2/4

Improved Positive Feedback Adiabatic Logic (IPFAL) [73] 4

Dual Transmission Gate Adiabatic Logic (DTGAL) [74] 4

Clocked Transmission Gate Adiabatic Logic (CTGAL) [75] 2

Though the list in Table 2.1 does not claim to be exhaustive, it still gives a general idea

of the progress of the work done on the topic of adiabatic logic techniques. Since the

implementation and the distribution of multiphase power-clocking schemes require

additional area, energy consumption, and increased complexity, logic families with

more than 4-phases are not considered. Out of the various 4-phase adiabatic logic

families reported in Table 2.1, IECRL, EACRL, and PFAL were chosen as they are

considered to be the most energy efficient adiabatic logic families in the literature.

However, the 4-phase power-clocking scheme complicates the design due to multiple

power-clock generators. This issue can result in area, and energy overhead that could

offset the advantages achieved. It should be noted that the single and 2-phase adiabatic

logic designs will have less complex power-clock generator compared to that of the 4-

phase adiabatic logic designs. However, due to high latency, it is not clear if the energy

benefits would be obtained in comparison to 4-phase designs. Therefore, it was decided

to investigate the single-phase, 2-phase and 4-phase adiabatic logic designs and to draw

out the performance trade-offs between multi-phase adiabatic logic families based on

energy efficiency, area, and latency/throughput and complexity. TSEL and SCAL

circuits use single-phase power-clock, but the additional reference voltage and current

increase the design complexity. Additionally, they are difficult to design due to the

choice of reference voltage concerning the clock frequency [66], [67]. On the other

27

hand, because of its simple structure, CAL (Clocked Adiabatic Logic) is considered for

realizing complicated circuits in the literature. In Ref. [77] it has been shown that the

use of CAL for designing large adiabatic systems can save a considerable amount of

energy in comparison to conventional CMOS. Thus, CAL was considered for the

single-phase power-clocking scheme [58]. Many 2-phase adiabatic logic designs have

been proposed in the literature however, the most energy efficient of all is CPAL due to

its zero NAL at the output nodes and thus, was considered.

2.5.1 Improved Efficient Charge Recovery Logic (IECRL)

(a) (b)

Figure 2.8: (a) IECRL buffer [25] (b) Output Waveform.

In 1994, Denker [25] proposed a high performance improved ECRL logic family circuit

shown in Figure 2.8 (a). IECRL is also called as 2N-2N2P and is an improvement over

ECRL [57]. The only difference between ECRL and IECRL is that IECRL has a pair of

cross-coupled nMOS transistors in addition to the cross-coupled pMOS. Thus, IECRL

has cross-coupled inverters and is very similar to a standard SRAM cell. In Figure 2.8

(a), the cross-coupled inverters provide a pull-down path to ground or a non-floating

node during the recovery phase, thus, reducing the coupling effect and decreasing NAL

(2.9) during the recovery phase of PC. IECRL requires 4-phase power-clocks for

cascaded logic and suffers from NAL during the evaluation and the recovery period of

PC because of the threshold voltage degradation. During the evaluation period of the

power-clock, when the input has already ramped to VDD, the PC is still at zero voltage

value (IDLE). The power-clock starts rising when the input is stable. Only when PC

ramps above the threshold voltage, |Vth,p| of the pMOS transistors, one of the output

nodes starts following the power-clock causing NAL.

28

The basic operation and working of IECRL are described in [22]. Figure 2.8 (b) shows

the operation waveforms of IERCL buffer circuit along with its NAL. Similarly, NAL

occurs during the recovery period of the power-clock.

2.5.2 Positive Feedback Adiabatic Logic (PFAL)

(a) (b)

Figure 2.9: (a) PFAL buffer [55] (b) Output Waveform.

In 1996, A. Vetuli et al. [55] proposed a new adiabatic logic family which makes use of a

CMOS positive feedback amplifier. The logic is called Positive Feedback Adiabatic

Logic, PFAL and requires a 4-phase power-clocking scheme for cascaded logic. PFAL is

very similar to IECRL, having its evaluation tree connected between the power-clock

and the output nodes. Figure 2.9 (a) shows the schematic of the PFAL buffer gate. The

equivalent resistance at the two output nodes is smaller in comparison to IECRL due to

the formation of transmission gate pairs between P1, N3, and P2, N4. PFAL do not

suffer from NAL during the evaluation period of the power-clock because the output

node follows PC through the nMOS transistors until PC is below the threshold voltage,

|Vth,p|, of the pMOS transistor. However, it suffers from NAL during the recovery

period when PC falls below the threshold voltage, |Vth,p|, of the pMOS transistor,

leaving a residual charge on the output node. This residual charge gets discharged non-

adiabatically at the start of the next cycle when the new inputs are evaluated. Figure 2.9

(b) shows the operation waveform of the PFAL buffer circuit. It can be seen that PFAL

suffers from NAL only during the recovery phase of the PC only.

29

2.5.3 Efficient Adiabatic Charge Recovery Logic (EACRL)

(a) (b)

Figure 2.10: (a) EACRL buffer [19] (b) Output Waveform.

In 2001, Varga et al. [19] proposed a dual-rail energy Efficient Adiabatic Charge

Recovery Logic, EACRL. This structure has an advantage over IECRL as it completely

eliminates NAL during the evaluation period of PC. Similar to the IECRL logic, EACRL

also requires 4-phase PC for cascaded logic. Figure 2.10 (a) shows an EACRL buffer

gate. It uses a pair of cross-coupled pMOS transistors and duplicate evaluation trees; one

connected between the output nodes and the ground and other connected between the PC

and the output nodes. EACRL do not suffer from NAL during the evaluation period of

PC. Similar to PFAL, it suffers from NAL during the recovery period when PC falls

below the threshold voltage, |Vth,p|, of the pMOS transistor, leaving a charge on the

output node. This charge gets discharged non-adiabatically either at the start of the next

cycle when the new inputs are evaluated or is reused in the next cycle if the inputs do

not change.

Figure 2.10 (b) shows the operation waveform of the EACRL buffer gate. During the

recovery period of the PC, the two output nodes get coupled due to the absence of cross-

coupled nMOS transistors. As a result, the output node which should be held at zero

goes to a negative value. This results in the non-adiabatic dynamic loss and is called

coupling effect. Figure 2.10 (b) shows NAL arising due to the threshold voltage

degradation and the coupling effect.

30

2.5.4 Complementary Pass-transistor Adiabatic Logic (CPAL)

(a) (b)

Figure 2.11: (a) CPAL buffer [20] (b) Output Waveform.

Pass-transistor Adiabatic Logic, PAL was first introduced by Oklobdzija and

Maksimovic [62] in 1997. It uses a 2-phase power-clocking scheme for cascaded logic.

The author claims that PAL outperforms the previously proposed adiabatic logic families

in terms of energy consumption. The claim was based on the performance of 1600-stage

PAL shift register. Then in 2003, Jaiping et al. [20] proposed a new logic family, called

Complementary Pass-transistor Adiabatic Logic, CPAL which works on a 4-phase

power-clocking scheme for cascaded logic. But later in 2005, the author demonstrated

that the cascaded CPAL logic can be driven using a 2-phase non-overlapping power-

clocking scheme [76].

Figure 2.11 (a) shows the CPAL buffer circuit which uses a PFAL buffer with the

evaluation tree (N5-N8) designed using pass-transistors, connected to the gates of the

nMOS pull-ups (N3-N4) also called bootstrapped transistors. Since the node X_H or

X_L gets boosted, the CPAL circuit eliminates NAL at the two output nodes. The

energy dissipation of the two-phase CPAL circuit includes mainly two terms: full-

adiabatic energy loss (2.2) on the output nodes and non-adiabatic energy loss on internal

nodes X_H (or X_L). The more detailed description of its NAL on internal nodes is

analyzed in [76]. Figure 2.11 (b) shows the operation waveform of the CPAL buffer

circuit and the NAL on node ‘X_H’ and ‘X_L’. An additional non-adiabatic dynamic

loss occurs due to the coupling effect, where the output node (which should be at zero)

goes to a negative voltage value when the PC voltage level falls below the threshold

31

voltage of one of the nMOS transistors N1 or N2 during the recovery phase such that it

gets coupled to the node following PC.

2.5.5 Clocked Adiabatic Logic (CAL)

(a) (b)

Figure 2.12: (a) CAL buffer [58] (b) Output Waveform.

In 1995, Maksimovic et al. [58] proposed a logic called Clocked Adiabatic Logic

(CAL). It works on a single-phase power-clocking scheme. The CAL buffer gate is

similar to that of 2N-2N2P but has clocked nMOS transistors (N3, N4) between the

evaluation nMOS transistors (N5, N6) and the output nodes. Figure 2.12 (a) shows the

schematic of the CAL buffer gate. The clocked nMOS transistors use a pair of auxiliary-

clocks (ACLK_H and ACLK_L) which allows operation from a single-phase PC. A

more detailed description can be found in [78]. Although this adiabatic logic family

seems to have a simplified Power-Clock Generator (due to the requirement of single-

phase PC) but the use of the auxiliary clock signals for cascaded logic, makes it

complex and results in area and energy overhead. Figure 2.12 (b) shows the operation

waveform of the CAL buffer gate. Due to the stacking of transistors at the two output

nodes, it has higher NAL (compared to other adiabatic logic families discussed above)

arising because of larger threshold voltage degradation.

Despite the various interesting multi-phase energy-efficient adiabatic logic families

been proposed in the last 25 years, each encompassing many novel ideas and saving

considerable energy compared to static CMOS, there still remains several practical

implementations in the design of complex adiabatic circuits than are unexplored; i)

Selection of a multi-phase adiabatic logic for an application specific design; ii) buffer

32

insertion for handling synchronization issue incurring area overhead; iii) latency and

throughput as multiple power-clock phases require different computation time. This is

because pipelining is inherent in adiabatic logic and it can only perform one logic

evaluation per clock phase. Thus, every gate introduces a phase delay in propagating

from input to output. This can be seen in Figure 2.5; and iv) the non-adiabatic loss

compromising the energy efficiency.

2.6 Summary

In this chapter, the concept of the adiabatic switching principle and quasi-adiabatic logic

has been introduced. Since the work on power-clock generation has been done

extensively in the literature, a brief discussion of the power-clock generation through

the inductor and capacitor-based circuits was introduced. The thesis deals with

investigating the performance of the single, 2-phase and 4-phase adiabatic logic families.

Therefore, a detailed discussion of the multi-phase power-clocking schemes for multi-

phase adiabatic logic designs is presented.

In order to give the idea of the sources of energy dissipation in the adiabatic logic

technique, loss mechanism is discussed. In quasi-adiabatic logic designs, primarily three

losses are present. Adiabatic Losses (AL) and losses due to leakage which are called as

Leakage Losses (LL) are frequency dependent. Non-Adiabatic losses (NAL) however,

are not the function of frequency. The list of existing adiabatic logic families based on

the multi-phase power-clocking scheme published in the last 25 years has been

presented in Table 2.1. On the basis of the proven performance in the literature, five

quasi-adiabatic logic families were chosen from Table 2.1. The chosen adiabatic logic

families for the performance evaluation based on energy, area, computational time, and

circuit and power-clock complexity are: IECRL, PFAL, EACRL, CPAL, and CAL. Out

of these, IECRL, PFAL, EACRL are based on 4-phase power-clocking scheme. CPAL

is based on 2-phase power-clocking scheme and CAL works with single-phase power-

clocking scheme. A brief discussion of the above mentioned quasi-adiabatic logic

families along with their advantages and disadvantages is presented. EACRL, for

instance, requires a dual evaluation network but has zero NAL during the evaluation

period of the PC and thus will be energy efficient. PFAL has reduced NAL and the

equivalent resistance of the charging path however, it presents a large load to the power-

clock (number of transistors connected to the PC). Similarly, CAL uses the least

33

complex power-clocking scheme but requires auxiliary clock for cascaded logic.

Practically, it is difficult to design a high-performance system having minimum energy,

latency, area, and complexity using adiabatic logic techniques, However, trade-offs can

be established that enable the designer to design an application specific efficient

adiabatic logic system.

34

3 Design and Evaluation of Adiabatic Resettable

Buffers, Flip-flops, and Sequential Circuit

Designs

In this chapter, novel resettable adiabatic buffer circuits for the design of resettable

adiabatic flip-flops are proposed. The energy and area of the proposed resettable flip-

flops are compared to that of the existing MUX-based and on-resettable flip-flops for

each of the five chosen quasi-adiabatic logic families (discussed in Chapter 2 of this

thesis). The Chapter also discusses the design of a 2-bit twisted ring and 3-bit Up-Down

counter in order to extend the comparison of the five multi-phase adiabatic logic

families beyond energy dissipation. The work in this chapter is based on the full-custom

design with results presented for pre-layout and post-layout simulations. All the

simulations were performed using the Spectre simulator in Cadence EDA tool based on

TSMC 180nm CMOS process technology. The power-clock used is a trapezoidal wave,

ramping from 0V to 1.8V. The transistor sizes for all the designs were set at the

technology minimum (Wn=Wp=Wmin=220nm, Ln=Lp=Lmin=180nm).

3.1 Introduction

In adiabatic circuits, PC provides both the power and synchronization (clock for timing

the operations of the logic gates) to each logic gate. This suggests that adiabatic circuits

are implicitly pipelined where data propagate through one logic gate in each phase. A

single buffer logic gate represents a latch which passes the input to the output when PC

starts ramping from zero to VDD. Since the output follows PC, the output signal is set to

zero when the PC falls from VDD to ground thus, a signal can never be stored.

Consequently, an adiabatic D flip-flop is structured using a cascaded buffer chain. An n-

35

(a) (b)

(c)

(d) (e)

Figure 3.1: 2:1 MUX using (a) IECRL, (b) EACRL, (c) PFAL, (d) CAL and (e) CPAL.

phase PC will have n-stages of buffers to construct one flip-flop. The D flip-flops

designed using IECRL, PFAL and EACRL use 4-phase power-clocking scheme,

whereas, CPAL and CAL use 2-phase and single-phase power-clocking scheme

respectively. Several adiabatic flip-flops have been reported in the literature with some

36

using the adiabatic MUX/NMUX as a resettable stage to provide reset terminal [36],

[37], [79], [80]. Figure 3.1 shows the 2:1 MUX implementation for the five chosen

adiabatic logic families.

Using the MUX as one of the stages incur area overhead due to an extra input terminal

and transistor counts causing increased energy, area consumption, and layout

complexity. To alleviate the problem of increased energy, area and complexity, five

novel resettable buffer circuits are proposed and are used for the design of resettable

flip-flops. The energy consumption of the proposed resettable flip-flops is comparable to

their non-resettable counterparts, despite using more number of transistors. Additionally,

they require less area compared to the MUX-based resettable flip-flops. To evaluate the

performance trade-offs of five adiabatic logic families, using different power-clocking

scheme, 2-bit twisted ring counter and 3-bit Up-Down counter are designed and

simulated.

3.2 Design of Resettable Adiabatic Buffers

The buffer logic is the basic cell in the design of adiabatic flip-flops. In order to realize

resettable adiabatic flip-flops, buffers of all the five chosen adiabatic logic families have

been modified to incorporate the reset terminal for the design of resettable buffer. The

modification adds several features which makes it suitable for low power applications

with 10% increment in layout area compared to that of non-resettable buffers. First, the

resettable buffers give low resistance output by connecting either in parallel to the

pMOS cross-coupled transistor or to nMOS evaluation network or cross-coupled nMOS

transistors and forming a transmission gate pair. As a result, the proposed resettable

buffer circuits consume similar or less energy compared to the non-resettable buffers.

Second, when in reset mode, resettable buffers help in reducing NAL by providing one

of the output nodes to either connect to PC or ground.

3.2.1 Resettable IECRL Buffer

The schematic of the resettable buffer gate using IECRL is shown in Figure 3.2 (a).

When ‘reset_H’ signal is high (‘reset_L’ is low), transistor N6 turns ON and pulls down

the node ‘Out’ to ground. Similarly, transistor N7 also turns ON and the node ‘OutR_L’

starts following PC. At the same time, ‘reset_L’ signal is low and disconnects the path

between the node ‘OutR_L’ and ground. Figure 3.2 (b) shows the operation of the

37

resettable IECRL buffer. The transistors N6 and N7 also help in eliminating NAL in the

evaluation period during the reset operation.

When the ‘reset_H’ signal is low (‘reset_L’ is high), resettable IECRL buffer works

similar to that of the non-resettable buffer. The transistors N6 and N7 are turned OFF,

however, due to the voltage difference between the drain and source their resistance and

capacitance will be reflected at the output nodes. The decrease in resistance causes a

reduction in AL, whereas, NAL at the output nodes increases as it is directly

proportional to the capacitance. Due to the decreased AL and increased NAL, the

overall energy dissipation increases slightly.

(a) (b)

Figure 3.2: (a) Resettable IECRL buffer (b) Output Waveform for 10fF load.

3.2.2 Resettable PFAL Buffer

The schematic and the corresponding output waveform of the resettable buffer gate

using PFAL is shown in Figure 3.3 (a) and (b). PFAL resettable buffer has even lesser

equivalent resistance at node ‘OutR_L’ during the reset and normal operation than

IECRL resettable buffer. When reset signal ‘reset_H’ is high (‘reset_L’ is low),

transistor N6 turns ON and node ‘OutR_L’ follows PC albeit not all the way to the

supply voltage. Similarly, transistor N7 turns on and pulls down the node ‘OutR_H’ to

ground. On the other hand, ‘reset_L’ signal is low; it disconnects the path of node

‘OutR_H’ from PC via transistor N3.

When the ‘reset_H’ signal is low (‘reset_L’ is high), resettable PFAL buffer works

similar to its non-resettable counterpart. Like discussed above for IECRL, transistors N6

38

and N7 are turned OFF, however, due to the voltage difference between the drain and

source their resistance and capacitance will be reflected at the output nodes causing a

reduction in AL and increment in NAL, such that, the resultant energy dissipation

increases slightly.

(a) (b)

Figure 3.3: (a) Resettable PFAL buffer (b) Output Waveform for 10fF load.

3.2.3 Resettable EACRL Buffer

The schematic and the corresponding output waveform for the resettable buffer gate

using EACRL is shown in Figure 3.4 (a) and (b). Since the logic is based on duplicate

evaluation network, EACRL resettable buffer uses duplicate reset inputs; one connected

between the output and the ground and the other connected between the input and the

output. The AND/NAND implementation using EACRL is similar to the resettable

buffer circuit of Figure 3.4 (a).

When ‘reset_H’ signal is high (‘reset_L’ is low), transistors N7 and N8 are turned ON

and N6 and N5 are turned OFF, the path from PC to node ‘OutR_H’ and ground to node

‘OutR_L’ is cut-off. At this instant, transistors N7 and N8 help in reducing the AL by

reducing the equivalent resistance at the output nodes ‘OutR_H’ and ‘OutR_L’. Due to

the duplicate evaluation network, the variation in EACRL energy consumption across

the ramping time is less compared to the other adiabatic logic designs. When ‘reset’

signal is low (‘reset_L’ is high), the resettable EACRL buffer works similar to that of

the non-resettable EACRL buffer but reduces the output resistance at both the output

nodes compared to the other four adiabatic logic families.

39

(a) (b)

Figure 3.4: (a) Resettable EACRL buffer (b) Output Waveform for 10fF load.

3.2.4 Resettable CPAL Buffer

The schematic and the corresponding waveform of the resettable buffer gate using

CPAL is shown in Figure 3.5. (a) and (b). Since the CPAL logic is based on pass-

transistors, in the resettable buffer circuit, the reset inputs are provided to the nMOS

transistor N9 and N10 to pass logic ‘0’ and ‘1’ to the complementary intermediate

nodes Y_H and Y_L. When ‘reset_H’ signal is high (‘reset_L’ low) transistor N10 turns

ON and passes logic ‘1’ (‘reset_H’ high) with a drop of one threshold voltage, but high

enough to turn ON the transistor, N4. Thus, the node ‘OutR_L’ follows PC. At the same

instant, transistor N9 also turns ON and the gate of transistor N3 is set at ‘0’ voltage

which switches it OFF. Because node ‘OutR_L’ follows PC, transistor N1 turns ON and

node ‘OutR_H’ is pulled down to the ground. The complementary reset input terminal

‘reset_L’ helps in disconnecting the input ‘IN_H’ and complementary input ‘IN_L’

signals to reach to the intermediate nodes Y_H and Y_L through transistor N11 and

N12, ensuring normal operation. When the ‘reset_H’ signal is low (‘reset_L’ is high),

resettable CPAL buffer works similar to that of the non-resettable CPAL buffer.

40

(a)

(b)

Figure 3.5: (a) Resettable CPAL buffer (b) Output Waveform for 10fF load.

3.2.5 Resettable CAL Buffer

The reset input used in the CAL buffer is an asynchronous input having priority over the

auxiliary input signal, ACLK_H. Figure 3.6 (a) and (b) shows the schematic and the

output waveform of the resettable CAL buffer. When ‘reset_H’ signal is high (‘reset_L’

is low), irrespective of the auxiliary clock input transistor, N4, the node ‘OutR_H’ is

pulled down to the ground, which turns ON the transistor P1, forcing the node

‘OutR_L’ to follow PC. The AND/NAND adiabatic implementation using CAL is

similar to the CAL resettable buffer circuit. At the same instant, the complementary

reset signal ‘reset_L’ turns the transistor, N5 OFF, thus disconnecting the input and the

output node ‘OutR_L’. The resettable CAL buffer work similar to that of the non-

41

resettable CAL buffer when ‘reset_H’ signal is low (‘reset_L’ is high). The resistance at

the ‘OutR_H’ node reduces due to the transistor, N6, causing the overall energy

dissipation to increase slightly.

(a)

(b)

Figure 3.6: (a) Resettable CAL buffer (b) Output Waveform for 10fF load.

3.3 Design of Resettable Adiabatic Flip-flops

This section discusses and compares the energy performance of the proposed and the

existing MUX-based resettable flip-flops and non-resettable flip-flops using five multi-

phase adiabatic logic families. Because the proposed resettable buffers provide low

resistance at the output nodes, the overall energy consumption is either less or

comparable to their non-resettable buffer counterparts. Additionally, the energy

consumption of the proposed resettable flip-flops is comparable to that of the non-

resettable flip-flops and thus makes it suitable for energy-efficient applications.

42

Flip-flops are the inherent building blocks of all the synchronous systems. Considering

the operational characteristic of the adiabatic circuits, the designs of adiabatic flip-flops

should be different from that of the conventional CMOS flip-flops [81]. Adiabatic D-

flip-flops can be built using a cascaded buffer chain where the input is shifted to the

output through the n-stage buffer chain (depending upon the adiabatic logic style) by

one clock period. Because the output of the single-phase CAL buffer follows the input

with 360o phase-lag and uses auxiliary clock signal the input ‘D_H’ is just shifted to the

output terminal ‘Q_H’ through the two-stage CAL buffer chain by two clock periods.

Similarly, the output of the two-phase CPAL buffer follows the input with a 180° phase

lag, hence the input ‘D_H’ is shifted to the output terminal ‘Q_H’ through the two-stage

CPAL buffer chain by one clock period. Additionally, considering the fact that the

outputs of all the 4-phase buffers, namely; IECRL, PFAL, and EACRL follow the input

with a 90o phase-lag, the D flip-flop is constructed using 4 stages of the buffer. Due to

the long idle period, 2-phase power-clocking scheme has high computation time

compared to the 4-phase power-clocking scheme even for the same ramping time.

The existing resettable D flip-flops are implemented either using single-phase CAL [79]

or 2-phase CPAL [37]. They use adiabatic MUX/NMUX as their second resettable stage.

The major disadvantage of this is that the output from the flip-flops can only be fed to

any subsequent logic after the second stage. Thus, the subsequent stage has to wait for

the output for complete one cycle. This reduces the throughput of the circuit. This

drawback has now been resolved by the proposed resettable adiabatic flip-flops. For all

the five proposed resettable adiabatic flip-flops, the output can be fed to the subsequent

logic stage even after the first stage. This increases the throughput and gives the

flexibility of tapping the outputs from the required phase. Moreover, the proposed

resettable flip-flops using CAL and CPAL have an advantage in terms of the area

(transistor count) over the existing MUX-based resettable flip-flops using CAL and

CPAL.

The first stage of the adiabatic flip-flops requires a resettable buffer and the other stages

use non-resettable buffers. The structures of the 4-phase, 2-phase and single-phase

resettable D flip-flops are shown in Figures 3.7, 3.8 and 3.9 respectively. It should be

noted that the 4-phase power-clock, 2-phase non-overlapping power-clock and single-

phase power-clock with non-overlapping auxiliary clocks ‘ACLK_H’ and ‘ACLK_L’

are shown in Figure 2.5 of Chapter 2. The reset input used in the resettable designs is an

43

asynchronous signal having priority over other input signals and thus must be stable

before the beginning of the evaluation period of the power-clock to meet the adiabatic

constraints.

Figure 3.7: Resettable adiabatic flip-flop using 4-phase power-clocks.

Figure 3.8: Resettable adiabatic flip-flop using 2-phase power-clocks.

Figure 3.9: Resettable adiabatic flip-flop using single-phase power-clock and auxiliary

clocks.

The full-custom layouts of the proposed 4-phase flip-flop using PFAL are shown in

Figure 3.10 (a). The 4-phase flip-flops using IECRL and EACRL have the same number

of stages. The only difference is in the layout area which is summarised in Table 3.1.

The full-custom layouts of the proposed flip-flops using CPAL and CAL are shown in

Figure 3.10 (b) and (c) respectively. Table 3.1 summarises the layout area used by non-

resettable, existing MUX-based resettable and proposed resettable flip-flops for all the

five adiabatic logic styles.

44

(a)

(b)

(c)

Figure 3.10: Proposed resettable flip-flop layouts for (a) PFAL (b) CPAL (c) CAL.

45

Table 3.1: Comparison of layout area of non-resettable, existing MUX-based resettable

and proposed resettable flip-flops.

Adiabatic Logic

Families

Area (µm)2

Non-Resettable

Flip-flop

Existing MUX-based

Resettable Flip-Flop

Proposed Resettable

Flip-flop

CPAL 5.68 x 17.28 6.44 x 17.32 8.99 x 18.40

CAL 6.44 x 9.68 7.71 x 12.48 6.44 x 10.91

PFAL 6.46 x 18.75 7.72 x 23.16 6.98 x 19.29

EACRL 6.07 x 20.89 8.24 x 30.75 6.97 x 24.75

IECRL 6.24 x 17.68 7.51 x 22.35 6.56 x 18.73

From Table 3.1, it can be seen that the proposed resettable flip-flops consume less area

as compared to the existing MUX-based design for all the adiabatic logic families,

except CPAL. Because both the CPAL buffer and MUX use the same number of

transistors, thus, the area of the MUX-based CPAL flip-flop is less. However, both the

MUX-based resettable and non-resettable flip-flops use the same number of transistors,

but the area of former is larger than that of the later as the former uses an extra input pin

requiring extra routing space.

The energy consumption is measured per clock-cycle and each of the adiabatic flip-flops

is compared at ramping times ranging from 2.5ns to 2000ns under an output load

capacitance of 100fF. The energy consumption of the flip-flops was measured through

simulations for the periodic sequence of “101010….”, thereby, giving the maximum

average energy consumed per cycle. Figure 3.11 (a), (b) and (c) illustrate the relationship

between pre-layout energy consumption and ramping time for non-resettable, existing

MUX-based and proposed resettable flip-flops respectively. It can be seen that the

energy consumption of the proposed flip-flops is much less compared to the existing

MUX-based design. The MUX-based flip-flops using EACRL and PFAL consume

approximately 16%, more energy, whereas IECRL and CAL consume approximately 3%

to 5% more energy when compared to non-resettable counterparts. The energy

consumption of the MUX-based CPAL is similar to that of the non-resettable flip-flop

for the entire range of ramping time with an increment of approximately 0.5%.

46

(a)

(b)

(c)

Figure 3.11: Pre-layout energy consumption versus ramping time of (a) Non-resettable

(b) Existing MUX-based (c) Proposed resettable flip-flops.

47

From Figure 3.11 (c), the proposed resettable flip-flops using PFAL, CPAL, CAL, and

IECRL consume approximately 0.5% to 1% more energy compared to the non-resettable

flip-flops. On the other hand, due to the decrease in the output resistance of the proposed

buffer using EACRL, its energy consumption shows a decrement of approximately 6%

compared to the non-resettable flip-flop. Flip-flop using CPAL consumes minimum

energy at longer ramping times, however, as the ramping time is made shorter its energy

dissipation increases. The post-layout simulation results in Figure 3.12 (a), (b) and (c)

show a similar trend as shown by the pre-layout simulations. The difference is in terms

of the increased energy consumption due to the addition of the parasitic resistance and

capacitance of the routing metal layers.

(a)

(b)

48

(c)

Figure 3.12: Post-layout energy consumption (per cycle) versus ramping time of flip-

flops (a) Non-resettable (b) Existing MUX-based (c) Proposed resettable.

Figure 3.13 (a) and (b) show the effect of loading on energy consumption of the

proposed resettable flip-flops at the ramping time of 25ns. From Figure. 3.13 (a), the

energy consumption of IECRL and CAL is maximum due to NAL present during both

the evaluation and the recovery period. However, EACRL and PFAL consume the same

amount of energy for the load capacitance value higher than 50fF, as both suffer from

NAL only during the recovery period. Since, EACRL also suffers from energy loss due

to the absence of cross-coupled nMOS transistors causing higher coupling loss at the

output nodes, its energy at zero capacitive load is highest. The advantage of having zero

NAL at the output nodes makes CPAL consume the least energy at smaller values of

load capacitances but as the load capacitance increases to 500fF, its energy consumption

becomes almost similar to that of PFAL and EACRL. Although flip-flop using CPAL is

able to work up to the ramping time of 2.5ns, the output nodes of the flip-flop are not

charged up fast enough resulting in the voltage difference between the output node and

PC. Hence, the CPAL circuit dissipates more energy. Similarly, due to the addition of

parasitics after the post-layout simulation, CPAL consumes the least energy until the

load capacitance value of 160fF. Beyond that, EACRL and PFAL consume the least

energy as can be seen from Figure 3.13 (b).

49

(a)

(b)

Figure 3.13: Energy per cycle under different load capacitances at the ramping times of

25ns (a) pre-layout (b) post-layout.

In order to compare the performance of the non-resettable and resettable adiabatic flip-

flops, 2-bit twisted ring counter was designed using each of the five adiabatic logic

families and was evaluated in the next section.

3.4 Design of 2-bit Twisted Ring Counters using Adiabatic Logic

The twisted ring counter is able to self-initialize from an all-zeros state and does not

have any external inputs (only flip-flops no logic gates), and therefore, was used as a

vehicle for comparing five non-resettable adiabatic flip-flops. Commonly, a resettable

50

flip-flop is needed as it forces the logic into a known state at the beginning of the

simulation time. The 2-bit twisted ring counter consisting of two D flip-flops

implemented using 4-phase, 2-phase and single-phase adiabatic logic designs are shown

in Figure 3.14 (a), (b) and (c) respectively. The outputs, ‘Q0_H’, and ‘Q1_H’ represent

the Least Significant Bit (LSB) and the Most Significant Bit (MSB) respectively.

(a)

(b)

(c)

Figure 3.14: 2-bit resettable twisted ring counter using adiabatic logic with power-

clocking scheme (a) 4-phase(b) 2-phase (c) Single phase.

51

When the reset signal ‘res_H’ is logic ‘1’, the output of the 2-bit twisted ring counter

‘Q0_H’ and ‘Q1_H’ goes to zero and the complement outputs, ‘Q0_L’ and ‘Q1_L’

follow the power-clock. The outputs of the 2-bit twisted ring counter using five

adiabatic logic families along with the signals, reset, resetb and power-clock are shown

in Figure 3.15 (a), (b), (c), (d) and (e). It can be seen that the outputs of the 2-bit twisted

ring counter implemented using IECRL, PFAL, EACRL, and CAL suffer from NAL.

The region encircled shows this NAL arising due to threshold voltage degradation on

one of the outputs. On the other hand, CPAL doesn’t show NAL on the output nodes

but has a non-adiabatic dynamic loss due to the coupling effect on the low-level output

node (output node not following the power-clock). The flip-flop design using CAL

works on single-phase power-clock however, due to the use of auxiliary clock inputs,

the cascaded logic becomes complex. Also, from Figure 3.15 (d), the output of CAL

implementation shows that each stage of the twisted ring counter is valid for two power-

clock periods, hence large latency for sequential circuit design.

(a)

52

(b)

(c)

(d)

53

(e)

Figure 3.15: Output waveforms of 2-bit resettable twisted ring counter using (a) IECRL,

(b) PFAL, (c) EACRL, (d) CAL, (e) CPAL.

The 2-bit non-resettable and resettable twisted ring counter circuits using the five

chosen adiabatic logic families were also designed to verify if the trend of energy

consumption remains the same for the larger circuit at various ramping times. The

energy consumed by 2-bit twisted ring counters was measured over its four states under

zero external load capacitance. The energy consumption of the non-resettable and the

resettable 2-bit twisted ring counter for EACRL, IECRL, PFAL, CPAL, and CAL are

shown in Figures 3.16 (a) and (b) respectively. Because of the decreased output

resistance, the difference in the energy of the resettable twisted ring counter using

EACRL and PFAL compared to that of the non-resettable counter are approximately 5%

and 2% respectively for a ramping time longer than 10ns. Whereas, the energy

consumption of the 2-bit resettable twisted ring counter using IECRL, CAL and CPAL

are approximately 18% more than their non-resettable counterparts. The energy

performance of CAL is worst for both the non-resettable and the resettable counters,

though not much variation in its energy consumption is observed at shorter ramping

times. Similarly, the non-resettable and the resettable counters using EACRL show

steady variations in energy consumption for ramping times ranging from 2.5ns to 500ns.

Overall, the PFAL based design of both the non-resettable and the resettable counters

show the approximately 2% difference in energy consumption at all ramping times.

54

(a)

(b)

Figure 3.16: Pre-layout energy consumption per cycle of 2-bit twisted ring counter (a)

non-resettable (b) resettable.

To further evaluate and compare the performance of the five multi-phase adiabatic logic

families, a 3-bit Up-Down counter was used as an application example.

3.5 Design of 3-bit Up-Down Counters using Adiabatic Logic

In the past, various examples like 16-bit Carry Look Ahead (CLA) [55], 8-bit multiplier

[21], mode-10 counter [37] and [80], etc. have been demonstrated to show the

comparison between different adiabatic logic families and the conventional CMOS

design in terms of energy efficiency. In [82], [83], the authors have discussed the

55

performance issues of adiabatic logic design in comparison to conventional CMOS

design but lacked to give a comparison which encompasses performance issues amongst

multi-phase adiabatic logic families. Despite the authors claim in [84] that, single and 2-

phase adiabatic logic namely CAL and CPAL reduces the latency by half and cut down

the number of buffers required significantly, this is not universally true instead it is a

design specific scenario. In order to suggest appropriate performance trade-offs, a 3-bit

Up-Down counter is designed and simulated using each of the five energy-efficient

adiabatic logic families. Figure 3.17 (a) shows the design used for single-phase and 2-

phase adiabatic logic families whereas, Figure 3.17 (b) is the design used for 4-phase

adiabatic logic families. The counter starts counting up or down depending on ‘UD’

input signal when reset is low. It counts down when the ‘CU’ signal is high (‘CD’ signal

low) and counts up ‘CU’ signal is low (‘CD’ signal is high). The Boolean expressions

for Q0_Hn+1
 – Q2_Hn+1 are given by;

 D0_H = Q0_Hn+1=res_L.(Q0_H)n

D1_H = Q1_Hn+1=res_L.[Q1_Hn (Q0_Hn CU)] (3.1)

D2_ H= Q2_Hn+1=res_L.[Q0_Hn.CD.(Q1_Hn Q2_Hn) +

 Q0_Ln.CU.(Q1_Hn Q2_Hn) + Q2_Hn
.(CU Q0_Hn)]

As can be seen from Figure 3.17 (b) and equation (3.1), to implement a function D2_H

a minimum of 3 cascade levels are required. In the case of a single-phase, 2-phase and

4-phase designs; 3 power-clock periods that is 12Tr, 1.5 power-clock period that is 9Tr

and 3/4 power-clock period that is 3Tr are required respectively. For synchronizing the

LSB bit of the counter output, ‘Q0_H’ with ‘Q1_H’ and ‘Q2_H’ output bits in the

single and 2-phase design, two buffers are added, whereas, in 4-phase designs, the

correct intermediate signals from the D flip-flops are used as inputs to the XOR/XNOR

and AND/NAND gate. As seen in the previous sections, both single-phase and 2-phase

designs have high latency. The structures of their Up-Down counter are different

compared to 4-phase design, in order to save the area and synchronization buffers. The

first two and the first three stages of ‘Q1_H’ and ‘Q2_H’ respectively of the single-

phase and 2-phase counter are realized using the combinational logic function thus,

saving 4 synchronization buffers circuits.

56

(a)

57

(b)

Figure 3.17: Up-Down counter design for (a) single-phase and 2-phase (b) 4-phase.

The outputs of the Up-Down counter for single-phase, 2-phase and 4-phase adiabatic

logic designs are shown in Figure 3.18 (a), (b) and (c) respectively. The reset signal

‘res_H’ is an asynchronous signal having priority over all other signals.

58

(a)

 (b)

(c)

Figure 3.18: Up-Down counter outputs for (a) Single-phase (b) 2-phase (c) 4-phase.

59

The energy consumption of the counter is averaged over fifteen counts, counting from

seven down to zero and back to seven. Figure 3.19 (a) shows the average energy

consumption per count of the five adiabatic logic designs and non-adiabatic

(conventional CMOS) for an Up-Down counter under a load capacitance of 10fF at

ramping times ranging from 2.5ns to 250ns. Because the CAL and IECRL logic designs

have an evaluation network connected between the output and the ground, they also

suffer from NAL in the evaluation period of the power-clock apart from the recovery

period. As the ramping time becomes shorter, the AL combined with NAL makes the

output node lagging behind the power-clock thus increasing the energy dissipation.

SinceNAL is directly proportional to the node capacitance and the threshold voltage;

different adiabatic logic families have different NAL. As the ramping time becomes

longer, the leakage loss dominates both AL and NAL, whereas, NAL dominate AL [85].

Due to the fact that each state of the CAL design takes four power-clock cycles, the

energy performance of CAL counter is worst at all the ramping times as shown in

Figure 3.19 (a). Similarly, the CPAL design, which takes two power-clock cycles for

each count exhibits the second worst energy. In the case of the EACRL logic, since it

has dual evaluation network (more number of transistors), the leakage losses dominate

over AL and NAL at longer ramping times and thus increased energy compared to

IECRL. The PFAL counter design shows the minimum energy at all the ramping times.

IECRL and PFAL have the same number of transistor counts; however, as the former

have higher output resistance and NAL it consumes more energy at the shorter ramping

time. But as the ramping time is increased, its energy consumption drastically decreases

and becomes lesser than that of EACRL at a ramping time longer than 30ns.

Figure 3.19 (b) shows the effect of loading on energy consumption of the Up-Down

counter at the ramping time of 25ns. Though CAL is less complex, however, due to the

low throughput of CAL sequential design, its energy is worst and even crosses the

energy dissipation of the non-adiabatic at higher capacitance value which is mainly due

to its high NAL. In Figure 3.19 (b), the increase and decrease in the energy dissipation

of IECRL and EACRL respectively at 10fF load capacitance is because of the higher

NAL of IECRL. On the other hand, at load capacitance higher than 100fF, the energy

consumption of EACRL is exactly similar to that of PFAL. This is because as the load

capacitance value increases, the effective load at the output nodes will mainly comprise

of the load capacitance rather than its internal load capacitance. Both PFAL and

60

EACRL have a similar NAL however, due to more number of transistors in EACRL, it

consumes more energy due to its dual evaluation network giving higher internal node

capacitance at the output nodes compared to the other logic designs at lower load

capacitance values.

(a)

(b)

Figure 3.19: Energy consumption versus (a) Ramping time (b) Load capacitance.

3.6 Performance Results

Based on the simulation results of flip-flop design, 2-bit twisted ring counter and 3-bit

Up-Down counter the comparison of five adiabatic logic techniques are tabulated in

61

Table 3.2. The energy consumption in Table 3.2 is measured for ramping time 25ns at

zero load capacitance value.

Table 3.2: Comparison of area and energy across the range of sequential circuit designs.

Adiabatic

Logic

Families

Proposed Resettable

Flip-Flops

2-bit resettable

Twisted Ring

Counter

3-bit Up-Down

counter

Area: No.

of

Transistors

Energy

per

cycle

(fJ)

Area: No.

of

Transistors

Energy

per state

(fJ)

Area: No.

of

Transistors

Energy

per

count

(fJ)

IECRL 27 2.50 54 3.55 189 19.10

PFAL 27 2.40 54 2.95 189 18.13

EACRL 28 3.80 56 6.13 222 26.88

CPAL 24 2.50 48 6.00 238 37.02

CAL 18 2.60 36 9.63 212

95.00

Table 3.2 shows that the CAL logic uses least transistors for designing sequential

designs comprising only of buffer logic gates. However, for a more complex sequential

logic (3-bit counter) comprising of combinational circuits and buffer, its area increases.

On the other hand, the EACRL logic uses maximum transistors for the design of less

complex sequential circuits which do not employ combinational logic gates, whereas,

CPAL uses the maximum transistors for the design of 3-bit counter. However, for a 3-

bit counter, design EACRL energy consumption is approximately 71% and 27% less

compared to single-phase and 2-phase adiabatic logic respectively. CAL uses the least

complex power-clock network, however, due to the auxiliary clock inputs, it has high

latency and low throughput, therefore consuming maximum energy compared to the 2-

phase and 4-phase adiabatic sequential logic designs. Similarly, the CPAL logic uses

less complex power-clocking scheme, however, due to its high circuit complexity, it

uses more transistors for designing the complex sequential circuits. All the 4-phase

adiabatic designs have high complexity due to the power-clocking scheme, however,

due to the complex evaluation network of the EACRL, its complexity and area

requirement is maximum. Overall, out of the five adiabatic logic families, PFAL and

IECRL prove to be a better choice in terms of energy consumption, area, and circuit

62

complexity (single evaluation network). Based on the simulation results tabulated in

Table 3.2, the performance of the five adiabatic logic families in terms of Complexity

and computation time is tabulated in Table 3.3.

Table 3.3: Comparison of complexity and throughput of the multi-phase adiabatic logic

designs.

Multi-phase

Adiabatic Logic

Design

Circuit

Complexity

Power-clock

Complexity

Computation

Time

IECRL Low High High

PFAL Low High High

EACRL Very High High High

CPAL High Medium Medium

CAL Medium Low Low

3.7 Summary

This chapter explored the design of new resettable buffers. The resettable buffers are

implemented for five multi-phase adiabatic logic families namely, IECRL, PFAL,

EACRL, CPAL and CAL. The proposed novel adiabatic resettable buffers are used for

the design of the resettable flip-flops. The performance of the proposed resettable flip-

flops is compared to that of the existing MUX-based resettable adiabatic flip-flops. The

proposed resettable flip-flops lead to decreased energy and area consumption compared

to the existing MUX-based resettable adiabatic flip-flops. Using the proposed resettable

flip-flops, a 2-bit twisted ring counter was designed using five adiabatic logic families

as the design example for the performance evaluation. Overall, the PFAL based design

of both the non-resettable and the resettable counters shows the minimum

(approximately 2%) difference in energy consumption at all the ramping times.

Since the twisted ring counter does not contain any combination of logic thus, in order

to facilitate the performance of the multi-phase adiabatic logic design, 3-bit Up-Down

counter using five multi-phase adiabatic logic families were designed. The CAL logic

design is worst in performance based on computation time, area (transistor count) and

the energy consumption, however, its complexity (in terms of power-clocking scheme)

63

is lowest compared to the 2-phase and 4-phase power-clocking scheme. Similarly, the

energy and area efficiency of CPAL decreases drastically for a more complex sequential

circuit design (3-bit counter).

64

4 Design and Performance Trade-offs of Multi-

phase Adiabatic Implementation of CRC

Algorithm for NFC Application

Cyclic Redundancy Check (CRC) is ubiquitously common in all the communication

protocol as it is an efficient way of detecting errors. In this chapter, the use of quasi-

adiabatic logic techniques in implementing a 16-bit CRC design compatible with the

ISO/IEC 14443A-3 [13] communication protocol for low energy Near Field

Communication (NFC) application is presented. As the performance trade-offs of multi-

phase quasi-adiabatic logic designs have already been evaluated in the previous chapter.

This chapter re-investigates it by including robustness against Process Voltage

Temperature (PVT) variations for the implementing CRC design using multi-phase

adiabatic logic. A design methodology is proposed to minimize the design time and

synchronization issue by implementing a CRC design which is suitable for a range of

adiabatic clocking strategies, specifically 4-phase, 2-phase, and single phase. The CRC

design is programmable for applications other than CRC due to its loadable initial value

and CRC-16 generator polynomial. In addition, a system level implementation of CRC

using adiabatic logic design including Power-Clock Generator (PCG) for different

power-clocking strategies is implemented and compared based on energy consumption.

In the end, the comparison of the multiphase adiabatic implementations and non-

adiabatic implementation (conventional CMOS) is performed in terms of energy

benefits, throughput, latency, complexity, robustness, and area.

65

4.1 Introduction

CRC is widely used in all data-communication, transmission and memory devices as a

powerful method for detecting errors. One of the traditional hardware solutions for the

CRC calculation is a bit-serial approach using a Linear Feedback Shift Register (LFSR)

consisting of XOR gates and flip-flops [86], as shown in Figure 4.1. G1, G2,…Gn-1 are

the generator polynomial, M(x) is the message and CRC0 to CRCn-1 are the calculated

CRC values. The bit-serial approach has a low throughput since every n-bit data word

requires n clock-cycles to calculate the CRC value. Depending on the application, a

generator polynomial is used which gives a high probability of error detection [87]. For

very high-speed data transmission, researchers have proposed numerous hardware and

software-based CRC implementations. These include a parallel software

implementation based on look-up algorithms [88] and hardware implementations based

on z-transforms [89], matrix formulation [90]-[92] and pipelining [93]. These parallel

approaches focus mainly on fast error detection when processing large data messages.

These parallel approaches are mainly used for accessing storage devices when the data

message is parallel or in the case when the fast data transfer rate is required such as in

case of the fiber optic in a local area network. Software solutions have several

drawbacks, for instance, they are slow, occupy processor resources, and requires ROM

storage for the lookup table. Nevertheless, in all the references cited above, nothing has

been mentioned about the energy consumption.

Figure 4.1: A bitwise serial LFSR for n-bit CRC generator.

In the literature, researchers have mostly demonstrated the low energy benefits of

adiabatic implementations of counters [29], multiplexers and arithmetic units [82].

There exist very few papers [77], [39] which demonstrate the benefits of the adiabatic

logic technique in a complex adiabatic circuit which also includes a power-clock

66

generator. It should be noted that adiabatic circuit/core combined with the power-clock

generator is/will be referred as the adiabatic system. In literature, most of the papers

demonstrated the energy benefits of various adiabatic designs/logic families over the

non-adiabatic designs, however, there exists no work which compares the performance

of the multi-phase adiabatic logic designs based on the adiabatic system architecture

(array-based or iterative), energy consumption (with and without PCG), computation

time, area, robustness (PVT variation), circuit and power-clock complexity. Practically,

it is difficult to design an efficient adiabatic system however, trade-offs between energy,

throughput, area, robustness, and complexity can be established that enables the

designer to design efficient adiabatic logic systems.

Architectures can be designed either using an array-based approach or the iterative

approach. An array-based approach consumes a large area due to the duplication of

logic used in each stage. This is relaxed in the iterative approach, however, at the

expense of high complexity due to synchronization problems. The majority of the

designs follow the array-based approach, like a logarithmic signal processor using a

single-phase power-clock [77] and a CORDIC based DCT using a 4-phase power-clock

[39] as it is easy to synchronize the gates in the array-based approaches. There also

exists designs which are iterative in nature like counters, CRC, etc. where the output is

fed back to the input. For designing these systems, the designer needs to have a perfect

understanding of the power-clock synchronization. Since adiabatic logic operates in the

mid-frequency range favoring low-data-rate communication systems, the timing was

never an issue. Because of the multi-phase adiabatic logic techniques, the area

consumption, synchronization, and complexity have always been the challenges for

adiabatic circuit designs. In a system design using an iterative approach where the

control signal is used to trigger multiple blocks or modules like the counter unit,

datapath unit, a register unit, etc, the design becomes tedious and cumbersome because

of the synchronization problem. However, it saves a large amount of area and energy.

Furthermore, if the iterative systems are designed properly, there is always a chance of

reducing the synchronization buffers with the adiabatic logic gates.

4.2 ISO/IEC and ECMA

The international organization for standardization widely known as ISO is an

international standard-setting body composed of representatives from various national

67

standards organizations. NFC system has been standardized by a number of globally

accepted standard bodies. The first Radio Frequency (RF) Near Field Communication

(NFC) standard was ECMA 340 [94], based on the Air Interface of ISO/IEC 14443A

and JIS X6319-4.ECMA 340 was approved as the ISO/IEC 18092 standard [95]. In

parallel major credit card companies (Europay, Mastercard, and Visa) have introduced

the payment standard EMVCo based on ISO/IEC 14443A and ISO/IEC 14443B. Within

the NFC Forum, both groups harmonized the air interfaces. They are named NFC-A

(ISO/IEC 14443 A based), NFC-B (ISO/IEC 14443 B based) and NFC-F (FeliCa-based)

[96].

The ISO/IEC 14443 standard is a four-part international standard for contactless smart

cards operating at 13.56 MHz in close proximity (~10cm) with a reader antenna [11]-

[13], [95]. This ISO standard describes the modulation and transmission protocols

between the card and the reader to create interoperability for the contact-less smart card

products. The ISO 14443 standard defines a protocol stack from the radio layer up to a

command protocol as shown in Figure 4.2 (a). There are two versions of the radio layer

ISO 14443-2 [12], with different modulation and bit encoding methods. These versions

are known as the type A and type B versions of the ISO 14443 standard. Similarly, ISO

14443 specifies two versions of the packet framing and low-level protocol part such as

initialization and anti-collision (ISO 14443-3) [13]. The topmost layer of the ISO

protocol stack defines a command interface (ISO 14443-4) for transferring information.

(a) (b)

Figure 4.2: (a) ISO 14443 protocol stack (b) New command Protocol.

A new command protocol, NFCIP-1 [94] which replaces the topmost part of the stack of

Figure 4.2 (a) is shown in Figure 4.2 (b). The peer-to-peer communication between two

NFC devices is made possible by mechanisms defined in the Near Field

Communication-Interface and Protocol specification, NFCIP-1. This key NFC

68

specification is also known as ECMA-340 [94] and ISO 18092standard [95]. NFCIP-1

includes two communication modes which allow an NFC device to communicate with

other NFC devices in a peer-to-peer manner as well as with NFCIP-1 based NFC tags.

The more in-depth details of the NFC specification can be found in [11]-[13] and [94]-

[96].

4.3 Application of CRC in NFC

NFC is the emerging RF technology for short-range wireless communication that

exchanges data between a reader, such as a phone or a sensor and a target such as

another reader or a microchip embedded in a device. NFC is compatible with the most

existing Radio Frequency Identification (RFID) and contactless smartcard system as it

is an evolution of RFID and smartcard technology, however, its architecture is different

in principle. RFID and contactless smartcards have a reader/tag structure. An NFC

device can be both a reader (NFC-enabled device) and a target (NFC tag).

Two communication modes are supported by the NFC device; active and passive

communication mode. The Frame Format of the data transmission in the NFC protocol

of ISO/IEC 14443-3 and ECMA 340 standard are shown in Figure 4.3 contains 5 fields

namely; preamble, SYNC, length, payload, and 16-bit CRC to check errors [94], [95].

Preamble

(48-bit min.)

SYNC

(16-bit)

Length

(8-bit)

Payload CRC

(16-bit)

Figure 4.3: NFC Frame Format [94].

The process of encoding and decoding is carried out by a sixteen-stage cyclic register

with an appropriate feedback and is based on ITU-T Recommendation V.41 [97] and

the circuit is shown in Figure 4.1.CRC specifications for multiple bit-rate as per the

standard for NFC Type-A [13] is tabulated in Table 4.1. The CRC frame is a function of

k data bits which consist of all the data bits in the frame excluding the parity bits, the

start of frame bits (Sof), end of frame bits (Eof) and a CRC bit itself. Since the data is

encoded in bytes, the number of bits k; is a multiple of 8. For checking errors, two CRC

bytes are sent in the standard frame [94] after the data bytes and before the Eof bits. The

CRC calculation is cyclic which incorporates the current CRC value of the data (MSB

first) and the CRC value of the previous data bytes. For large data blocks, the CRC

69

value from the preceding data byte is used as the starting value for the subsequent data

byte. The LFSR carries a bit by bit multiplication in the Galois Field 2 (GF2) modulo.

The division is then performed through shifting and feedback into the LFSR so that the

result (CRC) is the value of the register once the whole message has been processed.

Table 4.1: CRC specification as given in ISO/IEC 14443 standard for NFC Type-A.

Bit rates Length Polynomial Pre-set value

106 kbps (fc/128) 16 bits x16 + x12 + x5 + 1 ‘6363’

212 kbps (fc/64) 16 bits x16 + x12 + x5 + 1 ‘0000’

424 kbps (fc/32) 16 bits x16 + x12 + x5 + 1 ‘0000’

The CRC calculation is cyclic, which incorporates the current CRC value of the data

(MSB first) and the CRC value of the previous data bytes. Let M(x), G(x), Q(x) and R(x)

represent the message polynomial, generator polynomial, quotient polynomial, and

remainder polynomial respectively. The message, M(x) is a k-bit payload which is

operated upon to form an n-k bit CRC detection block, where n is the length of the

complete block. The algorithm for the CRC calculation for NFC is described in the

following steps.

Step 1: The original k-bit payload, M(x) is multiplied by xn-k to shift the data and the

pre-set value is appended.

Step 2: The result is then divided by the generator polynomial G(x) to form the quotient

Q(x) and remainder R(x).

Step 3: The transmission polynomial T(x) is formed by appending the payload, M(x)

and the remainder, R(x).

Step 4: At the receiver, the CRC calculation on the transmitted block, T(x) is done to

check for errors in the transmission.

Step 5: After the transmission, the received message is processed with step 1 to 2 albeit

with the received message replacing M(x). If the remainder, R(x) produced is zero, the

transmission is assumed to be error-free.

The more detailed description of CRC algorithms is specified in [98]. The appending

shall be done so that the bit ordering does not change. For example, as specified in

70

Annex B of ISO/IEC 14443-3 [13] and Annex A of ECMA-340 NFCIP-1 [94], the

following message bit stream shown in Figure 4.4 produces the CRC value R(x) of the

register 0xCF26 (least significant bits to most significant bit). The modified CRC

algorithm for NFC application is given in Appendix A.

 1st data byte 2nd data byte 1st CRC byte 2nd CRC byte

Sof 01001000 00101100 01100100 11110011 Eof

‘0x12’ ‘0x34’ ‘0x26’ ‘0xCF’

Figure 4.4: Message stream and its corresponding CRC value.

4.4 Design Methodology

A modification in conventional LFSR which fulfills the criteria for an ISO/IEC-14443

standard is presented. Using the conventional CRC only a single bit-rate with an initial

value of zeros can be loaded whereas; the proposed design is valid for a multiple data

bit-rate and every initial load value. The proposed CRC design using adiabatic logic

also has the flexibility to be used for different power-clocking schemes (single-phase, 2-

phase and 4-phase) without modifying the design. Although, CRC is implemented for

NFC-A application it can be easily modified to accommodate different CRC

applications like mobile networks, Ethernet, USB, high-level data link control, etc [87].

A wide range of generator polynomials is presented in [88] along with their applications.

With the proposed strategy, an n-bit CRC can be implemented by replicating n “slices”

of circuitry. This approach enables CRCs of every number of bits to be readily created,

thus decreases design time and synchronization issues [83].

An n-bit CRC is designed using n-blocks of CRC slices in the datapath. Each block of

CRC slices has four logic gates connected in a cascade manner. Out of the n-blocks, n-1

are identical having the same logic gates connected in the same order. However, the

Least Significant Bit (LSB) of the CRC slice has the position of the XOR gate different

than that of the identical blocks. This is due to the synchronization of the feedback

signal with the input message bits. A single block slice requires three stages or phases

of the power-clock but due to the iterative nature of the CRC implementation, the

number of stages should either be a multiple of two in the case of single-phase (because

of auxiliary clock signals) and 2-phase designs or a multiple of four in the case of 4-

71

phase logic designs. Thus, a buffer is added in each slice to have an even number of

stages for correct synchronization and functionality. Each slice in the CRC datapath

implemented using 4-phase adiabatic logic takes one power-clock cycle, whereas

single-phase and 2-phase designs take four and two power-clock cycles respectively.

The controller generates the control signals for the CRC design. The CRC starts the

computation when the signals ‘New message’ and ‘R_count_H’ are logic ‘1’. The input

message, M(x) is provided to the CRC datapath serially using a multiplexer used as a

test circuitry for the CRC design. To synchronize the CRC computation and the input

message, the counter outputs act as the select lines for this multiplexer which provides

serial input to the CRC datapath and the register unit.

The speedup technique is used as described in [89] to increase the throughput. The

buffers in the counter are replaced with the functional logic gates (AND/OR/XOR).

Thus, the throughput and latency of 4-phase designs are improved by ½ of the power-

clock cycle whereas, in the case of 2-phase and single-phase CRC design, an

improvement of one power-clock cycle and two power-clock cycles respectively is

achieved. In addition, the technique also reduces the buffers required for

synchronization by four in the counter unit.

For a message word-length of 16 bits, the 16-bit CRC datapath requires 64 power-clock

cycles using a single-phase power-clocking scheme, whereas, 32 and 16 power-clock

cycles are required for 2-phase and 4-phase adiabatic logic respectively. In general, for

the message word-length of k-bits, an n-bit CRC datapath requires 4k, 2k and k power-

clock cycles for single-phase, 2-phase and 4-phase adiabatic logic designs respectively.

Where k is always greater than or equal to n. Since the presented work is in accordance

to ISO/IEC 14443 standard for NFC, a 16-bit CRC is designed based on the

methodology and strategy used in describing n-bit CRC. The CRC is implemented using

all the five adiabatic logic families and tested for its functionality and robustness against

PVT variations. All the components including the multiplexer (providing input serially)

are designed using adiabatic logic.

4.5 Hardware Implementation of 16-bit CRC using Adiabatic Logic

The typical CRC is implemented using Linear Feedback Shift Register (LFSR) having

serial input message data bits. A block diagram of the 16-bit CRC design is shown in

Figure 4.5. All the adiabatic logic designs have differential input and output signals,

72

however, for the simplicity and better understanding, complementary signals are not

shown in Figure 4.5. The complementary signals are denoted by ‘_L’ added at the end

of all the signals used denoting active low signals. The advantage of the proposed

architecture is that it can be used for multi-phase power-clocking scheme design. The

designer only has to replace the unit with the specific adiabatic logic style with an

appropriate power-clocking scheme. The main part of the CRC design is its datapath

which is responsible for computing the CRC value. The 16-bit input message (M(x)) is

provided to the CRC datapath through a 16:1 multiplexer at every count of the counter.

To be consistent with the protocol, MSB is the first bit transmitted as shown in Figure

4.5. Since each block in the datapath has a latency of 4 power-clock phases, a delay cell

is added at the output of the 16:1 multiplexer to synchronize the final CRC values from

the CRC datapath and the input message, M(x). Finally, the final CRC value gets

appended at the end of the message bits using a 32-bit register unit. The functionality of

the proposed CRC architecture is verified by taking the example specified in Annex B

of the ISO/IEC 14443-3 protocol [13].

Figure 4.5: Block diagram of the 16-bit CRC Design and its message, M(x) format.

CRC is initialized using the reset input 'RES_H' which clears the CRC unit, the register

unit, the controller unit, resets the counter and load the pre-set value ‘0x6363’. When

‘RES_H’ signal is set low and the ‘new message’ bit is logic ‘1’, the counter starts

73

counting. With every count, the message (M(x)) is serially sent to the CRC datapath for

the computation. At the same time, the message bit is stored in the register unit after a

delay of 1 power-clock cycle. The final CRC value is calculated when the last message

bit is sent to the datapath, and the counter reaches the value ‘1111’. Then the calculated

final CRC value from the datapath gets appended to the register unit with the message

while the counter returns to the value ‘0000’. The appended CRC value and the message

word are retained during the wait period in the specially designed register unit, while

the values in the CRC datapath are cleared to zero. The wait period lasts for two power-

clock cycles and after that, the counter starts counting again automatically allowing the

CRC to re-calculate its value. To calculate the new CRC value either the new message

bits or the generator polynomial along with the load values can be provided during the

wait period.

The CRC design has a number of advantages. Firstly, it can be used for different power-

clocking schemes. Secondly, all the control signals remain the same for multi-phase

adiabatic logic designs. Thus, the designer has only to pick the required adiabatic logic

family and replace the gates with their chosen adiabatic logic family gates saving design

time and eliminating synchronization issues. Thirdly, the use of a polynomial generator

unit and initial load value makes it reusable for other applications of 16-bit CRC.

In order to have the reusable CRC design for multi-phase clocking scheme and for

applications other than NFC, the implementation has associated hardware cost. Firstly,

the generator polynomial unit incurs an area overhead of twelve 2-input AND gates and

twelve 2:1 multiplexer. Secondly, for the CRC designs using multi-phase adiabatic

logic, the register unit of the single-phase and 2-phase implementations use

approximately 50% more buffers.

The controller comprises a counter which generates the states and a decoder

(combinational logic) that generates the synchronization signals for the CRC. The

counter is designed using D flip-flops. It has two inputs, ‘R_count_H’ (coming from the

decoder) and the ‘New message’. The ‘New message’ input is an active high external

input. Initially, it is zero when the counter is in the reset state. The counter starts

counting when both the ‘New message’ and ‘R_count_H’ signal values are logic ‘1’. In

74

4.5.1 Controller (Counter and Decoder)

(a)

(b)

Figure 4.6: Controller (a) 4-bit Counter (b) Decoder.

general, the adiabatic D-flip-flop is structured using a cascaded buffer chain, but in this

case, the buffers are replaced with the logic gates (AND/OR/XOR) which saves exactly

twelve buffer gates. For the test purpose, the 16-bit new message is provided to the

CRC datapath using 16:1 multiplexer. Figure4.6 (a) shows the functional part and the

75

synchronization buffers used in the 4-bit counter. The inputs ‘Q0_L’, ‘Q1_L’, and

‘Q2_L’ are the complementary signals of ‘Q0_H’, ‘Q1_H’, and ‘Q2_H’ which are not

shown for simplicity.

The outputs of the counter ‘Q0_H’, ‘Q1_H’, ‘Q2_H, and ‘Q3_H’ are the inputs to the

decoder along with the external reset input ‘RES_H’ as shown in Figure 4.6 (b). The

decoder automatically provides activation reset signals (‘R_count_H’, ‘R0_H’, ‘R1_H’,

‘R2_H’) to the counter and the datapath. The signal, ‘R0_H’ is the input to the AND

gate in generator polynomial bit blocks of the CRC datapath. Whereas, the signal,

‘R3_H’ is the select input for the 2:1 multiplexer in the CRC bit blocks which selects

the initial load value when logic ‘1’. The new generator polynomial along with the load

values can be provided during the wait period. The signal, ‘R4_H’ is an inverted signal

of ‘R3_H’ which is delayed by four buffer gates. It is used as a wait signal to the

register unit that generates a wait period of two power-clock cycles. The decoder

performs three tasks; firstly, it generates a retain signal which helps to retain the final

CRC value in the register unit. Secondly, it reset the CRC datapath, the counter unit,

and the register unit before the computation begins and after the final CRC value is

computed. Lastly, the buffers in the decoder serve the purpose of synchronizing the

decoder output with different units of the CRC design for correct calculation of the

CRC value.

The use of the signals from the decoder makes the CRC design to calculate the CRC

value continuously until the counter reaches the value ‘1111’. Because each bit blocks

in the CRC unit is having four logic gates connected in the cascade manner, the

implementation of the controller remains fixed for all the power-clocking schemes.

4.5.2 CRC Datapath

The CRC design is based on the serial LFSR design [86] which has been modified in

accordance with the specification outlined in ISO 14443-3 type A protocol. The CRC

datapath consists of the CRC unit and the generator polynomial unit. The CRC unit

computes the CRC value based on the generator polynomial (g1_H…..g15_H). The

generator polynomial, G(x) for NFC applications, is x16+x12+x5+1. A wide range of

generator polynomials is presented in [89] along with their applications. Since the

binary value of the MSB and LSB of the generator polynomial is always one, the

polynomial generator unit consists of fifteen 2-input AND gates each followed by 2:1

76

Figure 4.7: CRC Datapath

77

multiplexers. The hex value ‘0x8810’ corresponds to G(x) (‘g1_H’, ‘g2_H’, …….,

‘g15_H’) is fed along with the reset signal, ‘R0_H’. The output of the AND gate

triggers the multiplexer to select either a zero or the XOR function of the input message

bit with the MSB bit of the CRC Unit (‘CR15_H’) as shown in Figure 4.7. The outputs

from the generator polynomial bit blocks are fed into the XOR gates of the respective

CRC bit blocks.

A 16-bit CRC has sixteen-bit blocks with one LSB bit block and fifteen identical blocks

(1 to 15) as shown in Figure 4.7. Each identical block uses four logic gates which

incorporate a synchronization buffer, a resettable buffer for resetting the datapath, XOR

gate for generator polynomial representation and 2:1 multiplexer for initial bit loading

for different bit-rates (b0, b1,…., b15). The initial load value (0x6363) is loaded in the

CRC datapath during reset operation when ‘R3_H’ signal is logic ‘1’. Two different

resettable signals, ‘R1_H’ and ‘R2_H’ are used to synchronize the CRC unit due to the

different position of the resettable buffers in the CRC bit blocks and the LSB of CRC.

The design can be reused either for a higher bit or for lower bit CRC depending on the

application by adding the identical CRC bit blocks or by eliminating it. Figure 4.7

shows two feedforward paths and a feedback path. Both the feedforward paths comprise

of four cascade gates. Since the feedforward path 2 has a fixed latency of four logic

gates (two XOR gates and two MUXs), a buffer is added in the feedforward path 1 for

synchronization. Thus, the n-bit CRC datapath implementation has a fixed overhead of

n-buffer logic gates due to the synchronization.

The same concept is applied for CRC implementation using single-phase and 2-phase

power-clocking scheme. Thus, all the multi-phase logic designs use the same design

with the same signals as shown in Figure 4.5. The overhead in terms of synchronization

in implementing the datapath of 2n bit CRC is 2n buffer gates.

4.5.3 Register Unit

The CRC value is appended to a message bit stream in the register unit. Typically, a

message bit stream is stalled using a delay cell comprises of four adiabatic buffer gates

to synchronize it with the CRC value which has a latency of four gates. A single-bit

register comprises of four buffer logic stages connected in a cascade manner. The first

three stages consist of a buffer logic (shown in Chapter 3 of this thesis) and the last

stage consists of a novel retain buffer logic. Figure 4.8 shows the retain buffer logic

78

circuits for all the five adiabatic logic families. The ‘RET_L’ is an active low input. It

performs a function of retaining the final CRC value using the wait signal, ‘R4_H’ from

the decoder. As soon as the computation is over, the ‘RET_L’ input signal is logic ‘0’,

cutting-off the two output nodes from the power-clock and the ground respectively.

Thus, the logic value gets retained because of the cross-coupled nMOS and pMOS

transistors.

In the case of EACRL logic (having dual-evaluation network), duplicate retain

transistors were insufficient. It is because the logic suffers from the coupling effect due

to the absence of nMOS cross-coupled transistors where both the output nodes get

coupled when ‘RET_L’ input goes low. Thus, two extra cross-coupled nMOS

transistors, N9 and N10 are used as shown in Figure 4.8 (c). The cross-coupled

transistors pair P1, N9, and P2, N10 reduces the coupling effect and helps in providing

the complementary output signals at the two output nodes. Conventionally, to construct

a 1-bit register using a single-phase and 2-phase adiabatic logic, two buffer stages are

required (see Chapter 3 of this thesis). However, due to the synchronization issue and

using the design for the multi-phase power-clocking scheme, the number of stages used

in a single bit register of CRC is twice the conventional case.

(a) (b)

(c) (d)

79

(e)

Figure 4.8: Adiabatic retain logic (a) IECRL (b) PFAL (c) EACRL (d) CPAL (e) CAL.

4.6 Simulation Results

For meaningful simulations and to compare CRC implementation using different

adiabatic logic designs, the transistor sizes were set to the technology minimum for high

energy efficiency [90]. The simulations were done using Spectre simulator in Cadence

EDA tool based on TSMC 180nm CMOS process technology at ‘Typical-typical (TT)

process corner.

For a single-phase and 4-phase adiabatic logic designs, each power-clock is generated

using the trapezoidal wave, ramping from 0 to VDD, having an equal duration of

Evaluation (E), Hold (H), Recovery (R) and Idle (I) periods as shown in Figure 2.5 of

Chapter 2 of this thesis. The ramping time (Tr) of the power-clock is one-quarter of the

power-clock time-period (TCLK,1-phase/4-phase). In the case of 2-phase clocking scheme, due

to the non-overlapping requirement of the power-clock the Idle period is three times that

of each Evaluation, Hold or Recovery period. Hence the ramping time (Tr) of the 2-phase

power-clock is one-sixth of the power-clock time-period (TCLK,2-phase). Because the

adiabatic and non-adiabatic designs do not share the same ramping time, the clock

frequency of the non-adiabatic implementation is chosen such that its frequency of

operation is same as that of an adiabatic implementation keeping the rise time and fall

time constant across the chosen frequency range. For example, for a ramping time of

2.5ns, the time period of one power-clock cycle is 10ns thus, the clock period for the

non-adiabatic implementation is taken as 10ns with constant rising and falling time of

10ps. To measure the energy dissipation and avoiding excessive data dependencies, the

average energy per computation was measured for ten random message input

80

combinations. It was measured at various frequencies ranging from 1MHz to 100MHz,

load capacitances, supply voltage scaling and PVT variations for all the five adiabatic

and non-adiabatic CRC implementations. Also, the computation time in terms of power-

clock-cycles for various message word-lengths was extrapolated. In the end, a

comparison at the adiabatic system level including PCG and between adiabatic logic

families was performed and energy saving percentage was calculated for each of them.

4.6.1 Impact of Frequency on Energy Dissipation

The energy per computation at varying power-clock frequencies was measured for an

output load capacitance of 10fF connected at the output of the register unit. Here, the

energy per computation implies to the energy dissipated in one complete computation

(i.e. generating the final CRC value after all the message bits have been sent). Figure

4.9 shows that the energy of all the adiabatic implementations outperforms the non-

adiabatic implementation and show significant energy benefits compared to

conventional CMOS. Energy Saving (ES) is calculated and is defined as the difference

in the energy consumption of non-adiabatic and adiabatic implementations divided by

the energy dissipation of the non-adiabatic implementation. The formula for “Energy

Saving Percentage” (ESP) is given by (4.1)

100NA TD

NA

E E
ESP

E

 (4.1)

Figure 4.9: The energy per computation of the 16-bit CRC for a 16-bit message length

at varying frequency

81

In the calculation of the energy saving, the energy dissipation of PCG is not included.

Out of the five adiabatic logic designs, PFAL exhibits the maximum ESP of

approximately 84.5% at 100MHz, whereas, at 10MHz and 1MHz frequencies, IECRL

implementation exhibits the maximum ESP of approximately 91% and 96%

respectively. The energy consumption per computation and the ESP of the five adiabatic

logic families at frequencies simulated are reported in Table 4.2.

Table 4.2: Energy per computation for adiabatic logic families and non-adiabatic

implementation at the frequencies simulated.

CRC Implementation
Frequency (MHz)

1 10 100

Non-adiabatic Energy (pJ) 58.81 54.93 53.93

CAL
Energy 23.72 26.65 38.74

ESP 59.67 51.48 28.17

CPAL
Energy 9.51 9.27 13.25

ESP 83.83 83.13 75.43

IECRL
Energy 2.46 4.87 8.63

ESP 95.83 91.13 83.99

EACRL
Energy 8.02 8.19 11.30

ESP 86.36 85.10 79.05

PFAL
Energy 4.98 5.65 8.37

ESP 91.54 89.71 84.48

The single-phase, CAL design is least beneficial in comparison to the other adiabatic

implementations. Unlike the adiabatic logic using 2-phase and 4-phase power clocking

schemes, in a single-phase cascaded CAL logic, the inputs from the previous stages

always have the same phase as the power-clock, except with a small delay. As the wait

signal, ‘R4_H’ is connected to the ‘RET_L’, the input of 32 retain transistors, and the

propagation delay increases as the power-clock speed is increased (shorter ramping

time). As a result, the input reads the wrong value which gets propagated to the register

outputs. Hence, for a shorter ramping time (higher frequency), the sizing of the logic

gate generating the ‘R4_H’ signal in CAL controller was done leading to increased

energy dissipation. On the other hand, at the simulated frequencies, the IECRL design

shows the minimum energy per computation at frequencies lower than 25MHz

approximately whereas, PFAL consumes the minimum energy above 25MHz.

82

4.6.2 Impact of Load Capacitance on Energy Dissipation

Figure 4.10 shows energy per computation at varying load capacitances at 10MHz. It

can be seen that the variations in the energy dissipation of CAL and the IECRL logic

with load variation are steeper as compared to the rest of the logic designs presented. At

load capacitance greater than 60fF, IECRL crosses the energy dissipation of CPAL and

becomes the second worst (after CAL). Out of the five adiabatic logic designs, the CAL

implementation consumes the maximum energy. It is also worth mentioning that the

non-adiabatic design outperforms the CAL logic at load capacitance values greater than

100fF. On the other hand, PFAL consumes the least energy at load capacitance values

greater than 20fF. However, the advantage of the low energy consumption of the 2-

phase CPAL logic (due to zero NAL at the two output nodes) diminishes mainly

because of the high computation time incurred by the CRC datapath.

Figure 4.10: The energy per computation at varying load capacitances.

Considering the EACRL design, it dissipates more energy in comparison to PFAL and

IECRL at lower capacitive load as shown in Figure 4.10. However, as the load increases

beyond 50fF, the advantage of zero NAL in the evaluation phase overpowers its

disadvantages of higher input/output node capacitances (due to dual evaluation logic)

and the coupling effect. Thus, it dissipates less energy than that of IECRL at higher

capacitive loading. In addition, when compared to PFAL, due to more number of

transistors, EACRL consumes approximately 55% more energy at zero load capacitance.

But at 200fF, the load capacitance dominates the internal node capacitance of EACRL

83

and consequently, the difference in the energy dissipation of PFAL and EACRL reduces.

EACRL dissipates approximately 4.3% more energy than PFAL.

4.6.3 Impact of Supply Voltage Scaling on Energy Dissipation

Energy in both adiabatic and non-adiabatic implementations can be reduced by supply

voltage scaling according to the quadratic dependence of the energy dissipation on the

supply voltage (2.2) and (2.6).

However, in adiabatic logic, reducing VDD also increases the ON-resistance, RON, of the

transistor in the charging path (4.2), thus increases the energy dissipation [38]. Hence,

the energy benefits of the reduced supply voltage in adiabatic circuits are less.

1
ON

GS th

R
K V V

 (4.2)

Where
L

WC
K

ox
 . As long as VDD is above than Vth, the energy dissipation in an

adiabatic logic is given by

2

L DD DD
AL

r DD th

C V V
E

KT V V

2

1 thL DD
AL

r DD

VC V
E

KT V

 (4.3)

Assuming negligible NAL and leakage, ETD = EAL then substituting (2.6) and (4.3) in

(4.1), the effect of voltage scaling on ES in an adiabatic circuit can be derived (4.4).

 1 1 th

DD DD

V
ES

V V

 (4.4)

Where;
r

L

KT

C

2

Figure 4.11 shows the effect of voltage scaling on energy per computation for five

adiabatic and non-adiabatic CRC implementations at 10MHz and at 10fF load

84

capacitance. From (4.4) and Figure 4.12, it can be seen that the adiabatic techniques

largely suffered from voltage scaling in terms of ESP and functionality. PFAL and

IECRL show a similar reduction in ESP as the voltage is scaled down, except the fact

that the former fails to deliver the correct functionality at 0.6V (voltage closer to the

threshold voltage). Also, due to the higher voltage drop of pass transistors in CPAL, it

malfunctions at 1V and less. Thus, it makes CPAL highly vulnerable logic at lower

voltages. As expected, CAL shows minimum ESP and goes below zero, approximately

5% at 0.6V. This implies that the energy dissipation of the non-adiabatic

implementation becomes less than that of CAL design.

Figure 4.11: Energy per computation at the varying supply voltage.

Figure 4.12: ESP at the varying supply voltage.

85

It can be summed up that, ESP of adiabatic logic designs shows a steeper response at

supply voltage less than 1.2V. In addition, the reduction in supply voltage will also

degrade the noise margin both in non-adiabatic and adiabatic implementations. Thus,

for the adiabatic logic families, an optimal range for the supply voltage scaling is

proposed. It is named as “Adiabatic Voltage Scaling Range” for better ESP and proper

functionality and is stated as;

 VDD ≥ 2Vth (4.5)

4.6.4 Impact of Process Voltage Temperature (PVT) variation on the Energy

Dissipation

The robustness of the CRC design using adiabatic logic against PVT variations is

investigated by running the PVT analysis in Analog Design Environment (ADE). All the

CRC implementations were simulated for five corners to ensure correct operation. Figure

4.13 shows the energy per computation measured for the adiabatic and non-adiabatic

designs at 10MHz and 10fF load capacitance.

Temperature plays an important role in the energy dissipation of the adiabatic circuit due

to the dependency of on adiabatic energy dissipation on RON. The increase in temperature

causes RON to increase, causing the adiabatic logic to dissipate more at a higher

temperature. The worst-case energy dissipation was measured for the Fast-Fast (FF)

process corner at a 1.98V supply voltage and 100oC temperature. Similarly, for the best

case, slow-slow (SS), 1.62V and 0oC were considered. Whereas for the skewed corners

slow-fast (SF), and fast-slow (FS), the designs were simulated for 1.62V and 100oC

temperature giving energy dissipation close to the SS corner and for the FS corner 1.98V

and 0oC, close to the FF corner. For typical-typical corner (TT), 1.8V and 27oC

temperature is the default value.

In SF corner, the CAL implementation malfunctions, therefore its energy dissipation is

not measured. On the other hand, CPAL design shows large variations in the energy

consumption at extreme corners (FF and SS) compared to the other adiabatic logic

designs presented. However, out of the five adiabatic CRC implementations, PFAL and

EACRL show constant ESP approximately 90% and 85% respectively at all process

corner. Whereas IECRL shows ESP of 85% at FS corner and 91% at rest of the four

process corners.

86

Figure 4.13: Energy per computation at five process corners.

4.6.5 Impact of Message Word-Length on Computation Time

The datapath of the CRC for all the 4-phase and 2-phase 16-bit CRC designs, take 64

power-clock phases for the computation of 16-bit message word-length. An additional

seven phases, four for the counter and three for 16:1 multiplexer are required for the

message bits to arrive at the input of the CRC datapath. Another four phases are

required by the CRC value to be appended with the message word in the register unit.

Thus, the total of 75 power-clock phases equivalent to 18.75 power-clock cycles is

required by the 4-phase designs for CRC computation. Whereas, for the 2-phase design,

37.5 power-clock cycles are required for the complete computation. Although the

single-phase design has the lowest power-clock complexity, however, it requires 75

power-clock cycles in total. Therefore, resulting in the lowest throughput and highest

energy dissipation.

The non-adiabatic design requires 18 clock-cycles, approximately 3/4th less as

compared to that required by the 4-phase adiabatic logic designs. This is because the

adiabatic implementation of the multiplexer test circuit requires three power-clock

phases whereas non-adiabatic requires none. Figure 4.14 shows the extrapolated result

of the computation time at varying message word-length using the multi-phase power-

clock designs and the non-adiabatic design for the 16-bit CRC code.

87

Figure 4.14: Computation time versus message bit length.

4.6.6 Power-Clock Generation (PCG)

Unlike static CMOS logic, adiabatic circuits are powered from the clock, requiring a

separate “power-clock” supply. PCG will consume a significant amount of the energy

(analogous to the clock generation in conventional CMOS). It is important to bear in

mind that PCG will be able to supply considerably more circuitry than the CRC

presented here. Nevertheless, it is appropriate to consider its energy too, which is often

neglected in adiabatic papers present in the open literature. Here, a 4-phase PCG based

on StepWise Charging (SWC) circuit is used, as found in [51]. The complete adiabatic

system was designed which comprises of the power-clock generator and the adiabatic

core.

The adiabatic core contains the CRC. The required power-clock phases come from

PCG. Single-phase, 2-phase, and 4-phase power-clock generators were designed using

2-step charging circuit. To generate 2-phase power-clock two 2-step charging circuits

were required. Similarly, for 4-phase power-clock, four 2-step charging circuits were

required. For a single-phase, only one 2-step charging circuit was required and the

auxiliary clocks were supplied using a trapezoidal power source. What also has to keep

in mind that generating power-clock of the same ramping time for 2-phase and single/4-

phase clocking scheme, the power-clock frequency is different.

88

The simulations were performed for a ramping time of 25ns for the power-clocks with

supply-voltage 1.8V VDD and 10fF capacitive load attached to the output of the adiabatic

core. The reference CLK for generating the power-clock frequency of 25ns ramping

time (10MHz) was taken to be 40MHz and 60MHz for single/4-phase and 2-phase

clocking schemes respectively. The frequency of operation for non-adiabatic was taken

to be 10MHz. The value of the tank capacitance used in the 2-stepwise charging circuit

of the single-phase, 2-phase, and 4-phase PCG was 5pF. In the 2-step-charging circuit,

keeping the length of the switches minimum, the width of the switches were taken based

on the logic families. For a single phase and 2-phase designs, the width of the pMOS

and nMOS was chosen to be 1u and 0.5u respectively whereas for PFAL and IECRL,

the width was taken as 0.25u for all the transistors. In the case of EACRL, due to its

dual evaluation network, the pMOS width was taken as 4u and nMOS width was 2u.

Table 4.3: Energy dissipation per computation by an adiabatic system (including PCG)

and the non-adiabatic design.

Logic Design Styles EPCG(pJ) ETOTAL SYSTEM(pJ)

Non-Adiabatic -- 54.93

CPAL 101.03 107.27

CAL 113.55 134.82

PFAL 44.17 48.53

EACRL 48.39 59.74

IECRL 29.36 36.93

Table 4.3 reports the energy consumed by the adiabatic system (including PCG) and the

non-adiabatic design for computing the CRC value. In comparison to the non-adiabatic

design, only PFAL and IECRL show a decrease in energy dissipation. It is also worth

mentioning that the energy consumption of the signal generator for SWC has not been

considered. In addition, the energy dissipation of the adiabatic system can be made

lower by using step charging circuits with more than 2-steps [49]. It has not been

possible to include the clock distribution overhead for non-adiabatic as the figures can

be misleading and not reflect reality. Moreover, it will very much be design and layout

specific, dependent, how well they are optimised and the tools used. However, the

comparison between adiabatic and non-adiabatic in Table 4.3 reported an unfavorable

outcome for the adiabatic circuit since the dissipation of the clock generator and

89

distribution network present in almost all the non-adiabatic circuits are not considered,

it is clear from Table 4.3 that IECRL is superior to non-adiabatic regardless of the clock

distribution network.

Based on the simulation results for a 16-bit message word-length for 16-bit CRC, the

performance trade-offs of the multi-phase adiabatic logic design is tabulated in Table

4.4. The only difference in the structure of PFAL and IECRL logic is in the connection

of the evaluation network. They both have the same and a minimum number of

transistor counts. On the other hand, the CPAL logic design uses approximately 40%

more transistors compared to PFAL and IECRL whereas, CAL and EACRL design

consume 25% and 20% more transistors respectively. This increase of CPAL transistor

counts is because of the twice the number of buffers needed in the register unit due to

the synchronization issue.

Table 4.4: Performance trade-offs between multi-phase adiabatic 16-bit CRC

implementation for a 16-bit message word-length.

Adiabatic

Logic

Families

Area
(in terms of

transistor

counts)

Robustness
against

PVT

Variations

Computation

Time
(power-clock

cycles)

Circuit
Complexity

Power-clock
Complexity

ETOTAL

SYSTEM

(pJ)

CPAL 3012 Medium 75 High Medium 107.27

CAL 2696 Low 37.50 Medium Low 134.82

PFAL 2150 High 18.75 Low High 48.53

EACRL 2582 High 18.75 High High 59.74

IECRL 2150 High 18.75 Low High 36.93

The impact of increased message word-length is more on the computation time

(throughput) of single-phase and 2-phase designs rather than the 4-phase design. The

area is mostly incurred by the register unit rather than the other CRC components,

therefore, the impact of increased message word-length is not much on the area of the

CRC design for all the five adiabatic logic designs. Since the CRC datapath

implementation requires four cascade logic for a single bit CRC bit-slice, the advantage

of single phase (CAL) and 2-phase (CPAL) designs in terms of transistor count and

throughput diminishes. It can be seen that the 4-phase schemes are more efficient in

terms of area and throughput. They also show high robustness against PVT variations.

90

The power-clock complexity depends on the number of SWC circuits needed to

generate the required power-clock phase and the area utilized by the controller circuitry.

A single-phase PCG requires one SWC circuits and two flip-flops and two 2-inputs

logic gates for the controller. Whereas the 2-phase power-clock generator requires two

SWC circuits, three flip-flops, and nineteen 2-input logic gates. On the other hand, all 4-

phase power-clock generator is designed using four SWC circuits, two flip-flops, and

eight 2-inputs and single-input logic gates.

4.7 Summary

This chapter presents the exhaustive survey of single-phase, two-phase and four-phase

adiabatic logic families based on the 16-bit adiabatic implementation of CRC for NFC

application. A methodology for selecting generically “efficient” design is based on

achieving optimum trade-offs between energy, area, computation time, robustness

against PVT variations, supply voltage scaling, power-clocking scheme, and power-

clock generator complexity.

The 4-phase adiabatic logic designs outperform the single-phase and 2-phase adiabatic

logic designs. The CAL complexity is lowest due to the use of single-phase power-

clocking scheme, however, its performance is worst based on computation time,

throughput, latency, robustness, and energy dissipation. Even though the three 4-phase

adiabatic logic designs have high complexity due to the 4-phase power-clock

requirement, they show high robustness against PVT variations and energy efficiency

compared to the single-phase and 2-phase designs. The 4-phase EACRL has the highest

area and energy due to the complex evaluation network compared to IECRL and PFAL.

On the other hand, IECRL dissipates more energy at higher capacitance load and less

energy at lower capacitance load when compared to PFAL.

Energy saving deteriorates when PCG is considered. The results show that only IECRL

consume less energy compared to the non-adiabatic design (without considering the

energy dissipation of the clock drivers, clock distribution network and clock generator).

The system energy comparison in Table 4.3 and performance comparison between

adiabatic logic techniques in Table 4.4 will enable the designers to use quantitative

information in selecting the required n-phase adiabatic logic to design an effective

feedback system.

91

5 VHDL Modelling for Timing Characterization

Functionality obtained in previous chapters is based on SPICE simulations of transistor-

level circuits using Spectre simulator in Cadence. From these, certain inferences were

drawn about the synchronization of power-clock phases for correct operation and the

time spent in debugging errors in a large adiabatic system. Therefore, if the dual-rail 4-

phase adiabatic logic can be modeled using Hardware Description Languages (HDL),

time for design, functional verification and error debugging can be significantly reduced.

This is the main motivation of this chapter. In this chapter, (VHSIC Hardware

Description Language) VHDL based models for the simulations of the dual-rail4-phase

adiabatic logic technique are presented. The functional aspects of the models are

verified for the 4-phase adiabatic circuit designs used in Chapters 3 and 4. Moreover,

the models are designed such that, precise timings of the computation in the 4-phase

adiabatic system can be determined. This feature is included as a secondary objective of

the VHDL modelling.

5.1 Introduction

The verification of the functionality and the low energy traits of adiabatic logic in

comparison to non-adiabatic logic is generally performed using the SPICE simulations

at the transistor level. But as the size and complexity of the adiabatic system increases,

the amount of time required in designing and validating the design increases.

Additionally, due to the complexity of synchronizing the power-clock phases,

debugging of errors becomes difficult and time-consuming. This gives rise to a need for

specific modelling approach that can be used to describe the adiabatic logic behaviour at

a higher level of abstraction before the simulations at the transistor level are performed

for energy measurements. Such a model would allow functional errors to be detected

92

and corrected, decreasing the overall time in designing and verifying the functionality of

complex adiabatic systems. Moreover, as both the adiabatic and non-adiabatic uses the

same process technology and can be fabricated on the same wafer, the precise modelling

of both the logic with proper interfacing [100] can save a considerable amount of time

arising due to the synchronization complexity. The designing of adiabatic circuits

requires much more efforts in contrast to the non-adiabatic logic for which well-

developed tools exist. The major difference between the two is that the adiabatic logic

designs use slowly changing ac power-clock supply instead of dc power-supply.

The use of adiabatic logic techniques instead of non-adiabatic logic (conventional

CMOS) design can decrease the energy consumption of a large system considerably

[54]. Based on the performance comparison results of adiabatic logic techniques

presented in Chapter 4, the VHDL modelling for the 4-phase adiabatic logic has been

done. VHDL is valid and is efficiently used for signal levels ‘0’ and ‘1’ having zero

rises and fall time ideally. However, in adiabatic logic, due to the dual-rail encoding of

inputs and outputs and the multi-phase clocking scheme, the waveforms are more

complex. In addition to the logic ‘1’ and logic ‘0’, the adiabatic power-clock supply

uses two transition levels where the power-clock is a ramp. The transition from logic ‘0’

to logic ‘1’ known as charging/evaluation period and transition from logic ‘1’ to logic

‘0’ known as discharging/recovery period. The 4-phase power-clock is modeled such

that all the four periods share the same time. The more detailed description of the

power-clocking scheme is given in Chapter 2 of this thesis.

In the literature, few research papers exist that details the modelling of adiabatic logic

using HDL. Not much attention has been given to the higher-level simulation of the

adiabatic logic designs due to the complex power-clock generation requirements.

According to the authors best knowledge and literature review, the first modelling of

adiabatic logic was done by M. Vollmer and J. Gotze in 2005 [26]. They described a

systolic array of CORDIC devices using adiabatic logic modeled in VHDL. Their work

included the description of the adiabatic logic block but did not model the dual-rail

behaviour and used one global clock net instead of 4-phase power-clock for cascade

designs. A year later, Laszlo Varga et.al. [27] described two-level pipelining scheduling

of adiabatic logic using integer linear programming formulation and a heuristic

scheduling. The authors presented the VHDL description for functional simulation of

the synthesized adiabatic datapath together with the non-adiabatic part of the digital

93

system. This approach focused mainly on producing a pipeline schedule of the power-

clock behaviour of the adiabatic logic but did not model the power-clock and used the

single-rail encoding of the adiabatic logic. In 2010, David John Willingham in his Ph.D.

thesis [28] reported Asynchrobatic Logic in Verilog, an industry standard HDL. First,

the author demonstrated the idea in a single-rail scheme and then extended it to dual-rail,

which was found to be missing in Vollmer and Laszlo’s modelling. Though the dual-rail

implementation proves to be advantageous in detecting invalid circuit operations, the

author did not model the power-clock in HDL, instead uses square waveform changing

from logic ‘1’ to ‘0’ and vice versa.

The main drawback of all the existing approaches is that none have shown the actual

representation of an adiabatic logic technique [24] by representing all the four periods

namely; evaluation, hold, recovery and idle of the power-clock in HDL. Instead, the

power-clock is represented as a square waveform with only two logic levels (logic ‘1’

and logic ‘0’) like that of the non-adiabatic logic. Here, the logic ‘1’ corresponds to the

hold period and logic ‘0’ corresponds to the idle period. The remaining two periods,

which are ramp; one changing from 0 to VDD corresponds to the evaluation and other

from VDD to 0 corresponding to the recovery period, have been skipped or merged with

hold and idle periods. Ideally, all the four periods should share the same time, for

correctly representing the adiabatic waveform/power-clock and follow the adiabatic

principles. Thus, unlike SPICE-level simulation, when the inputs and power-clock are

in the same phase then the output will still be valid using the existing modelling

approaches. This invalid operation will lead to a wrong functionality and will be

difficult and time-consuming to be detected errors in a large circuit. The error in the

encoding of HDL using the existing approach is given in the next section.

Therefore, in this study, VHDL-based modelling for the 4-phase adiabatic logic

technique is developed for functional simulation. It represents the 4-phase power-

clocking scheme and includes a systematic approach for precise timing analysis. This is

the novel contribution which captures the exact timing behaviour and detects the

circuit’s invalid operation by checking the generated complementary outputs. The

modelling includes the dual-rail representation of the input/output signals. The four

periods of the power-clock explicitly defined as a function in VHDL. The conceptual

block diagram for an adiabatic NOT/BUF gate is given in Figure 5.1. The power-clock

generator block comprises of two flip-flops working as a 2-bit counter. The input to the

94

power-clock generator is the clock signal (CLK). The four states of the counter are

assigned to the four periods of the power-clock. The adiabatic conversion block

comprises of a 2-bit counter and depending on the pulse input levels (IN_H, IN_L) the

adiabatic outputs (A_H, A_L) are generated. The adiabatic core is a NOT/BUF gate

generating both the complementary outputs (Out_H, Out_L).

Figure 5.1: A conceptual block diagram of an adiabatic system where the adiabatic core

is a NOT/BUF gate.

5.2 Encoding of HDL Models

The most difficult part of modelling the adiabatic logic using conventional HDLs is that

these languages are made entirely for encoding two logic levels (‘0’ and ‘1’) and is

either ‘level’ or ‘edge’ sensitive. In order to define a cell library with HDL functional

models of the adiabatic cells which can be used with conventional HDL simulators in

the design of a large adiabatic circuit, power-clock of the adiabatic logic needs to be

suitably encoded for all the four periods (Figure 2.2 in Chapter 2 of this thesis). In the

literature, the voltage-level encoding style for adiabatic logic has been used which is

similar to the non-adiabatic logic designs. With the adiabatic logic, having trapezoidal

power-supply, the gates operating during a specific period must follow the adiabatic

principle. In addition, each adiabatic logic gates such as MUX, AND/NAND, OR/NOR

and XOR/XNOR must be sequential that combines the logic functionality with storage

capability, therefore, requires a different encoding approach. In this work, two encoding

styles are discussed i.e. previously used voltage-level encoding style and the proposed

multi-level event-based encoding style.

95

5.2.1 Voltage-level Event-based Approach

So far voltage-level event-based approach is commonly used for encoding the behaviour

of the power-clock in adiabatic logic. It uses two logic levels to represent the four

periods of the adiabatic power-clock. The logic ‘1’ of the power-clock signal represents

Evaluation (E) and Hold (H) period of the trapezoidal power-clock, whereas, the logic

‘0’ represents the Recovery (R) and Idle (I) period of the trapezoidal waveform. Figure

5.2 shows the voltage-level encoding style. The adiabatic logic modeled using this style

uses the clock signal as the power-clock.

Figure 5.2: Voltage level event-based encoding.

Although the author [36] included the checking of the invalid states on the positive-edge

of the power-clock, the drawback of this style still exists. Here the output does not

follow the power-clock; rather it is a function of the input being processed (which is not

the case with adiabatic circuits). For example, in an adiabatic buffer gate, when the

inputs are valid (logic ‘1’) during the positive-edge of the clock, the complementary

output nodes follow the complementary inputs. However, in the case of SPICE

simulation, one of the outputs follows the power-clock depending on the input being

processed whereas its complementary node is discharged to ground. This difference has

been removed in the proposed encoding scheme by making sure that the outputs follow

the power-clock, not the inputs. Moreover, as stated above, voltage-level encoding for

adiabatic power-clock doesn’t follow the adiabatic principle for cascade logic. Thus, the

adiabatic logic design can malfunction if either the PC is delayed or the input arrives

early such that the power-clock rising edge aligns with the falling edge of the input.

5.2.2 Multi-level Event-based Approach

In the proposed approach, the hold and the idle periods of the power-clock are

represented as logic ‘1’ and logic ‘0’ similar to that of the voltage-level encoding.

96

Whereas, the evaluation and the recovery period are encoded with an intermediate state

marked as ‘X’, for the duration of the ramp period. This approach is not straightforward,

as apart from generating the power-clock which has three logic levels, the adiabatic

inputs must also be generated with three logic levels for proper functionality and timing

analysis. The trapezoidal power-clock is modeled as three logic levels as shown in

Figure 5.3. The four periods of the power-clock are defined as an edge function in

VHDL which is aggregated into a package named “Adiabatic_signal”. The package is

shared between different VHDL models to develop the cell library of the basic adiabatic

logic gates. The approach can also be easily used for single-phase and 2-phase adiabatic

logic techniques, although it will not be straightforward in the case of 2-phase adiabatic

logic due to its long idle period.

Figure 5.3: Multi-level event-based encoding.

5.3 HDL Modelling of 4-phase Adiabatic Logic Technique

VHDL is used to model the 4-phase adiabatic logic technique to capture the circuit

description. One of the advantages of modelling is that the design can be simulated with

logic simulators and can be interfaced with the non-adiabatic logic designs for energy

efficiency. Generally, the circuit behaviour and the timing extracted from SPICE

simulation are used to develop the VHDL models. First, the trapezoidal power-clock

used at the transistor level is encoded as a multi-level in standard logic (shown in Figure

5.4) to capture the behaviour of adiabatic logic. This is followed by the gate-level

modelling and interconnection modelling (pulse input to adiabatic conversion). Other

than simulating the circuit behaviour in HDL, the main objective is to measure the

computation time of the circuit so that for a large system, the throughput can easily be

calculated. Moreover, like SPICE simulation, the proposed modelling approach for

adiabatic logic detects invalid complementary inputs by checking on to the

97

complementary outputs. Also, the conventional CMOS circuits required for the power-

clock and adiabatic input generation are similar to that of the controller used to generate

signals for PCG [101].

The method used is presented as follows.

1) Modelling the behaviour of the trapezoidal AC power-clock.

2) Generation of dual-rail adiabatic signals from dual-rail pulse input.

3) Developing a VHDL model library.

4) Modelling invalid inputs.

Figure 5.4: Encoding trapezoidal waveform in standard logic.

5.3.1 Modelling Trapezoidal AC Power-clock

To realize the adiabatic power-clock in standard logic using a multi-level approach, as

depicted in Figure 5.3, four states are required. Each state is encoded based on the

voltage level needed. The four states can be easily generated using two flip-flops

counting from “00” to “11”.For simplicity, the counter output is forced externally as the

input to the power-clock generator block using the clock signal ‘CLK’ as a two-bit

number, generating four states. Figure 5.5 shows the circuit simulation of the power-

clock for a time period of 200ns. The VHDL code for power-clock generation is shown

below in Listing 5.1:

Figure 5.5: HDL simulation for generating a power-clock signal.

98

Listing 5.1: VHDL code for a power-clock generation.

5.3.2 Generating Dual-rail Adiabatic Signals from Dual-rail Pulse Input.

One of the key requirements for adiabatic logic to perform correctly is the generation of

the adiabatic inputs using a multi-level encoding approach. In adiabatic logic, the input

must be stable (hold period) during the evaluation period of the power-clock. This

behaviour is captured in the proposed modelling by having the input to arrive one phase

before the power-clock such that more realistic modelling representing the adiabatic

logic is realized. Similar to the power-clock generator block, the pulse input to adiabatic

conversion block consists of the two-bit clock signal ‘CLK’ forced externally to

generate four states. Depending on the dual-rail signals it's equivalent dual-rail adiabatic

outputs are generated. Figure 5.6 shows the VHDL simulations for the generation of

adiabatic input signals. The adiabatic inputs can be generated for any power-clock phase

required by simply assigning the states to the ‘CLK’ signal. The VHDL code for the

same is shown in Listing 5.2. It also shows the modelling of invalid pulse inputs to its

equivalent adiabatic outputs.

1. LIBRARY IEEE;
2. USE IEEE.STD_LOGIC_1164.ALL;
3. USE IEEE.STD_LOGIC_ARITH.ALL;

4. ENTITY GENERATE_ADIABATIC_CLOCK IS
5. port (CLK: in std_logic_vector (1 downto 0); PC : out

std_logic);

6. END ENTITY GENERATE_ADIABATIC_CLOCK;

7. Architecture Behavioural of GENERATE_ADIABATIC_CLOCK IS

8. Begin
9. Process (CLK) IS
10. Begin
11. if CLK ="00" then // IDLE PERIOD //

12. PC<='0';

13. elsif CLK = "01" then // EVALUATE PERIOD //

14. PC<='X';

15. elsif CLK = "10" then // HOLD PERIOD //

16. PC<='1';

17. elsif CLK = "11" then // RECOVERY PERIOD //

18. PC<='X';

19. End if;

20. End Process;
21. End Architecture Behavioural;

99

Figure 5.6: VHDL simulation for generating the adiabatic input signals.

1. LIBRARY IEEE;
2. USE IEEE.STD_LOGIC_1164.ALL;
3. USE IEEE.STD_LOGIC_ARITH.ALL;

4. ENTITY PULSE_INP_to_ADIABATIC IS
5. port (IN_H, IN_L : in std_logic; CLK: in std_logic_vector(1

downto 0);A_H, A_L : out std_logic);

6. END ENTITY DC_TO_ADIABATIC;

7. Architecture Behavioural of PULSE_INP_to_ADIABATIC is
8. Begin
9. Process (CLK) is
10. Begin

11. if CLK ="00" then
12. if IN_H ='1' and IN_L ='0' then

13. A_H<='X';

14. A_L<='0';

15. elsif IN_L ='1' and IN_H ='0' then

16. A_H<='0';

17. A_L<='X';

18. elsif IN_H ='1' and IN_L ='1' then //Invalid State//

19. A_H<='X';

20. A_L<='X';

21. elsif IN_H ='0' and IN_L ='0' then //Invalid State//

22. A_H<='0';

23. A_L<='0';

24. End if;

25. elsif CLK = "01" then
26. if IN_H ='1' and IN_L ='0' then

27. A_H<='1';

28. A_L<='0';

29. elsif IN_L ='1' and IN_H='0' then

30. A_H<='0';

31. A_L<='1';

100

Listing 5.2: VHDL code for converting DC inputs to adiabatic inputs.

5.3.3 Developing a VHDL Model Library

To model the adiabatic logic gates, VHDL primitives are compared to equivalent

adiabatic gates based on the multi-level encoding approach. Table 5.1 shows the truth

table of the two basic primitives AND and OR. The not gate is not shown as

behavioural modelling of the NOT/BUF adiabatic gate has been done. In Table 5.1 and

5.2, the outputs in red indicate the one that is not matched with the adiabatic logic

modelling. The proposed modelling uses ‘x’ and ‘z’ as intermediate and invalid states

respectively. Thus, the operation involving either of them with ‘1’ and ‘z’ produces an

invalid output ‘z’, marked in red for the adiabatic logic modelling. In addition, the OR

operation of the adiabatic logic modelling involving ‘z’ with ‘0’ produces an invalid

output marked with ‘z’ in Table 5.2. Table 5.2 is used to write a user-defined primitive

for AND and OR as a function in VHDL. The functions utilize case statement control

structure and are named ‘Aand’ and ‘Aor’ in Adiabatic_2INP_GATES package body.

32. elsif IN_H ='1' and IN_L ='1' then //Invalid State//

33. A_H<='1';

34. A_L<='1';

35. elsif IN_H ='0' and IN_L ='0' then //Invalid State//

36. A_H<='0';

37. A_L<='0';

38. End if;

39. elsif CLK = "10" then

40. if IN_H ='1' and IN_L ='0' then

41. A_H<='X';

42. A_L<='0';

43. elsif IN_L ='1' and INP_H='0' then

44. A_H<='0';

45. A_L<='X';

46. elsif IN_H ='1' and IN_L ='1' then //Invalid State//

47. A_H<='X';

48. A_L<='X';

49. elsif IN_H ='0' and IN_L ='0' then //Invalid State//

50. A_H<='0';

51. A_L<='0';

52. End if;

53. elsif CLK = "11" then

54. A<='0';

55. Ab<='0';

56. End if;

57. End Process;

58. End Architecture behavioural;

101

Their VHDL codes are shown in Listings 5.3. The lines 12-21 represent the Aor and

lines 27-38 represents the Aand.

Table 5.1: Basic logic gates AND and OR.

Table 5.2: Basic logic gates AND and OR for adiabatic logic modelling.

102

Listing 5.3: User-defined primitives as functions in a user-defined package

In addition, the logic level simulation and timing verification of the adiabatic logic

circuits with standard tools is possible only after defining the functions for power-clock

periods namely; EVALUATE_edge, HOLD_edge, RECOVERY_edge and the

1. LIBRARY IEEE;
2. USE IEEE.STD_LOGIC_1164.ALL;
3. PACKAGE Adiabatic_2INP_GATES IS
4. FUNCTION Aor (L, R : std_ulogic) RETURN UX01Z;
5. FUNCTION Aand (L, R: std_ulogic) RETURN UX01Z;
6. END Adiabatic_2INP_GATES;

7. PACKAGE BODY Adiabatic_2INP_GATES IS

//User Defined Adiabatic OR//

8. FUNCTION Aor (L, R : std_ulogic) RETURN UX01Z is
9. VARIABLE sel: std_logic_vector (1 downto 0);

10. begin

11. sel:= L&R;

12. case sel is
13. when "00"=> return '0';

14. when "01"=> return '1';

15. when "10"=> return '1';

16. when "11"=> return '1';

17. when "0X"=> return 'X';

18. when "X0"=> return 'X';

19. when "XX"=> return 'X';

20. when others=> return 'Z';

21. end case;
22. END FUNCTION;

// User Defined Adiabatic AND//

23. FUNCTION AandL, R : std_ulogic) RETURN UX01Z is
24. VARIABLE sel: std_logic_vector (1 downto 0);

25. begin

26. sel:= L&R;

27. case sel is

28. when "0Z"=> return '0';

29. when "Z0"=> return '0';

30. when "00"=> return '0';

31. when "10"=> return '0';

32. when "01"=> return '0';

33. when "0X"=> return '0';

34. when "X0"=> return '0';

35. when "XX"=> return 'X';

36. when "11"=> return '1';

37. when others=> return 'Z';

38. end case;
39. END FUNCTION;
40. End PACKAGE BODY Adiabatic_2INP_GATES;

103

IDLE_edge in the package that is used by all the adiabatic HDL description files by

placing the ‘USE’ directive in the program. The VHDL package defining the power-

clock periods are shown in Listing 5.4. The function for EVALUATE_edge is

represented by the lines 10-13, HOLD_edge by the lines 14-17, RECOVERY_edge by

the lines 18-21 and lines 22-25 represent the IDLE_edge of the power-clock.

Listing 5.4: User-defined four power-clock periods as functions in a package.

1. LIBRARY IEEE;
2. USE IEEE.STD_LOGIC_1164.ALL;
3. PACKAGE Adiabatic_signal IS
4. FUNCTION EVALUATE_edge(SIGNAL s :std_ulogic)

RETURNBOOLEAN;

5. FUNCTION HOLD_edge(SIGNAL s : std_ulogic) RETURN BOOLEAN;
6. FUNCTION RECOVERY_edge(SIGNAL s : std_ulogic) RETURN

BOOLEAN;

7. FUNCTION IDLE_edge(SIGNAL s : std_ulogic) RETURN BOOLEAN;
8. END Adiabatic_signal;

9. PACKAGE BODY Adiabatic_signal IS

10. FUNCTION EVALUATE_edge(SIGNAL s : std_ulogic) RETURN
BOOLEAN is

11. Begin
12. RETURN (s'EVENT AND(To_X01(s) = 'X') AND

(To_X01(s'LAST_VALUE)= '0'));

13. END FUNCTION;

14. FUNCTION HOLD_edge(SIGNAL s :std_ulogic) RETURN BOOLEAN is
15. Begin
16. RETURN (s'EVENT AND (To_X01(s) = '1') AND

(To_X01(s'LAST_VALUE)= 'X'));

17. END FUNCTION;

18. FUNCTION RECOVERY_edge(SIGNAL s : std_ulogic) RETURN
BOOLEAN is

19. Begin
20. RETURN (s'EVENT AND (To_X01(s) = 'X') AND

(To_X01(s'LAST_VALUE)= '1'));

21. END FUNCTION;

22. FUNCTION IDLE_edge(SIGNAL s :std_ulogic) RETURN BOOLEAN is
23. Begin
24. RETURN (s'EVENT AND (To_X01(s) = '0') AND

(To_X01(s'LAST_VALUE)= 'X'));

25. END FUNCTION;
26. End PACKAGE BODY Adiabatic_signal;

104

Then the development of VHDL model for the NOT/BUF adiabatic gate is collectively

done using the power-clock generation, package defining the four periods of the

adiabatic signal and pulse input to adiabatic inputs conversion. The VHDL code for the

NOT/BUF adiabatic gate is given in Listing 5.5. The package is defined in line 4. Line 6

defines the input/output ports of the gate and line 15 describes the signals similar to the

wires in a schematic used to interconnect the components. Line 17-18 defines the

component instantiation for the adiabatic power-clock and adiabatic input generation.

The behaviour of the adiabatic NOT/BUF gate is captured in lines 19-73. Apart from

checking the invalid input condition in each of the four periods, an invalid state is also

checked for the NOT/BUF gate for cascade designs in lines 69-71. The four periods of

the power- clock in Listing 5.5 are defined as a level sensitive signals due to the use in

cascade logic designs, otherwise, the stages ahead of the first will be stuck at logic ‘0’.

The output waveform using the SPICE simulation and the proposed modelling is shown

in Figure 5.7 (a) and (b) respectively. The VHDL simulation shows the precise timing

similar to the SPICE simulation.

1. LIBRARY IEEE;

2. USE IEEE.STD_LOGIC_1164.ALL;

3. USE IEEE.STD_LOGIC_ARITH.ALL;

4. USE work.Adiabatic_signal.all; //Package Definition//

5. ENTITY Proposed_Buf IS

6. port (IN_H, IN_L: in std_logic; CLK: in std_logic_vector(1

downto 0); Out_H, Out_L: out std_logic);

7. END ENTITY Proposed_Buf;

8. Architecture Behavioural of Proposed_Buf IS

9. Component DC_TO_ADIABATIC

10. port (IN_H, IN_L : in std_logic; CLK : in std_logic_vector(1

downto 0); A_H, A_L : out std_logic);

11. End Component;

12. Component GENERATE_ADIABATIC_CLOCK

13. port(CLK: in std_logic_vector (1 downto 0); PC : out

std_logic);

14. End Component;

15. Signal A_H, A_L, PC :std_logic;
16. Begin
17. INPUT1: DC_TO_ADIABATIC port map(IN_H,IN_L,CLK,A_H,A_L);

18. CLK1: GENERATE_ADIABATIC_CLOCK port map(CLK, PC);

19. Process (PC, A_H, A_L) is
20. Begin

// IDLE PERIOD //

21. if PC=’0’ then

22. Out_H <=PC;

23. Out_L<= PC;

105

Listing 5.5: VHDL code for adiabatic NOT/BUF gate.

// EVALUATION PERIOD //

24. elsif PC=’X’ and HOLD_edge (A_H) and HOLD_edge (A_L)

then//Invalid State//

25. Out_H<=‘Z’;

26. Out_L<=’Z’;

27. elsif PC=’X’ and HOLD_edge (A_H) then

28. Out_H <= PC;

29. Out_L<='0';

30. elsif PC=’X’ and HOLD_edge (A_L) then

31. Out_H <= '0';

32. Out_L<=PC;

33. elsif PC='X' and RECOVERY_edge (A_H) then

34. Out_H<=‘Z’;

35. Out_L<=’Z’;

36. elsif PC='X' and RECOVERY_edge (A_L) then

37. Out_H<=‘Z’;

38. Out_L<=’Z’;

// HOLD PERIOD //

39. elsif PC=’1’ and RECOVERY_edge (A_H) and RECOVERY_edge (A_L)

then //Invalid State//

40. Out_H<=‘Z’;

41. Out_L<=’Z’;

42. elsif PC=’1’ and RECOVERY_edge (A_H) then

43. Out_H<= PC;

44. Out_L<='0';

45. elsif PC=’1’ and RECOVERY_edge (A_L) then

46. Out_H<= '0';

47. Out_L<=PC;

48. elsif PC=’1’ and IDLE_edge (A_H) then

49. Out_H<=‘Z’;

50. Out_L<=’Z’;

51. elsif PC=’1’ and IDLE_edge (A_L) then

52. Out_H<=‘Z’;

53. Out_L<=’Z’;

// RECOVERY PERIOD //

54. elsif PC=’X’ and IDLE_edge (A_H) and IDLE_edge (A_L)

then //Invalid State//

55. Out_H<=‘Z’;

56. Out_L<=’Z’;

57. elsif PC=’X’ and IDLE_edge (A_H) then

58. Out_H<= PC;

59. Out_L<='0';

60. elsif PC=’X’ and IDLE_edge (A_L) then

61. Out_H<= '0';

62. Out_L<=PC;

63. elsif PC='X' and EVALUATE_edge (A_H) then

64. Out_H<=‘Z’;

65. Out_L<=’Z’;

66. elsif PC='X' and EVALUATE_edge (A_L) then

67. Out_H<=‘Z’;

68. Out_L<=’Z’;

// INVALID STATE //

69. elsif A_H='Z' and A_L='Z' then

70. Out_H<='Z';

71. Out_L<='Z'

72. End if;

73. End Process;

74. End Architecture Behavioural;

106

 (a)

 (b)

Figure 5.7: Simulation results for NOT/BUF gate (a) SPICE (b) VHDL.

5.3.4 Modelling Invalid Complementary Inputs

The operation of the adiabatic logic gates, although conceptually simple, can be

somewhat complex to model accurately. This is due to the two cross-coupled inverters

forming a latch, which retains the last value stored at the output. For example: if both

the complementary inputs are logic ‘0’ (invalid states), the complementary outputs will

retain the last value stored. That is if the last value is logic ‘1’ and logic ‘0’ on the two

output nodes ‘Out_H’ and ‘Out_L’ respectively then the same value will be retained.

This can be seen in Figure 5.8. This, invalid input in a large circuit will be difficult to

debug, especially in the case when functionally, logic ‘1’and ‘0’ is expected on the two

output nodes. In addition, this invalid circuit operation will lead to high energy

consumption, due to the non-adiabatic losses. On the other hand, if the complementary

inputs are invalid by being at logic ‘1’, the complementary output nodes will be charged

107

through the pMOS transistor (which follows the power-clock)and at the same instant,

the nMOS transistor will be discharging the output nodes to ground. Therefore, the

output nodes will settle at some intermediate value as can be seen from Figure 5.7 (a)

and 5.8.

The proposed HDL model can easily identify both these classes or invalid inputs by

ensuring the complementary output nodes to be at high impedance state ‘z’, when

invalid inputs are logic ‘1’ consistent with the SPICE simulation Whereas when the

invalid inputs are logic ‘0’, the complementary output nodes are also at logic ‘0’. The

above invalid operations are shown in Figure 5.7 (b). This helps in identifying the value

of the invalid inputs clearly.

Figure 5.8: SPICE simulation for PFAL NOT/BUF gate showing invalid outputs.

For all the other adiabatic logic gates such as AND/NAND, OR/NOR, XOR/XNOR and

MUX/DeMUX, the functional behaviour can be described similar to the adiabatic

NOT/BUF gate. However, the modelling of the above logic gates is performed by

combining the functional part and the adiabatic NOT/BUF. This is because the

modelling is done considering the dual-rail inputs thus, the state checking complexity of

the HDL behavioural increases for an increased number of inputs due to the

complementary inputs. The NOT/BUF gate used helps in following the adiabatic

principle and identifying the invalid complementary inputs while synchronizing the

outputs for correct timing characterization.

108

Figure 5.9 shows how the dual-rail 2-input AND/NAND gate, is conceptualized as a

logic function combined with a NOT/BUF gate for timing characterization in VHDL.

The collection of all the logic gates described in VHDL formed the cell library.

Figure 5.9: Conceptualization of 2-input AND/NAND gate for timing characterization.

5.4 Error in Modelling of Existing Approach

As stated in section 5.2, voltage-level encoding can result in circuit malfunctioning due

to the violation of the adiabatic principle. As a result, the circuit will fail to maintain

precise timing with that of the simulated waveform at the transistor level. Thus, to

calibrate our proposed modelling, in case, if either the input or the power-clock arrives

early or gets delayed the two output nodes should discharge to ground, identifying an

invalid input has occurred and the modelling follows the adiabatic principle. Figure 10

(a) shows the cascade buffer chain designed using PFAL NOT/BUF gate connected in

cascade. The gate working in power-clock phase 1 (PC1) produces the first stage output

denoted as ‘Q01_H’ and ‘Q01_L’. The fourth stage works in power-clock phase 4 (PC4)

and produces the final stage outputs denoted by ‘Q0_H’ and ‘Q0_L’. Figure 10 (b)

shows the condition of an early arrival and delayed input for the existing modelling

using square-waveform. It can be seen in Figure 10 (b) that for the delayed input

condition, the outputs follow the adiabatic principle by generating logic ‘0’ for the

existing approach. However, when the input arrives early, the output follows the power-

clock, thus violating the adiabatic principle. Therefore, in the existing approach, a

timing window exists between the input and the power-clock for correct circuit and

timing operation. The same condition can occur if the power-clock is either delayed or

arrives early. In a small circuit such errors can be easily detected manually, but for a

large complex circuit, detection of such errors will be time-consuming and very difficult

109

to debug. In addition, the circuit will fail to maintain precise timing that agrees with that

of the SPICE simulated waveform.

(a)

(b)

110

(c)

Figure 5.10: Schematic of the cascade buffer chain. (b) Simulated waveforms of input

timing variations for the existing approach using square-waveform. (c) Simulated

waveform using the proposed approach.

To overcome the drawbacks highlighted earlier on in the paper and identify the invalid

inputs correctly, the power-clock of the adiabatic logic is encoded for all the four

periods. It can be seen from Figure 10 (c) that the proposed modelling approach will fail

if the wrong input signal or the power-clock (delayed or arrived early) is supplied. This

gate generation failure will be similar to that of the SPICE simulation.

The proposed modelling approach is much more precise, however, it generates a glitch

for the delayed input condition, which reduces as it is passed through a cascade

NOT/BUF gates which can be seen in Figure 10 (c). The glitch arises due to the signal

111

‘X’ being used for encoding both the ramps (evaluation and recovery period). It can

however be removed if two different signals such as ‘U’ and ‘X’ are used for encoding

the two ramps. However, this glitch is insufficient to cause any functionality and timing

error which the existing logic exhibits. The simple ‘X’ was used for simplicity and it

works well with the timing requirement.

5.5 Simulation Results

Using the cell library, a 2-bit ring counter and a 3-bit Up-Down counter structural

models were successfully verified. The circuit functionality and timing verification are

done using HDL Designer from Mentor Graphic. The time period of the power-clock is

taken as 100ns, having an equal time period for the four periods of the power-clock i.e.

25ns each. The 4-phase adiabatic logic family used for the SPICE simulation is PFAL.

The simulation setup for the SPICE analysis is similar to that of the VHDL so that the

uniformity and comparability are maintained across both the simulations. The VHDL

codes for the above two designs are included in Appendix B of this thesis, whereas the

VHDL simulations alongside with the SPICE level simulations are presented for the

ring counter and Up-Down counter.

The structural level of abstraction is used which combines the components to form a

large adiabatic system. In order to work in a cascade manner, first, the 4-phase power-

clock is generated each having a 90o phase difference between them. Figure 5.11 shows

the output waveform of the 4-phase power-clock generation. The VHDL code for the

same is given in Appendix B.

Figure 5.11: 4-phase power-clock.

112

A single-rail and a dual-rail resettable input NOT/BUF gate have been designed. The

single-rail is simple which is used only when the resettable buffer is working in power-

clock phase 1 (PC1). Here the reset input ‘res_H’ has not been converted from pulse

input to adiabatic input. When ‘res’ is at logic ‘0’, the counter outputs (Q0_H and Q1_H)

are at logic ‘0’, whereas the complementary outputs (Q0_L and Q1_L) follows the

power-clock depending on the dual-rail inputs. For allowing state checking and

detecting invalid circuit operation, the dual-rail resettable NOT/BUF gate is also

designed. The VHDL codes for both are given in appendix B.

There is no variation in the timing of the VHDL simulation to that of the SPICE (circuit)

simulation of the 2-bit ring counter. The two output waveforms are shown in Figure

5.12 (a) and (b).

 (a)

 (b)

Figure 5.12: 2-bit ring counter output waveforms (a) VHDL (b) SPICE.

113

As the ring counter does not employ any combination logic, a 3-bit Up-Down counter

was also modeled. Based on the circuit diagram of the 4-phase Up-Down counter in

Chapter 3 of this thesis, the VHDL code is written which is given in the Appendix B.

Here, the dual-rail resettable NOT/BUF gate is used. The block diagram is given in

Figure 5.13 showing the inputs and the 4-phase power-clocks to the adiabatic core

which are being generated by the pulse input to the adiabatic conversion block and the

4-phase power-clock generator respectively. Figure 5.14 (a) and (b) shows the VHDL

simulation waveforms alongside the SPICE simulation waveform for 3-bit Up-Down

counter. The counter design shows the accuracy of the modelling in terms of timing and

the representation of the adiabatic logic technique.

Figure 5.13: Block diagram of the 3-bit Up-Down counter.

114

(a)

 (b)

Figure 5.14: 3-bit Up-Down counter output waveforms (a) VHDL (b) SPICE.

To further demonstrate the applicability of the cell library in the structural modelling of

adiabatic VLSI circuits, a 16-bit CRC for the 16-bit message word length designed in

Chapter 4 of this thesis was also modeled and simulated successfully.

115

The CRC is initialized using the reset input 'RES_H' which resets the counter to “0000”

state and load the pre-set value “0x6363” to the CRC datapath. When ‘RES_L’ signal is

set ‘0’, CRC starts the computation. The controller signal ‘R0_L’ is the complementary

signal of ‘R0_H’, used to select the required generator polynomial. The signals ‘R1_H’

and ‘R2_H’ from the controller are the inputs to the CRC datapath acting as the reset

signals whereas, the signal ‘R3_H’ serves as the select signal which loads the pre-set

value to the CRC datapath during the reset operation. The CRC value is calculated when

the last message bit is sent, and the counter reaches “1111” state. Then the calculated

CRC value from the datapath and the message bits get appended to the register unit

while the counter returns to “0000” state. The CRC value in the CRC datapath is cleared

and loaded with the pre-set value. The reset period lasts for two power-clock cycles and

after that, the counter starts counting again automatically allowing the CRC to re-

calculate its value.

Figure 5.15 (a) and (b) shows the VHDL and the SPICE simulation waveforms for 16-

bit CRC. Both the simulation was run on the same platform with the same resources.

The SPICE simulation using the high performance spectre simulator XPS-MS takes 117%

longer than the VHDL ModelSim simulator. The VHDL simulation result shows the

precise time modelling when compared to the SPICE result. The only difference is the

delay gained by the VHDL implementation at the start of the simulation. This is because,

in VHDL modelling, the pulse inputs are converted to the adiabatic inputs which are

then passed through the buffer gates for generating inputs for the cascade logic working

in the respective power-clock phases. Whereas, in transistor level design the inputs are

given based on the requirement of the power-clock input phase for the cascade logic. If

the inputs in transistor level design are processed similar to the VHDL design, then both

the simulations will have the same initial delay at the start of the simulation.

116

(a)

117

(b)

Figure 5.15: 16-bit CRC waveforms output waveform (a) VHDL (b) SPICE.

It can be concluded for the VHDL implementation of the 16-bit CRC that the modelling

approach presented in this chapter shows the possibility of an efficient design approach

for timing characterization of a high-end complex adiabatic system.

5.6 Summary

This chapter discusses the existing approaches for modelling the adiabatic logic

technique. In particular, the shortcomings of the existing VHDL modelling approaches

are identified and as a solution, a new multi-level event-based approach is proposed.

118

The proposed HDL modelling of adiabatic logic circuits shows that the precise timing

as that of the SPICE simulation can be achieved. The modelling of the 4-phase adiabatic

logic technique includes the generation of dual-rail adiabatic signals from dual-rail

pulse input, developing VHDL model library with basic adiabatic primitive AND and

OR gates (‘Aand’ and ‘Aor’) and modelling invalid complementary inputs. The exact

behaviour of the trapezoidal power-clock is also represented by presenting all the four

periods distinctively using VHDL.

For the verification and applicability of the proposed approach, 2-bit ring counter, 3-bit

Up-Down counter, and ISO 14443 benchmark circuit, 16-bit CRC are modeled. The

simulation results confirm the precise timing of VHDL modelling. The proposed

modelling is easy and can be used for designing a large complex system, eventually

reducing the amount of time needed for design validation. However, whilst HDL

simulation is essential for early functional check and error detection, the use of SPICE

simulation is still required to measure energy consumption. The novel use of all the four

edges of a power-clock has enhanced the robustness and reliability of the proposed

modelling for the design of the large complex adiabatic system.

119

6 Manchester Coding using Adiabatic Logic

Technique

Energy plays an important role in NFC passive tags as they are powered by radio waves

from the reader. The ISO/IEC 14443 [12] standard utilizes Manchester coding for the

data transmission from the passive tag to the reader for NFC type-A passive

communications. This chapter proposes a novel method of Manchester encoding using

the adiabatic logic technique for energy minimization. The chapter also discusses the

challenge associated with the implementation of Manchester encoding using adiabatic

logic. The design is implemented by generating the replica bits of the actual data bit and

then flipping the replica bits, for generating the Manchester coded bits. Based on the

performance trade-offs discussed in Chapter 4 of this thesis, the proposed design was

implemented using two adiabatic logic families namely; Positive Feedback Adiabatic

Logic (PFAL) and Improved Efficient Charge Recovery Logic (IECRL) which are

compared in terms of energy dissipation for the range of frequencies. Furthermore, to

investigate the impact of adiabatic logic family on the power-clock generator the energy

dissipation of the complete adiabatic system was measured including the power-clock

generator designed using 2-StepWise Charging circuit and a controller generating

control signals is considered.

6.1 Introduction

The energy cost in passive NFC system consists of first initializing the communication

(powering the tag) and then exchange of information wirelessly between the reader and

the tag [5]. When the tag comes near the reader, it initiates the communication and the

120

data through modulation is transmitted between the reader and the tag [102]. In order to

reduce the error rate and improve data efficiency, the data is encoded before being

modulated. Different encoding techniques are used for the data to be transmitted from

the reader to the tag and vice-versa. Miller coding is used to transmit data from the

reader to the tag, whereas, Manchester coding is used for the data transfer from the tag

to the reader [8]-[10]. A dynamic binary search algorithm [103] is used to initialize and

select an NFC-A tag, where Manchester coding makes it possible to detect collision

bitwise as per ISO 14443-3A standard [13]. Cyclic Redundancy Code (CRC) which is

added to the end of the transmitted data was done and presented in Chapter 4 of this

thesis. In this chapter, adiabatic implementation of the Manchester coding is presented.

6.2 Initialization and Anti-collision (ISO/IEC 14443-3A)

When a tag comes within the working field of the reader, the communication between

the tag and the reader is first established. Two scenarios can occur, first it may happen

that the reader is already communicating with another tag, secondly, multiple tags are

present simultaneously in the working field of the reader. A way must be provided to

allow interference-free communication with a single tag. Establishing communication

between a tag and a reader and the anti-collision methods to be used for selecting one

tag from multiple are described in part 3 of ISO/IEC 14443 [13]. The standard contains

specifications for two types of tags, Tag-A and Tag-B. Each type uses different coding

schemes and anti-collision methods. Anti-collision method for multiple tag

identification is divided into two main algorithms: Binary tree-based deterministic for

Type-A tag [103] and Aloha-based probabilistic for the Type-B tag [104]. Additionally,

Type-A tag uses Manchester coding before sending the data for load modulation using

Amplitude Shift Keying (ASK), whereas, Type-B uses Non-Return to Zero (NRZ)

coding of data which is sent to the reader after load modulation using Binary Phase

Shift Keying (BPSK). Table 6.1 summarizes the modulation schemes, coding and anti-

collision method for these two types of tags.

In this thesis, an NFC type-A tag has been considered. A variant of the binary search

algorithm which is a dynamic binary search algorithm [103] is used to initialize and

select Type-A tag. When the reader gets the acknowledge command, Answer to Request

type-A (ATQA), from the tag, it recognizes that one tag is present within the reader’s

field. It then initiates the anti-collision procedure which allows reading the type-A

121

unique identifier (UID) by transmitting the SELECT command. If the reader determines

the complete UID, it transmits a SELECT command with the UID transmitted by the tag.

The tag with the corresponding UID confirms this command by transmitting a SELECT

acknowledge (SAK).

Table 6.1: Modulation, Coding and Anti-collision method for ISO 14443-3 [13].

NFC passive

tag
Modulation scheme Coding Method

Anti-collision

method

Type-A
Amplitude Shift

Keying (ASK)
Manchester Binary search

Type-B
Binary Phase Shift

Keying (BPSK)

Non-Return to Zero

(NRZ)
Aloha

However, if two or more tags are located in the reader’s field, they react simultaneously

to the reader’s SELECT command and starts sending their UIDs and the reader will

receive the data superimposed on each other. If the reader detects the collision, it

responds by transmitting bit-oriented anti-collision frames [13]. The bit-oriented anti-

collision frame is divided into two parts. The valid bits before the collision is the first

part. After the collision have been detected the reader sends back this part of the UID

followed by a ‘1’ bit. Only the tag whose part of the UID that matches with that of the

data transmitted by the reader will send the remaining bits to the reader which forms the

second part of the anti-collision frame. Thus, the amount of bit transmission is reduced

as the selected tag sends only the bits after the collision has occurred. In general, the

dynamic binary search algorithm decreases the collision bits step by step to achieve the

goal of identifying the conflicting tags. This improves the communication quantity and

reduces the communication time. The detailed anti-collision algorithm is given in part 3

of the ISO/IEC 14443A standard and the example is given in Annex A of the same [13].

Detecting a collision bit position in the reader is the foundation of the binary search

algorithm. In this algorithm, the data from the tags are encoded using Manchester

encoding. It detects the collision by the fact that the superimposition will cause the

carrier to be modulated by the subcarrier for the full duration of one or more of the bit

interval. For example, consider two 8-bit ID numbers 11100101 and 10101000 that

have different bits at the second, fifth, sixth and eighth place from left to right, which

the reader can not determine clearly the signal on these four bits, so the received signals

122

become 1?10??0?. Where, ? represents an uncertainty which results in collision bit at

the second, third, sixth and eighth places. The conventional and the proposed

Manchester encoding is discussed in the next section. Figure 6.1 shows the collision of

two-bit sequences with Manchester coding (Type A).

Figure 6.1: Collision of two Manchester encoded bitstream.

6.3 Adiabatic Implementation of Manchester Encoding

Coding techniques define how accurately, efficiently and robustly a message is

constructed from the data that needs to be communicated. Manchester code (also known

as Phase Encoding (PE) or bi-phase) is a line code in which the encoding of each data

bit has at least one transition and occupies the same time [9]. The idea is to have

multiple transitions in the data bitstream for a long sequence of ‘1’ and ‘0’ data.

Manchester encoding is based on the synchronous clock encoding technique and

provides a means of adding the data rate clock to the message [9]. It uses “two-level

state changes” to represent 0 and 1. Logic ‘0’ is indicated by a ‘0’ to ‘1’ transition and

logic ‘1’ is indicated by a ‘1’ to ‘0’ transition. Bi-phase Manchester code is one, where

logic ‘1’ is encoded as the transition from ‘0’ to ‘1’, and vice versa. Manchester code

reports an error when the state doesn't change in a clock cycle, indicating the collision

of data. So, when the reader receives bits from the tags and some bits do not change, the

reader can know which bits are conflicting with each other. The waveform for a

Manchester encoded bit stream ‘11100101’ is shown in Figure6.2. The simplest way of

implementing the Manchester encoding requires an exclusive NOR (XNOR) function

between the clock (CLK) and the data bit stream, whereas, exclusive OR (XOR) for bi-

phase Manchester encoding.

123

Figure 6.2: Manchester encoding waveform for multiple data bits.

Manchester coding using the adiabatic logic technique is challenging due to the

following reasons;

1) In the adiabatic logic technique, the input and the power-clock both have the same

time-period (frequency), having a 90o phase difference. In addition, the output follows

the power-clock depending on the input.

2) If the two different power-clock frequencies are used in the same circuit then it may

be necessary to generate them separately. This will add to the complexity of the power-

clock generator incurring overhead in terms of energy consumption and area of the

complete adiabatic system.

3) The use of two different frequencies will violate the adiabatic principle and cause the

energy dissipation to increase. This is specifically due to the fact that the output

following the power-clock.

Therefore, for the adiabatic implementation, a new method and hardware are required

for encoding the data bit stream such that the long strings of 1s and 0s are avoided. One

of the advantages of the adiabatic implementation is that no separate power-clock needs

to be added to the data bit stream. In fact, as the input has the same time period as that

of the power-clock, the clock and the data can easily be recovered at the receiver side

from the Manchester coded data. Figure 6.3 shows the relationship between the input

and PC for PFAL NOT/BUF gate.

124

Figure 6.3: Relationship between PC, input and output waveforms in the adiabatic logic

technique.

Since the adiabatic logic has the constraints due to PC and the input having the same

time period, in the proposed method the time-period of the data bit stream is doubled

such that each bit in the data bit stream occurs twice consecutively. This way the replica

image of the actual data bit stream is created. After this, the flipping of the replica bits

takes place which generates the Manchester coded bit stream ready to be sent to the

reader. This complete process ensures that there are no consecutive ‘1’ and ‘0’ in the

transmitted coded data bit stream. Figure 6.4 shows the Manchester encoding using the

proposed method. The encoding of the data bit stream is described as follows;

Step 1: Data bit stream stored in the register implemented using adiabatic logic.

Step 2: Using a 2-state counter, each bit in the data bit stream from the register is read

twice in consecutive power-clock cycles, such that each bit from the actual data stream

is replicated and forms a bit pair. Each pair in the data stream contains the actual and the

replica bits. The second bit of each pair in the replicated bitstream is the replica bit.

Step 3: The complement of the replicated bit stream is generated.

Step4: The replicated bit stream and its complement are multiplexed to form

Manchester coded data bit stream.

125

Figure 6.4: Manchester encoding waveform using adiabatic logic for multiple bits.

From Figure 6.4, it can be seen that every single data bit is encoded into an actual and

replica bit. Manchester code using adiabatic logic can be defined as a code in which the

encoding of each bit of double length occurs in pairs for two power-clock cycles and

has exactly one transition either from ‘1’ to ‘0’ or vice-versa. So, when the reader

receives Manchester coded bits from multiple tags and some bits do not change in a bit

pair then the collision exists in that particular bit pair. Figure 6.5 shows the collision

when two Manchester coded data using the proposed method arrives in the reader for

identifying the collision bits.

Figure 6.5: Collision of two Manchester encoded data using the proposed method.

The hardware requirement for the proposed Manchester encoding using adiabatic logic

is as simple as the conventional encoding method which requires XOR gates. However,

the proposed method requires a few more logic gates for replicating the bit stream and

multiplexing it to generate the Manchester encoded data. Unlike conventional CMOS

logic, the adiabatic logic generates complementary signals which give the advantage of

generating both phase and bi-phase Manchester encoded data at the same time.

126

The adiabatic design of the Manchester coding for the 8-bit data stream is shown in

Figure 6.6 (a), whereas, Figure 6.6 (b) shows the corresponding output waveforms of

the 2-state counter, replicated bits stream, and Manchester coded signal. The input bits

stream b1_H -- b8_H is taken as ‘11100101’ as an example.

(a)

(b)

Figure 6.6: Proposed Manchester encoding (a) Circuit diagram (b) Output waveforms.

For generating the replica bits, the proposed encoding method uses a two-state counter.

A two-state counter is one whose count remains in the same state for two consecutive

power-clock cycles. Figure 6.7 shows the circuit for the two-state counter. The counter

counts from “000” state to “111”. The output of the counter is the select input to the 8:1

127

multiplexer which sends each bit to 2:1 multiplexer serially. 8:1 multiplexer is designed

using two 4:1 and one 2:1 multiplexer. The circuit design for 2:1 multiplexer is depicted

in Figure 3.1 in Chapter 3 of this thesis. After this, the replicated data bit stream and its

complementary data stream are multiplexed. The Manchester encoded signal is

generated by sequentially turning the switch ON and OFF between the replicated and its

complementary data bit streams. The select signal to the 2:1 Multiplexer is generated by

the XOR operation between the LSB bit of the counter and its delayed bit (by one

power-clock cycle) to maintain synchronization between the bit stream and the counter.

The delay of one power-clock cycle is generated by connecting four buffer gates in

cascade. The circuit diagram is depicted in Figure 3.7 in Chapter 3 of this thesis.

Figure 6.7: 2-state counter.

The only disadvantage of the proposed method is the increase in the number of effective

transitions and an effective doubling of the bit duration to two power-clock cycles. This

128

doubles the computation time, however, it is expected to be energy efficient due to the

adiabatic implementation. To the author’s best knowledge, this is the first time

Manchester encoding using adiabatic logic technique is proposed and implemented.

6.4 Simulation Results

Based on the performance results presented in previous Chapters 3 and 4, the 4-phase

adiabatic logic families have been chosen. Specifically, the 4-phase adiabatic logic

families used for the SPICE simulation are PFAL and IECRL. The transistor sizes for

both were set to the technology minimum. The simulations were performed with the

Spectre simulator using the Cadence EDA tool in a ‘typical-typical’, TT process corner

using TSMC 180nm CMOS process at 1.8V power supply.

Since the implementation of Manchester encoding is a part of initialization and anti-

collision of the ISO standard 14443-3 [13], the energy dissipation was measured as the

energy per cycle for 40 data bits. The energy measurement is taken at various PC

frequencies ranging from 1MHz to 100MHz for a load capacitance of 10fF. Figure 6.8

shows the simulation waveform for PFAL at 10MHz PC frequency for 40 bits data

stream. The waveform shows the 2-state counter, replicated data bit stream and the

phase and bi-phase Manchester encoded data along with 4-phase power-clock. When

the ‘RES’ is logic ‘1’ the complete system is at zero states. The system starts the

computation when the ‘RES’ signal goes to logic ‘0’.

The comparison of energy per power-clock cycle of PFAL and IECRL is shown in

Table 6.2. It can be seen that IECRL implementation has the lowest energy compared to

PFAL. The increment in PFAL energy is not significant from 1 MHz to100MHz in

comparison to that of IECRL. Though, Table 6.2 shows IECRL consumes minimum

energy, however, as stated in Chapter 2 under section 2.5 that increase in load

capacitance will increase its energy consumption due to the non-adiabatic losses

occurring during both the evaluation period and the recovery period [30], [31].

129

Figure 6.8: SPICE simulation waveform for the proposed Manchester encoding.

130

Table 6.2: Comparison of Energy per power-clock cycle of PFAL and IECRL.

 Energy Consumption per power-clock cycle (fJ)

Frequency (MHz) 1 10 100

PFAL 253.30 253.78 310.38

IERCL 119.98 119.46 304.77

Figure 6.9 shows the graph for the two adiabatic logic families at varying load

capacitance at 10MHz PC frequency. It is observed that IECRL show a steeper response

in energy consumption as the load capacitance increases in comparison to PFAL.

Nevertheless, the above comparison is inconclusive without taking consideration of the

power clock generator.

Figure 6.9: Energy consumption per power-clock cycle vs load capacitance.

As stated in Chapter 4, the Power Clock Generator (PCG) circuitry is an important part

of an adiabatic logic design. It accounts for a significant amount of energy compared to

the adiabatic design as it is designed using conventional CMOS logic. PCG used for the

simulation is a 4-phase PCG using SWC circuit. The clock frequency (CLK) is taken as

40MHz generating a power-clock frequency of 10MHz (ramping time of 25ns), supply-

voltage is 1.8V and 10fF capacitive load attached to the output of the adiabatic core.

The complete adiabatic system designed comprises the power-clock generator and the

adiabatic core is shown in Figure 6.10. PCG is implemented using a 2-step charging

circuit.

131

Figure 6.10: Complete Adiabatic System with 4-phase PCG using SWC circuit.

The tank capacitance (CT) chosen for both the logic families is 5pF. The aspect ratio of

the SWC circuit for both the logic families is taken to be the same for fair comparison

and evaluation of the two adiabatic logic families. The adiabatic core is the Manchester

encoding circuit.

Table 6.3: Comparison of energy per power-clock cycle of the adiabatic system using

PFAL and IECRL.

 Energy Consumption per power-clock cycle (pJ)

 Controller SWC+core Total

PFAL 1.040 1.524 2.565

IERCL 1.002 1.098 2.10

Table 6.3 reports the energy consumed by the adiabatic system including the power-

clock generator for encoding the data bit stream into Manchester code. From

Figure6.10, it can be seen that the adiabatic core is the load to the SWC, hence the

energy is measured for the controller and the SWC by measuring the current at the

supply voltage (VDD) separately. It is also worth noting that, that the energy

consumption of the controller for the SWC is almost constant for all system size [54] for

the fixed power-clock cycle. More importantly, the energy consumption of the SWC for

the PFAL family is approximately 40% more in comparison to IECRL. This is because

the evaluation network of the PFAL family being connected between the power-clock

and the output as depicted in Figure 2.6 (a) of Chapter 2. This connection adds on the

extra capacitance of a minimum of two nMOS transistors (drain terminal) connected to

132

the power-clock in addition to the two pMOS transistors. As a result, PFAL presents a

large load capacitance to SWC. On the other hand, IECRL has its evaluation network

connected between the output nodes and the ground, as a result, PC is connected only to

the two pMOS transistors, as depicted in Figure 2.6 (b). Therefore, IECRL shows a

decrease in capacitance value compared to PFAL, hence shows a reduction in energy

dissipation of SWC.

6.5 Summary

This Chapter gives a brief discussion of the initialization and anti-collision protocol

based on ISO/IEC 14443A standard. Specifically, the use of Manchester encoding for

data transmission is discussed. It is one of the important parts in wireless data

communication and is used in the anti-collision algorithm to increase the data efficiency

which aids in identifying the collision bit in the reader after transmission. In addition,

challenges associated with the implementation of Manchester encoding using adiabatic

logic technique is discussed. Furthermore, a novel method of encoding data bit stream

into Manchester coding using a 4-phase adiabatic logic technique is proposed. The

proposed implementation generates phase and bi-phase Manchester encoding data

simultaneously, as depicted in Figure 6.2, due to the dual-rail adiabatic logic design.

Since the power-clock and the input have the same time period, the adiabatic

implementation has an advantage over conventional CMOS method, i.e. it does not

require a clock signal to be exclusively XORed with the data bit stream. At the receiver

side, the decoding of the received Manchester coded data takes place, where the actual

data and the clock is decoded and will be checked for collision. The only disadvantage

the proposed method has is that it doubles the effective bit duration. However, as the

working frequency of NFC technology is centered around 13.56MHz, the proposed

method can easily be used for such applications. From the simulation results, it is

concluded that IECRL consumes less energy compared to PFAL at 10fF load

capacitance. If the load capacitance increases the IECRL adiabatic core energy will

increase but it is anticipated that the overall system energy will not be more compared

to PFAL due to the extra capacitance (a minimum of two pMOS transistors).

133

7 Conclusion and Future Work

This Chapter summarises the achievements of this research work in a reflective manner

and provides the author's recommendations for further work relating to the adiabatic

approach.

7.1 Research Summary

The main motivation of this thesis was to exploit the energy efficient traits of the

adiabatic logic technique to deliver the ultra-low power operation for NFC applications.

Chapter 2 reported in this thesis builds the foundation on the general background of the

adiabatic logic technique and several adiabatic logic families working on single-phase,

2-phase and 4-phase power-clocking schemes. Due to the divided opinions on the most

energy efficient adiabatic logic family which also constitute an appropriate trade-off

between computation time, circuit complexity and power-clocking scheme complexity,

five of the most energy efficient adiabatic logic families namely; CAL, CPAL, IECRL,

EACRL and PFAL were chosen for further research and scrutiny which has formed the

basis of this research.

Due to the requirement of resettable buffers in sequential logic designs, novel resettable

buffers for the five chosen adiabatic logic families were designed. The proposed novel

adiabatic resettable buffers used for the design and layout implementation of resettable

flip-flops shows a reduction in energy and layout area consumption compared to the

existing MUX-based resettable adiabatic flip-flops. Additionally, it has been shown

through the design of 2-bit twisted ring counter and 3-bit Up-Down counter that PFAL

and IECRL driven by a 4-phase power-clocking scheme constitute appropriate

134

performance trade-offs between energy consumption, computation time, power-clocking

scheme and circuit complexity. This has been discussed in Chapter 3 of this thesis.

To enable future designers and researchers in this subject area to use quantitative

information on selecting the required power-clocking scheme and robust adiabatic logic

family, a 16-bit CRC test circuit was implemented using the five chosen adiabatic logic

families as an application and system component of an NFC tag. A methodology and

strategy for CRC implementation using adiabatic logic working on single-phase, 2-

phase and 4-phase power-clocking scheme was proposed. A modification in the bit-

serial CRC design was also done by incorporating more functionality which allows for

the use of any CRC-16 generator polynomial and any initial load values. Significant

differences in functionality and robustness under voltage scaling and PVT variations

among multiphase adiabatic implementations were discovered. Moreover, considering

the supply voltage scaling, it has been shown that the benefit of using adiabatic logic

deteriorates for supply voltage less than 1.2V. Therefore, a functional range for the

supply voltage scaling is proposed for better Energy Saving Factor (ESP) and correct

functionality. Finally, based on the performance trade-offs between energy dissipation,

computation time, area, robustness under PVT variation, supply-voltage scaling and

power-clock generator complexity in a large adiabatic system, it was concluded that

IECRL shows the best performance results followed by PFAL. This has been described

in Chapter 4 of this thesis.

To overcome the problem of excessive design time and difficulty of identifying and

debugging the errors in a large adiabatic system arising due to the complexity of the 4-

phase power-clocking scheme, a new modelling approach using VHDL for a 4-phase

dual-rail adiabatic logic family was proposed. The shortcomings of the existing

modelling approaches are reported. The proposed modelling provides the solution to the

shortcomings of the existing modelling approaches. The modelling of the 4-phase

adiabatic logic technique comprises of the generation of dual-rail adiabatic signals from

dual-rail pulse input, developing VHDL model library and modelling invalid

complementary inputs. The accurate behaviour of the trapezoidal power-clock was

represented by presenting all the four periods distinctively using VHDL. For the

verification and applicability of the proposed approach, 2-bit ring counter, 3-bit Up-

Down counter, and 16-bit CRC circuits were modeled. The simulation results confirm

135

the precise timings of VHDL modelling. The proposed modelling is easy and can be

used for designing large complex adiabatic systems, ultimately reducing the amount of

time needed for design validation. This aspect of the work was covered in Chapter 5 of

this thesis. The method is also applicable for single phase and 2-phase power-clocking

scheme.

Finally, a novel method of encoding data bits into Manchester coding using the

adiabatic logic technique is presented. The proposed implementation generates phase

Manchester, as well as bi-phase Manchester, encoded data simultaneously due to the

dual-rail adiabatic logic design. In the adiabatic logic technique, since the power-clock

and the input have the same frequency, the adiabatic implementation has an advantage

over conventional CMOS method, that is, it does not require a clock signal to be

exclusively XORed with the data bits. At the receiver side, the decoding of the received

Manchester coded data take place, where the actual data bit stream and the clock are

decoded and will be checked for collision. The only disadvantage the proposed method

has is that it doubles the bit duration which makes the proposed method applicable for

application working at low frequency. From the simulation results, it is concluded that

at an adiabatic system designed using IECRL family consumes 40% less energy

compared to PFAL at 10fF load capacitance. This aspect of the work is discussed in

Chapter 6 of this thesis.

7.2 Novelty Contributions (listed in the order of significance)

The contents of this section are in order of significance, unlike Chapter 1 Section 1.4,

which is in chronological order.

1. VHDL modelling of the Adiabatic Logic.

To overcome the synchronization problem arising due to the complexity of the 4-

phase power-clocking scheme and to reduce the design, validation and debugging

time, a new method for modelling 4-phase adiabatic logic in VHDL was proposed.

This will enable the designers and researchers to design and validate the adiabatic

design in a short span of time ahead of actually designing the transistor level

schematic. Additionally, the existing modelling approaches model the adiabatic

circuits using square shaped power-clock (as is done for modelling the

136

conventional CMOS circuits) instead of trapezoidal power-clock and therefore,

fails to follow the adiabatic principles.

a. Shortcomings of the existing (Hardware Description Language (HDL) modelling

approaches were identified. A very close to the exact behaviour of the trapezoidal

power-clock was represented by modelling all the four periods distinctively using

VHDL. The verification and applicability of the modelling were verified using a

2-bit ring counter and a 3-bit Up-Down counter.

b. The proposed modelling is easy and can be used for designing large complex

adiabatic systems, eventually reducing the amount of time needed for the design

and validation of such systems. The VHDL code of the NOT/BUF gate is further

enhanced by incorporating an invalid condition check in cascade logic designs.

Additionally, the gate level adiabatic modelling of the primitive AND and OR

gates were also done. The enhanced proposed modelling demonstrates the error

due to the use of a square power-clock in acquiring precise timing. A more

complex circuit such as a 16-bit CRC is used to show the robustness of the

proposed VHDL-based modelling approach for the 4-phase adiabatic logic

technique for functional and timing simulations.

2. A novel method of Manchester encoding using the adiabatic logic technique for

energy minimization is proposed. First, the time period of the data bit stream is

doubled such that each bit in the data bit stream occurs twice consecutively. This

way the mirror image of the actual data bit stream is generated. Then the flipping of

the mirror bits takes place which generates the Manchester coded bit stream ready

to be sent to the reader. The adiabatic implementation is advantageous as no

separate clock needs to be added to the data stream. In fact, as the input has the

same frequency as that of the power-clock, the power-clock and the data can easily

be recovered at the reader from the Manchester coded data stream. This is the first

time in the literature where adiabatic implementation of the Manchester encoding is

done for the energy efficient implementation of the NFC applications.

3. Cyclic Redundancy Check (CRC) is one of the main components used in passive

NFC systems, whenever the data is transmitted. Therefore, for the implementation

of the energy efficient NFC systems, performance trade-offs including robustness

against Process-Voltage-Temperature (PVT) variations and supply voltage scaling

between multi-phase adiabatic logic families in a large adiabatic system are worthy

of investigation. This provides quantitative information to the designers and

137

researchers if the supply voltage scaling benefits the performance of the adiabatic

systems. Furthermore, for the completeness of the evaluation and trade-offs

proposition, it is important to investigate the performance of the multiphase

adiabatic logic families in the presence of the Power-Clock Generator. This will

help the designers to choose the appropriate adiabatic logic family.

a. The 16-bit CRC was implemented as deployed in an application for the passive

NFC system, using multi-phase adiabatic logic families. A generic methodology

and strategy for the design of multi-phase adiabatic CRC employing single-phase,

2-phase or 4-phase power-clocking scheme was proposed. Additionally, the bit-

serial CRC design is modified by incorporating more functionality allowing for

the use of any CRC-16 generator polynomial and any initial load values.

b. Impact of voltage scaling and Process Voltage Temperature (PVT) variations on

multi-phase adiabatic implementations were investigated for TSMC 180nm

CMOS process at 1.8V supply voltage. It was discovered that the benefit of using

adiabatic logic deteriorates for supply voltages scaled less than 1.2V. Therefore,

an optimal range for the supply voltage scaling was proposed for better Energy

Saving Factor (ESP) and correct functionality.

c. When the energy dissipation of the total system comprising of the power-clock

generator was considered, it was discovered that the total energy of the system

employing single-phase and 2-phase adiabatic logic was approximately 3x and 2x

times respectively more when compared to the 4-phase adiabatic system. Moreover,

IECRL system shows the least energy consumption followed by PFAL. Any

sequential design would require flip-flops as a memory element.

4. The trade-offs between adiabatic logic families working on single-phase, 2-phase

and 4-phase power-clocking scheme in terms of energy, complexity, throughput,

and area are proposed. Thus, enabling the designers and researchers to use

quantitative information on selecting the required power-clocking scheme and

adiabatic logic families.

a. The design and implementation of 3-bit Up-Down counter using multi-phase

adiabatic logic for establishing systematic and appropriate performance trade-offs

in terms of complexity, energy, throughput, and area. Based on the simulation

results, 4-phase adiabatic logic namely; PFAL shows better performance

compared to the other adiabatic logic families.

138

5. To design adiabatic flip-flops with reset, resettable adiabatic buffers are required.

Existing resettable flip-flops, however, are based on the 2:1 multiplexer’s (MUX).

a. The proposition of novel single-phase, 2-phase and 4-phase resettable buffers for

the design of flip-flops using; Clocked Adiabatic Logic (CAL), Complementary

Pass-transistor Adiabatic Logic (CPAL), Improved Efficient Charge Recovery

Logic (IECRL), Positive Feedback Adiabatic Logic (PFAL) and Efficient

Adiabatic Charge Recovery Logic (EACRL). Prior to this, the resettable flip-flops

were based on 2:1 MUXs, used as one of the resettable stages. As a result, having

an increased number of transistors and an extra input terminal causing energy,

routing, latency, and area overhead.

b. The design, implementation, and the layout of the existing and the proposed

resettable flip-flops based on the different power-clocking schemes using all the

five(multi-phase) adiabatic logic families to act as a proof of concept. In

Compared to the existing resettable flip-flops, the proposed resettable flip-flops

using; PFAL, IECRL, EACRL, and CAL show an improvement in energy

consumption of approximately 14%, 3%, 10%, and 3% respectively. However, the

existing resettable flip-flops implemented using CPAL shows 0.5% less energy

consumption compared to the proposed resettable flip-flops.

7.3 Future Work

The adiabatic logic technique can be used in many applications where power

consumption is the critical importance rather than speed due to its energy efficient

operation. Other than the application mentioned in this thesis, it can also be considered

for applications such as medical devices. The author would like to make the following

recommendations for future work.

7.3.1 Development of new adiabatic logic with high energy efficiency to the power-

clock generator.

The overall energy saving deteriorates when the power-clock generator is considered.

The energy dissipation of the power-clock generator comprises of the energy consumed

by the controller and stepwise charging circuit. Based on the literature review and the

work presented in Chapter 3 of this thesis, it was concluded that PFAL is the most

energy-efficient adiabatic logic design approach. However, when the power-clock

139

generator was considered, it was found that IECRL consumes the least energy out of the

five adiabatic logic designs [31]. This is because of the energy consumed by the

StepWise Charging (SWC) circuit. In PFAL, the evaluation network is connected

between the power-clock and the output, whereas, in IECRL it is connected between the

output and ground. Hence, when the power-clock is supplied through SWC, an extra

capacitance due to the evaluation network connection in PFAL increases the energy

consumption of the system including the power-clock generator. Therefore, a new 4-

phase adiabatic logic which doesn’t load the power-clock generator and at the same

time has less Non-Adiabatic Losses (NAL) is worthy of investigation.

7.3.2 Development of CAD Tools

The design of conventional CMOS is easily facilitated by the existence commercially

available CAD tools. The design of adiabatic systems is time-consuming and difficult

due to the complexity of the power-clocking scheme specifically, the 4-phase power-

clocking scheme. The work presented in Chapter 5 includes the functional simulation of

the adiabatic logic for detecting errors before designing a large adiabatic system at the

transistor level and reduces the time consumed in identifying and debugging of errors.

In order to expedite the design of large complex adiabatic systems, the development of

CAD tool for logic synthesis and automatic routing is essential.

7.3.3 Development of Adiabatic System in Deep Sub-micron Technology

There exist a couple of research papers that have investigated adiabatic logic at near-

threshold [97], [98] and sub-threshold [89] for deep sub-micron CMOS technology. The

work in the papers describe the adiabatic flip-flops and sequential circuits only. It would

be worthwhile to investigate and compare the energy, area, and performance of the large

adiabatic systems like communication protocol in NFC or arithmetic unit used in

cryptosystem for smartcard applications(below 45nm), including the power-clock

generator to give a more realistic and objective measure and plot the way for the future.

7.3.4 Development of the Complete Initialization and Anti-collision for NFC-A using

the Adiabatic Logic Technique

Passive tags used for NFC application have a high cost because of the increased

hardware complexity, which includes security for the transaction and data-storage

circuitry for storing information. This causes an increase in the tag energy requirements

140

as they need more energy for powering-up the circuitry, processing and transmit data

messages [108], [5]. Moreover, when collisions occur due to multiple tags in the

reader’s proximity it results in wastage of bandwidth, energy and increased

identification time of the passive system due to the increase in re-transmission. Anti-

collision protocol is the main part of the digital processing unit in the NFC tag. The

Anti-collision algorithms are proposed to reduce the collisions [9], [104] such that the

number of re-transmissions is reduced. There are few energy-based performance

evaluations of the anti-collision protocol for passive RFID systems that can be found in

the literature [105]-[109], [5] [6]. However, the use of lower-power techniques for

implementation of the initialization and anti-collision protocol for passive NFC system

remains unexplored.

141

References

[1] K.Finkenzeller, "RFID Handbook: Fundamentals and Applications in Contactless

Smart Cards and Identification", 2nd Ed, Wiley, 2003.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “White Paper: Near Field Communication (NFC)

Technology and Measurements,” Rohde & Schwarz NFC technology and

measurements, 2011.

[3] T. Plos, M. Hutter, M. Feldhofer, M. Stiglic, and F. Cavaliere, "Security-Enabled

Near-Field Communication Tag with Flexible Architecture Supporting

Asymmetric Cryptography," IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Vol. 21, No. 11, pp. 1965-1974, Nov. 2013.

[4] X. Deng, M. Rong, T. Liu, Y. Yuan and D. Yu, "Segmented Cyclic Redundancy

Check: A Data Protection Scheme for Fast Reading RFID Tag's Memory," IEEE

Wireless Communications and Networking Conference, pp. 1576-1581, 2008.

[5] F. Hessar and S. Roy, "Energy-Based Performance Evaluation of Passive EPC

Gen 2 Class 1 RFID Systems," IEEE Transactions on Communications, Vol. 61,

No. 4, pp. 1337-1348, 2013.

[6] Feng Zhou, Chunhong Chen, Dawei Jin, Chenling Huang, and Hao Min,

"Evaluating and optimizing power consumption of anti-collision protocols for

applications in RFID systems," Proceedings of the 2004 International Symposium

on Low Power Electronics and Design, pp. 357-362, 2004.

[7] He Yan, Hu jianyun, Li Qiang and Min Hao, "Design of low-power baseband-

processor for RFID tag," International Symposium on Applications and the

Internet Workshops (SAINTW'06), pp. 4 pp.-63, 2006.

[8] Mustapha Djeddou, Rafik Khelladi and Mustapha Benssalah “Improved RFID

anti-collision algorithm” International Journal of Electronics and

Communications, vol 67, No. 3, pp. 256-262, 2013

142

[9] Y. Hung, M. Kuo, C. Tung, and S. Shieh, "High-Speed CMOS Chip Design for

Manchester and Miller Encoder," 5thInternational Conference on Intelligent

Information Hiding and Multimedia Signal Processing, Kyoto, pp. 538-541, 2009.

[10] Y. Yongkang, C. Chunsheng, Z. Tuanfeng, L. Xiang and H. Liping,

"Improvement on RFID-based Binary Anti-collision Algorithm," 2012

International Conference on Computer Science and Service System, Nanjing, pp.

515-518, 2012.

[11] Identification cards - Contactless integrated circuit(s) cards – Proximity cards -

Part 1: Physical characteristics, ISO/IEC Std. FCD 14443-1, 2007.

[12] Identification cards - Contactless integrated circuit(s) cards – Proximity cards -

Part 2: Radio frequency power and signal interface, ISO/IEC Std. FDIS 14443-2,

2009.

[13] Identification cards - Contactless integrated circuit(s) cards – Proximity cards -

Part 3: Initialization and anticollision, ISO/IEC Std. FCD 14443-3, 2008.

[14] International technology roadmap for semiconductors (ITRS): Executive

Summary, 2015.

[15] J. G. Koller and W. C. Athas, “Adiabatic Switching, Low Energy Computing, and

the Physics of Storing and Erasing Information”, Proc. of the 2nd Workshop on

Physics and Computation, pp. 267-270, 1992.

[16] R. T. Hinman and M. F. Schlecht, “Recovered Energy Logic – A Highly Efficient

Alternative to Today’s Logic Circuits”, 24th Annual IEEE Power Electronics

Specialists Conf., pp. 17-26, 1993.

[17] W. C. Athas, N. Tzartzanis, L. J. Svensson, L. Peterson, H. Li, P. Wang, and W.-

C. Liu, “AC-1: a clock-powered microprocessor,” Proc. of the International

Symposium on Low Power Electronics and Design, pp. 328-333, 1997.

[18] Joonho Lim, Kipaek Kwon, and Soo-Ik Chae, “Reversible energy recovery logic

circuit without non-adiabatic energy loss,” Electronics Letters, vol. 34, no. 4, pp.

344-346, 1998.

[19] L. Varga, F. Kovács and G. Hosszú, “An Efficient Adiabatic Charge-Recovery

Logic,” Proc. of the IEEE South East Conf., pp. 17-20, 2001.

143

[20] Hu Jianping, Cen Lizhang and Liu Xiao, “A new type of low-power adiabatic

circuit with complementary pass-transistor logic,” 5th International Conf. on ASIC,

pp. 1235-1238, 2003.

[21] A. Blotti, and R. Saletti, “Ultralow-power adiabatic circuit semi-custom design”,

IEEE Trans. on VLSI Systems, vol. 12, no. 11, pp. 1248-1253, 2004.

[22] F. Liu and K. T. Lau, “Improved structure for efficient charge recovery logic”,

Electronics Letters, vol. 34, no. 18, pp. 1731-1732, 1998.

[23] Saed G. Younis, “Asymptotically Zero Energy Computing Using Split-Level

Charge Recovery Logic,” MIT, Ph.D. Thesis, 1994.

[24] W.C. Athas, L. Svensson, J.G. Koller, N.Tzartzanis and E.Y.Chou, “Low-power

Digital Systems Based on Adiabatic-switching Principles,” IEEE Trans. on VLSI

Systems, vol. 2, no. 4, pp. 398-407, 1994.

[25] J. S. Denker, “A review of adiabatic computing,” IEEE Symposium on Low Power

Electronics – Digest of Technical Papers, pp. 94-97, 1994.

[26] M. Vollmer, and J. Götze, "An adiabatic architecture for linear signal processing",

Advances in Radio Science, pp. 325–329, 2005.

[27] L. Varga, G. Hosszu and F. Kovacs, "Two-level Pipeline Scheduling of Adiabatic

Logic," 29th International Seminar on Electronics Technology, pp. 390-394, 2006.

[28] David John WILLINGHAM, “Asynchrobatic logic for low-power VLSI design,”

Ph.D. Thesis, 2010.

[29] Sachin Maheshwari, V. A. Bartlett and Izzet Kale, "4-phase resettable quasi-

adiabatic flip-flops and sequential circuit design," 12thConference on Ph.D.

Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, pp. 1-4,

2016.

[30] Sachin Maheshwari, V. A. Bartlett and Izzet Kale, "Adiabatic flip-flops and

sequential circuit design using novel resettable adiabatic buffers," 23rdEuropean

Conference on Circuit Theory and Design (ECCTD), Catania, Italy, pp. 1-4, 2017.

[31] Sachin Maheshwari, V.A.Bartlett and Izzet Kale “Energy Efficient

Implementation of Multi-phase Quasi-Adiabatic Cyclic Redundancy Check in

near field communication” Integration, The VLSI Journal, Elsevier, vol. 62, pp.

341-352, 2018.

144

[32] Sachin Maheshwari, V.A.Bartlett and Izzet Kale “VHDL-based Modelling

Approach for the Digital Simulation of 4-phase Adiabatic Logic Design”

28thInternational Symposium on Power and Timing Modelling, Optimization and

Simulation (PATMOS), Costa Brava, Spain, pp. 111-117,2018. (Amongst top 10

papers)

[33] Sachin Maheshwari, V.A.Bartlett and Izzet Kale “Modelling, Simulation, and

Verification of 4-phase Adiabatic Logic Design: A VHDL-Based Approach”

Integration, The VLSI Journal, Elsevier. (Available online)

doi.org/10.1016/j.vlsi.2019.01.007

[34] Sachin Maheshwari, V.A.Bartlett and Izzet Kale “VHDL-based Modelling

Approach for Functional Simulation and Verification of Adiabatic Circuits” IEEE

Trans. on Circuits and Systems-I. (Revision Submitted)

[35] Sachin Maheshwari and Izzet Kale “Adiabatic Implementation of Manchester

Encoding for Passive NFC System” Design, Automation, and Test in Europe

(DATE’19), Florence, Italy, 25th – 29th March, 2019.

[36] Haiyan Ni and Jianping Hu, “Near-threshold Sequential Circuits using Improved

Clocked Adiabatic Logic in 45nm CMOS Processes”, 54th Midwest Symposium on

Circuits and Systems, pp. 1-4, 2011.

[37] Zheming Xin, Jianping Hu, and Qi Chen, “Adiabatic Two-Phase CPAL Flip-

Flops Operating on Near-Threshold and Super-Threshold Regions”, Procedia

Environmental Science, Elsevier, vol. 11, pp. 339-345, 2011.

[38] Ph. Teichmann, “Adiabatic logic: Future Trend and System Level Perspective”,

Springer Series in Advanced Microelectronics, 34, 2012.

[39] Ph. Teichmann, M. Vollmer, J. Fischer, B. Heyne, J. Götze, D. Schmitt-

Landsiedel, “Saving potentials of Adiab. Logic on system level: A CORDIC-

based adiabatic DCT” 12th International Symposium on Integrated Circuits, pp.

105-108, 2009.

[40] M. Chanda, S. Jain, S. De, and C. K. Sarkar, "Implementation of Subthreshold

Adiabatic Logic for Ultralow-Power Application," in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 23, no. 12, pp. 2782-2790, Dec.

2015.

145

[41] Himadri Singh Raghav and Izzet Kale, “A Balanced Power Analysis Attack

Resilient Adiabatic Logic using Single Charge Sharing Transistor”, Integration,

The VLSI Journal, Elsevier, 2019. https://doi.org/10.1016/j.vlsi.2018.07.010.

[42] Himadri Singh Raghav, Viv A. Bartlett, and Izzet Kale, “Investigating the

Effectiveness of Without Charge-Sharing Quasi-Adiabatic Logic for Energy

Efficient and Secure Cryptographic Implementations”, Microelectronics Journal,

Elsevier, vol. 76, 2018, pp. 8-21.

[43] S. D. Kumar, H. Thapliyal, A. Mohammad, and S. K. Perumalla, “Design

exploration of a symmetric pass gate adiabatic logic for energy-efficient and

secure hardware,” Integration, the VLSI Journal, vol. 58, pp. 369-377, 2016.

[44] C. Monteiro, Y. Takahashi, and T. Sekine, “DPA Resistance of charge sharing

symmetric adiabatic logic,” in Proc. of IEEE ISCAS’13, pp. 2581–2584, 2013.

[45] B. B. P. and V. S. K. Bhaaskaran, "Positive Feedback Symmetric Adiabatic Logic

Against Differential Power Attack," 31st International Conference on VLSI

Design and 2018 17th International Conference on Embedded Systems (VLSID),

Pune, pp. 149-154, 2018.

[46] G. Pillonnet, H. Fanet, and S. Houri, "Adiabatic capacitive logic: A paradigm for

low-power logic," IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 1-4, 2017.

[47] A. Galisultanov, Y. Perrin, H. Fanet, L. Hutin and G. Pillonnet, "Compact MEMS

modeling to design full adder in Capacitive Adiabatic Logic," 48th European

Solid-State Device Research Conference (ESSDERC), Dresden, pp. 174-177, 2018.

[48] Athas, W. C., Koller, J. G., and Svensson, L, “An Energy-Efficient CMOS Line

Driver Using Adiabatic Switching," Proc. of IEEE Great Lakes Symposium on

VLSI, 1994.

[49] L. Svensson, J. Koller, “Driving a capacitive load without discharging fCV^2”,

Proc. of the IEEE Symposium on Low-Power Electronics, pp. 100-103, 1994.

[50] Himadri Singh Raghav, V.A.Bartlett and Izzet Kale “Investigation of stepwise

charging circuits for a power-clock generation in Adiabatic Logic”, 12th

International Conf. on Ph.D. Research in Microelectronics and Electronics, pp.1-

4, 2016.

146

[51] Himadri Singh Raghav, V.A.Bartlett and Izzet Kale “Energy efficiency of 2-step

charging power-clock for adiabatic logic”, 26th International Workshop on Power

and Timing Modelling, Optimisation and Simulation, pp. 176-182, 2016.

[52] Nicolas Jeanniot, Aida Todri-Sanial, Pascal Nouet, Gaël Pillonnet, Hervé Fanet,

“Investigation of the power-clock network impact on adiabatic logic”, IEEE 20th

Workshop on Signal and Power Integrity, pp. 176-182, 2016.

[53] A. Khorami and M. Sharifkhani, "An Efficient Fast Switching Procedure for

Stepwise Capacitor Chargers," IEEE Transactions on VLSI Systems, vol. 25, no. 2,

pp. 705-713, 2017.

[54] Himadri Singh Raghav, “Adiabatic Circuits for Power-Constrained Cryptographic

Computations,” Ph.D. Thesis, 2018.

[55] A. Vetuli, S. D. Pascoli, and L. M. Reyneri, “Positive feedback in adiabatic logic”,

Electronics Letters, vol. 32, no. 20, pp. 1867-1869, 1996.

[56] A. Kramer, J. S. Denker, B. Flower, and J. Moroney, “2nd Order adiabatic

computation with 2n-2p and 2n-2n2p logic circuits,” Proc. of IEEE Symposium

Low Power Design, pp. 191-196, 1995.

[57] Y. Moon, D.K. Jeong, “An efficient charge recovery logic circuit”, IEEE Journal

of Solid-State Circuits, vol. 31, no. 4, pp. 514-522, 1995.

[58] D. Maksimoviü and V. G. Oklobdžija, “Integrated Power Clock Generators for

Low Energy Logic”, Annual IEEE Power Electronics Specialists Conf., pp. 61-67,

1995.

[59] V. K. De and J. D. Meindl, “Complementary Adiabatic and Fully Adiabatic MOS

Logic Families for Gigascale Integration” 43rd IEEE International Solid-State

Circuits Conf. – Digest of Technical Papers, pp. 300-301, 1996.

[60] V. K. De and J. D. Meindl, “A dynamic energy recycling logic family for ultra-

low-power giga scale integration (GSI), Proc. of the International Symposium on

Low Power Electronics and Design, pp. 371-375, 1996.

[61] C. C. Yeh, J. H. Lou, and J. B. Kuo, “1.5V CMOS full-swing energy-efficient

logic (EEL) circuit suitable for low-voltage and low-power VLSI applications”,

Electronics Letters, vol. 33, no. 16, pp. 1375-1376, 1997.

147

[62] V. G. Oklobdˇzija, D. Maksimovi´c, and F. Lin “Pass-Transistor Adiabatic Logic

Using Single Power-Clock Supply” IEEE Trans. on Circuits and Systems—II, vol.

44, no. 10, pp. 842-846, 1997.

[63] K. Kioi, H. Kotaki, “Forward body-bias MOS (FBMOS) dual rail logic using an

adiabatic charging technique with sub -0.6V operation”, Electronics Letters, vol.

33, no. 14, pp. 1200-1201, 1997.

[64] F. Liu and K. T. Lau, “Pass-transistor adiabatic logic with NMOS pull-down

configuration”, Electronics Letters, vol. 34, no. 8, pp. 739-741, 1998.

[65] Seung-Moon Yoo and Sung-Mo (Steve) Kang, “A Bootstrapped NMOS Charge

Recovery Logic”, Proc. of the Great Lakes Symposium on VLSI, pp. 30-33, 1998.

[66] S. Kim and M. C. Papaefthymiou, “True single-phase energy recovering logic for

low-power, high-speed VLSI”, Proc. of the International Symposium on Low

Power Electronics and Design, pp. 167-172, 1998.

[67] S. Kim and M. C. Papaefthymiou, “Single-phase Source-Coupled Adiabatic

Logic”, Proc. of the International Symposium on Low Power Electronics and

Design, pp. 97-99, 1999.

[68] C. Kim, S. M. Yoo, and S. M. Kang, “Low-power adiabatic computing with

NMOS energy recovery logic”, Electronics Letters, vol. 36, no. 16, pp. 1349-1350,

2000.

[69] D. Suvakovic and C. Salama, “Two-phase non-overlapping clock adiabatic

differential cascode voltage switch logic”, IEEE International Solid-State Circuits

Conference – Digest of Technical Papers, pp. 364-365, 2000.

[70] Dai Hongyu, Zhou Runde, and Ge Yuanqing, “High Efficient energy recovery

logic circuit for adiabatic computing”, Proc. of the 4th International Conf. on

ASIC, pp. 858-861, 2001.

[71] L. Varga, F. Kovacs, and G. Hosszu, “An Improved Pass-Gate Adiabatic Logic”,

Proc. of 14th Annual International ASIC/SOC Conf., pp. 208-211, 2001.

[72] R. C. Chang, P.-C. Hung and I.-H. Wang, “Complementary pass-transistor energy

recovery logic for low-power applications”, IEEE Proc. on Computers and

Digital Techniques, vol. 149, no. 4, pp. 146- 151, 2002.

148

[73] J. Fischer, E. Amirante, A. Bargagli-Stoffi, and D. Schmitt- Landsiedel,

“Improving the positive feedback adiabatic logic family”, Advances in Radio

Science, vol. 2, pp. 221–225, 2004.

[74] Jianping Hu, Xien Ye, Yinshui Xia, “A new dual transmission gate adiabatic logic

and design of an 8×8-bit multiplier for low-power DSP," Proc. of 7th International

Conf. on ICSP, pp.559-562, 2004.

[75] Wang Peng-jun, Yu Jun-jun and Xu Jian “Design of Clocked Transmission Gate

Adiabatic Logic Circuit Based on the 3ECEAC”, IEEE Asia Pacific Conf. on

Circuits and Systems, pp.431-434, 2006.

[76] Yangbo Wu, Huiying Dong, Yi Wang, and Jianping Hu, "Low-power adiabatic

sequential circuits using two-phase power-clock supply," International Conf. on

ASIC, pp. 185-188, 2005.

[77] G. Yemiscioglu, & P. Lee, “Very-large-scale integration implementation of a 16-

bit clocked adiabatic logic logarithmic signal processor”, IET Computers &

Digital Techniques, vol. 9, pp. 239–247, 2015.

[78] D. Maksimovic´, V. G. Oklobdžija, B. Nikolic´, and K. W. Current “Clocked

CMOS Adiabatic Logic with Integrated Single-Phase Power-Clock Supply”,

IEEE Transactions on VLSI Systems, vol. 8, no. 4, pp.460-463, 2000.

[79] Haiyan Ni and Jianping Hu, “Single-Phase Adiabatic Flip-Flops and Sequential

Circuits with Power-Gating Scheme”, IEEE 8th International Conf. on ASICON,

pp. 1-4, 2009.

[80] Weiqiang Zhang, Dong Zhou, Xuanyan Hu and Jianping Hu “The

Implementations of Adiabatic Flip-Flops and Sequential Circuits with Power-

Gating Schemes”, 51st Midwest Symposium on Circuits and Systems, pp. 767-770,

2008.

[81] J. M. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits: A

Design Perspective, Second Edition, Prentice Hall. 2003.

[82] M.C. Knapp, P. J. Kindlmann, M. C. Papaefthymiou, “Design and Evaluating of

Adiabatic Arithmetic Units”, Analog Integrated Circuits and Signal Processing,

vol. 14, pp. 71-79, 1997.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5341889

149

[83] Ph. Teichmann, J. Fischer, F. Chouard, and D. Schmitt-Landsiedel “Design issues

of arithmetic structures in adiabatic logic”, Advances in Radio Science, vol. 5, pp.

291-295, 2007.

[84] K. W. Ng and K.T. Lau, “Improved PAL-2N Logic with Complementary Pass-

Transistor Logic Evaluation Tree”, Microelectronics Journal, Elsevier, vol. 31, pp.

55-59, 2000.

[85] E. Amirante, A. Bargagli-Stoffi, J. Fischer, G. Iannaccone, and D. Schmitt-

Landsiedel, “Variations of the Power Dissipation in Adiabatic Logic Gates,” 11th

International Workshop on Power and Timing Modelling, Optimisation and

Simulation, pp. 9.1.1–9.1.10, 2001.

[86] J. Pang, K. Andrews, and Leigh Torgerson, Clarification for CCSDS CRC-16

Computation Algorithm, Section 332M-Communication Networks, 2006.

[87] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial

selection for embedded networks,” International Conf. Dependable Systems and

Networks (DSN), pp. 145–154, 2004.

[88] T. V. Ramabadran and S.S. Gaitonde, “A Tutorial on CRC Computation,” IEEE

Micro, vol. 8, no. 4, pp. 62-75, 1988.

[89] G. Albertengo and R. Sisto, “Parallel CRC Generation,” IEEE Micro, vol. 10, no.

5, pp. 63–71, 1990.

[90] G. Campobello, G. Patane, and M. Russo, “Parallel CRC Realization,” IEEE

Trans. on Computers, vol. 52, no. 1, pp. 1312–1319, 2003.

[91] C. Kennedy and Arash Reyhani-Masoleh, “High-Speed Parallel CRC Circuits”

42nd Asilomar Conf. on Signals Systems and Computers, pp. 1823-1829, 2008.

[92] C. E. Kennedy and Mehran Mozaffari-Kermani, “Generalized Parallel CRC

Computation on FPGA” 28th Canadian Conf. on Electrical and Computer

Engineering, pp107-113, 2015.

[93] M. Walma, “Pipelined Cyclic Redundancy Check (CRC) Calculation,” 16th IEEE

International Conf. on Computer Communications and Networks, pp. 365–370,

2007.

[94] Standard ECMA-340 - Near Field Communication-Interface and Protocol

(NFCIP-1), 3rd edition, 2013.

150

[95] ISO/IEC 18092 Information Technology-Telecommunications and information

exchange between systems-Near Field Communication-Interface and Protocol

[96] NFC forum. Available: http://members.nfc-forum.org/specs/spec_list/

[97] Telecommunication Standardization Sector of ITU-T V.41- Code-Independent

Error Control system, 1993.

[98] W. W. Peterson, and D. T. Brown, “Cyclic Codes for Error Detection”, Proc. of

the IRE, vol. 49, no.1, pp. 228-235, 1961.

[99] J. Fischer, E. Amirante, F. Randazzo, G. Iannaccone, and D. Schmitt-Landsiedel,

“Reduction of the energy consumption in adiabatic gates by optimal transistor

sizing”, International Workshop on Power and Timing Modelling, Optimisation

and Simulation, pp. 309-318, 2003.

[100] J. Fischer, E. Amirante, A. Bargagli-Stoffi and D. Schmitt-Landsiedel, "Adiabatic

circuits: converter for static CMOS signals", Advances in Radio Science, pp. 274–

251, 2003.

[101] S. Nakata, R. Honda, H. Makino, H. Morimura and Y. Matsuda, "Energy

dissipation reduction during adiabatic charging and discharging with controlled

inductor current," IEEE 55th International Midwest Symposium on Circuits and

Systems, pp. 1068-1071, 2012.

[102] S. Morris and A. Lefley, "A 90nm CMOS 13.56MHz NFC transceiver," 2009

IEEE Asian Solid-State Circuits Conference, Taipei, 2009, pp. 25-28.

[103] Ziqiang Yu and Xianqiang Liu, "Improvement of Dynamic Binary Search

Algorithm used in an RFID system," Proceedings of 2011 Cross Strait Quad-

Regional Radio Science and Wireless Technology Conference, Harbin, pp. 1046-

1049, 2011.

[104] D. K. Klair, K. Chin and R. Raad, "A Survey and Tutorial of RFID Anti-Collision

Protocols," in IEEE Communications Surveys & Tutorials, vol. 12, no. 3, pp. 400-

421, Third Quarter 2010.

[105] D. K. Klair, K.-W. Chin, and R. Raad, “An investigation into the energy

efficiency of pure and slotted aloha based RFID anti-collision protocols,” in Proc.

IEEE Int. Symp. World Wireless Mobile Multimedia Netw. (WoWMoM’07), pp. 1–

4, 2007.

http://members.nfc-forum.org/specs/spec_list/

151

[106] L. Qiu, Z. Huang, S. Zhang and W. Wang, "Location-aware anti-collision protocol

for energy efficient passive RFID system," International Conference on Indoor

Positioning and Indoor Navigation (IPIN), pp. 255-260, 2014.

[107] V. Namboodiri and L. Gao, "Energy-Aware Tag Anticollision Protocols for RFID

Systems," IEEE Transactions on Mobile Computing, Vol. 9, No. 1, pp. 44-59,

2010.

[108] H. Landaluce, A. Perallos, E. Onieva, L. Arjona and L. Bengtsson, "An Energy

and Identification Time Decreasing Procedure for Memoryless RFID Tag

Anticollision Protocols," IEEE Transactions on Wireless Communications, Vol.

15, No. 6, pp. 4234-4247, 2016.

[109] Feng Zhou, Dawei Jin, Chenling Huang, Min Hao, "Optimize the power

consumption of passive electronic tags for anti-collision schemes," 5th

International Conference on ASIC, pp. 1213-1217, 2003.

152

Appendix A: C Code for Cyclic Redundancy

Check (CRC)

This appendix gives the C code for 16-bit CRC described in Chapter 4 of this thesis.

A. 16-bit CRC Algorithm for NFC application

CRC Algorithm (msgbit, NM, Load_value, Reset, Gen_pol,

crcout)

if (Reset = '1' and NM = '1') then

 count = "0000";

 crctemp[15 : 0] = Load_value [15 : 0];

 L='0';

Else

For (i=0; i<N; i++)

crctemp(0)n+1 = [L. Load_value(0) + (L'(msgbit[N-1-

i]crctemp(N-1)n))]Reset'

For (j=1; j< N; j++)

crctemp(j)n+1 ={[L. Load_value(j)+L'.crctemp(j-

1)n][Gen_pol(j). (msgbit(N-1-i)crctemp(N-1)n)]} Reset'

End for

count = count + '1'

End for

153

End if

if (count="FFFF") then

crcout = crc_temp;

rc_temp = Load_value (15 downto 0);

L= '1'

count = "0000"

Else

crcout="0000000000000000";

End if

154

Appendix B: VHDL Code for Adiabatic Logic

Technique

This appendix gives the VHDL modelling of 4-phase adiabatic logic technique that is

described in Chapter 5 of this thesis.

B1. 4-Phase Power-Clock Generation

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY FOUR_PHASE_PCLK IS

port (CLK: in std_logic_vector (1 downto 0); PC1, PC2, PC3,

PC4:out std_logic);

END ENTITY FOUR_PHASE_PCLK;

Architecture behavioural of FOUR_PHASE_PCLK is

BEGIN

Process (CLK) is

BEGIN

if CLK ="00" then

 PC1<='0';

 PC2<='X';

 PC3<='1';

 PC4<='X';

elsif CLK = "01" then

 PC1<='X';

 PC2<='0';

 PC3<='X';

 PC4<='1';

elsif CLK = "10" then

 PC1<='1';

 PC2<='X';

 PC3<='0';

 PC4<='X';

155

elsif CLK = "11" then

 PC1<='X';

 PC2<='1';

 PC3<='X';

 PC4<='0';

End if;

End process;

End Architecture behavioural;

B2. Adiabatic Logic Gates

--Single-rail Resettable Buffer

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work.Adiabatic_signal.all;

ENTITY Proposed_Reset_Buf IS

port (A_H, A_L, PC, RST : in std_logic; Out_H, Out_L : out

std_logic);

END ENTITY Proposed_Reset_Buf;

Architecture behavioural of Proposed_Reset_Buf is

BEGIN

Process (RST, PC, A_H, A_L) is

BEGIN

if RST = '0' then // RESET condition //

 Out_H <= '0';

 Out_L <= PC;

else

 // IDLE PERIOD //

if PC='0' then

 Out_H <= '0';

 Out_L <= '0';

elsif PC='0' and EVALUATE_edge (A_H) and EVALUATE_edge(A_L) then

 Out_H <='Z';

 Out_L <='Z';

 // EVALUATE PERIOD //

elsif PC='X' and HOLD_edge (A_H) and HOLD_edge(A_L) then

 Out_H <='Z';

 Out_L <='Z';

elsif PC='X' and HOLD_edge (A_H) then

 Out_H <= PC;

 Out_L <='0';

elsif PC='X' and HOLD_edge (A_L) then

 Out_H <= '0';

 Out_L <= PC;

156

 // HOLD PERIOD //

elsif PC='1' and RECOVERY_edge (A_H) and RECOVERY_edge (A_L)

then

 Out_H <='Z';

 Out_L <='Z';

elsif PC='1' and RECOVERY_edge (A_H) then

 Out_H <= PC;

 Out_L <='0';

elsif PC='1' and RECOVERY_edge (A_L) then

 Out_H <= '0';

 Out_L <= PC;

 // RECOVERY PERIOD //

elsif PC='X' and IDLE_edge (A_H) and IDLE_edge (A_L) then

 Out_H <='Z';

 Out_L <='Z';

elsif PC='X' and IDLE_edge (A_H) then

 Out_H <= PC;

 Out_L <='0';

elsif PC='X' and IDLE_edge (A_L) then

 Out_H <= '0';

 Out_L <= PC;

 End if;

 End if;

End Process;

End Architecture behavioural;

--Dual-rail Resettable Buffer

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work. Adiabatic_2INP_GATES.all; // User Defined Adiabatic

Logic Gates //

ENTITY Proposed_ Proposed_dual_reset_buf IS

port (A_H, Res_H, A_L, Res_L, PC : in std_logic; Out_H, Out_L :

out std_logic);

END ENTITY Proposed_ Proposed_dual_reset_buf;

Architecture behavioural of Proposed_dual_reset_buf is

Component Proposed_Buf

port (A_H, A_L : in std_logic; PC : in std_logic; Out_H, Out_L :

out std_logic);

End Component;

SIGNAL Z_H, Z_L: std_logic;

BEGIN

C01: Proposed_Buf port map (Z_H, Z_L, PC, Out_H, Out_L);

 Z_H <= Aand (A_H,Res_H);

 Z_L <=Aor (A_L,Res_L);

157

End Architecture behavioural;

--2-input AND/NAND

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work. Adiabatic_2INP_GATES.all; // User Defined Adiabatic

Logic Gates //

ENTITY Proposed_ANDNAND2 IS

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out

std_logic);

END ENTITY Proposed_ANDNAND2;

Architecture behavioural of Proposed_ANDNAND2 is

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

SIGNAL Z_H, Z_L: std_logic;

BEGIN

C01: Proposed_Buf port map (Z_H, Z_L, PC, AND2, NAND2);

 Z_H <= Aand (A_H, B_H);

 Z_L <= Aor (A_L, B_L);

End Architecture behavioural;

---2-input OR/NOR

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic

Logic Gates //

ENTITY Proposed_ORNOR2 IS

port (A_H, B_H, A_L, B_L, PC: in std_logic; OR2, NOR2: out

std_logic);

END ENTITY Proposed_ORNOR2;

Architecture behavioural of Proposed_ORNOR2 is

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

SIGNAL Z_H, Z_L: std_logic;

158

BEGIN

C01: Proposed_Buf port map (Z_H, Z_L, PC, OR2, NOR2);

 Z_H <= Aor (A_H, B_H);

 Z_L <= Aand (A_L, B_L);

End Architecture behavioural;

---3-input AND/NAND

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic

Logic Gates //

ENTITY Proposed_ANDNAND3 IS

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; AND3,

NAND3: out std_logic);

END ENTITY Proposed_ANDNAND3;

Architecture behavioural of Proposed_ANDNAND3 is

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

 SIGNAL Z_H, Z_L: std_logic;

BEGIN

C01: Proposed_Buf port map (Z_H, Z_L, PC, AND3, NAND3);

 Z_H <= Aand (Aand (A_H, B_H), C_H);

 Zb<=Aor (Aor (A_L, B_L), C_L);

End Architecture behavioural;

---3-input OR/NOR

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic

Logic Gates //

ENTITY Proposed_ORNOR3 IS

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; OR3, NOR3:

out std_logic);

END ENTITY Proposed_ORNOR3;

159

Architecture behavioural of Proposed_ORNOR3 is

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

 SIGNAL Z_H, Z_L: std_logic;

BEGIN

C01: Proposed_Buf port map (Z_H, Z_L, PC, OR3, NOR3);

 Z_H <=Aor (Aor (A_H, B_H), C_H);

 Z_L <=Aand (Aand (A_L, B_L), C_L);

End Architecture behavioural;

--2-input XOR/XNOR

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic

Logic Gates //

ENTITY Proposed_XORXNOR2 IS

port (A_H, B_H, A_L, B_L, PC: in std_logic; XOR2, XNOR2: out

std_logic);

END ENTITY Proposed_XORXNOR2;

Architecture behavioural of Proposed_XORXNOR2 is

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

 Signal Z_H, Z_L: std_logic;

Begin

C01: Proposed_Buf port map (Z_H, Z_L, PC, XOR2, XNOR2);

 Z <= Aor (Aand (A_L, B_H), Aand (A_H, B_L));

 Zb <= Aor (Aand (A_L, B_L), Aand (A_H, B_H));

End Architecture behavioural;

160

B3. 2-bit Adiabatic Ring-counter

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY Ring_Counter_2bit is

port (CLK: in std_logic_vector (1 downto 0); RES: in std_logic;

Q0_H, Q0_L, Q1_H, Q1_L: inout std_logic);

END ENTITY Ring_Counter_2bit;

Architecture Structural of Ring_Counter_2bit IS

Component FOUR_PHASE_PC

port (CLK: in std_logic_vector (1 downto 0); PC1, PC2, PC3, PC4:

out std_logic);

End Component;

Component Proposed_Reset_Buf

port (A_H, A_L, PC: in std_logic; RST: in std_logic; Out_H,

Out_L: out std_logic);

End Component;

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

SIGNAL PC1, PC2, PC3, PC4: std_logic;

SIGNAL Q01_H, Q01_L, Q02_H, Q02_L, Q03_H, Q03_L, Q11_H, Q11_L,

Q12_H, Q12_L, Q13_H, Q13_L: std_logic;

BEGIN

CLK1: FOUR_PHASE_PCLK port map (CLK, PC1, PC2, PC3, PC4);

n0: Proposed_Reset_Buf port map (Q1_L, Q1_H, PC1, RES, Q01_H,

Q01_L);

n1: Proposed_Buf port map (Q01_H, Q01_L, PC2, Q02_H, Q02_L);

n2: Proposed_Buf port map (Q02_H, Q02_L, PC3, Q03_H, Q03_L);

n3: Proposed_Buf port map (Q03_H, Q03_L, PC4, Q0_H, Q0_L);

n4: Proposed_Reset_Buf port map (Q0_H, Q0_L, PC1, RES, Q11_H,

Q11_L);

n5: Proposed_Buf port map (Q11_H, Q11_L, PC2, Q12_H, Q12_L);

n6: Proposed_Buf port map (Q12_H, Q12_L, PC3, Q13_H, Q13_L);

n7: Proposed_Buf port map (Q13_H, Q13_L, PC4, Q1_H, Q1_L);

END Architecture structural;

161

--

B4. 3-bit Up-Down counter

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY Proposed_UP_DOWN_Counter3 is

port (CLK: in std_logic_vector(1 downto 0); RST_H, RST_L, UD_H,

UD_L: in std_logic; Q0_H, Q0_L, Q1_H, Q1_L, Q2_H,Q2_L: inout

std_logic);

END ENTITY Proposed_UP_DOWN_Counter3;

Architecture structural of Proposed_UP_DOWN_Counter3 is

Component DC_TO_ADIABATIC

port (INP_H, INP_L: in std_logic; CLK: in std_logic_vector(1

downto 0); A_H, A_L: out std_logic);

End Component;

Component FOUR_PHASE_PC

port (CLK: in std_logic_vector(1 downto 0); PC1, PC2, PC3, PC4:

out std_logic);

End Component;

Component Proposed_dual_reset_buf

port (A_H, A_L, RES_H, RES_L, PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

Component Proposed_ANDNAND2

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out

std_logic);

End Component Proposed_ANDNAND2;

Component Proposed_XORXNOR2

port (A_H, B_H, A_L, B_L, PC: in std_logic; XOR2, XNOR2: out

std_logic);

End Component Proposed_XORXNOR2;

162

Component Proposed_ORNOR3

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; OR3, NOR3:

out std_logic);

End Component Proposed_ORNOR3;

SIGNAL RES_H, RES_L: std_logic;

SIGNAL PC1, PC2, PC3, PC4, CU, CD: std_logic;

SIGNAL Q01_H, Q01_L, Q02_H, Q02_L, Q03_H, Q03_L: std_logic;

SIGNAL Q110_H, Q110_L, Q111_H, Q111_L, Q112_H, Q112_L, Q113_H,

Q113_L, Q11_H, Q11_L, Q12_H, Q12_L, Q13_H, Q13_L: std_logic;

SIGNAL Q210_H,Q210_L, Q211_H,Q211_L, Q212_H,Q212_L, Q213_H,

Q213_L, Q220_H, Q220_L, Q221_H, Q221_L, Q222_H, Q222_L, Q223_H,

Q223_L, Q21_H, Q21_L, Q22_H, Q22_L, Q23_H, Q23_L: std_logic;

BEGIN

CLK1: FOUR_PHASE_PCLK port map (CLK, PC1, PC2, PC3, PC4);

INPUT1: DC_TO_ADIABATIC port map (UD_H, UD_L, CLK, CD, CU);

INPUT2: DC_TO_ADIABATIC port map (RST_H, RST_L, CLK, RES_H,

RES_L);

C01: Proposed_dual_reset_buf port map (Q0_L, Q0_H, RES_H, RES_L,

PC1, Q01_H, Q01_L);

C02: Proposed_Buf port map (Q01_H, Q01_L, PC2, Q02_H, Q02_L);

C03: Proposed_Buf port map (Q02_H, Q02_L, PC3, Q03_H, Q03_L);

C04: Proposed_Buf port map (Q03_H, Q03_L, PC4, Q0_H, Q0_L);

C110: Proposed_Buf port map (CD, CU, PC1, Q110_H, Q110_L);

C111: Proposed_Buf port map (Q110_H, Q110_L, PC2, Q111_H,

Q111_L);

C112: Proposed_XORXNOR2 port map (Q02_H, Q111_H, Q02_L, Q111_L,

PC3, Q112_H, Q112_L);

C113: Proposed_XORXNOR2 port map (Q112_H, Q13_H, Q112_L, Q13_L,

PC4, Q113_H, Q113_L);

C11: Proposed_dual_reset_buf port map (Q113_H, Q113_L, RES_H,

RES_L, PC1, Q11_H, Q11_L);

C12: Proposed_Buf port map (Q11_H, Q11_L, PC2, Q12_H, Q12_L);

C13: Proposed_Buf port map (Q12_H, Q12_L, PC3, Q13_H, Q13_L);

C14: Proposed_Buf port map (Q13_H, Q13_L, PC4, Q1_H, Q1_L);

C210: Proposed_XORXNOR2 port map (Q11_H, Q21_H, Q11_L, Q21_L,

PC2, Q210_H, Q210_L);

C211: Proposed_ANDNAND2 port map (Q01_H, Q110_L, Q01_L, Q110_H,

PC2, Q211_H, Q211_L);

C212: Proposed_ANDNAND2 port map (Q01_L, Q110_H, Q01_H, Q110_L,

PC2, Q212_H, Q212_L);

C213: Proposed_XORXNOR2 port map (Q110_H, Q01_H, Q110_L, Q01_L,

PC2, Q213_H, Q213_L);

163

C220: Proposed_ANDNAND2 port map (Q210_H, Q211_H, Q210_L, Q211_L,

PC3, Q220_H, Q220_L);

C221: Proposed_ANDNAND2 port map (Q210_L, Q212_H, Q210_H, Q212_L,

PC3, Q221_H, Q221_L);

C222: Proposed_ANDNAND2 port map (Q213_L, Q22_H, Q213_H, Q22_L,

PC3, Q222_H, Q222_L);

C223: Proposed_ORNOR3 port map (Q220_H, Q221_H, Q222_H, Q220_L,

Q221_L, Q222_L, PC4, Q223_H, Q223_L);

C21: Proposed_dual_reset_buf port map (Q223_H, Q223_L, RES_H,

RES_L, PC1, Q21_H, Q21_L);

C22: Proposed_Buf port map (Q21_H, Q21_L, PC2, Q22_H, Q22_L);

C23: Proposed_Buf port map (Q22_H, Q22_L, PC3, Q23_H, Q23_L);

C24: Proposed_Buf port map (Q23_H, Q23_L, PC4, Q2_H, Q2_L);

END Architecture structural;

B5. 16-bit CRC for 16-bit message word

---DC pulse train to Adiabatic for PC3

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY DC_TO_ADIABATIC_PC3_INP IS

port (INP_H, INP_L: in std_logic; CLK: in std_logic_vector(1

downto 0); A_H, A_L: out std_logic);

END ENTITY DC_TO_ADIABATIC_PC3_INP;

Architecture behavioural of DC_TO_ADIABATIC_PC3_INP is

BEGIN

Process (CLK, INP_H, INP_L) is

 BEGIN

if CLK ="00" then

 if INP_H ='1' and INP_L ='0' then

 A_H <='X';

 A_L <='0';

elsif INP_L ='1' and INP_H ='0' then

 A_H <='0';

 A_L <='X';

End if;

Elsif CLK = "01" then

 A_H <='0';

164

 A_L <='0';

elsif CLK = "10" then

if INP_H ='1' and INP_L ='0' then

 A_H <='X';

 A_L <='0';

 elsif INP_L ='1' and INP_H='0' then

 A_H <='0';

 A_L <='X';

End if;

elsif CLK = "11" then

if INP_H ='1' and INP_L ='0' then

 A_H <='1';

 A_L <='0';

 elsif INP_L ='1' and INP_H='0' then

 A_H <='0';

 A_L <='1';

End if;

End if;

End Process;

End Architecture behavioural;

--4-bit Counter

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY Counter_4_bit is

port (PC1, PC2, PC3, PC4, R_count_H, R_count_L, NM_H, NM_L: in

std_logic; Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q0_H, Q0_L, Q1_H,

Q1_L, Q2_H, Q2_L, Q3_H, Q3_L: inout std_logic);

END ENTITY Counter_4_bit;

Architecture structural of Counter_4_bit is

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

Component Proposed_ANDNAND2

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out

std_logic);

End Component Proposed_ANDNAND2;

Component Proposed_ORNOR2

port (A_H, B_H, A_L, B_L, PC: in std_logic; OR2, NOR2: out

std_logic);

End Component Proposed_ORNOR2;

165

Component Proposed_ORNOR3

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; OR3, NOR3:

out std_logic);

End Component Proposed_ORNOR3;

Component Proposed_ANDNAND3

port (A_H, B_H, C_H, A_L, B_L, C_L, PC: in std_logic; AND3,

NAND3: out std_logic);

End Component Proposed_ANDNAND2;

SIGNAL RST_H, RST_L: std_logic;

SIGNAL Q01_H, Q01_L, Q02_H, Q02_L, Q03_H, Q03_L, Q04_H, Q04_L,

Q05_H, Q05_L: std_logic;

SIGNAL Q11_H, Q11_L, Q12_H, Q12_L, Q13_H, Q13_L, Q14_H, Q14_L,

Q15_H, Q15_L, Q16_H, Q16_L, Q17_H, Q17_L: std_logic;

SIGNAL Q21_H, Q21_L, Q22_H, Q22_L, Q23_H, Q23_L, Q24, Q24b, Q25,

Q25_L, Q26_H, Q26_L, Q27_H, Q27_L, Q2_3_H, Q2_3_L: std_logic;

SIGNAL Q31_H, Q31_L, Q32_H, Q32_L, Q33_H, Q33_L, Q34_H, Q34_L,

Q35_H, Q35_L, Q3_3_H, Q3_3_L: std_logic;

BEGIN

C00: Proposed_ANDNAND2 port map (R_count_H, NM_H, R_count_L,

NM_L, PC4, RST_H, RST_L);

C01: Proposed_ANDNAND2 port map (RST_H, Q0_L, RST_L, Q0_H, PC1,

Q01_H, Q01_L);

C02: Proposed_ANDNAND2 port map (RST_H, Q1_H, RST_L, Q1_L, PC1,

Q02_H, Q02_L);

C03: Proposed_ANDNAND2 port map (Q2_H, Q3_H, Q2_L, Q3_L, PC1,

Q03_H, Q03_L);

C04: Proposed_Buf port map (Q01_H, Q01_L, PC2, Q04_H, Q04_L);

C05: Proposed_ANDNAND2 port map (Q02_H, Q03_H, Q02_L, Q03_L, PC2,

Q05_H, Q05_L);

C06: Proposed_ORNOR2 port map (Q04_H, Q05_H, Q04_L, Q05_L, PC3,

Q0_3_H, Q0_3_L);

C07: Proposed_Buf port map (Q0_3_H, Q0_3_L, PC4, Q0_H, Q0_L);

C10: Proposed_ANDNAND3 port map (RST_H, Q1_L, Q0_H, RST_L, Q1_H,

Q0_L, PC1, Q11_H, Q11_L);

C11: Proposed_ANDNAND2 port map (Q0_H, RST_H, Q0_L, RST_L, PC1,

Q12_H, Q12_L);

C12: Proposed_ANDNAND2 port map (Q2_H, Q3_H, Q2_L, Q3_L, PC1,

Q13_H, Q13_L);

C13: Proposed_ANDNAND3 port map (RST_H, Q1_H, Q0_L, RST_L, Q1_L,

Q0_H, PC1, Q14_H, Q14_L);

C14: Proposed_Buf port map (Q11_H, Q11_L, PC2, Q15_H, Q15_L);

C15: Proposed_ANDNAND2 port map (Q12_H, Q13_H, Q12_L, Q13_L, PC2,

Q16_H, Q16_L);

166

C16: Proposed_Buf port map (Q14_H, Q14_L, PC2, Q17_H, Q17_L);

C17: Proposed_ORNOR3 port map (Q15_H, Q16_H, Q17_H, Q15_L, Q16_L,

Q17_L, PC3, Q1_3_H, Q1_3_L);

C18: Proposed_Buf port map (Q1_3_H, Q1_3_L, PC4, Q1_H, Q1_L);

C20: Proposed_ANDNAND3 port map (RST_H, Q2_H, Q3_H, RST_L, Q2_L,

Q3_L, PC1, Q21_H, Q21_L);

C21: Proposed_ORNOR2 port map (Q1_L, Q0_L, Q1_H, Q0_H, PC1,

Q22_H, Q22_L);

C22: Proposed_Buf port map (RST_H, RST_L, PC1, Q23_H, Q23_L);

C23: Proposed_Buf port map (Q2_L, Q2_H, PC1, Q24_H, Q24_L);

C24: Proposed_Buf port map (Q21_H, Q21_L, PC2, Q25_H, Q25_L);

C25: Proposed_ANDNAND3 port map (Q22_H, Q23_H, Q24_L, Q22_L,

Q23_L, Q24_H, PC2, Q26_H, Q26_L);

C26: Proposed_ANDNAND3 port map (Q23_H, Q22_L, Q24_H, Q23_L,

Q22_H, Q24_L, PC2, Q27_H, Q27_L);

C27: Proposed_ORNOR3 port map (Q25_H, Q26_H, Q27_H, Q25_L, Q26_L,

Q27_L, PC3, Q2_3_H, Q2_3_L);

C28: Proposed_Buf port map (Q2_3_H, Q2_3_L, PC4, Q2_H, Q2_L);

C30: Proposed_ANDNAND2 port map (RST_H, Q3_H, RST_L, Q3_L, PC1,

Q31_H, Q31_L);

C31: Proposed_ANDNAND2 port map (RST_H, Q1_H, RST_L, Q1_L, PC1,

Q32_H, Q32_L);

C32: Proposed_ANDNAND2 port map (Q0_H, Q2_H, Q0_L, Q2_L, PC1,

Q33_H, Q33_L);

C33: Proposed_Buf port map (Q31_H, Q31_L, PC2, Q34_H, Q34_L);

C34: Proposed_ANDNAND2 port map (Q32_H, Q33_H, Q32_L, Q33_L, PC2,

Q35_H, Q35_L);

C35: Proposed_ORNOR2 port map (Q34_H, Q35_H, Q34_L, Q35_L, PC3,

Q3_3_H, Q3_3_L);

C36: Proposed_Buf port map (Q3_3_H, Q3_3_L, PC4, Q3_H, Q3_L);

END Architecture structural;

--Controller

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY Controller is

port (PC1, PC2, PC3, PC4, NM_H, NM_L, RESET_H, RESET_L: in

std_logic; Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q2_H, Q2_L, Q3_H,

Q3_L, R_count_H, R_count_L, R0_H, R0_L, R1_H, R1_L, R2_H, R2_L,

R3_H, R3_L: inout std_logic; R4_H, R4_L: out std_logic);

END ENTITY Controller;

Architecture Structural of Controller is

167

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

Component Proposed_ANDNAND2

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out

std_logic);

End Component Proposed_ANDNAND2;

Component Proposed_ORNOR2

port (A_H, B_H, A_L, B_L, PC: in std_logic; OR2, NOR2: out

std_logic);

End Component Proposed_ORNOR2;

Component Counter_4_bit IS

port (PC1, PC2, PC3, PC4, R_count_H, R_count_L, NM_H, NM_L: in

std_logic; Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q0_H, Q0_L, Q1_H,

Q1_L, Q2_H, Q2_L, Q3_H, Q3_L: inout std_logic);

End ComponentCounter_4_bit;

SIGNAL RX_H, RX1_H, RX2_H, RX3_H, RX4_H, RX_L, RX1_L, RX2_L,

RX3_L, RX4_L: std_logic;

SIGNAL Q0_H, Q0_L, Q1_H, Q1_L: std_logic;

SIGNAL CTR1_H, CTR1_L, CTR2_H, CTR2_L, CTR3_H, CTR3_L: std_logic;

BEGIN

count01: Counter_4_bit port map (PC1, PC2, PC3, PC4, R_count_L,

R_count_H ,NM_L, NM_H, Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q0_H,

Q0_L, Q1_H, Q1_L, Q2_H, Q2_L, Q3_H, Q3_L);

C01: Proposed_ANDNAND2 port map (Q0_H, Q1_H, Q0_L, Q1_L, PC1,

CTR1_H, CTR1_L);

C02: Proposed_ANDNAND2 port map (Q2_H, Q3_H, Q2_L, Q3_L, PC1,

CTR2_H, CTR2_L);

C03: Proposed_ANDNAND2 port map(CTR1_H, CTR2_H, CTR1_L, CTR2_L,

PC2, CTR3_H, CTR3_L);

C21: Proposed_ORNOR2 port map(CTR3_H, RESET_H, CTR3_L, RESET_L,

PC3, R_count_H, R_count_L);

B01: Proposed_Buf port map (R_count_H, R_count_L, PC4, RX_H,

RX_L);

B02: Proposed_Buf port map (RX_H, RX_L, PC1, RX1_H, RX1_L);

B03: Proposed_Buf port map (RX1_H, RX1_L, PC2, R0_H, R0_L);

B04: Proposed_Buf port map (R0_H, R0_L, PC3, R1_H, R1_L);

B05: Proposed_Buf port map (R1_H, R1_L, PC4, R2_H, R2_L);

B06: Proposed_Buf port map (R2_H, R2_L, PC1, R3_H, R3_L);

168

B07: Proposed_Buf port map (R3_H, R3_L, PC2, RX2_H, RX2_L);

B08: Proposed_Buf port map (RX2_H, RX2_L, PC3, RX3_H, RX3_L);

B09: Proposed_Buf port map (RX3_H, RX3_L, PC4, RX4_H, RX4_L);

B10: Proposed_Buf port map (RX4_H, RX4_L, PC1, R4_H, R4_L);

END Architecture structural;

---2:1 Multiplexer

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work.Adiabatic_2INP_GATES.all;//User Defined Adiabatic Logic

Gates //

ENTITY Proposed_2_1_MUX IS

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H,

Out_L: out std_logic);

END ENTITY Proposed_2_1_MUX;

ARCHITECTURE Structural OF Proposed_2_1_MUX IS

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

SIGNAL X_H, X_L: std_logic;

BEGIN

C01: Proposed_Buf port map (X_H, X_L, PC, Out_H, Out_L);

X_H <= Aor (Aand (S_L, A_H), Aand (S_H, B_H));

X_L <= Aand (Aor (S_L, B_L), Aor (S_H, A_L));

END ARCHITECTURE Structural;

---4:1 Multiplexer

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

USE work.Adiabatic_2INP_GATES.all; //User Defined Adiabatic

Logic Gates //

ENTITY Proposed_4_1_MUX IS

port (A_H, B_H, C_H, D_H, A_L, B_L, C_L, D_L, S0_H, S0_L, S1_H,

S1_L, PC: in std_logic; Out_H, Out_L: out std_logic);

END ENTITY Proposed_4_1_MUX;

169

ARCHITECTURE Structural OF Proposed_4_1_MUX IS

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

SIGNAL X_H, X_L: std_logic;

BEGIN

C01: Proposed_Buf port map (X_H, X_L, PC, Out_H, Out_L);

X_H <= Aor (Aor (Aand (Aand (S0_L, S1_L), A_H), Aand (Aand (S0_H,

S1_L), B_H)), Aor (Aand (Aand (S0_L, S1_H), C_H), Aand (Aand

(S0_H, S1_H), D_H)));

X_L <= Aand (Aand (Aor (Aor(S0_H, S1_H), A_H), Aor (Aor (S0_L,

S1_H), B_L)), Aand (Aor (Aor (S0_H, S1_L), C_L), Aor (Aor (S0_L,

S1_L), D_L)));

END ARCHITECTURE Structural;

---8:1 Multiplexer

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY Proposed_8_1_MUX IS

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, A_L, B_L, C_L, D_L,

E_L, F_L, G_L, H_L, S0_H, S1_H, S2_H, S0_L, S1_L, S2_L, PC1, PC2:

in std_logic; Out_H, Out_L: out std_logic);

END ENTITY Proposed_8_1_MUX;

ARCHITECTURE Structural OF Proposed_8_1_MUX IS

Component Proposed_4_1_MUX

port (A_H, B_H, C_H, D_H, A_L, B_L, C_L, D_L, S0_H, S1_H, S0_L,

S1_L, PC: in std_logic; Out_H, Out_L: out std_logic);

End Component;

Component Proposed_2_1_MUX

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H,

Out_L: out std_logic);

End Component;

SIGNAL T_H, T_L, U_H, U_L: std_logic;

170

BEGIN

MUX1: Proposed_4_1_MUX port map (A_H, B_H, C_H, D_H, A_L, B_L,

C_L, D_L, S0_H, S1_H, S0_L, S1_L, PC1, T_H, T_L);

MUX2: Proposed_4_1_MUX port map (E_H, F_H, G_H, H_H, E_L, F_L,

G_L, H_L, S0_H, S1_H, S0_L, S1_L, PC1, U_H, U_L);

MUX3: Proposed_2_1_MUX port map (T_H, U_H, T_L, U_L, S2_H, S2_L,

PC2, Out_H, Out_L);

END ARCHITECTURE Structural;

--16:1 Multiplexer

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY Proposed_16_1_MUX IS

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, L_H,

M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, I_L,

J_L, K_L, L_L, M_L, N_L, O_L, P_L, S0_H, S1_H, S2_H, S3_H, S0_L,

S1_L, S2_L, S3_L, PC1, PC2, PC3: in std_logic; Out_H, Out_L: out

std_logic);

END ENTITY Proposed_16_1_MUX;

ARCHITECTURE Structural OF Proposed_16_1_MUX IS

Component Proposed_8_1_MUX

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, A_L, B_L, C_L, D_L,

E_L, F_L, G_L, H_L, S0_H, S1_H, S2_H, S0_L, S1_L, S2_L, PC1, PC2:

in std_logic; Out_H, Out_L: out std_logic);

End Component;

Component Proposed_2_1_MUX

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H,

Out_L: out std_logic);

End Component;

SIGNAL X_H, V_H, W_H, X_L, V_L, W_L: std_logic;

BEGIN

MUX1: Proposed_8_1_MUX port map (A_H, B_H, C_H, D_H, E_H, F_H,

G_H, H_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, S0_H, S1_H,

S2_H, S0_L, S1_L, S2_L, PC1, PC2, V_H, V_L);

MUX2: Proposed_8_1_MUX port map (I_H, J_H, K_H, L_H, M_H, N_H,

O_H, P_H, I_L, J_L, K_L, L_L, M_L, N_L, O_L, P_L, S0_H, S1_H,

S2_H, S0_L, S1_L, S2_L, PC1, PC2, W_H, W_L);

171

MUX3: Proposed_2_1_MUX port map (V_H, W_H, V_L, W_L, S3_H, S3_L,

PC3, Out_H, Out_L);

END ARCHITECTURE Structural;

--Controller + MUX

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY controller_MUX IS

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, L_H,

M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, I_L,

J_L, K_L, L_L, M_L, N_L, O_L, P_L, PC1, PC2, PC3, PC4, NM_H,

NM_L, RESET_H, RESET_L: in std_logic; R_count_H, R_count_L, R0_H,

R0_L, R1_H, R1_L, R2_H, R2_L, R3_H, R3_L: inout std_logic;

Msg_IN_L, Msg_IN_L, R4_H, R4_L: out std_logic);

END ENTITY controller_MUX;

ARCHITECTURE structural OF controller_MUX IS

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

Component Controller

port (PC1, PC2, PC3, PC4, NM_H, NM_L, RESET_H, RESET_L: in

std_logic; Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q2_H, Q2_L, Q3_H,

Q3_L, R_count_H, R_count_L, R0_H, R0_L, R1_H, R1_L, R2_H, R2_L,

R3_H, R3_L: inout std_logic; R4_H, R4_L: out std_logic);

End Component Controller;

Component Proposed_16_1_MUX

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, L_H,

M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, I_L,

J_L, K_L, L_L, M_L, N_L, O_L, P_L, S0_H, S1_H, S2_H, S3_H, S0_L,

S1_L, S2_L, S3_L, PC1, PC2, PC3: in std_logic; Out_H, Out_L: out

std_logic);

End Component Proposed_16_1_MUX;

SIGNAL Q0_3_H, Q1_3_H, Q2_H, Q3_1_H, Q0_3_L, Q1_3_L, Q2_L,

Q3_1_L, Q3_H, Q3_L: std_logic;

BEGIN

B01: Proposed_Buf port map (Q3_H, Q3_L, PC1, Q3_1_L, Q3_1_L);

172

controller01: Controller port map (PC1, PC2, PC3, PC4, NM_H,

NM_L, RESET_H, RESET_L, Q0_3_H, Q0_3_L, Q1_3_H, Q1_3_L, Q2_H,

Q2_L, Q3_H, Q3_L, R_count_H, R_count_L, R0_H, R0_L, R1_H, R1_L,

R2_H, R2_L, R3_H, R3_L, R4_H, R4_L);

MUX1: Proposed_16_1_MUX port map (A_H, B_H, C_H, D_H, E_H, F_H,

G_H, H_H, I_H, J_H, K_H, L_H, M_H, N_H, O_H, P_H, A_L, B_L, C_L,

D_L, E_L, F_L, G_L, H_L, I_L, J_L, K_L, L_L, M_L, N_L, O_L, P_L,

Q0_3_H, Q1_3_H, Q2_H, Q3_1_H, Q0_3_L, Q1_3_L, Q2_L, Q3_1_L, PC4,

PC1, PC2, Msg_IN_H, Msg_IN_L);

END ARCHITECTUREstructural;

--CRC_Generator_Polynomial_bit_block

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY CRC_Generator_Polynomial_bit_block IS

port (CR0_H, CR0_L, PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, L0_H, L0_L, G1_H, G1_L, CR15_xor_IN_H, CR15_XOR_IN_L,

ZERO, ONE: in std_logic; CR1_H, CR1_L: out std_logic);

END ENTITY CRC_Generator_Polynomial_bit_block;

ARCHITECTURE structural OF CRC_Generator_Polynomial_bit_block IS

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

Component Proposed_dual_reset_buf

port (A_H, Res_H, A_L, Res_L, PC : in std_logic; Out_H, Out_L :

out std_logic);

End Component;

Component Proposed_ANDNAND2

port (A_H, B_H, A_L, B_L, PC: in std_logic; AND2, NAND2: out

std_logic);

End Component Proposed_ANDNAND2;

Component Proposed_XORXNOR2

port (A_H, B_H, A_L, B_L, PC: in std_logic; XOR2, XNOR2: out

std_logic);

End Component Proposed_XORXNOR2;

Component Proposed_2_1_MUX

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H,

Out_L: out std_logic);

173

End Component;

SIGNAL CD1_H, CD2_H, CD3_H, CD1_L, CD2_L, CD3_L: std_logic;

SIGNAL SEL_GP1_H, SEL_GP1_L, GP1_H, GP1_L: std_logic;

SIGNAL ZERO1, ZERO2, ZERO3, ONE1, ONE2, ONE3, Load0_H, Load0_L:

std_logic;

BEGIN

B001: Proposed_Buf port map (ZERO, ONE, PC1, ZERO1, ONE1);

B002: Proposed_Buf port map (ZERO1, ONE1, PC2, ZERO2, ONE2);

B003: Proposed_Buf port map (ZERO2, ONE2, PC3, ZERO3, ONE3);

A01: Proposed_ANDNAND2 port map (R0_L, G1_H, R0_H, G1_L, PC3,

SEL_GP1_H, SEL_GP1_L);

MUX1: Proposed_2_1_MUX port map (ZERO3, CR15_xor_IN_H, ONE3,

CR15_xor_IN_L, SEL_GP1_H, SEL_GP1_L, PC4, GP1_H, GP1_L);

B004: Proposed_Buf port map (CR0_H, CR0_L, PC3, CD1_H, CD1_L);

RB01: Proposed_dual_reset_buf port map (CD1_H, CD1_L, R1_L, R1_H,

PC4, CD2_H, CD2_L);

X01: Proposed_XORXNOR2 port map (CD2_H, GP1_H, CD2_L, GP1_L, PC1,

CD3_H, CD3_L);

MUX2: Proposed_2_1_MUXport map (CD3_H, Load0_H, CD3_L, Load0_L,

R3_H, R3_L, PC2, CR1_H, CR1_L);

END ARCHITECTURE structural;

--CRC_Datapath

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITY CRC_Datapath IS

port (MSG_IN_H, MSG_IN_L, PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H,

R1_L, R2_H, R2_L, R3_H, R3_L: in std_logic; Load_H, Load_L: in

std_logic_vector(15 downto 0); G_H, G_L : in std_logic_vector(15

downto 1); ZERO, ONE : in std_logic; CR_H, CR_L: inout

std_logic_vector(15 downto 0));

END ENTITY CRC_Datapath;

ARCHITECTURE Structural OF CRC_Datapath IS

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

174

Component Proposed_dual_reset_buf

port (A_H, Res_H, A_L, Res_L, PC : in std_logic; Out_H, Out_L :

out std_logic);

End Component;

Component Proposed_XORXNOR2

port (A_H, B_H, A_L, B_L, PC: in std_logic; XOR2, XNOR2: out

std_logic);

End Component Proposed_XORXNOR2;

Component Proposed_2_1_MUX

port (A_H, B_H, A_L, B_L, S_H, S_L, PC: in std_logic; Out_H,

Out_L: out std_logic);

End Component;

Component CRC_Generator_Polynomial_bit_block

port (CR0_H, CR0_L, PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, L0_H, L0_L, G1_H, G1_L, CR15_xor_IN_H, CR15_XOR_IN_L,

ZERO, ONE: in std_logic; CR1_H, CR1_L: out std_logic);

End Component;

SIGNAL L_H, L_L, CR15_xor_IN_H, CD11_H, CD12_H, CR15_xor_IN_L,

CD11_L, CD12_L: std_logic;

BEGIN

BF01: Proposed_Buf port map (Load_H(0),Load_L(0), PC1, L_H, L_L);

XN01: Proposed_XORXNOR2 port map (CR_H(15), MSG_IN_H, CR_L(15),

MSG_IN_L, PC3, CR15_xor_IN_H, CR15_xor_IN_L);

BF17: Proposed_Buf port map (CR15_xor_IN_H, CR15_xor_IN_L, PC4,

CD11_H, CD11_L);

RB01: Proposed_dual_reset_buf port map (CD11_H, CD11_L, R2_L,

R2_H, PC1, CD12_H, CD12_L);

MUX1: Proposed_2_1_MUX port map (CD12_H, L_H, CD12_L, L_L, R3_H,

R3_L, PC2, CR_H(0), CR_L(0));

CRC_Gen_Poly_block1: CRC_Generator_Polynomial_bit_block port map

(CR_H (0), CR_L(0), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, Load_H(1), Load_L(1), G_H(1), G_L(1), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(1), CR_L(1));

CRC_Gen_Poly_block2: CRC_Generator_Polynomial_bit_block port map

(CR_H(1), CR_L(1), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, Load_H(2), Load_L(2), G_H(2), G_L(2), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(2), CR_L(2));

CRC_Gen_Poly_block3: CRC_Generator_Polynomial_bit_block port map

(CR_H(2), CR_L(2), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, Load_H(3), Load_L(3), G_H(3), G_L(3), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(3), CR_L(3));

CRC_Gen_Poly_block4: CRC_Generator_Polynomial_bit_block port map

(CR_H(3), CR_L(3), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

175

R3_H, R3_L, Load_H(4), Load_L(4), G_H(4), G_L(4), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(4), CR_L(4));

CRC_Gen_Poly_block5: CRC_Generator_Polynomial_bit_block port map

(CR_H(4), CR_L(4), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, Load_H(5), Load_L(5), G_H(5), G_L(5), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(5), CR_L(5));

CRC_Gen_Poly_block6: CRC_Generator_Polynomial_bit_block port map

(CR_H(5), CR_L(5), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, Load_H(6), Load_L(6), G_H(6), G_L(6), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(6), CR_L(6));

CRC_Gen_Poly_block7: CRC_Generator_Polynomial_bit_block port map

(CR_H(6), CR_L(6), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, Load_H(7), Load_L(7), G_H(7), G_L(7), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(7), CR_L(7));

CRC_Gen_Poly_block8: CRC_Generator_Polynomial_bit_block port map

(CR_H(7), CR_L(7), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, Load_H(8), Load_L(8), G_H(8), G_L(8), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(8), CR_L(8));

CRC_Gen_Poly_block9: CRC_Generator_Polynomial_bit_block port map

(CR_H(8), CR_L(8), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H, R1_L,

R3_H, R3_L, Load_H(9), Load_L(9), G_H(9), G_L(9), CR15_xor_IN_H,

CR15_XOR_IN_L, ZERO, ONE, CR_H(9), CR_L(9));

CRC_Gen_Poly_block10: CRC_Generator_Polynomial_bit_block port

map (CR_H(9), CR_L(9), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H,

R1_L, R3_H, R3_L, Load_H(10), Load_L(10), G_H(10), G_L(10),

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(10), CR_L(10));

CRC_Gen_Poly_block11: CRC_Generator_Polynomial_bit_block port

map (CR_H(10), CR_L(10), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H,

R1_L, R3_H, R3_L, Load_H(11), Load_L(11), G_H(11), G_L(11),

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(11), CR_L(11));

CRC_Gen_Poly_block12: CRC_Generator_Polynomial_bit_block port

map (CR_H(11), CR_L(11), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H,

R1_L, R3_H, R3_L, Load(12), Load_L(12), G_H(12), G_L(12),

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(12), CR_L(12));

CRC_Gen_Poly_block13: CRC_Generator_Polynomial_bit_block port

map (CR_H(12), CR_L(12), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H,

R1_L, R3_H, R3_L, Load_H(13), Load_L(13), G(13), Gb(13),

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(13), CR_L(13));

CRC_Gen_Poly_block14: CRC_Generator_Polynomial_bit_block port

map (CR_H(13), CR_L(13), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H,

R1_L, R3_H, R3_L, Load(14), Loadb(14), G_H(14), G_L(14),

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(14), CR_L(14));

CRC_Gen_Poly_block15: CRC_Generator_Polynomial_bit_block port

map (CR_H(14), CR_L(14), PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H,

R1_L, R3_H, R3_L, Load_H(15), Load_L(15), G_H(15), G_L(15),

CR15_xor_IN_H, CR15_XOR_IN_L, ZERO, ONE, CR_H(15), CR_L(15));

END ARCHITECTURE Structural;

176

---16-bit CRC for 16-bit message word

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

USE IEEE.std_logic_arith.all;

ENTITYMUX_Controller_CRC_Datapath IS

port (IN1_H, IN2_H, IN3_H, IN4_H, IN5_H, IN6_H, IN7_H, IN8_H,

IN9_H, IN10_H, IN11_H, IN12_H, IN13_H, IN14_H, IN15_H, IN16_H,

IN1_L, IN2_L, IN3_L, IN4_L, IN5_L, IN6_L, IN7_L, IN8_L, IN9_L,

IN10_L, IN11_L, IN12_L, IN13_L, IN14_L, IN15_L, IN16_L: in

std_logic; CLOCK : in std_logic_vector(1 downto 0); NM_H, NM_L,

RESET_H, RESET_L: in std_logic; R_count_H, R_count_L, R0_H, R0_L,

R1_H, R1_L, R2_H, R2_L, R3_H, R3_L, R4_H, R4_L, Msg_IN_H,

Msg_IN_L: inout std_logic; LV_H, LV_L, GP1_H, GP1_L : in

std_logic_vector(15 downto 1);

ZERO1, ONE1: in std_logic; CR_H, CR_L: inout std_logic_vector(15

downto 0));

END ENTITY MUX_Controller_CRC_Datapath;

ARCHITECTURE Structural OF MUX_Controller_CRC_Datapath IS

Component DC_TO_ADIABATIC

port (INP_H, INP_L: in std_logic; CLK: in std_logic_vector(1

downto 0); A_H, A_L: out std_logic);

End Component;

Component FOUR_PHASE_PC

port (CLK: in std_logic_vector(1 downto 0); PC1, PC2, PC3, PC4 :

out std_logic);

End Component;

Component Proposed_Buf

port (A_H, A_L: in std_logic; PC: in std_logic; Out_H, Out_L:

out std_logic);

End Component;

Component DC_TO_ADIABATIC_PC3_INP

port (INP_H, INP_L: in std_logic; CLK: in std_logic_vector(1

downto 0); A_H, A_L: out std_logic);

End Component;

Component controller_MUX

port (A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H, L_H,

M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L, I_L,

J_L, K_L, L_L, M_L, N_L, O_L, P_L, PC1, PC2, PC3, PC4, NM_H,

NM_L, RESET_H, RESET_L: in std_logic; R_count_H, R_count_L, R0_H,

R0_L, R1_H, R1_L, R2_H, R2_L, R3_H, R3_L, R4_H, R4_L, Msg_IN_H,

Msg_IN_L: inout std_logic);

177

END COMPONENT controller_MUX;

Component CRC_Datapath

port (MSG_IN_H, MSG_IN_L, PC1, PC2, PC3, PC4, R0_H, R0_L, R1_H,

R1_L, R2_H, R2_L, R3_H, R3_L: in std_logic; Load_H, Load_L, G_H,

G_L: in std_logic_vector(15 downto 1); ZERO, ONE : in std_logic;

CR_H, CR_L: inout std_logic_vector(15 downto 0));

END COMPONENT CRC_Datapath;

SIGNAL A_H, B_H, C_H, D_H, E_H, F_H, G_H, H_H, I_H, J_H, K_H,

L_H, M_H, N_H, O_H, P_H, A_L, B_L, C_L, D_L, E_L, F_L, G_L, H_L,

I_L, J_L, K_L, L_L, M_L, N_L, O_L, P_L: std_logic;

SIGNAL A1_H, B1_H, C1_H, D1_H, E1_H, F1_H, G1_H, H1_H, I1_H,

J1_H, K1_H, L1_H, M1_H, N1_H, O1_H, P1_H, A1_L, B1_L, C1_L, D1_L,

E1_L, F1_L, G1_L, H1_L, I1_L, J1_L, K1_L, L1_L, M1_L, N1_L, O1_L,

P1_L: std_logic;

SIGNAL ZERO, ONE, NM11_H, NM11_L, NM12_H, NM12_L, NM1_H, NM2_H,

NM1_L, NM2_L, RES1_H, RES1_L, RES2_H, RES2_L, RES_H, RES_L:

std_logic;

SIGNAL GP_H, GP_L: std_logic_vector (15 downto 1);

SIGNAL Load_H, Load_L: std_logic_vector (15 downto 0);

SIGNAL PC1, PC2, PC3, PC4: std_logic;

BEGIN

CLK1: FOUR_PHASE_PCLK port map (CLOCK, PC1, PC2, PC3, PC4);

INPUT1: DC_TO_ADIABATIC_PC3_INP port map (IN1_H, IN1_L, CLOCK,

A1_H, A1_L);

INPUT2: DC_TO_ADIABATIC_PC3_INP port map (IN2_H, IN2_L, CLOCK,

B1_H, B1_L);

INPUT3: DC_TO_ADIABATIC_PC3_INP port map (IN3_H, IN3_L, CLOCK,

C1_H, C1_L);

INPUT4: DC_TO_ADIABATIC_PC3_INP port map (IN4_H, IN4_L, CLOCK,

D1_H, D1_L);

INPUT5: DC_TO_ADIABATIC_PC3_INP port map (IN5_H, IN5_L, CLOCK,

E1_H, E1_L);

INPUT6: DC_TO_ADIABATIC_PC3_INP port map (IN6_H, IN6_L, CLOCK,

F1_H, F1_L);

INPUT7: DC_TO_ADIABATIC_PC3_INP port map (IN7_H, IN7_L, CLOCK,

G1_H, G1_L);

INPUT8: DC_TO_ADIABATIC_PC3_INP port map (IN8_H, IN8_L, CLOCK,

H1_H, H1_L);

INPUT9: DC_TO_ADIABATIC_PC3_INP port map (IN9_H, IN9_L, CLOCK,

I1_H, I1_L);

INPUT10: DC_TO_ADIABATIC_PC3_INP port map (IN10_H, IN10_L, CLOCK,

J1_H, J1_L);

INPUT11: DC_TO_ADIABATIC_PC3_INP port map (IN11_H, IN11_L, CLOCK,

K1_H, K1_L);

178

INPUT12: DC_TO_ADIABATIC_PC3_INP port map (IN12_H, IN12_L, CLOCK,

L1_H, L1_L);

INPUT13: DC_TO_ADIABATIC_PC3_INP port map (IN13_H, IN13_L, CLOCK,

M1_H, M1_L);

INPUT14: DC_TO_ADIABATIC_PC3_INP port map (IN14_H, IN14_L, CLOCK,

N1_H, N1_L);

INPUT15: DC_TO_ADIABATIC_PC3_INP port map (IN15_H, IN15_L, CLOCK,

O1_H, O1_L);

INPUT16: DC_TO_ADIABATIC_PC3_INP port map (IN16_H, IN16_L, CLOCK,

P1_H, P1_L);

BF01: Proposed_Buf port map (A1_H, A1_L, PC3, A_H, A_L);

BF02: Proposed_Buf port map (B1_H, B1_L, PC3, B_H, B_L);

BF03: Proposed_Buf port map (C1_H, C1_L, PC3, C_H, C_L);

BF04: Proposed_Buf port map (D1_H, D1_L, PC3, D_H, D_L);

BF05: Proposed_Buf port map (E1_H, E1_L, PC3, E_H, E_L);

BF06: Proposed_Buf port map (F1_H, F1_L, PC3, F_H, F_L);

BF07: Proposed_Buf port map (G1_H, G1_L, PC3, G_H, G_L);

BF08: Proposed_Buf port map (H1_H, H1_L, PC3, H_H, H_L);

BF09: Proposed_Buf port map (I1_H, I1_L, PC3, I_H, I_L);

BF010: Proposed_Buf port map (J1_H, J1_L, PC3, J_H, J_L);

BF011: Proposed_Buf port map (K1_H, K1_L, PC3, K_H, K_L);

BF012: Proposed_Buf port map (L1_H, L1_L, PC3, L_H, L_L);

BF013: Proposed_Buf port map (M1_H, M1_L, PC3, M_H, M_L);

BF014: Proposed_Buf port map (N1_H, N1_L, PC3, N_H, N_L);

BF015: Proposed_Buf port map (O1_H, O1_L, PC3, O_H, O_L);

BF016: Proposed_Buf port map (P1_H, P1_L, PC3, P_H, P_L);

INPUT17: DC_TO_ADIABATIC port map (RESET_H, RESET_L, CLOCK,

RES1_H, RES1_L);

INPUT18: DC_TO_ADIABATIC port map (NM_H, NM_L, CLOCK, NM1_H,

NM1_L);

BF017: Proposed_Buf port map (RES1_H, RES1_L, PC1, RES2_H,

RES2_L);

BF018: Proposed_Buf port map (RES2_H, RES2_L, PC2, RES_H, RES_L);

BF019: Proposed_Buf port map (NM1_H, NM1_L, PC1, NM11_H, NM11_L);

BF020: Proposed_Buf port map (NM11_H, NM11_L, PC2, NM12_H,

NM12_L);

BF021: Proposed_Buf port map (NM12_H, NM12_L, PC3, NM2_H, NM2_L);

INPUT19: DC_TO_ADIABATIC port map (ZERO1, ONE1, CLOCK, ZERO,

ONE);

INPUT24: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(1), GP1_L(1),

CLOCK, GP_H(1), GP_L(1));

INPUT25: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(2), GP1_L(2),

CLOCK, GP_H(2), GP_L(2));

INPUT26: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(3), GP1_L(3),

CLOCK, GP_H(3), GP_L(3));

179

INPUT27: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(4), GP1_L(4),

CLOCK, GP_H(4), GP_L(4));

INPUT28: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(5), GP1_L(5),

CLOCK, GP_H(5), GP_L(5));

INPUT29: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(6), GP1_L(6),

CLOCK, GP_H(6), GP_L(6));

INPUT30: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(7), GP1_L(7),

CLOCK, GP_H(7), GP_L(7));

INPUT31: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(8), GP1_L(8),

CLOCK, GP_H(8), GP_L(8));

INPUT32: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(9), GP1_L(9),

CLOCK, GP_H(9), GP_L(9));

INPUT33: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(10), GP1_L(10),

CLOCK, GP_H(10), GP_L(10));

INPUT34: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(11), GP1_L(11),

CLOCK, GP_H(11), GP_L(11));

INPUT35: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(12), GP1_L(12),

CLOCK, GP_H(12), GP_L(12));

INPUT36: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(13), GP1_L(13),

CLOCK, GP_H(13), GP_L(13));

INPUT37: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(14), GP1_L(14),

CLOCK, GP_H(14), GP_L(14));

INPUT38: DC_TO_ADIABATIC_PC3_INP port map (GP1_H(15), GP1_L(15),

CLOCK, GP_H(15), GP_L(15));

INPUT40: DC_TO_ADIABATIC port map (LV_H(0), LV_L(0), CLOCK,

Load_H(0), Load_L(0));

INPUT41: DC_TO_ADIABATIC port map (LV_H(1), LV_L(1), CLOCK,

Load_H(1), Load_L(1));

INPUT42: DC_TO_ADIABATIC port map (LV_H(2), LV_L(2), CLOCK,

Load_H(2), Load_L(2));

INPUT43: DC_TO_ADIABATIC port map (LV_H(3), LV_L(3), CLOCK,

Load_H(3), Load_L(3));

INPUT44: DC_TO_ADIABATIC port map (LV_H(4), LV_L(4), CLOCK,

Load_H(4), Load_L(4));

INPUT45: DC_TO_ADIABATIC port map (LV_H(5), LV_L(5), CLOCK,

Load_H(5), Load_L(5));

INPUT46: DC_TO_ADIABATIC port map (LV_H(6), LV_L(6), CLOCK,

Load_H(6), Load_L(6));

INPUT47: DC_TO_ADIABATIC port map (LV_H(7), LV_L(7), CLOCK,

Load_H(7), Load_L(7));

INPUT48: DC_TO_ADIABATIC port map (LV_H(8), LV_L(8), CLOCK,

Load_H(8), Load_L(8));

INPUT49: DC_TO_ADIABATIC port map (LV_H(9), LV_L(9), CLOCK,

Load_H(9), Load_L(9));

INPUT50: DC_TO_ADIABATIC port map (LV_H(10), LV_L(10), CLOCK,

Load_H(10), Load_L(10));

INPUT51: DC_TO_ADIABATIC port map (LV_H(11), LV_L(11), CLOCK,

Load_H(11), Load_L(11));

180

INPUT52: DC_TO_ADIABATIC port map (LV_H(12), LV_L(12), CLOCK,

Load_H(12), Load_L(12));

INPUT53: DC_TO_ADIABATIC port map (LV_H(13), LV_L(13), CLOCK,

Load_H(13), Load_L(13));

INPUT54: DC_TO_ADIABATIC port map (LV_H(14), LV_L(14), CLOCK,

Load_H(14), Load_L(14));

INPUT55: DC_TO_ADIABATIC port map (LV_H(15), LV_L(15), CLOCK,

Load_H(15), Load_L(15));

Cont_MUX1: controller_MUX port map (A_H, B_H, C_H, D_H, E_H, F_H,

G_H, H_H, I_H, J_H, K_H, L_H, M_H, N_H, O_H, P_H, A_L, B_L, C_L,

D_L, E_L, F_L, G_L, H_L, I_L, J_L, K_L, L_L, M_L, N_L, O_L, P_L,

PC1, PC2, PC3, PC4, NM2_H, NM2_L, RES_H, RES_L, R_count_H,

R_count_L, R0_H, R0_L, R1_H, R1_L, R2_H, R2_L, R3_H, R3_L, R4_H,

R4_L, Msg_IN_H, Msg_IN_L);

CRC_Dpath1: CRC_Datapath port map (MSG_IN_L, MSG_IN_L, PC1, PC2,

PC3, PC4, R0_H, R0_L, R1_H, R1_L, R2_H, R2_L, R3_H, R3_L, Load_H,

Load_L, GP_H, GP_L, ZERO, ONE, CR_H, CR_L);

END ARCHITECTURE Structural;

